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ABSTRACT OF DISSERTATION

ON P-ADIC FIELDS AND P-GROUPS

The dissertation is divided into two parts. The first part mainly treats a conjecture
of Emil Artin from the 1930s. Namely, if f = a1x

d
1 + a2x

d
2 + · · · + ad2+1x

d
d2+1 where

the coefficients ai lie in a finite unramified extension of a rational p-adic field, where
p is an odd prime, then f is isotropic. We also deal with systems of quadratic forms
over finite fields and study the isotropicity of the system relative to the number of
variables. We also study a variant of the classical Davenport constant of finite abelian
groups and relate it to the isotropicity of diagonal forms. The second part deals with
the theory of finite groups. We treat computations of Chermak-Delgado lattices of
p-groups. We compute the Chermak-Delgado lattices for all p-groups of order p3 and
p4 and give results on p-groups of order p5.
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Chapter 1 Prelude

“It always seems impossible until it’s done.” Nelson Mandela.

1.1 Notation and basics

A finite field with q = pn elements, where p is a prime and n ∈ N, will be denoted
by Fq. We recall that Fq is an n-dimensional vector space over Fp. We recall that
the multiplicative group (Fq −{0},×), usually denoted F×q , is a cyclic abelian group.
That is, F×q = 〈ζ〉 where ζ ∈ Fq − {0} is a generator. Furthermore, the characteristic
of Fq, denoted char(Fq), is equal to p.

We let Z denote the ring of rational integers. If a, b ∈ Z, we write (a, b) for the
greatest common divisor of a and b. We let bac and dae denote the usual floor and
ceiling functions of a. Thus b1

2
c = 0 and d1

2
e = 1.

For any unital ring R, we let R× denote the group of units of R. Thus for a field
F , F× denotes the nonzero elements of F .

Let Q denote the field of rational numbers. Let p be a rational prime number, let
vp : Q→ Z ∪ {∞} denote the standard p-adic valuation, and let | |p : Q→ R denote
the induced p-adic norm. Let Qp denote the topological completion of Q with respect
to this norm, and let Zp = {x ∈ Qp||x|p ≤ 1} denote the p-adic integers. We call Qp

the rational p-adic field. Let K be an extension of Qp with [K : Qp] = n <∞. K will
be called a p-adic field. Let OK denote the ring of integers of K, that is, the integral
closure of Zp in K. When no confusion shall arise, we shall denote OK as simply O.
We have no desire nor hope of being complete with our treatment of p-adic fields.
Thus we refer the reader to [24] for a gentle introduction. However, some facts are
worth mentioning:
OK is a discrete valuation ring with maximal ideal (π), where π ∈ OK is a

generator, usually called a uniformizer. Let e be the ramification index of K and
f = [OK/(π) : Zp/(p)] be the inertia degree of f . Then (πe) = (p). Recall that
ef = n = [K : Qp] and that OK/(π) ∼= Fpf where Fpf denotes the finite field with pf
elements. It is called the residue field of K. The function vπ : K → R ∪ {∞} will
denote the extension of vp from Qp to K and | |π will denote the extension of | |p from
Qp to K. With respect to this norm, K becomes a complete non-archimedean field.
In the special case e = n = [K : Qp], K is said to be a totally ramified extension of
Qp. At the other extreme, when e = 1, f = [K : Qp], K is said to be unramified. The
details can be found in [24, Chapter 5].

Now, let F be any field. By a form of degree d ≥ 1, we mean an element of
F [x1, · · · , xN ] where each monomial has the same total degree. For an example,
consider Q[x1, x2]. Then x1x32 + x41 is a form of degree 4, whereas x1 + x32x1 is not a
form of degree 4.

Let F be a field and consider a form f of degree d in F [x1, · · · , xN ]. Then f is a
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diagonal form of degree d if

f = a1x
d
1 + a2x

d
2 + · · ·+ aNx

d
N

where ai ∈ F for i = 1, · · · , N with at least one ai 6= 0. That is, each monomial only
has one variable appearing in it.

The set VF (f) := {a ∈ FN |f(a) = 0} is called the (affine) F -variety of f . If
|VF (f)| > 1, we say f is F -isotropic. Otherwise, we say f is F -anisotropic.

More generally, let S = {f1, f2, · · · , fs} be a system of forms in F [x1, · · · , xN ] over
a field F . Let VF (S) := {a ∈ FN |fi(a) = 0 for 1 ≤ i ≤ s}. If |VF (S)| > 1, we say S
is F -isotropic. Otherwise, we say S is F -anisotropic.

F is said to have the Ci property, or to be a Ci field, if any form f ∈ F [x1, · · · , xN ]
of degree d where N > di is F -isotropic. The smallest i such that F satisfies the Ci
property is called the Diophantine dimension of F . If no i exists, then F is said to
have infinite Diophantine dimension.

1.2 A quick history of Artin’s conjecture

Chevalley proved the following remarkable theorem for Fq, the finite field with q
elements:

Theorem 1.2.1. (Chevalley) The number of zeroes in Fq of a homogeneous polyno-
mial of degree d in Fq[x1, x2, · · · , xd+1] is a positive multiple of char(Fq).

Emil Artin called a field F a quasi-algebraically closed field if F has the property
that any homogeneous polynomial f with coefficients in F of degree d in N > d
variables is F -isotropic. An immediate corollary of Chevalley’s Theorem is that any
finite field is quasi-algebraically closed.

Artin’s student, Serge Lang, generalized this concept in his dissertation [40] where
he defined the Ci property of fields.

Definition 1.2.2. (Lang) A field F is said to have the Ci property, or to be a Ci
field, if any homogeneous form f ∈ F [x1, · · · , xN ] of degree d in N > di variables is
F -isotropic.

For a beautiful (arguably outdated) exposition to Ci fields, the reader should refer
to [27].

An important example of a C2 field is the field Fq((X)), the field of meromorphic
series over a finite field (see [41]). The local fields Fq((X)) and Qp are remarkably
similar, albeit vastly distinct. One way to see that these two fields are not isomorphic
is the fact that char(Fp((X))) = p and char(Qp) = 0. A conjecture usually attributed
to Emil Artin states that any homogeneous polynomial of degree d in a finite extension
F of Qp in more than d2 variables is F -isotropic (see the preface of [2]). In other
words, the conjecture states that any finite extension of Qp is a C2 field. In 1966, the
French mathematician Guy Terjanian disproved the conjecture by providing a Q2-
anisotropic form of degree 4 in 18 > 42 + 1 variables (see [57]). He later provided a
stronger counterexample by providing a Q2-anistropic form of degree 4 in 20 > 42 + 1

3



variables. On the positive side, using methods of model theory, Ax and Kochen
proved the following beautiful theorem in [3]:

Given d ∈ N, there exists a prime p0(d) such that if p ≥ p0(d), any homogeneous
form of degree d over Qp in more than d2 variables is Qp-isotropic. A classical theorem
due to Hasse states that p0(2) = 2. Demyanov [19] proved p0(3) ≤ 5 and Lewis proved
in [46] that p0(3) = 2.

For a short and expositional survey on recent work see [33].
A variation of Artin’s conjecture is to consider diagonal forms

f = a1x
d
1 + a2x

d
2 + · · ·+ aNx

d
N

where the ai lie in a finite extension K of Qp. Specializing to the case of diagonal
forms has yielded some positive results and yet no counterexamples in terms of Artin’s
conjecture.

Conjecture 1.2.3. Let K be a finite extension of Qp. Then any diagonal form

f = a1x
d
1 + a2x

d
2 + · · ·+ ad2+1x

d
d2+1,

where ai ∈ K× for 1 ≤ i ≤ d2 + 1, is K-isotropic.

Davenport and Lewis proved the following remarkable theorem in [18]:

Theorem 1.2.4. [18] Let p be a prime number.
Let

f = a1x
d
1 + · · ·+ ad2+1x

d
d2+1, ai ∈ Qp.

Then f is Qp-isotropic.

Let K be a p-adic field. Let ΓK(d) denote the smallest positive integer such that
if the number of variables N is greater or equal to ΓK(d), then any diagonal form is
K-isotropic. Some bounds do indeed exist for ΓK(d) for K a p-adic field, although
the bounds are far from the conjectured ΓK(d) ≤ d2 + 1.

It is remarkably difficult to extend the methods that Davenport and Lewis used
to prove that ΓQp(d) ≤ d2 + 1 in [18] to an arbitrary finite extension of Qp. Among
many difficulties is that the main lemma in [18], namely [18, Lemma 1], does not
extend to nontrivial extensions of Fp.

However, in the case that K is an unramified extension of Qp with p ≥ 3, Leep and
Sordo Vieira have been able to prove many stronger results using the Weil bounds
for diagonal forms over finite fields. In particular, Leep and Sordo Vieira proved
(Theorem 3.1.2) Artin’s conjecture holds for diagonal forms in the case that K is an
unramified extension of Qp with p > 2. This is the main topic of this dissertation.

Of remarkable interest is that many interesting and deep questions remain open.
Namely, if K is a ramified extension of Qp, is it true that ΓK(d) ≤ d2 + 1 for all d?
If K is an unramified extension of Q2, is it still true that ΓK(d) ≤ d2 + 1?

For completeness, we include some of the previously known results regarding (or
related to) Artin’s conjecture.

The following is a statement by Alemu for general finite extensions of Qp, where
n = [K : Qp]. In particular, it is close to the desired bound of d2 + 1 when n is small.

4



Theorem 1.2.5. [1, Theorem 1] If p ≥ 3, then

ΓK(d) ≤ max{3nd2 − nd+ 1, 2d3 − d2}.

If p = 2, then
ΓK(d) ≤ 4nd2 − nd+ 1.

Another interesting result is due to Birch in [9].

Theorem 1.2.6. [9] Let K be a finite extension of Qp with inertial degree f . Let
d = mpτ where (m, p) = 1. Then

ΓK(d) ≤ (2τ + 3)d(δ2d)d−1 + 1,

where δ = (d, pf − 1).

In [56], Skinner stated that ΓK(d) ≤ d((d + 1)2τ+1 − 1) + 1. However, the proof
of this result turned out to be flawed, applying Hensel’s Lemma incorrectly near the
end of the proof. In his subsequent article [55] acknowledging his mistake, Skinner
proved the following:

Theorem 1.2.7. [55] Let K/Qp be a finite extension of Qp. Let d = mpτ where
(m, p) = 1. Then

ΓK(d) ≤ d(p3τm2)2τ+1 + 1.

The following is the optimal result for a general p-adic field K to the best of the
author’s knowledge.

Theorem 1.2.8. [14, Theorem 1] Let [K : Qp] = n <∞ and suppose d = mpτ with
(m, p) = 1. Then

ΓK(d) ≤ d2τ+5 + 1

and
ΓK(d) ≤ 4nd2 + 1.

In the case of Qp, the following quantity is of interest:

Definition 1.2.9.
Γ∗(d) = sup

p prime
{ΓQp(d)}.

Example. [18] If d+ 1 = p is prime, Γ∗(d) = d2 + 1.

Proof.
d∑
i=1

xdi + p
d∑
i=1

xdi + · · ·+ pd−1
d∑
i=1

xdi ≡ 0 mod pd

has no primitive solution. Combining this with Theorem 1.2.4 yields the result.
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In a way, this means that the value conjectured by Artin is best possible. However
one can do much better for other values. See, for example, [37] and its references.

Copyright c© Luis Sordo Vieira, 2017.
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Chapter 2 Diagonal equations over finite fields

2.1 On the Chevalley bound

The main goal of this dissertation is to prove Theorem 3.1.2, which proves a conjecture
attributed to Emil Artin (see Conjecture 1.2.3) for diagonal forms in the case that K
is an unramified extension of Qp with p > 2.

In order to prove Theorem 3.1.2, we need some auxiliary results about diagonal
forms over finite fields. Much effort has been devoted to the isotropicity of diagonal
forms over finite fields. See for example the encyclopedic text [48]. In particular,
[48, Chapter 6] provides many results and references dealing with the solvability of
diagonal forms over finite fields.

Let p be a prime, q = pn where n ∈ N>0. Then Fq denotes the finite field with q
elements.

The next theorem is a classical result of Chevalley proved in [15]:

Theorem 2.1.1 (Chevalley). Let {fi}ki=1 be a set of homogeneous polynomials of
degree di in Fq[x1, ..., xN ] such that N >

∑k
i=1 di. Then the system {fi}ki=1 is Fq-

isotropic.

The following result due to André Weil is a special case of the Riemann Hypothesis
for function fields over finite fields. See, for example, [54, Ch. 4, Corollary 6e].

Theorem 2.1.2 (Weil). Let Fq denote the finite field of cardinality q. Consider a
diagonal form

f = a1x
m
1 + · · ·+ aNx

m
N

where q ≡ 1 mod m and ai ∈ F×q for 1 ≤ i ≤ N . Then

| |VFq(f)| − qN−1| ≤ (m− 1)N + (−1)N(m− 1)

m
(q − 1)q

N
2
−1.

In particular, if |VFq(f)| ≥ 2, then f is Fq-isotropic.

Lemma 2.1.3. Let f be as in Theorem 2.1.2 with N ≥ 3 and m ≥ 1. If m ≤
q

N−2
2(N−1) + 1, then f is Fq-isotropic.

Proof. If m = 1, the statement is clear. Suppose m > 1.
First, we estimate

(m− 1)N + (−1)N(m− 1)

m
.

(m− 1)N + (−1)N(m− 1)

m
=

(m− 1)N−1
(
(m− 1) + (−1)N(m− 1)−N+2

)
m

≤ (m− 1)N−1 ((m− 1) + 1)

m
= (m− 1)N−1.

7



A homogeneous form always has a trivial zero, hence |VFq(f)| ≥ 1. Suppose
|VFq(f)| = 1. Then

qN−1 − 1 ≤ (m− 1)N + (−1)N(m− 1)

m
(q − 1)q

N−2
2 ≤ (m− 1)N−1(q − 1)q

N−2
2 .

Since N ≥ 3, this gives

qN−2 <
qN−1 − 1

q − 1
≤ (m− 1)N−1q

N−2
2 ,

q
N−2

2 < (m− 1)N−1.

By assumption, we have m ≤ q
N−2

2(N−1) + 1. Then,

q
N−2

2(N−1) < m− 1 ≤ q
N−2

2(N−1) + 1− 1 = q
N−2

2(N−1) ,

a contradiction.

Let d = mpτ where (m, p) = 1 and q = pf . Let δ = (d, q − 1) = (m, q − 1).

Lemma 2.1.4. (F×q )δ = (F×q )d.

Proof. kd + l(q − 1) = δ for some k, l ∈ Z. Hence aδ = (ak)d for all a ∈ Fq. Let
d = tδ. Hence ad = (at)δ for all a ∈ Fq. Thus (F×q )δ = (F×q )d.

Remark. It follows that the form a1x
d
1 + · · · + asx

d
s has a zero in Fq if and only if

a1x
δ
1 + · · ·+ asx

δ
s has a zero in Fq, where δ = (d, q − 1).

The following invariants will be used several times in the dissertation. Thus we
isolate them in a definition.

Definition 2.1.5. Let lFq(d) be the smallest integer i such that xd1 + · · ·+xdi = 0 has
a nontrivial zero in Fq.

Let sFq(d) be the smallest integer i such that a1xd1 + · · ·+aix
d
i = 0 has a nontrivial

zero in Fq for every choice of a1, . . . , ai ∈ F×q .

It is straightforward that 2 ≤ lFq(d) ≤ sFq(d) ≤ d + 1 by Theorem 2.1.1. Note
that lFq(δ) = lFq(d) and sFq(δ) = sFq(d) by Lemma 2.1.4. If the finite field or d is
clear from context, we will sometimes write l(d) or l, and s(d) or s.

Lemma 2.1.6.

1. 1 < lFq(d) ≤ p.

2. If j ≥ 2, j | q − 1, and δ is a divisor of q−1
j
, then lFq(δ) ≤ j.

Proof. (1) We have 1 < lFq(d) ≤ p because char(Fq) = p.
(2) Suppose δ is a divisor of q−1

j
. Let ζ be a generator of F×q . Suppose uδ = q−1

j
.

Then 1 6= ρ = (ζu)δ ∈ (F×q )δ is a jth root of unity and hence 1 + ρ + · · · + ρj−1 = 0.
Thus lFq(δ) ≤ j.

8



Lemma 2.1.7. If δ ≤ q
N−2

2(N−1) + 1, then sFq(δ) ≤ N .

Proof. Since δ | q − 1, this follows from Lemma 2.1.3.

Lemma 2.1.8. Assume that q is odd. Then lFq(δ) = 2 if and only if δ | q−1
2
.

Proof. Assume lFq(δ) = 2. Then aδ + bδ = 0, where a, b ∈ F×q . Hence, −1 =
(
a
b

)δ.
Then (−1)

q−1
δ = 1. Since q is odd, we have −1 6= 1 in Fq, and so 2 | q−1

δ
. Thus δ | q−1

2
.

If δ| q−1
2
, then lFq(δ) ≤ 2 by Lemma 2.1.6, and thus lFq(δ) = 2.

Theorem 2.1.9. [53] For Fq with q = pn and with n ≥ 2, if δ = 2v2(p
n−1), then

l(δ) = 3.

Remark. The necessity of n ≥ 2 in Theorem 2.1.9 is easily seen by the fact that

x41 + x42 + x43 + x44 = 0

has no nontrivial solution in F5. In fact, if p is a Fermat prime, then l(δ) = p for δ
as in Theorem 2.1.9 for Fp.
Remark. If δ = q − 1, it is clear that l(δ) = p = char(Fq), since

xδ1 + · · ·+ xδs

has no nontrivial solution for s < p. Thus lFq(q − 1) = p, where p = char(Fq).

Theorem 2.1.10. Let δ = 2u ·3v. Let q = pn where p is an odd prime and n = 2j ·3k ·t
and t ≥ 5 where t is odd and not divisble by 3. Then lFq(δ) ≤ 3.

Proof. The result is obvious for p = 3. Hence, assume p > 3. Write δ = 2u3v and
n = 2j3kt where (t, 2) = (t, 3) = 1 and t ≥ 5. First assume that j = 0 and p ≡ 2
mod 3. Then n is odd, and so 3 doesn’t divide pn−1. This implies v = 0, and so lδ ≤ 3
by Lemma 2.1.6 and Theorem 2.1.9. Now assume that either j ≥ 1 or p ≡ 1 mod 3.
In each case, p2j3k ≡ 1 mod 6, and so (p2

j3k)t−1+(p2
j3k)t−2+· · ·+1 ≡ t mod 6. This

is not divisible by either 2 or 3, so it follows that δ divides p2j3k − 1 since δ divides
pn − 1 = (p2

j3k − 1)((p2
j3k)t−1 + (p2

j3k)t−2 + · · ·+ 1). Then δ ≤ p2
j3k − 1 ≤ pn/4 + 1.

Hence lδ ≤ 3 by Lemma 2.1.7.

The following is due to Leep. Originally, the author of the dissertation proved
special cases of the following result to prove Theorem 3.2.9 using SageMath. Leep
provided the following result, using methods found in [53] and other methods, avoiding
the necessity of using a computer and providing a more general statement.

Theorem 2.1.11. Let p be a prime number with p 6= 3, and let q = p3. Then
lFq(3(p− 1)) ≤ 3.

9



Proof. Let TrFq/Fp : Fq → Fp denote the trace map. We will show that there exists
α ∈ F×q such that TrFq/Fp(α3) = 0. Suppose that this has been accomplished. Then
0 = TrFq/Fp(α

3) = α3 +(α3)p+(α3)p
2 . Since α 6= 0, we have 1+α3(p−1) +α3(p2−1) = 0.

Thus lFq(3(p− 1)) ≤ 3.
Let v1, v2, v3 be a vector space basis of Fq over Fp. Then

(xv1 + yv2 + zv3)
3 = g1(x, y, z)v1 + g2(x, y, z)v2 + g3(x, y, z)v3,

where g1, g2, g3 ∈ Fp[x, y, z] are homogeneous forms of degree 3. Then

h(x, y, z) : = TrFq/Fp
(
(xv1 + yv2 + zv3)

3
)

=
3∑
i=1

gi(x, y, z)TrFq/Fp(vi) ∈ Fp[x, y, z]

is a homogeneous form of degree 3. We will show below that every nontrivial zero
of h defined over Falgp , the algebraic closure of Fp, is nonsingular, and thus h is a
nonsingular cubic form. Suppose that this has been accomplished. Then h defines
a nonsingular cubic curve of genus 1. The Hasse-Weil estimate implies that h has a
nontrivial zero (r, s, t) defined over Fp. It follows that TrFq/Fp ((rv1 + sv2 + tv3)

3) = 0
with rv1 + sv2 + tv3 6= 0, as desired.

For convenience, let L = Falgp . We now show that every nontrivial zero of h defined
over L is nonsingular. We have Fq ∼= Fp[x]/(f(x)) for some irreducible polynomial
f ∈ Fp[x] with deg(f) = 3. We know that f has three distinct roots a, b, c ∈ L,
because Fp is a perfect field. Thus

L[x]/(f(x)) ∼= L[x]/(x− a)× L[x]/(x− b)× L[x]/(x− c) ∼= L× L× L.

Let V = Fp[x]/(f(x)). We have TrV/Fp ((xv1 + yv2 + zv3)
3) = h(x, y, z). It follows

that Tr(L⊗V )/L ((xv1 + yv2 + zv3)
3) = h(x, y, z). From above, we have L ⊗ V ∼=

L[x]/(f(x)) ∼= L × L × L. Let w1 = (1, 0, 0), w2 = (0, 1, 0), w3 = (0, 0, 1) be the
L-basis of (L⊗V )/L corresponding to the decomposition L×L×L. Since wiwj = 0
in L⊗ V for i 6= j, and w3

i = wi for 1 ≤ i ≤ 3, we have

Tr(L⊗V )/L

(
(xw1 + yw2 + zw3)

3
)

= x3 + y3 + z3.

Since p 6= 3, the zeros of x3 + y3 + z3 over L are all nonsingular. Since the trace of
an element does not depend on the basis chosen, it follows that the zeros of h(x, y, z)
over L are also all nonsingular.

2.2 The Davenport constant of a finite abelian group and relations to
diagonal forms over finite fields

In this section, we study the following invariant:

Definition 2.2.1. Let
∆r

Fq(d)

denote the smallest positive integer such that any system of equations of r diagonal
forms over Fq of degree d in at least ∆r

Fq(d) variables is Fq-isotropic.

10



We study this invariant in a group theoretic setting.
Let (G,+) be a finite abelian group and let S be a multiset of elements of G. Let

the Davenport constant of G, D(G), be the smallest natural number such that for
any multiset of elements S of G of cardinality |S| = D(G), there exists a nonempty
submultiset S1 ⊂ S such that

∑
g∈S1

g = 0, where 0 denotes the identity element
of the group. We call a nonempty multiset S1 such that

∑
g∈S1

g = 0 a zero-sum
multiset.

The Davenport constant and some variants of it have important connections to
the area of number theory. See, for example, [31].

Lemma 2.2.2. Let G be a finite abelian group of order n. Then D(G) ≤ n.

Proof. Let S be a multiset {g1, g2, · · · , gn} where gi ∈ G for 1 ≤ i ≤ n. Of course,
we may assume without loss of generality that gi 6= 0 for 1 ≤ i ≤ n.

Consider the elements
h1 = g1
h2 = g1 + g2
h3 = g1 + g2 + g3
h4 = g1 + g2 + g3 + g4

.

.

.
hn =

∑n
i=1 gi.

If hi = 0 for 1 ≤ i ≤ n, then S1 = {g1, g2, · · · , gi} is our desired submultiset.
Otherwise, by the Pigeonhole Theorem, hi = hj for i 6= j. Without loss of

generality, suppose i > j. Then if S1 = {gj+1, gj+2, · · · , gi}, we have∑
g∈S1

g = 0.

Since S was arbitrarily chosen, we have D(G) ≤ n = |G|.

Corollary 2.2.3. D(Cm) = m.

Proof. The multiset S = {1, · · · , 1} of cardinality m−1 has no zero-sum submultiset.
This shows that D(Cm) > m − 1. By Lemma 2.2.2, we have m − 1 < D(Cm) ≤ m
and thus D(Cm) = m.

Let D±(G) be the smallest integer such thar for any sequence (g1, g2, · · · , gD±(G)),
there exists ai ∈ {0,±1} for 1 ≤ i ≤ D±(G) with at least one ai 6= 0 such that∑D±(G)

i=1 aigi = 0. We call D±(G) the plus-minus Davenport constant. The coefficients
ai are called weights. The sum

∑D±(G)
i=1 aigi = 0 is again called a zero-sum. For clarity,

we sometimes refer to the sum as a sum with weights.
Consider the map td : Fp → Fp where (d, p − 1)|p−1

2
defined by td(a) = ad. Then

{0,±1} ⊆ im(td).

11



Let d ∈ N>0 such that (d, p− 1)|p−1
2
. Consider the system of diagonal forms

S =

{
fi =

m∑
j=1

aijx
d
j

}

where aij ∈ Fp, 1 ≤ i ≤ n.
Consider the sequence of coefficients as elements of Fnp ∼= Cn

p :

(a11, a21, · · · , an1),

(a12, a22, · · · , an2),

·

·

·

(a1m, · · · , anm).

Then, if D±(Cnp ) ≤ m, it follows that the system is Fp-isotropic. In particular, for
d such that (d, p− 1)|p−1

2
, we have

∆n
Fp(d) ≤ D±(Cn

p ).

We isolate this statement:

Proposition 2.2.4. Let p be a prime and let d ∈ N be such that (d, p − 1)|p−1
2
. Let

n ∈ N. Then
∆n

Fp(d) ≤ D±(Cn
p ).

Furthermore, if d is such that (d, p− 1) = p−1
2
, we have

∆n
Fp(d) = D±(Cn

p ).

Proof. The first statement follows by the discussion above. The second statement
follows by noticing that if d is such that (d, p− 1) = p−1

2
, then im(td) = {0,±1}.

Corollary 2.2.5. D±(Cn
p ) = ∆n

Fp(
p−1
2

) ≤ n · p−1
2

+ 1.

Proof. By Theorem 2.1.1.

Proposition 2.2.6. Let G be a finite abelian group of order n. Then

D±(G) ≤ min{s ∈ N | 2s − 1 ≥ n}.

12



Proof. Let t = min{s ∈ N | 2s − 1 ≥ n} and consider a sequence g1, · · · , gt where
gi ∈ G−{0} where 0 denotes the identity element ofG, and suppose it has no zero sub-
sequence. Since we are allowed to invert, we may assume that gi 6= gj for i 6= j. Fur-
thermore, suppose gi1 +gi2 +· · ·+gik = gj1 +· · ·+gjl and (i1, · · · , ik) 6= (jσ(1), · · · , jσ(l))
for any σ ∈ Sl, where Sl is the permutation group on the l indices j1, · · · , jl. We may
cancel elements that appear on the left and right side simultaneously, so we may as-
sume ia 6= jb for 1 ≤ a ≤ k, 1 ≤ b ≤ l. But then gi1 +gi2 +· · ·+gik−(gj1 +· · ·+gjl) = 0
is a zero subsequence.

In particular, we may assume all distinct choices of i-tuples of elements of G (up to
permutation), 1 ≤ i ≤ t, give distinct elements of G. There are

∑t
i=1

(
t
i

)
= 2t−1 ≥ n

distinct possible choices for the i-tuples, but only n elements in the group, hence at
least some choice of tuple yields zero.

For an abelian group G with |G| = n, let

[G] = min{s ∈ N|2s − 1 ≥ n} = dlog2(|G|+ 1)e.

Lemma 2.2.7. Let G1, G2 be two abelian groups. Then

D±(G1) +D±(G2)− 1 ≤ D±(G1 ⊕G2) ≤ [G1] + [G2].

Proof. Let
g1, · · · , gD±(G1)−1

be a sequence of elements of G1 with no zero subsum with weights ±1. Similarly, let

h1, · · · , hD±(G2)−1

be a sequence of elements of G2 with no zero subsum with weights ±1. Then the
sequence

(g1, 0), · · · , (gD±(G1)−1, 0), (0, h1), · · · , (0, hD±(G2)−1)

has no zero subsum with weights ±1 and has length

D±(G1)− 1 +D±(G2)− 1 = D±(G1) +D±(G2)− 2.

Thus,
D±(G1 ⊕G2) > D±(G1) +D±(G2)− 2.

For the second bound, by Proposition 2.2.6, it suffices to note that 2[G1]+[G2]−1 ≥
(2[G1] − 1)(2[G2] − 1) ≥ |G1||G2| = |G1 ⊕G2|.

Proposition 2.2.8. D±(Cn) = min{s ∈ N|2s − 1 ≥ n}. In particular, the bound
given in Proposition 2.2.6 is sharp.

13



Proof. By Proposition 2.2.6, D±(Cn) ≤ min{s|2s − 1 ≥ n}. Let

m = min{s ∈ N|2s − 1 ≥ n}.

We claim the sequence
m−2∑
i=0

ai2
i,

where the ai ∈ {±1} for 0 ≤ i ≤ m, has no zero subsum.
Using the standard notation of | · |∞ denoting the standard absolute value on Q,

we see that since ∣∣∣∣∣
m−2∑
i=0

ai2
i

∣∣∣∣∣
∞

≤ 2m−1 − 1 < n,

it suffices to notice that for any subsum

ai12
i1 + · · ·+ aij2

ij ,

we have
ai12

i1 + · · ·+ aij2
ij = 2min{i1,···ij} · u

where u 6≡ 0 mod 2 and is thus nonzero. Thus, m − 1 < D±(Cn) ≤ m and hence
D±(Cn) = m.

Corollary 2.2.9.

[Cn] + [Cm]− 1 ≤ D±(Cn ⊕ Cm) ≤ [Cn] + [Cm].

Proof. By Lemma 2.2.7.

Corollary 2.2.10. D±(Cn
p ) ≤ dn log2(p) + 1e.

Proof.
2n log2(p)+1 = 2 · pn ≥ pn

and thus the result follows by Proposition 2.2.6.

Theorem 2.2.11. D±(Cn
2k

) = nk + 1 for k > 1.

Proof. Since k > 1,
2nk+1 − 1 > 2nk = |Cn

2k |

and thus by Proposition 2.2.6, D±(Cn
2k

) ≤ nk + 1.
Since D±(C2k) = k + 1, we may build a sequence of nk elements of Cn

2k
with no

zero subsum as in the proof of Lemma 2.2.7, and thus D±(Cn
2k

) > nk.
Combining inequalities, we get D±(Cn

2k
) = nk + 1.
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Theorem 2.2.12. D±(Cn
3 ) = n+ 1.

Proof. By Corollary 2.2.5, D±(Cn
3 ) = ∆n

F3
(1) = n+ 1.

Proposition 2.2.13. [49, Prop 4.1] Let m1,m2 with m1 ≥ 4 and m2 ≥ 3. Then

D±(Cm1 ⊕ Cm2) ≥ blog2(m1/3)c+ blog2(m2/3)c+ 4.

Theorem 2.2.14. [49, Theorem 4.3] Let n ≥ 4 be an integer with {log2 n} ≥ {log2 3}
where {·} denotes the fractional part of a real number. If r is a positive integer such
that

{log2 n} <
br/2c+ 1

r
,

then D±(Cr
n) = br log2 nc+ 1.

Theorem 2.2.15. D±(Cn
5 ) = 2n+ 1 for all n.

Proof. By Corollary 2.2.5,
D±(Cn

5 ) ≤ 2n+ 1.

The sequence
(1, 0, · · · , 0), (2, 0, · · · , 0),

(0, 1, 0, · · · , 0), (0, 2, 0, · · · , 0),

, · · · ,

(0, · · · , 1), (0, · · · , 2)

is readily verified to have no nontrivial zero subsum with weights ±1. Thus

D±(Cn
5 ) > 2n.

Combining the inequalities, we get D±(Cn
5 ) = 2n+ 1.

Theorem 2.2.16. D±(C2
7) = 6 = ∆2

F7
(3).

Proof. By Proposition 2.2.6,
D±(C2

7) ≤ 6.

The sequence of elements

(1, 0), (0, 1), (1, 5), (6, 5), (4, 5)

has no zero subsum with weights ±1. Thus, 5 < D±(C2
7) ≤ 6. Thus,

D±(C2
7) = 6.

By Proposition 2.2.4, we have D±(C2
7) = 6 = ∆2

F7
(3).

Theorem 2.2.17. 1. D±(C11) = 4 = ∆1
F11

(5).
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2. D±(C2
11) = 7 = ∆2

F11
(5).

Proof. 1. By Proposition 2.2.8.

2. By Corollary 2.2.9, D±(C2
11) ≥ 7. Since 27 − 1 > 121, by Proposition 2.2.6 we

have D±(C2
11) ≤ 7. Thus D±(C2

11) = 7.

Theorem 2.2.18. D±(C2
13) = 8 = ∆2

F13
(6).

Proof. Proposition 2.2.13 yields D±(C2
13) ≥ 8. Since 28− 1 > 169 = 132, Proposition

2.2.6 yields D±(C2
13) ≤ 8. Hence D±(C2

13) = 8. By Proposition 2.2.4, we have
D±(C2

13) = 8 = ∆2
F13

(6).

Theorem 2.2.19. D±(C4
13) = 15 = ∆4

F13
(6).

Proof. Let {·} denote the fractional part of a real number. Since 13 > 4 and
{log2(13)} > {log2(3)} and {log2(13)} < 2+1

4
, we can apply Proposition 2.2.14. This

yields D±(C4
13) = b4 log2(13)c+ 1 = 15.

By Proposition 2.2.4, we have D±(C4
13) = 15 = ∆4

F13
(6).

Theorem 2.2.20. For r ≤ 11, D±(Cr
17) = 4r + 1 = ∆r

F17
(8).

Proof. Since D±(C17) = 5 by Proposition 2.2.8, D±(Cr
17) ≥ 4r + 1. If r < 12,

24r+1 − 1 > 17r, and thus D±(Cr
17) ≤ 4r + 1 for r ≤ 11 by Proposition 2.2.6. Thus

D±(Cr
17) = 4r + 1 for r ≤ 11.

By Proposition 2.2.4, we have D±(Cr
17) = 4r + 1 = ∆r

F17
(8) for r ≤ 11.

Theorem 2.2.21. Let 22n + 1 be a Fermat number. If r · log2

22n + 1

22n
≤ 1, then

D±(Cr
22n+1

) = 2nr + 1.

Proof. By Proposition 2.2.8, D±(C22n+1) = 2n+1, since 2n+1 = min{s ∈ N|2s−1 ≥
22n + 1 = |C22

n
+1|}. Thus, D±(Cr

22n+1
) > 2nr for all r.

If r · log2

22n + 1

22n
≤ 1, then

2 ≥
(

22n + 1

22n

)r
.

Thus
2 · 22nr = 22nr+1 ≥ (22n + 1)r = |Cr

22n+1|.

By Proposition 2.2.6, D±(Cr
22n+1

) ≤ 2nr + 1.
Combining inequalities, we get D±(Cr

22n+1
) = 2nr + 1.
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Theorem 2.2.22. Let Fq be the finite field with q elements, where q ≡ 1 mod 2. Let
d > 2, and suppose −1 ∈ Fdq. Let δ = (q − 1, d). Then, any form

f =
d∑
i=1

aix
d
i

is Fq-isotropic. In particular, the bound given by Theorem 2.1.1 is a weak bound for
diagonal forms in the case −1 is a dth power.

Proof. By Lemma 2.1.4 and Theorem 2.1.1, we may assume d = (d, q − 1). By
Proposition 2.2.6, since −1 ∈ Fdq , if 2d − 1 ≥ q, then f has a nontrivial zero in Fq. In
particular, we may assume q ≥ 2d. By Lemma 2.1.3, if d ≤ 2d

d−2
2(d−1) + 1 ≤ q

d−2
2(d−1) + 1,

then f has a nontrivial zero in Fq. For d ≥ 6, d ≤ 2d
d−2

2(d−1) + 1, and thus f has a
nontrivial zero in Fq. This leaves the cases d = 3, 4, 5.

1. d = 3.

Suppose in Theorem 2.1.2, |VFq(f)| = 1. Then

q2 − 1 ≤ 23 − 2

3
(q − 1)q

1
2 .

This implies
q + 1 ≤ 2 · q

1
2 ,

which is a contradiction.

2. d = 4.

By Proposition 2.2.6 and Lemma 2.1.3, we may assume 17 ≤ q < 27. Notice
d = 4 does not divide q − 1 for q = 19, 23. For q = 25, by Theorem 2.1.2, if
|VFq(f)| = 1, this would imply

651 = q2 + q + 1 ≤ 34 + 3

4
q = 525,

which is absurd.
For q = 17, write

f = a1x
4
1 + a2x

4
2 + a3x

4
3 + a4x

4
4

where the ai ∈ (F17)
×. Let [·] denote a residue class of F×17/(F×17)4. Since

−1 ∈ (F×17)4, we may assume [ai] 6= [aj] for j 6= i. Since |F×17/(F×17)4| = 4
and the residue classes of [1], [2], [3] are distinct in F×17/(F×17)4, we may assume
without loss of generality that a1 = 1, a2 = 2, and a3 = 3. But then a1(1)4 +
a2(1)4 + a3(2)4 + a4(0)4 = 0. Thus, f is isotropic.

3. d = 5.

By Proposition 2.2.6, we may assume 32 ≤ q. Furthermore, by Lemma 2.1.3,
since 5 < 41

5−2
2(4) + 1 = 41

3
8 + 1 we may assume q < 41. Since d = 5|q − 1, q ≡ 1

mod 5, but there is no such prime power between 32 and 41.
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2.3 Systems of quadratic forms over finite fields

We now consider systems of quadratic forms over a finite field Fq with q = pn elements,
where p is an odd prime.

We find nonsingular anisotropic varieties defined by a system of three quadratic
forms in five variables over Fq for 5 ≤ q ≤ 47 via a computer search using SageMath,
although we have not checked by hand that these systems of three quadratic forms are
actually anisotropic. We use a well known counting technique to count the cardinality
of a Fq-variety defined by a system of quadratic forms over Fq. A lot of what follows
can be generalized to the case where q is even, although we do not include this.

We restrict our attention to affine varieties, although sometimes it will be conve-
nient to talk about the number of projective zeroes.

We say two quadratic forms Q1, Q2 ∈ Fq[x1, · · · , xN ] are equivalent if there exists
an invertible Fq-linear change of variables taking one to the other. We write Q1 ∼ Q2

in this case.
The order, or the rank, of a quadratic form Q1 is the minimum number of variables

necessary to write any form equivalent to Q1.
We say a quadratic form Q1 is nondegenerate if it is not equivalent to another

form in less variables.
A standard reference for quadratic form theory over fields of characteristic not 2

is [39].
We consider the system Q = {Qi}ri=1 where each Qi ∈ Fq[x1, · · · , xN ] is a

quadratic form.
Let V (Q) := V be the Fq-variety defined by Q.
Let S(V ) denote the cardinality of an Fq-variety V , and let S0 = S(V (Q)).
By Theorem 2.1.1, if N > 2r, |V | > 1. We are interested in the isotropicity of a

system of quadratic forms Q = {Qi}ri=1, assuming N ≤ 2r. That is, at the critical
bound given by Theorem 2.1.1.

By the Fq-pencil P (Q) of a system of quadratic forms Q = {Qi}ri=1 we mean the
set of all quadratic forms of the type

r∑
i=1

aiQi

where the ai ∈ Fq.

Lemma 2.3.1. Let a /∈ V (Q). Then there exists precisely qr−1 quadratic forms
Q ∈ P (Q) such that Q(a) = 0.

Proof. Since a /∈ V (Q), Qi(a) 6= 0 for some 1 ≤ i ≤ r. Without loss of generality,
suppose

Q1(a) 6= 0.

Let

Q =
r∑
i=1

ciQi ∈ P (Q),
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and suppose Q(a) = 0. Then,

c1Q1(a) + · · ·+ crQr(a) = 0

if and only if

c1 = −c2Q2(a) + · · ·+ crQr(a)

Q1(a)
.

In particular, c1 is completely determined by c2, · · · , cr. Since there are q choices for
each ci for 2 ≤ i ≤ r, we have qr−1 forms in P (Q) vanishing at a.

Lemma 2.3.2. If a ∈ V (Q), then every form in P (Q) vanishes at a. In particular,
Q(a) = 0 for qr forms in P (Q).

Proof. Since a ∈ V (Q), Qi(a) = 0 for 1 ≤ i ≤ r. Since there are precisely qr forms
in P (Q), and Q ∈ P (Q) is a linear combination of the Qi, the result is immediate.

Proposition 2.3.3.

∑
Q∈P (Q)

S(Q) =
∑
c∈Frq

S

(
r∑
i=1

ciQi

)
= qr−1(qN − S0) + qrS0.

In particular,

qN +
∑

c∈FNq −0

S

(
r∑
i=1

ciQi

)
= qr−1+N + qr−1(q − 1)S0.

Proof. For the first string of equalities, notice that there are S0 points in V (Q) and
qN − S0 points not in V (Q) for a total of

S0 + (qN − S0) = |FNq |

points.
Then Lemma 2.3.1 accounts for the value of qr−1(qN − S0) on the right side and

Lemma 2.3.2 accounts for the value qrS0.
The last equality follows from the first and observing that

∑
c∈Frq

S(
r∑
i=1

ciQi) = S(0) +
∑

c∈Frq−0

S(
r∑
i=1

ciQi)

and
S(0) = qN ,

where 0 denotes the zero element in Frq and the zero form.
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The following is a consequence of Witt’s Cancellation Theorem and the classifi-
cation of quadratic forms over finite fields, which can be found in [48, Chapter 6,
Section 2].

Theorem 2.3.4. Let Q ∈ Fq[x1, · · · , xN ] be a nonzero quadratic form. Then Q is
equivalent to a non-degenerate form having order m of exactly one of the following
types:

1.
x1x2 + · · ·+ xm−1xm.

In this case, we say Q is of type 1. Furthermore,

S(Q) = qN−m(qm−1 + (q − 1)q
m−2

2 ).

2.
x1x2 + x3x4 + · · ·+ xm−3xm−2 + c1x

2
m−1 + c2xm−1xm + c3x

2
m

where
c1x

2
m−1 + c2xm−1xm + c3x

2
m

is irreducible over Fq. In this case, we say Q is of type 2 and

S(Q) = qN−m(qm−1 − (q − 1)q
m−2

2 ).

3.
x1x2 + x3x4 + · · ·+ xm−2xm−1 + ax2m.

In this case, we say Q is of type 3 and

S(Q) = qN−mqm−1 = qN−1.

To summarize, we have the following:
If Q ∈ Fq[x1, · · · , xN ] is a quadratic form, then:

S(Q) = qN−m


qm−1 + q

m−2
2 (q − 1) if Q is of type 1

qm−1 − qm−2
2 (q − 1) if Q is of type 2

qm−1 if Q is of type 3
qm if Q ≡ 0.

We assume no form Q in the Fq-pencil of Q1, · · · , Qr is the zero form, other than
the trivial linear combination (this is essentially a benign assumption, for otherwise
we could consider a system of less than r equations).

Theorem 2.3.5. Let q be an odd prime power and let Q1, · · · , Qr ∈ Fq[x1, · · · , xN ]
be quadratic forms. Furthermore, assume Q1, Q2, · · · , Qr are Fq-linearly independent.
Then

S0 = qN−r +
∑

c∈Frq−0



qN−

m
2
−r if

∑r
i=1 ciQi is of type 1

−qN−m2 −r if
∑r

i=1 ciQi is of type 2
0 if

∑r
i=1 ciQi is of type 3

 . (2.1)
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Proof. By Proposition 2.3.3, we have

qN +
∑

c∈Frq−0

S

(
r∑
i=1

ciQi

)
=

qN +
∑

c∈Frq−0

qN−m

qm−1 + q

m−2
2 (q − 1) if

∑r
i=1 ciQi is of type 1

qm−1 − qm−2
2 (q − 1) if

∑r
i=1 ciQi is of type 2

qm−1 if
∑r

i=1 ciQi is of type 3

 =

qN +
∑

c∈Frq−0

qN−1 +


qN−m+m−2

2 (q − 1) if
∑r

i=1 ciQi is of type 1
−qN−m+m−2

2 (q − 1) if
∑r

i=1 ciQi is of type 2
0 if

∑r
i=1 ciQi is of type 3

 =

qN + (qr − 1)qN−1 +
∑

c∈Frq−0



qN−m+m−2

2 (q − 1) if
∑r

i=1 ciQi is of type 1
−qN−m+m−2

2 (q − 1) if
∑r

i=1 ciQi is of type 2
0 if

∑r
i=1 ciQi is of type 3

 =

qr−1+N + qr−1(q − 1)S0.

Hence,

qN−1 +
∑

c∈Frq−0



qN−m+m−2

2 if
∑r

i=1 ciQi is of type 1
−qN−m+m−2

2 if
∑r

i=1 ciQi is of type 2
0 if

∑r
i=1 ciQi is of type 3

 = qr−1S0.

Finally, dividing both sides by qr−1 we get

S0 = qN−r +
∑

c∈Frq−0



qN−m+m−2

2
−r+1 if

∑r
i=1 ciQi is of type 1

−qN−m+m−2
2
−r+1 if

∑r
i=1 ciQi is of type 2

0 if
∑r

i=1 ciQi is of type 3

 =

qN−r +
∑

c∈Frq−0



qN−

m
2
−r if

∑r
i=1 ciQi is of type 1

−qN−m2 −r if
∑r

i=1 ciQi is of type 2
0 if

∑r
i=1 ciQi is of type 3

 .

Lemma 2.3.6. Consider a system of r quadratic forms,

Q1, · · · , Qr

in N variables over Fq where q is odd. Let

m(a1,··· ,ar)
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denote the rank of
r∑
i=1

aiQi.

If
N − ma

2
− r > 0

for all a ∈ Frq − 0, the system {Qi}ri=1 is Fq-isotropic. In fact, q|S0.

Proof. Under these hypotheses, by equation 2.1 we see the number of solutions S0 ≡ 0
mod q and is thus not equal to 1, since a system of homogeneous forms always has
at least the trivial zero.

Although a much more general statement due to James Ax generalizes the follow-
ing corollary, we present a special case here as an immediate consequence.

Corollary 2.3.7. Let Fq denote a finite field where q is odd and let Q = {Q1, · · · , Qr}
be a system of quadratic forms in Fq[x1, · · · , x2r+1]. Then S(Q) ≡ 0 mod q.

Proof. Using the notation of Lemma 2.3.6, we have N = 2r+ 1. Then N − ma

2
− r =

N
2

+ N
2
− r − ma

2
> N

2
− ma

2
≥ 0 for all a ∈ Frq − 0.

The result now follows by Lemma 2.3.6.

Definition 2.3.8. Let k be a field of characteristic not 2 and let V ⊆ kN be a variety
defined by linearly independent diagonal quadratic forms {f1, · · · , fr} where N > r.
Let kalg denote the algebraic closure of k. For a point P ∈ V , Jac(P ) is the matrix
whose i, j entry is ∂

∂xj
fi(P ). If the rank of Jac(P ) is less than r, then P is a singular

point of V . A projective variety with no singular points over the algebraic closure is
said to be nonsingular. Otherwise, we say it is singular.

We now focus on r = 3, N = 5. The following are examples where V (Q) is
a nonsingular variety, yet it contains no rational points over Fq. We remind the
reader that the examples were found via a computer search using SageMath and
have not been proven by hand to be anisotropic. They will be given in the following
conventions. If

A = AQ =

1 0 0 a14 a15
0 1 0 a24 a25
0 0 1 a34 a35


is the matrix of coefficients of the system Qi where Qi =

∑5
j=1 aijx

2
j for 1 ≤ i ≤ 3,

then the variety will be displayed in the form

(q, a14, a15, a24, a25, a34, a35) :

1. (5, 2, 2, 1, 2, 4, 2)
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2. (7,−3,−5,−1,−5,−1,−1)

3. (9, 1, 1, 1, a+ 2, 2 · a, a+ 1) where
F9 = F3[a]/(a2 + 2a+ 2)

4. (11,−2,−2,−1,−5,−2,−1)

5. (13,−2,−2,−1,−3,−1,−5)

6. (17,−3,−3,−1,−3,−7,−1)

7. (19, 1, 1, 1, 2, 1, 6)

8. (23, 1, 1, 1, 2, 4, 3)

9. (25, 1, 1, 1, a, a, 2) where
F25 = F5[a]/(a2 + 4a+ 2)

10. (27, 1, 1, 1, a2 + 2a, a, 2a2 + 2) where
F27 = F3[a]/(a3 + 2a+ 1)

11. (29, 1, 1, 1, 3, 2, 3)

12. (31, 1, 1, 1, 2, 4, 1)

13. (37, 1, 1, 1, 6, 6, 1)

14. (41, 1, 1, 1, 13, 3, 34)

15. (43, 1, 1, 1, 5, 1, 19)

16. (47, 1, 1, 1, 3, 3, 19).

As mentioned in [17], the case of an irreducible variety defined by three quadratic
forms in five variables defines an irreducible curve of degree eight and genus five
in projective space P4

Fq . Thus, the Hasse-Weil bounds may be applied and thus
an irreducible variety over Fq defined by three quadratic forms in five variables
is Fq-isotropic, provided that q > 10

√
q− 1 (q ≥ 97). Thus the examples above

provide examples of some of the cases not treated by the Hasse-Weil bounds.

We conclude this section with the following conjecture, which we were unable
to prove.

Conjecture 2.3.9. A system of 3 quadratic forms defining a nonsingular va-
riety in six variables over Fq where q is odd is Fq-isotropic.

Copyright c© Luis Sordo Vieira, 2017.
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Chapter 3 Finite Extensions of Qp

3.1 Preliminaries

Let p be a prime number and let Qp denote the field of p-adic numbers. Let K be
a finite extension of Qp of degree n and let O denote the ring of integers of K. Let
e denote the ramification degree of K over Qp and f denote the inertia degree of K
over Qp. Let π ∈ O denote a generator of the maximal ideal of O.

In this section, unless otherwise specified, Fq will always denote the field O/(π).
Furthermore, it is important to recall the following definition.

Definition 3.1.1. Let lFq(d) be the smallest integer i such that xd1 + · · ·+xdi = 0 has
a nontrivial zero in Fq.

Let sFq(d) be the smallest integer i such that a1xd1 + · · ·+aix
d
i = 0 has a nontrivial

zero in Fq for every choice of a1, . . . , ai ∈ F×q .
We will sometimes write l(d) or l, and s(d) or s, when d is understood from

context.

Given a diagonal homogeneous form

a1x
d
1 + a2x

d
2 + · · ·+ aNx

d
N , d ≥ 1, ai ∈ O, (3.1)

let ΓK(d) denote the smallest positive integer such that if N ≥ ΓK(d), then any
diagonal form of the type (3.1) has a nontrivial zero defined over K. Let ∆K(d)
denote the smallest positive integer such that if N ≥ ∆K(d), then any diagonal form
of the type (3.1) with the additional restriction that ai ∈ O× has a nontrivial zero
defined over K.

For d the degree of a diagonal form of the type 3.1, we will always use the con-
vention d = mpτ where (m, p) = 1.

Let

γ =

{
1 if τ = 0⌊

e
p−1

⌋
+ eτ + 1 if τ ≥ 1.

The main theorem in this dissertation is the following:

Theorem 3.1.2. Let K be an unramified extension of Qp of degree n. Let d = mpτ ,
where (m, p) = 1. The following statements hold:

1. If p ≥ 3 and n ≥ 2, then ∆K(d) ≤ d+ 1, except possibly when p = 3, d = 2 · 3τ
with τ ≥ 1, and n ≡ 1 mod 2.

2. If p = 3, d = 2 · 3τ with τ ≥ 1, and n ≡ 1 mod 2, then ΓK(d) ≤ d2 + 1.

Consequently, ΓK(d) ≤ d2+1 for all p ≥ 3, d ≥ 1, and all finite unramified extensions
K/Qp of degree n ≥ 2.
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As already mentioned, the caseK = Qp appeared in [18]. We can add the following
result.

Theorem 3.1.3. Let d = mpτ , where (m, p) = 1. The following statements hold:

1. [18] ΓQp(d) ≤ d2 + 1 for all p and all d ≥ 1.

2. If p ≥ 3 and d 6= (p− 1)pτ with τ ≥ 1, then ∆Qp(d) ≤ d+ 1.

3. ∆Qp((p− 1)pτ ) ≥ pτ+1.

A first issue to consider is if such an integer ΓK(d) exists. The following theorem
guarantees the existence:

Theorem 3.1.4. [27, Theorem 8.2] ΓK(d) <∞, a fortiori ∆K(d) <∞.

Although ∆K(d) is interesting on its own, the next lemma relates ∆K(d) with
ΓK(d) and can be found in [56].

Lemma 3.1.5. ΓK(d) ≤ d(∆K(d)− 1) + 1.

Lemma 3.1.6. If ∆K(d) ≤ d+ 1, then ΓK(d) ≤ d2 + 1.

Proof. It is an immediate consequence of Lemma 3.1.5.

In other words, if one can prove ∆K(d) ≤ d+1 for all K, d, then Artin’s conjecture
for diagonal forms will be proved. Unfortunately, for certain fields K and certain
degrees d, ∆K(d) > d+ 1.

Suppose d = mpτ where (m, p) = 1.
We will need a version of Hensel’s Lemma which is often difficult to find in the

literature. Thus, we include a proof for the sake of completeness.

Theorem 3.1.7. Consider a diagonal form

F (x1, · · · , xN) = a1x
d
1 + · · ·+ aNx

d
N

where ai ∈ O×. Let d = mpτ where (m, p) = 1. Suppose there exists z = (z1, · · · , zN) ∈
ON such that F (z) ≡ 0 mod πj where j > e

p−1 + eτ and zi ∈ O× for some 1 ≤ i ≤ N .
Then there exists y = (y1, · · · , yN) ∈ KN , y 6= (0, · · · , 0), such that F (y) = 0.

Theorem 3.1.7 is an immediate consequence of Theorem 3.1.9 below.

Lemma 3.1.8. Let a, b ∈ O and let i ∈ Z, i ≥ e
p−1 . If a ≡ b mod πi, then ap ≡ bp

mod πi+e.

Proof. Let a = b+ πik where i ≥ e
p−1 . By the Binomial Theorem, we have

ap = bp + pbp−1πik +

(
p

2

)
bp−2π2ik2 + · · ·+ πipkp.

Since p|
(
p
i

)
for 1 ≤ i < p, and ip ≥ e+ i by assumption, the result follows.
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Theorem 3.1.9. Suppose that b, c ∈ O× and that the congruence cxd ≡ b mod πν

has a solution a ∈ O for some ν ≥ γ. Then the congruence cxd ≡ b mod πν+1 has a
solution t where t ≡ a mod πν−eτ . Consequently, the equation cxd = b has a solution
in O.

Proof. Since c ∈ O×, we may assume, without loss of generality, that c = 1.
The case τ = 0 is a simple application of the standard version of Hensel’s Lemma.

Now assume τ ≥ 1. The proof is by induction on τ . We begin with the case τ = 1.
Since

ad ≡ b mod πν ,

we have a ∈ O× and
ad − b = πνj

for some j ∈ O. We will find g ∈ O such that (a + gπν−e)d ≡ b mod πν+1. By the
Binomial Theorem, we have

ad + dad−1gπν−e +

(
d

2

)
ad−2g2π2(ν−e) + · · ·+ gdπd(ν−e) ≡ b mod πν+1.

Hence, we want to find g ∈ O such that

πνj + dad−1gπν−e +

(
d

2

)
ad−2g2π2(ν−e) + · · ·+ gdπd(ν−e) ≡ 0 mod πν+1.

We will show below that(
d

2

)
ad−2g2π2(ν−e) + · · ·+ gdπd(ν−e) ≡ 0 mod πν+1.

If this is true, then the congruence simplifies to

πνj + dad−1gπν−e ≡ 0 mod πν+1.

We have p = πek0 for some k0 ∈ O×. Since d = pm, we have

πνj + πek0ma
d−1gπν−e ≡ 0 mod πν+1.

The congruence simplifies to

j + k0ma
d−1g ≡ 0 mod π,

which is solvable for g because k0, a,m ∈ O×. It remains to check that(
d

2

)
ad−2g2π2(ν−e) + · · ·+ gdπd(ν−e) ≡ 0 mod πν+1.

For p = 2, τ = 1, we have γ = 2e+ 1, and so for i ≥ 2 we have

i(ν − e) ≥ 2(ν − e) = ν + ν − 2e ≥ ν + γ − 2e = ν + 1.
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For p > 2, we have two distinct cases. First assume 2 ≤ i < p. Then p|
(
d
i

)
and

ν ≥ γ ≥ e+ 1. Thus

vπ

((
d

i

)
ad−igiπi(ν−e)

)
≥ e+ i(ν − e) ≥ e+ 2(ν − e) = ν + ν − e ≥ ν + γ− e ≥ ν + 1.

Now assume i ≥ p. We can write e = h(p − 1) + j where h ∈ Z and 0 ≤ j ≤ p − 2.

Then
e

p− 1
= h+

j

p− 1
. Thus⌊

e

p− 1

⌋
(p− 1) = h(p− 1) = e− j ≥ e− (p− 2).

This gives

i(ν − e) ≥ p(ν − e) = ν + (p− 1)ν − pe ≥ ν + (p− 1)γ − pe

= ν + (p− 1)

(
e+

⌊
e

p− 1

⌋
+ 1

)
− pe

≥ ν + (p− 1)e+ e− (p− 2) + (p− 1)− pe = ν + 1.

This finishes the proof for τ = 1. We now assume that τ ≥ 2 and that the theorem
has been proved for all smaller values of τ . We have

(ap)mp
τ−1

= ad ≡ b mod πν .

By induction, there exists b0 ∈ O such that

bmp
τ−1

0 = b and b0 ≡ ap mod πν−e(τ−1).

Since the congruence xp ≡ b0 mod πν−e(τ−1) has the solution x = a, and

ν − e(τ − 1) = ν − eτ + e ≥ γ − eτ + e =

⌊
e

p− 1

⌋
+ e+ 1,

the case τ = 1 of the theorem implies that there exists t ∈ O such that

tp = b0 and t ≡ a mod πν−e(τ−1)−e.

Hence
t ≡ a mod πν−eτ .

Then td = tmp
τ

= bmp
τ−1

0 = b. This concludes the proof.

3.2 The unramified case

Proposition 3.2.1. If τ = 0, then ∆K(d) ≤ d+ 1.

Proof. Let G be a diagonal form of degree d in d+ 1 variables where each coefficient
of G lies in O×. By Theorem 2.1.1 there is a nontrivial solution to G ≡ 0 mod π.
The result follows from Theorem 3.1.7.
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From here on we assume that τ > 0. We now describe a simplified version of
the method of contraction introduced in [18]. Later we will need the full method of
contraction from [18].

Let F = a1x
d
1 + · · · + aNx

d
N , where each ai ∈ O×. Let a11xd11 + · · · + aj1x

d
j1 be a

subform of F that has a nontrivial solution (y1, · · · , yj) in O/(π) ∼= Fq, where q = pf .
Choose Yi ∈ O such that Yi = yi for 1 ≤ i ≤ j. We may replace Y1 with Y1 + bπ
for some b ∈ O if necessary so that 0 6= a11(Y1z)d + · · · + aj1(Yjz)d = πgtzd where
t ∈ O×, g ≥ 1, and z is a variable. We call z a derived variable, and we say that z
is a variable at level g. We now discard the variables x11, . . . , xj1 from F and include
πgtzd as a new term in F . We repeat the process with the remaining terms in F ,
excluding any term involving a derived variable. Continue this process until there are
no more subforms of F involving only the original variables that have a nontrivial
solution in O/(π). We discard the remaining unused original variables of F . Only
derived variables now remain in F .

For all i ≥ 1, let w1,i denote the number of derived variables of F created by this
process at level i. We now have a new form G = πG(1) + π2G(2) + · · · where for each
i ≥ 1, G(i) has w1,i variables and none of the coefficients of G(i) are divisible by π.
We now repeat the method of contraction on G(1), leaving G(2), G(3), . . . untouched.
We obtain a new form H = π2H(2) + · · · where for each i ≥ 2, H(i) has w2,i variables,
none of the coefficients of H(i) is divisible by π, w2,i is the number of derived variables
created at level i including those variables from G(i), and we discard any unused
variables that occurred in G(1). We continue in this manner at each step, creating as
many derived variables as possible from the bottom level form and discarding each
unused variable from the bottom level form. Suppose we eventually obtain a form
of the type L = πjL(j) + πj+1L(j+1) + · · · where j > e

p−1 + eτ . Then we set any
derived variable z = 1 and set all other variables equal to zero. By tracing back to
the ancestors of z, we find a primitive solution to the congruence F ≡ 0 mod πj. By
Theorem 3.1.7, F has a nontrivial zero in O, as desired. See [18] for the original
explanation of the contraction method.

We now describe quantitative results making use of these ideas. Since the solvabil-
ity of the form in the residue field depends only on the coefficients modulo δ-powers,
where δ = (d, pf − 1), we can assume that all the coefficients of F in O/(π) ∼= Fq are
one of δ = |F×q /(F×q )δ| = |F×q /(F×q )d| possible representatives, {b1, · · · , bδ}.

Two cases arise depending on whether −1 is or is not a δ = (d, pf − 1) power
in the residue field. First, suppose that −1 is not a δ = (d, pf − 1) power in the
residue field. If ai, aj appear as coefficients of F and ai = −aj for j 6= i, we can
form a derived variable using two variables from F . After forming as many derived
variables as possible in this case, we may assume that the remaining coefficients of
F are one of δ

2
possible representatives, {b1, · · · , b δ

2
}. Second, suppose that −1 is a

δ = (d, pf − 1) power in the residue field. Then lFq(d) = lFq(δ) = 2. Thus if ai, aj
appear as coefficients of F and ai = aj for j 6= i, we can again form a derived variable
using two variables from F . The usefulness of these observations will become more
clear in the calculations and proofs of our later results.

Assume now that −1 is not a δ = (d, pf − 1) power in the residue field. Suppose
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that we can form M derived variables from M pairs of coefficients ai, aj of F where
ai = −aj for j 6= i. Then suppose that we can form M ′ additional derived variables
from sets of l variables whose coefficients are equal in the residue field. Then by the
Pigeonhole Principle, we have N = 2M + lM ′ + R where 0 ≤ R ≤ (l − 1) δ

2
. Since

l ≥ 2, this gives M +M ′ ≥ N−R
l
≥ N−(l−1) δ

2

l
. Thus, M +M ′ ≥

⌈
N − (l − 1) δ

2

l

⌉
and

we may form at least

⌈
N − (l − 1) δ

2

l

⌉
derived variables at the first step.

We continue similarly in the second step. With the w1,1 variables we can create
at least

⌈
w1,1−(l−1) δ2

l

⌉
derived variables at higher levels. Notice that a derived variable

at level i costs at most li variables at level 0 to form.
We will also use the following observation. Let f = ab. By Chevalley’s Theorem

(Theorem 2.1.1) and the fact that Fpf is a vector space over Fpb of dimension a, if
we have more than a(d, pb − 1) derived variables at level γ − 1, then we can find a
primitive solution of F mod πγ and thus by Theorem 3.1.7, F has a nontrivial zero
in K.

Theorem 3.2.2. Let K be an unramified extension of Qp of degree n = ab, a ≥ b,
p > 2. Let d = mpτ , where (m, p) = 1, δ = (d, pn − 1). Furthermore, suppose δ
does not divide pn−1

2
. Then ∆K(d) ≤ d+ 1, provided that at least one of the following

bounds holds:

1. m
(

p
l(δ)

)τ
≥ δ

2
+ a(d, pb − 1).

2. d = mpτ ≥ δ
2
(l(δ)τ+1 − 1).

3. m
(

p
l(δ)

)τ
≥ δ

2
+ s(δ)− 1.

In particular, by (1), letting a = n, b = 1, if

m

(
p

l(δ)

)τ
≥ δ

2
+ n(d, p− 1),

then ∆K(d) ≤ d+ 1.

Proof. Since K is unramified and p > 2, we have e = 1 and so γ = τ + 1. Also,
q = pf = pn. By Lemma 2.1.8, −1 is not a δ power in the residue field. Note that δ
is even because δ does not divide pn−1

2
. Since n = ab, Fpn is an extension of Fpb of

degree a.

We show that if we start with a form
d+1∑
i=1

aix
d
i where ai ∈ O×, then through the

method of contraction above we can create a derived variable at level γ or higher.
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The number of discarded variables not used in creating derived variables at level
γ − 2 = τ − 1 or below to reach level γ − 1 = τ or above is at most

(l − 1)
δ

2
+ (l − 1)

δ

2
l + · · ·+ (l − 1)

δ

2
lτ−1 = (lτ − 1)

δ

2
.

A derived variable at level τ is created through this method of contraction from at
most lτ of the original variables. By Theorem 2.1.1, if we have more than a(d, pb− 1)
derived variables at level τ , then we have a nontrivial solution in the residue field,
thus creating a derived variable at level γ or above. Therefore, if N > (lτ − 1) δ

2
+

lτa(d, pb − 1), then either we already have a derived variable at level γ or higher
or there are more than a(d, pb − 1) derived variables at level τ , and so we obtain a
nontrivial zero of F over K. If the bound in (1) holds, then this gives ∆K(d) ≤ d+ 1
because d+ 1 > d = mpτ ≥ lτ ( δ

2
+ a(d, pb − 1)) > (lτ − 1) δ

2
+ lτa(d, pb − 1).

The bound in (2) can be attained by just continuing the method as in the previous
steps. Namely, if we have more than (l − 1) δ

2
variables at level τ , a derived variable

at level γ or above can be created. Hence, the number of unused variables is at most

(l − 1)
δ

2
+ (l − 1)

δ

2
l + · · ·+ (l − 1)

δ

2
lτ−1 + (l − 1)

δ

2
lτ =

δ

2
(lτ+1 − 1).

As before, if N > δ
2
(lτ+1 − 1), then a derived variable at level γ or above can be

created, and so F has a nontrivial zero defined over K. Thus if

d+ 1 > d = mpτ ≥ δ

2
(lτ+1 − 1),

then ∆K(d) ≤ d+ 1.
We obtain the bound in (3) by observing that if we have more than s(δ) − 1

variables at level τ , then we can create a derived variable at level γ or above. If
N > (l(δ)τ − 1) δ

2
+ l(δ)τ (s(δ) − 1), then a derived variable at level γ or above can

be created, and so F has a nontrivial zero defined over K. Thus if d + 1 > d ≥
(l(δ)τ−1) δ

2
+l(δ)τ (s(δ)−1), then F has a nontrivial zero defined overK. In particular,

if the bound in (3) holds, then d = mpτ ≥ ml(δ)τ ≥ l(δ)τ δ
2

+ l(δ)τ (s(δ) − 1) >
(l(δ)τ − 1) δ

2
+ l(δ)τ (s(δ)− 1), and so F has a nontrivial zero defined over K.

Lemma 3.2.3. Let K be a unramified extension of Qp, p > 2, of degree n. Let
d = mpτ , where (m, p) = 1, δ = (d, pn − 1). If δ divides pn−1

2
, then ∆K(d) ≤ d+ 1.

Proof. By Lemma 2.1.8, l = 2 if and only if δ|pn−1
2

. As in the proof of Theorem 3.2.2,
if we can show that

d = mpτ ≥ δ(2τ+1 − 1),

then a nontrivial solution to F ≡ 0 mod pτ+1 exists through the method of contrac-
tion. We have m ≥ δ because δ | m, and pτ ≥ 3τ ≥ 2τ+1 − 1 for all odd p. Thus the
inequality holds and the proof is finished.

Lemma 3.2.4. Let K be an unramified extension of Qp of degree n, p > 2. Let
d = mpτ , where (m, p) = 1, δ = (d, pn−1). Let s(δ) be defined as in Definition 2.1.5.
If mpτ ≥ s(δ)τ+1 − 1, then ∆K(d) ≤ d+ 1.
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Proof. We proceed as in the proof of Theorem 3.2.2, and notice that at each step we
discard at most s(δ)− 1 variables at that level and that forming a variable at level i
costs at most s(δ)i variables from level 0. Hence, if

N > (s(δ)− 1)(1 + s(δ) + · · ·+ s(δ)τ ) = s(δ)τ+1 − 1,

then we can create a derived variable at level τ + 1 or higher. If N ≥ d+ 1 > mpτ ≥
s(δ)τ+1 − 1, then the proof is finished.

Lemma 3.2.5. Let K be an unramified extension of Qp of degree n, p > 2. Let
d = mpτ , where (m, p) = 1, δ = (d, pn − 1). Suppose δ = (d, p − 1)k and k ≥ 2n.
Then ∆K(d) ≤ d+ 1.

Proof. By Lemma 3.2.3, we may assume δ does not divide pn−1
2

. We have δ =
(d, p− 1)k ≥ 2n(d, p− 1). Thus δ ≥ δ

2
+n(d, p− 1). Since p ≥ l and m ≥ δ, this gives

m(p
l
)τ ≥ m ≥ δ ≥ δ

2
+ n(d, p− 1). This proves the result by Theorem 3.2.2 (1).

Corollary 3.2.6. Let K be an unramified extension of Qp of degree n, p > 2. Let
d = mpτ , where (m, p) = 1, δ = (d, pn − 1). If p ≥ l(δ)2

2
, then ∆K(d) ≤ d+ 1.

Proof. By Lemma 3.2.3, we may assume δ does not divide pn−1
2

and hence l > 2.
Since m ≥ δ, l > 2, τ ≥ 1, we have

mpτ ≥ δ

(
l2

2

)τ
=
δ

2
lτ+1

(
l

2

)τ−1
≥ δ

2
lτ+1 >

δ

2
(lτ+1 − 1).

The result follows by Theorem 3.2.2 (2).

Theorem 3.2.7. Let K be an unramified extension of Qp of degree n with p ≥ 3 and
δ = (d, pn − 1).

1. If δ ≤ p− 2, then ∆K(d) ≤ d+ 1.

2. If δ = p− 1 and n = 2, then ∆K(d) ≤ d+ 1.

3. If δ = p− 1, n ≥ 3, and p ≥ 5, then ∆K(d) ≤ d+ 1.

Proof. First suppose that δ ≤ p − 2. By Theorem 2.1.1, s(δ) ≤ δ + 1 ≤ p − 1. By
Lemma 3.2.4, if mpτ ≥ (s(δ)− 1)(1 + s(δ) + · · ·+ s(δ)τ ), then ∆K(d) ≤ d+ 1. Since
m ≥ δ ≥ (s(δ)− 1), it suffices to show that pτ ≥ 1 + s(δ) + · · ·+ s(δ)τ . The binomial
expansion gives

pτ = (1 + (p− 1))τ ≥ 1 + (p− 1) + (p− 1)2 + · · ·+ (p− 1)τ ≥ 1 + s(δ) + · · ·+ s(δ)τ .

Suppose δ = p − 1. If n = 2, then δ is a divisor of p2−1
2

and hence the result
follows from Lemma 3.2.3.

Suppose that n ≥ 3. Since δ < p ≤ p
n
3 = pn

4−2
2(4−1) , we have s(δ) ≤ 4 by Lemma

2.1.7. Since m ≥ δ = (p − 1), and p ≥ 5, we have mpτ ≥ (p − 1)pτ ≥ s(δ)τ+1 − 1.
Thus the result follows by Lemma 3.2.4.
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Theorem 3.2.8. Let K be an unramified quadratic extension of Qp with p ≥ 3. Then
∆K(d) ≤ d+ 1.

Proof. By Theorem 3.2.7, we may suppose δ ≥ p+ 1. Furthermore, by Lemma 3.2.3
and Lemma 3.2.5, we can suppose δ = (d, p − 1)k with k = 2, 3. The case k = 3 is
covered by Lemma 3.2.3 because 2|p+ 1.

Suppose δ = 2(d, p − 1). Since δ ≥ p + 1, it follows that δ = 2(p − 1). We can
suppose δ does not divide p2−1

2
by Lemma 3.2.3. Then each element of Fmq = Fδq is a

p+1
2

root of unity. Thus l ≤ p+1
2

by Lemma 2.1.6. By Theorem 3.2.2, it is sufficient
to show

2(p− 1)

(
p
p+1
2

)τ

≥ 3(p− 1),

for then we would have

m
(p
l

)τ
≥ δ

(p
l

)τ
= 2(p− 1)

(p
l

)τ
≥ 2(p− 1)

(
p
p+1
2

)τ

≥ 3(p− 1) = (p− 1) + 2(p− 1) ≥ δ

2
+ 2(d, p− 1).

Thus it is sufficient to show that

2

(
2p

p+ 1

)τ
≥ 3.

Since 2p
p+1

is an increasing function of p, we may assume p = 3. Furthermore, since the
bound holds for τ = 1, the bound holds for all choices (p, τ) with p ≥ 3, τ ≥ 1.

Theorem 3.2.9. Let K be an unramified cubic extension of Qp with p ≥ 5. Then
∆K(d) ≤ d+ 1.

Proof. By Lemma 3.2.5, it suffices to consider the cases δ = (d, p − 1)k with k =
1, 2, 3, 4, 5. By Theorem 3.2.7, we may assume k > 1. Since k|1 + p+ p2, k 6= 2, 4, 5.
Thus k = 3. Then δ | 3(p − 1), and so lFq(δ) ≤ lFq(3(p − 1)) ≤ 3, where the last
inequality is proved in Theorem 2.1.11. The result now follows from Corollary 3.2.6.

Remark. Originally, the following computations of levels via SageMath were included
to prove Theorem 3.2.9:

Since
F73
∼=

F7[x]

(x3 + 6x2 + 4)

and
([4x2 + 2x+ 4])18 + ([3x2 + 4x+ 4])18 + [1] ≡ [0],

l18 = 3 for F73 . Similarly, since

F133
∼=

F13[x]

(x3 + 2x+ 11)
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and
([6x2 + 11x+ 6])36 + ([3x+ 7])36 + ([7x2 + 7x+ 5])36 ≡ [0],

l36 = 3 for F133 .
However, Theorem 2.1.11 made these computations unecessary.

Theorem 3.2.10. Let K be an unramified extension of Qp with p ≥ 5 and n ≥ 4.
Then ∆K(d) ≤ d+ 1.

Proof. Let d = mpτ where (m, p) = 1 and let δ = (d, pn − 1). By Lemma 3.2.5,
it suffices to consider δ < (p − 1, d)2n. By Theorem 3.2.7, it suffices to consider
m ≥ δ ≥ p+ 1. Hence, suppose p+ 1 ≤ δ ≤ (d, p− 1)(2n− 1). We have p < δ ≤ m.
Thus, by Lemma 3.2.4, it suffices to show s(δ) ≤ p.

By Lemma 2.1.3, it suffices to show that

δ ≤ (d, p− 1)(2n− 1) ≤ (p− 1)(2n− 1) ≤ pn·
p−2

2(p−1) + 1.

We will succeed for p ≥ 11 and n ≥ 4, p = 7 and n ≥ 5, and p = 5 and n ≥ 7.
Separate arguments are needed for the remaining cases.

First assume that n = 4. We will show that 7(p − 1) ≤ p
2(p−2)
p−1 + 1 for p ≥ 11.

This is equivalent to showing that 7 ≤ p
p−3
p−1 + 8

p
. For p ≥ 13, we have

7 ≤ 13
5
6 ≤ p

p−3
p−1 < p

p−3
p−1 +

8

p
.

For p = 11, we have

7 < 11
8
10 +

8

11
.

This proves the inequality for n = 4 and p ≥ 11. Now assume that n ≥ 4. We
consider n as a real variable and take the derivative of both sides with respect to n.
It is sufficient to show that

pn·
p−2

2(p−1)
p− 2

2(p− 1)
ln(p) ≥ 2(p− 1)

for p ≥ 11 and n ≥ 4. First observe that for p ≥ 11,

p
p−3
p−1 ≥ p

8
10 ≥ 11

8
10 >

4 · 10

9
≥ 4(p− 1)

p− 2
.

Then for n ≥ 4 we have

pn·
p−2

2(p−1)
p− 2

2(p− 1)
ln(p) > p

2(p−2)
p−1

p− 2

2(p− 1)
= p

p−3
p−1

+1 p− 2

2(p− 1)

>
4p(p− 1)

p− 2

p− 2

2(p− 1)
= 2p > 2(p− 1).

This finishes the proof for p ≥ 11 and n ≥ 4.
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Now assume that p = 7 and n ≥ 5. For p = 7 and n = 5 we have

(p− 1)(2n− 1) = 54 < 7
25
12 = pn·

p−2
2(p−1) < pn·

p−2
2(p−1) + 1.

For p = 7 and n ≥ 5, we apply the derivative criterion above to see that

7n·
5
12

5

12
ln(7) > 7

25
12

5

12
> 12 = 2(7− 1).

This finishes the proof for p = 7 and n ≥ 5.
Now assume that p = 5 and n ≥ 7. For p = 5 and n = 7 we have

(p− 1)(2n− 1) = 52 < 5
21
8 = pn·

p−2
2(p−1) < pn·

p−2
2(p−1) + 1.

For p = 5 and n ≥ 7, we apply the derivative criterion above to see that

5n·
3
8

3

8
ln(5) > 5

21
8

3

8
> 8 = 2(5− 1).

We now consider the remaining cases. Namely, p = 7 and n = 4, and p = 5 and
n = 4, 5, 6.

Suppose that p = 7 and n = 4. Since 74 − 1 = 32 · 75, we may assume that 32 | δ
by Lemma 3.2.3. Let δ = (d, 7 − 1)k. Then 16 | k, and thus k ≥ 16 > 2 · 4. The
result follows from Lemma 3.2.5.

Now assume that p = 5, n ∈ {4, 5, 6}, and δ = (d, 4)k.
For n = 4, 54 − 1 = 16 · 3 · 13. By Lemma 3.2.3, we may assume δ = 16 · j. If

j ≥ 3, then k ≥ 12 > 2 · 4, so the result holds by Lemma 3.2.5. If j = 1, then lδ = 3
by Lemma 2.1.6, and the result holds by Corollary 3.2.6.

For n = 5, 55 − 1 = 22 · 11 · 71. By Lemma 3.2.3, we may assume δ = 4 · j. If
j ≥ 11, then k ≥ 11 > 2 · 5, so the result holds by Lemma 3.2.5. If j = 1, then the
result holds by Theorem 3.2.7.

For n = 6, 56 − 1 = 7 · 8 · 9 · 31. By Lemma 3.2.3, we can assume δ = 8 · j. If
j < 9, then lδ = 3 by Lemma 2.1.6, and the result holds by Corollary 3.2.6. If j ≥ 9,
then k ≥ 18 > 2 · 6, so the result holds by Lemma 3.2.5.

We now treat the unramified extensions of Qp of degree n in the case p = 3. Let
d = m · 3τ where (m, 3) = 1 and δ = (d, 3n − 1). By Lemma 3.2.5, we may assume
that δ < (d, 2)2n. If d is odd, then ∆K(d) ≤ d + 1 by Lemma 3.2.3. From now on,
we always assume that 2 | d.

Proposition 3.2.11. Let K be an unramified extension of Q3 of degree n with d =
m · 3τ , (m, 3) = 1, and δ = (d, 3n − 1) = 2. Then ∆K(d) ≤ d + 1, unless (possibly)
m = 2 and n is odd.

Proof. By Theorem 2.1.1, s(2) ≤ 3. If m ≥ 4, the result holds by Lemma 3.2.4. If
m = 2 and n is even, the result holds by Lemma 3.2.3, since 3n − 1 ≡ 0 mod 4.

Theorem 3.2.12. Let K be an unramified extension of Q3 of degree n ≥ 2 with
d = m · 3τ , (m, 3) = 1, and δ = (d, 3n − 1). Then ∆K(d) ≤ d + 1, unless (possibly)
m = 2 and n is odd.
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Proof. We can assume that δ is even by Lemma 3.2.3. Since δ is even, by Lemmas
3.2.5 and 3.2.11, it suffices to show the result for 4 ≤ δ ≤ 4n − 2. Let 3n − 1 = 2hj
where j is odd. By Lemma 3.2.3, we can assume that δ = 2hj′ where j′ | j. If n is
even, then 8 | 3n − 1 and so h ≥ 3. Thus 8 | δ and so δ ≥ 8. If n is odd, then h = 1.
The case δ = 2 is already covered, and δ 6= 6 because 6 - 3n − 1. Thus δ ≥ 10 when
n is odd. Hence we can assume that δ ≥ 8 in all cases.

First we consider the cases when n ≥ 10. We now show that 4n − 2 ≤ 3
n
3 for all

n ≥ 10. The result holds for n = 10 because 38 < 3
10
3 . The result holds for n ≥ 10

because d
dn

(3
n
3 ) = 1

3
3
n
3 ln(3) = 3

n
3
−1 ln(3) > 3

7
3 > 4. Since δ ≥ 8 and n ≥ 10, we have

δ ≤ 4n− 2 ≤ 3
n
3 = 3n

4−2
2(4−1) ≤ 3n

δ/2−2
2(δ/2−1) .

Thus s(δ) ≤ δ
2
by Lemma 2.1.7. We can finish the proof when n ≥ 10 by applying

Theorem 3.2.2 (3) because m ≥ δ > δ
2

+ s(δ)− 1.
The case n = 2 holds by Theorem 3.2.8. The cases 3 ≤ n ≤ 9 must be dealt

with individually. We will consider each δ satisfying 4 ≤ δ ≤ 4n − 2 and the other
conditions above. Note that by Lemma 2.1.7, if δ ≤ p

n
4 + 1, then s(δ) ≤ 3, and so we

can finish by using Lemma 3.2.4. Also note that if s(δ) ≤ δ
2
, then we can finish by

applying Theorem 3.2.2 (3), as above.

n = 9: 39− 1 = 2 · 13 · 757. Since 4 ≤ δ ≤ 34, we have δ = 26. By Lemma 2.1.7, since
26 < 39· 4−2

2(4−1) = 33, we have s(δ) ≤ 4. We finish the proof by applying Theorem 3.2.2
(3) because s(δ) ≤ δ

2
.

n = 8: 38 − 1 = 32 · 5 · 41. We have δ ≤ 30 and 32 | δ, a contradiction.

n = 7: 37 − 1 = 2 · 1093. Since δ ≤ 26, we have δ = 2, an already covered case.

n = 6: 36 − 1 = 8 · 7 · 13. Since δ ≤ 22, we have δ = 8. By Lemma 2.1.7, since
8 < 36· 4−2

2(4−1) = 32, we have s(δ) ≤ 4. We finish by applying Theorem 3.2.2 (3) because
s(δ) ≤ δ

2
.

n = 5: 35 − 1 = 2 · 112. Since δ ≤ 18, we have δ = 2, an already covered case.

n = 4: 34 − 1 = 16 · 5. Then δ ≤ 14 and 16 | δ, a contradiction.

n = 3: 33 − 1 = 2 · 13. Then δ ≤ 10, so δ = 2, an already covered case.

3.3 ΓK(2 · 3τ ) for [K : Q3] ≡ 1 mod 2

We now outline how one can show ΓK(2 · 3τ ) ≤ (2 · 3τ )2 + 1 in the case that K is an
odd degree unramified extension of Q3. We first recall a standard result in quadratic
form theory over finite fields of characteristic not equal to 2.

Lemma 3.3.1 (Lemma 1,[11]). The nonsingular zeros of a quadratic form q ∈
k[x1, · · · , xs] where char(k) 6= 2 cannot all lie in a proper linear subspace.
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Corollary 3.3.2. A ternary quadratic form

F = a1x
2
1 + a2x

2
2 + a3x

2
2

where ai ∈ (F3n)× for i = 1, 2, 3 has a zero with x1 6= 0.

Proof. By Theorem 2.1.1, F has a nontrivial zero, and since F is diagonalized, it is
nonsingular. By Lemma 3.3.1, there exists a zero that does not lie in the hyperplane
x1 = 0.

Remark. Corollary 3.3.2 is the analog of [18, Lemma 1], which fails in general for
nontrivial extensions of Fp.

[18, Lemma 3] still holds for unramified extensions of Qp. We now use the original
method of contraction of [18], noticing that the case d = 2 · 3τ over K where K is an
unramified extension of Q3, reduces to quadratic forms in the residue field. Hence,
we can apply the analogous method of contraction using 3 variables at a time. The
same proof for [18, Lemma 5] now works.

3.4 Examples of ∆K(d) > d+ 1.

It is natural to ask whether ∆K(d) ≤ d + 1 for all unramified extensions K of Qp.
However, we will see in this section that this is not the case.

Lemma 3.4.1. Let K be an unramified extension of Qp, and let OK be the ring of
integers in K. If a, b ∈ OK and a ≡ b mod p, then api ≡ bp

i
mod pi+1 for i ≥ 1.

Proof. An immediate consequence of the Binomial Theorem.

Proposition 3.4.2. Let K = Qp, and let d = mpτ with (m, p) = 1, τ ≥ 1, and
δ = (d, p− 1). Then the following statements hold.

1. For p = 2, we have

∆Q2(d) = 5 for (τ,m) = (1, 1),

∆Q2(d) = 2τ+2 for (τ,m) 6= (1, 1).

Thus,

∆Q2(d) > d+ 1 for m = 1, 3,

∆Q2(d) ≤ d+ 1 for m ≥ 5.

2. Assume that p ≥ 3. If m 6= p− 1, then ∆Qp(d) ≤ d+ 1.

3. Assume that p ≥ 3 and m = (p − 1)k, k ≥ 1. Then ∆Qp(d) = pτ+1. Thus,
∆Qp(d) > d+ 1 if k = 1.
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Proof. (1) Let p = 2. For τ = 1, m = 1, the quadratic form
4∑
i=1

x2i mod 8 has no

primitive zero and hence no nontrivial zero over Q2. The form
5∑
i=1

aix
2
i does have

a nontrivial zero over Q2 by a classical result of Hasse (see [39, Chapter 6]). Thus
∆Q2(2) = 5.

Let τ = 1, m ≥ 3. Then xdi ≡ 0, 1 mod 8. Thus
7∑
i=1

xdi ≡ 0 mod 8 has no

primitive solution and thus no nontrivial zero over Q2. However,
8∑
i=1

aix
d
i ≡ 0 mod 8

with ai ∈ Z×2 has a primitive solution because D(Z/8Z) = 8. Thus
8∑
i=1

aix
d
i has a

nontrivial zero over Q2 by Hensel’s Lemma. In conclusion, ∆Q2(d) = 2τ+2 for τ = 1,
m ≥ 3.

Now assume that τ ≥ 2. If xi ≡ 0 mod 2, then xm·2
τ

i ≡ 0 mod 2τ+2, since for
τ ≥ 2 we have 2τ ≥ τ + 2. If xi 6≡ 0 mod 2, then xm·2τi ≡ 1 mod 2τ+2 by Lemma

3.4.1 and since the result holds for τ = 1. Hence,
2τ+2−1∑
i=1

xm·2
τ

i ≡ 0 mod 2τ+2 has no

primitive zero and thus no nontrivial zero over Q2. Furthermore,

2τ+2∑
i=1

aix
m·2τ
i ≡ 0 mod 2τ+2

with ai ∈ Z×2 has a primitive zero because D(Z/2τ+2Z) = 2τ+2, and thus there is a
nontrivial zero in Q2 by Hensel’s Lemma. Therefore, ∆Q2(d) = 2τ+2 for τ ≥ 2.

If m ≥ 5, then ∆Q2(d) = 2τ+2 = 4 · 2τ < m · 2τ = d < d + 1. If m = 1, 3 and
(τ,m) 6= (1, 1), then ∆Q2(d) = 2τ+2 = 4 · 2τ > m · 2τ + 2 > d + 1. If (τ,m) = (1, 1),
then ∆Q2(d) = 5 > 2 + 1.

(2) Assume that p ≥ 3. If δ ≤ p − 2, then ∆Qp(d) ≤ d + 1 by Theorem 3.2.7. If
δ = p − 1 and d 6= (p − 1)pτ , then m ≥ 2(p − 1) > p. Since s(δ) ≤ p by Theorem
2.1.1, we have m · pτ > pτ+1 − 1 ≥ s(δ)τ+1 − 1, and the result holds by Lemma 3.2.4.

(3) Assume that m = (p − 1) · k where k ≥ 1. If x 6≡ 0 mod p, then xm ≡ 1
mod p. By Lemma 3.4.1, we have xm·pτ ≡ 1 mod pτ+1. If x ≡ 0 mod p, then
xm·p

τ ≡ 0 mod pτ+1 because pτ ≥ τ + 1 for p ≥ 3. Then the congruence

pτ+1−1∑
i=1

xm·p
τ

i ≡ 0 mod pτ+1

has no primitive solution and thus no nontrivial zero over Qp. However, the congru-
ence

pτ+1∑
i=1

aix
m·pτ
i ≡ 0 mod pτ+1
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with ai ∈ Z×p has a primitive solution because D(Z/pτ+1Z) = pτ+1. Thus there is a
nontrivial zero over Qp by Hensel’s Lemma. Therefore, ∆Qp(d) = pτ+1 for τ ≥ 1.

If k ≥ 2, then pτ+1 < 2(p − 1)pτ ≤ m · pτ = d < d + 1. Thus ∆Qp(d) ≤ d + 1. If
k = 1, then ∆Qp(d) = pτ+1 > (p− 1)pτ + 1 = d+ 1.

Originally, the author had the statement that ∆Q2(2) = 5 and Leep generalized it
to an arbitrary 2-adic field. The following is his proof:

Proposition 3.4.3. Let K be any finite extension of Q2. Then ∆K(2) = 5.

Proof. Let U = O×, the group of units of O. Thus U = {α ∈ K× | vπ(α) = 0}. Let
DK(f) denote the elements of K× represented by a quadratic form f defined over K.
It is sufficient to show that there exists an anisotropic quadratic form 〈a1, a2, a3, a4〉 =∑4

i=1 aix
2
i where ai ∈ O×K . We will use the following results from [39, Chapter 6].

Lemma 3.4.4. Let K be a finite extension of Q2.

1. |K×/(K×)2| ≥ 8

2. The Hilbert symbol on K is non-degenerate.

3. Let α ∈ K×, α /∈ (K×)2. Then

|DK(〈1,−α〉)/(K×)2| = 1

2
|K×/(K×)2| ≥ 4.

4. Let α, β ∈ K×. Then DK(〈1,−α〉) = DK(〈1,−β〉) if and only if αβ ∈ (K×)2.

Note that (3) and (4) follow easily from (1), (2), and the definition of the Hilbert
symbol on K.

Lemma 3.4.5. There exists a non-square unit u ∈ U such that
DK(〈1,−u〉) 6= U .

Proof. There exists exactly one subgroup of index 2 in K×/(K×)2 containing no
element having odd valuation. That unique subgroup is U/U2. (Note that U/U2

injects into K×/(K×)2 because U ∩ (K×)2 = U2.) Since [U : U2] = 1
2
[K× : (K×)2] ≥

4, there are two units u, v ∈ U such that u, v, uv are each non-squares. The subgroups
DK(〈1,−u〉) andDK(〈1,−uv〉) have index 2 inK×/(K×)2 by Lemma 3.4.4(3) because
u, uv are non-squares. We have DK(〈1,−u〉) 6= DK(〈1,−uv〉) by Lemma 3.4.4(4)
because v is a non-square. Therefore, either DK(〈1,−u〉) or DK(〈1,−uv〉) does not
equal U .

We now finish the proof of Proposition 3.4.3. By Lemma 3.4.5, there exist non-
square units u, v ∈ U such that v /∈ DK(〈1,−u〉). Then 〈1,−u,−v〉 is anisotropic
over K and thus 〈1,−u,−v, uv〉 is anisotropic over K, which completes the proof.

Remark. If [K : Q2] is odd, then 〈1, 1, 1, 1〉 is anisotropic over K by Springer’s The-
orem because 〈1, 1, 1, 1〉 is anisotropic over Q2. Thus we could use 〈a1, a2, a3, a4〉 =
〈1, 1, 1, 1〉 when [K : Q2] is odd.
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Corollary 3.4.6. Let K be a p-adic field with ramification degree e and inertia degree
f . Let d = mpτ where (m, p) = 1 and τ ≥ 1. Suppose −1 ∈ Kd. Then ∆K(d) ≤ d+1,
provided that

2mp
τ+1 ≥ pefτ+f(b

e
p−1
c+1) + 1.

Proof. Notice | O/(πγ) |= pefτ+f(b
e
p−1
c+1). This is easy to see by using the unique

π-adic expansion of elements in O.
Consider a form

d+1∑
i=1

aix
d
i

where the ai ∈ O×. By Lemma 3.1.9, to find a nontrivial solution in K it suffices to
find a primitive solution to

d+1∑
i=1

aix
d
i ≡ 0 mod πγ.

Since −1 ∈ Kd and, in particular, −1 ∈ (O/(πγ))d, such a solution exists if
d + 1 ≥ D±(O/(πγ)). By Proposition 2.2.6, if 2d+1 ≥| (O/(πγ)) | +1, then d +

1 ≥ D±(O/(πγ)). Since d = mpτ and | O/(πγ) |= pefτ+f(b
e
p−1
c+1), the statement

immediately follows.

Copyright c© Luis Sordo Vieira, 2017.
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Part II

Group Theory
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Chapter 4 The Chermak-Delgado measure of a finite group

4.1 Notation and standard facts about finite groups

“The universe is an enormous direct product of representations of symme-
try groups.” Steven Weinberg.

We first remark that this portion of the dissertation is independent of Part I. In
this section, we compute the Chermak-Delgado lattice for all p-groups of order p3, p4
and p-groups of order p5 as long as the nilpotency class is not 3 (Theorem 4.5.22). We
also compute the Chermak-Delgado lattice for extraspecial groups (Theorem 4.3.4)
and the dihedral groups (Theorem 4.4.1).

As in the previous part of this dissertation, we have no desire nor hope of being
complete with our treatment of finite groups. Such a treatise would (probably) be
larger than any book ever written. However, the author refers the reader to his
favorite book (granted, from limited experience and exposure) in the subject, [35].

For us, unless we explicitly state to the contrary, (G, ·) will always denote a finite
group. We will simply denote (G, ·) as G.

Since group multiplication is associative, we are at no risk of ambiguity by writing
g ·h · l for (g ·h) · l = g · (h · l). Furthermore, since the binary operation · is understood
from context, we will denote g · h by gh.

By X ⊆ G we mean the usual subset inclusion. By H ≤ G we mean that H is a
subgroup of G.

Let n ∈ N. Then Cn denotes the cyclic group of order n.
Let H,K ≤ G be subgroups. The join of H and K, written 〈H,K〉, is the smallest

subgroup of G such that H,K ≤ 〈H,K〉. A collection of subgroups of G that is closed
under intersections and joins is called a lattice.

For a subset X ⊆ G, CG(X) := {g ∈ G|xg = gx for all x ∈ X}. We write
CG(G) = Z(G). Z(G) is called the center of the group. Notice a group G is abelian
if and only if Z(G) = G. For H ≤ G, let H? := CG(H).

Let p be a prime. A finite group P is a p-group if every element of P has order a
power of p. Equivalently, |P | = pm for some m ∈ N.

Let G be a finite group. Then G′ is the commutator subgroup, or derived sub-
group, of G. That is, G′ = 〈[g, h]|g, h ∈ G〉 where [g, h] = g−1h−1gh.

Φ(G) will denote the intersection of the proper maximal subgroups of G. It is
called the Frattini subgroup of G.

For a finite p-group P , one readily checks that P/Φ(P ) is elementary abelian and
thus isomorphic to an r-dimensional Fp-vector space Frp for some r ∈ N. We call this
r the Frattini rank of P . Notice that since P/Φ(P ) is elementary abelian (and, in
particular, abelian), P ′ ≤ Φ(P ).

Definition 4.1.1. Let G be a group. Define γ1(G) = G and γi(G) = [γi−1(G), G].
The series {γi(G)}i is called the lower central series of G. If γr(G) = {e} for some r,
then G is said to be nilpotent. If G is nilpotent, let m be the smallest integer such
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that γm(G) = {e}. We say G has nilpotency class m − 1. If G is nilpotent, we will
sometimes use nil(G) to denote the nilpotency class of G.

A few things are readily verified:

1. If |G| = pn, then G is nilpotent with nilpotency class less than or equal to n−1.
In the case G has nilpotency class n− 1, we say G has maximal class.

2. G has nilpotency class 1 if and only if G is abelian.

The following theorem will also be important. See, for example, [35, Problem
4.A.6].

Theorem 4.1.2. [35, Problem 4.A.6] Let P be a p-group having maximal class, and
let N be a normal subgroup of P with index greater or equal to p2. Then N is a term
of the lower central series of P .

We remind the reader that if G is nonabelian, then G/Z(G) cannot be cyclic. In
particular, a finite group cannot have a center of index p.

We also have that if G/Φ(G) is cyclic, then G is cyclic. In particular, if |G| = pn

and G is nonabelian, then |G : Φ(G)| ≥ p2.

4.2 Some facts about the Chermak-Delgado lattice of a finite group

As usual, G denotes a finite group and P denotes a finite p-group. Recall the following
definition and notations:

Definition 4.2.1. For H ≤ G, define the Chermak-Delgado measure of H to be
the integer mG(H) := |H||CG(H)|. The integer MG = max{mG(H)|H ≤ G} will be
called the CD-number of G. Let CD(G) be the collection of subgroups H of G such
that

mG(H) = MG.

For H ≤ G, let H? := CG(H).

Lemma 4.2.2. [35, Lemma 1.42, Lemma 1.43] Let H ≤ G. Then mG(H) ≤ mG(H?)
and if equality holds, then H = H??. If H,K ≤ G, then

mG(H)mg(K) ≤ mG(H ∩K)mG(〈H,K〉).

Theorem 4.2.3. [35, Theorem 1.44] Given a finite group G, let CD(G) be the col-
lection of subgroups H of G such that

mG(H) = MG.

Then, the following hold:

1. CD(G) is a lattice under inclusion (closed under joins and intersections).
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2. If H,K ∈ CD(G), then 〈H,K〉 = HK. In particular, if H,K ∈ CD(G) then
HK ≤ G and HK ∈ CD(G).

3. If H ∈ CD(G), then H? ∈ CD(G) and H?? = H.

4. The minimal element K of CD(G) is abelian and Z(G) ≤ K.

Definition 4.2.4. Let G be a finite group, and let CD(G) be defined as in Theorem
4.2.3. Then CD(G) is called the Chermak-Delgado lattice of G.

Lemma 4.2.5. CD(G) = {G} if and only if G is an abelian group.

Proof. Let H ≤ G. Then
|H||H∗| ≤ |G|2.

Since
|H| ≤ |G|

and
|H∗| ≤ |G|,

equality holds if and only if |H| = |G| and |H∗| = |G|, and both these equalities hold
if and only if G = Z(G) = H. But, of course, Z(G) = G if and only if G is abelian.

Corollary 4.2.6. CD(G) is isomorphic to a sublattice of the subgroup lattice for
G/Z(G).

Proof. If H ∈ CD(G), then Z(G) ≤ H by Theorem 4.2.3. Thus, every subgroup
contained in CD(G) contains the center Z(G). The result follows immediately by the
Correspondence Theorem of Subgroups.

In particular, for a nonabelian group G, for the computation of CD(G) we only
concern ourselves with subgroups H such that Z(G) ≤ H ≤ G.

Definition 4.2.7. Let G be a finite group. By a dot of order n in CD(G) we mean
a subgroup H ≤ G of order n such that mG(H) = MG = max{mG(S)|S ≤ G}.

We will use the following lemmas repeatedly.

Lemma 4.2.8. Let P be a nonabelian p-group of order pn. Then MP ≤ p2n−2.

Proof. Since P is nonabelian, mP (Z(P )) = mP (P ) ≤ p2n−2. For any nontrivial sub-
group H not contained in the center, H? is strictly contained in P . Hence, mP (H) ≤
pn−1 · pn−1 = p2n−2. Now, notice sup{mP (T )|T ≤ Z(P )} = mP (Z(P )) ≤ p2n−2.

Lemma 4.2.9. Let G be a group. If Q is a subgroup of Q? and Q?/Q is cyclic, then
Q? is abelian.
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Proof. If Q is a subgroup of Q?, then Q ≤ Z(Q?). Suppose Q?/Q is cyclic, and let
zQ be a generator. Then every element of Q? can be written in the form zmq where
q ∈ Q, m ∈ N. It is now straightforward to check that any two elements of this form
commute.

Lemma 4.2.10. Let H ≤ G. Then mG(H) = mG(Hg).

Proof. Since |H| = |Hg|, it suffices to notice that CG(Hg) = CG(H)g.

4.3 The Chermak-Delgado lattice of extraspecial groups

Definition 4.3.1. Let P be a nonabelian p-group such that Z(P ) = Φ(P ) = P ′

where Φ(P ) is the Frattini subgroup of P . Then P is a special p-group. If P is a
special group with |Z(P )| = p, then P is called extraspecial.

We first recall a few standard linear algebra facts and definitions.

Definition 4.3.2. Let V be a k-vector space. A map β : V × V → k is a symplectic
form if it is a bilinear form and

• β satisfies β(v, v) = 0 for all v ∈ V .

• β is non-degenerate.

A pair (V, β) is called a symplectic space if V is a k-vector space and β is a symplectic
form on V .

Now, let (V, β) be a symplectic space and let U be a subspace of V . Then

U⊥ = {v ∈ V |β(v, u) = 0 for all u ∈ U}.

Symplectic spaces have been widely studied. The following can be found in many
textbooks. For example, see [29, Proposition 2.4].

Lemma 4.3.3. Let (V, β) be a symplectic space and let U ⊆ V be a subspace. Then

dimU + dimU⊥ = dimV.

Theorem 4.3.4. Let P be a finite extraspecial group of order p2n+1. Then CD(P ) is
isomorphic to the subspace lattice of F2n

p .

Proof. It is well known that (P/Z(P ), [·, ·]) is a symplectic space (see, for example,
[59, Section 3.10.2]). Now, let W be any subgroup of P containing Z(P ) and let
W be the image of W under the canonical projection to the quotient P/Z(P ). Let
dimFp(W ) = j. Notice that g ∈ CP (W ) if and only if [g,W ] = e. Thus CP (W ) is
precisely the subgroup corresponding toW⊥ under the Correspondence Theorem. By
Lemma 4.3.3, dim(W

⊥
) = 2n−j, and thus |CP (W )| = p2n−j ·p = p2n−j+1 and we have
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mP (W ) = |CP (W )||W | = p2n−j+1 · pj+1 = p2n+2. Thus, every subgroup containing
the center has Chermak-Delgado measure p2n+2. Since W was an arbitrary subgroup
of P containing Z(P ), and since CD(P ) is isomorphic to a sublattice of the subgroup
lattice of P/Z(P ), the result is now immediate by the Correspondence Theorem.

4.4 The Chermak-Delgado lattice of the dihedral groups

Theorem 4.4.1. Let G be a dihedral group. Then

1. If
G = D2n = 〈a, b|an = b2 = e, bab = a−1〉

with n ≥ 3, n 6= 4, then CD(G) = {〈a〉}.

2. If
G = D2·4 = 〈a, b|a4 = b2 = e, bab = a−1〉,

then CD(G) is isomorphic to the subspace lattice of F2
2.

Proof. Assume n ≥ 3 and n is odd. Since n ≡ 1 mod 2, Z(G) = {e}. Let A = 〈a〉.
Since b /∈ CG(A) and A is cyclic, it follows that CG(A) = A. ThusmG(A) = |A|2 = n2.
Let K be any subgroup {e} = Z(G) < K < G of order not equal to n. By Lagrange’s
Theorem, |K| ≤ 2n

3
. Since |K| 6= Z(G), CG(K) < G and thus |CG(K)| ≤ n. Thus

mG(K) ≤ n · 2n
3
< n2 = mG(A), and so K /∈ CD(G). Notice that mG(G) = 2n =

mG(Z(G)). Since mG(G) = 2n < n2 = mG(A) for n ≥ 3, it follows that G /∈ CD(G).
From the fact that CD(G) is closed under joins and G /∈ CD(G), it follows that no
other group of order n can be contained in CD(G). Thus {A} = CD(G).

If n = 4, then D8 is extraspecial. Thus CD(G) is isomorphic to the subspace
lattice of F2

2 by Theorem 4.3.4.
Assume n ≥ 6 and n is even. Since n ≡ 0 mod 2, Z(G) = 〈an2 〉. Thus mG(G) =

mG(Z(G)) = 2 · 2n = 4n. Let A = 〈a〉. Since b /∈ CG(A) and A is cyclic, CG(A) = A.
Thus mG(A) = |A|2 = n2. Since n ≥ 6 we have n2 = mG(A) > 4n = mG(G) and
thus Z(G), G /∈ CD(G). Let K be any subgroup such that Z(G) < K < G of order
not equal to n. By Lagrange’s Theorem, |K| < n. Since K 6= Z(G), it follows that
CG(K) < G. In particular, |CG(K)| ≤ n. Thus mG(K) < n · n = n2, and thus K /∈
CD(G). From the fact that CD(G) is closed under joins and G /∈ CD(G), it follows
that no other group of order n can be contained in CD(G). Thus {A} = CD(G).

4.5 The Chermak-Delgado lattice of some p-groups

Theorem 4.5.1. Let P be a group of order |P | = pn such that |Z(P )| = pn−2 . Then
the lattice CD(P ) is equivalent to the subgroup lattice of Cp × Cp. In particular, P
contains exactly p+ 1 abelian subgroups Mi such that Z(P ) ≤Mi.
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Proof. Since P is nonabelian, P/Z(P ) is not cyclic, and thus P/Z(P ) ∼= Cp×Cp. Now,
let M1, · · · ,Mp+1 be the subgroups corresponding to the intermediate subgroups of
P/Z(P ). Then M1, · · · ,Mp+1 are noncentral abelian, and thus mP (Mi) = p2(n−1) =
|P ||Z(P )| = pnpn−2 = mP (P ) = mP (Z(P )).

Remark. This completely classifies CD(P ) for P nonabelian of order p3.

Theorem 4.5.2. Let P be a p-group of order pn such that |Z(P )| ≤ pn−3. Then
MP = p2n−2 if and only if P contains a unique maximal abelian group H of index p.
In this case, CD(P ) = {H}.

Proof. Let P be a p-group of order pn such that |Z(P )| ≤ pn−3. We first notice that
mP (P ) ≤ p2n−3.

Suppose P contains an abelian group H of index p. Then H = H? since H is
maximal normal abelian. Thus mP (H) = p2n−2. Since P /∈ CD(P ), CD(P ) does not
contain any other subgroup of order pn−1 by the closure under joins. Thus H is the
unique abelian subgroup of index p. For any other subgroup K not equal to H, it is
straightforward to see that mP (K) < p2n−2.

Now, suppose MP = p2n−2. Since mP (P ) < p2n−2 we have that P /∈ CD(P ).
For any T ≤ P of index greater or equal to p2 not contained in the center, we
have mP (T ) = |T ||T ?| ≤ pn−2 · pn−1 = p2n−3, and for any T ≤ Z(P ), we have
mP (T ) ≤ mP (Z(P )) ≤ p2n−3. Thus there must existH ≤ P such that |H| = pn−1 and
|H?| = pn−1. By closure under joins there must exist a unique subgroup H ∈ CD(P )
of index p. Furthermore, H? has index p and thus H = H?. In particular, H is
abelian.

In either case, we see CD(P ) = {H}.

Theorem 4.5.3. Let P be a nonabelian group of order pn such that |Z(P )| = pn−3.
Then one of the following cases occurs.

• P has a unique abelian normal subgroup H such that Z(P ) ≤ H and |H| = pn−1.
If this happens, then CD(P ) = {H}.

• CD(P ) = {P,Z(P )}.

Proof. We first notice thatmP (P ) = pn ·pn−3 = p2n−3. By Lemma 4.2.8,MP ≤ p2n−2.
Case 1 is Theorem 4.5.2.
Case 2: Suppose P has no abelian subgroups of order pn−1. Then sup{mP (T )|T ≤

P} = p2n−3 = mP (P ) and thus P ∈ CD(G). Notice that if T ∈ CD(P ) with
|T | = pn−2, then |T ∗| = pn−1. However, if T ∈ CD(P ) is such that |T | = pn−2, then
T/Z(T ) is cyclic and thus T is abelian. But then T ≤ Z(T ∗), and thus T ∗ has order
pn−1 and is abelian. This contradicts that P has no abelian subgroups of order pn−1.
Thus CD(P ) cannot contain any subgroups of order pn−2 and hence cannot contain
any subgroups of order pn−1, for if H ∈ CD(P ), then H∗ ∈ CD(P ) with |H∗| = pn−2.
Thus CD(P ) = {P,Z(P )}.
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Lemma 4.5.4. Let P be a p-group of order pn with n ≥ 3, and let H E P be a
normal subgroup of order p2. Suppose H is not contained in the center Z(P ). Then
[P : CP (H)] = p.

Proof. Let P act on H by conjugation. Then we get a homomorphism ψ : P →
Aut(H). Since H is of order p2, H ∼= Cp2 or H ∼= Cp × Cp. Thus Aut(H) ∼= (Cp2)

×

or Aut(H) ∼= GL2(Fp). It follows that |Aut(H)| = φ(p2) = p(p − 1) or |Aut(H)| =
(p2 − 1)(p2 − p) = p(p2 − 1)(p − 1). Either way, vp(|Aut(H)|) = 1. Since im(ψ) is a
nontrivial p-subgroup of Aut(H) by the assumption that H is not central, it follows
that im(ψ) has order p. By the First Isomorphism Theorem, P/ ker(ψ) ∼= im(ψ). The
result follows by noticing that ker(ψ) = CP (H).

Corollary 4.5.5. Let P of order pn, n ≥ 3, be such that Z(P ) ∈ CD(P ) and |Z(P )| =
p. Then the number of dots in CD(P ) of order p2 equals the number of dots of order
pn−1. Furthermore, for Q ≤ P of order p2, we have Q ∈ CD(P ) if and only if Q is
normal in P .

Proof. Notice that by assumption the Chermak-Delgado measure of P is MP =
|Z(P )||P | = pn+1.

Let H be a normal subgroup of order p2. Since H 6= Z(G), by Lemma 4.5.4, H?

has index p, and thus mP (H) = p2 · pn−1 = pn+1 and we have H ∈ CD(P ). Now,
suppose T is a dot of order p2. Then T ? has index p in P and thus T ? E P . Since
T = (T ?)?, we have that T is the centralizer of a normal subgroup of P . Hence,
we can conclude that T is a normal subgroup of P . Thus every dot of order p2 is
normal in P . Since every dot of order pn−1 is the centralizer of a dot of order p2, and
(T ?)? = T , the dots of order p2 and the dots of index p are in bijection.

Lemma 4.5.6. [35, Lemma 4.4] Let P be a p-group of nilpotence class 2 , and assume
that P ′ has exponent pe. Then the exponent of P/Z(P ) divides pe. In particular, if P ′
is elementary abelian, then P/Z(P ) is elementary abelian, and thus Φ(P ) ≤ Z(P ).

Lemma 4.5.7. Let P be a group of order p4 where |Z(P )| = p. Then P has a unique
maximal abelian normal subgroup H of order p3. In fact, H = CP (P ′). Furthermore,
in this case CD(P ) = {CP (P ′)}.

Proof. We first prove that P ′ is of order p2. Notice that for any group P of order pn
where n ≥ 2, [P : P ′] ≥ p2 (this is because p-groups have a normal subgroup of each
possible index). Thus, in the case |P | = p4, we have 1 < |P ′| ≤ p2. Suppose that
|P ′| = p. Then P ′ = Z(P ) and thus P is of nilpotence class 2. But then, by Lemma
4.5.6, Φ(P ) = Z(P ) = P ′ and thus P is extraspecial. This is absurd, as there are no
extraspecial groups of even power order.

Thus, it follows that |P ′| = p2. By Lemma 4.5.4, CP (P ′) has index p in P and
thus |CP (P ′)| = p3. Furthermore, since P ′ is of order p2, it is abelian and thus
P ′ ≤ Z(CP (P ′)) and [CP (P ′) : P ′] = p, and hence CP (P ′) is abelian of order p3. The
uniqueness follows from Theorem 4.5.3.
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Let P be a nonabelian group of order p5. By Theorems 4.5.2, 4.5.3, we may
assume |Z(P )| = p, mP (P ) 6= p8, and that P contains no abelian subgroups of order
p4. We exclude the possibility that MP (P ) = p7.

Lemma 4.5.8. Let P be a p-group of order p5 with |Z(P )| = p. Then MP = p7 is
impossible.

Proof. Suppose MP = p7. Notice P /∈ CD(P ) in this case. Thus, there is a unique
characteristic subgroup H ∈ CD(P ) of order p4 and H? is of order p3. But then
H? ≤ H by the closure under joins and H/H? is cyclic of order p. Thus H is abelian,
and hence mP (H) = p8 > p7. This is nonsense, as we assumed MP = p7.

Theorem 4.5.9. [35, Theorem 4.7] Let P be a finite p-group and suppose A is an
abelian normal subgroup of P where |A| = pm. Assume P/A is cyclic and that
|A ∩ Z(P )| = p. Then the nilpotence class of P is m.

Theorem 4.5.10. [23, Theorem 4.5] Let P be a nonabelian 2-group of order 2n with
n ≥ 4 and with either the property that |P/P ′| = 4 or P is of maximal nilpotency
class. Then P is dihedral, semi-dihedral or generalized quaternion.

Corollary 4.5.11. Let P be a nonabelian group of order 2n with n ≥ 4 of maximal
class. Then CD(P ) is a single dot corresponding to the maximal abelian subgroup of
index 2.

Proof. A 2-group P of maximal class of order 2n where n ≥ 4 is dihedral, semi-
dihedral or generalized quaternion by Theorem 4.5.10. Therefore, it has a maximal
abelian subgroup A of index 2 and |Z(P )| ≤ 2n−3. By Theorem 4.5.2, CD(P ) = {A}.

Corollary 4.5.12. Let P be a p-group of order p5 where |Z(P )| = p. Then if CD(P )
is a single dot, then P is of nilpotence class 4 and this dot corresponds to an abelian
subgroup of P of index p. Otherwise, P,Z(P ) ∈ CD(P ).

Proof. By Lemma 4.5.8, MP 6= 7. Suppose CD(P ) has a single dot. Then MP = 8,
for otherwise both P,Z(P ) ∈ CD(P ). Now, by Theorem 4.5.2, P contains a unique
maximal abelian subgroup, call it A, of order p4. Since A is maximal, it must be
normal. Thus, by Theorem 4.5.9, P has nilpotence class four. In other words, P is
of maximal class.

Theorem 4.5.13. Let P be a group of order p5 of nilpotency class four such that
MP (P ) = p6. Then the CD(P ) lattice has a unique dot of order p5, p4, p2, p and p+ 1
dots of order p3. The dots of order p3 are abelian.
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Proof. If N is a normal subgroup of P with |P : N | ≥ p2, then N is a term of the
lower central series since P has maximal class (see Theorem 4.1.2). Thus, there is
a unique dot of order p2, namely γ3(P ), by Corollary 4.5.5. Thus, (γ3(P ))∗ is the
unique dot of order p4.

Since γ3(P ) ≤ (γ3(P ))? and (γ3(P ))? is nonabelian, (γ3(P ))∗/γ3(P ) ∼= C2
p . By the

Correspondence Theorem, there are exactly p + 1 subgroups, H, such that γ3(P ) ≤
H ≤ (γ3(P ))?, and since |H : γ3(P )| = p, H is abelian and so H = H? ∈ CD(P ).
Notice exactly one of these dots of order p3 is normal in P, and it is P ′.

It remains to show that there can be no more dots of order p3 other than the p+1
abelian dots, A, such that γ3(P ) < A < γ3(P )?.

We prove this by contradiction. To simplify notation, let Q = γ3(P ). Suppose R
is a dot of order p3 such that R is not contained in Q?. Then Q?R = P and thus
|Q? ∩ R| = p2. Since Q?, R ∈ CD(P ), Q? ∩ R ∈ CD(P ) and thus Q? ∩ R = Q, as
Q is the unique dot of order p2 in CD(P ). In particular, Q < R. Now, let A be a
dot of order p3 such that Q < A < Q?. Then A ∩ R = Q and AR ∈ CD(P ). By
assumption, R is not contained in Q?, and thus AR = P . But this is nonsense, since
|AR| = |A||R|

|A∩R| = p4.
Thus, every dot of order p3 is contained in Q?. Now, we have both R < Q? and

R? < Q?. Notice that R? < Q? implies Q = Q?? < R?? = R, and thus Q < R < Q?

for every dot of order p3.

Lemma 4.5.14. Let P be a group of order p5 where |Z(P )| = p, and let P have
nilpotency class two. Then P is extraspecial.

Proof. Since P is of nilpotence class 2 (a fortiori nonabelian) by assumption, 1 <
P ′ ≤ Z(P ) and thus P ′ = Z(P ). Furthermore, by Lemma 4.5.6 and the fact that
Φ(P ) ∩ Z(P ) 6= {e}, Φ(P ) = Z(P ).

It follows that P is extraspecial.

Corollary 4.5.15. Let P be a group of order p5 where |Z(P )| = p, and let P have
nilpotency class two. Then CD(P ) is isomorphic to the subspace lattice of F4

p.

Proof. By Lemma 4.5.14 and Theorem 4.3.4.

Lemma 4.5.16. Let P be a p-group of order p5 of nilpotency class three, with
|Z(P )| = p. Then MP = p6 and P,Z(P ) ∈ CD(P ).

Furthermore, the number of dots in CD(P ) of order p2 equals the number of dots
of order p4 equals the number of normal subgroups of order p2.

Proof. The first statement follows by Corollary 4.5.12 and Lemma 4.5.8. The second
statement follows by Corollary 4.5.5.

Corollary 4.5.17. Let P be a 2-group of order 32 of nilpotency class three with
|Z(P )| = 2. Then P ′ is of order 4.
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Proof. Otherwise, P ′ is of order 8 and thus |P/P ′| = 4. But then, by Theorem
4.5.10, P is dihedral, semi-dihedral or generalized quaternion, and thus of maximal
class, which is absurd as we assumed P is of nilpotency class three.

Theorem 4.5.18. [6, Theorem 9.10] If a group G of order pm > p3 has a subgroup
of order pm−1 of maximal class, then G is either of maximal class or G/G′ ∼= C3

p .

Corollary 4.5.19. Let P be of order p5 with MP = p6. If P has nilpotency class
three and contains a maximal subgroup of maximal class, then P ′ = Φ(P ) is of order
p2.

Otherwise, if P does not contain any maximal subgroups of maximal class, every
maximal subgroup of P has nilpotency class two.

Proof. We first note that since P is of nilpotency class three, |P ′| = p2 or p3. Fur-
thermore, since P does not contain any maximal abelian subgroups of order p4, the
maximal subgroups have nilpotency class three or two.

If P has a maximal subgroup of nilpotency class three, then by Theorem 4.5.18,
P/P ′ ∼= C3

p , and thus P ′ = Φ(P ) is of order p2.

Corollary 4.5.20. Let P be a group of order p5 of nilpotency class three with |Z(P )| =
p, and assume P does not contain any maximal subgroups of maximal class. Then
every maximal subgroup of P is in CD(P ).

Proof. By Corollary 4.5.12, MP = p6. Let M be a maximal subgroup of P . Then
|M | = p4. Suppose |Z(M)| = |Z(P )| = p. By Lemma 4.5.7 and Theorem 4.5.9, M
is of maximal class, which contradicts the fact that M is of nilpotency class two (as
M is nonabelian, otherwise P is of maximal nilpotency class). Thus |Z(M)| = p2.
Notice that since Z(M) is abelian and Z(M) ≤ CP (M), CP (M) = M? is of order p2.
Thus, for any maximal subgroup M of P , M∗ is of order exactly p2. It follows that
mP (M) = p6 = MP , as desired.

Corollary 4.5.21. Let P be a group of order p5 of nilpotency class three with |Z(P )| =
p, and assume P does not contain any maximal subgroups of maximal class. Then

1. If Φ(P ) is of order p3, then CD(P ) contains exactly p+ 1 dots of order p4 and
exactly p+ 1 dots of order p2.

2. If Φ(P ) is of order p2, then CD(P ) contains exactly 1 + p+ p2 of order p4 and
exactly 1 + p + p2 dots of order p2 (although we conjecture that this case does
not happen).

Proof. By Corollary 4.5.20, the number of dots of order p4 is exactly the number of
maximal subgroups of P/Φ(P ). The statement about the dots of order p2 follows by
Corollary 4.5.5.
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We summarize some our results for convenience.

Theorem 4.5.22. Let P be a nonabelian p-group of order pn. Then:

1. If |Z(P )| = pn−2, then the lattice CD(P ) is equivalent to the subspace lattice
of F2

p. In particular, nonabelian p-groups of order p3 have such CD(P ).

2. If |Z(P )| = pn−3, then one of the following cases occurs.

(i) P has a unique abelian normal subgroup H such that Z(P ) ≤ H and

|H| = pn−1. If this happens, then CD(P ) = {H}. In the case

n = 4, H = CP (P ′).

(ii) CD(P ) = {P,Z(P )}. This case does not happen for n = 4.

3. If n = 5 and |Z(P )| = p, then

(i) If P has nilpotency class 2, then P is extraspecial and thus CD(P ) = F4
p.

(ii) If P has nilpotency class 4 with MP (P ) = p6, then the CD(P )

lattice has a unique dot of order p5, p4, p2, p and p+ 1 dots of order p3. The
dots of order p3 are abelian.

(iii) If CD(P ) is a single dot, then P is of maximal class. If p = 2, CD(P )
is a single dot if and only if P is of maximal class.

This research area is still in its infancy. It is clear that much work is left to be
done, although categorizing CD(P ) of p-groups based on the index [P : Z(P )] has
proved fruitful for small indices so far.

Copyright c© Luis Sordo Vieira, 2017.
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