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Chapter 1 History

1.1 Introduction

Bistellar flips on simplicial complexes have been studied and used in a number of
settings, both theoretical and practical. In this dissertation we will consider a non-
simplicial generalization of bistellar flips and study the cd-index of this class of op-
erations.

In Chapter 1 we present some basic definitions and a brief historical summary of
major results regarding bistellar flips, shellings, and face numbers and flag numbers.
These topics provide the motivation for this research. References are given for further
research into these topics.

In Chapter 2 we provide an overview of ideas and results of this dissertation with
some discussion of the broader context. This is meant to serve as a brief introduction
and so we leave formal definitions and technicalities for later chapters.

Chapter 3 defines general flips and studies their cd-indices. General flips are a
generalization of bistellar operations, often called flips, on non-simplicial complexes.
The cd-index of a flip records how the flip affects the cd-index of a PL-sphere, such
as the boundary complex of a polytope, that it is applied to. We present formulae
which can be used to compute the cd-index of any flip, as well as formulae for several
special classes of general flips. We pay special attention to the cd-index of the classic
bistellar flips. An enumeration result is given for flips that are “almost bistellar”.

Chapter 4 turns to the issue of flip connectivity. We present some results showing
any pair of polytopes, or PL-spheres in certain classes, can be connected with a
sequence of general flips belonging to certain classes. We also address the question of
monotone flips and sequences of flips that are monotone with respect to the cd-index.

1.2 Bistellar operations

Bistellar operations, often called flips, have been defined in a number of settings.
Regardless of the setting, bistellar flips are a certain class of minimal local changes
to a simplicial structure. In the (combinatorial) topological setting, the simplicial
structure is a pure abstract simplicial complex. In geometric settings, the simplicial
structures may be restricted to the boundaries of simplicial polytopes. As an applied
tool, bistellar flips have been employed in computational geometry and in the mod-
eling of surfaces and other manifolds. They can be also applied to several algebraic
settings, including the study of toric varieties. Bistellar flips can also be generalized
to general oriented matroids that may not be realizable as real point configurations.
See [30] for a more detailed discussion of bistellar flips in these and other settings.

We will consider the topological and geometric settings here and summarize some
major results.

1



1.2.1 Bistellar operations and simplicial complexes

A (finite) simplicial complex is a non-empty collection of subsets of a finite vertex set
that is closed under inclusion. The elements of the simplicial complex are called faces
or simplices. The dimension of a simplex is one less than the cardinality of its vertex
set. We call a complex pure if all maximal faces have the same dimension. We will
consider only pure complexes except as otherwise noted. The dimension of a pure
complex is the dimension of its maximal faces. Note that for both pure and non-pure
complexes, a complex can be determined by a list of its maximal faces, called facets.
Faces of dimension zero are called vertices ; those of dimension one are edges. Faces
that are one dimension below facets are called subfacets. We write F ≺ G if F is a
facet of G, and E ≺≺ G if E is a subfacet of G. Note that the empty set is considered
to be a face of dimension −1.

Each abstract simplicial complex has an associated topological space equipped
with a regular cell decomposition where each abstract simplex corresponds to a geo-
metric simplex of the same dimension and the geometric simplices are identified along
their common faces. We will use the same terminology for both the abstract and topo-
logical complexes, making a distinction only where there is danger of confusion. We
will use closure to mean the closure under inclusion of the abstract complex C and
denote it by C.

There are several notions that are useful in discussing simplicial complexes and
bistellar flips. The star of a face σ in a simplicial complex C is

st(σ) = {τ ∈ C : σ ⊆ τ},

that is, the set of all faces containing σ. The star is generally not a simplicial complex,
since it is not necessarily closed under inclusion. The closed star st(σ) is closure under
inclusion of the star st(σ), and thus is a valid complex.

The link of a face σ of C is

lk(σ) = st(σ) r st(σ).

That is, the lk(σ) consists of faces of C disjoint from σ to which σ may be added to
obtain an face of C.

If the link of each vertex of a pure simplicial complex is a PL-sphere or PL-ball,
then we call the complex a combinatorial manifold (with boundary).

The boundary of a simplicial manifold C is the closure of the set of subfacets of C
that are contained in only one facet. We denote this set by ∂C. The boundary of
the boundary of a simplicial manifold is the empty set. Note that this means that,
strictly speaking, ∂∂C is not a simplicial complex.

The free join of two complexes C and K with disjoint vertex sets is

C ∗K = {σ ∪ τ : σ ∈ C, τ ∈ K}.

Intuitively, the free join is obtained by embedding C and K in disjoint, non-parallel
affine subspaces and connecting every pair of simplices, one from each complex, to
form new simplices. The free join of simplicial complexes corresponds to the Cartesian
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product of their face posets. The boundary operation interacts with the free join in
a type of Leibnitz’ rule. For disjoint complexes C and K,

∂(C ∗K) = (∂C ∗K) ∪ (C ∗ ∂K) .

Observe that for any face σ in a pure simplicial complex,

st(σ) = σ ∗ lk(σ).

We can now succinctly define bistellar flips in the setting of abstract simplicial
complexes.

Definition 1.2.1. Two simplicial complexes C and C ′ are said to be related by a
bistellar flip if there are simplices σ ∈ C r C ′ and τ ∈ C ′ r C such that

1. C r stσ = C ′ r st τ ,

2. lkσ = ∂τ in C,

3. lk τ = ∂σ in C ′.

The combinatorial type of the bistellar flip is determined by the dimensions of the
simplices σ and τ , or equivalently, by the dimensions of C and σ. The two simplices σ
and τ will always have complementary dimensions so that dim(σ)+dim(τ) = dim(C).
Thus there are d+ 1 combinatorial types of (directed) bistellar flips in dimension d.

Figures 1.1 and 1.2 show all of the bistellar flips possible in two and three dimen-
sions, respectively.

1.2.2 Bistellar operations and polytopes

The “bistellar” in bistellar flip is there because a bistellar flip can be achieved by
a stellar subdivision followed by an appropriate inverse stellar subdivision. In their
1974 paper ([14]), Ewald and Shephard investigate geometric stellar equivalences of
boundary complexes of polytopes. In the proof of the main theorem they construct
a sequence of pairs of stellar and inverse stellar operations that amount to bistellar
flips. However, Ewald and Shephard did not use the term bistellar.

Ewald and Shephard define boundary complexes K and K ′ of convex polytopes
to be geometrically stellar equivalent if there is a sequence of complexes

K = K0, K1, K2, . . . , Kk, Kk+1 = K ′

such that for each pair of consecutive complexes, one can be obtained from the other
by a single geometric stellar subdivision. A geometric stellar subdivision is an op-
eration isomorphic to the change that occurs to the boundary complex by adding a
single new vertex just beyond one face of a convex polytope but beneath all other
faces (see [15] for technical definitions of beneath and beyond) and taking the convex
hull. Note that this definition allows one to pick a new embedding of the polytope
between each stellar subdivision or inverse stellar subdivision. Ewald and Shephard
prove the following theorem.

3



Figure 1.1: Two dimensional bistellar flips

Theorem 1.2.2 (Ewald–Shephard 1974, [14]). The boundary complex of any d-
dimensional convex polytope is geometrically stellar equivalent to the boundary com-
plex of any other d-dimensional convex polytope.

Note in particular that this theorem does not specify that the polytopes must
be simplicial. However, the proof deals only with simplicial polytopes, since every
polytope is geometrically stellar equivalent to its complete barycentric subdivision,
which is simplicial. The core idea of the proof is to superimpose scaled copies of the
two simplicial polytopes in “strong general position” with respect to each other and
then watch the changes to the boundary complex of the convex hull of their union as
the initially small polytope grows larger and the initially large polytope shrinks. They
show that when the combinatorial type of the boundary complex changes, there is a
single stellar subdivision of the old complex isomorphic to a single stellar subdivision
of the new complex. From our perspective, the interesting thing to note is that the
natural changes in the proof are in fact bistellar changes, not just stellar ones.

In 1978 Ewald improved upon the previous result and gave an upper bound on
the number of stellar and inverse stellar operations needed to obtain (the boundary
of) a simplicial polytope from (the boundary of) a simplex.

Theorem 1.2.3 (Ewald 1978, [13]). If P is a simplicial d-polytope and P ′ is a d-
simplex, there is a chain of k stellar operations or their inverses from P to P ′,

4



Figure 1.2: Three dimensional bistellar flips
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where k ≤ 2(fd−1(P )− vmax(P )) + d− 1− f0(P ). Here vmax(P ) is the largest number
of facets which contain a common vertex of P .

Also in 1978, Pachner published a paper ([23]) that specifically looks at the bis-
tellar equivalence of simplicial polytopes. He shows that for d ≤ 4, all combinatorial
(simplicial) d-spheres are bistellar equivalent to the boundary of a (d + 1)-simplex.
By relating all simplicial polytopes to the appropriate stacked polytope, Pachner also
proves the following theorem.

Theorem 1.2.4 (Pachner 1978, [23]). If P and Q are two simplicial polytopes in the
same dimension with the same number of vertices, then the boundary complex of one
can be obtained from the boundary complex of the other by a sequence of bistellar flips
that preserves the number of vertices.

Pachner later refines the results on bistellar equivalence of simplicial polytopes in
a 1981 paper [24]. He shows that the minimal number of bistellar flips required to
obtain a simplicial polytope with a given h-vector is at least hb d

2
c− 1. Pachner shows

that this bound is tight for d ≤ 5, and conjectured that it is tight for d ≥ 6 as well.
Lee [17] later showed that this is indeed the case.

1.2.3 Bistellar flips and PL-manifolds

A PL-manifold is a topological manifold equipped with a piecewise-linear structure.
For our purposes, it can be assumed that this structure is determined by a particular
cellular structure on the manifold.

The following results demonstrate that PL-manifolds behave in a manner generally
consistent with intuition.

Theorem 1.2.5. 1. The union of two d-dimensional PL-balls attached along their
common boundary is a d-dimensional PL-sphere.

2. The closure of the complement of a d-dimensional PL-ball embedded in a d-
dimensional PL-sphere is a d-dimensional PL-ball.

3. The union of two d-dimensional PL-balls, attached along a (d− 1)-dimensional
PL-ball on their boundary is a d-dimensional PL-ball.

4. The free join of two PL-balls is a PL-ball.

5. The free join of a PL-ball with a PL-sphere is a PL-ball.

6. The free join of two PL-spheres is a PL-sphere.

See section 4.7 of [7], [16], and [29] for these and other fundamental results in
PL-topology.

In a 1987 paper [25], Pachner studies bistellar flips in a broader setting of simplicial
PL-manifolds. A PL-manifold is a topological manifold (with boundary) equipped
with an atlas having charts related by piecewise linear functions. A simplicial PL-
manifold is a particular triangulation of a PL-manifold.

6



Figure 1.3: A shelling operation

Figure 1.4: A bistellar flip

Theorem 1.2.6 (Pachner 1987, [25]). Two compact (boundary-less) simplicial PL-
manifolds are PL-homeomorphic if and only if they are bistellar equivalent.

Theorem 1.2.7 (Pachner 1987, [25]). Every simplicial PL-sphere can be obtained
from the boundary of a simplex by a finite sequence of bistellar flips.

This latter result is strengthened in the same paper to show that every simplicial
PL-sphere is the boundary complex of some shellable ball.

The ideas of shelling moves and bistellar flips are closely related. Pachner refers
to bistellar flips as “the inner equivalent to shellings”. Shelling and inverse shelling
operations consist of gluing on or removing facets which meet the boundary of a
manifold, with certain technical restrictions. Note that the last step of shelling a
sphere, which changes the complex from a ball to a sphere, is not considered a shelling
move in this context. Pachner’s definition of shelling and inverse shelling moves
ensures that these moves do not change the topology of the manifold. While shellings
deal with single facets along the boundary of a manifold, bistellar flips deal with
multiple facets in the interior of a manifold. Further, shelling and inverse shelling
operations induce bistellar flips on the boundary complex. Figures 1.3 and 1.4 show
a shelling operation and the corresponding bistellar flip.

Together, shelling operations and bistellar flips provide a combinatorial descrip-
tion of PL-homeomorphism for PL-manifolds.

7



Let us recall here what it means for a cell complex to be shellable.

Definition 1.2.8. A pure cell complex S is shellable if there is a shelling order of its
facets F1, F2, F3, . . . , Fs such that

1. F1 is shellable;

2. ∀2 ≤ k ≤ s, Fk ∩
⋃k−1
i=1 Fi is shellable of one less dimension;

3. Fk can be shelled starting with the facets of Fk ∩
⋃k−1
i=1 Fi.

Any ordering of a finite collection of vertices is a shelling order.

We say that the facets of Fk ∩
⋃k−1
i=1 Fi (subfacets of S) are buried by Fk. These

are faces that cease to be part of the boundary when Fk is shelled on. A com-
plex

⋃k
i=1 Fi, where 1 ≤ k ≤ s, is called an initial shelling segment of S. Likewise,

the complex
⋃s
i=k Fi is called a final shelling segment of S.

We will employ a technique of Stanley’s called S-shelling which was used in [35].
At each step of the shelling process, we “cap“ the complex by adding a single new facet
glued to the boundary of the ball to form a sphere. In general the semi-suspension
of a PL-ball is this PL-sphere obtained by “capping” the ball with a single new facet
glued to the boundary of the ball.

In 1971, Bruggesser and Mani [8] showed that all convex polytopes are shellable.
Consider a polytope P with a line passing through its interior so that the line does
not intersect more than one of the supporting hyperplanes of the facets of P in one
place. Consider a point starting on the line in the interior of P and moving outwards
to infinity, and then returning from infinity to the interior along the other half of the
line. The point will pass through the supporting hyperplanes of the facets one by one.
This order on the facets induces a shelling order and is called a line shelling. There is
a subtle difference between S-shellablility and the standard definition of shellability,
however line shellings of polytopes satisfy both definitions.

Theorem 1.2.9 (Pachner 1990, [26]). Two PL-manifolds with boundary are PL-
homeomorphic if and only if they are related by a sequence of shelling, inverse shelling,
and bistellar operations.

Theorem 1.2.10 (Pachner 1990, [26]). Two PL-balls, or two PL-manifolds with
spherical boundaries are PL-homeomorphic if and only if they are related by a sequence
of shelling and inverse shelling operations.

Theorem 1.2.11 (Casali 1995, [9]). Two PL-manifolds that coincide along their
boundaries are PL-homeomorphic if and only if they are bistellar equivalent.
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1.3 Face numbers and flag numbers

1.3.1 Face numbers

The study of the face numbers began with Euler and his famous polyhedral relation.
In modern terminology, it is stated as follows.

Theorem 1.3.1 (Euler’s Polyhedral Relation). If P is a three dimensional polytope,
then

f0(P )− f1(P ) + f2(P ) = 2.

The fi here are the face numbers or f -vector, which is simply a record of the
number of faces in each dimension. More precisely, f = (f−1, f0, f1, . . . ) where

fi = fi(C) = number of i-faces of C.

Trying to understand and characterize the f -vectors of polytopes has been a major
goal in the study of polytopes. A generalization of Euler’s Polyhedral Relation was
discovered, with many attempts at proofs, between Schläfli’s discovery in 1852 [31],
arguably the first, and Poincaré’s 1899 proof [27, 28], now recognized as the first
complete proof. Other earlier attempts relied on the then unproven assumption that
the boundary complexes of polytopes were always shellable.

Theorem 1.3.2 (Euler–Poincaré–Schläfli Relation). If P is a convex d-polytope
with fi i-faces, then

d−1∑
i=0

(−1)ifi = 1− (−1)d.

More on this relation and its history can be found in Chapter 8 of [15].
The next great step forward in the quest to characterize the f -vectors of poly-

topes came with Steinitz’s 1906 publication of a complete characterization for three
dimensions.

Theorem 1.3.3 (Steinitz, [36]). The f -vectors of convex 3-polytopes are exactly those
integer vectors (f0, f0 + f2 − 2, f2) such that

1

2
f0 + 2 ≤ f2 ≤ 2f0 − 4.

The situation in four dimensions has proven more complicated, and no analogous
result has yet been shown.

A new set of relations were conjectured for simplicial polytopes by Dehn [10] in
1905 and proven in 1927 by Sommerville [32]. This relation is especially simple and
beautiful when expressed in terms of the h-vector.

If we let F (t) =
∑d

j=0 fj−1t
j be the generating function for the f -vector, then

the h-vector of a simplicial polytope can be defined as the coefficients in the related
generating function (1− t)dF ( t

1−t) =
∑

i hit
i. Explicitly,

hi =
i∑

j=0

(−1)i+j
(
d− i
d− j

)
fj−1.
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Now we can state the Dehn–Sommerville Relations.

Theorem 1.3.4 (Dehn–Sommerville Relations). If P is a simplicial d-polytope with h-
vector (h0, h1, h2, . . . , hd), then for 0 ≤ k < d

2

hk = hd−k.

The next flurry of activity in the area occurred in the 1970s. In 1970 Barnette [1]
proved the Lower Bound Conjecture for simplicial polytopes, providing a tight lower
bound for the number of faces in all dimensions for d-dimensional polytopes with
a given number of vertices. This was followed a few months later by McMullen’s
proof [20] of the Upper Bound Conjecture. The Upper Bound Theorem asserts that
the cyclic polytope has the maximum number of faces in all dimensions of any poly-
tope in the same dimension with the same number of vertices. McMullen’s proof is
notable not only for the result, but for introducing the idea of h-vectors of simplicial
polytopes. Our hi is equivalent to McMullen’s gd+1

i−1 , and this gd+1 vector was one of
a sequence of invariants.

The Upper Bound Theorem can be stated (for simplicial polytopes, which implies
the general result) as hk ≤

(
n−d+k−1

k

)
for all simplicial d-polytopes with n vertices.

McMullen, with Walkup, then proposed, and proved for some special cases, the Gener-
alized Lower Bound Conjecture which asserts that the h-vector of simplicial polytopes
is unimodal [22].

The culmination of this work was the publication of proofs in 1981 of the suf-
ficiency by Billera and Lee [6], and necessity by Stanley [33], of a characterization
conjectured by McMullen in 1971. The result, now known as the g-Theorem, provides
a complete characterization of the h-vectors, and therefore f -vectors, of simplicial
polytopes.

1.3.2 Flag vectors

For simplicial d-polytopes the g-vector (gi = hi − hi−1, 1 ≤ i ≤ bd
2
c; g0 = h0 = 1) is

the final say in combinatorial invariants. It is, in a sense, a “minimal encoding” of
the f -vector, and the f -vector carries a lot of combinatorial information. However, for
non-simplicial polytopes in dimensions three and above, there is more combinatorial
information to be had. The h-vector has been extended in several different useful
ways, but there is no single obviously “correct” definition.

In 1985, Bayer and Billera [3] gave a generalization of the Dehn-Sommerville rela-
tions for polytopes, spheres, and Eulerian posets. This generalization is given in terms
of the flag h-vector, which they called the extended h-vector. For an introduction to
posets (partially ordered sets) see [?].

The flag f -vector of a graded poset of rank d having a minimal and a maximal ele-
ment is a vector indexed by subsets of ranks. For each subset S = {s1, s2, s3, . . . , sn} ⊆
{0, . . . , d− 1}, fS is the number of chains of poset elements x1 < x2 < x3 < · · · < xn,
where the rank of xi is si + 1. The flag f -vector of a polytope is given by considering
the poset to be the faces ordered by inclusion. The rank of a face is its dimension
plus one.

10



Example 1.3.5. Consider a hexagonal prism. We compute the flag f -vector:
S fS
∅ 1
{0} 12
{1} 18
{2} 8
{0, 1} 18 · 2 = 36
{0, 2} 6 · 4 + 2 · 6 = 36
{1, 2} 6 · 4 + 2 · 6 = 36
{0, 1, 2} 12 · 3 · 2 = 72

♦

The flag h-vector is defined in terms of the flag f -vector with an inclusion-exclusion
formula analogous to the formula for the simplicial h-vector.

hS =
∑
T⊆S

(−1)|SrT |fT .

The flag f - or h-vector of a polytope is defined to be the flag f - or h-vector of its
face lattice.

Example (1.3.5 Continued). From the flag f -vector we compute the flag h-vector:
S fS hS
∅ 1 1
{0} 12 12− 1 = 11
{1} 18 18− 1 = 17
{2} 8 8− 1 = 7
{0, 1} 36 36− 18− 12 + 1 = 7
{0, 2} 36 36− 8− 12 + 1 = 17
{1, 2} 36 36− 8− 18 + 1 = 11
{0, 1, 2} 72 72− 36− 36− 36 + 8 + 18 + 12− 1 = 1

♦

Observe that the flag h-vector satisfies the symmetry relation hS = hS̄, where S̄
is the set complement.

Although the flag f -vector has 2d entries, the affine span of the flag numbers of d-
polytopes has far fewer dimensions than this. Here is the theorem which is given in
the previously mentioned paper by Bayer and Billera.

Theorem 1.3.6 (Bayer–Billera 1985, [3]). For d ≥ 1,

dim aff{{fS(P ))S⊆{1,...,d} : P is an Eulerian poset of rank d+ 1}
= dim aff{{fS(P ))S⊆{0,...,d−1} : P is a d-polytope}
= Fd − 1,

where Fd is the dth Fibonacci number.

11



1.3.3 The cd-index

The ab-index of a d-polytope, or more generally, of a graded poset of rank d+ 1, is a
polynomial in the non-commuting variables a and b defined by the flag h-vector. For
each set S ⊆ {0, . . . , d− 1}, define the index monomial of S to be uS = u0u1 · · ·ud−1

where

ui =

{
a if i 6∈ S (i is absent),

b if i ∈ S (i be there).

Then the ab-index is
Φ =

∑
S⊆{0,...,d−1}

hSuS.

Fine observed that this polynomial can be written in terms of (a + b) and (ab + ba).
Bayer and Klapper [4] confirmed this and proved that the ab-index can indeed be
written in terms of c = a + b and d = ab + ba (with integer coefficients) exactly
when the poset in question satisfies the Generalized Dehn–Sommerville equations.
This new index is called the cd-index and we will denote the cd-index of a poset or
complex P by Ψ(P ).

Example (1.3.5 Continued). From the flag h-vector we compute the ab- and cd-
indices:

uS hS (a + b)3 (ab + ba)(a + b) (a + b)(ab + ba)
aaa 1 1
baa 11 1 10
aba 17 1 10 6
aab 7 1 6
bba 7 1 6
bab 17 1 10 6
abb 11 1 10
bbb 1 1

The ab-index is Φ = 1aaa+11baa+17aba+7aab+7bba+17bab+11abb+1bbb.
This can be rewritten Ψ = c3 + 10dc + 6cd in terms of c and d. ♦

Lemma 1.3.7. Suppose S is a PL-sphere of dimension d−1 with F -vector (f0, f1, . . . ).
Then

Ψ(S) =



c if d = 1

c2 + (f0 − 2)d if d = 2

c3 + (f0 − 2)dc + (f2 − 2)cd if d = 3

c4 + (f0 − 2)dc2 + (f1 − f0)cdc + (f3 − 2)c2d

+(f03 − 2f0 − 2f3 + 4)d2 if d = 4

.

It should be noted that the cd-index has a Fibonacci number of terms, which
is one more than the affine span of the possible flag f -vectors of polytopes. The
difference of one is accounted for by the fact that the coefficient of cd is always one
for any sphere. See Theorem 1.3.6.
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The cd-index of polytopes, spheres, and more general posets have been topics
of much research in the years since Bayer and Klapper’s introductory 1991 paper.
Stanley showed in 1993 that the cd-index is non-negative for all S-shellable regular
CW-spheres [35]. Bayer characterized in 2001 the signs of the coefficients of Eulerian
posets in [2]. There are cd-words with coefficients that are always non-negative and
others which can have positive or negative coefficients. Further, there are no upper
bounds for the non-negative coefficients nor are there lower bounds for the possibly
negative coefficients.

Ehrenborg and Readdy prove in [12] that the ab-index induce a coalgebra homo-
morphism from a Newtonian coalgebra of graded posets to the Newtoninan coalgebra
of ab-polynomials. Further, when one restricts to Eulerian posets and cd-polynomials
the cd-index is still a coalgebra homomorphism.

In [5] Billera and Ehrenborg prove that the cd-index of polytopes satisfies certain
monotonicity properties. They use this monotonicity to prove that the d-simplex
provides a term-wise lower bound for the cd-index of d-polytopes and further that
the cyclic polytope C(n, d) provides a term-wise upper bound for d-polytopes with
n vertices. Recall that these polytopes also serve as the lower and upper bounds for
the f -vectors of simplicial polytopes.

Copyright c© Daniel J Wells, 2010.
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Chapter 2 Overview

2.1 General flips

Bistellar flips have an intimate relationship with shelling moves. If a facet is shelled
onto or off of a shellable simplicial ball, the boundary of that ball changes by a bis-
tellar move. In this sense, bistellar moves are to spheres what shelling moves are
to balls. Shelling and inverse shelling moves have also been defined for (simplicial)
PL-manifolds with boundary. See Section 1.2.3 for more background on this. In par-
ticular, this allows one to define equivalence classes of PL-manifolds with boundary,
including those that are not shellable. These shelling moves, which deal with the
facets along the boundary, along with bistellar flips, which keep the boundary fixed,
form a complete characterization of the PL-homeomorphism classes of PL-manifolds
with boundary. So, in this view, bistellar moves are to the interior of a manifold what
shelling is to the boundary.

Shelling is well-defined for complexes that are not simplicial. Thus we are in-
spired by this idea of shelling moves on non-simplicial complexes to define something
analogous to bistellar flips that can be applied to non-simplicial manifolds. Although
we will save a formal definition of general flips until Chapter 3, we will now give an
intuitive picture of these general flips and how they relate to bistellar flips.

Consider a shellable ballB along with a shelling order of its facets F1, F2, F3, . . . , Fs.
We will use Si to denote the boundary of the union of the first i facets. Thus

Si = ∂(F1 ∪ F2 ∪ · · · ∪ Fi).

When a new facet Fi+1 is shelled onto the ball, some of its faces are glued to the
existing faces of the boundary Si. Those faces that are “buried” are now interior
faces of F1 ∪ F2 ∪ · · · ∪ Fi ∪ Fi+1 and are thus not faces of Si+1. The other faces
of Fi+1 are now part of the new boundary complex Si+1. If Fi+1 is a simplex, then Si
and Si+1 are related by a bistellar flip. The same change can be considered when Fi+1

is something other than a simplex.
In Figure 2.1, the two rightmost spheres are related to the leftmost by general

flips. The lower flip is the bistellar flip 〈Σ3〉2. The upper flip is a non-simplicial
polytopal flip. The middle figures show the related balls being glued onto the shaded
facets. Figure 2.2 shows diagrams of the same two flips.

This, roughly, is our notion of a general flip. A general flip replaces a collection
of facets of a sphere or other manifold (played by Si above) that happen to match
part of a PL-sphere (Fi above) with the remaining faces of that sphere.

Bistellar flips, stellar subdivisions, and inverse stellar subdivisions are all examples
of general flips. (See Lemma 4.0.2.) However this class also includes many other
operations. We will consider general, shellable, polytopal, simplicial, and bistellar
flips. Each of these types is strictly contained in the previous.
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Figure 2.1: A general flip and a bistellar flip realized as the result of “gluing”

Figure 2.2: A general flip and a bistellar flip

2.2 The cd-index of flips

A flip is defined by a PL-sphere S with its facets partitioned into two subcom-
plexes, S+ and S−, which are each PL-balls. We refer to S+ as the top or new
patch and S− as the bottom or old patch. The flip is denoted〈

S−, S+
〉
.

The cd-index of the flip is defined to be the difference between the cd-indices of the
semi-suspensions of the two patches,

Ψ
〈
S−, S+

〉
= Ψ(S̃(S+))−Ψ(S̃(S−)).

This can also be expressed as

Ψ 〈A,B〉 = Ψ(A ∪B)− 2Ψ(S̃(A)) + Ψ(A ∩B) · c,

where S̃(A) denotes the semi-suspension of A. (See Proposition 3.2.3.)
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If a flip is defined by the initial and final segments of a shelling order for a shellable
sphere, then the cd-index can also be calculated from the cd-index of the defining
sphere, its facets, and certain flips in two dimensions lower. By induction, it is enough
to know the cd-indices of all faces of the defining sphere.

Corollary (3.2.9). For any shellable sphere S with facets partitioned into initial and
final shelling segments S− and S+, there exists a flip 〈E−, E+〉 for each interior
subfacet E of S− determined by the shelling order on S such that

Ψ
〈
S−, S+

〉
= Ψ(S)−

∑
F≺S−

Ψ(F ) · c−
∑

E≺≺intS−
Ψ
〈
E−, E+

〉
· (2d− c2)

where the first summation is over all facets of S− and the second is over all interior
subfacets of S−.

2.3 The cd-index of bistellar flips

Bistellar flips are precisely those flips we call polytopal flips of complexity 0. We
use Σd to denote the boundary complex of a d-simplex, and the special notation 〈Σd〉k
to denote the d− 1 dimensional bistellar flip that replaces k simplices with d− k+ 1
simplices. We show that the cd-index of bistellar flips can be computed recursively
in terms of other, mostly lower dimensional flips.

Proposition (3.3.1). The following recurrence holds:

Ψ 〈Σd〉k = Ψ 〈Σd〉0 − kΨ 〈Σd−1〉0 c−
k−2∑
i=0

(k − i− 1)Ψ 〈Σd−2〉i (2d− c2),

Ψ 〈Σd〉0 = Ψ(Σd).

We use 〈Σd〉0 to denote the degenerate flip 〈∅,Σd〉 which replaces the empty set
with (the boundary complex of) a d-simplex. While it makes sense to consider such
operations flips, they must often be treated as a special case.

We will also show that the cd-index of bistellar flips can be computed directly
from the shelling components of the cd-index. Stanley defines these cd-polynomials
in terms of the changes to the cd-index of a simplex as it is S-shelled. The shelling
components form a basis for the cd-indices of simplicial polytopes that corresponds
to the simplicial h-vector. Using that fact, it is straightforward to write

Ψ 〈Σd〉k =
d−k∑
i=k

Φ̌d
i .

Further, we show the cd-index of a bistellar flip is, essentially, the difference of
shelling components.

Proposition (3.3.4).
Ψ 〈Σd〉k c = Φ̌d+1

k − Φ̌d+1
d−k+1.
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This result leads us to give a nicer recursion for bistellar flips involving the deriva-
tion G.

Proposition (3.3.5).

Ψ 〈Σd〉k =
1

2
G
[
Ψ 〈Σd−1〉k + Ψ 〈Σd−1〉k−1 + Ψ 〈Σd−2〉k−1 c

]
.

It is possible to give explicit formulae for the individual coefficients of the cd-index
for any simplicial sphere in terms of its simplicial h-vector. We do this, and can thus
prove our observation that the cd-indices of bistellar flips “begin” with the cd-index
of a simplex.

Proposition (3.3.8). For k ≤ bd/2c,

Ψ 〈Σd〉k = Ψ(Σk−1) · dcd−k−1 + Ω,

where the terms of Ω have at most d− k − 2 final cs.

2.4 The cd-index of simplicial flips of complexity 1

The polytopal flips of complexity 1 are those whose defining d-polytopes have d + 2
vertices, that is, one more than a simplex of the same dimension. These types of small
polytopes have a lot of structure and this translates to small flips as well, especially
when the polytope is also simplicial.

Every simplicial d-polytope with d+ 2 vertices has a boundary complex Σm ∗Σn,
where m+ n = d+ 2. We show that connected shellable collections of facets on such
a polytope (and thus flips defined by them) are indexed by Young diagrams that fit
in an m× n rectangle.

We also show that each such flip can be achieved as a sequence of exactly m
bistellar flips, where m ≤ n. This gives the following formula for the cd-index of
these small simplicial flips.

Proposition (3.4.8). If λ is a partition λ = λ1 + λ2 + · · ·+ λm with 0 ≤ λi ≤ n for
all i, and Fλ is the flip defined by the corresponding m × n Young diagram matrix
for λ, then

Ψ(Fλ) =
m∑
i=1

Ψ 〈Σm+n−2〉λi+i−1 .

2.5 Semi-simplicial flips

General flips lack some of the structure of bistellar flips. One feature lost is that
bistellar flips nicely “factor”. That is, we can write a bistellar flip whose defining
polytope (a d-simplex) is ∆k−1 ∗∆d−k as

〈Σd〉k = 〈∂∆k−1 ∗∆d−k,∆k−1 ∗ ∂∆d−k〉 ,

where ∗ denotes the free join.
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Analogous to this property we define a semi-simplicial flip to be a general flip of
form 〈P ∗ ∂∆k, ∂P ∗∆k〉 where P is any polytope. We show that these flips have cd-
indices that look very much like the cd-index of bistellar flips “mixed” with Ψ(P ).
The “mixing” is done by the mixing operator M , a bilinear operator M on cd-
polynomials such that

Ψ(P ∗Q) = M(Ψ(P ),Ψ(Q)).

Proposition (3.5.1).

Ψ 〈P ∗ ∂∆k, ∂P ∗∆k〉 = M (Ψ(P ),Ψ(Σk))− (k + 1)M (Ψ(P ),Ψ(Σk−1)) c

−M

(
Ψ(P ),

k−1∑
i=0

(k − i)Ψ 〈Σk−2〉i

)
(2d− c2).

2.6 Flip connectivity

Any two simplicial d-polytopes can be connected by a sequence of bistellar flips.
Any two d-polytopes can be connected by a sequence of stellar subdivisions, followed
by bistellar flips, followed by inverse stellar subdivisions. In the context of poly-
topes, both bistellar flips and stellar subdivisions and their inverses are polytopal
flips. Therefore we know that any two polytopes can be connected by polytopal flips.
However, there are infinitely many polytopal flips in each dimension.

When the defining polytope has q vertices more than a simplex of the same di-
mension, we say the flip has complexity q. Thus bistellar flips have complexity 0.

Theorem (4.1.1). Any d-polytope can be obtained from a d-simplex by a sequence
of polytopal flips with complexity bounded above by k, where k is the smallest integer
such that no facet has more than k + d vertices. Further, this can be done so that
each intermediate step yields a polytope.

Two simplicial polytopes with the same number of vertices can be connected by
bistellar flips that preserve the number of vertices. We extend this result to non-
simplicial polytopes.

Proposition (4.1.6). If P and Q are two polytopes in the same dimension with the
same number of vertices, then the boundary complex of one can be obtained from
the boundary complex of the other by a sequence of polytopal flips that preserve the
number of vertices.

It is not possible in general to preserve the number of vertices and bound the
complexity. We demonstrate this with an example and then give some rough bounds
on the number of extra vertices that may be necessary to connect the simplex to a
given non-simplicial polytope.

2.7 (Non-)Monotonicity

Bistellar flips are monotonic in the sense that their cd-indices have all non-negative or
all non-positive coefficients. General flips are not, in general, monotonic. We discuss
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some classes of low dimensional or low complexity flips that are monotonic and give
some examples of non-monotonic flips.

2.8 Semi-simplicial flips

For low dimensional polytopes, d ≤ 5, semi-simplicial flips are sufficient to connect all
polytopes. We describe how to use these flips to connect any non-simplicial polytope
to a simplicial polytope in the process of proving the following more general result.

Theorem (4.3.1). If P is the boundary complex of a (d−5)-simplicial d-dimensional
polytope with facets having at most d+ q vertices, then P can be obtained from Σd by
a sequence of semi-simplicial flips with complexity at most q.

Copyright c© Daniel J Wells, 2010.
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Chapter 3 The cd-index of flips

3.1 Shelling and flipping

The classical bistellar operations, or flips can be motivated by the changes to the
boundary of a shellable simplicial ball as it is being shelled.

A bistellar flip is a local change to a (pure) d-dimensional simplicial complex that
replaces a collection of k pairwise adjacent facets with d − k + 1 pairwise adjacent
facets. In the shelling picture, the old patch of facets is that part of the boundary
complex that is being buried by the new simplex being shelled on, and the new patch
is the exposed part of the new simplex.

Bistellar flips can be defined without reference to this shelling picture, as we did
in Chapter 1. This definition naturally applies to simplicial manifolds in general. See,
for example [23].

We now generalize the notion of a flip to non-simplicial complexes. Let us revisit
the shelling picture. Consider a shellable ball that is not necessarily simplicial. At
each shelling step, there is a patch of facets that is buried and a new patch to replace
it. Again, we can define these general flips without reference to shellings.

Definition 3.1.1. We say two d-dimensional PL-manifolds C and C ′ are related
by a d-dimensional general flip if there exist a collection A of facets of C and a
collection B of facets of C ′ with the following properties:

1. C r int
⋃
A = C ′ r int

⋃
B,

2.
⋃
A and

⋃
B are PL-balls,

3. ∂ (
⋃
A) = ∂ (

⋃
B) is a PL-sphere.

The flip is denoted 〈A,B〉, and we write C ′ = 〈A,B〉C.

Although technically excluded by this definition, it will occasionally be convenient
to include the degenerate flip-like operations 〈∅, S〉 and 〈S,∅〉 which “create” and
“destroy”, respectively, an entire PL-sphere. We will generally include creation and
destruction flips in notions for classes of flips, but the reader should keep in mind
that these are not general flips. In particular, a creation or destruction flip necessarily
changes the topology of any PL-manifold to which it is applied. These operations are
to flips what the first and last steps of a shelling order are to shelling operations.

We should note here that requiring PL-balls and PL-spheres ensures certain very
important properties hold that do not hold for more general classes of balls and
spheres. In particular, the following facts are vital for flips to preserve the topology
of the manifolds to which they are applied.

Theorem 3.1.2 (1.2.5). 1. The union of two d-dimensional PL-balls attached along
their common boundary is a d-dimensional PL-sphere.
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2. The closure of the complement of a d-dimensional PL-ball embedded in a d-
dimensional PL-sphere is a d-dimensional PL-ball.

See section 4.7 of [7], [16], and [29] for these and other fundamental results in
PL-topology.

The first fact means that in our definition of flip, A∪B is always a PL-sphere. The
second ensures us that we can go the other direction. If we begin with a PL-sphere
and a PL-ball A embedded in it, we can take the closure of the complement of A
as B.

Further, we can state that if a PL-manifold C is related to a PL-sphere by general
flips, that C is also a PL-sphere.

The definition of general flip is very broad, but we will primarily concern ourselves
with general flips satisfying some condition on A∪B stronger than being a PL-sphere.
We will say that a flip 〈A,B〉 is a shellable flip if A ∪ B is a shellable sphere and A
and B are initial and final segments of some shelling order. We will call a flip 〈A,B〉
a polytopal flip if it is a shellable flip and A∪B is realizable as a polytope. If the flip
is polytopal and A ∪ B is a simplicial polytope, then we will call it a simplicial flip.
We can consider the classic bistellar flips to be simplicial flips 〈A,B〉 where A∪B is
a simplex.

We will also be interested in discriminating among flips according to their com-
plexity.

Definition 3.1.3. The complexity of a d-dimensional flip 〈A,B〉 is

f0(A ∪B)− d− 2.

This number is the number of “extra” vertices in the sphere A∪B when compared
to a simplex of appropriate dimension. Thus bistellar flips have complexity 0, since
they are precisely the general flips where A ∪ B is the boundary of a simplex. A
flip that subdivides a square into four triangles has complexity 1, since the associated
sphereA∪B is a square-based pyramid, which has one more vertex than a tetrahedron.

3.2 A general formula for Ψ 〈A,B〉.

Given a flip 〈A,B〉, we can consider the two complexes S̃(A) and S̃(B), which are
the semi-suspensions of A and B, respectively. Recall that the semi-suspension of a
ball is the sphere obtained by adding a single new facet attached to the boundary
of the ball. This is sometimes referred to as “capping” the ball. Refer to [35] for
a precise definition of the semi-suspension of near-Eulerian posets. So now we have
two PL-spheres. Since they are (finite) PL-manifolds, the cell structure on them
is a finite regular CW cell structure. The face posets of regular CW-complexes are
Eulerian [34], and Eulerian posets have cd-indices [4]. So we can make this definition.

Definition 3.2.1. The cd-index of a flip 〈A,B〉 is

Ψ 〈A,B〉 = Ψ(S̃(B))−Ψ(S̃(A)).

21



To justify that this is a good definition for the cd-index of a flip, we will prove
this theorem.

Theorem 3.2.2. If S and S ′ are PL-spheres that are related by the general flip 〈A,B〉
so that S ′ = 〈A,B〉S, then

Ψ(S ′)−Ψ(S) = Ψ 〈A,B〉 .

Proof. To show that the differences Ψ(S̃(B)) − Ψ(S̃(A)) and Ψ(S ′) − Ψ(S) are the
same we will show the differences in the flag f -vectors are the same. This is sufficient
since the coefficients of the cd-index are linear combinations of the entries of the
flag f -vector. We will do this by arguing that the only chains of faces that contribute
to the difference are those that are contained entirely in A or B.

Consider a chain of faces of S that contains no face of A. This is also a chain in S ′,
since S and S ′ agree outside of A and B. Thus such a chain contributes nothing to
the difference.

Consider next a chain that contains both faces of A and faces of S \ A. Let F
be the maximal dimensional face in this chain. The face F cannot be a face of A, or
else the entire chain would be in A. Let E be the highest dimensional face of this
chain that is also a face of A. Since E is a face of A also contained in F , E must
lie on the boundary of A. Therefore all lower dimensional faces in the chain are also
in ∂A. Since ∂A = ∂B, this chain of faces also appears in S ′. Thus this chain does
not contribute to the difference.

Swapping the roles of S and S ′, the same argument shows that chains in S ′ not
entirely in B do not contribute to the difference. Thus the only chains that contribute
are those contained entirely in A or B.

The difference Ψ(S̃(B))−Ψ(S̃(A)) consists of those chains contained entirely in A
or B, along with chains that contain the “caps” of A or B. By a parallel argument,
those chains not contained entirely in A or B do not contribute to this difference.
Thus the two differences are equal.

3.2.1 The general formula

The remainder of this chapter is devoted to various formulae for computing the cd-
index of flips of various classes. We begin with a completely general formula.

Proposition 3.2.3. For any PL-balls A and B with ∂(A) = ∂(B),

Ψ 〈A,B〉 = Ψ(A ∪B)− 2Ψ(S̃(A)) + Ψ(A ∩B) · c. (3.1)

Equivalently, for any PL-sphere S and a full dimensional PL-ball A embedded
in S,

Ψ
〈
A, S r A

〉
= Ψ(S)− 2Ψ(S̃(A)) + Ψ(∂A) · c.

Proof. First we note that if S(S) is the (full) suspension of a PL-sphere S, then Ψ(S(S)) =
Ψ(S) · c. This fact appears as Lemma 1.1 in [35]. Whenever we refer to the suspen-
sion of a d-dimensional PL-sphere S, we mean the Pl-sphere obtained by adding two
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Figure 3.1: The flip
〈

conv(Σ2 ∗ Σ1),∆2 ∗ Σ1

〉

identical d + 1-faces to S, each of which have all of S as their boundary. This is
topologically equivalent, but not combinatorially equivalent, to the usual topological
notion of suspension which is often realized instead as a a free join with Σ0.

Now Ψ(A ∪ B) + Ψ(S(A ∩ B)) = Ψ(S̃(A)) + Ψ(S̃(B)). The complex A together
with one of the maximal faces of S(A∩B) forms S̃(A). This leaves int(B) and close
of the other maximal face of S(()A ∩B), which together form S(B).

Hence, the right side of Equation (3.1) is equal to the difference Ψ(S̃(B)) −
Ψ(S̃(A)).

Note also that Proposition 3.2.3 is a direct consequence of Lemma 3.3 in [5] which
states that

Ψ(A ∪B) = Ψ(S̃(A)) + Ψ(S̃(B))−Ψ(A ∩B)c.

Example 3.2.4. Consider the simple (non-polytopal) flip〈
conv(Σ2 ∗ Σ1),∆2 ∗ Σ1

〉
.

We use ∆k to denote the solid k-dimensional simplex, so Σk = ∂∆k. This flip, shown
in Figure 3.1, replaces a single triangular bipyramid (A = conv(Σ2 ∗ Σ1)) with two
tetrahedra (B = ∆2 ∗ Σ1).

To calculate the cd-indices for this example, we will find f0, f1, f3, and f03 by
direct counting and apply Lemma 1.3.7.

The necessary flag f -vector entires for A∪B are f0 = 5, f1 = 9, f3 = 3, and f03 =
13. So

Ψ(A ∪B) = c4 + (f0 − 2)dc2 + (f1 − f0)cdc + (f3 − 2)c2d + (f03 − 2f0 − 2f3 + 4)d2

= c4 + 3dc2 + 4cdc + c2d + d2.

Now we consider S̃(A). Since A consists of a single facet, the semi-suspension
of A is the suspension of ∂A. Thus

Ψ(S̃(A)) = Ψ(∂A)c = (c3 + 3dc + 4cd)c.
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Therefore,

Ψ 〈conv(Σ2 ∗ Σ1),∆2 ∗ Σ1〉 = c4 + 3dc2 + 4cdc + c2d + d2

− 2(c3 + 3dc + 4cd)c

+ (c3 + 3dc + 4cd)c

= c2d + d2.

♦

Now we turn to flips 〈S−, S+〉, where S− ∪ S+ is a shellable sphere. Let S be a
PL-sphere with an shelling order F1, F2, . . . , Fk, . . . , Fs and let

S−k = S− = F1 ∪ F2 ∪ · · · ∪ Fk

and
S+
k = S+ = Fk+1 ∪ Fk+2 ∪ · · · ∪ Fs.

This defines a flip 〈S−, S+〉.
We will now show that shelling orders of spheres are reversible.

Lemma 3.2.5. If S is a d-dimensional spherical cell complex with shelling order
F1, F2, . . . , Fs, then Fs, Fs−1, . . . , F1 is also a shelling order.

Proof. We proceed by induction. Observe that a 0-sphere consists of two disjoint
vertices, and is trivially shellable in either order. Suppose that shelling orders of
spheres in dimension less than d are reversible. Let S be a d-dimensional spherical
cell complex with shelling order F1, F2, F3, . . . , Fs. Thus we have

1. F1 is shellable;

2. ∀2 ≤ k ≤ s, Fk ∩
⋃k−1
i=1 Fi is shellable of one less dimension;

3. Fk can be shelled starting with the facets of Fk ∩
⋃k−1
i=1 Fi.

We must show that the reverse order Fs, Fs−1, Fs−2, . . . , Fk, . . . , F1 satisfies

1. Fs is shellable;

2. ∀s− 1 ≥ k ≥ 1, Fk ∩
⋃s
i=k+1 Fi is shellable of one less dimension; and

3. Fk can be shelled starting with Fk ∩
⋃s
i=k+1 Fi.

The fact that Fs is shellable is immediate from the fact that S is shellable. Since S
is a sphere, it is a manifold with no boundary. Thus every subfacet of S is contained
in exactly two facets. In particular, each facet of Fk is contained in some Fi for

exactly one i 6= k. Therefore Fk r
⋃k−1
i=1 Fi = Fk ∩

⋃s
i=k+1 Fi. The facet Fk can be

shelled starting with Fk ∩
⋃k−1
i=1 Fi, and, since ∂Fk is a d − 1 dimensional sphere,

that this shelling order is reversible by induction. The reverse order starts with Fk ∩⋃s
i=k+1 Fi.
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Theorem 3.2.6. If S is a sphere with shelling order F1, F2, . . . , Fk, . . . , Fs, S
−
k =

F1 ∪ F2 ∪ · · · ∪ Fk is the initial shelling segment, and S+
k = Fk+1 ∪ Fk+2 ∪ · · · ∪ Fs is

the final segment, then

Ψ
〈
S−k , S

+
k

〉
= Ψ(S)−

k∑
i=1

Ψ(Fi)c−
k∑
i=1

Ψ(RFi
)(2d− c2). (3.2)

Proof. For any shellable sphere S with a shelling order F1, F2, . . . , Fs, we can write

Ψ(S) =
s∑
i=1

ΨS(Fi),

where

ΨS(Fi) = Ψ(S̃(F1 ∪ F2 ∪ · · · ∪ Fi))−Ψ(S̃(F1 ∪ F2 ∪ · · · ∪ Fi−1))

is the contribution made by Fi to the cd-index of S.
It is important to note that this contribution depends on the particular shelling

order chosen. We have two related shelling orders for S, the given shelling order and

its reverse. We will use
−→
ΨS(F ) and

←−
ΨS(F ) to distinguish between the given forward

order and the reverse order, respectively.
Thus we can now write

Ψ
〈
S−k , S

+
k

〉
=

s∑
i=k+1

←−
ΨS(Fi)−

k∑
i=1

−→
ΨS(Fi).

This will ultimately be a useful thing to do because we have a recursive formula for
the contribution of a facet.

Now consider applying the “same” trick to the cd-index of a flip, rather than
just a sphere. We can decompose the cd-index of a sphere by considering how the
cd-index changes as we shell the sphere up from nothing. With a flip, we have two
different but related spheres so we need a slightly different trick. We will begin with
the rather trivial flip

〈
S−0 , S

+
0

〉
= 〈∅, S〉 that creates the whole sphere S out nothing.

We then incrementally get closer to our desired flip by simultaneously shelling S− up
from nothing and shelling S+ down from all of S. That is, we consider the sequence
of flips

〈
S−0 , S

+
0

〉
,
〈
S−1 , S

+
1

〉
, . . . ,

〈
S−k , S

+
k

〉
and define the contribution to Ψ 〈S−, S+〉

by Fi to be
Ψ〈S−,S+〉(Fi) = Ψ

〈
S−i , S

+
i

〉
−Ψ

〈
S−i−1, S

+
i−1

〉
.

We can then write

Ψ
〈
S−k , S

+
k

〉
= Ψ(S) +

k∑
i=1

Ψ〈S−,S+〉(Fi).
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Playing with our notation a bit reveals that

−Ψ〈S−,S+〉(Fj) = Ψ
〈
S−j−1, S

+
j−1

〉
−Ψ

〈
S−j , S

+
j

〉
=

j∑
i=1

−→
ΨS(Fi)−

s∑
i=j+1

←−
ΨS(Fi)

−
j−1∑
i=1

−→
ΨS(Fi) +

s∑
i=j

←−
ΨS(Fi)

=
−→
ΨS(Fj) +

←−
ΨS(Fj). (A)

We now need to make use of two identities in addition to the result above. The
first is the aforementioned formula for the contribution of a facet. This formula is
derived by Lee [19] by analyzing Stanley’s S-shelling argument for the non-negativity
of the cd-index [35].

−→
ΨS(F ) = Ψ(RF )d +

r∑
i=`+1

−→
ΨF (Ei)c. (B)

where F is a facet of S with shelling order E1, E2, . . . , E`, . . . , Er that is compatible
with the shelling order of S. Specifically, we must have that E1 ∪ · · · ∪ E` is the
intersection of F with the union of the previous facets and RF = ∂(E1 ∪ · · · ∪ E`) is
the boundary of that intersection.

The second identity is derived from the observation that for any sphere S, the
union of the semi-suspensions of S− and S+ is equal to the union of S and the (full)
suspension of RS = ∂S− = ∂S+ = S− ∩ S+. So we have

k∑
i=1

−→
ΨS(Fi) +

s∑
i=k+1

←−
ΨS(Fi) = Ψ(S) + Ψ(RS)c.

(
Ψ(S)−

s∑
i=k+1

−→
ΨS(Fi)

)
+

(
Ψ(S)−

k∑
i=1

←−
ΨS(Fi)

)
= Ψ(S) + Ψ(RS)c.

This implies

Ψ(S)−Ψ(RS)c =
s∑

i=k+1

−→
ΨS(Fi) +

k∑
i=1

←−
ΨS(Fi). (C)

Note that the use of RS matches the use of RF above.
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Figure 3.2: The flip 〈Q ∗ ∂∆1, ∂Q ∗∆1〉, where Q is a square

Equations (A), (B), and (C) together imply

−Ψ〈S−,S+〉(Fi) =
−→
ΨS(Fi) +

←−
ΨS(Fi)

= Ψ(RFi
)d +

r∑
j=`+1

−→
ΨFi

(Ej)c

+ Ψ(RFi
)d +

∑̀
j=1

←−
ΨFi

(Ej)c

= 2Ψ(RFi
)d + (Ψ(Fi)−Ψ(RFi

)c) c

= Ψ(Fi)c + Ψ(RFi
)(2d− c2)

Example 3.2.7. Consider the polytopal flip

〈Q ∗ ∂∆1, ∂Q ∗∆1〉 ,

where Q is a solid square and ∆1 is a line segment. This flip, shown in Figure 3.2,
replaces two square-based pyramids sharing a base with four tetrahedra aranged
around a common edge.

We will compute Ψ 〈Q ∗ ∂∆1, ∂Q ∗∆1〉 via Theorem 3.2.6. As in Example 3.2.4,
we will compute the cd-indices of spheres of dimension at most 3 (boundaries of
4-dimensional balls) by directly counting chains of faces.

We need to compute the cd-indices of the union (Q ∗ ∂∆1) ∪ (∂Q ∗∆1) = S, the
two facets of Q ∗ ∂∆1 (F1, F2), and the boundary of the collection of subfacets buried
by each facet of Q ∗ ∂∆1 (RF1 , RF2).
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Observe that S = (Q ∗ ∂∆1) ∪ (∂Q ∗∆1) = Q ∗ ∆1. Counting we see f0(S) =
6, f1(S) = 13, f3(S) = 6, and f03(S) = 26. Thus

Ψ(S) = c4 + (6− 2)dc2 + (13− 6)cdc + (6− 2)c2d + (26− 2 · 6− 2 · 6 + 4)d2

= c4 + 4dc2 + 7cdc + 4c2d + 6d2.

Both of the facets of Q ∗ ∂∆1 are square-based pyramids which have 5 vertices
and 5 facets. Thus

Ψ(F1) = Ψ(F2) = c3 + 3dc + 3cd.

The first facet in any shelling order buries nothing, so RF1 = ∅ and

Ψ(RF1) = 0.

The second facet buries a single square face, so RF2 = ∂Q, and

Ψ(RF2) = c2 + 2d.

We thus have

Ψ 〈Q ∗ ∂∆1, ∂Q ∗∆1〉 = Ψ(S) + Ψ(F1)c + Ψ(F2)c

+ Ψ(RF1)(2d− c2) + Ψ(RF2)(2d− c2)

= c4 + 4dc2 +7cdc +4c2d +6d2

−(c3 + 3dc +3cd)c

−(c3 + 3dc +3cd)c

−2(c2 +2d)d

+(c2 + 2d)c2

= cdc +2c2d +2d2.

♦

3.2.2 Further unpacking of the recursive formula

It is possible to use the equation in Theorem 3.2.6 to write the cd-index of a flip
recursively in terms of (mostly) lower dimensional flips.

The first term and first summation are already the cd-indices of flips. Specifi-
cally, Ψ(S) = Ψ 〈∅, S〉 and Ψ(Fi) = Ψ 〈∅, Fi〉. The first is a flip in the same dimension
as 〈S−, S+〉, and the second is a flip in one dimension lower.

To deal with the RFi
term, we recall that RFi

= ∂(E1 ∪E2 ∪ · · · ∪E`) and so it is
in fact the boundary of a ball that is already equipped with a shelling. Thus we have
a natural sequence of flips defined by this shelling that builds up RFi

. Employing this
idea we can write

Ψ(RFi
) =

∑̀
j=1

Ψ
〈
(Ej)

−, (Ej)
+
〉
. (3.3)

Note that the shelling sequence (Ej)
`
j=1 and the ` here all depend on Fi.
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Figure 3.3: Four cubes meeting at a common vertex

Figure 3.4: RF4 built up by a sequence of flips

Example 3.2.8. Consider F1, F2, F3, and F4 to be the four facets that meet at the
vertex of a 4-dimensional cube, as in Figure 3.3. The sphere RF4 is a hexagon and
is the boundary of the three squares (E1, E2, E3) buried by F4. Consider the shelling
order of (E1, E2, E3) induced by the shelling order on {Fi}.

The first square E1 does not bury anything, so the associated flip is 〈∅, E1〉. The
square E2 buries one edge, so the associated flip is 〈C1, C3〉, where Ci denotes the 1-
dimensional complex consisting of a chain of i segments. The final square E3 in RF4

buries two edges, so the associated flip is 〈C2, C2〉. See Figure 3.4.
♦

Note that we use F ≺ S to mean F is a facet of S, and E ≺≺ S to mean E is a
facet of a facet, that is, a subfacet, of S.
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Corollary 3.2.9. For any shellable sphere S partitioned into initial and final shelling
segments S− and S+, there exists a flip 〈E−, E+〉 for each interior subfacet E of S−

determined by the shelling order on S such that

Ψ
〈
S−, S+

〉
= Ψ 〈∅, S〉 −

∑
F≺S−

Ψ 〈∅, F 〉 c−
∑

E≺≺intS−
Ψ
〈
E−, E+

〉
(2d− c2). (3.4)

Proof. This summation in (3.3) is over all subfacets buried by the facet Fi in the
shelling order for S. But in the equation (3.2) of Theorem 3.2.6 we then sum this
expression over all of the facets in S−. Since each subfacet is buried by at most
one facet, we are in fact counting each subfacet in the interior of S−. So we can now
write the cd-index of a shellable flip in terms of one trivial flip in the same dimension,
trivial flips in one dimension lower, and flips in two dimensions lower.

Although this corollary is written without explicit reference to a specific shelling
order, one must choose a shelling order for S− and a set of compatible shelling orders
for the facets of S− in order for the flips 〈E−, E+〉 to be defined. Any such set of
shelling orders will give the same result, although the individual flips do depend on
the choice of shelling orders.

3.3 Bistellar flips

It is natural to seek first to understand the cd-index of the classic bistellar flips,
so we now turn our attention to flips of complexity 0. We have several ways to
attack this question computing the cd-index of bistellar flips. First, we can apply our
general formula to the bistellar case to derive a recursive formula for the cd-index of
bistellar flips in terms of other bistellar flips. Alternatively, we can make use of the
fact that the cd-index of a simplicial polytope, and thus that of a simplicial flip, is
determined entirely by the simplicial h-vector. It is already known that the g-vector
of bistellar flips is either all zeros, or has exactly one component that is ±1 (see [17]).
Consequently, the h-vector is also very nice. We can employ this information in two
directions. We can use a result of Stanley’s that gives a basis for the cd-indices of
simplicial Eulerian posets [35]. This shows how a given component of the h-vector
contributes to the cd-index. We can also look at how a given coefficient of a given
cd-word is determined by the whole h-vector.

One should note that although the cd-index of a simplicial flip is determined
entirely by the f -vector, simplicial flips may be applied to non-simplicial spheres. It
is in this setting that one might be interested in the cd-index of a bistellar or other
simplicial flip rather than just the f -, g-, or h-vectors.

3.3.1 Recursive formula

A bistellar flip is a polytopal flip with complexity 0. The union of the old and new
patches is the boundary of a simplex. We can specify a particular bistellar flip by
giving the dimension of this simplex and the number of facets in each part. Of course,
any two of these values determines the third. It is standard to use the number of old
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Figure 3.5: 〈Σ4〉2 and 〈Σ4〉3

and new facets to index bistellar flips. However, we prefer to use the dimension and
the number of old facets. We will denote by 〈Σd〉k the d − 1 dimensional flip that
replaces k pairwise adjacent (d−1)-simplices with d−k+1 pairwise adjacent (d−1)-
simplices. The union of the two patches is the boundary of a d-simplex, denoted
by Σd. Note that flips 〈Σd〉k and 〈Σd〉d−k+1 are the inverses of each other, and thus
their cd-indices are the negatives of each other. See Figure 3.5. Also observe that
〈Σd〉0 = 〈∅,Σd〉. Thus Ψ 〈Σd〉0 = ΨΣd.

Proposition 3.3.1. The following recurrence holds:

Ψ 〈Σd〉k = Ψ 〈Σd〉0 − kΨ 〈Σd−1〉0 c−
k−2∑
i=0

(k − i− 1)Ψ 〈Σd−2〉i (2d− c2);

Ψ 〈Σd〉0 = Ψ(Σd).

Proof. The recursion follows from Corollary 3.2.9. Each facet of Σd is a copy of Σd−1,
so the sum in the second term in the right hand side of equation (3.4) collapses
to kΨ(Σd−1).

To obtain the last term we express the rightmost sum of equation (3.4) over
interior subfacets as an explicit double sum. For each of the k original facets we sum
over the subfacets that it buries. We wish to compute∑

F≺Σ−d

∑
E≺F−

Ψ
〈
E−, E+

〉
.

Since the subfacets of Σd are d − 2 dimensional simplices, the flips 〈E−, E+〉
are d− 3 dimensional bistellar flips. In particular, 〈E−, E+〉 = 〈Σd−2〉i where i is the
number of (d − 2)-dimensional facets of F shelled on before E, since each facet is
adjacent to all others. Thus∑

E≺F−
Ψ
〈
E−, E+

〉
=

|F−|∑
i=0

Ψ 〈Σd−2〉i .

31



Now we ask what |F−| (the number of facets in F−) is. Again this is just the number
of facets of Σd shelled on before F . Thus our double summation is now∑

F≺Σ−d

∑
E≺F−

Ψ
〈
E−, E+

〉
=

k∑
j=0

j∑
i=0

Ψ 〈Σd−2〉i .

Reversing the order of summation gives us the result we want.
Note that although there are two variables in the recursion, the set of initial

values k = 0 is sufficient since k is bounded above by d+ 1.

Example 3.3.2. We compute Ψ 〈Σ5〉3 using Proposition 3.3.1.

Ψ 〈Σ5〉3 = ΨΣ5 − 3ΨΣ4c

− (3− 0− 1)ΨΣ3(2d− c2)− (3− 1− 1)Ψ 〈Σ3〉1 (2d− c2).

Apply Proposition 3.3.1 again to Ψ 〈Σ3〉1.

Ψ 〈Σ3〉1 = ΨΣ3 −ΨΣ2c.

So,

Ψ 〈Σ5〉3 = ΨΣ5 − 3ΨΣ4c− 2ΨΣ3(2d− c2)− (ΨΣ3 −ΨΣ2c) (2d− c2)

= ΨΣ5 − 3ΨΣ4c− 3ΨΣ3(2d− c2) + ΨΣ2c(2d− c2)

= c5 + 4dc3 + 9cdc2 + 9c2dc + 12d2c + 4c3d + 10dcd + 12cd2

− 3
(
c4 + 3dc2 + 5cdc + 3c2d + 4d2

)
c

− 3
(
c3 + 2dc + 2cd

)
(2d− c2)

+
(
c2 + d

)
c(2d− c2)

= 0.

This computation agrees with the fact that 〈Σ5〉3 does not change the number of faces
in the patch, but only changes their orientation. In each even dimension (〈Σ5〉3 is a
4-dimensional flip) there is such a flip that is an analogue of the familiar 〈Σ3〉2 that
“flips” the diagonal of a triangulated quadrilateral. ♦

3.3.2 Explicit formula

When S-shelling a simplicial sphere, the change to the h-vector (and thus the cd-
index) that occurs at each step is the same as occurs during some particular shelling
step in shelling a simplex. Stanley denotes the change to the cd-index when shelling
on the ith facet (counting from zero) of Σd by Φ̌d

i . That is,

Φ̌d
i = Ψ

(
Λd
i+1

)
−Ψ

(
Λd
i

)
,

where Λd
i is the semi-suspension of the complex consisting of the first i facets of Σd.

These form a basis for the space of cd-indices of simplicial Eulerian posets so that
for any such poset P ,

Ψ(P ) =
d−1∑
i=0

hi(P )Φ̌d
i .
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See [35]. We call these polynomials Φ̌d
i , introduced by Stanley, the ithshelling com-

ponents of the cd-index.
Note that the semi-suspension of d facets of Σd is equivalent to all of Σd. Further-

more, Σd is already a sphere, so the semi-suspension is undefined. Thus we simply
take Λd

d = Λd
d+1 = Σd. This means that Φ̌d

d = 0.
We know that the h-vector of 〈Σd〉k, when k ≤ d− k, is given by

hi =

{
1 if k ≤ i ≤ d− k,
0 otherwise.

So therefore we know that

Ψ 〈Σd〉k =
d−k∑
i=k

Φ̌d
i .

Of course this does little good unless we understand what these basis polyno-
mials Φ̌d

i are. Ehrenborg and Readdy [12] shed some light on them by applying
coalgebraic techniques. In particular, they show that the shelling components can be
computed recursively by means of a derivation on cd-polynomials. Define G to be a
derivation on cd-polynomials such that G(c) = d and G(d) = cd.

Theorem 3.3.3 (Ehrenborg–Ready). The following recursion holds for Φ̌d
i :

G
(
Φ̌d
i

)
= Φ̌d+1

i+1 .

As a base for this recursion we observe that Φ̌d
0 = Ψ(Σd−1)c. This is the cd-index

of the suspension of Σd−1.

3.3.3 Another recursion

First we consider the difference of shelling components of the cd-index.

Proposition 3.3.4.
Ψ 〈Σd〉k c = Φ̌d+1

k − Φ̌d+1
d−k+1.

Proof. Consider the quantity Φ̌d+1
k − Φ̌d+1

d−k+1. If we write this in terms of the Λ
complexes we have

Ψ
(
Λd+1
k+1

)
−Ψ

(
Λd+1
k

)
−Ψ

(
Λd+1
d−k+2

)
+ Ψ

(
Λd+1
d−k+1

)
.

Now observe that we can take the two positive complexes, pull off the caps, and
glue them together to form a complete (d+1)-simplex. The two caps then fit together
to form the suspension of the shared boundary of the two complexes. We can do
likewise with the negative complexes. Since the cd-index of the suspension of a
sphere is the cd-index of the sphere times c, we can rewrite our quantity (with a
small abuse of notation) as

Ψ (Σd+1) + Ψ
(
∂Λd+1

k+1

)
c−Ψ (Σd+1)−Ψ

(
∂Λd+1

k

)
c =

[
Ψ
(
∂Λd+1

k+1

)
−Ψ

(
∂Λd+1

k

)]
c.
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This quantity is measuring how the cd-index of the boundary changes when we shell
on a simplex. This is precisely the cd-index of a bistellar flip. The new simplex
in Λd+1

k+1 intersects all k of the simplices of Λd+1
k , so in particular we have this is the

cd-index of the bistellar flip 〈Σd〉k.

Proposition 3.3.5. Ψ 〈Σd〉k = 1
2
G
[
Ψ 〈Σd−1〉k + Ψ 〈Σd−1〉k−1 + Ψ 〈Σd−2〉k−1 c

]
.

Proof. By applying the derivation G to Ψ 〈Σd〉k we see

G (Ψ 〈Σd〉k) =
d−k∑
i=k

G
(
Φ̌d
i

)
=

d−k∑
i=k

Φ̌d+1
i+1

= Ψ 〈Σd+1〉k+1 + Φ̌d+1
d−k+1

= Ψ 〈Σd+1〉k − Φ̌d+1
k .

Shifting indices on the last two lines, we can solve for Ψ 〈Σd〉k to get

Ψ 〈Σd〉k = GΨ 〈Σd−1〉k + Φ̌d
k (3.5)

= GΨ 〈Σd−1〉k−1 − Φ̌d
d−k. (3.6)

If we add these together, we can apply the G recursion on Φ̌ and Proposition 3.3.4.

2Ψ 〈Σd〉k = GΨ 〈Σd−1〉k +GΨ 〈Σd−1〉k−1 + Φ̌d
k − Φ̌d

d−k

= G
[
Ψ 〈Σd−1〉k + Ψ 〈Σd−1〉k−1 + Φ̌d−1

k−1 − Φ̌d−1
d−k−1

]
= G

[
Ψ 〈Σd−1〉k + Ψ 〈Σd−1〉k−1 + Ψ 〈Σd−2〉k−1 c

]

Example 3.3.6. We use Proposition 3.3.5 to calculate Ψ 〈Σ5〉2 from the cd-index of
lower dimensional bistellar flips.

Ψ 〈Σ5〉2 =
1

2
G [Ψ 〈Σ4〉2 + Ψ 〈Σ4〉1 + Ψ 〈Σ3〉1 c]

=
1

2
G
[(

cdc + c2d + 2d2
)

+
(
dc2 + 3cdc + 3c2d + 4d2

)
+
(
dc2 + 2cdc

)]
= G

[
cdc2 + 3cdc + 2c2d + 3d2

]
=
(
cdc2 + d2c + dcd

)
+ 3

(
d2c + c2dc + cd2

)
+ 2

(
dcd + cd2 + c3d

)
+ 3

(
cd2 + dcd

)
= cdc2 + 3c2dc + 4d2c + 2d2c + 6dcd + 8cd2.

♦
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3.3.4 Term-wise explicit formula

Looking at tables of coefficients of the cd-indices of bistellar flips in various dimen-
sions, we make two observations. First, looking in reverse lexicographic order, all
the zeros occur as an initial string. Secondly, the first non-zero coefficients, again in
reverse lexicographic order, are precisely the coefficients of cd-indices of simplices.

Verifying these observations is our motivation for the following proposition. We
want to compute the coefficient of a particular cd-word in the cd-index of a simplicial
flip.

Let [w] denote the coefficient of the cd-word w in a given cd-polynomial and
let uT be the cd-word corresponding to the subset T ⊆ {1, . . . , e−1} in the following
manner:

Write the characteristic 01-word for the set T. That is, the digit in position i is 1
if i ∈ T and 0 if i 6∈ T . Append a 0 at the right end of the word. Now for each 1,
replace the 1 and the digit to its right with d and then replace each remaining 0 with
c. We will use the notation S̆ to indicate an arbitrary choice of one of the two sets
that has S as its “difference set”. The difference set Ŝ of S ⊆ {0, . . . , d − 1} is the
set

{i ∈ {1, . . . , e− 1} : (i ∈ S and i− 1 6∈ S) or (i 6∈ S and i− 1 ∈ S)} .

Proposition 3.3.7. If h = (h0, h1, . . . , hd) is a simplicial h-vector satisfying the
Dehn-Sommerville relations hi = hd−i, then the corresponding cd-index is given by

[uT ] =
∑
S⊆T

(−1)|T\S|
∑
R⊆S̆

(−1)|S̆\R|

|R|−1∏
i=1

(
ri+1 + 1

ri + 1

)r|R|+1∑
i=0

(
e− i

e− r|R| − 1

)
hi

 ,

Proof. The basic flow of the conversion is thus: simplicial h-vector → simplicial f -
vector → flag f -vector → flag h-vector “=” ab-index → cd-index.

Given a simplicial h-vector, one forms the f -vector with the well know relation

fi =

j+1∑
i=0

(
d− i

d− j − 1

)
hi.

The entires fT of the flag f−-vector is determined by the simplicial f -vector entry
for the maximum element of T . There are ft|T | faces of dimension t|T | and each is
a simplex. The number of T -chains passing though a given t|T | is the product of
binomial coefficients. Each binomial coefficient counts the number of ways to choose
one ti-face contained in a given ti+1-simplex.

fT =

|T |−1∏
i=1

(
ti+1 + 1

ti + 1

) ft|T | .
From the we flag f -vector, we obtain the flag h-vector according to the definition.

hS =
∑
T⊆S

(−1)|S\T |fT .
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Now we need to express the coefficients of the cd-index in terms of the coefficients
of the ab-index (the flag h-vector). To make this clear will we need some notation.

For any set S ⊆ {0, . . . , d−1}, we can form the difference set Ŝ = {i ∈ {1, . . . , d−1} :
|{i, i− 1} ∩ S| = 1}. Further given a set T ∈ {1, . . . , d− 1} we can form two sets S

such that T̂ = S. We will denote an arbitrary choice of one of these two sets by S̆.
We will write ĥT to mean hT̆ .

We need to know which cd-words contribute to the coefficient of a given ab-word.
That is, given an ab-word v, which cd-words have v in their ab-expansions?

Observe that we can view a cd-word as a description of the set of ab-words that
appear in its expansion. To create an ab-word that will appear in the expansion, we
choose ab or ba for each d and we choose a or b for each c. It is even more profitable
to think of the ds as marking pairs of positions at which the letters in the ab-word
must be different. The cs can then still be seen as marking single places where an
arbitrary letter is needed.

So a cd-word contributes to hS corresponding to an ab-word w if the w has
differences in at least the places mandated by the ds. It is convenient to assign a
set T ⊆ {1, . . . , d− 1} to each cd-word. uT is the cd-word corresponding to T in the
following manner:

Write a 01-word by replacing d with 10 and c with 0 and then remove the final 0.
Now T is the set with this characteristic 01-word. That is, the digit in position i is 1
if i ∈ T and 0 if i 6∈ T .

The cd-words contributing to hS are precisely those of the form uT where T ⊆ Ŝ.
So we could now write a large and highly redundant system of linear equations. For
each S ⊆ {0, . . . , d− 1}, ∑

T⊆Ŝ

[uT ] = hS.

To make this system easy to solve, we will choose a subset of Fibonacci many of
these constraints and thus remove all redundancy. There is one constraint for each hS,
so we need to choose Fibonacci many subsets of {0, . . . , d − 1}. Observe that there
are the correct Fibonacci number of subsets of {1, . . . , d−1} that have no consecutive
elements. The ab-words with these as their difference sets are precisely those that
have a unique cd-word with maximal ds that contributes to it. Our special subset of
constraints is for each S ⊂ {1, . . . , d− 1} with no consecutive elements,∑

T⊆S

[uT ] = hS̆.

The associated matrix for this system is triangular, and so we can apply back
substitution to get

[uT ] =
∑
S⊂T

(−1)|T\S|hS̆.

Note that since T must necessarily have no consecutive entries, the sum is already
restricted to subsets S that contain no consecutive elements.

Now we can simply nest our string of transformations to obtain the result.
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Proposition 3.3.8. For k ≤ bd/2c,

Ψ 〈Σd〉k = Ψ(Σk−1) · dcd−k−1 + Ω,

where the terms of Ω have at most d− k − 2 final cs.

Proof. We show that

1. [vcd−k]Ψ 〈Σd〉k = 0.

2. [wdcd−k−1]Ψ 〈Σd〉k = [w]Ψ(Σk−1).

We know that

hi 〈Σd〉k =

{
1 if k ≤ i ≤ d− k,
0 if i < k or i > d− k.

So we can apply the formula

[uT ]∆kΨ(Σd) =
∑
S⊆T

(−1)|T\S|
∑
R⊆S̆

(−1)|S̆\R|

|R|−1∏
i=1

(
ri+1 + 1

ri + 1

)r|R|+1∑
i=0

(
d− i

d− r|R| − 1

)
hi 〈Σd〉k

 .

1. Now we observe that for u = vcd−k, the corresponding difference set T has
maximum element t|T | ≤ k − 1. To see this apply the algorithm for converting
a cd-word to the difference set:

a) Replace each d with 10.

b) Replace each c with 0.

c) Remove the final 0.

d) Convert the characteristic 01-word to a set.

Since u ends in cd−k, we know we have at least d − k − 1 final 0s in the char-
acteristic 01-word. If the last letter of v is d, then this becomes 10 giving one
more final 0. If the last letter of v is c, we still have one more final 0. Thus the
last 1 is no further right than the (k − 1)st position.

Now consider T̆ . We will choose the set with the smaller maximum element, so
the corresponding ab-word will end in a. To compute the ab-word correspond-
ing to T̆ from the 01-word representing T :

a) Write a.

b) Reading writing right to left, write the same letter as the previous spot
for a 0 and the opposite letter for a 1.
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So the rightmost b (corresponding to the maximum element of T̆ ) is no further
right than (k − 2)nd position (counting from zero this time, since the ab-word
represents as subset of {0, . . . , k − 1}) because we have at least d − k final
as. Furthermore, for any subset S ⊆ T , the maximum element of S̆ will be
at most k − 2, and thus the maximum element of any subset R of S̆ is also
bounded by k − 2.

But looking at our formula, we see that every term has a factor of hi 〈Σd〉k
where i ≤ r|R| + 1, where R ⊆ S̆ and S ⊂ T . Thus i ≤ r|R| + 1 ≤ k − 2 + 1 =
k − 1 < k and so hi 〈Σe〉k = 0. Therefore [vcd−k]Ψ 〈Σd〉k = 0.

2. Now we turn our attention to cd-words of the form wdcd−k−1. The corre-
sponding difference set T has maximum element k, and so T̆ (again taking the
set with the smaller maximum element) is k − 1. As before our formula in-
volves hi only up to i = max T̆ + 1 = k. So the only nonzero terms we have are
when maxR = max S̆ = max T̆ = k − 1. Let A = T \ {k − 1}. We now rewrite
the formula in terms of A since every set that contributes a nonzero term must
contain k − 1.

[wdcd−k−1]Ψ 〈Σd〉k =∑
S⊆A

(−1)|A\S|
∑
R⊆S̆

(−1)|S̆\R|

|R|−1∏
i=1

(
ri+1 + 1

ri + 1

)((k − 1) + 1

r|R| + 1

)
.

Observe that w = uA. Since we have

[w]Ψ(Σk−1) =
∑
S⊆A

(−1)|A\S|
∑
R⊆S̆

(−1)|S̆\R|

|R|−1∏
i=1

(
ri+1 + 1

ri + 1

)r|R|+1∑
i=0

(
d− i

d− r|R| − 1

)
hi(Σk−1)

 ,

we need only show

r|R|+1∑
i=0

(
d− i

d− r|R| − 1

)
hi(Σk−1) =

(
(k − 1) + 1

r|R| + 1

)
.

The left-hand side is the general formula for the r|R| term of the f -vector in
terms of the h-vector, and right-hand side is precisely the number of r|R|-faces
of a (k − 1)-simplex.

Thus we have [wdcd−k−1]Ψ 〈Σd〉k = [w]Ψ(Σk−1).
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Example 3.3.9. Suppose u = dcdc5. We compute the difference set corresponding
to this cd-word.

1. dcdccccc

2. 10c10ccccc

3. 1001000000

4. 100100000

5. {1, 4} = T

We now compute T̆ . We have T = {1, 4}, which corresponds to 100100000.

1. a

2. abbbaaaaaa = ab3a6

The letter changes at the sixth and ninth positions from the right. This corresponds
to T̆ = {1, 2, 3}. ♦

3.4 Flips of complexity 1

We now turn our attention to simplicial flips that involve one more vertex than
bistellar flips. These are the simplicial flips of complexity 1. Recall that this means
that the union of the old and new facets is a simplicial d-polytope with d+2 vertices.

Small polytopes, that is, d-polytopes with d + 2 vertices, are almost simplices
and have structure that is almost as nice as a simplex. Each facet of a simplex is
determined by the single vertex it does not contain. In a small polytope, each facet
is determined by the two vertices not contained in the facet. This structure is easily
understood by looking at the Gale diagram.

The Gale transform of a collection of n (possibly repeated) points in Rd is a
collection of n (possibly repeated) points in Rn−d−1. This is a duality relation in the
sense that a set of points S is the same as the the Gale transform of the gale transform
of S. When it is the combinatorial structure of the convex hull of the points that is
of interest, one usually uses a Gale diagram instead of a Gale transform. If P is a
d-dimensional polytope with vertex set V having n vertices, then a configuration G
of n points in Rn−d−1 is a Gale diagram of V (or P ) if the convex hull of the Gale
transform of G is combinatorially equivalent to P . Thus, rather than a unique dual,
the Gale diagram is any representative from an equivalence class of Gale transforms
that corresponds to the class of combinatorially equivalent polytopes. We can choose
the Gale diagram so that all the points lie on a unit sphere.

Suppose G is a Gale diagram of a polytope P and we use the same label set V for
the points in both the polytope and its gale diagram. Then a set S ⊆ V is the label
set of the vertices of a face of P (we will simply say S is a face of P ) if and only if
the compliment Sc = V r S “captures the origin” in G. We say that a set of points
catptures the origin if the origin is contained in the relative interior of the convex hull
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Figure 3.6: A patch of facets of P2,3

of the set. When S is a face of P , we say Sc is a coface of S. A maximal face is a
facet, so a minmal set that captures the origin in the Gale diagram is a cofacet.

The Gale diagram of a small d-polytope has dimension (d + 2) − d − 1 = 1. So
the points are naturally divided into three classes: the negative points, the positive
points, and the points at the origin. In the case of simplicial polytopes, there are
no points at the origin. This gives a partition of the vertices into two sets. This is
in fact the Radon partition, and further gives the only two minimal non-faces of the
polytope. A cofacet in the Gale diagram is a pair of points that capture the origin.
This happens exactly when the pair consists of one point from each set. Thus the
facets are determined by such pairs. See Chapter 6 of [15] for more on polytopes with
few vertices and their Gale diagrams.

What can a Gale diagram tell us about a small simplicial flip? We first must know
what a shellable subset of the facets looks like in the Gale diagram. Let us denote
by Pm,n the small simplicial polytope with a Radon partition with sizes m and n.
Rather than the usual Gale diagram of Pm,n, we will consider the complete bipartite
graph Km,n. The vertices of the graph correspond to the vertices of the polytope.
Each edge corresponds to the facet that contains all vertices except the endpoints. A
subset of facets of Pm,n then corresponds to a subset of the edges of Km,n. Figure 3.6
shows some facets of P2,3 highlighted, the Gale diagram of P2,3, and K2,3 with the
corresponding edges highlighted.

A simplicial complex is shellable if and only if there is an ordering on the facets
such that at each shelling step there is a unique minimal new face contained in the
new facet. Translating this we get that a subset of edges of Km,n corresponds to a
shellable complex if and only if there is an ordering of the edges such that at each
step there is a unique maximal new superset of the new edge. By unique maximal
new superset of the new edge, we mean a set of vertices of the graph that contains
the endpoints of the new edge and does not contain both endpoints of any other edge
such that every other such superset has fewer vertices.

Definition 3.4.1. The edge diameter of a graph is the maximum over pairs of edges
of the number of interior vertices in a minimal path containing that pair of edges.
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Figure 3.7: A shellable subset of P2,3

Figure 3.8: A non-shellable subset of P2,3

Compare this to the usual diameter, which is maximum over pairs of vertices of the
number of edges in a minimal path containing that pair of vertices.

Figure 3.7 shows a shellable collection of facets of P2,3 and the corresponding
subset of K2,3. Figure 3.8 shows a non-shellable collection and the corresponding
subset of edges.

Proposition 3.4.2. A subgraph G ⊆ Km,n has an ordering on the edges such that
when adding the edges one at a time there is a unique maximal superset of the new
edge containing now other edges at each step if and only if there is an ordering so
that the edge diameter of G is at most 2 at each step.

Proof. We first show that the diameter condition is necessary. We assume throughout
that the edges of G are connected, since a disconnected graph corresponds to a set
of facets that is not shellable.
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Figure 3.9: Graph with large edge diameter

Suppose that G ⊆ Km,n has edge diameter at least 3 and let G = (e1, e2, e3, . . . , ek)
be any ordering of the edges of G. There must exist a pair of edges ei, ej that are
exactly three vertices apart along the minimal path between them. Without loss
of generality we may assume that ej = ek. We will label the vertices so that we
have ek = {0, 1}, ei = {3, 4} and so that the three vertices between ek and ei on some
shortest path are 1, 2, and 3.

We partition the vertices into V (Km,n) = ek t V1 t V2 t · · · t Vl t V∞ according
to their distance from ek. We also have a natural bipartition Vi = V L

i t V R
i (Left

and Right subsets) induced by the bipartition V L, V R on the whole graph where
vertex 0 is in V L. We know that V1, V2, and V3 are non-empty since 2 ∈ V L

1 , 3 ∈ V R
2 ,

and 4 ∈ V L
3 . If S is a unique maximal new superset of ek, then {0, 1} ⊂ S, V1∩S = ∅,

and V∞ ⊂ S. However, we have a choice for the remaining vertices. We can safely add
any of the remaining vertices from V L or from V R without including both endpoints
of any other edge, since there are no edges between vertices on the same side. So
to be maximal we may include either all of the remaining vertices on the left, or all
the remaining ones or the right. Thus S cannot be maximal. See Figure 3.9 for an
example. The diamond shaped vertices form one maximal new superset of ek, and
the black solid vertices form another.

To show that the condition is sufficient, we suppose instead that G has edge
diameter at most two. Then we can repeat the above construction, except this time

42



Figure 3.10: Graph with small edge diameter

we know that there is no minimal chain of edges with more than two interior vertices.
This means that the partition is V = ektV1tV2tV∞. Further, there can be no edges
between vertices in V2 since such an edge would be three vertices from ek, or between
edges in V∞ since they would be infinitely far away from ek. So a new superset can
contain all of V2. Thus the set S = ek t V2 t V∞ = V \ V1 is the unique maximal
new superset of ek. See Figure 3.10. The solid vertices form the unique new superset
of ek.

We can improve this characterization by looking at the bipartite incidence ma-
trix of the subgraph. For a subgraph G ⊆ Km,n, define an m × n incidence ma-
trix M(G) with rows and columns corresponding to the vertices of Km,n. Thus each
entry in M(G) corresponds to an edge in Km,n, where Mi,j = 1 if {i, j} ∈ E(G) and
Mi,j = 0 otherwise.

If G has edge diameter two, then every pair of edges either share an endpoint or
have endpoints connected by a third edge. Edges that share an endpoint correspond
to entries in M that are in the same row or the same column. So a 0/1-matrix
corresponds to a bipartite graph with edge diameter at most two if for every pair of
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non-zero entries that do not share a row or column, there is a third non-zero entry
that shares a row with one and a column with the other.

Since we care only about the combinatorial structure of the collection of facets of
Pm,n, we do not care about the labels on the vertices of the polytope, the graph, or
the matrix. So two matrices are equivalent if they differ only by a permutation of the
rows and columns.

Proposition 3.4.3. Let M be an m×n 0/1-matrix such that for each pair of entires
Mi,j = Mk,l = 1, i = k, j = l, Mi,l = 1, or Mk,j = 1. Then M is equivalent to a
matrix in which every entry above or to the left of a nonzero entry is also nonzero.

Proof. Let M be a matrix with the property in question. Sort the rows left to right
and then the columns top to bottom in order of decreasing number of positive entries.
Suppose that we have Mi,j = 0,Mi,l = Mk,j = Mk,l = 1, where i < k and j < l. Since
row i must have at least as many positive entries as row k, there must be a column c
such that Mi,c = 1 and Mk,c = 0.

j l c
i 0 · · · 1 · · · 1

...
...

...
k 1 · · · 1 · · · 0

But then Mi,c = Mk,j = 1 and Mk,c = Mi,j = 0, which violates the property in
question.

Observe that an array of boxes corresponding to the non-zero entires of a 0/1-
matrix M as in Proposition 3.4.3 in which every entry above or to the left of a
nonzero entry is also nonzero is precisely what is called a Young diagram. Thus we
will call such a matrix a Young diagram matrix. The combinatorial difference between
a Young diagram matrix and a Young diagram is that extracting the diagram from
the matrix loses the information of dimensions of the matrix.

Corollary 3.4.4. Since every Young diagram can be built up from the empty dia-
gram with a Young diagram at each step, the edge diameter condition alone, without
providing a shelling order, is enough to guarantee shellability.

Corollary 3.4.5. A collection of facets of a small simplicial polytope is shellable if
and only if for every pair of facets, either thy are adjacent or each is adjacent to a
common third facet. Here two facets are adjacent if they intersect in a subfacet.

Corollary 3.4.6. Since shellable patches on small simplicial polytopes are indexed by
Young diagram matrices, there

(
m+n
m

)
small simplicial flips defined on Pm,n unless m =

n.

There is an additional type of automorphism of Pm,m (swapping the two groups
of vertices) that is not accounted for by swapping rows and columns. Thus if M ′ =
MT , then the flips corresponding to to those matrices will be combinatorially the
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same, but are counted separately by the binomial coefficient above. Since Pm,m is
in dimension 2(m − 1), this means that there are more small simplicial flips in odd
dimensions than in even dimensions.

Proposition 3.4.7. Every small simplicial flip defined on Pm,n is achievable by a
sequence of exactly m bistellar flips. Further, this is the shortest such sequence.

Proof. Consider a given flip
〈
P−m,n, P

+
m,n

〉
defined on Pm,n where m ≤ n. Let V be

the labeled point set consisting of the vertices of Pm,n labeled 1 to m + n, and one
additional point labeled 0 positioned such that exactly the facets of P+

m,n are visible

from 0. The convex hull of V is a polytope on which the flip
〈
P−m,n, P

+
m,n

〉
may be

performed.
Recall that the dimension of a Gale diagram of n points in Rd is n− d− 1. So in

this case, the dimension of the Gale diagram is (m+n+ 1)− (m+n−2)−1 = 2. No
face of conv(V ) consists of all but one point of V , so there are no points at the origin.
Thus the standard Gale diagram G of V consists of points labeled 0, 1, . . . ,m + n
arranged on the unit circle in R2.

Consider the Gale diagram G′ obtained from G by moving the point 0 to its
antipodal point. Let i, j ∈ V be different from 0. If {0, i, j} captures the origin in G,
then 0 is on the same side of the line ij as the origin. Thus in G′ the point labeled 0
is on the opposite side of the line ij from the origin and thus {0, i, j} does not capture
the origin. Likewise those sets {0, i, j} that do not capture the origin in G do capture
it in G′. The sets {0, i, j} that capture the origin in G correspond to facets of conv(V )
that do not contain 0, which are precisely the facets of P−m,n, and those that capture
the origin in G′ correspond to the facets of P+

m,n.

So applying the flip
〈
P−m,n, P

+
m,n

〉
to conv(V ), which has Gale diagram G, yields a

new polytope with Gale diagram G′.
We want to achieve this same change by a sequence of bistellar flips. First note

that in a Gale diagram consisting of points on the unit circle and the origin, we can
slide points on the circle around and as long as the point does not cross a diameter
that has a point on the opposite end the combinatorial type of the corresponding
polytope does not change. See [15, pp. 109–111] for this fact along with a description
of 2-dimensional Gale diagrams.

So what change occurs when we do slide one point (i) past the antipode (or tail)
of another point (j)? Suppose {i, j, k} is a cofacet before the move. Such a set is
a cofacet exactly when each of the three diameters divides the other two points. In
particular, i and k are on opposite sides of the diameter through j before the move.
Therefore after i crosses the tail of j, i and k are on the same side, and thus the
points {i, j, k} is no longer a cofacet. This means that one effect of moving i past the
tail of j is that every old facet containing neither i nor j ceases to be a facet.

What about sets {i, j, k} that do not capture the origin before the move? We are
assuming that there are no points between i and the tail of j, nor between j and the
tail of i. If k were between the tails of i and j, then {i, j, k} would be a cofacet, so k
must be between i and j. Thus when i moves past that tail of j, k will be between the
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tails of i and j, and thus {i, j, k} will become a cofacet. So for every k 6= i, j, {i, j, k}
is a cofacet after the move if and only if it was not a cofacet before the move.

Consider the case where we move i = 0 past some other point j. Looking at the
corresponding polytope what we see is that before the move, we have one a simplicial
facet for each point (other than 0 and j) in the Gale diagram on the same side of
the diameter through j as 0. After the move we lose all of these and replace them
with a simplicial facet for each of the other points in the Gale diagram. All of the
cofacets involved contain 0 and j, thus none of the facets contain 0 or j. Further,
since each pair of involved facets before the move (and each pair of involved facets
after the move) differs by one vertex, they share a subfacet. We can thus describe
the effect of moving 0 past a tail in the Gale diagram as replacing some number of
pairwise adjacent simplices with another number of pairwise adjacent simplices where
the total number of simplices is m+n+ 1− 2 = (m+n− 2) + 1. Thus this change is
precisely a bistellar flip. See section 5 of [21] for another depiction of these operations
on Gale diagrams of d-polytopes with d+ 3 vertices.

Further, every bistellar flip induces this sort on change in the Gale diagram. Every
bistellar flip in dimension d = m+ n− 2 involves exactly d+ 1 = m+ n− 1 vertices.
Thus there are exactly two vertices not contained in any of the faces involved in the
flip. So there must be two vertices that are contained in every cofacet involved. But
since the polytope is simplicial, every cofacet contains exactly 3 points, so there are
exactly 2 points that are contained in all involved cofacets. If there are more than the
two points changing their relationship to each other, than this condition of exactly
two common points cannot be fulfilled.

Observe that since the diameter through 0 divides the m points from the n points,
the point 0 must pass at least min{m,n} tails. Thus a flip defined by Pm,n can be
achieved by a sequence of m bistellar flips. Further, if m ≤ n, this is the shortest
possible sequence.

Figure 3.11 shows the polytope obtained by adding a point to P2,3 and the cor-
responding Gale diagram before and after moving the new point, labeled 0, to its
antipode. This flip shown, shown in Figure 3.12, corresponds to the Young diagram
matrix [

1 0 0
1 0 0

]
.

The corresponding partition is (1, 1).

Proposition 3.4.8. If λ is a partition with exactly m parts, each between zero and n,
and F n

λ is the flip defined by the corresponding m × n Young diagram matrix for λ,
then

Ψ(F n
λ ) =

m∑
i=1

Ψ 〈Σm+n−2〉λi+i−1 .

Proof. To find an expression for the cd-index of small flips in terms of bistellar flips,
we need only understand which m bistellar flips produce a given small flip. For this
we return to the Gale diagram in the previous proof. We have G the standard Gale
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Figure 3.11: Polytope and Gale diagram before (left) and after (right) applying F 3
(1,1)

Figure 3.12: The small simplicial flip F 3
(1,1)

diagram of Pm,n with one extra vertex labeled 0 so that the facets in P+
m,n are not part

of the convex hull, but those of P−m,n are. We will assume that 0 is at the bottom of
the circle and will pass vertices 1 through m in order. Denote by Gi the intermediate
stage achieved after moving 0 past i tails. Thus G = G0, and G′ = Gm.

We need to determine which bistellar flip occurs as 0 passes the tail of the point i.
So in the context of the Gale diagram, we need to know how many cofacets contain
both 0 and i in Gi−1. This is the number of vertices on the opposite side of the
edge {0, i}. In Gi−1, the point 0 is just below the diameter through i, so we need
to know the number of points above this diameter. A point j with 1 ≤ j ≤ m will
be above this diameter if and only if j ≤ m. Now consider a point k > m. If m is
above the diameter at i, then {0, i, k} captures the origin in G0, since 0 starts below
the diameter. Thus the (i, k) entry in the matrix corresponding to this flip is a 1.
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Suppose that we have any point ` such that the (i, `) entry is a one. Then {0, i, `}
captures the origin in G0 and therefore ` is above the diameter at i, since 0 is below
it.

Let λ = (λ1, λ2, . . . , λm) be the partition corresponding to the flip in question.
Then number of points above the diameter at i in G, and thus the number of facets
buried as 0 passes that diameter, is λi + i− 1. This lets us state the result

Ψ(F n
λ ) =

m∑
i=1

Ψ 〈Σm+n−2〉λi+i−1 .

We can also apply the general formula of equation (3.4) to obtain another formula
in terms of the bistellar flips.

Proposition 3.4.9. If M is an m× n Young matrix, then

∆Ψ(M) =
m−1∑
k=0

Ψ 〈Σm+n−2〉k

− |M |Ψ(Σm+n−3)c

−
m∑
i=1

n∑
j=1

Mi,j

i+j−3∑
k=0

Ψ 〈Σm+n−4〉k (2d− c2).

where |M | is the sum of the entries of M (the number of positive entries).

Proof. This follows from Corollary (3.2.9) and Proposition 3.4.9 using the Young
matrix interpretation of patches on small polytopes. The first term is Ψ(Pm,n) written
in terms of bistellar flips as in the previous proposition. Since we are working with a
simplicial polytope, we need only count the facets in P−m,n for the second term. For the
triple summation we use the shelling order on P−m,n given by reading all the positive
entries of M left to right, top to bottom. So the number of adjacent facets shelled
on before facet corresponding to Mi,j is just the number of entries above in the same
column (i− 1) and to the left in the same row (j − 1). The intersections with these
previous facets are the lower subfacets. So the lower facet corresponding to Mi,j will
contribute i + j − 2 terms to the sum. Since all faces are simplices, the flips defined
by these lower subfacets are bistellar flips and each lower facet will contribute one
bistellar flip of each type from 0 to i+ j − 3.

3.5 Semi-simplicial flips

Bistellar flips have additional structure that is not captured in the definition of sim-
plicial flips. One aspect that is lost is the fact that a bistellar flip 〈Σd〉k “factors”
as 〈∂∆k−1 ∗∆d−k,∆k−1 ∗ ∂∆d−k〉, where ∗ denotes the free join. Further the polytope
formed by the union of the old and new patches is ∆k−1 ∗∆d−k. Here we use ∆d to
denote the simplicial complex consisting of the entire simplex, including the d-face.
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Although we already have used Σd to denote ∂∆d, we will use the latter wherever we
want to emphasize the difference between a solid simplex and its boundary.

We can recapture this extra structure by considering generals flips that still have
this presentation except with one of the simplices replaced with a generic polytope P .
We call such a flip 〈P ∗ ∂∆k, ∂P ∗∆k〉 semi-simplicial. Note that the complexity of
the flip depends only on P and not on k. Observe also that (P ∗ ∂∆k)∪ (∂P ∗∆k) =
∂ (P ∗∆k) is the boundary of a polytope, and that the two patches are each precisely
the facets containing P and ∆k, respectively. Thus the patches are initial and final
segments of some shelling sequence. So semi-simplicial flips are polytopal flips.

To compute the cd-index of this flip, we will need to know how the cd-index
interacts with the free join. From [12] and more satisfyingly in [11] we learn that

Ψ(P ∗Q) = M(Ψ(P ),Ψ(Q))

where M , called the mixing operator, is a bilinear operator on cd-polynomials. This
can be computed recursively in the ring of cd-polynomials. We refer the reader to [11]
for this recursion.

Proposition 3.5.1.

Ψ 〈P ∗ ∂∆k, ∂P ∗∆k〉 = M (Ψ(P ),Ψ(Σk))− (k + 1)M (Ψ(P ),Ψ(Σk−1)) c

−M

(
Ψ(P ),

k−1∑
i=0

(k − i)Ψ 〈Σk−2〉i

)
(2d− c2).

Proof. We begin with the general recursive formula for the cd-index of a shellable
flip.

Ψ
〈
P−, P+

〉
= Ψ(P )−

∑
F≺P−

Ψ(F )c−
∑

E≺≺P̊−

Ψ
〈
E−, E+

〉
(2d− c2).

Recall that this formula presupposes a shelling order so that P− consists of an
initial segment of that order. Let us now apply this to the flip 〈P ∗ ∂∆k, ∂P ∗∆k〉.

Ψ 〈P ∗ ∂∆k, ∂P ∗∆k〉 = Ψ(P ∗ ∂∆k)

−
∑

F≺(P∗∂∆k)

Ψ(F )c−
∑

E≺≺relint (P∗∂∆k)

Ψ
〈
E−, E+

〉
(2d− c2).

For the first term, we simply apply the mixing operator. For the second term, we
must recognize that the facets of P ∗ ∂∆k are P ∗ σ where σ is a facet of ∆k. So we
can write

Ψ 〈P ∗ ∂∆k, ∂P ∗∆k〉 = M (Ψ(P ),Ψ(Σk))

− (k + 1)M (Ψ(P ),Ψ(Σk−1)) c

−
∑

E≺≺relint (P∗∂∆k)

Ψ
〈
E−, E+

〉
(2d− c2).
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Digesting the final summation requires somewhat more thought. The subfacets of P ∗
∂∆k are of one of two forms. They may be F ∗ σ where F ≺ P and σ ≺ ∆k

or P ∗ τ where τ ≺≺ ∆k. However, the sum is only over interior subfacets, so we must
identify and exclude any subfacets on the boundary. Observe that ∂(P ∗ ∂∆k) =
(∂P ∗ ∂∆k) ∪ (P ∗ ∂∂∆k) = ∂P ∗ ∂∆k. Thus the boundary subfacets are precisely
those of the form F ∗ σ. So we can write

Ψ 〈P ∗ ∂∆k, ∂P ∗∆k〉 = M (Ψ(P ),Ψ(Σk))− (k + 1)M (Ψ(P ),Ψ(Σk−1)) c

−
∑
σ≺∆k

∑
τ≺σ

Ψ
〈
(P ∗ τ)−, (P ∗ τ)+

〉
(2d− c2).

Recall now that flips in the last summation are defined by a compatible shelling
order order on P ∗ σ. But a shelling order in P ∗ σ is defined solely by an order on σ.
Since σ is a simplex, the order is arbitrary. Let ∂σ = τ1∪ τ2∪ · · ·∪ τi∪ · · ·∪ τk, where
τ1, . . . , τk is a shelling order of σ. Then

(P ∗ τi)− = (P ∗ τi) ∩ [(P ∗ τ1) ∪ (P ∗ τ2) ∪ · · · ∪ (P ∗ τi−1)]

= P ∗ [τi ∩ (τ1 ∪ τ2 ∪ · · · ∪ τi−1)]

and

(P ∗ τi)+ = (P ∗ τi) ∩ [(P ∗ τi+1) ∪ (P ∗ τi+2) ∪ · · · ∪ (P ∗ τk)]
= P ∗ [τi ∩ (τi+1 ∪ τi+2 ∪ · · · ∪ τk)] .

Now since the cd-index of a flip is actually a linear combination of the cd-indices
of the old and new complexes, we can factor the bilinear operator M out of the flip,
that is,

Ψ
〈
(P ∗ τ)−, (P ∗ τ)+

〉
= M

(
Ψ(P ),Ψ

〈
τ−, τ+

〉)
.

So we can now write

Ψ 〈P ∗ ∂∆k, ∂P ∗∆k〉 = M (Ψ(P ),Ψ(Σk))− (k + 1)M (Ψ(P ),Ψ(Σk−1)) c

−M

(
Ψ(P ),

∑
σ≺∆k

∑
τ≺σ

Ψ
〈
τ−, τ+

〉)
(2d− c2).

Now the τ flips are bistellar flips and just as with the bistellar flips formula, we
can simplify the double summation to a single summation to give a final equation.

Ψ 〈P ∗ ∂∆k, ∂P ∗∆k〉 = M (Ψ(P ),Ψ(Σk))− (k + 1)M (Ψ(P ),Ψ(Σk−1)) c

−M

(
Ψ(P ),

k−1∑
i=0

(k − i)Ψ 〈Σk−2〉i

)
(2d− c2).
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Figure 3.13: 2-dimensional semi-simplicial flips

3.5.1 Low dimensional semi-simplicial flips

In low dimensions (d = 2, 3), we can describe all of the semi-simplicial flips and give
explicit formulae for their cd-indices.

By definition, a d-dimensional semi-simplicial flip is entirely determined by a
polytope P in dimension at most d.

In two dimensions, the semi-simplicial flips are 〈Σ3〉2 and±〈n-gon, ∂(n-gon) ∗∆0〉.
The latter class consists of the flips that subdivide a polygon and their inverses that
cut off a vertex. In the positive direction, these flips add one vertex and (n − 1)
facets. Thus they have the cd-index

Ψ 〈(n-gon), ∂(n-gon) ∗∆0〉 = dc + (n− 1)cd.

Figure 3.13 shows all 2-dimensional semi-simplicial flips with complexity at most 2.
In three dimensions we have two classes of semi-simplicial flips. The first consists

those of the form ±〈(n-gon) ∗ ∂∆1, ∂n-gon) ∗∆1〉. These (in the positive direction)
replace two pyramids over an n-gon with n tetrahedra. We can compute the cd-index
of these flips by direct counting.
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Figure 3.14: 3-dimensional semi-simplicial flips

[c4]Ψ 〈A,B〉 = f−1(B)− f−1(A) = 0

[dc2]Ψ 〈A,B〉 = (f0(B)− 2)− (f0(A)− 2) = 0

[cdc]Ψ 〈A,B〉 = (f2(B)− f3(B))− (f2(A)− f3(A)) = (n− 1)− (n− 2)

[c2d]Ψ 〈A,B〉 = (f3(B)− 2)− (f3(B)− 2) = n− 2

[d2]Ψ 〈A,B〉 = (f03(B)− 2f0(B)− 2f3(B) + 4)− (f03(B)− 2f0(B)− 2f3(B) + 4)

= (4n− 2(n+ 2)− 2n+ 4)− (2n+ 2− n(n+ 2)− 2 · 2 + 4)

Thus, these have cd-index

〈(n-gon) ∗ ∂∆1, ∂(n-gon) ∗∆1〉 = cdc + (n− 2)c2d + 2d2.

Figure 3.14 shows these flips for n = 3, 4, 5.
The other class consists of stellar subdivisions of 3-faces and their inverses. Let P

be a 3-polytope with f -vector f = (f0, f1, f2). Again we count:
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A B
f−1 1 1
f0 f0 f0 + 1
f2 f2 f2 + f1

f3 1 f2

f03 f0 2f1 + f2

[c4]Ψ 〈A,B〉 = f−1(B)− f−1(A) = 0

[dc2]Ψ 〈A,B〉 = (f0(B)− 2)− (f0(A)− 2) = 1

[cdc]Ψ 〈A,B〉 = (f2(B)− f3(B))− (f2(A)− f3(A))

= (f2 + f1 − f2)− (f2 − 1)

[c2d]Ψ 〈A,B〉 = (f3(B)− 2)− (f3(B)− 2) = f2 − 1

[d2]Ψ 〈A,B〉 = (f03(B)− 2f0(B)− 2f3(B) + 4)− (f03(B)− 2f0(B)− 2f3(B) + 4)

= (2f1 + f2 − 2(f0 + 1)− 2f2)− (f0 − 2f0 − 2)

So we have

〈P, ∂P ∗∆0〉 = dc2 + (f1 − f2 + 1)cdc + (f2 − 1)c2d + (2f1 − f2 − f0)d2.

Applying Euler’s relation, we can simplify this to

〈P, ∂P ∗∆0〉 = dc2 + (f0 − 1)cdc + (f2 − 1)c2d + (f0 + f2 − 4)d2.

Copyright c© Daniel J Wells, 2010.
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Chapter 4 Flip connectivity and monotonicity

In Chapter 1 we saw a number of results showing that any two members of some
certain class of simplicial complexes could be connected by a sequence of opera-
tions. Those results show that in a very strong sense, bistellar equivalence and PL-
homeomorphism are the same thing for simplicial PL-manifolds with the same (or
no) boundary. Thus in this context, one can demonstrate homeomorphism of (d−1)-
dimensional complexes by constructing a sequence of simple combinatorial operations
chosen from a pool of just d+ 1 such operations.

The 1974 result of Ewald and Shephard is not restricted to simplicial polytopes,
and thus gives us our first result concerning the general flip equivalence of polytopes.
Let us take a second look at this theorem.

Theorem (1.2.2) (Ewald–Shephard 1974, [14]). The boundary complex of any d-
dimensional convex polytope is geometrically stellar equivalent to the boundary com-
plex of any other d-dimensional convex polytope.

Recall that the boundary complexes of two polytopes are said to be geometrically
stellar equivalent if they are related by a sequence of geometric stellar subdivisions.
We claim these geometric stellar subdivisions are a special type of general flip.

Lemma 4.0.2. Geometric stellar subdivisions and their inverses are polytopal flips.

Proof. A geometric stellar subdivision is accomplished by adding a new vertex close
enough to the barycenter of a face F so that it is beyond all facets containing F
but beneath all other facets of the polytope, and then taking the convex hull. Both
the old and new patches consist of all facets of a polytope containing a given face,
and are thus shellable. We need only argue that their union is realizable as a convex
polytope.

If F is a facet, then the union is Pyr(F ). Otherwise, consider a Gale diagram G of
the convex hull of the vertices of st(F ). There is a Gale diagram G1 for st(F ) along
with the new point p introduced by the stellar subdivision such that projecting onto
the hyperplane with the point corresponding to p as its normal yields the diagram G,
but with an extra point corresponding to p at the origin. For example, if we take G
to be the leftmost diagram in Figure 4.1, then center diagram is G1. Note that points
in G1 project back to their positions in G.

All of the new faces created by the stellar subdivision contain p. Thus the corre-
sponding cofaces in G1 are those that do not contain p.

Consider now a third Gale diagram G2 obtained from G1 by moving p to its
antipode. This is the rightmost diagram in Figure 4.1. If C was a cofacet in G1

containing p, then C is not a coface in G2. Since C is a cofacet in G1, the convex hull
of C r {p} intersects the vertical axis (the axis through p) on the negative side. But
in G2, the point p is on also on the negative half. The convex hull of such a set C is
shown in Figure 4.1. Likewise, if C ′ is a set of points such that the relative interior
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Figure 4.1: G,G1, and G2

of its convex hull intersects the positive half of the axis, then C ′ ∪{p} is not a coface
in G1, but is a coface in G2. A set C intersects the vertical axis in its relative interior
exactly when it is a coface in G.

Thus the facets of the polytope associated with G2 correspond exactly to the
facets of conv(stF ∪ {p}) that contain p, along with the facets of conv(stF ) that are
not also facets of conv(stF ∪ {p}). This is the polytope we wanted.

This lemma allows us to view the Ewald–Shephard result as a result about general
flips: “Any two d-polytopes can be connected by a sequence of polytopal flips.”

Corollary 4.3.2 will state that, for d ≤ 6, all d-polytopes can be built up with semi-
simplicial flips of bounded complexity. Thus in particular we can use the formulae in
section 3.5.1 to give a description of the cd-indices of 4-dimensional polytopes.

Corollary 4.0.3. If P is a 4-dimensional polytope, then

Ψ(P ) = c4 + 3dc2 + 5cdc + 3c2d + 4d2

+
∑
n≥3

kn
(
cdc + (n− 2)c2d + 2d2

)
+
∑
Q

`Q
(
dc2 + (f0(Q)− 1)cdc + (f2(Q)− 1)c2d + (f0(Q) + f29Q)− 4)d2

)
,

where the last summation is over 3-dimensional polytopes Q, and kn and `Q are
integers.

By reversing the algorithm described in Section 4.3 we can be somewhat more spe-
cific. Any 4-polytope can be built from Σ4 by a sequence of bistellar flips that mono-
tonically increases the number of vertices, followed by a sequence of semi-simplicial
flips that are all applied in the negative direction.
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Corollary 4.0.4. If P is a 4-dimensional polytope, then

Ψ(P ) = c4 + 3dc2 + 5cdc + 3c2d + 4d2

+ k3

(
dc2 + 3cdc + 3c2d + 4d2

)
+ `Σ3

(
cdc + c2d + 2d2

)
−
∑
n>3

kn
(
cdc + (n− 2)c2d + 2d2

)
−
∑
Q 6=Σ3

`Q
(
dc2 + (f0(Q)− 1)cdc + (f2(Q)− 1)c2d + (f0(Q) + f29Q)− 4)d2

)
,

where the last summation is over 3-dimensional polytopes Q other than the simplex,
`Σ3 is an integer, and kn and `Q are non-negative integers.

4.1 Bounding complexity and preserving vertex numbers

When we pass from bistellar flips on the boundary complexes of simplicial polytopes
to polytopal flips on polytopes we gain a lot of complexity. Instead of using just d+1
types of flips to connect d-polytopes, we must now use an unbounded number of flips.
In Ewald and Shephard’s method, our pool of possible flips consists of one for each
combinatorial type of polytope in each dimension less than d.

We can, however, simplify things somewhat by restricting ourselves to polytopes
with facets that do not have too many vertices. This gives us a finite, albeit large,
set of facet types to deal with. We will see that polytopes with “small” facets can, in
fact, be built by “small” flips. This will reduce our pool of possible flips to a finite,
if still unwieldy, collection.

Recall that we defined the complexity of a flip 〈A,B〉 to be f0(A ∪ B) − d − 1,
where A ∪ B is the boundary complex of a d-polytope. We will now show that flips
with bounded complexity are sufficient to build polytopes with facets with bounded
vertex numbers.

Theorem 4.1.1. If P is the boundary complex of a d-dimensional polytope with
facets having at most d + k vertices, then P can be obtained from Σd by a sequence
of polytopal flips with complexity at most k. Further, this can be done so that each
intermediate complex can be realized as the boundary complex of a convex polytope.

Proof. Let P̄ be a d-polytope with facets having at most d + k vertices, and let P
denote the boundary complex. Let Q denote the boundary complex of Pyr(P̄ ). There
is a line shelling of Q that begins with the facet Pyr(F ) for a chosen facet F of P
and adds the base P̄ last. This gives a shelling order for Q r {P̄} (Q without the
facet P̄ ) that begins with Pyr(F ).

Observe that Qr{P̄} is a shellable ball with boundary complex P . Each shelling
step induces a polytopal flip on the boundary complex. Thus the shelling order yields
a sequences of flips connecting P to Pyr(F ) for a chosen facet F of P .

If P has a simplex as a facet, then we can choose this simplex to be F to connect P
to a simplex and we are done. Otherwise we can repeat the process on Pyr(F ),
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selecting the initial facet F1 of Pyr(F ) to be different from F . This connects P
to Pyr(F ) to Pyr(F1), where Pyr(F1) = Pyr2(E) for some facet E of F .

Since f0(Pyr(F )) < f0(P ) whenever P is not a pyramid with base F , iterating
this process will eventually terminate. The final iteration with have a simplex as the
initial facet. Together, the sequences of flips induced by the several shelling sequences
connect P to Σd.

Now we must show that each flip has complexity at most k. Each flip employed
is defined by a shelling step that adds a facet of the form Pyrd−`−1(E), where E is
some `-face of P . Each facet of P has at most d+k vertices, and so each `-dimensional
face of P has at most k + ` + 1 vertices. Now observe that the pyramid operation
adds one vertex and increases the dimension by one. Thus each Pyrd−`−1(E) has at
most k + `+ 1 + (d− `− 1) = d+ k vertices, and the flip has complexity at most k.

It remains only to show that each intermediate complex can be realized as the
boundary complex of a polytope. Each of the intermediate complexes is the boundary
complex of an initial shelling segment of a line shelling of the polytope Pyr(P̄ ). Every
initial segment of a line shelling is the collection of facets either visible or not visible
from a point outside the polytope. The complex in question is the boundary of such
an initial segment and thus is a shadow boundary. Every shadow boundary can be
realized convexly. In particular a shadow boundary can be directly realized as the
boundary of the shadow (projection onto a hyperplane).

Example 4.1.2. If we take P to be a cube, we can apply use a shelling of the pyramid
over a cube to connect the cube to a square-based pyramid. Then we repeat on the
square-based pyramid to connect to a simplex. Running the sequence in reverse gives
a sequence of polytopal flips, with complexity at most 1, that builds a cube from
simplex. This process is shown in full in Figure 4.2. Here are the cd-indices of the
flips shown, following the directions of the arrows.

2dc + 3cd

0

0

−dc− 2cd

2dc + 3cd

dc + cd

dc + cd

dc− cd

−dc− 3cd

♦
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Figure 4.2: Building a cube with polytopal flips

We saw in Theorem 1.2.4 of Chapter 1 that Pachner showed that any two sim-
plicial d-polytopes with the same number of vertices can be connected by a sequence
of flips that preserves the number of vertices. The analogous statement is true for
non-simplicial polytopes and polytopal flips, but not if we enforce the same bound
on complexity as in the previous theorem. The cube, even in 3-dimensions, provides
proof that, if we bound the complexity, then it might be necessary to change the
number of vertices.

Counterexample 4.1.3. No general flip admissible on the boundary complex of
the d-cube preserving f0 has complexity less than 3 · 2d−2 − d.

Proof. Every flip of the form 〈F,G〉, where F is a single facet, increases the number
of vertices. However, any collection of two or more facets of the d-cube must have
at least 3 · 2d−2 vertices. Thus a flip that replaces such a collection must have a
complexity of at least 3 · 2d−2 − d.

Note in particular that beginning with d = 3, the complexity of any admissible
flip preserving the number of vertices is greater than the bound from Theorem 4.1.1.
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This example also shows that when building a polytope from a simplex using
flips of bounded complexity, it is sometimes necessary to add extra vertices that are
later removed. The algorithm in Theorem 4.1.1 provides some upper bounds for the
maximum required number of extra vertices in such a construction.

Proposition 4.1.4. A d-polytope P with facets having at most d + k vertices can
be obtained from a simplex by a sequence of polytopal flips of complexity at most k
such that each intermediate complex has at most f0(P ) + n vertices, where n is the
codimension of the maximal simplex that is a face of P .

Proof. The algorithm described in the proof of Theorem 4.1.1 consists of some number
of iterations. Each iteration involves exactly one extra vertex, specifically the apex of
the pyramid. This vertex is removed from the boundary complex when the final facet
is shelled on in each iteration. So we need only determine a bound on the number of
required iterations. The process must terminate with a simplex. The initial polytope
of the nth iteration, including the final simplex, is of the form Pyrn(E) where E
is a codimension n face of P . So the number of iterations is minimized when the
codimension of E, a simplex, is minimized.

Without further information about P we have a more general bound.

Corollary 4.1.5. A d-polytope P with facets having at most d + k vertices can be
obtained from a simplex by a sequence of polytopal flips of complexity at most k such
that each intermediate complex has at most f0(P ) + d− 1 vertices.

However, these bounds are not sharp. A 3-cube can be built from the simplex
using flips of complexity at most 1 in such a way that only one extra vertex is needed.
The algorithm described above requires two.

Thus to extend Theorem 1.2.4, we will have to ignore the complexity of the flips
we use.

Theorem 4.1.6. If P and Q are two polytopes in the same dimension with the
same number of vertices, then the boundary complex of one can be obtained from
the boundary complex of the other by a sequence of polytopal flips that preserve the
number of vertices.

Proof. Suppose P is the boundary complex of a polytope with n vertices. It is
enough to show that there is a sequence of polytopal flips, each resulting in a convex
polytope with n vertices, that connects P to some simplicial polytope. Then given two
polytopes P and Q with n vertices, we can connect them to simplicial polytopes P ′

and Q′, respectively, and apply Theorem 1.2.4.
The operation of pulling a vertex can be defined as moving a vertex slightly out

from its original location in the boundary complex of a polytope so that its new
location is beyond those faces that contained it and beneath all other faces. Thus
we can consider this to be a special case of a stellar subdivision where the face being
“subdivided” is a vertex. Since stellar subdivisions and their inverses are polytopal
flips, so are pulling operations and their inverses.
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Figure 4.3: P3, T (P3), and P4

It is known (see [18], for example) that pulling each vertex of a polytope in turn,
in any order, results in a simplicial polytope. This is sometimes called a pulling
triangulation of the boundary.

4.2 (Non-)Monotonicity

It would be of great interest to show that all polytopes, or all polytopes in a certain
class, can be obtained from a simplex by a monotonic sequence of flips. By a mono-
tonic sequence of flips, we mean a sequence of flips so that all the coefficients of the
cd-indices of all the flips are non-negative. This would give a new geometric proof of
the non-negativity of the cd-index for polytopes. A monotonic sequence of bistellar
flips to construct any simplicial polytope would give a geometric demonstration that
the g-vector is non-negative, and possibly a new proof of the g-theorem.

Unfortunately, we do not have such monotonic flip sequences. In fact, general
flips are not even individually monotonic.

Proposition 4.2.1. In each dimension d ≥ 2, there is a flip of complexity 3 that is
non-monotonic.

Proof. We will construct a family of polytopes Pd with d+ 4 vertices so that in each
case there is a vertex v contained in fewer than half the facets but that also shares
a facet with every other vertex. Since the collection of facets containing a given
vertex is shellable, we can then define a flip

〈
st(v), P r st(v)

〉
that decreases f0 and

increases fd−1. The change in f0 is precisely the coefficient of cd−2d in the cd-index
of the flip, while the change in fd−1 is the coefficient of dcd−2.

Let H be a hexagon with vertices labeled v0 through v5. Define P3 = Pyr(H).
If P is a pyramid over a non-simplex simplicial polytope, let T (P ) denote the result
of pulling v0 to triangulate the base of the pyramid. For each d > 3, define Pd =
Pyr(T (Pd−1)). Figure 4.3 shows P3, T (P3), and P4.

Observe that since v1 is adjacent to v0, pulling v0 never introduces any new edges
containing v1. Taking a pyramid introduces exactly one new edge containing v1.
Thus in each simplicial polytope T (Pd−1), the vertex v1 is a simple vertex. Thus v1

is contained in exactly d− 1 facets of T (Pd−1) and d facets of Pd = Pyr(T (Pd−1)).
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Figure 4.4: A non-monotonic polytopal flip

Further observe that as a vertex in the base of a pyramid, v1 shares a facet
with every other vertex. If we denote the set of facets containing v1 by A, and the
collection of remaining facets by B, then f0(A) = f0(B)−1. The flip we are interested
in is 〈A,B〉. Figure 4.4 shows the flip in dimension 2.

Since fd−1(A) = d, we now must show that fd−1(Pd) > 2d. We proceed by
induction on d. Suppose that fd−2(Pd−1) > 2(d− 1).

fd−1(Pd) = fd−1(Pyr(T (Pd−1)))

= fd−2(T (Pd−1)) + 1

≥ fd−2(Pd−1) + 2

> 2(d− 1) + 2

= 2d

As a base case, observe that f2(P3) = f2(Pyr(H)) = 7.

Example 4.2.2. We compute the cd-index of the flip 〈A,B〉 shown in Figure 4.4.
Recall from Lemma 1.3.7 that Ψ = c3 + (f0 − 2)dc + (f2 − 2)cd for 3-dimensional
PL-spheres. Thus the cd-index of this flip is

Ψ 〈A,B〉 = (f0(B)− f0(A))dc + (f2(B)− f2(A))cd

= (6− 7)dc + (4− 3)cd

= cd− dc.

Bistellar flips are monotonic, but being simplicial is not, in general, enough to
guarantee monotonicity. Even at complexity 1, there are non-monotonic simplicial
flips. The first such counterexamples are 7-dimensional and are defined by collections
of facets of P7,3 and P6,4.
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Counterexample 4.2.3.

Ψ(F 7
(6,5,0)) = −Ψ(F 7

(7,2,1))

= Ψ 〈Σ8〉(6+0) + Ψ 〈Σ8〉(5+1) + Ψ 〈Σ8〉(0+2)

= cdc5 + 4c2dc4 + 5d2c4 + 5c3dc3 + 13dcdc3 + 16cd2c3

+ 2dc2dc2 + 7cdcdc2 + 7c2d2c2 + 10d3c2

− 3c5dc− 14dc3dc− 36cdc2dc− 42c2dcdc− 56d2cdc

− 22c3d2c− 56dcd2c− 68cd3c− c6d− 6dc4d− 22cdc3d

− 42c2dc2d− 54d2c2d− 44c3dcd− 110dcdcd− 132cd2cd

− 20c4d2 − 76dc2d2 − 154cdcd2 − 114c2d3 − 156d4

Counterexample 4.2.4.

Ψ(F 6
(5,4,3,0)) = −Ψ(F 6

(6,3,2,1))

= Ψ 〈Σ8〉(5+0) + Ψ 〈Σ8〉(4+1) + Ψ 〈Σ8〉(3+2) + Ψ 〈Σ8〉(0+3)

= c2dc4 + d2c4 + 2c3dc3 + 5dcdc3 + 6cd2c3

+ c4dc2 + 4dc2dc2 + 9cdcdc2 + 7c2d2c2 + 10d3c2

− 2c2dc2d− 2d2c2d− 4c3dcd− 10dcdcd− 12cd2cd

− 2c4d2 − 8dc2d2 − 18cdcd2 − 14c2d3 − 20d4

With this evidence of poorly behaved flips, it is interesting to note any classes of
flips that are monotonic. Pulling flips and other stellar subdivisions, like bistellar flips,
induce monotonic changes in the cd-index. This is shown in [5]. This is somewhat
encouraging to note, since we have seen that, together, bistellar flips and inverse
pulling flips are sufficient to construct all polytopes. However, we do not yet have an
algorithm to give a monotonic sequence of such flips. Further, one cannot expect a
monotonic flip sequence to be found using the strategy of connecting a non-simplicial
polytope to a simplicial one and then to a simplex. Among other conditions, such a
monotonic sequence must be monotonic in number of vertices and facets, but a non-
simplicial polytope will have fewer facets than a simplicial polytope obtained from it
via pulling flips.

The formulae we derived in Section 3.5.1 show that for d ≤ 3, d-dimensional semi-
simplicial flips are monotonic. Again, this looks encouraging. We will show next that
semi-simplicial flips are sufficient to construct all 3- and 4-dimensional polytopes from
a simplex. However, the construction we give allows the flips to applied in both the
positive and negative directions.

4.3 Semi-simplicial flips

Recall that in Section 3.5 we defined the semi-simplicity flips to be those general flips
with the form

〈E ∗ ∂∆k, ∂E ∗∆k〉 ,
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(and their inverses) where E is some convex polytope and k ≥ 0. If P is a low
dimensional polytope, then we can use these flips to connect the boundary complex
of P to the boundary complex of a simplicial polytope while very naturally bounding
the complexity of the flips.

This class of flips is smaller than the class of flips needed in the proof of Theo-
rem 4.1.1. There is just one pair of d-dimensional semi-simplicial flips for each poly-
tope with dimension at most d. Compare this to the flips of Theorem 4.1.1, which
are indexed by initial shelling sequences of polytopes with dimension at most d.

Theorem 4.3.1. If P is the boundary complex of a (d− 4)-simplicial d-dimensional
polytope with facets having at most d+ q vertices, then P can be obtained from Σd by
a sequence of semi-simplicial flips with complexity at most q.

Corollary 4.3.2. If P is the boundary complex of a d-dimensional polytope with
facets having at most d+ q vertices for some d ≤ 5, then P can be obtained from Σd

by a sequence of semi-simplicial flips with complexity at most q.

We will prove Theorem 4.3.1 by describing an algorithm to transform a (d − 5)-
simplicial d-polytope into a fully simplicial d-polytope using semi-simplicial flips. The
bound on the complexity comes basically for free because the complexity of a semi-
simplicial flip, 〈E ∗ ∂∆k, ∂E ∗∆k〉, is determined by the number of extra vertices
of E. Thus the complexity of all semi-simplicial flips is naturally bounded.

The general strategy of the algorithm is this. Beginning with the facets, and
working our way down in dimension, we will apply semi-simplicial flips to “poorly
behaved” faces. These flips will remove the poorly behaved faces and thus ensure
that any remaining essential non-simpliciality is in lower dimensions. Ultimately, all
higher dimensional faces will be free joins of simplices with lower dimensional faces
that are, by assumption, simplices themselves.

We now present this algorithm in detail as a sequence of propositions building up
to Theorem 4.3.1. As already mentioned, the complexity of these flips is naturally
bounded, so we will make no further mention of it.

Definition 4.3.3. A polytope is k-simplicial if all its k-faces are simplices.

Proposition 4.3.4. If P is the boundary complex of a (d−2)-simplicial d-dimensional
polytope, then P can be connected to a simplicial polytope via a sequence of semi-
simplicial flips.

Proof. By assumption, only the facets of P are not simplices. For each non-simplex
facet F , apply the semi-simplicial flip 〈F, ∂F ∗∆0〉. Note that we may consider F to
be F ∗ ∂∆0. The facets of ∂F ∗ ∆0 are each the free join of a facet of F with ∆0,
that is, pyramids over subfacets of P . Since all of the subfacets of P are simplices,
the new facets created by the flip are all simplices. Figure 4.5 shows, on the right,
the result of applying these flips to the 3-dimensional cube on the left.

Note that these semi-simplicial flips always result in the boundary complex of a
polytope. The flips here are stellar subdivisions that can be realized geometrically

63



Figure 4.5: Subdividing the faces of a cube

by introducing a new vertex beyond, but sufficiently close to, the barycenter of the
facet.

Proposition 4.3.5. If P is the boundary complex of a (d−3)-simplicial d-dimensional
polytope, then P can be connected to a simplicial polytope via a sequence of semi-
simplicial flips.

Proof. By applying the method of the previous proposition, we can transform P into
a complex P ′ with the property that every facet is the free join of a subfacet with ∆0.

We can deal with each non-simplex subfacet E of P ′ by applying the semi-
simplicial flip 〈E ∗ ∂∆1, ∂E ∗∆1〉. Since it is a subfacet, we know that E is always
contained in exactly two facets. This flip will remove the subfacet E, and each of
the new facets will be the free join of a facet of E (a codimension 3 face of P ′) with
a line segment δ1. In dimension 3, these are the (non-bistellar) flips shown in Fig-
ure 3.14. Since P , and therefore P ′, is (d − 3)-simplicial, those codimension 3 faces
are simplices, and so the result of making these flips is a simplicial complex.

We can ensure that these flips are admissible, that is, that they do not result in
two faces intersecting in something other than a common, possibly empty, face, by
making some preparatory semi-simplicial flips. For each subfacet E of P ′ that is not
already a pyramid over a codimension 3 face, apply a stellar subdivision on each of
the two facets containing E. Denote the two new vertices by u and v. With that done,
we can now geometrically realize the flip by lifting u and v just beyond E. When
we consider the convex hull of the new configuration, we see that the edge {u, v} has
been introduced, and the E is no longer a face. This two step process is shown in
Figure 4.6 in the trivial (and unnecessary) case where E is an edge.

Proposition 4.3.6. If P is the boundary complex of a (d−4)-simplicial d-dimensional
polytope, then P can be connected to a simplicial polytope via a sequence of semi-
simplicial flips.
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Figure 4.6: Using semi-simplicial flips to remove a subfacet

Proof. By applying the methods of the previous two propositions, we can obtain a
complex P ′ such that all facets and subfacets of P ′ are free joins of codimension 3
faces with simplices.

Since we must now deal with faces in codimension 3, we can no longer assume
that we can directly apply a semi-simplicial flip. Let E be a face of P ′ in codimension
3. If E is contained in exactly three facets of P ′, then st(E) = E ∗ ∂∆2. Apply the
semi-simplicial flip 〈E ∗ ∂∆2, ∂E ∗∆2〉. This removes the face E and all new facets
are free joins of codimension 4 faces (facets of E) with simplices.

If E is contained in more than 3 facets, then we must reduce that number. To
do this we will perform some preparatory flips on subfacets containing E that reduce
the number of facets containing E.

Consider the structure of st(E). The face figure of E is a polygon, since codim(E) =
3. Each facet containing E has form E ∗ ∆1. Thus st(E) is E ∗ S, where S is the
boundary of an n-gon, for some n > 3.

Consider a particular subfacet F of P ′ that contains E. We know that F = E ∗ vi
for some vertex vi of S. The two facets containing F are G1 = E ∗ conv{vi−1, vi}
andG2 = E∗conv{vi, vi+1} where vi−1 and vi+1 are the two vertices of S adjacent to vi.
The flip 〈F ∗ ∂∆1, ∂F ∗∆1〉 is admissible provided the vertices vi−1 and vi+1 do not
appear in any common face. We can guarantee that situation if we first isolate st(E)
as follows. If P is the boundary complex of a (d−4)-simplicial d-dimensional polytope,
then P can be connected to a simplicial polytope via a sequence of semi-simplicial
flips.

Denote the subfacets containing the face E by F1, F2, . . . , Fn, the facets contain-
ing E by G1, G2, , . . . , Gn, and the vertices of S by v1, v2, . . . , vn so that Fi = E ∗ vi,
and Gi = E ∗ {vi, vi+1} where the indices are considered modulo n.

Subdivide each facet Gi by introducing a new vertex ui. The removes all the Gi.
The face E is now contained in 2n facets, each of the form E ∗ conv{ui, vi} or E ∗
conv{ui, vi+1}. Note in particular that there are no facets that contain both ui
and ui+1 for any i.

Apply the flip
〈Fi ∗ {ui−1, ui}, ∂Fi ∗ conv{ui−1, ui}〉

for each i. We now have a complex where the face E is contained in subfacets E ∗ ui
and facets E ∗ conv{ui, ui+1}.The face E is still contained in n facets, but we now
know that ui and uj are contained in a common facet only if i and j differ by one.

We can now apply the flip

〈(E ∗ ui) ∗ {ui−1, ui+1}, ∂(E ∗ ui) ∗ conv{ui−1, ui+1}〉 ,
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Figure 4.7: Isolating and removing a vertex

which reduces the number of facets containing E by one.
Renumbering the vertices in the link of E, we can apply more flips of this form

until E is contained in exactly 3 facets.
We now need only to apply the flip 〈E ∗ ∂∆2, ∂E ∗∆2〉. This will be admissible

provided that the copy of ∆2 we are creating does not already exist. The vertices of
the ∆2 in question are three of the ui. None of the flips we have performed created
any facets containing more than two of these, so the flip is admissible.

Figure 4.7 shows an analogous process applied in a 2-dimensional setting. The
highlighted vertex plays the roll of the non-simplicial face E.

In particular, Theorem 4.3.1 implies that all d-polytopes are connected by semi-
simplicial flips of bounded complexity for d ≤ 5.

Copyright c© Daniel J Wells, 2010.
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Shelling components of the cd-index

c

Φ̌1
0 1

Φ̌1
1 0

c2 d

Φ̌2
0 1 0

Φ̌2
1 0 1

Φ̌2
2 0 0

c3 dc cd

Φ̌3
0 1 1 0

Φ̌3
1 0 1 1

Φ̌3
2 0 0 1

Φ̌3
3 0 0 0

c4 dc2 cdc c2d d2

Φ̌4
0 1 2 2 0 0

Φ̌4
1 0 1 2 1 1

Φ̌4
2 0 0 1 1 2

Φ̌4
3 0 0 0 1 1

Φ̌4
4 0 0 0 0 0

c5 dc3 cdc2 c2dc d2c c3d dcd cd2

Φ̌5
0 1 3 5 3 4 0 0 0

Φ̌5
1 0 1 3 3 4 1 2 2

Φ̌5
2 0 0 1 2 3 1 3 4

Φ̌5
3 0 0 0 1 1 1 3 4

Φ̌5
4 0 0 0 0 0 1 2 2

Φ̌5
5 0 0 0 0 0 0 0 0

c6 dc4 cdc3 c2dc2 d2c2 c3dc dcdc cd2c c4d dc2d cdcd c2d2 d3

Φ̌6
0 1 4 9 9 12 4 10 12 0 0 0 0 0

Φ̌6
1 0 1 4 6 8 4 10 12 1 3 5 3 4

Φ̌6
2 0 0 1 3 4 3 8 10 1 4 8 6 8

Φ̌6
3 0 0 0 1 1 2 5 6 1 4 9 7 10

Φ̌6
4 0 0 0 0 0 1 2 2 1 4 8 6 8

Φ̌6
5 0 0 0 0 0 0 0 0 1 3 5 3 4

Φ̌6
6 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 1: Coefficients of the shelling compnents for dimensions 1 through 6
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The cd-index of bistellar flips

c2 d
〈Σ2〉0 1 1

〈Σ2〉1 0 1

c3 dc cd
〈Σ3〉0 1 2 2

〈Σ3〉1 0 1 2

〈Σ3〉2 0 0 0

c4 dc2 cdc c2d d2

〈Σ4〉0 1 3 5 3 4

〈Σ4〉1 0 1 3 3 4

〈Σ4〉2 0 0 1 1 2

c5 dc3 cdc2 c2dc d2c c3d dcd cd2

〈Σ5〉0 1 4 9 9 12 4 10 12

〈Σ5〉1 0 1 4 6 8 4 10 12

〈Σ5〉2 0 0 1 3 4 2 6 8

〈Σ5〉3 0 0 0 0 0 0 0 0

c6 dc4 cdc3 c2dc2 d2c2 c3dc dcdc cd2c c4d dc2d cdcd c2d2 d3

〈Σ6〉0 1 5 14 19 25 14 35 42 5 18 35 25 34

〈Σ6〉1 0 1 5 10 13 10 25 30 5 18 35 25 34

〈Σ6〉2 0 0 1 4 5 6 15 18 3 12 25 19 26

〈Σ6〉3 0 0 0 1 1 2 5 6 1 4 9 7 10

c7 dc5 cdc4 c2dc3 d2c3 c3dc2 dcdc2 cd2c2 c4dc dc2dc cdcdc
〈Σ7〉0 1 6 20 34 44 34 84 100 20 72 140

〈Σ7〉1 0 1 6 15 19 20 49 58 15 54 105

〈Σ7〉2 0 0 1 5 6 10 24 28 10 36 70

〈Σ7〉3 0 0 0 1 1 4 9 10 5 18 35

〈Σ7〉4 0 0 0 0 0 0 0 0 0 0 0

c2d2c d3c c5d dc3d cdc2d c2dcd d2cd c3d2 dcd2 cd3

〈Σ7〉0 100 136 6 28 72 84 112 44 112 136

〈Σ7〉1 75 102 6 28 72 84 112 44 112 136

〈Σ7〉2 50 68 4 20 54 66 88 36 92 112

〈Σ7〉3 25 34 2 10 28 36 48 20 52 64

〈Σ7〉4 0 0 0 0 0 0 0 0 0 0

Table 2: Coefficients of the cd-indices of bistellar flips in dimensions 1 through 6
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〈Σ14〉0 〈Σ14〉1 〈Σ14〉2 〈Σ14〉3 〈Σ14〉4 〈Σ14〉5 〈Σ14〉6 〈Σ14〉7
c14 1 0 0 0 0 0 0 0

dc12 13 1 0 0 0 0 0 0
cdc11 90 13 1 0 0 0 0 0

c2dc10 363 78 12 1 0 0 0 0
d2c10 429 89 13 1 0 0 0 0
c3dc9 1000 286 66 11 1 0 0 0
dcdc9 2275 637 143 23 2 0 0 0
cd2c9 2550 702 154 24 2 0 0 0
c4dc8 2001 715 220 55 10 1 0 0

dc2dc8 6708 2364 715 175 31 3 0 0
cdcdc8 12285 4277 1274 306 53 5 0 0
c2d2c8 8283 2847 834 196 33 3 0 0

d3c8 11154 3826 1118 262 44 4 0 0
c5dc7 3002 1287 495 165 45 9 1 0

dc3dc7 13286 5642 2145 705 189 37 4 0
cdc2dc7 32580 13715 5159 1674 442 85 9 0
c2dcdc7 36036 15015 5577 1782 462 87 9 0
d2cdc7 48048 20020 7436 2376 616 116 12 0
c3d2c7 18020 7436 2728 858 218 40 4 0
dcd2c7 45500 18746 6864 2154 546 100 10 0

cd3c7 54960 22620 8272 2592 656 120 12 0
c6dc6 3431 1716 792 330 120 36 8 1

dc4dc6 18863 9371 4290 1770 636 188 41 5
cdc3dc6 57330 28301 12857 5256 1868 545 117 14

c2dc2dc6 85503 41886 18852 7621 2673 768 162 19
d2c2dc6 111969 54877 24713 9997 3509 1009 213 25
c3dcdc6 70070 34034 15158 6050 2090 590 122 14
dcdcdc6 175175 85085 37895 15125 5225 1475 305 35
cd2cdc6 210210 102102 45474 18150 6270 1770 366 42

c4d2c6 28173 13585 5995 2365 805 223 45 5
dc2d2c6 102414 49326 21736 8560 2908 804 162 18
cdcd2c6 200655 96551 42497 16713 5669 1565 315 35

c2d3c6 144309 69381 30507 11983 4059 1119 225 25
d4c6 196482 94450 41522 16306 5522 1522 306 34

Table 3: Selected coefficients of the cd-indices of 13-dimensional bistellar flips
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The cd-index of complexity 1 simplicial flips

c2 d

F 2
(0,0) 1 2

F 2
(1,0) 0 2

F 2
(1,1) 0 0

c3 dc cd

F 3
(0,0) 1 3 4

F 3
(1,0) 0 2 4

F 3
(1,1) 0 1 2

F 3
(2,0) 0 1 2

F 3
(2,1) 0 0 0

F 3
(3,0) 0 0 0

c4 dc2 cdc c2d d2

F 3
(0,0,0) 1 4 9 7 10

F 3
(1,0,0) 0 2 7 7 10

F 3
(1,1,0) 0 1 5 5 8

F 3
(1,1,1) 0 1 3 3 4

F 3
(2,1,0) 0 0 3 3 6

F 3
(2,1,1) 0 0 1 1 2

F 3
(2,2,0) 0 0 1 1 2

F 4
(0,0) 1 4 8 6 8

F 4
(1,0) 0 2 6 6 8

F 4
(1,1) 0 1 4 4 6

F 4
(2,0) 0 1 4 4 6

F 4
(2,1) 0 0 2 2 4

F 4
(2,2) 0 0 0 0 0

F 4
(3,0) 0 1 2 2 2

F 4
(3,1) 0 0 0 0 0

F 4
(4,0) 0 0 0 0 0

Table 4: Coefficients of the cd-indices of small simplicial flips in dimensions 1 through 3.
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c5 dc3 cdc2 c2dc d2c c3d dcd cd2

F 4
(0,0,0) 1 5 14 18 24 10 26 32

F 4
(1,0,0) 0 2 9 15 20 10 26 32

F 4
(1,1,0) 0 1 6 12 16 8 22 28

F 4
(1,1,1) 0 1 5 9 12 6 16 20

F 4
(2,0,0) 0 1 6 12 16 8 22 28

F 4
(2,1,0) 0 0 3 9 12 6 18 24

F 4
(2,1,1) 0 0 2 6 8 4 12 16

F 4
(2,2,0) 0 0 2 6 8 4 12 16

F 4
(2,2,1) 0 0 1 3 4 2 6 8

F 4
(2,2,2) 0 0 0 0 0 0 0 0

F 4
(3,0,0) 0 1 5 9 12 6 16 20

F 4
(3,1,0) 0 0 2 6 8 4 12 16

F 4
(3,1,1) 0 0 1 3 4 2 6 8

F 4
(3,2,0) 0 0 1 3 4 2 6 8

F 4
(3,2,1) 0 0 0 0 0 0 0 0

F 4
(3,3,0) 0 0 0 0 0 0 0 0

F 4
(4,0,0) 0 1 4 6 8 4 10 12

F 4
(4,1,0) 0 0 1 3 4 2 6 8

F 4
(4,2,0) 0 0 0 0 0 0 0 0

F 5
(0,0) 1 5 13 15 20 8 20 24

F 5
(1,0) 0 2 8 12 16 8 20 24

F 5
(1,1) 0 1 5 9 12 6 16 20

F 5
(2,0) 0 1 5 9 12 6 16 20

F 5
(2,1) 0 0 2 6 8 4 12 16

F 5
(2,2) 0 0 1 3 4 2 6 8

F 5
(3,0) 0 1 4 6 8 4 10 12

F 5
(3,1) 0 0 1 3 4 2 6 8

F 5
(3,2) 0 0 0 0 0 0 0 0

F 5
(4,0) 0 1 3 3 4 2 4 4

F 5
(4,1) 0 0 0 0 0 0 0 0

F 5
(5,0) 0 0 0 0 0 0 0 0

Table 5: Coefficients of the cd-indices of small simplicial flips in dimension 4.
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c6 dc4 cdc3 c2dc2 d2c2 c3dc dcdc cd2c c4d dc2d cdcd c2d2 d3

F 4
(0,0,0,0) 1 6 20 34 44 32 80 96 14 52 104 76 104

F 4
(1,0,0,0) 0 2 11 25 32 28 70 84 14 52 104 76 104

F 4
(1,1,0,0) 0 1 7 19 24 24 60 72 12 46 94 70 96

F 4
(1,1,1,0) 0 1 6 16 20 20 50 60 10 38 78 58 80

F 4
(1,1,1,1) 0 1 6 14 18 16 40 48 8 30 60 44 60

F 4
(2,1,0,0) 0 0 3 13 16 20 50 60 10 40 84 64 88

F 4
(2,1,1,0) 0 0 2 10 12 16 40 48 8 32 68 52 72

F 4
(2,1,1,1) 0 0 2 8 10 12 30 36 6 24 50 38 52

F 4
(2,2,0,0) 0 0 2 10 12 16 40 48 8 32 68 52 72

F 4
(2,2,1,0) 0 0 1 7 8 12 30 36 6 24 52 40 56

F 4
(2,2,2,0) 0 0 1 5 6 8 20 24 4 16 34 26 36

F 4
(2,2,2,1) 0 0 1 3 4 4 10 12 2 8 16 12 16

F 4
(2,2,2,2) 0 0 0 0 0 0 0 0 0 0 0 0 0

F 4
(3,1,1,0) 0 0 1 7 8 12 30 36 6 24 52 40 56

F 4
(3,1,1,1) 0 0 1 5 6 8 20 24 4 16 34 26 36

F 4
(3,2,1,1) 0 0 0 2 2 4 10 12 2 8 18 14 20

F 4
(3,2,2,1) 0 0 0 0 0 0 0 0 0 0 0 0 0

F 4
(3,3,1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0

F 4
(4,1,1,1) 0 0 1 3 4 4 10 12 2 8 16 12 16

Table 6: Coefficients of the cd-indices of small simplicial flips in dimension 5 determined by the
small simplicial polytope P4,4.
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c6 dc4 cdc3 c2dc2 d2c2 c3dc dcdc cd2c c4d dc2d cdcd c2d2 d3

F 5
(0,0,0) 1 6 20 33 43 30 75 90 13 48 95 69 94

F 5
(1,0,0) 0 2 11 24 31 26 65 78 13 48 95 69 94

F 5
(1,1,0) 0 1 7 18 23 22 55 66 11 42 85 63 86

F 5
(1,1,1) 0 1 6 15 19 18 45 54 9 34 69 51 70

F 5
(2,0,0) 0 1 7 18 23 22 55 66 11 42 85 63 86

F 5
(2,1,0) 0 0 3 12 15 18 45 54 9 36 75 57 78

F 5
(2,1,1) 0 0 2 9 11 14 35 42 7 28 59 45 62

F 5
(2,2,0) 0 0 2 9 11 14 35 42 7 28 59 45 62

F 5
(2,2,1) 0 0 1 6 7 10 25 30 5 20 43 33 46

F 5
(2,2,2) 0 0 1 4 5 6 15 18 3 12 25 19 26

F 5
(3,0,0) 0 1 6 15 19 18 45 54 9 34 69 51 70

F 5
(3,1,0) 0 0 2 9 11 14 35 42 7 28 59 45 62

F 5
(3,1,1) 0 0 1 6 7 10 25 30 5 20 43 33 46

F 5
(3,2,0) 0 0 1 6 7 10 25 30 5 20 43 33 46

F 5
(3,2,1) 0 0 0 3 3 6 15 18 3 12 27 21 30

F 5
(3,3,0) 0 0 1 4 5 6 15 18 3 12 25 19 26

F 5
(3,3,1) 0 0 0 1 1 2 5 6 1 4 9 7 10

F 5
(4,0,0) 0 1 6 13 17 14 35 42 7 26 51 37 50

F 5
(4,1,0) 0 0 2 7 9 10 25 30 5 20 41 31 42

F 5
(4,1,1) 0 0 1 4 5 6 15 18 3 12 25 19 26

F 5
(4,2,0) 0 0 1 4 5 6 15 18 3 12 25 19 26

F 5
(4,2,1) 0 0 0 1 1 2 5 6 1 4 9 7 10

F 5
(4,3,0) 0 0 1 2 3 2 5 6 1 4 7 5 6

F 5
(5,0,0) 0 1 5 10 13 10 25 30 5 18 35 25 34

F 5
(5,1,0) 0 0 1 4 5 6 15 18 3 12 25 19 26

F 5
(5,1,1) 0 0 0 1 1 2 5 6 1 4 9 7 10

F 5
(5,2,0) 0 0 0 1 1 2 5 6 1 4 9 7 10

Table 7: Coefficients of the cd-indices of small simplicial flips in dimension 5 determined by the
small simplicial polytope P5,3.
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c6 dc4 cdc3 c2dc2 d2c2 c3dc dcdc cd2c c4d dc2d cdcd c2d2 d3

F 6
(0,0) 1 6 19 29 38 24 60 72 10 36 70 50 68

F 6
(1,0) 0 2 10 20 26 20 50 60 10 36 70 50 68

F 6
(1,1) 0 1 6 14 18 16 40 48 8 30 60 44 60

F 6
(2,0) 0 1 6 14 18 16 40 48 8 30 60 44 60

F 6
(2,1) 0 0 2 8 10 12 30 36 6 24 50 38 52

F 6
(2,2) 0 0 1 5 6 8 20 24 4 16 34 26 36

F 6
(3,0) 0 1 5 11 14 12 30 36 6 22 44 32 44

F 6
(3,1) 0 0 1 5 6 8 20 24 4 16 34 26 36

F 6
(3,2) 0 0 0 2 2 4 10 12 2 8 18 14 20

F 6
(3,3) 0 0 0 0 0 0 0 0 0 0 0 0 0

F 6
(4,0) 0 1 5 9 12 8 20 24 4 14 26 18 24

F 6
(4,1) 0 0 1 3 4 4 10 12 2 8 16 12 16

F 6
(4,2) 0 0 0 0 0 0 0 0 0 0 0 0 0

F 6
(5,0) 0 1 4 6 8 4 10 12 2 6 10 6 8

F 6
(5,1) 0 0 0 0 0 0 0 0 0 0 0 0 0

F 6
(6,0) 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 8: Coefficients of the cd-indices of small simplicial flips in dimension 5 determined by the
small simplicial polytope P6,2.
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The cd-indices of 3-dimensional semi-simplicial flips

Complexity c4 dc2 cdc c2d d2

0 1 3 5 3 4

0 0 1 1 2 0

0 0 1 3 3 4

1 0 1 2 2 0

1 0 1 4 4 6

2 0 1 3 2 0

2 0 1 5 4 7

2 0 1 5 6 9

2 0 1 5 7 10

3 0 1 4 2 0

3 0 1 6 5 9

3 0 1 6 6 10

3 0 1 6 7 11

3 0 1 6 8 12

3 0 1 6 9 13

4 0 1 5 2 0

4 0 1 7 5 10

4 0 1 7 6 11

4 0 1 7 7 12

4 0 1 7 8 13

4 0 1 7 9 14

4 0 1 7 10 15

4 0 1 7 11 16

5 0 1 6 2 0

5 0 1 8 6 12

5 0 1 8 7 13

5 0 1 8 8 14

5 0 1 8 9 15

5 0 1 8 10 16

5 0 1 8 11 17

5 0 1 8 12 18

5 0 1 8 13 19

Coefficients of all possible cd-indices of semi-simplicial flips in dimension 3 with complexity at
most 5
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