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ABSTRACT OF DISSERTATION

Colorings of Hamming-Distance Graphs

Hamming-distance graphs arise naturally in the study of error-correcting codes and have
been utilized by several authors to provide new proofs for (and in some cases improve)
known bounds on the size of block codes. We study various standard graph properties
of the Hamming-distance graphs with special emphasis placed on the chromatic number.
A notion of robustness is defined for colorings of these graphs based on the tolerance of
swapping colors along an edge without destroying the properness of the coloring, and a
complete characterization of the maximally robust colorings is given for certain param-
eters. Additionally, explorations are made into subgraph structures whose identification
may be useful in determining the chromatic number.
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Chapter 1 Introduction

1.1 Error-Correcting Codes

The study of error-correcting codes is concerned with the transmission of information via
“noisy” channels in which the original message may be corrupted as it travels from sender
to receiver. It is often infeasible or inefficient to simply resend the message several times.
For instance, consider the cases of digital broadcasting or cell phone communication. By
encoding messages before transmission, it is possible to recover the intended message even
if “noise” on the channel results in an erroneous transmission. Finding the most efficient
methods of transmitting data while simultaneously allowing for the correction of errors
plays a central role in information theory.

A code C is simply a collection of known messages, called codewords. If we are wise
about how we choose our code, it is possible to recover the original message if the size of
the error in the transmission is not too large. A common technique is to choose a code
such that all the codewords are very dissimilar from each other. The “dissimilarity” of
the codewords is measured by a metric called the Hamming distance which simply counts
the number of coordinates in which two codewords disagree. If all the codewords in a
code have a large Hamming distance from one another, it is usually possible to determine
what the intended message was as there will be a unique codeword that is closest to the
received message.

A code generally has four important parameters, n,d,q, and M. An (n, M, d),-code
has M codewords of length n over an alphabet of size ¢ such that any two codewords have
Hamming distance at least d. The rate of transmission increases with the size M of the
code so coding theorist are concerned with finding large codes of given parameters (n, d, q).
However, finding the maximal size of a code with given parameters is prohibitively difficult
and energy has instead been focused of finding good bounds.

1.2 Hamming-Distance Graphs

The problem of finding large error-correcting codes can be given a graphical interpretation
via the Hamming-distance graphs. H,(n,d) is defined as the graph with vertex set Z;
where two vertices are adjacent if the Hamming distance between them is at least d.
Note that the cliques (complete subgraphs) of H,(n,d) form (n,d),-codes as described
above. Therefore the problem of determining the largest possible size of a code of given
parameters is equivalent to finding the clique number (size of largest complete subgraph)
of the corresponding Hamming-distance graph.

The Hamming-distance graphs have been studied by several authors including Sloane
[23] and El Rouayheb et al. [§], the latter of which applied graph theoretical techniques
to H,(n,d) to reprove (and in some cases actually improve) known coding theory bounds.
Although the ultimate goal was to put good bounds on the clique number of H,(n,d),
their proofs involved many other properties of the graphs such as vertex transitivity and



the independence number. This leads naturally to questions regarding other properties
and graph invariants of H,(n,d), which we study extensively in this thesis.

The authors of [§] were also interested in determining the chromatic number of these
graphs and gave the following result.

Theorem 1.2.1 ([8, Lem. 18]). Let ¢ >n —d + 2. Then x(H,(n,d)) = ¢"~¢L.

They leave as an open problem determining the chromatic number for additional param-
eters. We will give a partial answer using a variety of ad hoc methods to extend their
results to several additional families of parameters.

There is one obvious way to color H,(n,d) and it will play a critical role in our
investigations. Fixing n—d+1 coordinates of the vertices in Z, assign each vertex a color
corresponding with its value in those n —d + 1 coordinates. Since two vertices must differ
in at least d coordinates to be adjacent, no vertices of the same color can be adjacent and
we have a proper coloring. We call this a coordinate coloring of H,(n, d) and immediately
get that x(H,(n,d)) < ¢"~*"!. Comparing this with the results from Theorem we
see that the coordinate colorings are in fact minimal colorings if ¢ > n —d + 2.

If we restrict to the case ¢ > 3 and n = d, we can strengthen this statement to the
following result originally due to Greenwell/Lovész [11].

Theorem 1.2.2 ([2, Thm. 1.1, Claim 4.1]). Let ¢ > 3. Then x(H,(n,n)) = ¢ and all
q-colorings are coordinate colorings.

We reference here the paper by Alon et al. [2] in which the authors also prove a stronger
stability version of this result. In particular, they employed Fourier analytic techniques to
prove results about the structure of maximal independent sets in the n-fold weak graph
product of the complete graph K, which in our notation is simply H,(n,n). Both their
result, and the original due to Greenwell/Lovész rely on this description of the graph in
terms of weak graph products. Unforunately, H,(n,d) does not have such a description
when d < n, so there is little hope of extending these results to general Hamming-distance
graphs. In fact, we will give several counterexamples throughout the thesis.

While Theorem [1.2.2]is false for d < n, one may still ask what role coordinate colorings
play among the broader set of minimal colorings (for parameters in which it is known that
the coordinate colorings are indeed minimal.) Much of this thesis is dedicated to answering
this question in the case ¢ = 2 and d = n — 1. In particular, we define a notion of the
robustness of a coloring based on the tolerance of swapping the colors of vertices along
an edge without destroying the properness of the coloring. Our central result is that,
with a single exception, the maximally robust 4-colorings of Hs(n,n — 1) are exactly the
coordinate colorings.

1.3 Outline

In Chapter [2] we derive several basic properties of the Hamming graphs which will prove
useful in our later explorations of the chromatic number. In particular, we note that



Hy(n,d) can be described as an undirected Cayley graph on the abelian group Z;. We
calculate the girth of the graph and also give a formula for the graph distance between
two vertices in terms of their Hamming distance. This in turn allows us to put bounds on
the diameter of the graphs. Lastly, we show that the Hamming graphs are Hamiltonian
and demonstrate interesting connections between this result and the existence of Gray
codes of size ¢".

In Chapter , we consider the chromatic number of H,(n, d). In addition to presenting
the results of El Rouyaheb et al. [§], we expand the range of known values of x(H,(n,d))
using a combination of ad hoc methods. In particular, we apply a result due to Payan
in [22] regarding the chromatic number of cubelike graphs which allows us to show that
Hy(n,n — 1) = 4. Finally, we demonstrate several relationships between the chromatic
numbers of different Hamming graphs.

Chapter 4| focuses on minimal colorings of Hy(n,n — 1) and draws extensively from
results in our paper [12]. As previously mentioned, our ultimate goal is to produce an
analog to Theorem[1.2.2|for Hy(n,n—1). Unlike when n = d and ¢ > 3 in which there were
only the n coordinate colorings, we show that the number of distinct proper 4-colorings
of Hy(n,n — 1) grows exponentially with n. As part of the proof, we define a notion of
robustness of a coloring based on the tolerance of swapping the colors of vertices along
an edge while retaining the properness of the coloring. We derive several bounds on the
robustness of colorings of the Hamming graphs and show that the coordinate colorings of
Hy(n,n — 1) are maximally robust. Due to the abundance of 4-colorings of Ha(n,n — 1),
it is reasonable to expect there may be many other maximally robust colorings. However,
the main result of Chapter [4] shows that with a single exception, the coordinate colorings
are the only maximally robust 4-colorings of Hy(n,n — 1).

In Chapter [5, we turn instead to the fractional chromatic number of H,(n,d). After
developing some standard results, we show that applying the Erdds-Ko-Rado Theorem
for integer sequences already used in Chapter (3| gives the fractional chromatic number
for a large range of parameters, including some cases for which the chromatic number is
unknown. Moreover, we give a result which suggests that the behavior of the fractional
chromatic number is truly different from that of the chromatic number in the binary
case. Futhermore, we conjecture that the Hamming graphs contain an infinite family of
graphs for which the difference between the chromatic and fractional chromatic numbers
is arbitrarily large.

In Chapter [0] we define two graph transformations which may be useful for simplifying
the calculation of the chromatic number of a graph based on knowledge of certain subgraph
structures, especially if the graph is vertex-transitive. In particular, for some fixed k, the
transformations preserve the set of admissible k-colorings while either adding additional
edges to the graph or identifying vertices. Moreover, we show that under mild restrictions,
these transformations commute. We also demonstrate that these techniques can be used
to engineer critical graphs having various interesting properties.

Chapter[7]discusses unanswered questions from the thesis and outlines areas of interest
for future research.

Finally, Appendix A contains a few basic results about the Mycielski construction.



Chapter 2 Basic Properties of Hamming Graphs

2.1 Notation

Given a,b € Zy, the Hamming distance between a = (ay,...,a,) and b = (by,...,b,) is
d(a,b) = |{i | a; # b;,1 < i < n}| = wt(a —b) = wt(b— a) where wt(a) = d(a,0) for all
a € Zy. An (unrestricted) (n, M, d),-code is a set of size M composed of codewords in
A", where A is an alphabet of size ¢, such that the Hamming distance between any two
codewords is at least d. We will always set A = Z,; however, this is merely for convenience
and any alphabet of size ¢ would suffice. The maximum M for which such a code exists is
denoted A,(n,d). For any graph G we denote by V(G) its vertex set and by E(G) its edge
set. Thus F(G) C V(G) x V(G). Unless otherwise specified, all graphs are assumed to
be finite, connected, undirected, and simple (no loops or multiple edges). We also use the
notation ~ for adjacency, thus = ~ y <= xy € E(G). Similarly, v = y <= zy ¢ E(G).
Let N(z) :=={y € V(G) | y ~ =} denote the set of neighbors of vertex = € V(G). For
any x, y € V(G) we define dg(x,y) as the graph distance between = and y, that is, the
length of a shortest path from x to y. For any graph GG, we define the following invariants:
a(G) denotes its independence number, that is, the maximal size of an independent set;
w(G) is the clique number, that is, the maximal size of a clique in G; girth(G) denotes
the girth, that is, the length of a shortest cycle; diam(G) denotes the diameter, that is,
the maximum graph distance between any two vertices in GG. A proper k-coloring is a
vertex coloring with & distinct colors such that adjacent vertices have different colors. We
only consider proper colorings and usually omit the qualifier ‘proper” unless we explicitly
discuss properness. We denote by x(G) the chromatic number, that is, the minimal k
such that G has a proper k-coloring. Any x(G)-coloring is called a minimal coloring. A
coloring is called even if all color classes (the sets of vertices with the same color) have
the same cardinality. Col,(G) will denote the set of all proper k-colorings of G up to
isomoprism. Thus Col,(G) =0 <= k < x(G). The vector with all entries equal to 1
is denoted by 1. We set e; to be the standard basis vector having an entry of 1 in the
1-th coordinate and a 0 in every other coordinate. Similarly, define f; = 1 — e; to be the
vector having an entry of 0 in the i-th coordinate and a 1 in every other coordinate. For
all three vectors, the length will be clear from the context. We set [n] := {1,...,n}. K,
is the complete graph on n vertices. Cay(G, S) denotes the undirected Cayley graph on
the group G with generating set S. u(G) will denote the Mycielskian of the graph G,
which we will discuss in Appendix A.

2.2 Descriptions of Hamming-distance Graphs.

In this chapter, we explore various standard graph properties of the Hamming-distance
graphs. In particular, we show that they can be given a description as an undirected
Cayley graph and are therefore vertex-transitive and regular. We determine the regularity
and girth, and give a formula for the graph distance between two vertices in terms of their



Hamming distance. Using this formula, we put bounds on the diameter of the graphs.
We also show that the Hamming-distance graphs are Hamiltonian and note an interesting
connection with the existence of Gray codes.

Definition 2.2.1. Let ¢, d, n € N. The Hamming-distance graph, or simply Hamming
graph, Hy(n,d) is defined as the graph with vertex set V' := Z7 and edge set E := {(z,y) |
x,y € Ly, d(w,y) > d}.

We note that the term “Hamming graph” may refer to several different graphs in the
literature (for instance, compare [15] and [§]). Throughout, we will use the term Hamming
graph exclusively to refer to the graph in Definition [2.2.1]

Example 2.2.2. The graph below is Hs(3,2). Its vertices are all binary vectors of length
3 where two distinct vertices are adjacent if and only if the Hamming distance between
them is at least 2.

Figure 2.1: Hs(3,2)

Throughout our discussion of the Hamming graphs, assume ¢, d,n € N such that
g,n>2 0<d<n, (q,d) #(2,n). (2.2.1)

Note that the case (¢,d) = (2,n) is genuinely different from the general case as
Hy(n,n) is disconnected with 2"~! components, each consisting of two vertices connected
by an edge. In particular, each vertex x € Z% only has one neighbor, namely = + 1. We
will see shortly that H,(n,d) is connected for all (¢,d) # (2,n). Thus Hs(n,n) is both
entirely uninteresting and truly different from the general case. Therefore we exclude it
from our considerations.

Remark 2.2.3. Tt can be shown that the Hamming distance is actually a metric on Zg.
In particular, it obeys the triangle inequality meaning d(z,y) < d(x, z) + d(z,y) for all
z € Ly.

q

We begin by deriving some basic graphical properties of the Hamming graphs.



Proposition 2.2.4.
(a) Hy(n,d) is simple.
(b) Hy(n,d) is connected.

)

) is reqular of degree . (1)(q — 1)
) is vertez-transitive.
)i
(

I

a
a
(d) Hy(
(

z;z
QU QU

is the undirected Cayley graph of the group (Zj,+) and the subset Sq = {v €
v) > d}, which generates the group.

Proof. (e) Since (q,d) # (2,n), the set S; indeed generates the group Z7. In particular,
the set of vectors B = {1+e;,14ey,...1+¢€,-1,1} = {by,...,b,} form a basis of the
Zqsmodule Zy and are in Sy for any admissible d. To see that B is indeed a basis, note
that all the standard basis vectors e; are in the span of B. Thus B generates Z;. A simple
cardinality argument shows that they are linearly independent. By the definition of the
Hamming graphs, x, y € Z} are adjacent in Hy(n,d) iff y = o + v for some v € S;. This
shows that the graph is the stated Cayley graph.

(a) This follows from (e) since 0 ¢ S.

(b) Since Sy generates Zy, (b) follows immediately from (e).

(c) For any undirected Cayley graph, the regularity is simply the size of the generating set,
in our case |Sy|. Thus we simply need to count the number of vectors in Z; with weight
at least d. We sum over the number of coordinates with an entry of 0, and immediately
get that |Sel = 75 (1) (g — )"

(d) All Cayley graphs are vertex-transitive. H

Definition 2.2.5. A cubelike graph is a Cayley graph in which the underlying group is
the elementary abelian group Z% for some n € N.

Corollary 2.2.6. Hy(n,d) is a cubelike graph.

Proof. This follows immediately from Proposition [2.2.4fe). O

2.3 Girth and Diameter

Proposition 2.3.1. Let G := Hy(n,d).

(a) Let ¢ > 3. Then girth(G) = 3.

(b) Let g =2 and d < %*. Then girth(G) = 3.

(¢) Let ¢ =2 and & < d < n. Then girth(G) = 4. Moreover, G contains a cycle of odd
length.

Proof. (a) The vertices 0, 1, (2,...,2) form a cycle of length 3.

(b) Consider the vertices 0, z, y, where x = (1,...,1,0,...,0) and y = (0,...,0,1...,1)
with both having exactly d entries equal to 1. If n > 2d, then d(x,y) = 2d and thus 0, z, y
form a cycle of length 3. Let n < 2d. Then z and y overlap in exactly 2d — n entries
(which are equal to 1), and therefore d(x,y) = 2n — 2d > 3d — 2d = d. Again, the three
vertices form a cycle of length 3.



(c) First of all, the vertices 0, 1, (1,0,...,0), (0,1,...,1) form a cycle of length 4 in the
Hamming graph. By vertex-transitivity it now suffices to show that 0 is not contained in a
cycle of length 3. Suppose z,y € Z are adjacent to 0. Then wt(x), wt(y) > d. Moreover,
x; = 1 = y; for at least 2d — n > % positions and therefore d(z,y) < n — 2% = 2 < d.
Hence x, y are not adjacent, and this shows that the graph has no cycle of length 3. A
cycle of odd length is obtained as follows. For i =1,... , nset f; :=(1,...,1,0,1,...,1),
where 0 is at position i. If n is odd the vertices 0, f1, fi + f2, ..., > oy fi = 0 form a cycle
of length n. If n is even the cycle 0, fi, fi + fo,..., > iy fi =1, 0 has length n + 1. [

We now proceed to prove the following relationship between the Hamming distance
and graph distance of vertices in H,(n,d).

Theorem 2.3.2. Suppose x,y € V(H,(n,d)). Then

1 if d(z,y) >d
da(z,y) = 2 if ¢ >3 and d(z,y) < d
min {2 [;(iflx,_y;)-‘ 9 {dQEnd(_x;i?)/)-‘ + 1} ifq=2 and d(x,y) < d

Before giving the proof, we will need a few definitions and lemmas.

Let §; denote the vector with 1’s in the first ¢ coordinates, and 0’s in the other n — 4
coordinates. That is,

——

[ n—i

6= e=(1,...,10,...,0).
j=0

Lemma 2.3.3. Suppose z,y € V(Hsy(n,d)) such that d(z,y) < d. Then
d(z,y) <2(n—d) <= dg(z,y) =2.

Proof. Since d(z,y) < d, we have dg(x,y) > 1. Set m := d(z,y). Since Hy(n,d) is vertex
transitive, we may assume that x =0 and y = 6,,.

= Suppose m < 2(n — d). Consider the vertex z =1 — 6,4 = (0,...,0,1,...,1).
——

As d(0, z) = d, we have that z is a neighbor of 0. If m+d < n, then d(z,0,,) =d+m > d
and we are finished since both 0 and ¢,, are adjacent to z.

Therefore assume d + m > n and consider the number of coordinates in which z
and d,, agree. As there are a total of m + d ones but only n coordinates in which to
place them, both z and J,, have ones in m + d — n > 0 positions. Furthermore, it
is easy to see that no coordinate contains a zero in both vectors so z and J,, agree in
m + d — n coordinates. Therefore the number of coordinates in which they disagree is
d(z,0pm) =n—(m+d—n)=2n—m—d > 2n—2(n —d) — d = d. This implies z and
0 are adjacent, and since z is also adjacent to 0, we have a path of length 2 connecting
0 and 6,,.



<= Suppose dg(z,y) = 2. If m <n —d < 2(n —d), we are finished, so we may also
assume n—d < m. Since dg(,y) = 2, there exists some w € Zj such that d(0,w) > d and
d(w,0,) > d. As w is a neighbor of 0, it must have at least d ones. Similarly, n —d < m
implies §,, contains at least n —d+ 1 ones. As there are only n coordinates and 9,, and w
contain at least m+d > n ones cumulatively, there must exist at least d+m—n coordinates
in which both §,, and w both have a one. Thus d(6,,,w) <n—(d+m—n)=2n—d—m.
Then d < d(0,,w) < 2n —d — m and a rearrangement gives the desired result that

m < 2(n —d).
O

Lemma 2.3.4. Suppose z,y € V(Hy(n,d)) such that dg(x,y) = 2p for some p € N.
Then d(z,y) < 2p(n — d).

Proof. Note that dg(z,y) = 2p implies d(z,y) < d. Let P = wvyv;...vq, be a path of
length 2p such that x = vy and y = v,,. Decompose P into p paths of length 2 of the form
ViU2i+1V2(i41) for ¢ = {0,1,...,p— 1}. Recall from Remark that Hamming distance
obeys the triangle inequality. Therefore

p—
an Uzp E U2z; Uy( 2—1—1

=0

Since dg(z,y) = 2p, P is a path of minimal length between z and y. In particular,
d(vai, Vagiy1)) < d for all i = {0,1,...,p — 1}. Otherwise, we could omit the vertex vs; 1
for some ¢ and achieve a shorter path between = and y. Then applying Lemma [2.3.3| we
have d(vai, vagiy1)) < 2(n —d) for all i = {0,1,...,p — 1} and thus

—_

.
d(vg, vap) < d(va;, Va(it1)) < 2p(n — d).

i

Il
o

We are now ready to present the proof of Theorem [2.3.2

Proof of Theorem |2.3.4.

Obviously d(z,y) > d <= dg(x,y) = 1. If ¢ > 3, there exist z; € Z, such that
v # 2z # y; forall i = 1,...,n. Thus xz, zy € E(H,(n,d)), and we have a path of
length 2.

Now assume d(x,y) < d and ¢ = 2. Our goal is to show that if dg(z,y) is even then

_ d(x,y) ) . o rd—d(z,y)
dg(z,y) = Q{MW, and if dg(x,y) is odd then dg(z,y) = 2[mw + 1. Let
j := d(x,y). Since the Hamming graphs are vertex-transitive, we may assume WLOG

that x = 0 and y = 9.



: d(z,y) d—d(z,y)
. < -
We first show that d;(0,d;) mln{Qb( )W,Z[ 2 ) —‘ + 1, by demon

d(w,y)ﬂ and Q[d— d(z,y)

strating there exist paths P, and P, of length 2 {Q(n —d 2(n —d)

-‘ + 1 respec-
tively between 0 and ¢;.

d(O, 5j> J

d(0,6;) < 2(n — d) and Lemma [2.3.3] gives d(0,0;) = 2 as claimed. Therefore suppose
m > 2. Consider the sequence of vertices 0, da(n—a), 02.2(n—d)s - - - » O(m—1)-2(n—a), ;- As (m
1)-2(n—d)+1<j <m-2(n—d), we see that each subsequent pair of vertices has
Hamming distance at most 2(n — d). Since m > 2 we have 2(n — d) < d(0,9;) < d so
we may apply Lemma to conclude that each pair of subsequent vertices ha(s g(lsra)ph

d(0,9,

2(n — d)w

We begin by constructing P;. Set m = [

distance exactly two. Thus we see there exists a path P; of length 2m = 2{

between 0 and §;.

Next we construct P, as follows. Note that d — d(0,9;) = d(dq,d;) < d. Set t =
d—d(0,6;
[ﬁw If t =1, then d(d4,9;) < 2(n — d) so by Lemma [2.3.3| there exists a path
n J—
of length exactly two between §4 and ;. Furthermore, 6, € N (0) so we immediately get
that dg(0,9;) < 2t +1 = 3. Therefore suppose t > 2. Then 2(n — d) < d(dq4,9;) < d.
Consider the sequence of vertices d;, 0j42(n—d)s 0j42-2(n—d)» - - - » Oj+(t—1)-2(n—d), 0d- Lach pair
of subsequent vertices has Hammlng dlstance at most 2(n — d) so by Lemma [2.3.3] there
exists a path of length two between them. Therefore there exists a path of length 2t =
d—d(0
{H-‘ between §; and d4. Since d; € N(0), we have established a path P, of
n p—
d—d(0,9;)
length 2| <
e 2(n —d)
It only remains remains to establish lower bounds on d¢(0, d,).
Case 1: First, suppose that dg(0,9;) = 2p for some p € N. Then Lemma

—‘ + 1 between 0 and J;.

gives that d(0,6;) < 2p(n — d), or equivalently % < p. Since p € N, we have
d(0, ;) d(o, 4;)

— J < — J7 <

[2(n—d)-‘ p and thus 2[ 2 —d)-‘ 2p = de(0, ;).

Case 2: Now suppose that dg(0,0;) = 2p+1 for some p € N. Let P = 0,vy,. .., 02,0,
be a path of length 2p + 1 from 0 to ¢;. Then dg(0,vq,) = 2p, so applying the result
d(O, ’ng)
2(n —d)
we have d(0,vq,) + d(0,0;) > d(vap,d;). Since vg, ~ 0;, d(vap,d;) > d. Thus we have
d(0,v9,) > d —d(0, ;) and therefore

from the previous case, we have dg(0,v9,) = 2[ -‘ By the triangle inequality,

de(0,6) = de(0,v3) +1 = 2(%1 = 2[%(_0;” h



We can now use Theorem to place bounds on the diameter of Hy(n, d) as follows.

Corollary 2.3.5.

, 1 ifd=1
diam(Hq(n, d)) = {2 ifqg>3 andd>1
" 4] 4]

ifq=2and d > 1.

Proof. The cases d =1 and ¢ > 3, d > 1 follow trivially from Theorem [2.3.2] Therefore
let ¢ =2 and d > 1. Let x,y € Z3. Then the lower bound follows immediately from

considering the case d(z,y) = ng in Theorem m

Since d > 1, Hs(n, d) contains pairs of vertices which are not adjacent. Thus
diam(Hz(n, d)) > 2, so we need not consider z and y in Zj such that d(z,y) > d. If [¢] <

d— d(z, d— 1[5 2
- ' d(z,y) 5]
< < |4 <2 < 2l—— :
Similarly, if 1 < d(z,y) < [5], then dg(z,y) < Q{Q(n—d)—‘ < Q[Q(n—d)w +1. As
dg(x,y) is an integer, this covers all possible cases. —~

The following example shows that both bounds on the diameter in Corollary are
met.

Example 2.3.6. Consider the graph Hs(6,5). Suppose z,y € V(H(6,5)) such that
d(xz,y) = 4. Then Theorem m gives that

dg(x,y) = min {2{2(64— 5)W’2[2(56_—45)—‘ + 1} = min{4,3} = 3.

5]
2(6 —5)
Next consider the graph Hy(3,2). It is straightfoward to check that diam(Hs(3,2)) =
2 (see Figure implying the lower bound of Corollary is also met.

Furthermore, 2{ —‘ = 2, so the upper bound of Corollary [2.3.5/is met.

2.4 Hamiltonicity of H,(n,d)

Definition 2.4.1. A Hamiltonian cycle is a simple cycle which visits each vertex in a
graph exactly once. Graphs which contain a Hamiltonian cycle are called Hamiltonian
graphs.

As noted in Proposition [2.2.4(d), H,(n, d) is vertex-transitive. The Lovdsz conjecture
states that all finite connected vertex-transitive graphs contain a Hamiltonian cycle, with

10



the exception of five known counterexamples. All Cayley graphs are vertex-transitive,
and notably all five counterexamples mentioned above are not Cayley graphs. This has
led to the following conjecture, which many references refer to as a folklore conjecture
due in part to there being no clear person with whom to credit its formulation.

Conjecture 2.4.2. All finite connected Cayley graphs on at least three vertices contain
a Hamiltonian cycle.

Although this conjecture is still wide open, several partial results exist. See for in-
stance [5] for more on this topic. In particular, we have the following which applies to the
Hamming graphs.

Theorem 2.4.3 ([21, Cor. 3.2]). Suppose G is a finite abelian group of order at least 3.
Then Cay(G,S) contains a Hamiltonian cycle for all generating sets S.

Corollary 2.4.4. H,(n,d) is Hamiltonian.

Proof. By Proposition m(e), Hy(n,d) is a Cayley graph on the abelian group Z;. The
result then follows immediately from Theorem [2.4.3 O]

In this section, we prove the following strengthened version of Corollary [2.4.4]

Theorem 2.4.5. H,(n,d) contains a cycle of length ¢' for all i € [n]. In particular,
H,(n,d) is Hamiltonian.

Our proof will be constructive and is similar in spirit to known proofs of Theorem [2.4.3]
although it was produced independently. It should be noted that Theorem [2.4.5| can be
achieved as a corollary of Theorem by noting that there exist subgraphs of H,(n, d)
of size ¢* which can be described as a Cayley graph on the abelian group Zfz. However,
analyzing the actual structure of these cycles reveals interesting fractal-like structures
within the Hamming graphs, making the constructive proof appealing. Moreover, it will
allow us to demonstrate an interesting connection between the Hamiltonicity of H,(n,d)
and the existence of Gray codes. We first establish a few preliminary results and remarks
which will be useful in simplifying the proof of Theorem [2.4.5]

Normally, paths and cycles are defined as a list of the vertices through which they
pass. That is, a path of length n is written in the form

P = VU1 ... Up_1Unp, (241)

where v; € V(G). However, in constructing a Hamiltonian cycle within H,(n,d), it will
prove easier to describe the cycle in terms of the labels of the edges we walk along.

Let 2,y € V(Hy(n,d)) such that xzy € E(H,(n,d)). As Hy(n,d) is a Cayley graph,
there are two natural labelings for the edge xy, namely x —y and y — z. To overcome this
ambiguity, we will imagine our paths and cycles as directed. Then if the path progresses
from vertex x to vertex y, the edge xy has only one natural label, namely y — x. To
simplify notation, we will assume that all paths and cycles described begin at 0. Since
H,(n,d) is vertex-transitive, this can be done without loss of generality.

11



In Hy(n,d), the set of possible edge labels is Sq = {v € Z} | wt(v) > d}. Moreover,
under this directional notion of edge labeling, each vertex is incident to exactly one edge
of each label in S; beginning at that vertex. Since Sy C V(Hy(n,d)) as sets, we will

always be careful to specify whether we are defining a path in terms of its vertices or edge
labels.

Furthermore, when defining a generic path of length n in terms of its vertices, we will
use the notation as in (2.4.1). When defining a generic path of length n in terms of edge
labels, we will use the notation

P=Uly... Iyl (2.4.2)

The following example shows that under the condition that all paths start at 0, it is
straightforward to convert back and forth between the notations of (2.4.1) and ([2.4.2]).

Example 2.4.6. (a) Let P, = vyv;...v,—1v, be a path of length n in H,(n,d) such
that vg = 0. The edge label representation of this path is P, = l1ls...l,,_1l,, where
l; = v; —v;_y for i € [n].

(b) Let P, =1lyly...1,-1l, be a path of length n in H,(n,d) beginning at 0. The vertex
representation of this path is P, = vgvy...v,_1v, where vy = 0 and v; is defined
iteratively as v; = [; + v;_1.

The iterative definition of v; in Example [2.4.6(b) has the following closed form.

Lemma 2.4.7. Suppose P is a path in H,(n,d) beginning at 0 with edge labeling rep-
resentation P =1y ...l,. Let vy...v, be the corresponding vertex representation of this

path. Then v; = Y ;.
=1

Proof. From Example [2.4.6(b), v; has a recursive definition as v; = I; + v;_1. Thus

vi=hitvia=lthatvia=...=) Lit+vw=> L+0=>Y 1.
=1 j=1 j=1
[
As noted in Proposition 2.2.4(e),
B={l1l+e,1+es,...1+e€, 1,1} ={b1,...,b,} (2.4.3)

forms a basis of the Z;-module Z7. Therefore given any two vertices, it is possible to find a
path between them composed entirely of edges with labels in B. In fact, our construction
of the Hamiltonian cycles will exclusively use edges whose labels are in B.

Restricting ourselves to vertices with edge labels in B has several advantages. From
Lemma we know that each vertex in a path can be described as the sum of the edge
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labels preceding it. As B is a basis, each vertex in V(H,(n,d)) = Z can be described in
terms of its basis representation. In other words, there exists a bijective map

¢ Ly — Ly, v (a1,0z,...,a0,)

n
vV = E CLZbZ
i=1

where

Similarly, define
Gi Ly —> Lq, v ay

as the restriction of ¢ to the i* coordinate. Thus for a path starting at 0 to end at v,
we must have passed through a; + miq edges with label by, as + mog edges with label
by, and so forth where m; € {0,1,2,...}. Showing that H,(n,d) is Hamiltonian amounts
to finding a cycle of length ¢" in H,(n,d) such that each vertex in the cycle is passed
through exactly once. In other words, it will suffice to show that the basis representation
(i.e. the sum of the edge labels proceeding the vertex) is unique for each vertex in the
cycle.

We now proceed to construct simple paths of increasing lengths using an iterative
definition based on the edge labels of the path. The motivating idea behind this con-
struction is to create a path with a fractal-like structure which will eventually cover the
whole graph. This structure may be more clear after examining the corresponding basis
representation of the vertices shown in Example [2.4.8|

Each of the following paths A; is given in terms of its edge label representation. Let
A1 :blbl...bl
—_—
q—1
A2 = <41b2A1b2 e Ale Al

q—1

=b1by...b1babiby .. by b b1l D b2 by Dy
—_———  — —_——  —

. q—1 q—1 q—1 B q—1
q—1
and
A = 141—151141'—1(% oAb A
qu
for 3<i<n.

We will show that each A; is a simple path of length ¢ — 1 and that A;b; is a simple
cycle of length ¢°. It will then follow immediately that A,b, is a Hamiltonian cycle. Before
proceeding with the proof, we first give an example of the process for small parameters.

Example 2.4.8. Consider the graph H3(3,3) and construct Az as above. Let vgv; . . . vgg
be the vertex representation of this path. Then we have
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¢(UO) = (07 0, 0) gb(vQ) = (O’ 2, 1) gb(UIS) = (07 L 2)
¢(v1) = (1,0,0) P(vi0) = (1,2,1) ¢(v1g) = (1,1,2)
o(ve) = (2,0,0) o(v11) = (2,2,1) o(ve0) = (2,1,2)
¢(U3) = (27 L, 0) ¢(U12> = (27 0, 1) ¢(U21) = (27 2, 2)
¢(U4) = (07 L, 0) §Z5(U13) = (07 0, 1) 925(@22) = (07 2, 2)
Qb(UB) = (17 L, 0) ¢(U14) - (L 0, 1) ¢(U23) = (17 2, 2)
¢(U6) = (17 2, 0) ¢(U15) = (L L, 1) ¢(U24) = (17 0, 2)
o(v7) = (2,2