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HOMOLOGICAL ALGEBRA WITH FILTERED MODULES
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study of projective and injective modules. This dissertation investigates analogous
notions of projectivity and injectivity in a category of filtered modules. This category
is similar to one studied by Sjödin, Nǎstǎsescu, and Van Oystaeyen. In particular,
projective and injective objects with respect to the restricted class of strict morphisms
are defined and characterized. Additionally, an analogue to the injective envelope is
discussed with examples showing how this differs from the usual notion of an injective
envelope.
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Chapter 1 Introduction

In 1956 Cartan and Eilenberg published the first book on the subject of homologi-

cal algebra [2]. Their book introduced the notion of a projective module and uses

projective and injective resolutions to develop derived functors. The importance of

projective and injective modules lead to much work being done to study these objects.

For example, Kaplansky showed in [10] that every projective module over a local ring

is free. There was also the famous Serre conjecture of whether or not finitely gener-

ated projective modules over a polynomial ring were free. This was eventually settled

in the affirmative by Quillen and Suslin.

On the injective side there was also much work being done. Reinhold Baer dis-

covered a test to determine whether a module is injective. This is now known simply

as “Baer’s Criterion.” Baer also characterized all injectives modules over a principal

ideal domain as the divisible modules and showed that every module is a submodule

of an injective module. Eckmann and Schopf introduced the notion of an injective

envelope and proved that every module has one. Trying to answer similar type ques-

tions about projective and injective objects in a category of filtered modules is a main

goal of this work.

The category of filtered modules considered is similar to one studied by Sjödin,

Nǎstǎsescu, and Van Oystaeyen. Sjödin studied the relationship between a filtered

module and its associated graded module in relation to weak dimension, injectivity

and projectivity in [17]. Nǎstǎsescu and Van Oystaeyen continued this study in [13].

While the relationship between a filtered module and its associated graded module

is not a main focus, a relationship between exact sequences of filtered modules and

exact sequences of their associated graded modules is used in discussing the analogue

to a strict injective envelope in Chapter 5.

Chapters 2-4 are background material. Chapter 2 consists of definitions and ex-

amples of different types of modules that will be encountered throughout the rest

of the work as well as definitions of important objects used in homological algebra .

Chapter 3 focuses on infinite direct sums and products. These objects are integral to

two of the main results in Chapter 5: the characterizations of strict projective and

strict injective modules. Chapter 3 also includes a famous result of Ernst Specker

from [18] and some discussion of reflexive and slender modules. These topics give a

feel for some of the objects in the category of filtered modules studied in Chapter 5

as well as showing the interplay between the algebraic and topological structure on
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filtered modules. The notion of completeness is of particular importance. Chapter

4 discusses some background material on Category Theory. This language is used

in subsequent chapters and guides the initial discussion of the category of filtered

modules in Chapter 5.

Chapter 5 contains the bulk of this dissertation. In this chapter a category of

filtered modules, denoted R-filt, equipped with descending filtrations such that the

topology induced on the module by the filtration is both Hausdorff and complete

is considered. The general category theory objects discussed in Chapter 4 are now

discussed in the context of this specific category of filtered modules. The main results

come when we get to the discussion of projective and injective objects in R-filt. The

typical categorical definitions of these objects lead to similar or uninteresting results

when compared to the usual category of modules. So a modified approach is taken.

Rather than looking at projectivity and injectivity with respect to all epimorphisms

and monomorphisms, we consider the projective and injective objects with respect to

the restricted class of strict morphisms. In doing so, very concrete characterizations

of these strict projective and strict injective modules are established.

Chapter 5 concludes with a discussion of an analogue to an injective envelope.

This strict injective envelope is analogous to a characterization of injective envelopes

given by Enochs in [7]. Two examples are given to show how the strict injective

envelope differs from the usual injective envelope.

The final chapter of this works discusses further generalizations for the work done

in Chapter 5. Here we consider indexing the filtration of a filtered module by powers

of the natural numbers. These multifiltrations allow for similar results to those in

Chapter 5 with an additional condition on the filtrations that must be considered.

Copyright c© Raymond Edward Kremer, 2014.
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Chapter 2 Background Material

In this chapter we introduce some ideas from module theory that will be necessary

in later chapters. The basic notion of a module is defined and is followed by a brief

discussion of several more specific types of modules that will appear later. These

include free, injective, and projective modules. This leads naturally to defining pro-

jective and injective resolutions. For this the language of commutative diagrams is

necessary. Finally, filtered modules are of particular importance to us so we spend

the remainder of this chapter on them. We will discuss certain types of filtrations,

infinite products of filtered modules, and one way to topologize filtered modules.

2.1 Modules

The following definitions can be found in almost any abstract algebra book that

includes a chapter on modules. See [4] for example.

The primary mathematical object of concern to us is the module. Unless otherwise

stated, we will assume that every ring R is commutative with identity.

Definition 2.1.1. An R-module is an additive abelian group M together with a map,

called scalar multiplication, R ×M → M denoted (r,m) 7→ rm for all r ∈ R and

m ∈M satisfying:

(i) (r + s)m = rm+ sm for all r, s ∈ R, m ∈M ,

(ii) (rs)m = r(sm) for all r, s ∈ R, m ∈M ,

(iii) r(m+ n) = rm+ rn for all r ∈ R, m,n ∈M , and

(iv) 1m = m for all m ∈M .

Definition 2.1.2. A subgroup N of an R-module M is an R-submodule, or simply

submodule, if R is clear from context, if rn ∈ N for all r ∈ R and n ∈ N .

Definition 2.1.3. Let R be a ring and M,N be R-modules. A map ϕ : M → N

is an R-module homomorphism if it respects the R-module structures of M and N ,

that is;

(i) ϕ(x+ y) = ϕ(x) + ϕ(y) for all x, y ∈M and

(ii) ϕ(rx) = rϕ(x) for all r ∈ R, x ∈M .
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Two important submodules related to a given R-module homomorphism are the

following.

Definition 2.1.4. Let ϕ : M → N be an R-module homomorphism. The kernel of

ϕ, denoted ker(ϕ), is the set of elements of M that map to zero. That is,

ker(ϕ) = {x ∈M |ϕ(x) = 0}.

Definition 2.1.5. Let ϕ : M → N be an R-module homomorphism. The image of

ϕ, denoted Im(ϕ), is the set of elements in N that can be mapped onto by an element

of M via ϕ. That is,

Im(ϕ) = {n ∈ N |n = ϕ(m) for some m ∈M}.

Certain types of R-module homomorphisms occur frequently and are integral in

defining more advanced terms in later chapters. These types of homomorphisms

include:

Definition 2.1.6. Let ϕ : M → N be an R-module homomorphism. The map ϕ is

injective if ϕ(x) = ϕ(y) implies x = y for all x, y ∈M .

A common characterization of an injective homomorphism is the following lemma

given without proof.

Lemma 2.1.7. An R-module homomorphism ϕ is an injection if and only if ker(ϕ) =

0.

Definition 2.1.8. Let ϕ : M → N be an R-module homomorphism. The map ϕ is

surjective if for any n ∈ N there exists an m ∈M such that ϕ(m) = n.

Definition 2.1.9. An R-module homomorphism ϕ : M → N is said to be bijective

if it is both injective and surjective.

Definition 2.1.10. An R-module homomorphism is an isomorphism if it is bijective.

Two modules M and N are said to be isomorphic, denoted M ∼= N , if there is some

R-module isomorphism ϕ : M → N .

In order to be able to define the last term in this section, we first need the idea of

a quotient module. Quotient modules are very similar to quotients of other algebraic

objects (groups, rings, fields, or vector spaces for example) and are defined similarly.

4



Definition 2.1.11. Let N be a submodule of the R-module M . Then the quotient

module M/N is the additive, abelian group M/N made into an R-module by defining

the scalar multiplication as

r(x+N) = (rx) +N for all r ∈ R, x+N ∈M/N.

Quotient modules are needed at this point to define the dual notion of the kernel

of a map ϕ.

Definition 2.1.12. Let ϕ : M → N be an R-module homomorphism. The cokernel

of ϕ, denoted Coker(ϕ), is the quotient module N/Im(ϕ).

2.2 Commutative Diagrams

Diagrams are a way to pictorially represent information about mathematical objects

and maps between them. They provide a condensed way to give a lot of information

about a situation. Below are the basic conventions that I will follow along with some

illustrative examples.

The simplest form of a diagram that we will see represents a single R-module

homomorphism between two R-modules. Let ϕ : M → N be an R-module homomor-

phism. As a diagram this will be represented as

M
ϕ−→ N.

Diagrams of this type may be of any length including possibly infinite sequences of

modules and maps.

Example 2.2.1. The diagram

. . .
ϕ−2−→M−1

ϕ−1−→M0
ϕ0−→M1

ϕ1−→ . . .

represents an infinite sequence of R-module homomorphisms ϕi : Mi →Mi+1.

Here are definitions of several types of such sequences.

Definition 2.2.2. Consider the diagram (where the length may be finite or infinite)

. . .
ϕ−2−→M−1

ϕ−1−→M0
ϕ0−→M1

ϕ1−→ . . .

(i) This sequence is said to be a complex if Im(ϕi) ⊂ ker(ϕi+1) for all i.

(ii) The sequence is said to be exact at Mi if Im(ϕi−1) = ker(ϕi).

5



(iii) The sequence is said to be an exact sequence if Im(ϕi) = ker(ϕi+1) for all i.

The following proposition will be needed later.

Proposition 2.2.3. Consider the short exact sequence

0→ A
f−→ B

g−→ C → 0

of R-modules and R-homomorphisms. The following are equivalent:

1. There exists a homomorphism α : B → A such that αf = idA

2. There exists a homomorphism β : C → B such that gβ = idC

3. Im(f) is a direct summand of B.

Definition 2.2.4. An exact sequence which satifies any of the equivalent conditions

of Proposition 2.2.3 is called a split exact sequence and one simply says the exact

sequence splits.

If the exact sequence from 2.2.3 splits then B = f(A)⊕ β(C) = f(A)⊕ ker(g) ∼=
A⊕ C. That is, the module in the middle of the short exact sequence is isomorphic

to the direct sum of the other two modules in the exact sequence. This means one

can essentially split B into a direct sum of A and C, thus explaining the terminology.

Split exact sequences are particularly important when dealing with projective and

injective modules due to the relationships between them and direct sums. This will

be discussed in the next couple of sections.

Diagrams need not only be sequences of modules and homomorphisms, but they

may take any shape or size. In general, a diagram consists of objects (usually labeled

with uppercase letters) and maps between those objects (usually labeled with low-

ercase or Greek letters). This generality allows one to talk about diagrams in any

category, a fact that will be necessary for the main results of this work. For now, all

diagrams will use R-modules and R-modules homomorphisms for a fixed ring R.

Some diagrams give more information than simply showing objects and maps.

One such type of diagram is a commutative diagram.

Definition 2.2.5. A commutative diagram is a diagram such that any two sequences

of maps between the same two objects are equal.

Here are two examples that illustrate the above definition.

6



Example 2.2.6. The diagram

A
f1 //

f2
��

B

g1
��

C g2
// D

is commutative if and only if g1f1 = g2f2.

Example 2.2.7. The diagram

A
f1 //

f2
��

B

g��
C

is commutative if and only if f2 = gf1.

It is often the case that in the middle of an argument one needs to construct a

portion of a commutative diagram. In this case I will use dashed arrows to indicate

where such a map is desired, but that it is not yet clear what that map is.

Example 2.2.8. To say, “the diagram

A

f
��

h

��
B g

// C

can be completed to a commutative diagram” means that there exists a map h such

that g ◦ h = f .

2.3 Free, Projective, and Injective Modules

Free modules are modules that have a basis and behave most like vector spaces.

Projective modules are defined through a particular commutative diagram and are a

generalization of free modules in the sense that every free module satisfies the defining

property of projective modules, but the converse is not true. Injective modules are

defined dually to projective modules. Projective and injective modules are necessary

to the development of homological algebra.

Definition 2.3.1. An R-module F is said to be free on the subset A of F if for every

nonzero element x of F , there exist unique nonzero elements r1, r2, . . . , rn of R and

unique a1, a2, . . . , an in A such that x = r1a1 + r2a2 + . . . + rnan, for some positive

integer n. The set A is called a basis of free generators for F .

7



Proposition 2.3.2 (Universal Property of Free Modules). For any set A there is a

free R-module F (A) on the set A and F (A) satisfies the following universal property:

if M is any R-module and ϕ : A → M is any map of sets, then there is a unique

R-module homomorphism Φ : F (A)→M such that Φ(a) = ϕ(a), for all a ∈ A.

Definition 2.3.3. A module P is said to be a projective module if given a diagram

P

g
��

h

~~
M

f // N // 0

of R-modules and R-module homomorphisms with exact row, there exists an R-

module homomorphism h such that the diagram commutes, that is, g = fh.

Proposition 2.3.4. Every free module is projective.

Proposition 2.3.5. An R-module M is a projective module if and only if M is a

direct summand of a free module.

Proposition 2.3.6. For every R-module M there exists a surjection ϕ : P → M

such that P is projective. This is commonly referred to by saying there are enough

projective modules.

Definition 2.3.7. A module E is said to be an injective module if given a diagram

0 //M

g
��

f // N

h~~
E

of R-modules and R-homomorphisms with exact row, there exists an R-module ho-

momorphism h such that the diagram commutes, that is, g = hf

Proposition 2.3.8. For every R-module M there exists an injection ϕ : M → E

such that E is injective. This is commonly referred to by saying there are enough

injective modules.

2.4 Projective and Injective Resolutions

Projective and injective resolutions are complexes in which most of the modules in the

complex are projective (resp. injective). These resolutions are used in homological

algebra to define derived functors. Construction of projective and injective resolutions

relies on the fact that there are enough projective modules and enough injective

modules.

8



Definition 2.4.1. Let M be an R-module. An exact sequence of the form

. . .→ Pn+1
dn+1−→ Pn

dn−→ Pn−1 → . . .
d1−→ P0

ε−→M → 0

in which every Pn is projective is called a projective resolution of M .

Theorem 2.4.2. Every R-module M has a projective resolution.

Dually,

Definition 2.4.3. Let M be an R-module. An exact sequence of the form

0→M
η−→ E0 d0−→ E1 d1−→ . . .

dn−1

−→ En dn−→ En+1 → . . .

in which every En is injective is called an injective resolution of M .

Theorem 2.4.4. Every R-module M has an injective resolution.

2.5 Injective Envelopes

Knowing that every module can be embedded in an injective module leads to the

natural question of if this can be done in a minimal way. The injective envelope of

a module M is simultaneously the smallest injective module larger than M and the

largest essential extension over M .

Definition 2.5.1. A module I is the injective envelope of the module M if I satisfies

one of the three equivalent conditions in the next theorem.

Theorem 2.5.2. For modules M ⊂ I, the following are equivalent:

1. I is maximal essential over M .

2. I is injective, and is essential over M .

3. I is minimal injective over M .

Here are a couple of examples:

Example 2.5.3. The injective envelope of Z/(p) is Z(p∞).

Proof. The group

Z(p∞) =

{
a

pn
+ Z

∣∣∣∣n ≥ 0, a ∈ Z

}
⊂ Q/Z.

9



I will show that Z(p∞) is injective and essential over Z/(p). Recall that an abelian

group A is divisible if and only if A is an injective Z-module. First note that Z(p∞)

is p-divisible for if a
pn

+ Z ∈ Z(p∞) then pk( a
pn+k

+ Z) = a
pn

+ Z for all k ≥ 1. Let
a
pn

+ Z ∈ Z(p∞) and 0 6= r ∈ Z. If p - r then pn - r and hence there exist integers s

and t such that spn + tr = 1. So spna+ tra = a. Thus,

a

pn
+ Z =

spna+ tra

pn
+ Z

=
tra

pn
+ Z

= r

(
ta

pn
+ Z

)
.

If p|r, then let r′ = r
pk

where k is the largest positive integer such that pk|r.
Similar to the above one can show that

a

pn
+ Z = r′

(
t′a

pn
+ Z

)
and thus

a

pn
+ Z = r

(
t′a

pn+k
+ Z

)
showing that Z(p∞) is divisible.

All that remains is to show that Z(p∞) is essential over Z/(p). First note that

we identify Z/(p) with the subgroup of Z(p∞) generated by 1
p

+ Z because they are

isomorphic. Let a
pn

+ Z be a non-zero element of Z(p∞). Then pn−1
(
a
pn

+ Z
)

is an

element in subgroup generated by 1
p

+ Z and hence Z(p∞) is essential over Z/(p).

Example 2.5.4. The injective envelope of Ẑp is Q̂p, the field of p-adic numbers.

Proof. This is a special case of the fact that if R is a commutative domain with

quotient field K then K is the injective envelope of R. The quotient field K is

essential over R because if 0 6= a
b
∈ K, then b(a

b
) = a 6= 0 ∈ R. Also, K is easily seen

to be divisible and torsion-free and thus K is an injective R-module.

2.6 Filtered Modules

Work done later in this dissertation takes some of the standard objects from homolog-

ical algebra discussed previously in this chapter and looks at them in terms of filtered

modules. This section defines filtered modules and some of the language necessary

to use them later.

There are different types of filtrations of algebraic structures. I will solely be using

descending filtrations on modules indexed by the natural numbers.
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Definition 2.6.1. Let M be an R-module. Then a descending filtration on M is

a family of submodules {Mi}i∈I of M for some well-ordered index set I such that

Mα ⊂Mβ for all α, β ∈ I where α > β.

Definition 2.6.2. A descending filtration is called exhaustive if ∪i∈IMi = M .

Definition 2.6.3. A descending filtration is is called separated if ∩i∈IMi = 0.

A filtered module has a natural topology on it. There is a whole field of study

called topological algebra (see [1] for more information) which begins by taking alge-

braic structures and putting a topology on them which respects the algebraic struc-

ture.

Definition 2.6.4. In a topological space X, a fundamental system of neighborhoods

of a point x (or a countable basis at x) is any set S of neighborhoods of x such that

for each neighborhood V of x there is a neighborhood W ∈ S such that W ⊂ V . A

space X that has a countable basis at each of its points is said to satisfy the first

countability axiom (or the space X is simply called first countable).

Given a module M with filtration {Mi}i∈I for some index set I, consider the

topology on M defined by taking a basis of the topology to be all translates of the

submodules in the filtration. That is,

B = {x+Mi|x ∈M, i ∈ I}

is a basis for the topology.

With this topology, it is clear that the set {Mi} is a fundamental system of

neighborhoods of zero for the filtered module M . Sometimes the phrase “topology

defined by taking {Mi} as a fundamental system of neighborhoods of zero” is used

to mean the same topology as above.

Definition 2.6.5. If the filtration {Mi} is indexed by a countable set, then the

topology defined by taking {Mi} as a fundamental system of neighborhoods of zero

is called a linear toplogy.

The term separated in Definition 2.6.3 is not chosen arbitrarily. It corresponds to

a topological property of the same name.

Definition 2.6.6. A topological space X is said to be separated (or Hausdorff) pro-

vided that if x 6= y are two distinct points in X then there exist two open sets Ux

and Uy such that Ux ∩ Uy = ∅.

11



Lemma 2.6.7. Let M be an R-module with filtration {Mi}. Then ∩i∈IMi = 0 if and

only if M is a Hausdorff topological space when given the topology associated with

{Mi}.

Proof. If M is not Hausdorff, then there exist x, y ∈ M with x 6= y such that if any

open sets Ux, Uy containing x, y respectively then Ux ∩ Uy 6= ∅. In particular, this is

true for Ux = x+Mi and Uy = y +Mi. Therefore, x− y ∈Mi for all i ∈ I and thus

∩i∈IMi 6= 0. Conversely, if x ∈ ∩i∈IMi is non-zero, then the points 0 and x can not

be separated by open sets.

The basic ideas of any topological space can be transferred over to filtered modules

once one puts a topology on the module. The notion of completeness is of particular

importance to the work in these pages. Completions will be defined analogously to

the standard topological definition, but one first needs to define what it means for a

sequence to converge and what a Cauchy sequence is in a topological module.

Definition 2.6.8. Let M be an R-module with a topology defined by taking the

separated descending filtration {Mi}i∈I for some index set I as a fundamental system

of neighborhoods of zero. A sequence {mj}∞j=1 of module elements is said to converge

to m if for any open set U containing m there exists a positive integer N such that

if j > N then mj ∈ U .

Definition 2.6.9. Let M be an R-module with a topology defined by taking the

separated descending filtration {Mi}i∈I for some index set I as a fundamental system

of neighborhoods of zero. A sequence {mj}∞j=1 of module elements is said to be

Cauchy if for any open set U containing 0 there exists a positive integer N such that

if j, j′ > N then mj −mj′ ∈ U .

Note that it is enough to use the set {Mi} instead of arbitrary open sets U in the

above definitions because every open set U completely contains Mi for some i ∈ I.

Definition 2.6.10. An R-module M is complete if there is a Hausdorff topology

defined by a filtration on M such that every Cauchy sequence of elements of M

converges to an element of M .

Remark 2.6.11. Some authors use complete to mean complete in a non-discrete

topology. I will not exclude the discrete case, but rather explicitly state complete in

a non-discrete topology when necessary.

In topology there is the following well known lemma and theorem.
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Lemma 2.6.12 (The sequence lemma). Let X be a topological space and let A ⊂ X.

If there is a sequence of points of A converging to x, then x ∈ Ā. The converse holds

if X is metrizable.

Theorem 2.6.13. Let f : X → Y . If the function f is continuous, then for every

convergent sequence {xn} → x in X, the sequence f(xn) converges to f(x). The

converse holds if X is metrizable.

In fact, the assumption of metrizability for the converses can be weakened to

requiring that the the space be first countable instead.

Remark 2.6.14. A filtered module M with filtration {Mi} indexed by a countable

set is first countable as a topological space when given the topology defined by taking

{Mi} as a fundamental system of neighborhoods of zero.

Lemma 2.6.15 (Alternative sequence lemma). Let X be a topological space and let

A ⊂ X. If there is a sequence of points of A converging to x, then x ∈ Ā. The

converse holds if X is first countable.

Proof. Suppose that {xn} converges to x, where xn ∈ A for all n. Then every

neighborhood U of x contains a point of A, so x ∈ Ā. Conversely, suppose that X is

first countable, x ∈ Ā, and {Un} is a countable basis at the point x. For each n I can

choose an element xn ∈ U1 ∩ . . . ∩ Un. Then any open set containing x contains one

of the Un, and therefore contains all of the xjs for j > n by construction. Thus, the

sequence {xn} converges to x.

Theorem 2.6.16. Let f : X → Y . If the function f is continuous, then for every

convergent sequence {xn} → x in X, the sequence f(xn) converges to f(x). The

converse holds if X is first countable.

Proof. Suppose f is continuous and that {xn} is a sequence converging to x. Let V

be an open set containing f(x). Then f−1(V ) is an open set containing x and thus,

there exists a natural number N such that xn ∈ f−1(V ) for all n > N . This implies

that f(xn) ∈ V for all n > N . Hence, {f(xn)} converges to f(x).

Conversely, I will show that f is continuous by showing that f(Ā) ⊂ f(A) for all

A ⊂ X. If a ∈ Ā, then there is a sequence {an} in A that converges to a by Lemma

2.6.15. Then the sequence {f(an)} converges to f(a) by assumption. Therefore,

f(a) ∈ f(A) again using Lemma 2.6.15.

Copyright c© Raymond Edward Kremer, 2014.
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Chapter 3 Infinite Direct Products and Sums

Throughout this work infinite direct products and sums of modules play an integral

role. This chapter begins with defining these objects and giving examples of both.

Describing homomorphisms into and out of these objects is also discussed. This in-

cludes Specker’s famous result (Proposition 3.3.3). Finally, the last two sections of

the chapter discuss reflexive and slender modules. These types of modules provide

further examples of infinite direct sums and products as well as provide a context for

combining infinite direct sums and products with filtrations, topology, and complete-

ness. All of these are notions that are basic to the remaining parts of this work.

3.1 Definitions and Examples

Let R be a commutative ring with 1. We begin with the finite case.

Definition 3.1.1. Let N1, N2, . . . , Nk be R-modules. The direct product of the mod-

ules N1, N2, . . . , Nk, denoted N1 × N2 × . . . × Nk, is the module with elements as

ordered k-tuples (n1, n2, . . . , nk) with ni ∈ Ni, addition defined componentwise, and

scalar multiplication given by r(n1, n2, . . . , nk) = (rn1, rn2, . . . , rnk).

Definition 3.1.2. If an R-module M is the direct product of the modules N1, N2,

. . ., Nk then the restricted direct product of N1, N2, . . ., Nk (or (external) direct sum)

is the submodule of M consisting of the elements which are non-zero in only finitely

many components.

In this finite case it is easy to see that the direct sum and direct product of modules

are the same. However, extending these definition to the case of an arbitrary indexing

set, rather than only using a finite number of modules, leads to some differences

between the two objects.

Definition 3.1.3. Let {Mi}i∈I be a family of R-modules for some indexing set I.

Then the direct product of the family, denoted
∏

i∈IMi, is the module whose elements

are families (mi)i∈I such that mi ∈Mi for every i ∈ I with addition done componen-

twise and scalar multiplication by elements in R is given by r(mi)i∈I = (rmi)i∈I .

Definition 3.1.4. Let {Mi}i∈I be a family of R-modules for some indexing set I.

Then the direct sum of the family, denoted ⊕i∈IMi, is the submodule of the direct

14



product,
∏

i∈IMi, consisting of families which have only finitely many non-zero ele-

ments.

Example 3.1.5. Let R be a ring, considered as an R-module over itself. Then the

product
∏

i∈NR consists of all the countable sequences (ri)i∈N where ri ∈ R for all i.

This module will be denoted Rω. The direct sum, ⊕i∈NR, consists of all the countable

sequences (ri)i∈N such that ri 6= 0 for only finitely many i. This direct sum will be

denoted R(ω). In both cases, ω is chosen because it is the symbol typically used to

represent the first infinite cardinal number, that is, the cardinality of N.

The module R(ω) is one special submodule of Rω that will show up often. The next

example describes another set of submodules of Rω that will be important throughout

the remainder of this work.

Example 3.1.6. Consider the R-module Rω and define

Wn := 0× 0× . . .× 0×R×R× . . .

to be the submodules of the given form with n zeros where n is finite.The family

{Wn}n ∈ N are a descending filtration of Rω turning Rω into a filtered module and

thus they form a fundamental system of neighborhoods for a topology on Rω. In fact,

the topology in this case is the standard product topology for a product of topological

spaces (here each copy of R has the discrete topology). This will be the topology

that Rω is assumed to have unless otherwise stated. More generally, if
∏

i∈IM
i is

the direct product of any family {M i} of R-modules, then we will assume this direct

product has the topology defined by a fundamental system of neighborhoods of zero

given by Mn :=
∏

i≥nM
n; that is, the product topology.

Lemma 3.1.7. Rω with the topology induced by {Wn}n ∈ N is Hausdorff and com-

plete.

Proof. Clearly ∩n∈NWn = 0 so that the topology is Hausdorff. To show completeness

it is enough to consider series of the form
∑∞

i=0 rni where {ni} is a strictly increasing

sequence of natural numbers and rni ∈ Wni for all ni. Each rni is zero in the first

ni components so this series converges to the element r with the jth component of r

given by the finite sum (r)j =
∑

(rni)j.

Now that we have defined Rω and R(ω), we can talk about R-module homomor-

phisms using Rω or R(ω) as the domain or codomain.
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Example 3.1.8. There are maps πi : Rω → R given by πi(x0, x1, . . .) = xi. Such a

map is called a canonical projection, or more specifically, the projection onto the ith

component.

Example 3.1.9. There are maps ιi : R → Rω given by ιi(r) = (0, . . . , 0, r, 0, . . .)

where the r is in the ith position. Such a map is called a canonical injection, or more

specifically, the injection into the ith component.

Example 3.1.10. Let ϕ : R(ω) → R be an R-module homomorphism. Let ei ∈ R(ω)

be the elements ei = (0, . . . , 0, 1, 0, . . .) where the 1 is in the ith position and there are

zeros elsewhere. The family {ei} forms a base for the free module R(ω) and therefore

the map ϕ is completely determined by ϕ(ei) for all i. Suppose ϕ(ei) = ri for all i.

Then the map ϕ is defined by (x0, x1, x2, . . .) =
∑∞

i=0 xiei 7→
∑∞

i=0 xiri which makes

sense because only finitely many xi are non-zero. That is,
∑∞

i=0 xiri =
∑N

i=0 xiri for

some positive integer N .

The previous example shows that every map ϕ : R(ω) → R is given by an inner

product. The final step relies on the fact that only finitely many xi are non-zero

because (x0, x1, . . .) is an element from R(ω). Clearly this need not still be the case

when we transition to Rω. There are certain cases when a map ϕ : Rω → R will look

like a finite inner product, if R is slender for example, but this is not always true.

The next two examples show that either case is possible.

Example 3.1.11. Consider the map f : Zω → Z defined by (x0, x1, . . .) 7→
∑∞

i=0 aixi

where (a0, a1, . . .) is any element in Z(ω). These maps are clearly given by inner

products because only finitely many ai are non-zero.

Example 3.1.12. Let R = F [[x]] be the ring of formal power series with coefficient

in a field F . In this setting there is the notion of order with ord(s(x)) = n if

s(x) = α0 + α1x+ . . .+ αnx
n + . . .

where α0 = . . . = αn−1 = 0 and αn 6= 0. Also, ord(0) = +∞.

Now if T0, T1, T2, . . . is a sequence in F [[x]] such that

lim
n→∞

ord(Tn) = +∞

then the infinite sum

T0 + T1 + T2 + . . .
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makes sense and, in fact, if S0, S1, S2, . . . is any sequence in F [[x]] you can make

sense out of

S0T0 + S1T1 + S2T2 + . . .

since ord(SnTn) = ord(Sn) + ord(Tn) ≥ ord(Tn).

So with R = F [[x]] and a sequence {Tn} as above we have the R-linear map,

f : R×R× . . .→ R defined by

(S0, S1, S2, . . .) 7→ S0T0 + S1T1 + S2T2 + . . . =
∞∑
i=0

SiTi

which is clearly well-defined even when Tn 6= 0 for all n. Taking Tn = xn is such an

example. Note the resemblance to an inner product.

The two final examples in this section come from Dimitric’s Paper [3]. They are

both endomorphisms of Rω and they emphasize the fact that a sum in Rω converges

as long as each component of the sum has only finitely many non-zero terms being

added together.

Example 3.1.13. Let M be an R-module, f : Rω → M , (yn) a sequence with

yn ∈ Wn, and z ∈ M a non-zero element such that f(yn) = z, for every n. Then the

correspondence g : Rω → Rω defined by

g((xn)n∈N) =

(
n∑
i=1

xi(yi+1 − yi)n

)
n∈N

defines an endomorphism of Rω.

Example 3.1.14. For an arbitrary a = (a0, a1, . . . , an, . . .) ∈ Rω one can define an

endomorphism of Rω by

g((xn)n∈N) =

(
n∑
i=1

xian

)
n∈N

Definition 3.1.15. Let f : Rω → M be any homomorphism where Rω has the

product topology (see Example 3.1.6). The topology on M defined by taking f(Wn)

to be a fundamental system of neighborhoods of zero is called the topology induced

by f and will be denoted Tf .
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Lemma 3.1.16. If f : Rω →M is such that Tf is Hausdorff, then M is complete in

Tf .

Proof. Let {mi}∞i=0 be a Cauchy sequence in Tf . The convergence of this sequence

in equivalent to the convergence of the sequence of partial sums for the series m0 +∑∞
i=0mi+1 −mi. In fact, every such series may be thought of as a series of the form∑∞
i=0mni where mni ∈ f(Wni) for all i and {ni} is a strictly increasing sequence of

natural numbers by grouping terms together.

If mni ∈ f(Wni) then there exists a yni ∈ Wni such that f(yni) = mni . But then

the series
∑∞

i=0 yni converges, say to the element y in Rω because each yni is zero in

the first ni components. Thus, the series
∑∞

i=0mni converges to f(y) because f is

linear and
∑
mni =

∑
f(yni) = f(

∑
yni) = f(y).

3.2 Reflexive Modules

Reflexive modules are modules that are self-bidual. This notion is made precise in

Definition 3.2.2 and in what follows. The idea is that there is a natural way to

relate elements in a module to homomorphisms from the dual of that module into

the underlying ring.

Again we assume that every ring R is commutative with 1.

Definition 3.2.1. Let R be a ring and let N be a fixed R-module. Then for any

R-module M we consider HomR(M,N), the group of all R-module homomorphisms

from M to N , as an R-module to be the dual of M with respect to N . The dual of

M with respect to R will be denoted M∗.

Definition 3.2.2. An R-module M is reflexive with respect to N if M is naturally

isomorphic to HomR(HomR(M,N), N), the bidual (or double dual) of the module M

with respect to N .

These two modules being naturally isomorphic means that there is a particular

map which is an isomorphism between the two modules. The map takes an element

x of M to the map given by evaluation at x. More formally, let x be an element in

M . The map f : M → M∗∗ is given by f(x) = fx where fx : M∗ → R is given

by fx(ϕ) = ϕ(x). The next two examples show that this natural map need not be

injective nor surjective. That is, the next two examples are examples of modules that

are not reflexive.
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Example 3.2.3. Let R = Z be the ring of integers and M be the R-module Z/(n)

for some n > 1. Then M∗ = 0 and thus M∗∗ = 0. Hence, the map M → M∗∗ is not

injective because M 6= 0.

The next example requires the use of a different natural homomorphism. This

natural homomorphism goes from the direct sum of dual modules to the dual of the

direct product of modules. That is, let (Mi)i∈I be a family of left R-modules and N

be another R-module. Then there is a natural homomorphism

g :
⊕
i∈I

Hom(Mi, N)→ Hom

(∏
i∈I

Mi, N

)

such that g((fi)i∈I) = f where f :
∏
Mi → N satisfies f((mi)i∈I) =

∑
i∈I fi(mi).

Lemma 3.2.4. The natural homomorphism g is injective.

Proof. Suppose (fi)i∈I ∈ ker(g). Then f = g((fi)i∈I) = 0 and thus f((mi)i∈I) = 0

for all (mi)i∈I ∈
∏
Mi. Also, fi = 0 for all but finitely many i because (fi)i∈I is an

element in a direct sum. For those finitely many i, notice that fi(mi) = f(miei) = 0

for all mi ∈Mi. That is, fi = 0 for all i, including the indicies that were excluded in

the previous case.

Example 3.2.5. Consider the situation in Example 3.1.12. There we had R = F [[x]]

and the R-linear map, f : Rω → R defined by

(S0, S1, S2, . . .) 7→ S0T0 + S1T1 + S2T2 + . . . =
∞∑
i=0

SiTi.

Now this map, f , is in the codomain of the natural map g when considering the

situation with the R-module M = R(ω) so each Mi = R, N = R, and the sequence

{Tn} of elements of R where Tn = xn for all n. However, this map is not in the image

of g because fi 6= 0 for all i.

Finally, note that M∗ ∼= Rω and Hom(R,R) ∼= R. Therefore the natural map

M → M∗∗ is g composed with isomorphisms on both sides. So this example shows

that the natural map M →M∗∗ need not be a surjection because g is not.

Now that we have examples of modules that are not reflexive, let’s look at some

examples of modules that are.
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Proposition 3.2.6. A free module of finite rank is reflexive.

Proof. Let M be a free R-module of finite rank with base {e1, . . . , en}. Then we have

the dual base {e∗1, . . . , e∗n} of M∗ where each e∗i is the function

e∗i (ej) =

{
1 if i = j

0 if i 6= j

We need to show that the natural map f : M →M∗∗ is both injective and surjective.

Suppose m = a1e1 + . . . + anen is in the kernel of f . Then ϕ(m) = 0 for all

ϕ : M → R. In particular, this is true for the projection maps πi : M → R defined

by πi(m) = ai. Therefore, if f(m) = 0, then m = 0.

Let g ∈ M∗∗ be any element of the double dual of M . I want g to be given by

evaluation at an element of m. That is, I want to find an m such that g(ϕ) = ϕ(m)

for all ϕ ∈ M∗. Each ϕ can be written as an R-linear combination of the dual base

{e∗i }, so one can write ϕ = a1e
∗
i + . . . + ane

∗
n. Let ri = g(e∗i ) for i = 1, . . . , n. Then

g(ϕ) =
∑n

i=1 airi = ϕ(
∑n

i=1 rie1). Thus,
∑n

i=1 rie1 is the desired m.

Corollary 3.2.7. As special cases of Proposition 3.2.6 we have the following:

(a) Every ring R is reflexive as an R-module.

(b) Every finite-dimensional vector space is reflexive.

In [6] Enochs proved the following proposition which gives more examples of re-

flexive modules.

Proposition 3.2.8. Let A be a discrete valuation ring with unique prime π and let

E be a free A-module with a countable base. Then E is reflexive if and only if A is

not complete.

3.3 Slender Modules

Slender modules provide a context for combining infinite direct products and infinite

direct sums with filtrations. In this section, Specker’s famous result showing that Z

is slender is proved followed by several other results and characterizations of slender

modules. The goal of this section is to get a feel for some of the interplay between

algebra and topology as well as study infinite direct sums and products which will

appear again later.
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Definition 3.3.1. An R-module M is slender if every R-homomorphism f : Rω →M

is such that f(Wn) = 0 for some n ≥ 0. Equivalently, M is slender if there exists a

natural number n0 such that f(en) = 0 for all n ≥ n0.

Example 3.3.2. Let E 6= 0 be an injective R-module. Consider f : R(ω) → E

defined by f(ei) = e for all i where e is a fixed non-zero element of E. Then f can

be extended to a map F : Rω → E which is non-zero on every en. That is, injective

modules are not slender.

In his article [18], Ernst Specker proved that the additive group of integers, here

denoted Z, is slender. The next proposition provides a version of this argument. In

fact, this argument shows that every homomorphism from Zω into Z is given by a

finite inner product.

Proposition 3.3.3. The additive group of integers, Z, is slender. Furthermore, every

h : Zω → Z is of the form h(A) =
∑n

i=0 aixi for some X = (x0, x1, . . .) and some

positive integer n where A = (a0, a1, . . .) is any element of Zω.

Proof. Let ek = (0, . . . , 0, 1, 0, . . .) where the 1 is in the kth position be the standard

base for Zω. Let h : Zω → Z be a homomorphism and define xk := h(ek). We will

show that there exists n ≥ 0 such that xk = 0 for all k > n and then that h is of the

desired form.

Choose an element C = (c0, c1, . . .) in Zω satisfying the following three conditions:

(i) 0 < c0 < c1 < c2 < . . .,

(ii) ck|ck+1 for all k ≥ 0, and

(iii) |ck|+ |c0x0|+ |c1x1|+ . . .+ |ckxk| < ck+1 for all k ≥ 0.

Let w = h(C). Then for some n we have |w| < cn. Note that

|h(C)− h(c0, . . . , cn, 0, . . .)| =

∣∣∣∣∣w −
n∑
k=0

ckxk

∣∣∣∣∣
< cn +

n∑
k=0

|ckxk|

< cn+1
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and also that

h(C)− h(c0, . . . , cn, 0, . . .) = h(0, . . . , 0, cn+1, cn+2, . . .)

= cn+1h

(
0, . . . , 0, 1,

cn+2

cn+1

,
cn+3

cn+1

, . . .

)
.

So if h(0, . . . , 0, 1, cn+2

cn+1
, . . .) 6= 0 then |h(0, . . . , 0, cn+1, cn+2, . . .)| ≥ cn+1. If |w| <

cn then the above implies that h(0, . . . , 0, cn+1, cn+2, . . .) = 0. But cn < cn+1 and thus,

h(0, . . . , 0, cn+2, cn+3, . . .) = 0 as well. Subtracting these two lines gives h(cn+1en+1) =

0 which implies that h(en+1) = xn+1 = 0. In the same way, one can show that

h(ek) = 0 for all k > n. That is, any n such that |w| < cn may be taken to be the

desired n.

It remains to show that every h : Zω → Z is of the form h(A) =
∑n

i=0 aixi for

some X = (x0, x1, . . .) and some positive integer n where A = (a0, a1, . . .) is any

element of Zω. First note that Zω is a ring with coordinate multiplication. I will use

the notation A ·B to mean (a0b0, a1b1, . . .) when A = (a0, a1, . . .) and B = (b0, b1, . . .)

are any two elements of Zω.

Let h′ : Zω → Z be the homomorphism defined by

A = (a0, a1, . . .) 7→ h(A)−
n∑
k=0

akxk

where xk = h(ek) for all k and n is chosen such that xk = 0 for all k > n. It now

suffices to show that h′ = 0. Certainly h′(ek) = 0 for all k. Let B = (b0, b1, . . .) be

such that

(i) 0 < b0 < b1 < . . . and

(ii) bk|bk+1 for all k ≥ 0.

But since h′(e0) = 0 we get that h′(b0, 0, 0, . . .) = 0. Therefore, h′(b0, b1, b2, . . .) =

h′(0, b1, b2, . . .) and continuing in this fashion we see that

h′(b0, b1, . . .) = h′(0, . . . , 0, bm, bm+1, . . .)

= bm

(
0, . . . , 0, 1,

bm+1

bm
,
bm+2

bm
, . . .

)

for each m ≥ 0. So bm|h′(B) for every m, but by our choice of bm we get that

h′(B) = 0. Then for any S = (s0, s1, . . .) in Zω a similar argument shows that

h′(S ·B) = 0.

22



Finally, let B be as above and let C be another element of Zω satisfying analogous

conditions. Additionally, let B and C be such that gcd(bm, cm) = 1 for all m. Then

given any A in Zω one can find S, T ∈ Zω so that A = S · B + T · C. But then

h′(A) = h′(S ·B) + h′(T · C) = 0 and hence h(A) =
∑n

k=0 akxk as desired.

Slenderness is integrally tied to topological algebra. The next few lemmas show

some relationships between slenderness and topology. In what follows I will consider

R as a module over itself and R will have the discrete topology unless otherwise

stated.

Lemma 3.3.4. An R-module M is slender if and only if every ϕ : Rω → M is

continuous for the product topology on Rω and the discrete topology on M .

Proof. Suppose M is slender, let r = (r0, r1, . . .) be an element in Rω, let m = ϕ(r),

and let N be such that ϕ(en) = 0 for all n > N . Then

U = {r0} × {r1} × . . .× {rN} ×R×R× . . .

is an open set in Rω containing r such that ϕ(U) = {m}. Thus, ϕ is continuous.

Conversely, if every ϕ : Rω → M is continuous, then in particular the zero map

is continuous. Therefore, there exists an open set U in Rω containing 0 such that

ϕ(U) = {0}. Any such open set U contains a set of the form

{0} × {0} × . . .× {0} ×R×R× . . .

for some finite number of zeros, say N . Then ϕ(en) = 0 for all n > N .

Using this lemma, one can easily see that submodules of slender modules are slen-

der. The next proposition shows that taking direct sums also preserves slenderness.

This was shown for abelian groups by Fuchs [8] and for modules by Lady in [11]. The

next proposition and its corollaries come from [11].

Proposition 3.3.5. A direct sum of slender modules is slender.

Proof. Let ϕ : Rω → ⊕i∈IMi where each Mi is slender and I is any indexing set. Let

ϕk : Rω → Mk be the composition of ϕ and the projection onto the kth component

of the direct sum. Each ϕk is continuous for the product and discrete topologies

respectively because each Mk is slender.

For a fixed n, ϕk(an)) 6= 0 for finitely many k. Therefore, there are at most

countably many k for which ϕk(an) 6= 0 for some n. Therefore we may assume that

we are dealing with ⊕∞i=0Mi instead of using an arbitrary indexing set I.
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For any n, ϕ−1(⊕∞i=1Mi) = ∩k>nϕ−1
k (0) which is closed by the continuity of each

ϕk. Also, Rω = ∪∞n=1ϕ
−1(⊕ni=1Mi). Thus, we may apply the Baire Category Theorem

(Rω is a complete metric space) to get ϕ(Wm) ⊂ ⊕ni=1Mi for some m and n. A finite

direct sum ⊕nk=1Mk is slender and therefore ϕ(ei) ∈ ⊕nk=1Mk for all i ≥ m implies

⊕i∈IMi is slender.

Corollary 3.3.6. If R is a slender ring, then so is the polynomial ring R[x], the n×n
matrices Mn(R) over R, and the group ring R[G], for any group G. In addition, if R

is an algebra over a field K and F is an extension field of K, then F ⊗KR is slender.

Proof. In each case, the larger ring is a free R-module and therefore isomorphic to a

direct sum of copies of R.

Corollary 3.3.7. A ring R is slender if and only if projective left R-modules are

slender.

Proof. Suppose R is slender. Then every free R-module is slender (being a direct

sum of copies of R). Hence every projective R-module is slender because every

projective module R-module is a direct summand (and therefore a submodule) of

a free module. If every projective R-module is slender, then every free R-module is

slender. Therefore, R itself is slender as it is a free R-module.

The first part of Corollary 3.3.6 was generalized further by O’Neill in [15] who

showed the following:

Proposition 3.3.8. For any ring R, the polynomial ring R[x] is slender.

Proof. SupposeR[x] is not slender. Then there is anR[x]-homomorphism f : R[x]ω →
R[x] such that f(en) 6= 0 for each n. As an R-module R[x] = ⊕ωRxn and we let

gn : R[x] → Rxn be the nth projection. Next I wish to construct a sequence of

integers {nk}∞k=0 so that for each k, gnf(xnkek) = 0 for n ≥ nk+1. Let n0 = 0.

Then for k = 0 note that f(xn0e0) is in R[x] so there are only finitely many non-zero

coefficients when considered as an element of R[x]ω and hence I can choose n1 to be

large enough such that gnf(xn0e0) = 0 for n ≥ n1. One may continue inductively to

choose the remainder of the sequence {nk}. Let vk = xnkek and v =
∑

ω vk.

Similarly, there exists a value of k such that gnf(v) = 0 for all n ≥ nk. Let

u = v − v0 − v1 − . . . − vk and observe that u = xnk+1z for some z in R[x]ω. Also

recall that f(en) 6= 0 for all n because R[x] is not slender. Therefore, gmf(vk) 6= 0

for some m with nk ≤ m < nk+1. So gmf(u) = gmf(v)− gmf(v0)− . . .− gmf(vk) =
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−gmf(vk) 6= 0. On the other hand, f(u) = xnk+1f(z) and thus gmf(u) = 0. This is a

contradiction and thus, R[x] is slender.

Also note the following,

Proposition 3.3.9. For any ring R, the ring of formal power series R[[x]] is not

slender.

Proof. In Example 3.1.12 one sees that the ring of formal power series with coefficients

in a field is not slender. If the coefficients come from any ring (not necessarily

commutative, but still with 1) then choosing Tn = xn still makes ord(SnTn) ≥ ord(Tn)

and hence the R-linear map f : R[[x]]ω → R[[x]] defined by

(S0, S1, . . .) 7→ S0T0 + S1T1 + . . . =
∞∑
i=0

SiTi

is still non-zero on all ei. That is, R[[x]] is not slender.

It is interesting to compare the previous two propositions. Proposition 3.3.8 shows

that polynomial rings, which are isomorphic to infinite direct sums, over any ring R

are slender. On the other hand, Proposition 3.3.9 shows that formal powers series

rings, which are isomorphic to infinite direct products, over any non-zero ring R are

not slender. So in this sense, slenderness is preserved by taking infinite direct sums,

but not when taking infinite direct products.

Slender groups, rings, and modules have been studied extensively and I will con-

clude this chapter by mentioning several other known results about slender modules.

The next four results all characterize slender groups or modules in some way.

Theorem 3.3.10 ([14]). A torsion-free group is slender if and only if it is reduced,

contains no copy of the p-adic integers for any prime p, and contains no copy of

P = Zω.

Theorem 3.3.11 ([11]). Let R be a slender Dedekind domain such that the set M
of non-zero ideals in R is countable. Then an R-module B is slender if and only if

B is reduced, torsion-free, and contains no subgroup which is isomorphic to P = Rω

or M-adically complete.

Theorem 3.3.12 ([3]). A torsion-free R-module is slender if and only if

(i) HomR(Rω/R(ω),M) = 0, and

(ii) M is not metrizable and complete in any non-discrete linear topology.
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Theorem 3.3.13 ([5]). A finitely generated module M is slender if and only if

Soc(M) = 0 and M is not complete in any non-discrete topology defined by a fil-

tration.

Copyright c© Raymond Edward Kremer, 2014.
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Chapter 4 Category Theory

Category theory is about abstraction. It provides a language to discuss ideas that

simultaneously show up in many areas of mathematics. This chapter provides defini-

tions and examples of the abstract notions necessary to discuss the transition from

the usual category of R-modules to a category of filtered modules in the next chapter.

4.1 Basic Definitions and Examples

Definition 4.1.1. A category C consists of the following data:

1. A collection of objects, denoted ob(C) or more simply C.

2. A collection of morphisms (or arrows, or maps) between the objects, denoted

Mor(C).

3. A weak partition of Mor(C) indexed by ob(C)× ob(C) where the set indexed by

(X, Y ) is denoted HomC(X, Y ) (or Hom(X, Y ) when the category is clear).

4. A composition law, that is, for every three objects X, Y , and Z in C there is a

function Hom(X, Y )×Hom(Y, Z)→ Hom(X,Z) where the image of (g, f) is

denoted g ◦ f (or simply gf).

satisfying the following axioms:

1. Associativity of morphisms: h ◦ (g ◦ f) = (h ◦ g) ◦ f whenever both sides are

defined.

2. Identity morphism: For each X ∈ ob(C) there is a morphism e ∈ Hom(X,X)

such that f ◦ e = f and e ◦ g = g whenever the compositions are defined.

Remark 4.1.2. Some notation and terminology for a category C.

1. To indicate f ∈ Hom(X, Y ) one writes f : X → Y .

2. If f : X → Y , then X is the domain of f and Y is the codomain of f .

3. If f : X → Y and g : Y ′ → Z, then one says gf is defined if Y = Y ′.

4. If f ∈ Hom(X, Y ) and f ′ ∈ Hom(X ′, Y ′) then to say f = f ′ requires X = X ′

and Y = Y ′.
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5. The identity morphisms in C are unique and the identity morphism for an object

X in C is denoted idX .

Example 4.1.3. Here are some examples of categories:

1. Sets - The objects of this category are sets and the morphisms are the usual

set functions.

2. Groups - The objects of this category are groups and the morphisms are the

group homomorphisms.

3. Rings - The objects of this category are rings and the morphisms are the rings

homomorphisms.

4. R-mod - The objects of this category are left R-modules and the morphisms

are the R-homomorphisms.

5. Top - The objects of this category are topological spaces and the morphisms

are continuous functions.

The last two examples that I will mention are not as common:

6. R-filt - The objects of this category are modules M with a descending filtration

M = M0 ⊃M1 ⊃M2 ⊃ . . .

such that M is Hausdorff and complete in the topology defined by taking the

submodules in the filtration as a fundamental system of neighborhoods of zero.

If N is another object in R-filt with filtration

N = N0 ⊃ N1 ⊃ N2 ⊃ . . .

then a morphism in R-filt is a map f : M → N which is linear and such that

f(Mj) ⊂ Nj for all j ≥ 0.

7. gr(R-mod) - The objects in this category are left R-modules, S, with a direct

sum decomposition

S = S0 ⊕ S1 ⊕ S2 ⊕ . . .

and morphisms

g : S → T = T0 ⊕ T1 ⊕ T2 ⊕ . . .

which are linear and such that g(Sn) ⊂ Tn for all n ≥ 0.
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The category R-filt will be the focus of Chapter 5. The category gr(R-mod)

is connected to R-filt through a grading functor that is discussed at the end of this

chapter.

Remark 4.1.4. One type of category that is used in this chapter is a concrete cat-

egory. To give a full definition of a concrete category requires defining a particular

type of functor (see Definition 4.5.4). In lieu of giving the full definition at this time,

I will just comment that in order for a category to be concrete, it is enough to have

an underlying set structure to the category. For example, the category R-mod is

concrete because all of the objects are sets (with additional structure) and all of the

morphisms are set functions (again with additional structure).

Next I will define some specific types of objects and morphisms in a category that

play important roles moving forward.

Definition 4.1.5. An object X of a category C is called an initial object of C if for

any object Y of C, Hom(X, Y ) has exactly one element.

Definition 4.1.6. An object X of a category C is called a terminal object of C if for

any object Y of C, Hom(Y,X) has exactly one element.

Definition 4.1.7. An object X of a category C is called a zero object of C if X is

both initial and terminal.

Example 4.1.8. Examples of zero objects:

1. The category Groups has the trivial group consisting of only the identity ele-

ment as its zero object.

2. The category R-mod has the 0 module as its zero object.

3. The category R-filt has the 0 module (with the trivial filtration) as its zero

object.

Definition 4.1.9. A category C is called a category with zero morphisms if for every

two objects A and B in C there is a fixed morphism 0AB : A → B such that for all

objects X, Y , Z in C and all morphisms f : X → Y , g : Y → Z the following diagram

commutes.

X

f
��

0XY //

0XZ

  

Y

g
��

Y
0Y Z

// Z
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Remark 4.1.10. Any category with a zero object has zero morphisms. The zero

morphism 0XY in such a category is the composition X → 0 → Y of the only maps

X → 0 and 0 → Y . Therefore, Groups, R-mod, and R-filt are all categories with

zero morphisms.

Definition 4.1.11. A morphism f : X → Y in C is said to be a monomorphism if

for any object W ∈ ob(C) and any g1, g2 : W → X then fg1 = fg2 implies g1 = g2.

Definition 4.1.12. A morphism f : X → Y in C is said to be an epimorphism if for

any object Z ∈ ob(C) and any g1, g2 : Y → Z then g1f = g2f implies g1 = g2.

Definition 4.1.13. A morphism f : X → Y in C is said to be a bimorphism if f is

both a monomorphism and an epimorphism.

Definition 4.1.14. A morphism f : X → Y in C is said to be an isomorphism if

there exists a morphism g : Y → X in C such that gf = idX and fg = idY .

Remark 4.1.15. Clearly an isomorphism is a bimorphism, but the converse need

not be true.

Monomorphisms and epimorphisms are generalizations of the notions of injective

and surjective maps in the category Sets. These notions need not coincide in every

category. For example:

Example 4.1.16. Consider the ring homomorphism Z ↪→ Q, the inclusion homo-

morphism from the ring of integers to the ring of rational numbers. This is clearly

not a surjection. However, suppose g1, g2 : Q→ R are any two ring homomorphisms

such that g1|Z = g2|Z. Then if q = x
y

is any rational number, g1(q) = g1(x)g1(y)−1 =

g2(x)g2(y)−1 = g2(q). Therefore, the inclusion map is an epimorphism, but not a

surjection.

Example 4.1.17. An example showing that a morphism can be a monomorphism

without being injective is harder to come by. It can be shown in the category of

divisible abelian groups with group homomorphisms that the quotient map Q→ Q/Z

is a monomorphism which is not injective.

4.2 Kernels and Cokernels

Throughout this section I will be assuming that the category C is a category with zero

morphisms. Kernels in category theory are generalizations of the kernel of a group
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homomorphism. Recall that the kernel of a group homomorphism ϕ : G→ H is the

set of all elements of G that map to the identity of H. To be more explicit,

Definition 4.2.1. Let f : X → Y be a morphism in C. A kernel of f is an object K

along with a morphism k : K → X such that fk = 0KY , i.e. the diagram

X
f

  
K

k

OO

0KY
// Y

is commutative, and satisfying the following universal property: given any object

K ′ and morphism k′ : K ′ → X such that fk′ = 0K′Y , there is a unique morphism

u : K ′ → K such that ku = k′, i.e. the diagram

X
f

##
K

k

OO

0KY // Y

K ′

k′

DD

u
::

0K′Y

55

is commutative.

Remark 4.2.2. A few observations about kernels

1. In a concrete category the object K is typically referred to as the kernel of f

rather than the pair (K, k).

2. A kernel is always a monomorphism.

3. In an arbitrary category kernels do not always have to exist, but they are unique

up to isomorphism when they do exist.

The dual notion to a kernel is that of a cokernel. Thus, a cokernel is defined as

follows:

Definition 4.2.3. Let f : X → Y be a morphism in C. A cokernel of f is an object

Q together with a morphism q : Y → Q such that qf = 0XQ, that is the diagram

Y

q

��
X

f
??

0XQ
// Q
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is commutative, and satisfying the following universal property: given any object

Q′ and morphism q′ : Y → Q′ such that q′f = 0XQ′ , there is a unique morphism

u : Q→ Q′ such that uq = q′, i.e. the diagram

Y

q
��

q′

��

X

f
;;

0XQ //

0XQ′
))

Q
u

##
Q′

is commutative.

Remark 4.2.4. A few observations about cokernels

1. In a concrete category the object Q is typically referred to as the cokernel of f

rather than the pair (Q, q).

2. A cokernel is always an epimorphism.

3. In an arbitrary category cokernels do not always have to exist, but they are

unique up to isomorphism when they do exist.

4.3 Projective and Injective Objects

Two of the objects necessary to begin the development of homological algebra are the

projective and injective objects. In a categorical sense, these are abstractions of the

notions of the projective and injective modules in R-mod. These objects are defined

diagramatically in relation to epimorphisms and monomorphisms.

Definition 4.3.1. Let C be a category. An object P in C is said to be a projective

object if for any epimorphism f : A → B and any morphism g : P → B then there

exists a morphism h : P → A such that fh = g. In diagram form, one must be able

to complete the diagram

P
h

��
g
��

A
f // B

to a commutative diagram by a morphism in C.

Dual to this definition is the following definition of an injective object.
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Definition 4.3.2. Let C be a category. An object E in C is said to be an injective

object if for any monomorphism f : A→ B and any morphism g : A→ E then there

exists a morphism h : B → E such that hf = g. In diagram form, one must be able

to complete the diagram

A
f //

g
��

B

h~~
E

to a commutative diagram by a morphism in C.

On occasion one may only want to look at projectivity and injectivity with respect

to a different class of morphisms. This was done in [16] with regards to injectivity. I

will be using the following definitions for this situation.

Definition 4.3.3. Let C be a category and let H be a class of morphisms in C. An

object P in C is said to be H-projective if for any morphism f : A → B in H and

any morphism g : P → B (in C) then there exists a morphism h : P → A (in C) such

that fh = g. In diagram form, one must be able to complete the diagram

P
h

��
g
��

A
f // B

to a commutative diagram by a morphism in C.

Remark 4.3.4. Clearly, if H is all epimorphisms, then the H-projective objects are

the usual projective objects.

Definition 4.3.5. Let C be a category and let H be a class of morphisms in C. An

object E in C is said to be H-injective if for any morphism f : A→ B in H and any

morphism g : A→ E (in C) then there exists a morphism h : B → E (in C) such that

hf = g. In diagram form, one must be able to complete the diagram

A
f //

g
��

B

h~~
E

to a commutative diagram by a morphism in C.

Remark 4.3.6. Clearly, if H is all monomorphisms, then the H-injective objects are

the usual injective objects.
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4.4 Products and Coproducts

In many contexts one would like to combine objects in a category to get more objects

in the category. Depending on what the objects in a given category are, this may

be done in several different ways. The following definitions give two categorical ways

to combine objects. Following that, it is shown that these objects do not necessarily

exist in every category, but that they satisfy several nice properties with respect to

projectivity and injectivity if they do exist.

Definition 4.4.1. If X1 and X2 are objects in C, then by a product (in C) of the pair

X1 and X2 we mean an object X and two morphisms p1 : X → X1 and p2 : X → X2

such that for any W and any f1 : W → X1 and f2 : W → X2 there is a unique

morphism f : W → X such that p1f = f1 and p2f = f2. Such an X is often denoted

X1 ×X2.

Diagrammatically, a product X, with morphisms p1 and p2, is such that for any

W , f1, and f2 as above, the diagram

W
f1

}}
f
��

f2

!!
X1 X

p1oo p2 // X2

can be completed to a commutative diagram by a unique morphism f in C.

Example 4.4.2. Here are just a few examples where categorical products agree with

a well-known notion of a product.

1. In Sets, the product of two sets is the Cartesian product.

2. In Groups, the product of two groups is the usual direct product of groups.

3. In Top, the product of two topological spaces is the Cartesian product of the

two underlying sets given the product topology.

4. In R-mod, the product of twoR-modules is the usual direct product of modules.

More generally, one may define the product of an arbitrary collection of objects

in a category as follows.

Definition 4.4.3. If (Xi)i∈I is a family of objects in a category C, then a product of

the family is an object X and morphisms pi : X → Xi such that if W is an object

in C and fi : W → Xi are morphisms, then there is a unique morphism f : W → X

such that pif = fi for all i ∈ I. Such a product is usually denoted
∏

i∈I Xi.
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Diagrammatically, a product X, with morphisms pi : X → Xi is such that for any

W , and morphisms fi, the unique morphism f from above completes the diagrams

W

f
��

fi

  
X

pi // Xi

to commutative diagrams for all i ∈ I.

Remark 4.4.4. Note that products need not exist in a category. Consider an empty

product in a category (i.e. a product where I = ∅) which is the same as a terminal

object. Then the category of infinite abelian groups does not have all products

because it does not have a terminal object. This is because there are infinitely many

morphism Z→ G for G an infinite abelian group. Thus G can not be terminal.

Proposition 4.4.5. Suppose that X, with morphisms pi : X → Xi, and X ′, with

morphisms p′i : X ′ → Xi, are two products of the same family {Xi}i∈I in a category

C. Then X and X ′ are isomorphic in C.

Proof. Since X, with morphisms pi, is a product in C and the p′i are morphisms, there

exists a unique morphism f : X ′ → X such that pif = p′i for all i ∈ I. Similarly,

since X ′, with morphisms p′i, is a product in C and the pi are morphisms, there exists

a unique morphism g : X → X ′ such that p′ig = pi for all i ∈ I. Thus, p′igf = p′i and

pifg = pi for all i ∈ I. However, idX and idX′ also satisfy the equations p′iidX′ = p′i

and piidX = pi for all i ∈ I. Therefore, by the uniqueness of the morphisms from

the definitions of a product we get that gf = idX′ and fg = idX . That is, X is

isomorphic to X ′ because f is an isomorphism with g as its inverse.

Proposition 4.4.6 (Taking products preserves injectivity.). Let {Ei}i∈I be a family

of injective objects in a category C. Then the product (if it exists) of this family, E,

with morphisms pi : E → Ei, is injective.

Proof. Let α : A → B be a monomorphisms and g : A → E be any morphism.

Then for every i ∈ I the morphism pig : A → Ei may be extended to a morphism

fi : B → Ei because Ei is injective. This means fiα = pig for all i ∈ I. Now since E,

with morphisms pi, is a product of {Ei}, there exists a unique morphism f : B → E

such that pif = fi for all i ∈ I.

Now consider the morphisms fiα : A → Ei. There exists a unique morphism

h : A → E such that fiα = pih; again because E, with morphisms pi, is a product
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of {Ei}. Note that fi = pif for all i ∈ I implies fiα = pi(fα) for all i ∈ I and also

that fiα = pig from the previous paragraph. Therefore, fα = g by the uniqueness of

h.

Proposition 4.4.7 (Taking products preserves H-injectivity.). Let H be a class of

morphisms in a category C and let {Ei}i∈I be a family of H-injective objects in C.

Then the product (if it exists) of this family, E, with morphisms pi : E → Ei, is

H-injective.

Proof. The proof goes exactly like the proof to Proposition 4.4.6 except changing

“monomorphism” to “morphism in H” and “injective” to “H-injective.”

Dual to the notion of a product in a category is a coproduct, or categorical sum.

Definition 4.4.8. If X1 and X2 are objects in C, then by a coproduct (in C) (also

called a categorical sum) of the pair X1 and X2 we mean an object X of C along

with morphisms e1 : X1 → X and e2 : X2 → X such that if Y is an object of C and

f1 : X1 → Y and f2 : X2 → Y are morphisms in C then there is a unique f : X → Y

such that fe1 = f1 and fe2 = f2.

Diagrammatically, a coproduct X, with morphisms e1 and e2, is such that for any

Y , f1, and f2 as above, the diagram

Y

X1
e1 //

f1

>>

X

f

OO

X2
e2oo

f2

``

can be completed to a commutative diagram by a unique morphism f : X → Y .

Example 4.4.9. Coproducts are often more complicated objects than products.

1. In Sets, the coproduct of two sets is the disjoint union with the ei being the

inclusion maps.

2. In Groups, the coproduct of two groups is the their free product.

3. In Top, the coproduct of two topological spaces is the disjoint union of the two

underlying sets with the disjoint union topology.

4. In R-mod, the coproduct of two R-modules is the direct sum.

More generally, one may define the coproduct of an arbitrary collection of objects

in a category as follows.
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Definition 4.4.10. If (Xi)i∈I is a family of objects in C, then a coproduct of the

family is an object X and morphisms ei : Xi → X for each i ∈ I such that if Y is an

object in C and fi : Xi → Y are morphisms, then there is a unique f : X → Y such

that fei = fi for each i ∈ I. Such an X is sometimes denoted
∐

i∈I Xi.

Diagrammatically, a coproduct X, with morphisms ei : Xi → X is such that for

any Y , and morphisms fi : Xi → Y , the unique morphism f from above completes

the diagrams

Y

Xi
ei //

fi

>>

X

f

OO

to commutative diagrams for all i ∈ I.

Remark 4.4.11. Note that coproducts also need not exist in a category. Consider

an empty coproduct in a category (i.e. a coproduct where I = ∅) which is the same as

an initial object. Then the category of non-empty sets does not have all coproducts

because it does not have an initial object. Suppose a is an element of a set A in

this category. Then for any set B with |B| > 1 there multiple morphisms (i.e. set

functions) A→ B can be defined by sending a to different elements of B.

Proposition 4.4.12. Suppose that X, with morphisms ei : Xi → X, and X ′, with

morphisms e′i : X ′i → X, are two coproducts of the same family {Xi}i∈I in a category

C. Then X and X ′ are isomorphic in C.

Proof. Since X, with morphisms ei, is a coproduct in C and the e′i are morphisms,

there exists a unique morphism f : X → X ′ such that fei = e′i for each i ∈ I.

Similarly, since X ′, with morphisms e′i, is a coproduct in C and the ei are morphisms,

there exists a unique morphism g : X ′ → X such that ge′i = ei for all i ∈ I. Thus,

gfei = ei and fge′i = e′i for all i ∈ I. However, idX and idX′ also satisfy the equations

idXei = ei and idX′e
′
i = e′i for all i ∈ I. Therefore, by the uniqueness of the morphisms

from the definitions of a product we get that gf = idX and fg = idX′ . That is, X is

isomorphic to X ′ because f is an isomorphism with g as its inverse.

Proposition 4.4.13 (Taking coproducts preserves projectivity.). Let {Pi}i∈I be a

family of projective objects in a category C. Then the coproduct (if it exists) of this

family, P , with morphisms ei : Pi → P , is projective.

Proof. Let α : A → B be an epimorphism and g : P → B be any morphism. Then

for every i ∈ I the morphism gei : Pi → B factors through α because Pi is projective.
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That is, there exists morphisms fi : Pi → A such that αfi = gei for all i ∈ I. Now

since P , with morphisms ei, is a coproduct in C there exists a unique morphism

f : P → A such that fei = fi for all i ∈ I.

Now consider the morphisms αfi : Pi → B. There exists a unique morphism

h : P → B such that hei = αfi for all i ∈ I; again because P , with morphisms ei,

is a coproduct of {Pi}. Clearly, g is such a morphism. Note also that fei = fi for

all i ∈ I implies (αf)ei = αfi for all i ∈ I. But then αfi = hei for all i ∈ I implies

(αf)ei = hei for all i ∈ I. Therefore, αf = g by the uniqueness of h and it follows

that P is projective.

Proposition 4.4.14 (Taking coproducts preserves H-projectivity.). Let H be a class

of morphisms in a category C and let {Pi}i∈I be a family of H-projective objects in

C. Then the coproduct (if it exists) of this family, P , with morphisms ei : Pi → P is

H-projective.

Proof. The proof goes exactly the same as that for Proposition 4.4.13 except changing

“epimorphism” to “morphism in H” and “projective” to “H-projective.”

4.5 Functors

Functors are an abstraction of functions. Functions take elements in one mathemati-

cal object to elements in another mathematical object within some particular setting.

Functors do this on a categorical level. A functor is a function which takes objects

(resp. morphisms) in one category to objects (resp. morphisms) in another category.

This section defines functors and gives two examples of functors which will be used

next chapter.

Definition 4.5.1. Let C and D be categories. A covariant functor F from C to D,

denoted F : C → D, is a mapping that

1. associates an object F (X) in D to each object X in C,

2. associates a morphism F (f) : F (X)→ F (Y ) in D to each morphism f : X → Y

in C such that

a) F (idX) = idF (X) for all objects X in C and

b) F (gf) = F (g)F (f) for all morphisms f : X → Y and g : Y → Z in C.
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Definition 4.5.2. Let C and D be categories. A contravariant functor F from C to

D, denoted F : C → D, is a mapping that

1. associates an object F (X) in D to each object X in C,

2. associates a morphism F (f) : F (Y )→ F (X) in D to each morphism f : X → Y

in C such that

a) F (idX) = idF (X) for all objects X in C and

b) F (gf) = F (f)F (g) for all morphisms f : X → Y and g : Y → Z in C.

Definition 4.5.3. A functor (either covariant or contravariant) F : C → D is said to

be additive if F (f + g) = F (f) + F (g) for all pairs of morphisms f, g in C.

Definition 4.5.4. A concrete category is a pair (C, U) such that

1. C is a category and

2. U : C → Sets is a faithful functor from C into the category of sets and functions.

The functor U is usually referred to as a forgetful functor which assigns to each

object in C the underlying set and each morphism the underlying set function.

In concrete categories there is a relationship between monomorphisms (resp. epi-

morphisms) and injections (resp. surjections). The two notions still need not coincide,

but one direction of their equivalence is always true.

Lemma 4.5.5. In a concrete category, every morphism whose underlying function is

injective (resp. surjective) is a monomorphism (resp. epimorphism).

Proof. Let C be a concrete category. Then all of the morphisms in C are set functions,

along with any additional structure imposed by the category. Therefore, if f : X → Y

is a morphism in C whose underlying function is injective and g1, g2 : W → X are any

morphisms in C such that fg1 = fg2 then f(g1(w)) = f(g2(w)) implies g1(w) = g2(w).

Similarly, if h : X → Y is a morphism in C whose underlying function is surjective

and k1, k2 : Y → Z are any morphisms in C such that k1h = k2h then k1 = k2 because

the image of h is all of Y .

I will end this section by discussing two functors: a shift functor which will be

denoted

T (n) : R-filt→ R-filt
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and a grading functor which will be denoted

gr : R-filt→ gr(R-mod)

that will be important later.

Example 4.5.6 (The Shift Functor). Suppose M is an object in R-filt with filtration

M = M0 ⊃M1 ⊃M2 ⊃ . . .

There is a covariant functor, called the shift functor, denoted

T (n) : R-filt→ R-filt

that changes the filtration on M in the following ways:

1. (T (n)(M))0 = M0 = M for all n.

2. If n = 0, then T (n) does not change the filtration on M .

3. If n = 1, then (T (1)(M))p = Mp+1 for all p 6= 0.

4. If n = −1, then (T (−1)(M))p = Mp−1 for all p 6= 0.

Then the functor T (n) is defined as the composition of T (1) n times if n > 0 and as

the composition of T (−1) |n| times if n < 0.

Also, for any morphism f : M → N in R-filt, T (n)(f) : T (n)(M) → T (n)(N) is

essentially the same map as f because both M and N have their filtrations shifted

so T (n)(f) still satisfies the filtration agreement condition imposed on morphisms in

R-filt. which is clearly still in R-filt and satisfies the two requirements from the

definition of a functor.

Note that the map idM : T (−1)(M) → M is not always a morphism in R-filt

because it is not always true that M0 ⊂ M1. However, idM : M → T (−1)(M) is

always a monomorphism in R-filt.

Example 4.5.7. The functor

gr : R-filt→ gr(R-mod)

maps the object M = M0 ⊃M1 ⊃M2 ⊃ . . . to

gr(M) =
M0

M1

⊕ M1

M2

⊕ M2

M3

⊕ . . .
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and maps the morphism f : M → N in R-filt to

gr(f) : gr(M) =
M0

M1

⊕ M1

M2

⊕ . . .→ gr(N) =
N0

N1

⊕ N1

N2

⊕ . . .

which is defined by gr(f)((mi +Mi+1)∞i=0) = (f(mi) +Ni+1)∞i=0.

Remark 4.5.8. Note that if (mi) = (m′i) in gr(M), then mi − m′i ∈ Mi+1 for all

i ≥ 0 and hence

f(mi −m′i) = f(mi)− f(m′i) ∈ Ni+1.

That is, the functor gr is well-defined.

Remark 4.5.9. The functor gr is additive because

gr(f + g)(mi +Mi+1) = ((f + g)(mi) +Ni+1)

= ((f(mi) + g(mi)) +Ni+1)

= ((f(mi) +Ni+1) + (g(mi)) +Ni+1)

= gr(f)(mi +Mi+1) + gr(g)(mi +Mi+1).

Lemma 4.5.10. If gr(f) is injective (resp. surjective) then f is injective (resp.

surjective).

Proof. Suppose that gr(f) is injective and also that f(m) = 0. Then

gr(f)(m, 0, 0, . . .) = (f(m), 0, 0, . . .) = 0

which means that (m, 0, 0, . . .) ∈ ker(gr(f)) = 0 and hence m ∈ M1. By a similar

argument (changing the element we start with to (0,m, 0, . . .)) we get that m ∈M2.

Continuing this process we see that m ∈ ∩∞i=0Mi = 0. Therefore, f is injective.

Now suppose that gr(f) is surjective and let n ∈ N . Then there exists an element

(m0,m
(0)
1 ,m

(0)
2 , . . .) in gr(M) such that

gr(f)((m0,m
(0)
1 ,m

(0)
2 , . . .)) = (n, 0, 0, . . .).

Applying the definition of gr(f) and subtracting gives that

(n− f(m0),−f(m
(0)
1 ), . . .) = 0.

Thus, n− f(m0) ∈ N1. Next choose an element (m
(1)
0 ,m1,m

(1)
2 , . . .) such that

gr(f)((m
(1)
0 ,m1,m

(1)
2 , . . .)) = (0, n− f(m0), 0, . . .)
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and we similarly get that

n− f(m0)− f(m1) ∈ N2.

Continuing this process we get that

n−
∞∑
j=0

f(mj) ∈ ∩∞i=0Ni = 0.

Therefore, n = f
(∑∞

j=0mj

)
which is well-defined because M is complete. That is,

f is surjective.

Remark 4.5.11. The converse of the previous lemma is not true in general as the

next two examples show. That is, the functor gr does not preserve injections and

surjections unless we strengthen the filtration agreement condition imposed upon

morphisms in R-filt.

Example 4.5.12. Let

M = Z ⊃ 4Z ⊃ 0 ⊃ . . .

and

N = Z ⊃ 2Z ⊃ 0 ⊃ . . .

Let f : M → N be the map in R-filt defined by f(z) = z. This map is injective

because it is just the identity on Z. However, the map gr(f) : gr(M)→ gr(N) is not

injective because the element (2, 0, . . .) maps to zero in gr(N). �

Example 4.5.13. Let

M = Z ⊃ 2Z ⊃ 0 ⊃ . . .

and

N = Z/(4) ⊃ Z/(4) ⊃ 0 ⊃ . . .

Let f : M → N be the canonical surjection of Z onto Z/(4). This map is surjective,

but gr(f) is not surjective because the element (0, 3̄, 0, . . .) in gr(N) is not in the

image of gr(f). �

Definition 4.5.14. A morphism f : M → N in R-filt is said to be strict if

f(Mj) = f(M) ∩Nj for all n ≥ 0.
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Lemma 4.5.15. If f : M → N in R-filt is strict, then

1. f is an injection if and only if gr(f) is an injection, and

2. f is a surjection if and only if gr(f) is a surjection.

Proof. One direction of both statements was shown in Lemma 4.5.10.

Suppose that f is injective, f is strict and that gr(f)(m0,m1, . . .) = 0. Then by

the definition of gr(f) this means (f(m0), f(m1), . . .) = 0 and thus f(mi) ∈ Ni+1 for

all i. So we have f(mi) ∈ f(M) ∩ Ni+1 = f(Mi+1). Therefore, f(mi) = f(m) for

some m ∈Mi+1. But f(mi) = f(m) implies f(mi−m) = 0 and thus mi = m because

f is injective. That is, mi ∈Mi+1 for all i. Hence, gr(f) is injective.

Now suppose that f is surjective, f is strict, and let (n0, n1, . . .) be an element

of gr(N). For each i there exists an mi ∈ M such that f(mi) = n1 because f is

surjective. Now, f(mi) ∈ f(M) ∩ Ni = f(Mi) so there is an element m′i ∈ Mi such

that f(m′i) = f(mi). Therefore,

gr(f)(m′0,m
′
1, . . .) = (f(m′0), f(m′1), . . .)

= (n0, n1, . . .)

and hence gr(f) is surjective.

Copyright c© Raymond Edward Kremer, 2014.
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Chapter 5 A Category of Filtered Modules

In this chapter we transition fully to a category of filtered modules. Many of the cat-

egorical objects from last chapter are discussed in the specific context of R-filt. The

chapter culminates with several new results. These are concrete characterizations of

strict projective and strict injective modules, as well as defining and discussing strict

injective envelopes. Two examples are given to show differences between injective

envelopes in R-mod and strict injective envelopes in R-filt as well as an example

minimal strict injective resolution of the p-adic integers in R-filt.

5.1 The Category R-filt

Let R be a commutative ring with 1 and let “module” mean “left R-module”. The

category that I will be considering, denoted R-filt, is the category of modules with

a descending filtration of submodules indexed by the natural numbers for which the

topology induced by this filtration is both Hausdorff and complete. That is, an object

in the category R-filt is a module M with a filtration

M = M0 ⊃M1 ⊃M2 ⊃ . . .

where ∩∞j=0Mj = 0 and M is complete in the topology defined by taking the submod-

ules in the filtration as a fundamental system of neighborhoods of zero. Recall that

the condition ∩∞j=0Mj = 0 is equivalent to saying the this topology is Hausdorff (see

Lemma 2.6.7). Let N be another object in R-filt with filtration

N = N0 ⊃ N1 ⊃ N2 ⊃ . . . .

Then a morphism f : M → N in R-filt is a linear map such that f(Mj) ⊂ Nj for all

j ≥ 0.

Example 5.1.1. The following types of objects in R-filt will be used throughout

this chapter.

1. Let M be an R-module and filter M trivially. That is,

M = M0 ⊃M1 ⊃M2 ⊃ . . .

where Mi = 0 for i 6= 0. This is clearly Hausdorff and complete in the given

topology.
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2. Slightly more generally, let M be an R-module and consider the filtration

M = M0 ⊃M1 ⊃M2 ⊃ . . .

where Mi = 0 for all i ≥ K where K is a positive integer. These modules

are Hausdorff and complete in the given topology. In fact, the given topology

makes M a discrete topological space.

3. Let {M i}∞i=0 be a sequence of R-modules. Then the product M = M0 ×M1 ×
M2 × . . . filtered by the submodules

Mn = 0× . . .× 0×Mn ×Mn+1 × . . .

is Hausdorff and complete in the given topology. Formal power series are an

example of this type of object in R-filt.

4. The p-adic integers, Ẑp, with the filtration

Ẑp = (p0) ⊃ (p1) ⊃ (p2) ⊃ . . .

forms a Hausdorff and complete topological space.

5.2 Submodules and Quotients in R-filt

Lemma 5.2.1. Let N be an object in R-filt and let T be a submodule (in R-mod)

of N with the induced filtration Tj = T ∩ Nj. Then T is an object in R-filt (i.e. T

is complete) if and only if T is closed (as a subspace of N as a topological space).

Proof. Suppose T is closed and let {tj} be a Cauchy sequence of elements in T . This

sequence must converge in N because N is complete and since T is closed, it must

contain all of its limit points. Therefore, the limit in N must be in N . Hence, T is

complete.

Conversely, suppose that T is not closed. This means N \ T is not open. So

there exists an x ∈ N \ T such that for any j ∈ N there exists a yj ∈ T such that

x − yj ∈ Nj. Consider the sequence {yj}. This sequence is Cauchy because for any

m ∈ N, ym−yn = (ym−x)+(x−yn) ∈ Nm for all n > m and this sequence converges

to x by construction. Thus, T is not complete.

Thus we have shown that the induced filtration given to a submodule of an object

in R-filt results in another object in R-filt if and only if the submodule is closed.

Unless otherwise stated, any time I refer to a submodule of an object in R-filt I will
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be assuming that the submodule is closed so it is an object in R-filt. This induced

filtration is unique in the following sense.

Lemma 5.2.2. The filtration Tj = T ∩ Nj is the unique filtration on T such that

T ↪→ N is a morphism in R-filt and such that if f : M → N is a morphism in the

category such that f(M) ⊂ T then we can complete the diagram

M

~~
f
��

T �
� // N

to a commutative diagram by a morphism in R-filt.

Proof. Given that f(M) ⊂ T it is clear that such an h : M → T exists in R-mod by

simply defining h(m) := f(m) for all m ∈M . In R-filt, let

M = M0 ⊃M1 ⊃ . . .

be the filtration of M and consider the filtration

T = T0 ⊃ T1 ⊃ . . .

of T where Tj = T ∩ Nj for all j. We can again complete the diagram defining

h : M → T by h(m) = f(m), but now we have a morphism in R-filt.

To show the uniqueness, suppose

T ′ = T ′0 ⊃ T ′1 ⊃ . . .

is a different filtration of the same base module T satisfying the above conditions.

Since T ′ ↪→ N is a morphism in R-filt, then we know that T ′j ⊂ Nj. Therefore

T ′j ⊂ Tj. Now using the second condition, we can complete the diagram

T

~~

� _

��
T ′ �
� // N

with a morphism in R-filt. Since the two given maps are inclusions, the map that

completes the diagram must be idT . Thus, Tj ⊂ T ′j . That is, the two filtrations are

in fact the same.

Due to this uniqueness, I will assume that a submodule of an object in R-filt has

this induced filtration unless otherwise noted.
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Lemma 5.2.3. Let M with filtration {Mj} be an object in R-filt and N be a sub-

module of M in R-mod. Then the quotient module M/N with the induced filtration(
M

N

)
j

=
N +Mj

N

is an object in R-filt if and only if N is an object in R-filt when given the induced

filtration of Lemma 5.2.1.

Proof. Suppose N is an object in R-filt when given the induced filtration as a sub-

module of M . The induced filtration on M/N is certainly descending because {Mj}
is descending. To show M/N is Hausdorff, it suffices to show that

∞⋂
j=0

N +Mj

N
= 0.

Suppose x̄ = x + N is in this intersection. Then for each j ∈ N there is an element

mj ∈ Mj such that x̄ = m̄j. This means x − mj ∈ N for each mj chosen. Also,

mi−mi+1 ∈ N ∩Mi for all i. Note that N has the induced filtration as a submodule

of M , thus mi −mi+1 ∈ Ni. Therefore,

x−m0 +
∞∑
i=0

mi −mi+1

converges to x ∈ N because N is complete. Thus, x̄ = 0̄ which means M/N is

Hausdorff.

To show that M/N is complete it is enough to show that all series of the form∑∞
l=0 (ml +N) where ml ∈ Ml for all l converge. Let m :=

∑∞
l=0ml (which exists

becauseM is complete). Note that eachMj is closed in addition to being open because

M \Mj is the union of the translates of Mj that are not Mj itself. Then the above

series converges to m+N ∈M/N because for any k, (m+N)− (
∑L−1

l=0 (ml +N)) =

(
∑∞

l=Lml) +N ∈ (M/N)k for all L ≥ k.

Conversely, suppose that M/N is an object in R-filt. It is enough to show that

N is closed in M by Lemma 5.2.1. But N is the inverse image of the closed set {0̄}
in M/N under the continuous map M →M/N and thus, N is closed.

Quotients of objects in R-filt will be given the induced filtration unless other-

wise noted. Quotients are used in the discussion of epimorphisms and they play an

important role in the characterization of strict injective modules later in this chapter.
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5.3 More on Morphisms in R-filt

Example 5.3.1. The following are the canonical injections and surjections in R-filt.

1. (Canonical Injection) Suppose T is a submodule of the object M in R-filt.

Then the inclusion map i : T →M is an injective morphism in R-filt.

2. (Canonical Surjection) Suppose N is a submodule of M in R-filt. Then the

map M →M/N given by m 7→ m+N is a surjective morphism in R-filt.

Here are two important facts about morphisms in R-filt.

Lemma 5.3.2. Every morphism f : M → N in R-filt is a continuous map between

M and N thought of as topological spaces. Moreover, f is uniformly continuous.

Proof. Let m ∈ M . Then V = f(m) + Nj is a basis open set of N containing f(m).

Note that f(m+Mj) ⊂ f(m) +Nj because f is linear and therefore f is continuous.

Moreover, if m1 −m2 ∈ Mj then f(m1) − f(m2) = f(m1 −m2) ∈ Nj because f is

linear. Therefore f is also uniformly continuous.

One particular type of morphism is used throughout the rest of the work. These

are the so-called strict morphisms. Recall the following definition (the same as Defi-

nition 4.5.14)

Definition 5.3.3. Let f : M → N be a morphism in R-filt. If f satisfies

f(Mj) = f(M) ∩Nj

(a stronger condition than f(Mj) ⊂ Nj) then we say f is a strict morphism in R-filt.

Example 5.3.4. The canonical injection and canonical surjection from above are

both strict for all M , N , and T in R-filt.

Lemma 5.3.5 (Factorization Through a Strict Surjective Morphism in R-filt). Let

f : A→ B be any morphism in R-filt and g : A→ C be a strict surjective morphism.

Then there exists a morphism h : C → B in R-filt such that f = hg if and only if

ker(g) = ker(f).

Proof. The forward direction is obvious. For the reverse direction, let c ∈ C. Then

there exists an a ∈ A such that g(a) = c because g is surjective. Then use this

a to define h : C → B by h(c) = f(a). Suppose c ∈ C and there exists a1 and
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a2 in A such that c = g(a1) = g(a2). Then a1 − a2 ∈ ker(g) ⊂ ker(f). Thus,

f(a1 − a2) = f(a1)− f(a2) = 0 showing that h is a function.

Now let c1, c2 ∈ C. Then there exists elements a1, a2 ∈ A such that g(a1) = c1,

g(a2) = c2, and hence g(a1 + a2) = c1 + c2. Thus, by the definition of h and the

linearity of f , h(c1 + c2) = f(a1 + a2) = f(a1) + f(a2) = h(c1) + h(c2). Similarly,

if c ∈ C and a ∈ A such that g(a) = c then g(ra) = rg(a) = rc. Therefore,

h(rc) = f(ra) = rf(a) = rh(c) using the definition of h and the fact that f is an

R-homomorphism. All this shows that g is an R-homomorphism.

Finally, note that if c ∈ Cn, then there is an element an ∈ An such that g(an) = c

because g is strict. Therefore, h(c) = f(an) ∈ Bn because f is a morphism in R-filt.

This shows that h is also a morphism in R-filt. Such an h is clearly unique.

The category R-filt with the forgetful functor is a concrete category because each

module has an underlying set structure. Therefore, from Chapter 4 every injective

function is a monomorphism and every surjective function is an epimorphism. The

converse of this statement for monomorphisms is true.

Lemma 5.3.6. In R-filt, injective functions coincide with monomorphisms.

Proof. Note that the above discussion gives one direction.

Let f : M → N be a monomorphism in R-filt and K be the kernel of f filtered

as a submodule of M . Note that K is closed because it is the inverse image of

the closed set {0} under the continuous map f . Then consider the two morphisms

g1, g2 : K → M defined by g1(k) = 0 and g2(k) = k. Clearly fg1 = fg2 and thus

g1 = g2 because f is a monomorphism. Therefore, the kernel of f must be zero which

implies that f is an injection.

On the other hand, the dual statement regarding epimorphisms does not work out

the same way. This is because the dual argument would require the use of a cokernel

instead of a kernel. The next remark describes why this could be a problem.

Remark 5.3.7. Typically, the cokernel of an R-homomorphism f : M → N is defined

to be the quotient module N/Imf . Defining a cokernel in R-filt takes a little more

work. Suppose f : M → N is a morphism in R-filt. For an arbitrary morphism, it is

not guaranteed that the image of f will be a closed submodule of N . Therefore, it is

reasonable to expect that the cokernel of f : M → N in R-filt is the quotient object

N/Imf . This will guarantee that the quotient object exists and indeed it satisfies the

requirements to be a cokernel as the next proposition will show.
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Proposition 5.3.8. If f : M → N is a morphism in R-filt, then N/f(M) (where

f(M) is the closure of the image of f) with the induced quotient filtration is the

cokernel of f .

Proof. Recall that the categorical definition of a cokernel includes a morphism with

the object. In this case the morphism is taken to be the canonical surjection π : N →
N/f(M) defined by π(n) = n + f(M). Clearly, πf = 0. Suppose that q : N → Q is

another morphism in R-filt such that qf = 0. Then, because π is a strict surjection,

there exists a unique morphism u : N/f(M)→ Q such that uπ = q by Lemma 5.3.5

and the proof is complete.

Proposition 5.3.9. A morphism f : M → N in R-filt is an epimorphism if and

only if f(M) is dense in N .

Proof. Suppose f : M → N is an epimorphism. Consider the canonical surjection

π : N → N/f(M) and the zero morphism with the same domain and codomain.

Then clearly πf = 0 and 0f = 0. Therefore, π = 0 as morphisms in R-filt. This

means that N = f(M) and thus f(M) is dense in N .

Conversely, suppose that f : M → N and that g, h : N → L are morphisms in

R-filt such that gf = hf . Also suppose that f(M) is dense in N . This means that

f(M) = N . That is, every element of N is the limit of a sequence of elements in

f(M) by Lemma 2.6.15. Let n ∈ N be arbitrary and let {f(mj)} be a sequence

converging to n. Then

g(n) = g(lim f(mj)) = lim g(f(mj)) = limh(f(mj)) = h(lim f(mj)) = h(n)

by Theorem 2.6.16 and because gf = hf as above.

In the category R-mod every R-module homomorphism that is a bijection is an

isomorphism. The same is not true for the category R-filt because of the filtration

agreement condition imposed upon morphisms in this category.

Example 5.3.10. Let M be a non-zero R-module with filtration

M = M0 ⊃M1 ⊃M2 ⊃ . . .

where Mj 6= 0 for all j in addition to the other requirements for an object in R-filt.

This module M can also be considered as an object of R-filt with the trivial filtration.

That is,

M = M ⊃ 0 ⊃ 0 ⊃ . . .
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has M0 = M and Mj = 0 for all j 6= 0. Let A be the object in R-filt with base

module M and trivial filtration and B be the object in R-filt with base module M

and the non-trivial filtration described above. The R-module homomorphism idM can

be thought of as a morphism in Hom(A,B) that is bijective. If idM has an inverse

in R-filt, then that inverse must also be the identity map on M (as an R-module).

However, if g : B → A is such a map, then g(Bj) = 0 for all j 6= 0 because of the

filtration agreement requirement. Therefore, idM : A → B is not an isomorphism in

R-filt even though it is a bijection. �

If one considers a strict bijective morphism in R-filt, then it is true that this map

is an isomorphism. This provides a situation similar to those in the category Set and

R-mod.

Lemma 5.3.11. In the category Sets, bijective morphisms and isomorphisms are the

same.

Lemma 5.3.12. An R-homomorphism (i.e. morphism in R-mod) ϕ : M → N is

bijective if and only if ϕ is an isomorphism in R-mod.

Lemma 5.3.13. A bijective strict morphism in R-filt is an isomorphism in R-filt.

Proof. Let f : M → N be a bijective morphism in R-filt. Then from above we know

that f has an inverse in R-mod, say g : N → M , and I claim that this inverse is

actually in R-filt when f is strict. Recall that f strict means f(Mj) = f(M) ∩ Nj

and when f is also surjective this implies f(Mj) = Nj.

In order for g to be in R-filt, I must show that g(Nj) ⊂ Mj for all j. Since

Nj = f(Mj) we have g(Nj) = g(f(Mj)). But g is the inverse of f in R-mod (and

also in Sets) so g(f(Mj)) = Mj. Thus, g(Nj) = Mj and therefore g is a morphism

in R-filt. In fact, g is a strict morphism.

Definition 5.3.14. By an exact sequence in R-filt I mean a sequence

0→ A
f−→ B

g−→ C → 0

where A, B, and C are objects in R-filt; f is an injective morphism in R-filt; and g

is a surjective morphism in R-filt.

Definition 5.3.15. By a strict exact sequence in R-filt I mean a sequence

0→ A
f−→ B

g−→ C → 0

where A, B, and C are objects in R-filt; f is a strict injective morphism in R-filt;

and g is a strict surjective morphism in R-filt.

51



Lemma 5.3.16. If

0→ A
f−→ B

g−→ C → 0

is a strict exact sequence in R-filt with {An}, {Bn}, and {Cn} as the respective

filtrations of A, B, and C, then there exists an induced exact sequence

0→ An
fn−→ Bn

gn−→ Cn → 0

in R-mod for each n.

Proof. For each n we can restrict the domains of f and g to An and Bn respectively.

Since f and g are morphisms in R-filt we know that f(An) ⊂ Bn and g(Bn) ⊂ Cn

for all n. So we can then corestrict the codomains of the already restricted maps to

Bn and Cn respectively for each n. Therefore, for each n define fn : An → Bn as

f with domain restricted to An and codomain corestricted to Bn. In particular, fn

agrees with f on An. Define gn : Bn → Cn similarly.

Now, if fn(a1) = fn(a2), then f(a1) = f(a2) because fn agrees with f , and hence

a1 = a2 because f is injective. Thus, fn is injective. Also, gn(Bn) = g(Bn) =

g(B) ∩ Cn = C ∩ Cn = Cn so we see gn is surjective. Since fn and gn agreed with

f and g respectively, it is easy to see that gn(fn(a)) = 0 for all a ∈ An. Finally, if

x ∈ ker(gn) ⊂ Bn then gn(x) = g(x) = 0. Thus, x is also in ker(g) = f(A). Therefore,

x ∈ f(A) ∩Bn = f(An) because f is strict. Hence, the sequence is exact.

Strict exact sequences in R-filt lead to results similar to the standard splitting

lemmas in R-mod. Note that the next two lemmas use the notion of a direct sum in

R-filt. The direct sum of two objects M and N in R-filt is the usual module direct

sum M ⊕N with filtration (M ⊕N)j = Mj ⊕Nj. Direct sums are discussed in depth

in Section 5.4.

Lemma 5.3.17. Consider the strict exact sequence

0→ A
f−→ B

g−→ C → 0

in R-filt. If there exists a map β : C → B in R-filt such that g ◦ β = idC, then

B = A⊕ C in R-filt.

Proof. Consider the diagram

C

idC
β

��
0 // A

f // B
g // C // 0

52



with strict exact row. Furthermore, this diagram implies that the row is a split exact

sequence in R-mod. So, B = A ⊕ C. However, we want B to be a direct sum in

R-filt, not just in R-mod. To see this, we use Lemma 5.3.16 to construct a diagram

of the form

Cn

idCn
βn

}}
0 // An

fn // Bn
gn // Cn // 0

in which the row is exact. The maps fn, gn, and βn are defined by appropriately

restricting the domains and corestricting the codomains of f , g, and β respectively.

Therefore, this sequence also splits in R-mod which implies that Bn = An ⊕ Cn.

That is, B = A⊕ C in R-filt.

Lemma 5.3.18. Consider the strict exact sequence

0→ A
f−→ B

g−→ C → 0

in R-filt. If there exists a map α : B → A in R-filt such that αf = idA, then

B = A⊕ C in R-filt.

Proof. Consider the commutative diagram

0 // A
f // B

g //

α
��

C // 0

A

idA

with strict exact row in R-filt. This diagram implies that the row is a split exact

sequence in R-mod. So, B = A ⊕ C. However, we want B to be a direct sum in

R-filt, not just in R-mod. To see this, we use Lemma 5.3.16 to construct a diagram

of the form

0 // An
fn // Bn

gn //

αn}}

Cn // 0

An

idAn

in which the row is exact. The maps fn, gn, and αn are defined by appropriately

restricting the domains and corestricting the codomains of f , g, and α respectively.

Therefore, this sequence also splits in R-mod which implies that Bn = An ⊕ Cn.

That is, B = A⊕ C in R-filt.
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Some morphisms in R-filt can be described using the following matrix notation.

Let

M = M0 ×M1 ×M2 × . . . and

N = N0 ×N1 ×N2 × . . .

with the usual filtration and f : M → N be a morphism in R-filt. One can give a

matrix representation of f as follows. Let x be an element of M and write x as the

vector 
x0

x1

x2

...


where xi ∈ M i for i ≥ 0. Then let fji : M i → N j be f restricted to M i and

corestricted to N j. The morphism f can then be represented as the N × N lower

triangular matrix 
f00 0 0

f10 f11 0
...

...
. . .


where evaluating f(x) works just like multiplying a matrix times a vector and compos-

ing two functions works like multiplying two matrices except we are using functional

composition instead of multiplication.

Lemma 5.3.19. A morphism f : M → N written in this matrix form is an isomor-

phism if and only if fii is an isomorphism for all i.

Proof. Suppose each fii : M i → N i is an isomorphism. Let gii : N i → M i be the

inverse of fii for each i ≥ 0. Then we can compute the inverse of f similar to how

one might find the inverse of any non-singular matrix. Suppose g : N → M is a

morphism of this kind represented by the N×N matrix
g00 0 0 0

g10 g11 0 0

g20 g21 g22 0
...

...
...

. . .


If g is going to be the inverse of f then it must be true that f10g00 +f11g10 = 0. Thus,

g10 = f−1
11 (−f10g00). For all other off-diagonal entries, a similar procedure gives gji
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for j > i. Then it is not hard to check that g ◦ f is represented by the matrix
g00 ◦ f00 0 0

0 g11 ◦ f11 0

0 0
. . .

 = idM

and f ◦ g is represented by the matrix
f00 ◦ g00 0 0

0 f11 ◦ g11 0

0 0
. . .

 = idN

Therefore, f and g are inverses. Notice that, f and g are actually inverses in R-filt

because both are represented by lower triangular matrices meaning that they are

morphisms in R-filt satisfying the filtration requirements f(Mj) ⊂ Nj and g(Nj) ⊂
Mj.

Conversely, suppose f : M → N is an isomorphism in R-filt. Then there exists

another morphism, g : N → M , in R-filt such that f ◦ g = idN and g ◦ f = idM .

But the diagonal entries of these compositions are fii ◦ gii and gii ◦ fii respectively.

Also, the diagonal entries of idN and idM are idNii and idMii
respectively. Therefore,

fii and gii are inverses of each other as well. Thus, we have shown that a morphism

f : M → N in R-filt is an isomorphism if and only if each fii : M i → N i is an

isomorphism.

5.4 Products and Coproducts in R-filt

Proposition 5.4.1. Suppose that M and N are objects in R-filt. Then the direct

product M ×N in R-mod given the filtration (M ×N)j = Mj ×Nj is a product in

R-filt in the categorical sense. That is, there exists morphisms p1 : M × N → M

and p2 : M × N → N such that for any W in R-filt and any f1 : W → M and

f2 : W → N there is a unique morphism f : W → M × N such that p1f = f1 and

p2f = f2.

Proof. First note that M ×N is both Hausdorff and complete. The maps p1 and p2

are the usual projection maps defined by p1(m,n) = m and p2(m,n) = n which are

clearly maps in R-filt with the given filtrations. Then define a map f : W →M ×N
by f(w) = (f1(w), f2(w)). This is a morphism in R-filt because both f1 and f2 are

morphisms in R-filt. Clearly p1f = f1 and p2f = f2. Finally note that f is unique

because if g were another such map then p2f = f2 = p2g implies g = f since p2 is a

surjection (and hence an epimorphism).
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Proposition 5.4.2. If {M i} is a family of objects in R-filt then the direct product∏
M i in R-mod with filtration (

∏
M i)j =

∏
M i

j is the categorical product in R-filt.

Proof. Suppose {M i} is a family of objects in R-filt. Consider the direct product∏
M i in R-mod with filtration (

∏
M i)j =

∏
M i

j . The argument above showing that

M×N is a categorical product generalizes to the arbitrary case with no problem. The

only question is whether or not
∏
M i is Hausdorff and complete. If (m0,m1,m2, . . .)

is an element of ∩(
∏
M i)j then each mi is in ∩M i

j which equals 0 because each M i is

Hausdorff. Unlike the coproduct case, there is no problem with completeness when

generalizing the index set.

Suppose ((mi
j)i∈I)

∞
j=0 is a cauchy sequence in

∏
M i. Then each component se-

quence (mi
j)
∞
j=0 is cauchy in M i. Thus, the original sequence converges to (ni)i∈I

where ni is the limit of the sequence (mi
j)
∞
j=0. Hence,

∏
M i is complete.

Coproducts (direct sums) in R-filt play an important role in the characterization

of strict projective modules later this chapter. Here I will discuss direct sums in

R-filt in both the finite and arbitrary cases.

Proposition 5.4.3. Suppose that M and N are objects in R-filt. Then the direct

sum M ⊕N in R-mod given the filtration (M ⊕N)j = Mj ⊕Nj is a direct sum in

R-filt in the categorical sense. That is, there exists morphisms

e1 : M →M ⊕N and e2 : N →M ⊕N

in R-filt that satisfy the following universal property: If f1 : M → L and f2 : N → L

are two morphisms in R-filt, then there exists a unique morphism f : M ⊕ N → L

in R-filt such that f ◦ ei = fi for i = 1, 2.

Proof. The maps e1 and e2 are the obvious maps in R-filt defined by e1(m) = (m, 0)

and e2(n) = (0, n). Suppose that f1 and f2 are maps as described in the statement

of the proposition. Then define the map f : M ⊕N → L by

f(m,n) := f1(m) + f2(n).

If (m,n) ∈ (M ⊕ N)j = Mj ⊕ Nj, then m ∈ Mj and n ∈ Nj. Therefore f1(m) ∈ Lj
and f2(n) ∈ Lj because f1 and f2 are morphisms in R-filt. Thus, f(m,n) = f1(m) +

f2(n) ∈ Lj and hence f((M ⊕ N)j) ⊂ Lj so that f is also a morphism in R-filt.

Clearly, f ◦ ei = fi for i = 1, 2.
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For uniqueness, suppose there exists a map g in R-filt such that g ◦ ei = fi for

i = 1, 2. Then

f(m,n) = f1(m) + f2(n)

= g(e1(m)) + g(e2(n))

= g(m, 0) + g(0, n)

= g(m,n).

Thus, f = g and the map defined above is unique.

It is important to note that the above argument requires that the module M ⊕N
be both Hausdorff and complete when using the given filtration. If one uses this

type of filtration for any direct sum then the Hausdorff condition is satisfied. On the

other hand, the completeness requirement only holds in certain situations as the next

proposition shows.

Proposition 5.4.4. Let I be any index set and M i be an object in R-filt for each

i ∈ I. The sum
⊕

i∈IM
i with the filtration(⊕

i∈I

M i

)
n

=
⊕
i∈I

M i
n

is complete if and only if M i = 0 except for a finite number of i ∈ I.

Proof. Suppose that M i = 0 except for a finite number of i ∈ I. Then we can

enumerate the M i such that⊕
i∈I

M i = M i0 ⊕M i1 ⊕ . . .⊕M ik

for a finite positive integer k. Let {m̄j}∞j=0 = {(mi0
j ,m

i1
j , . . . ,m

ik
j )}∞j=0 be a Cauchy

sequence in
⊕

i∈IM
i. Then with the filtration we chose for

⊕
i∈IM

i it is not hard

to see that the component sequences

{mi0
j }, {m

i1
j }, . . .

are Cauchy in M i0 ,M i1 , . . . respectively. Each M i is in R-filt and therefore complete.

Thus, each component sequence converges to an element, say mil , in the respective

M il . Putting these all together gives the element (mi0 ,mi1 , . . . ,mik) in
⊕

i∈IM
i to

which the original Cauchy sequence converges.
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Conversely suppose that infinitely many of the M i we started with are non-zero.

We wish to construct a Cauchy sequence in
⊕

i∈IM
i that converges to an element

outside of
⊕

i∈IM
i. Since there are infinite number of M i 6= 0, we can choose a

countably infinite subset of these M i, enumerated as M i0 ,M i1 , . . ., to work with. We

may also reorder the indicies of the direct sum so that these M ik come first.

Then we choose a Cauchy sequence {mil
j } in each of the chosen M il 6= 0 that

converges to a non-zero element. Next, choose a subsequence {mil
jk
} of each {mil

j }
which is still Cauchy and such that mil

jk
is an element for which mil

ja
−mil

jb
∈M il

k for

all a, b ≥ k. Finally, we define a sequence {mk} in
⊕

i∈IM
i where mk is the element

in
⊕

i∈IM
i that has mil

jk
in the first k places corresponding to M il 6= 0 and zeros

elsewhere. That is,

mk = (mi1
jk
,mi2

jk
, . . . ,mik

jk
, 0, . . .).

This sequence is Cauchy by construction, but it converges to an element that has an

infinite number of non-zero entries. Thus, this sequence does not converge in
⊕

i∈IM
i

and hence
⊕

i∈IM
i is not complete.

Since the above filtration does not always make the usual direct sum a complete

module then one may ask how you could get a categorical direct sum of an arbitrary

number of modules in this setting. The following module will be a candidate for such

a direct sum.

Definition 5.4.5. Suppose {M i}i∈I is a collection of objects in R-filt where I is

an arbitrary index set. Let M ⊂
∏

i∈IM
i consist of all (xi)i∈I such that at most

countably many xi 6= 0 and if there are countably many xi 6= 0, then if we arrange

them in a sequence xi0 , xi1 , . . . (so i0, i1, . . . are all distinct) then given any n ≥ 0 we

have xij ∈ (M ij)n for all but a finite number of the indices ij. Define the filtration

on M by letting (M)n be the set of all (xi)i∈I ∈ M as above but with the added

restriction that xij ∈ (M ij)n for all indices ij.

If this module, M , is going to be the categorical direct sum of {M i} then M must

be complete, M must be a categorical sum (i.e. it must satisfy an analogous universal

property as in Proposition 5.4.3), and M should be the completion of the usual direct

sum (with the filtration given in Proposition 5.4.4) so that this sum agrees with the

sum in the finite case.
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Proposition 5.4.6. M is an object in R-filt. That is, M is Hausdorff and complete

in the given filtration.

Proof. M being Hausdorff follows easily by noting that every component of an element

in ∩∞n=0(M)n is in (M ij)n for all n. Therefore, every component is 0 because each

M ij is Hausdorff individually.

Let {(xi)k} be a Cauchy sequence in M . Each (xi) in the sequence need not have

the same indices for which xi 6= 0, but since there are a countable number of elements

in the sequence and each one has at most countably many non-zero entries then there

are still at most a countable number of elements in I for which xi 6= 0 for some (xi)

in the given sequence. Enumerate these elements of I as i0, i1, i2, . . ..

Now, {(xi)k} being Cauchy means for every n ≥ 0 there exists an integer Nn such

that (xi)a − (xi)b ∈ (M)n for all a, b ≥ Nn. Therefore, the component sequences

corresponding to i0, i1, i2, . . . are Cauchy in M i0 ,M i1 ,M i2 , . . . respectively. Each M ij

is complete so each component sequence converges. Let {(x̄i)} be the element in M

consisting of the limit of each component sequence at the appropriate index. Then

{(xi)k} → (x̄) ∈M .

Proposition 5.4.7. M is a categorical sum (in R-filt).

Proof. All modules and maps in this argument are assumed to be in R-filt.

To prove M is a categorical sum we must show that the obvious maps ei : M i →M

satisfy the universal property that given maps fi : M i → N for all i ∈ I there exists

a unique map f : M → N such that f ◦ ei = fi for all i.

Let (xi) ∈ M and enumerate the indices for which xi 6= 0 as i0, i1, i2, . . .. Then

for every n ≥ 0, fij(xij) ∈ Nn for all but finitely many indices ij because each fi is

a morphism in R-filt. Thus the map f : M → N defined by f((xi)) :=
∑
fij(xij) is

well-defined because N is complete.

Suppose there is another map g : M → N satisfying g ◦ ei = fi for all i. Then

f((xi)) =
∑

fij(xij) =
∑

g(eij(xij)) = g
(∑

eij(xij)
)

= g((xi))

shows that f = g.

Proposition 5.4.8. M is the completion of the usual direct sum M =
⊕

i∈IM
i with

filtration Mn =
⊕

i∈IM
i
n.

Proof. Let {(xi)} be a Cauchy sequence in M . Each (xi) has finitely many non-zero

terms and there are countably many terms in the sequence, so in total there are a
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countable number of indices in I that correspond to a non-zero entry in one of the

elements of the sequence. Enumerate these as i0, i1, i2, . . ..

Consider the sequences consisting of the entries in each of these positions in their

respective M ij . Each of these sequences is Cauchy because the original sequence

is Cauchy. Therefore each sequence converges in its respective M ij . Putting these

together gives an element, x̄, that we wish to be the limit of {(xi)}. The issue being

that x̄ is not necessarily in M . However, x̄ is the limit of the given sequence in
∏
M i

given the filtration (
∏
M i)n =

∏
M i

n and having at most countably many non-zero

components, x̄ may be in M .

In fact, if we let n ≥ 0, then x̄ being the limit of {(xi)} in
∏
M i implies that

there exists an integer Nn such that x̄ − (xi)j ∈
∏
M i

n for all j ≥ Nn. Choose any

j > Nn. Then x̄ − (xi)j ∈
∏
M i

n. But (xi)j has only finitely many non-zero entries.

Therefore, x̄ − (xi)j is the same as x̄ in every other position. That is, x̄ij ∈ (M ij)n

for all but the finitely many indices for which (xi)j is non-zero. Thus, x̄ ∈M .

Remark 5.4.9. Note that while these arbitrary direct sums are different than one

might expect, they still preserve projectivity and H-projectivity (see Propositions

4.4.13 and 4.4.14).

The next proposition I will give is one of the results that I will need later to prove a

characterization of strict projective modules. This particular result shows that direct

summands of a certain type (the type in Example 3.1.6) of object in R-filt are of that

same type. I will break down the proof of the proposition into a series of lemmas.

Suppose that M = M0 × M1 × M2 × . . . is filtered by the submodules Mn =

0× . . .×0×Mn×Mn+1× . . . and that M has a direct sum decomposition M = S⊕T
in R-filt. Recall that this means M = S + T , S ∩ T = 0 and Mn = Sn ⊕ Tn for each

n ≥ 0.

Lemma 5.4.10. The submodule Mn+1 is a direct summand (in R-mod) of the sub-

module Mn.

Proof. Consider the map e : Mn →Mn given by

e(0, . . . , 0,mn,mn+1, . . .) = (0, . . . , 0,mn+1, . . .).

Then Im(e) = Mn+1 and e is idempotent. Thus, Mn+1 is a direct summand of Mn.
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Lemma 5.4.11. Sn+1 is a direct summand (in R-mod) of Sn and Tn+1 is a direct

summand (in R-mod) of Tn for each n ≥ 0.

Proof. Since Mn+1 is a direct summand of Mn we can write Mn = Mn+1⊕K for some

module K. But also Mn+1 = Sn+1⊕Tn+1. So Mn = Sn+1⊕Tn+1⊕K. Let e : Sn → Sn

be the map that takes an element x ∈ Sn, thought of as an element of Mn, to the

projection of x onto Sn+1 using the direct sum decomposition Mn = Sn+1⊕Tn+1⊕K.

Then, similar to the above, Im(e) = Sn+1 and e is idempotent so that Sn+1 is a direct

summand of Sn. The proof to show Tn+1 is a direct summand of Tn is similar.

Now there are modules S0, S1, . . . and T 0, T 1, . . . such that Sn = Sn ⊕ Sn+1 and

Tn = T n ⊕ Tn+1 for all n ≥ 0.

Define the modules

S̄ := S0 × S1 × S2 × . . .

and

T̄ := T 0 × T 1 × T 2 × . . . .

These will be filtered as usual when we consider them as objects in R-filt.

There are natural maps

σS : S̄ → S defined by (s0, s1, . . .) 7→
∑

si

and

σT : T̄ → T defined by (t0, t1, . . .) 7→
∑

ti

where both sums are well-defined because Sn can be thought of as a submodule of

Sn, T n can be thought of as a submodule of Tn, and S and T are complete. In fact,

Lemma 5.4.12. σS and σT are isomorphisms when we consider S, T , S̄, and T̄ as

filtered modules.

Proof. Let s ∈ S and decompose s using the direct sum S0 = S0 ⊕ S1. Inductively

continue this process to get elements, sn, in each Sn for n ≥ 0 that sum to s. Then

the element (s0, s1, s2 . . .) maps to s via σS.

In fact, the direct sum decompositions are unique, so each element of S comes

from a unique element of S̄. Thus, σS is also injective. The proof for σT is similar.

Then we get an isomorphism

S̄ × T̄ → S ⊕ T = M
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i.e. essentially

(S0 × T 0)× (S1 × T 1)× . . . ∼= M0 ×M1 × . . .

This gives that direct summands of an M = M0×M1× . . . are of the same form.

That is,

Proposition 5.4.13. Direct summands of modules of the form

M0 ×M1 ×M2 × . . .

with filtration Mn = 0× . . .× 0×Mn ×Mn+1 × . . . are of the form

S0 × S1 × S2 × . . .

with filtration Sn = 0× . . .× 0× Sn × Sn+1 × . . ..

5.5 Projective and Injective Objects in R-filt

To begin talking about homological algebra in a category, one must first discuss the

projective and injective objects in that category. This section will briefly discuss the

projective and injective objects of R-filt.

The usual definition of a projective object translated to R-filt is the following:

Definition 5.5.1. An object P in R-filt is said to be a projective object if for every

morphism g : P → N and every epimorphism f : M → N the diagram

P
h

~~
g
��

M
f // N // 0

can be completed to a commutative diagram in R-filt.

However, these objects are not as easy to deal with as the projective modules in

R-mod because the epimorphisms in R-filt are the maps with dense image, not the

surjective maps. In order to be able to define a lifting I would then need to require

that g(P ) ⊂ f(M). As examples of how things could potentially work out consider

the following:

Example 5.5.2. Consider the case where R = Z and N = Ẑp, the ring of p-adic

integers. The ring of integers Z is dense in Ẑp so if P is projective in R-filt then
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being able to complete the diagram

P

h

��
g
��

Z
f // Ẑp

// 0

means that g(P ) ⊂ Z. Note that the element un = 1 + pn is a unit of Ẑp for

all n ≥ 0 and hence the maps ϕn : Ẑp → Ẑp defined by ϕn(x) = unx are group

isomorphisms. Also, these ϕns are isometries using the p-adic metric. Therefore,

unZ = (1 + pn)Z ⊂ unẐp = Ẑp is dense because Z ⊂ Ẑp is dense. Then if P is

projective it is possible to complete the diagrams

P

h

��
g
��

Z
ϕn // Ẑp

// 0

for all n ≥ 0 and thus g(P ) ⊂ (1 + pn)Z for all n ≥ 0. But if m 6= 0 is in (1 + pn)Z

then |m| > 1 + pn. Thus ∩∞n=0(1 + pn)Z = 0. Therefore, if P is projective in this

setting then g(P ) = 0 and the lifting h must be the zero map. �

Example 5.5.3. Suppose P is projective in R-filt with R = Z. Consider

P
h

��
idP
��

F
f // P // 0

where F is the free module on the set P with the trivial filtration and where f is

the usual surjection. Then the lifting h will be an injection and hence P is free as a

Z-module. Also note that P will have the trivial filtration because F does. �

In order to conclude that P is free above one really only needs that the ring R is

a PID. That is, the previous example actually says the following about projectives in

R-filt:

Lemma 5.5.4. Suppose R is a PID. If P is projective in R-filt, then P is a free

module and has the trivial filtration.

Conversely, if an object F in R-filt is free with the trivial filtration, then in order

to be projective we must be able to complete a diagram of the form

F
h

~~
g
��

M
f // N // 0
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whenever f(M) is dense in N . This would require again that g(F ) ⊂ f(M) for all f

with dense image, g any morphism, and M any object of R-filt. While being rather

restrictive, this does give the following:

Lemma 5.5.5. Let R be a PID. An object P in R-filt is projective if and only if

both

1. g(P ) ⊂ f(M) for any object M in R-filt, any epimorphism f : M → N , and

any morphism g : P → N ; and

2. P is free and has the trivial filtration.

Since the projective objects are not easy to work with, one could instead discuss

projective objects in relation to surjections rather than epimorphisms. Let S be

the set of all surjections in R-filt. Then the S-projective objects in R-filt can be

characterized in the following way.

Lemma 5.5.6. The S-projective objects in R-filt are exactly the projective modules

in R-mod with the trivial filtration.

Proof. Let P be an object in R-filt such that the underlying module is projective in

R-mod and the filtration on P is the trivial one. Then the diagram

P
h

~~
g
��

M
f // N // 0

can be completed in R-mod when f ∈ S. Note that h(P ) ⊂M and h(Pn) ⊂Mn for

all n > 0 because P has the trivial filtration. Thus the h : P → M which completes

the diagram in R-mod actually completes the diagram in R-filt too since h satisfies

the filtration agreement condition imposed on all morphisms in R-filt.

Now suppose that N is an object in R-filt with a non-trivial filtration. Let M be

the object in R-filt with the same base module as N , but with the trivial filtration.

Then consider the diagram

N

~~
M id // N // 0

Clearly the identity map idMN : M → N is surjective, and the only way to complete

this diagram is to use the idNM : N →M as the dashed map. However, the identity

map idNM is not a morphism in R-filt because id(Nn) 6⊂ Mn for at least one n > 0

using the given filtrations.
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This lemma shows that the projective modules in R-mod and the S-projective

objects in R-filt are essentially the same. Therefore, using these objects to build up

the usual tools of homological algebra will not result in anything different than the

usual case. In the next section I will consider projective objects with respect to an

even more restrictive class of morphisms to investigate how this changes the usual

results.

Definition 5.5.7. An object E in R-filt is said to be an injective object if for every

morphism g : M → E and every monomorphism (i.e. injection) f : M → N the

diagram

0 //M

g
��

f // N

~~
E

can be completed to a commutative diagram in R-filt.

Lemma 5.5.8. Let E be an injective object in R-filt. Then E = 0.

Proof. Consider the diagram

0 // E

idE
��

idE // T (−1)(E)

zz
E

which can be completed by assumption and where T is the shift functor described in

Example 4.5.6. Then looking at the index n = 1 of the filtrations one can see that

E1 ⊂ E0 = E from the top row and E = E0 ⊂ E1 from the dashed map. A similar

argument using the diagram

0 // E

idE
��

idE // T (−n)(E)

zz
E

shows that E = E1 = E2 = . . . = En for all n > 0. Now since all modules in

R-filt are Hausdorff, we must have that ∩En = 0. In this case ∩En = E and thus,

E = 0.

This lemma shows that the only injective object in R-filt is the trivial 0 module.

Therefore, the usual notions of injective resolutions and injective envelopes can not

be defined in a way that makes sense. In section 5.8, I will consider injective objects

with respect to a more restrictive class of morphisms and show that this leads to

analogues to the usual injective objects.
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5.6 Strict Projective Objects

In this section I will discuss projectivity with respect to strict morphisms instead

of all morphisms in the category R-filt. One reason for doing this is to look for

something more interesting than the categorical projective objects in R-filt which

were discussed last section. The main result of this section is a characterization of

strict projective modules.

Definition 5.6.1. A module P in the category R-filt is called a strict projective

module if we can complete a diagram of the form

P
h

~~ ��
M

f // N // 0

to a commutative diagram whenever f is a strict surjection. These are the so-called

H-projectives where H is the set of all strict surjective morphisms in R-filt.

Remark 5.6.2. Any projective object in R-filt is a strict projective module because

every surjection is an epimorphism. Similarly, every projective module in R-mod

with the trivial filtration is a strict projective module.

Example 5.6.3. Consider the module Zω = Z× Z× . . . with filtration

Zω
n = 0× . . .× 0× Z× Z× . . .

where there are n zeros. This module is not projective in R-mod (i.e. not S-

projective in R-filt) with R = Z because projective and free are equivalent when R

is a PID and Zω is not a free Z-module. To see that Zω is not a free Z-module first

suppose Zω is free. Note that Zω is uncountable. This can be shown using a diagonal

argument similar to that in Cantor’s proof that the real numbers are uncountable.

Therefore, if Zω is free, then the basis for Zω must be uncountable. But then the

dual group (Zω)∗ would be uncountable. However, Specker’s theorem (Proposition

3.3.3) implies that (Zω)∗ ∼= Z(ω) which is countable. Thus, Zω can not be free over Z.

The module Zω = Z × Z × . . . is however a strict projective module. Therefore,

restricting to the class of strict surjections rather than either the set of epimorphisms

or the set of surjective morphisms results in an increase in the number of projective

objects.This is actually a special case of the next proposition which shows that any

direct product of projective modules in R-mod, with a certain filtration, is strictly

projective.
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Proposition 5.6.4. Let P 0, P 1, P 2, . . . be any sequence of projective modules in

R-mod. Let

P = P 0 × P 1 × P 2 × . . .

and filter P by the submodules

Pn = 0× . . .× 0× P n × P n+1 × . . .

Then P is strictly projective.

Proof. Consider the diagram

P
h

~~
ϕ
��

M
f // N // 0

where f is a strict surjection. We wish to define h so that the diagram is commutative.

Since ϕ and f are morphisms in R-filt, we know that ϕ(Pi) ⊂ Ni and f(Mi) ⊂ Ni.

In fact, f(Mi) = Ni because f is a strict surjection. Therefore, we can define two

new maps,

1. ϕi : P i → Ni by ϕi(pi) := ϕ(0, . . . , 0, pi, 0, . . .)

2. fi : Mi → Ni by fi(mi) := f(mi)

Note that fi is surjective because f is a strict surjection. Therefore, we can complete

the diagram

P i

hi

~~
ϕi

��
Mi

fi // Ni
// 0

in R-mod for each i ≥ 0 because P i is projective and fi is surjective.

Therefore,

ϕ(p) = ϕ(p0, p1, . . .) =
∑

ϕ(0, . . . , 0, pi, 0, . . .)

=
∑

ϕi(pi)

=
∑

fi(h
i(pi))

=
∑

f(hi(pi))

= f
(∑

hi(pi)
)
.
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So define h : P →M by h(p) :=
∑
hi(pi) which clearly gives a commutative diagram.

Furthermore, each hi(pi) ∈ Mi so that if p ∈ Pn, then h(p) =
∑
i≥n

hi(pi) ∈ Mn. That

is, h is in fact a morphism in R-filt, not just in R-mod.

The converse to Proposition 5.6.4 is also true. That is, any strict projective module

in R-filt can be written as a direct product of projective modules with this type of

filtration. In order to prove this result, and therefore characterize strict projective

modules, I will first need the results that follow.

Proposition 5.6.5. There are enough strict projectives in R-filt. That is, given an

object M in R-filt there exists a strict surjection Φ : P →M such that P is a strict

projective.

Proof. Let M be any module in R-filt with the filtration M = M0 ⊃ M1 ⊃ . . .. For

each Mi one can define a free module on its elements by Proposition 2.3.2 which we

will call F (Mi) as follows. The elements of F (Mi) are functions

σ : Mi → R

such that σ(mi) = 0 for all but finitely many mi ∈ Mi. The functions σmi : Mi → R

defined by σmi(m) = 1 for m = mi and σmi(m) = 0 elsewhere form a basis for F (Mi).

So we can write any element σ in F (Mi) as a linear combination of these σmi . We

can then define a map Φi : F (Mi)→Mi by

Φi :
n∑
i=1

riσmi 7→
n∑
i=1

rimi.

Note that each of the free modules F (Mi) is projective. Let P = F (M0) ×
F (M1)×F (M2)×. . . with the usual filtration for a countable direct product. Then by

Proposition 5.6.4, we know that P is strictly projective. For σj =

nj∑
i=1

riσmi ∈ F (Mj)

define a map as follows:

Φ : P →M

(σj)
∞
j=0 7→

∞∑
j=0

Φj(σj).

This is well-defined because each Φi(σi) ∈Mi and M is complete. This is also a map

in R-filt because Φ(Pi) ⊂Mi since each Φi(σi) ∈Mi and each Mi is closed. The map
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is surjective because the elements (σm, 0, 0, . . .) 7→ m. Finally, Φ is strict because if p̄

is in both Φ(P ) and Mi, then p̄ = Φ(0, . . . , 0, σp̄, 0, . . .) where σp̄ is in the i-th position

is in Φ(Pi). Thus, there are enough strict projective modules in R-filt.

Proposition 5.6.6. A module S ∈ R-filt is a strict projective module if and only if

S is a direct summand (in R-filt) of a module of the form F 0×F 1×F 2× . . . where

each F i is a free R-module. This is analogous to Proposition 2.3.5 for R-mod.

Proof. Suppose that S is a direct summand of a module, F , of the given form. Then

consider the diagram

F

π
��

g

��

S
k

��
h
��

i

dd

A
f // B // 0

where the row is exact, f is strict, π is the projection of F onto the summand S, i

is the canonical injection of S into F , and g exists because F is strictly projective.

Define the map k := gi. Then fk = fgi = hπi = h so the diagram is commutative

and thus S is strictly projective.

Next suppose that S is a strict projective module. Consider the diagram

S

idS
g

��
0 // K i // F

f // S // 0

where the map f comes from there being enough strict projectives, K is the kernel

of f filtered by the submodules Kn = K ∩ Fn, and g comes from S being strictly

projective. By construction, the row in the above diagram is a strict exact sequence.

In fact, this diagram also verifies the existence of a section of f : F → S. Hence, by

Lemma 5.3.17, S is a direct summand of F in R-filt.

I now have enough to completely characterize the strict projective modules in the

following way.
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Theorem 5.6.7. An object S ∈ R-filt is a strict projective module if and only if

S = S0 × S1 × S2 × . . .

filtered by the submodules Sn = 0× . . .× 0× Sn × Sn+1 × . . . where Sn is projective

for all n ≥ 0.

Proof. I have already shown the reverse direction of this theorem in Proposition 5.6.4.

That is, a module of the given form with this particular filtration is a strict projective

whenever each Sn is projective.

Conversely, suppose that S is a strict projective. Then S is a direct summand

(in R-filt) of a module of the form F 0 × F 1 × F 2 × . . . where each F i is free by

Proposition 5.6.6. Even further, S must be of the form

S = S0 × S1 × S2 × . . .

with filtration

Sn = 0× . . .× 0× Sn × Sn+1 . . .

by Proposition 5.4.13 and all that remains to show is that each Sn is projective.

Suppose we have exact sequences

0→ An
fn−→ Bn gn−→ Cn → 0

of modules in R-mod for each n ≥ 0. Define A, an object in R-filt, as

A :=
∞∏
n=0

An

filtered by An = 0× . . .× 0× An × An+1 × . . . as usual. Define two more objects B

and C in R-filt similarly as

B :=
∞∏
n=0

Bn

filtered by Bn = 0× . . .× 0×Bn ×Bn+1 × . . . and

C :=
∞∏
n=0

Cn

filtered by Cn = 0 × . . .× 0× Cn × Cn+1 × . . .. Next, define the map f : A → B in

R-filt by f((an)∞n=0) := (fn(an))∞n=0 and also the map g : B → C by g((bn)∞n=0) :=

(gn(bn))∞n=0. These objects and morphisms are induced by those from the above exact
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sequences and thus

0→ A
f−→ B

g−→ C → 0

is a strict exact sequence.

Let hn : Sn → Cn be any linear map for each n ≥ 0 and define h : S → C by

h((sn)∞n=0) := (hn(sn))∞n=0. Then consider the diagram

S

h
��

k

��
0 // A

f // B
g // C // 0

where k exists because S is a strict projective. Now restricting g, h, and k induces

the commutative diagrams

Sn

hn
��

kn

}}
Bn

gn // Cn

and

Sn+1

hn+1

��

kn+1

{{
Bn+1

gn+1 // Cn+1

These two diagrams then induce the following maps between quotient modules.

1.
ḡn :

Bn

Bn+1

→ Cn
Cn+1

bn +Bn+1 7→ gn(bn) + Cn+1

2.
h̄n :

Sn
Sn+1

→ Cn
Cn+1

sn + Sn+1 7→ hn(sn) + Cn+1

3.
k̄n :

Sn
Sn+1

→ Bn

Bn+1

sn + Sn+1 7→ kn(sn) +Bn+1

Additionally, there are obvious isomorphisms

ιnS : Sn
∼=−→ Sn

Sn+1

, ιnB : Bn ∼=−→ Bn

Bn+1

, ιnC : Cn ∼=−→ Cn
Cn+1
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between the modules in the direct product and quotients of subsequent modules in

the filtration. Note that gn = (ιnC)−1 ◦ ḡn ◦ ιnB and hn = (ιnC)−1 ◦ h̄n ◦ ιnS. Therefore, I

similarly define a map kn : Sn → Bn by kn := (ιnB)−1 ◦ k̄n ◦ ιnS. With this newly

defined map, it follows that gnkn = hn because

gnkn = ((ιnC)−1 ◦ ḡn ◦ ιnB)((ιnB)−1 ◦ k̄n ◦ ιnS)

= (ιnC)−1 ◦ ḡn ◦ k̄n ◦ ιnS

and

ḡn(k̄n(sn + Sn+1)) = ḡn(kn(sn) +Bn+1)

= gn(kn(sn)) + Cn+1

= hn(sn) + Cn+1

= h̄n(sn + Sn+1).

Thus, each Sn is projective because the exact sequences

0→ An
fn−→ Bn gn−→ Cn → 0

and the linear maps

hn : Sn → Cn

were arbitrary.

5.7 Strict Projective Resolutions

The fact that there are enough projectives in R-mod is used to construct projective

resolutions. Similarly, we can use the fact that there are enough strict projective

modules in R-filt to construct strict projective resolutions.

Definition 5.7.1. Let M be a module in R-filt. A strict exact sequence of the form

P : · · · → Pn+1
dn+1−→ Pn

dn−→ Pn−1 → · · ·
d1−→ P0

ε−→M → 0

in which every Pn is a strict projective module in R-filt is called a strict projective

resolution of the module M .
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Theorem 5.7.2. Every module M in R-filt has a strict projective resolution.

Proof. The proof is exactly analogous to the proof in R-mod. Since there are enough

strict projective modules, there is a strict exact sequence

P0
ε→M → 0

where P0 is a strict projective module. For the inductive step, we let Kn be the kernel

of the map Pn → Pn−1 filtered by the submodules K
(i)
n = Kn ∩ P (i)

n . Then, again

using the fact that there are enough strict projectives, we construct the diagram

Pn+1

πn "" ""

// Pn
dn // · · · d1 // P0

ε //M // 0

Kn

. � in

>>

where Pn+1 is a strict projective module, πn is a strict surjection, and let dn+1 = in◦πn.

In fact, dn+1 is strict because

dn+1(P
(i)
n+1) = πn(P

(i)
n+1) = πn(Pn+1) ∩K(i)

n

= Kn ∩ P (i)
n = dn+1(Pn+1) ∩ P (i)

n .

The addition of Pn+1 and dn+1 in this fashion clearly keep the sequence exact. There-

fore, every module M in R-filt has a strict projective resolution.

In R-mod we have the following comparison theorem for projective resolutions.

Theorem 5.7.3. Given a diagram

P : · · · // Pn+1
dn+1 // Pn // · · · d1 // P0

ε // A //

f

��

0

B : · · · // Bn+1
∂n+1 // Bn

// · · · ∂1 // B0
η // B // 0

of R-modules and homomorphisms in which the lower row is exact and every Pn in

the upper row is a projective R-module, then there exists a chain map f = {fn} :

PA → BB over f and two such chain maps are homotopic.

We next check that this result carries over into the category R-filt. First we need

the following lemma.
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Lemma 5.7.4. Let S be a strict projective R-module. If in the diagram

S

f
��

A
α // B

β // C

of modules and homomorphisms in R-filt the row is strict exact and βf = 0, then

there exists a homomorphism g : S → A such that αg = f .

Proof. Let B̄ = α(A) = ker β filtered by the submodules B̄n = Bn ∩ α(A). Let ᾱ be

the map defined by α with the codomain restricted to α(A) = B̄. That is, ᾱ : A→ B̄

and ᾱ(a) = α(a) for all a ∈ A. By doing so, ᾱ is surjective. Also note that

ᾱ(An) = α(An) = Bn ∩ α(A) = B̄n ∩ ᾱ(A)

and thus ᾱ is a strict morphism. Since βf = 0, we have that f(S) ⊂ ker(β) = α(A) =

B̄ so we can also restrict the codomain of f to get a function f̄ : S → B̄ defined by

f̄(s) = f(s). Thus we have a diagram

S

f̄
��

A
ᾱ // B̄ // 0

with S being a strict projective module and ᾱ a strict surjection. Therefore, there

exists a map g : S → A such that ᾱg = f̄ . But if i : B̄ → B is the inclusion map,

then

αg = (iᾱ)g = i(ᾱg) = if̄ = f

as desired.

The analogous comparison theorem in R-filt would say

Theorem 5.7.5. (Comparison Theorem in R-filt) Given a diagram

S : · · · // Sn+1
dn+1 // Sn // · · · d1 // S0

ε // A //

f

��

0

B : · · · // Bn+1
∂n+1 // Bn

// · · · ∂1 // B0
η // B // 0

of R-modules and homomorphisms in R-filt in which the lower row is strict exact

and every Sn in the upper row is a strict projective R-module, then there exists a

chain map f = {fn} : SA → BB over f and two such chain maps are homotopic.
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Proof. Since S0 is a strict projective module, fε is a homomorphism, and η is a strict

surjection there is a homomorphism f0 : S0 → B0 such that fε = ηf0. Now suppose

that we have constructed functions f0, . . . , fn such that the given diagram commutes.

Then the map ∂n(fndn+1) = (∂nfn)dn+1 = (fn−1dn)dn+1 = fn−1(dndn+1) = 0. Now

using Lemma 5.7.4 there exists a function fn+1 : Sn+1 → Bn+1 making the diagram

commute. Therefore a chain map f = {fn} : SA → BB over f exists by induction.

Suppose that g = {gn} is another chain map over f . Let us look at the beginning

of the above diagram:

S : · · · d2 // S1
d1 //

f1
��
g1
��

S0
ε //

f0
��
g0
��~~

A //

f
��~~

0

B : · · ·
∂2
// B1 ∂1

// B0 η
// B // 0

and define the map s−1 : A→ B0 by s−1(a) = 0 and s0 : S0 → B1 using the fact that

S0 is strictly projective to complete

S0

f0−g0
��

s0

~~
B1 ∂1

// B0 η
// B

Then certainly, f0 − g0 = ∂1s0 + s−1ε because s−1 is the zero map. Now for the

inductive step we want to focus on a portion of the diagram further down the line.

So assume that we have already constructed si : Si → Bi+1 such thatf0 − g0 = ∂1s0 + s−1ε

fi − gi = ∂i+1si + si−1di 1 ≤ i ≤ n;

and consider the following diagram:

S : · · · // Sn+2
dn+2 //

fn+2

��
gn+2

��

Sn+1
dn+1 //

fn+1

��
gn+1

��{{

Sn //

fn
��
gn

��||

· · ·

B : · · · // Bn+2 ∂n+2

// Bn+1 ∂n+1

// Bn
// · · ·

Then we construct the dotted map by completing

Sn+1

fn+1−gn+1−sndn+1

��

sn+1

{{
Bn+2 ∂n+2

// Bn+1 ∂n+1

// Bn
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which can be done using Lemma 5.7.4 because Sn+1 is strictly projective, the row is

strict exact, and ∂n+1(fn+1− gn+1− sndn+1) = 0. Thus we can construct s = {sn} by

induction and s is a chain homotopy between f and g because

fn − gn = ∂n+1sn + sn−1dn

for all n ≥ 0 by construction.

5.8 Strict Injective Objects

In this section I will discuss injectivity with respect to strict morphisms instead of all

morphisms in the category R-filt. One reason for doing this is to look for something

more interesting than the categorical injective objects in R-filt which were discussed

last section. The main result of this section is a characterization of strict injective

modules.

Definition 5.8.1. A module E in the category R-filt is called a strict injective

module if we can complete a diagram of the form

0 // A

f
��

α // B

~~
E

to a commutative diagram whenever α is a strict injection. These are the so-called H-

injectives where H is the set of all strict injective maps (i.e. strict monomorphisms).

Proposition 5.8.2. Let E0, E1, E2, . . . be any sequence of injective (in R-mod) mod-

ules. Let

E = E0 × E1 × . . .

filtered by En = 0× . . .× 0× En × En+1 × . . .. Then E is a strict injective module.

Proof. Consider the diagram

0 // A

f
��

α // B

~~
E

in R-filt where α is a strict injection. Restricting the maps f and α gives the diagram

0 // An

fn
��

αn // Bn

gn}}
En
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in R-mod where fn =En |f |An and αn =Bn |α|An is injective. Also, En is injective so

the map gn exists. Consider the induced map

ᾱn :
An
An+1

→ Bn

Bn+1

an + An+1 7→ αn(an) +Bn+1.

This map is injective because α is strictly injective. Similarly, consider the induced

map f̄n :
An
An+1

→ En
En+1

and let ιnE : En
∼=→ En
En+1

be the obvious isomorphism. Then

the diagram

0 // An
An+1

ιnE
−1◦f̄n

��

ᾱn // Bn

Bn+1

ḡn
||

En

can be completed in R-mod. Let jn : Bn →
Bn

Bn+1

be the canonical surjection. Then

define hn : Bn → En by hn := ḡn ◦ jn. It is important to note that hn(Bn+1) = 0 and

therefore hn(Bl) = 0 for all l > n.

Now for each hn we want to extend the domain to B. Such maps exist because

the diagrams

0 // Bn

hn
��

� � // B

kn~~
En

can be completed (En is injective) in R-mod. Next, each kn : B → En can be thought

of as a map from B → E, by composing with the canonical injection En → E, such

that kn(B) ⊂ 0× . . .× En × 0× . . .. Finally, define g : B → E to be the sum of the

kn. Then g(b) =
∑
kn(b) which converges because kn(b) ∈ 0× . . .×En×0× . . . ⊂ En

for all n.

Finally note that the map g : B → E is actually a map in R-filt because if

bm ∈ Bm then

g(bm) =
∞∑
n=0

kn(bm) =
∞∑
n=m

kn(bm) ∈ Em.

Remark 5.8.3. Recall that there are enough injective modules in R-mod. Any

R-module A is an abelian group and can therefore be embedded into a divisible

abelian group D. Then it can be shown that A can be embedded into the injective
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R-module Hom(R,D) (see [19], for example). I use this idea as the building block

to constructing a strict injective object E in R-filt for each object M so that there

exists a strict injection θ : M → E.

Proposition 5.8.4. There are enough strict injective modules in R-filt. That is,

given an object M ∈ R-filt there exists a strict injection ε : M → E such that E is

a strict injective module.

Proof. Let M be an object in R-filt with filtration {Mi} and consider the modules

Ki = M/Mi+1. Each Ki is an abelian group and may therefore be embedded in a

divisible abelian group Di by an injection αi : Ki → Di. Also, Ki can be embedded

in the injective module Hom(R,Di) by the injection θi : Ki → Hom(R,Di) defined

by θi(ki) = αifki where fki : R→ Ki is the map defined by fki(r) = rki

The object

E := Hom(R,D0)× Hom(R,D1)× Hom(R,D2)× . . .

in R-filt with Di from above with the filtration

En = 0× 0× . . .× 0×Hom(R,Dn)×Hom(R,Dn+1)× . . .

is strictly injective by Proposition 5.8.2. Define a map

θ : M → Hom(R,D0)× Hom(R,D1)× Hom(R,D2)× . . .

m 7→ (α0fk0 , α1fk1 , α2fk2 , . . .)

where ki = m+Mi+1.

First note that if m ∈Mn, then ki = 0 for i = 0, 1, . . . , n− 1. Thus,

θ(m) = (α0fk0 , α1fk1 , α2fk2 , . . .)

= (0, . . . , 0, αnfkn . . .) ∈ En.

That is, θ is a morphism in R-filt.

Next, if θ(m1) = θ(m2), then rαi(m1 + Mi+1) = rαi(m2 + Mi+1) for all i and for

all r ∈ R. In particular this is true for r = 1. Therefore m1 +Mi = m2 +Mi for all i

and hence m1 = m2 (i.e. θ is injective).

Finally, suppose e ∈ θ(M) ∩ En. Then e = (αifki)
∞
i=0 for some m ∈ M (again

where ki = m + Mi+1). In fact, αifki = 0 for i = 0, 1, . . . , n − 1 because e ∈ En.
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That is, αi(rki) = 0 for all r ∈ R and i = 0, 1, . . . , n− 1. In particular, αi(ki) = 0 for

i = 0, 1, . . . , n− 1. But αi is injective so ki = 0 for i = 0, 1, . . . , n− 1. Thus, m ∈Mn

because kn−1 = m+Mn. Hence, e ∈ θ(Mn) and θ is strict.

Corollary 5.8.5. Every strict injective module in R-filt is a direct summand of a

strict injective module of the form

E = E0 × E1 × . . .

filtered by En = 0×0× . . .×0×En×En+1× . . . where each Ei is injective in R-mod.

Proof. Let Q be a strict injective object in R-filt. Then we can embed Q into a

strict injective module E of the form in Proposition 5.8.4 by using a strict injection.

Note that doing so means that there is an isomorphic copy of Q in E which has

the filtration induced by being a submodule of E. Thus the quotient E/Q with the

induced filtration is actually an object in R-filt. Therefore we can use the quotient

module E/Q to construct a strict exact sequence

0→ Q
i−→ E

p−→ E/Q→ 0

in R-filt. Since Q is strict injective, there is a map, g : E → Q, in R-filt such that

gi = idQ. This implies that E = Q⊕ E/Q in R-filt by Lemma 5.3.18.

This shows that every strict injective module is a direct summand of another strict

injective module. It is also true that direct summands of strict injective modules are

strict injective. Since I don’t use this again, I will just state it without proof:

Lemma 5.8.6. If E = M ⊕N in R-filt with E strictly injective, then M and N are

strictly injective.

Next we get the actual characterization of the strict injective modules.

Theorem 5.8.7. A module Q in R-filt is a strict injective module if and only if

Q = Q0 ×Q1 ×Q2 × . . .

filtered by the submodules Qn = 0× . . .× 0×Qn ×Qn+1 × . . . where Qn is injective

(in R-mod) for all n ≥ 0.

Proof. We now have that every strict injective module is a direct summand of another

strict injective module of the form

E = E0 × E1 × E2 × . . .
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filtered by En = 0 × . . . × 0 × En × En+1 . . . from Corollary 5.8.5. Then using

Proposition 5.4.13 we see that Q must have the form Q = Q0×Q1×Q2× . . . filtered

as usual.

Suppose we have exact sequences

0→ An
fn→ Bn gn→ Cn → 0

of modules for each n = 0, 1, 2, . . .. Define A, an object in R-filt, as

A :=
∞∏
n=0

An

filtered by An = 0× . . .× 0× An × An+1 × . . . as usual. Define two more objects B

and C in R-filt similarly as

B :=
∞∏
n=0

Bn

filtered by Bn = 0× . . .× 0×Bn ×Bn+1 × . . . and

C :=
∞∏
n=0

Cn

filtered by Cn = 0 × . . . × 0 × Cn × Cn+1 × . . .. We can construct the strict exact

sequence

0→ A
f→ B

g→ C → 0

where f((an)) := (fn(an)) and g((bn)) := (gn(bn)). Let hn : An → Qn be any linear

map for each n ≥ 0 and h : A→ Q be the linear map such that h((an)) := (hn(an)).

Then we consider the diagram

0 // A
f //

h
��

B
g //

k��

C // 0

Q

where k exists because Q is strictly injective. Now restricting f , h, and k there are

also commutative diagrams

An
fn //

hn
��

Bn

kn}}
Qn

and

An+1
fn+1 //

hn+1

��

Bn+1

kn+1{{
Qn+1
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From these we define the maps

1.
f̄n :

An
An+1

→ Bn

Bn+1

an + An+1 7→ fn(an) +Bn+1

2.
h̄n :

An
An+1

→ Qn

Qn+1

an + An+1 7→ hn(an) +Qn+1

3.
k̄n :

Bn

Bn+1

→ Qn

Qn+1

bn +Bn+1 7→ kn(bn) +Qn+1

Additionally, there are obvious isomorphisms

ιnQ : Qn ∼=−→ Qn

Qn+1

, ιnA : An
∼=−→ An

An+1

, ιnB : Bn ∼=−→ Bn

Bn+1

which we will use to create a map kn : Bn → Qn. One can check that

fn = (ιnB)−1 ◦ f̄n ◦ ιnA and hn = (ιnQ)−1 ◦ h̄n ◦ ιnA.

Therefore, we similarly define a map kn : Bn → Qn by

kn := (ιnQ)−1 ◦ k̄n ◦ ιnB.

All that remains to be shown is that knfn = hn. This follows because

knfn = ((ιnQ)−1 ◦ k̄n ◦ ιnB)((ιnB)−1 ◦ f̄n ◦ ιnA)

= (ιnQ)−1 ◦ k̄n ◦ f̄n ◦ ιnA

and

k̄n(f̄n(an + An+1)) = k̄n(fn(an) +Bn+1

= kn(fn(an)) +Qn+1

= hn(an) +Qn+1

= h̄n(an + An+1).
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Because the exact sequences

0→ An
fn→ Bn gn→ Cn → 0

and the linear maps

hn : An → Qn

were arbitrary, we now have that each Qn is injective.

Proposition 5.8.2 gives the reverse direction.

5.9 Strict Injective Envelopes

This section considers the idea of an injective envelope in R-filt.

Remark 5.9.1. The typical definition of an injective envelope (Definition 2.5.1) does

not translate well into R-filt. One problem is that in showing the equivalence of the

three conditions for an injective envelope a quotient is taken by a union of modules

is taken. Taking such a union with filtered modules does give a filtered submodule,

but the desired quotient will not be Hausdorff unless the union is closed.

In [7] Enochs gave the following characterization of an injective envelope.

Proposition 5.9.2. An injective envelope of a left R-module M can be characterized

as a linear map φ : M → E into an injective R-module E with two properties:

(a) Any diagram

M
φ //

  

E

��
E ′

where E ′ is an injective left R-module can be completed (or equivalently, φ is

an injection).

(b) The diagram

M
φ //

φ   

E

��
E

can be completed only by automorphisms of E (equivalently, E is an essential

extension of φ(M)).
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Remark 5.9.3. This characterization leads to a strict analogue of an injective enve-

lope in R-filt as follows:

Let M be an object in R-filt. Then for each n ≥ 0 there is an injective envelope (in

R-mod) of Mn/Mn+1, denoted E(Mn/Mn+1). The composition Mn → Mn/Mn+1 →
E(Mn/Mn+1) where the first map is the natural projection and the second is the

natural injection can be extended to a map gn : M → E(Mn/Mn+1). Using these

gns, we construct the map

g :M →
∞∏
n=0

E(Mn/Mn+1)

x 7→ (g0(x), g1(x), . . .)

and define an object I in R-filt as

I =
∞∏
n=0

E(Mn/Mn+1)

with filtration

In = 0× . . .× 0× E(Mn/Mn+1)× E(Mn+1/Mn+2)× . . .

as usual. This object I is strict injective from Theorem 5.8.7 and it turns out that g

satisfies analogous conditions to those in [7].

Lemma 5.9.4. This map g : M → I is a morphism in R-filt, injective, and strict.

Proof. Let g : M → I be as above.

(a) If mn ∈Mn (and hence mn ∈Mj+1 for all j < n), then gj(mn) = 0 for all j < n

because the diagrams

Mj

��

� � //M

gj

��

Mj/Mj+1� _

��
E(Mj/Mj+1)

commute. Therefore, g(Mn) ⊂ In, i.e. g is a morphism in R-filt.
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(b) Note that if x ∈Mj then gj(x) = 0 implies x ∈Mj+1. Suppose g(x) = 0. Then

gj(x) = 0 for all j ≥ 0. Therefore, x ∈ ∩∞n=0Mn by induction and thus x = 0,

i.e. g is an injection.

(c) Now suppose i ∈ In ∩ g(M). Then i can be written in the form

i = (0, . . . , 0, in, in+1 . . .)

where in ∈ E(Mn/Mn+1) or i = g(x) for some x ∈ M . Putting these together

shows that gj(x) = 0 for j < n and gj(x) = in otherwise. This means x ∈ Mn

by a similar argument as the previous part except that the induction may stop

at the nth position.

Proposition 5.9.5. If f : I → I is a morphism in R-filt such that the diagram

M
g //

g
��

I

f
��
I

is commutative, then f is an automorphism (in R-filt) of I.

Proof. The given diagram induces a commutative diagram (in R-mod)

Mn
gn //

gn   

In

fn
��
In

for each n ≥ 0. Furthermore, each of these diagram then induces another commuta-

tive diagram (in R-mod)

Mn/Mn+1
ḡn //

ḡn &&

In/In+1

f̄n
��

In/In+1

for each n ≥ 0. But there is an obvious isomorphism

σn : In/In+1 → E(Mn/Mn+1)

so the previous diagrams can be extended to the larger commutative diagrams

Mn/Mn+1
ḡn //

ḡn &&

In/In+1

f̄n
��

σn // E(Mn/Mn+1)

σn◦f̄n◦σ−1
n

��
In/In+1

σn // E(Mn/Mn+1)
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for each n ≥ 0. Now since E(Mn/Mn+1) is the injective envelope of Mn/Mn+1 and

σn ◦ ḡn is injective we have that σn ◦ f̄n ◦ σ−1
n is an isomorphism, and thus f̄n is an

isomorphism (in R-mod) as well.

The map gr(f) : gr(I) → gr(I) is therefore easily seen to be a bijection using

the relation between gr(f) and the f̄ns. Back in Lemma 4.5.10 we showed that gr(f)

being a bijection implies that the associated map f : I → I in R-filt is a bijection.

Then the only remaining thing to check is that the map f is actually an isomorphism

and not just a bijection.

If f is strict, then the bijection f is actually an isomorphism in R-filt by Lemma

5.3.13. To show f is strict it is enough to show that In ⊂ f(In). Furthermore, it is

enough to show that f(i) /∈ In+1 for all i ∈ In\In+1. That is, if (0, . . . , 0, zn, zn+1, . . .) ∈
I with zn 6= 0 then f(0, . . . , 0, zn, zn+1, . . .) = (0, . . . , 0, wn, wn+1) implies wn 6= 0.

Note that f(0, . . . , 0, zn+1, . . .) is an element in In+1 so wn is completely determined

by f(0, . . . , 0, zn, 0, . . .). But since σn ◦ f̄n ◦ σ−1
n is an isomorphism and induced by f

we have (σn ◦ f̄n ◦ σ−1
n )(zn) = wn and therefore wn 6= 0 when zn 6= 0.

Here are two ways to see how this strict injective envelope differs from the standard

injective envelope.

Example 5.9.6. Consider the p-adic integers, denoted Ẑp, with the filtration

Ẑp = (p0) ⊃ (p) ⊃ (p2) ⊃ . . . .

Note that (pn)
(pn+1)

∼= Z/(p) and the injective envelope of Z/(p) (as a Z-module) is

isomorphic to Z(p∞) (see Example 2.5.3). Therefore, the strict injective envelope of

Ẑp with this filtration is

Z(p∞)× Z(p∞)× . . . ,

but the injective envelope of Ẑp is Q̂p, the field of p-adic numbers (see Example 2.5.4).

Another way to see that these objects differ is to compare the Galois group of the

strict injective envelope

Ẑp ⊂ Z(p∞)× Z(p∞)× . . .

and the Galois group for the injective envelope Ẑp ⊂ Q̂p. Recall the following defini-

tions.

Definition 5.9.7. If k ⊂ K are fields, then the Galois group Gal(K/k) is the group

of automorphisms of the field K that fix all α ∈ k.
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Definition 5.9.8. The Galois group of the injective envelope M ⊂ E(M) is the

group of automorphisms of E(M) that fix all m ∈M .

Example 5.9.9. For the injective envelope Ẑp ⊂ Q̂p the Galois group is trivial.

Proof. Let f be an element of the Galois group of the injective envelope Ẑp ⊂ Q̂p.

That is, f : Q̂p → Q̂p is an automorphism and f(x) = x for all x ∈ Ẑp. In particular,

f(p) = p. All elements in Q̂p can be written in the form

x =
∑
i≥n

aip
i

where n is an integer such that an 6= 0 and 0 ≤ ai ≤ p− 1. Then,

f

(∑
i≥n

aip
i

)
= f

(
−1∑
i=n

aip
i

)
+ f

(
∞∑
i=0

aip
i

)

=
−1∑
i=n

f(aip
i) + f

(
∞∑
i=0

aip
i

)

=
−1∑
i=n

aif(p)i + f

(
∞∑
i=0

aip
i

)

=
−1∑
i=n

aip
i +

∞∑
i=0

aip
i

=
∑
i≥n

aip
i.

That is, f = idQ̂p
.

I additionally need a couple of remarks about the mappings involved here before

I can get the result that I want.

Definition 5.9.10. Given a p-adic integer x = a0 + a1p+ a2p
2 + . . . ∈ Ẑp and n ≥ 0

define
x

pn
+ Z :=

a0 + a1p+ . . .+ an−1p
n−1

pn
+ Z

to be the cosets in Z(p∞). This is a natural extension of Z(p∞) because if a p-adic

integer has finitely many ai 6= 0 then this agrees with the usual coset for the given

integer.
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Definition 5.9.11. Given a p-adic integer x = a0 + a1p+ a2p
2 + . . . ∈ Ẑp and n ≥ 0

define a map (written multiplicatively) from Ẑp × Z(p∞)→ Z(p∞) by

x

(
a

pn
+ Z

)
:=

ax

pn
+ Z.

Lemma 5.9.12. Any map (i.e. homomorphism) φ : Z(p∞) → Z(p∞) is given by

multiplication by a p-adic integer in the above sense. Moreover, the map φ is an

isomorphism if and only if x is a unit in Ẑp.

Proof. Consider any map φ : Z(p∞) → Z(p∞). We see that the restricted map

φ1 :
〈

1
p

+ Z
〉
→ Z(p∞) is completely determined by where 1

p
+Z is mapped. Suppose

φ1

(
1
p

+ Z
)

= s0
pn

+ Z. Then

0 = φ1

((
1

p
+ Z

)
+

(
p− 1

p
+ Z

))
= φ1

(
1

p
+ Z

)
+ φ1

(
p− 1

p
+ Z

)
=

(
s0

pn
+ Z

)
+ (p− 1)

(
s0

pn
+ Z

)
=
ps0

pn
+ Z

=
s0

pn−1
+ Z.

So in fact, pn−1|s0 and thus we can write φ1

(
1
p

+ Z
)

= a0
p

+ Z where 0 ≤ a0 < p.

Similarly, one can show that the restriction of φ to

φ2 :

〈
1

p2
+ Z

〉
→ Z(p∞)

is completely determined by knowing

φ2

(
1

p2
+ Z

)
=
s1

pn
+ Z =

b1

p2
+ Z

where 0 ≤ b1 < p2. Then we can write the p-adic expansion of b1, that is, write

b1 = a′0 + a1p where 0 ≤ a′0, a1 < p. Then note that

φ2

(
p

p2
+ Z

)
= φ2

(
1

p
+ Z

)
=
a0

p
+ Z
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and

φ2

(
p

p2
+ Z

)
=
pb1

p2
+ Z

=
b1

p
+ Z

=
a′0 + a1p

p
+ Z

=
a′0
p

+ Z.

Therefore, p|a0 − a′0, but this implies a0 = a′0 because 0 ≤ a0, a
′
0 < p.

Using a similar procedure for each n ≥ 0 gives a way to associate the given map

φ to the p-adic integer x = a0 + a1p + a2p
2 + . . .. In fact, the map φ is essentially

given by multiplication by x because

φ

(
a

pn
+ Z

)
= aφ

(
1

pn
+ Z

)
= a

(
a0 + a1p+ a2p

2 + . . .+ an−1p
n−1

pn
+ Z

)
= a

(
x

pn
+ Z

)
= x

(
a

pn
+ Z

)
.

Therefore, x is a unit in Ẑp (i.e. a0 6= 0) if and only if φ is an isomorphism.

Finally, before putting all this together I need to say what it means for a morphism

φ : Z(p∞)× Z(p∞)× . . .→ Z(p∞)× Z(p∞)× . . . to fix Ẑp.

Remark 5.9.13. Suppose x = a0 + a1p+ . . . is a p-adic integer. As in Lemma 5.9.4,

consider the diagram

pnẐp
� � //

��

Ẑp

ϕn

��

pnẐp

pn+1Ẑp� _

in

��
Z(p∞)
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where ϕn : Ẑp → Z(p∞) is the map defined by

a 7→ a

pn+1
+ Z

and

in :
pnẐp

pn+1Ẑp

→ Z(p∞)

is defined by

pnx+ pn+1Ẑp 7→
pnx

pn+1
+ Z =

a0

p
+ Z.

Therefore, one choice for a strict, injective morphism in R-filt from Ẑp → Z(p∞) ×
Z(p∞)× . . . is the map ϕ : Ẑp → Z(p∞)× Z(p∞)× . . . where

x 7→
(
x

p
+ Z,

x

p2
+ Z, . . .

)
.

Then to say that a map ψ : Z(p∞) × Z(p∞) × . . . → Z(p∞) × Z(p∞) × . . . fixes

Ẑp means that ψ fixes elements of the form
(
x
p

+ Z, x
p2

+ Z, . . .
)

where x is a p-adic

integer. �

The previous discussion has shown the following result:

Proposition 5.9.14. The group of automorphisms of Z(p∞)ω is the group of N×N

lower triangular matrices with p-adic units on the diagonal.

Proof. Any map φ : Z(p∞)ω → Z(p∞)ω has a matrix representation as discussed

in Section ??. Moreover, φ is an isomorphism if and only if each φii in the matrix

representation of φ is an isomorphism by Lemma 5.3.19. Finally, each φii is an

isomorphism if and only if each φii is given by multiplication by a p-adic unit by

Lemma 5.9.12.

Example 5.9.15. The Galois group for the strict injective envelope

Ẑp ⊂ Z(p∞)× Z(p∞)× Z(p∞)× . . .

is larger than the Galois group for the injective envelope Ẑp ⊂ Q̂p.

Proof. Consider the morphism ϕ : Z(p∞)×Z(p∞)× . . .→ Z(p∞)×Z(p∞)× . . . with

matrix representation 
ϕ00 0 0 . . .

ϕ10 ϕ11 0 . . .

ϕ20 ϕ21 ϕ22 . . .
...

...
...

. . .
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where ϕ00 is given by multiplication by 1 + p, ϕii is given by multiplication by 1 for

i > 0, and ϕij given by multiplication by zero for i 6= j. This map is not the identity

map, but it does fix Ẑp so it is in the Galois group for the strict injective envelope of

Ẑp.

Additionally, morphisms of the form
ϕ00 0 0 . . .

ϕ10 ϕ11 0 . . .

ϕ20 ϕ21 ϕ22 . . .
...

...
...

. . .


with ϕii given by multiplication by ui, a p-adic unit with first component 1, for

all i, ϕi,i−1 given by multiplication by −(ui − 1)/p for all i > 0, and ϕij given by

multiplication by zero for all j < i−1 when i > 1 are in the Galois group of the strict

injective envelope.

However, the Galois group for the strict injective envelope does not contain all

automorphisms of Z(p∞)×Z(p∞)× . . . with diagonal entries given by multiplication

by p-adic units with first component 1. Consider the automorphism ϕ with matrix

representation 
ϕ00 0 0 . . .

ϕ10 ϕ11 0 . . .

ϕ20 ϕ21 ϕ22 . . .
...

...
...

. . .


with ϕii given by multiplication by 1 for all i, ϕ10 given by multiplication by 1,

and ϕij given by multiplication by zero for all other pairings of indices. This is an

automorphism with diagonal entries all having first component 1, but this will not

fix any element of Ẑp that is non-zero in the first component.

5.10 Strict Injective Resolutions

The fact that there are enough injectives in R-mod is used to construct injective

resolutions. Similarly, we can use the fact that there are enough strict injective

modules in R-filt to construct strict injective resolutions.
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Definition 5.10.1. Let M be a module in R-filt. A strict exact sequence of the

form

E : 0→ A
η−→ E0 d0−→ E1 d1−→ · · · d

n−1

−→ En dn−→ En+1 → · · ·

in which every En is a strict injective module in R-filt is called a strict injective

resolution of the module M .

Remark 5.10.2. The usual procedure to construct an injective resolution is to embed

a module into an injective module, take the cokernel of the embedding, and embed

the cokernel into another injective module inductively. Cokernels in R-filt do not

behave exactly like cokernels in R-mod, but in this particular case they do. In the

proof of Corollary 5.8.5 I mentioned that embedding an object in R-filt into a strict

injective module by a strict injection meant that we could form the quotient module,

that is, the cokernel. This is in fact true for any strict injection. Therefore, the usual

procedure of constructing an injective resolution will carry through in R-filt.

Theorem 5.10.3. Every module M in R-filt has a strict injective resolution.

Proof. Since there are enough strict injectives there is a strict exact sequence

0→M
η−→ E0

where E0 is a strict injective module. For the inductive step, let Cn be the cokernel

of the map En−1 dn−1

−→ En filtered by C
(i)
n = (dn−1(En−1) + En

i )/dn−1(En−1). Then

again using the fact that there are enough strict injectives construct the diagram

0 //M
η // E0 d0 // E1 d1 // · · · d

n−1
// En

πn !! !!

// En+1

Cn
-  in

<<

where En+1 is a strict injective module, in is a strict injection, and dn = in ◦ πn. In

fact, dn is strict because

dn(En
i ) = in(πn(En

i )) = in(Cn) ∩ En+1
i

= dn(En) ∩ En+1
i .

The addition of En+1 and dn in this fashion clearly keep the sequence exact. There-

fore, every module M in R-filt has a strict injective resolution.
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Theorem 5.10.4 (Comparison Theorem for Injective Resolutions). Given a diagram

X : 0 // A

f
��

η // X0 d0 // · · · // Xn dn // Xn+1 // · · ·

E : 0 // B
ζ
// E0 δ0 // · · · // En δn // En+1 // · · ·

of R-modules and homomorphisms in R-filt in which the upper row is strict exact

and every En in the lower row is a strict injective R-module, then there exists a chain

map f = {fn} : XA → EB over f and two such chain maps are homotopic.

Proof. The proof runs similar to that for the strict projective resolution comparison

test.

The following discussion will exhibit a minimal strict injective resolution of the

p-adic integers Ẑp in R-filt. We begin by taking a strict injective map ϕ : Ẑp →
Z(p∞)×Z(p∞)× . . .. Such a map was constructed in Remark 5.9.13 and was defined

by

x 7→
(
x

p
+ Z,

x

p2
+ Z, . . .

)
.

This gives the beginning of a strict injective resolution of Ẑp as

0→ Ẑp
ϕ−→ Z(p∞)× Z(p∞)× . . .→ . . .

Note that a zero can not be the next object in this resolution because ϕ is not a

surjection. Instead, consider extending the resolution to

0→ Ẑp
ϕ−→ Z(p∞)× Z(p∞)× . . . ψ−→ Z(p∞)× Z(p∞)× . . .→ 0

where ψ is defined by the matrix representation

p 0 0 0 0 . . .

−1 p 0 0 0 . . .

0 −1 p 0 0 . . .

0 0 −1 p 0 . . .
...

...
...

...
...

. . .


.

That is, ψ is defined by

(x0, x1, x2, . . .) 7→ (px0, px1 − x0, px2 − x1, . . .).

I will show that this map is surjective, strict, and that ker(ψ) = Im(ϕ), thus com-

pleting the strict injective resolution (add zeros after this point).
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If

x =

(
a0

pn0
+ Z,

a1

pn1
+ Z,

a2

pn2
+ Z, . . .

)
∈ Z(p∞)× Z(p∞)× . . .

then the element(
a0

pn0+1
+ Z,

a0

pn0+2
+

a1

pn1+1
+ Z,

a0

pn0+3
+

a1

pn1+2
+

a2

pn2+1
+ Z, . . .

)
maps to x under ψ. Therefore ψ is surjective.

In fact, if

x =

(
0, . . . , 0,

aj
pnj

+ Z,
aj+1

pnj+1
+ Z,

aj+2

pnj+2
+ Z, . . .

)
then similarly (

0, . . . , 0,
aj

pnj+1
+ Z,

aj
pnj+2

+
aj+1

pnj+1+1
+ Z, . . .

)
maps to x under ψ. Thus, ψ is strict.

Next consider the composition of ϕ followed by ψ. Suppose a ∈ Ẑp. Then

ϕ(a) =

(
a

p
+ Z,

a

p2
+ Z, . . .

)
.

Also,

ψ(ϕ(a)) =

(
pa

p
+ Z,

pa

p2
− a

p
+ Z, . . . ,

pa

pj+1
− a

pj
+ Z, . . .

)
= (0, 0, . . .).

Therefore, Im(ϕ) ⊂ ker(ψ) and all that remains to be shown is that ker(ψ) ⊂ Im(ϕ).

Let (x0, x1, x2, . . .) ∈ ker(ψ) where

xi =
bi
pni

+ Z

for some integers 0 ≤ bi < pni and ni ≥ 0 such that gcd(bi, p) = 1 if bi 6= 0. Note that

if px0 = 0, then b0
pn0−1 ∈ Z. That is, pn0−1|b0. Thus, either b0 = 0 or n0 = 1. In either

case I can write x0 in the form

x0 =
b0

p
+ Z

described above. That is, I can take n0 = 1. Now suppose that i ≥ 1 and ni−1 = i.

Then starting with (x0, x1, x2, . . .) in ker(ψ) means pxi − xi−1 = 0. That is,

bi
pni−1

− bi−1

pi
∈ Z.
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If ni − 1 6= i then both bi = 0 and bi−1 = 0. Otherwise, ni = i + 1. Then, again in

either case, I can write xi in the form

xi =
bi
pi+1

+ Z.

Therefore, by induction, ni = i+ 1 for all n ≥ 0.

To end the argument I want to construct a p-adic integer, call it a, such that

ϕ(a) = (x0, x1, x2, . . .). I will do so by inductively finding each ai so that a =
∑

i≥0 aip
i

is as desired. Let a0 = b0(mod p). Then the first component of ϕ(a) is

a

p
+ Z =

a0

p
+ Z = x0.

Next I want a1 such that

a0 + a1p

p2
+ Z =

b1

p2
+ Z.

That is, I want a1 such that p2|b1 − (a0 + a1p). But px1 − x0 = 0 so b1
p
− a0

p
∈ Z.

Thus, p|b1 − a0. Define q1 = b1−a0
p

. Then p2|b1 − (a0 + a1p) is equivalent to p|q1 − a1.

So I let a1 = q1(mod p).

Now suppose I have found elements a0, . . . , ai−1 by taking aj = qj(mod p) for all

0 ≤ j < i where qj is the quotient after dividing bj − (a0 + a1p + . . . + aj−1p
j−1) by

pj (I know the quotient is an integer because x is in ker(ψ)). Then I want to find ai

such that

xi =
a0 + a1p+ . . .+ ai−1p

i−1 + aip
i

pi+1
+ Z

which is equivalent to

pi+1|bi − (a0 + a1p+ . . . aip
i).

But

pi|bi − (a0 + a1p+ . . .+ ai−1p
i−1)

because x is in ker(ψ). So if qi is as above, then I want ai such that

pi+1|pi(qi − ai).

That is, I want p|qi − ai. Clearly, taking ai = qi(mod p) meets this criteria.

Therefore, by induction, the p-adic integer a = a0 + a1p + a2p
2 + . . . where ai =

qi(mod p) for all i is the desired element.

Copyright c© Raymond Edward Kremer, 2014.
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Chapter 6 Strict Injective Envelopes in Other Filtered Categories

The goal of this chapter is to discuss further generalizations for strict injective en-

velopes in other filtered categories.

6.1 A Well-Ordering on Np

One way to get a well-ordering on Np is to use the lexicographical order. That is,

(a1, a2 . . . , ap) < (b1, b2, . . . , bp) provided that a1 < b1 or ai = bi for i = 1, . . . j−1 and

aj < bj for some 2 ≤ j ≤ p. The well-ordering could then, in part, be listed out as

(0, . . . , 0) < (0, . . . , 0, 0, 0, 1) < (0, . . . , 0, 0, 0, 2) < . . .

< (0, . . . , 0, 0, 1, 0) < (0, . . . , 0, 0, 1, 1) < . . .

< (0, . . . , 0, 0, 2, 0) < . . .

< (0, . . . , 0, 0, 3, 0) < . . .

< (0, . . . , 0, 1, 0, 0) < . . .

So we will look at a filtration on a module M indexed by this set. Such a filtration

will be called a multifiltration (as in Gomez-Torrecillas [9]) and is defined below.

6.2 The Category R-multifilt

Next, I want to extend the ideas from our previous work in R-filt to a category of mul-

tifiltered modules. Much like the category R-filt, we will be considering the category

whose objects are R-modules, say M , with a descending filtration of submodules

M = M(0,...,0,0) ⊃M(0,...,0,1) ⊃ . . .

indexed by the lexicographical well-ordering on Np such that M is complete and Haus-

dorff when given the topology induced by taking the filtration to be a fundamental

system of neighborhoods of zero.

In addition, we require that if γ is a limit ordinal such that γ < β for some fixed

ordinal β then M/Mγ is complete where the filtration on M/Mγ is given by(
M

Mγ

)
α

=
Mα

Mγ

for α < γ.
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Note that Mγ ⊂Mα for all α < γ and hence Mγ is contained in the intersection of all

such Mα. Conversely, suppose m̄ is in Mα/Mγ for all α < γ. Then m̄ is in (M/Mγ)α

for all α < γ. But requiring (M/Mγ) to be complete means that (M/Mγ) is Haus-

dorff (because completeness requires a metric and every metric space is Hausdorff).

Therefore m̄ = 0̄ and thus m ∈Mγ. Hence,

Mγ =
⋂
α<γ

Mα

is equivalent to the condition that M/Mγ is complete in the given topology.

Definition 6.2.1. A multifiltered module M is called continuous if it satisfies the

two equivalent conditions:

1. M/Mγ is complete where the filtration on M/Mγ is given by(
M

Mγ

)
α

=
Mα

Mγ

for α < γ

2.

Mγ =
⋂
α<γ

Mα

If M and N are multifiltered R-modules (i.e. objects in R-multifilt) then a

morphism in R-multifilt is a morphism φ : M → N as R-modules such that φ(Mα) ⊂
Nα for all α ∈ Np. Such morphisms are called multifiltered. Furthermore, such a

morphism is called strict if φ(Mα) = φ(M) ∩Nα for all α ∈ Np.

Remark 6.2.2. I will be using the following notation. Let α = (a1, a2, . . . , ap) be an

element of Np. Then by α + 1, I mean the element

(a0, a1, . . . , ap−1, ap + 1).

Most of our work in R-filt carries over in a straightforward fashion. The following

result is of particular interest because we use it to show the existence of strict injective

envelopes in R-multifilt. The proof is completely analogous to that of Proposition

5.8.2 in Chapter 5.

Proposition 6.2.3. If {Eα}α∈Np is a family of injective modules, then the module

E =
∏
α∈Np

Eα

with multifiltration given by

Eα =
∏
β<α

0×
∏
β≥α

Eβ

is a strict injective module in R-multifilt.
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6.3 Strict Injective Envelopes of Np Multifiltered Modules

Let M be a multifiltered module. For each α ∈ Np, consider the module Mα/Mα+1

and its injective envelope in R-mod denoted E(Mα/Mα+1). Then we may construct

a map gα : M → E(Mα/Mα+1) by completing the diagram:

0 //Mα
� � //

��

M

gα

��

Mα/Mα+1� _

��
E(Mα/Mα+1)

Let I =
∏
α∈Np

E(Mα/Mα+1) have the multifiltration given by

Iα =
∏
β<α

0×
∏
β≥α

E(Mβ/Mβ+1).

This module I will be the strict injective envelope of M in R-multifilt in the sense

of the following proposition. But first a lemma,

Lemma 6.3.1. Let g : M → I be the map defined by m 7→ (gα(m))α∈Np. This map

g is multifiltered, injective, and strict.

Proof. If m ∈ Mα, then gβ(m) = 0 for all β < α and hence g(m) ∈ Iα. Therefore, g

is multifiltered.

Suppose g(m) = 0. Then gα(m) = 0 for all α ∈ Np. In particular, g(0,...,0)(m) = 0.

Then from the above diagram we see that m ∈M(0,...,0,1). More generally, if m ∈Mα

then we see that m ∈ Mα+1. Furthermore, if α is a limit element, then m ∈ Mα

because m ∈ Mβ for all β < α and the multifiltration on M is continuous. Thus by

transfinite induction, g is injective.

Let iα ∈ g(M) ∩ Iα. Then iα = g(m) for some m ∈ M and the β-components of

iα with β < α are zero. It follows that gβ(m) = 0 for all β < α. Then using a similar

argument to the above, one sees that m ∈ Mβ for all β ≤ α, i.e. m ∈ Mα. Thus g is

strict.
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Proposition 6.3.2. If f : I → I is a morphism in R-multifilt such that the diagram

M
g //

g
��

I

f
��
I

is commutative, then f is an automorphism (in R-multifilt) of I.

Proof. The proof of this proposition is very similar to the proof in the R-filt case.

The only change in the argument of the first part is to change all the “n”s to “α”s.

The map gr(f) : gr(I) → gr(I) defined by (iα + Iα+1)α∈Np 7→ (f(iα) + Iα+1)α∈Np is

still an isomorphism because f̄α is an isomorphism for every α ∈ Np. In order to

show that gr(f) being an isomorphism implies f is a bijection in R-multifilt, one

must use transfinite induction instead of standard induction. The idea of the proof in

both cases is the same and the continuity assumption is needed for the limit ordinal

case of the transfinite induction.

If f is strict, then the inverse of f in R-mod is actually the inverse of f in

R-multifilt. To show f is strict it is enough to show that Iα ⊂ f(Iα). Further-

more, it is enough to show that f(i) /∈ Iα+1 for all i ∈ Iα \ Iα+1. That is, if

0 6= zα ∈ E(Mα/Mα+1) then f(0, . . . , 0, zα, zα+1, . . .) = (0, . . . , 0, wα, wα+1) implies

wα 6= 0. Note that f(0, . . . , 0, zα+1, . . .) ∈ Iα+1 so wα is completely determined by

f(0, . . . , 0, zα, 0, . . .). But since σα ◦ f̄α ◦ σ−1
α is an isomorphism and induced by f we

have (σα ◦ f̄α ◦ σ−1
α )(zα) = wα and therefore wα 6= 0 when zα 6= 0.

6.4 Further Generalization

Thus far I have shown the existence of strict injective envelopes for two different

categories of filtered modules; one with filtrations indexed by N (with ordinal number

ω) and the other with filtrations indexed by Np (with ordinal number ω+ω+ . . .+ω

where there are n copies of ω). These results generalize even further to any well-

ordered set. Note that there is an ordinal number ω + ω + . . . which is an infinite

sum. Also note that any well-ordered set is isomorphic to the set of ordinal numbers

{α|α < β} where β is a fixed ordinal number.

So to generalize further, consider a category of complete, Hausdorff, and filtered

modules where the filtration is indexed by any well-ordered set. Then all of the

above arguments follow through by simply translating to indices from a set of ordinals

{α|α < β} which is isomorphic to the well-ordered set.

Copyright c© Raymond Edward Kremer, 2014.
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Appendix A: A Note on Strictness

The notion of strictness plays an important role throughout the preceding pages. One

may wonder why the category R-filt is not assumed to have all of its morphisms be

strict. The point of this note is to show several examples which indicate reasons why

R-filt was not defined in this way.

If one were to require morphisms in R-filt to be strict and check the axioms of a

category, then the first problem one encounters is the following:

Example A.0.1 (Composition of two strict morphisms need not be strict.). Let

M 6= 0 be a left R-module. Let M̄ = M ⊕M with the filtration

M̄ ⊃ 0⊕M ⊃ 0 ⊃ 0 ⊃ . . .

i.e. M̄1 = 0 ⊕M and M̄n = 0 for n ≥ 2. Let S = M ⊕ 0 ⊂ M̄ have the filtration

induced by the filtration on M̄ . That is,

S = S ∩ M̄ ⊃ S ∩ (0⊕M) = 0 ⊃ 0 ⊃ 0 ⊃ . . .

So Sn = 0 for n ≥ 1. Then the inclusion map S ↪→ M̄ is strict.

Let ∆ = {(x, x)|x ∈ M} which is closed in M̄ because M̄ is Hausdorff. Then let

M̄/∆ have the filtration

M̄

∆
⊃ M̄1 + ∆

∆
⊃ M̄2 + ∆

∆
⊃ . . .

Then the canonical surjection M̄ → M̄/∆ is strict.

Finally, consider the composition S → M̄ → M̄/∆. Let x ∈ M such that x 6= 0.

Then (x, 0) ∈ S and the composition maps (x, 0) to (x, 0) + ∆ which is also non-zero.

But, (x, 0) + ∆ = ((x, 0) + (−x,−x)) + ∆ = (0,−x) + ∆ ∈ (M̄/∆)1. However, there

is no element in S1 = 0 that maps to (x, 0) + ∆.

Therefore, the law of compositions required in the definition of a category could

not be defined for all pairs of morphisms f : X → Y and g : Y → Z. In the same

setting, the following example shows that the sum of two strict morphisms need not

be strict either.

Example A.0.2 (Sum of two strict morphisms need not be strict.). In the same

setting as above, consider the canonical injection f : S → M̄ and a map g : S → M̄
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defined by g(x, 0) = (−x,−x). The map g is strict because g(S) = ∆ and hence

g(S)∩ (0⊕M) = 0. Suppose x 6= 0 is an element of M . Then (f + g)(x, 0) = (0,−x)

is in M̄1. However, S1 = 0 so (f + g)(S) = 0 and therefore, f + g is not strict.

Another place where requiring all morphisms in R-filt to be strict differs from

the results shown before is in regards to the notion of strict projectivity. Recall that

a strict projective module was defined as follows:

Definition A.0.1. A module P in the category R-filt is called a strict projective

module if we can complete a diagram of the form

P
h

~~ ��
M

f // N // 0

to a commutative diagram whenever f is a strict surjection. These are the so-called

H-projectives where H is the set of all strict surjective morphisms in R-filt.

Were I to require that all morphisms in R-filt be strict, then it would make sense

that this definition should additionally require that the lifting map h be strict as well.

However, a direct analogue of Proposition 5.6.4 does not exist in this case. That is,

the object

P = P 0 × P 1 × P 2 × . . .

with each P i projective and filtered by the submodules

Pn = 0× . . .× 0× P n × P n+1 × . . .

is not necessarily strictly projective if one requires h to be strict. For example,

Example A.0.3. Let R = Z be the ring of integers,

P = Z× 0× 0× . . .

be filtered as usual,

M = Z/(4) ⊃ 2Z/(4) ⊃ 0 ⊃ . . . ,

S = 2Z/(4) ⊃ 2Z/(4) ⊃ 0 ⊃ 0 ⊃ . . .

(i.e. the induced filtration as a submodule of M), and

M/S =
Z/(4)

2Z/(4)
∼= Z/(2)
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be filtered by

M/S ⊃ (M/S)1 =
M1 + S

S
= 0 ⊃ 0 ⊃ 0 ⊃ . . . .

Note that the canonical projection π : Z → Z/(2) induces a strict morphism in

R-filt π : P → M/S given by π(z, 0, 0, . . .) = z + 2Z. Also note that the canonical

projection M →M/S given by m 7→ m+ S is a strict surjection in this setting.

So consider the diagram

P

��||
M //M/S

with the given maps. Any lifting is essentially a lifting in the diagram

Z

g

��

h

zz
Z/(4)

f // Z/(2)

where f(x+ 4Z) = x+ 2Z and g(x) = x+ 2Z. Now g is surjective which means that

fh will also be surjective. Therefore, h(x) = 1 + 4Z or h(x) = 3 + 4Z for at least one

x ∈ Z in order for 1 + 2Z to be in the range of fh. Suppose h(x) = 1 + 4Z for some

x ∈ Z. Then h(2x) = 2 + 4Z, h(3x) = 3 + 4Z, and h(4x) = 0 + 4Z. On the other

hand, if h(x) = 3 + 4Z for some x ∈ Z then h(2x) = 2 + 4Z, h(3x) = 1 + 4Z, and

h(4x) = 0 + 4Z. Thus, in either case, the map h is surjective. Therefore, M1 6= 0 will

be in the image of any lifting. However, P1 = 0 so the lifting can not be strict. �

Thus, the characterization of projective modules given (Theorem 5.6.7) would not

hold if we require that all morphisms be strict.
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[13] Nǎstǎcescu, C., & Van Oystaeyen, F. (1974). Graded and Filtered Rings and

Modules. Lecture Notes in Math, 758.

[14] Nunke, R. J. (1961). Slender groups. Bulletin of the American Mathematical

Society, 67(3), 274-275.

[15] O’Neill, J. D. (1991). Slender modules over various rings. Indian J. pure appl.

Math, 22, 287-293.

102
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