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ABSTRACT OF DISSERTATION

On Skew-Constacyclic Codes

Cyclic codes are a well-known class of linear block codes with efficient decoding
algorithms. In recent years they have been generalized to skew-constacyclic codes;
such a generalization has previously been shown to be useful. We begin with a
study of skew-polynomial rings so that we may examine these codes algebraically
as quotient modules of non-commutative skew-polynomial rings. We introduce a
skew-generalized circulant matrix to aid in examining skew-constacyclic codes, and
we use it to recover a well-known result on the duals of skew-constacyclic codes from
Boucher/Ulmer in 2011. We also motivate and define a notion of idempotent elements
in these quotient modules. We are particularly concerned with the existence and
uniqueness of idempotents that generate a given submodule; we generalize relevant
results from previous work on skew-constacyclic codes by Gao/Shen/Fu in 2013 and
well-known results from the classical case.
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Chapter 1 Introduction

When we transmit data over a noisy channel (e.g., satellite) to a receiver, we run

the risk of our data becoming corrupted. Fixing the channel is not typically an

option, so instead we must make our data noise-proof. A naive method of doing

this is simply sending the same data multiple times. However, the benefit of the

redundancy created may be offset by the cost of sending a lengthy message more

than once in full. Indeed in some cases, such as transmissions through space via

satellite, sending a message more than once may be entirely impractical. When we

encode data onto a compact disc, there is no opportunity for the disk drive to request

that data be re-encoded. Instead, we want to choose a method of communicating the

information that can preserve the information despite the pitfalls of the medium of

data transference, whether they are thermal disturbances in space or fingerprints and

scratches on a CD.

The study of algebraic coding theory is about balancing the added redundancy

with its costs and finding new ways to efficiently encode and decode information. In

1948, Shannon [27] gave proof of the existence of codes that could be used to ensure

the accuracy (up to a specified percentage) of decoded data. His proof, however, was

not constructive; codes satisfying this condition were not provided.

In the time since, though, many codes have been developed that do demonstrate

Shannon’s result. Introduced by Prange in 1957 [26], cyclic codes are a particularly

nice class of codes known to have nice error-correcting properties if suitably chosen.

Cyclic codes correspond exactly to the ideals of the quotient ring Fq[x]/(xn − 1). It

is usually assumed that n and q are relatively prime; this guarantees that xn − 1 has

no repeated factors. It also guarantees that a cyclic code has a unique generating

idempotent, which serves as the multiplicative identity in the code viewed as a ring.

Cyclic codes also have an efficient decoding algorithm called the Meggitt decoder.

Cyclic codes have been studied extensively; recently, they have been general-

ized to the class of skew-constacyclic codes. Much of the initial work was done by

Boucher/Ulmer et al. [3, 5, 7, 8, 11], as well as Abualrub et al. [1], Matsuoka [24], and

Gao et al. [14]. We are motivated to study skew-constacyclic codes by discoveries of

optimal codes in this class. For example, in [3] and [11], the authors present skew-

constacyclic codes whose distance improves upon the largest distance that was known

at that time for codes with the same parameters (q, n, k). (Here k gives the dimension

of the code as a vector subspace.) Similarly, in [9], some self-dual skew-constacyclic
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codes are found that have better distance than previously known self-dual codes with

the same parameters. Thus we believe that skew-constacyclic codes are a rich field

for further study.

This dissertation studies well-known results from the classical cyclic case to see

which ones hold in the skew-constacyclic case. Chapters 2 and 3 lay the groundwork

for understanding skew-constacyclic codes. Chapters 4 and 5 focus on dual codes

of skew-constacyclic codes. Chapter 6 provides information on idempotents in skew-

constacyclic codes.

In Chapter 2, we explore the skew-polynomial ring. This ring was introduced by

Ore [25] in 1933. In general, a skew-polynomial ring, denoted Fq[x; θ; δ] features an

automorphism θ and a θ-derivation δ, where θ and δ describe the relation between

ax and xa for coefficients a ∈ F. For our purposes, we assume that δ = 0 through-

out, and simply use the notation F[x; θ] for the skew-polynomial ring, as is standard

in the literature. We then define (θ, a)-constacyclic codes using the quotient mod-

ule Fq[x; θ]/•(xn − a), paralleling the structure of cyclic codes. Each classical cyclic

code corresponds to a divisor of xn− 1; similarly, each (θ, a)-constacyclic code corre-

sponds to a right divisor of xn − a.

Because skew-polynomials do not necessarily have unique irreducible factoriza-

tions, a polynomial xn − a may have a considerable number of right divisors, thus

leading to many skew-constacyclic codes. In addition, skew-constacyclic codes over

finite fields have been used in other areas of coding theory, shift-register synthesis,

and cryptography over recent years; see for example [2, 22, 28, 29, 30, 32].

Since skew-constacyclic codes correspond to right divisors of xn − a, it is critical

to understand how to factor xn − a. In Chapter 3, we first discuss ways to manip-

ulate factorizations of xn − a to obtain new factorizations of xn − a and of other

polynomials of similar form. We will exploit these manipulations in Chapter 4. We

also discuss techniques for finding factorizations of xn − a using a computer algebra

system. We conclude this chapter with a generalization of polynomial roots to the

skew-polynomial ring.

In Chapter 4, we introduce a skew-generalized circulant to describe (θ, a)-consta-

cyclic codes. In the classical cyclic case, the circulant of a particular polynomial g is

an n× n square matrix whose ith row contains the coefficients of the polynomial xig

modulo (xn − 1), for i = 0, . . . , n − 1. The rowspace of the circulant of a right

divisor g of xn−1 gives the cyclic code corresponding to g. This circulant description

of classical cyclic codes is well known, and circulants have been extensively studied

(see, for instance, [23, p. 501]).
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Similarly, our skew-generalized circulant of g ∈ R is an n × n square matrix

whose ith row contains the left coefficients of the polynomial xig modulo •(xn − a),

for i = 0, . . . , n−1. Skew-generalized circulants do not preserve every useful artifact of

classical circulants. The product of two skew-generalized circulants is not necessarily

a skew-generalized circulant, nor is the transpose of a skew-generalized circulant

necessarily a skew-generalized circulant.

We show, however, that the skew-generalized circulant of a right divisor g of xn−
a behaves particularly nicely. For example, a skew-generalized circulant of a left

multiple of a right divisor of xn − a can be written as the product of two associated

skew-generalized circulants. We will also show that if g is a right divisor of xn−a, then

the transpose of its skew-generalized circulant is again a skew-generalized circulant.

In each of these cases, though, not all skew-generalized circulants are based on the

modulus •(xn − a).

In [5], Boucher/Ulmer used dot product computations to characterize the dual of

a skew-constacyclic code as another skew-constacyclic code. In Chapter 5, we use

skew-generalized circulants to recover their results by using the structure of skew-

polynomial rings. Using another skew-generalized circulant formula, we obtain anti-

isomorphisms between the lattice of right divisors of xn−a, the lattice of right divisors

of xn− a−1, the lattice of skew-constacyclic codes in Fn and the lattice of dual codes.

In Chapter 6, we turn to idempotents. Recall that in a ring, we say that e is

an idempotent if e2 = e. In the case of the quotient ring Fq[x; θ]/(xn − 1), each

idempotent e serves as a generator for some classical cyclic code, and we say that e is

a generating idempotent of that code. When we want to create a classical cyclic code,

factorizing xn−1 to find divisors can be difficult. On the other hand, idempotents can

easily be found with the aid of cyclotomic cosets. Thus it is beneficial to understand

generating idempotents for cyclic codes. Provided that n is relatively prime to the

characteristic of the field F, one can show that each cyclic code contains a unique

generating idempotent. (See, for example, [18].)

The fact that Fq[x; θ] is in general only a module and not a ring adds to the techni-

cality for skew-constacyclic codes; we must redefine what it means to be idempotent.

We generalize the notion of (generating) idempotents in the classical cyclic case to

(generating) idempotents modulo •(xn − a). In [14], Gao/Shen/Fu laid groundwork

for the existence of unique generating idempotents when xn − 1 is central. We ex-

tend this to all central xn − a, and concretely give the codes in Fq[x; θ]/•(xn − a)

which are guaranteed to have unique central generating idempotents (along with

those idempotents). Further, we give results on the existence of generating idem-

3



potents for general xn − a and provide generalizations of other well-known results

from the classical cyclic case. For example, we will show that the intersection and

sum of two (θ, a)-constacyclic codes are again (θ, a)-constacyclic codes, and we will

decompose the vector space Fnq into the direct sum of two (θ, a)-constacyclic codes.

Finally, we conclude we data on factorizations of xn − a over prime power fields

of order up to 25. We use this data to provide evidence that there are easy-to-check

criteria that characterize skew-constacyclic codes with generating idempotents. We

also observe that there are in general a large number of skew-constacyclic codes, and

a smaller (but non-trivial) number of nice codes with generating idempotents.

Copyright c© Neville Lyons Fogarty, 2016.
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Chapter 2 Skew-Polynomial Rings and Left Quotient Modules

Skew-polynomial rings were introduced by Ore [25] in 1933. In this chapter, we

define the skew-polynomial ring, denoted F[x; θ], and give its relevant properties. We

examine the left quotient module Fq[x; θ]/•(xn − a) and compare it and contrast it

with the commutative Fq[x]/(xn − 1). Special consideration is given toward the case

where xn − a is central.

We use the quotient module Fq[x; θ]/•(xn − a) to define (θ, a)-constacyclic codes,

paralleling the structure of cyclic codes. Each cyclic code corresponds to a divisor

of xn−1; similarly, each (θ, a)-constacyclic code corresponds to a right divisor of xn−a.

2.1 Properties of Skew-Polynomial Rings

Let F be a finite field and θ ∈ Aut(F), that is, θ is an automorphism of F. We consider

the skew polynomial ring R := F[x; θ], which is defined as the set {
∑n

i=0 aix
i | n ∈

N0, ai ∈ F} endowed with the usual addition, and where multiplication is given by

xa = θ(a)x for all a ∈ F

together with the laws of associativity and distributivity. Then R is a ring with

identity which is non-commutative unless θ = idF. Following Boucher/Ulmer [7], we

call R a skew-polynomial ring of automorphism type. Despite the non-commutativity,

the ring is very similar to ordinary polynomial rings over fields. Some well-known

properties are summarized below. Note that the degree of a polynomial f ∈ R,

denoted by deg(f), does not depend on the side where we collect the coefficients of f

since θ is an automorphism. We also define deg(0) = −∞. Then we have the usual

degree formulas, and in particular R is a domain. It is easy to see that the center

of R is given by

Z(R) = F̂[xm], where |θ| = m, (2.1.1)

and F̂ := FixF(θ) is the fixed field of θ.

Remark 2.1.1 ([25]). R is a left Euclidean domain and a right Euclidean domain.

More precisely, we have the following.

(a) (Right division with remainder) For all f, g ∈ R with g 6= 0 there exist unique

polynomials s, r ∈ R such that f = sg + r and deg(r) < deg(g). If r = 0, then g
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is a right divisor of f , denoted by g |r f .

(b) For any two polynomials f1, f2 ∈ R, not both zero, there exists a unique monic

polynomial d ∈ R such that d |r f1, d |r f2 and such that whenever h ∈ R satisfies

h |r f1 and h |r f2 then h |r d. The polynomial d is called the greatest common right

divisor of f1 and f2, denoted by gcrd(f1, f2). It satisfies a right Bézout identity,

that is,

d = uf1 + vf2 for some u, v ∈ R.

We may choose u, v such that deg(u) < deg(f2) and, consequently, deg(v) <

deg(f1); see [15, Sec. 2].

(c) For any two nonzero polynomials f1, f2 ∈ R, there exists a unique monic poly-

nomial ` ∈ R such that fi |r `, i = 1, 2, and such that whenever h ∈ R satisfies

fi |r h, i = 1, 2, then ` |r h. The polynomial ` is called the least common left mul-

tiple of f1 and f2, denoted by lclm(f1, f2). Moreover, we have ` = uf1 = vf2 for

some u, v ∈ R with deg(u) ≤ deg(f2) and deg(v) ≤ deg(f1); this follows from

[25, Thm. 8 and Eq. (24)].

(d) For all nonzero f1, f2 ∈ R

deg(gcrd(f1, f2)) + deg(lclm(f1, f2)) = deg(f1) + deg(f2).

Analogous statements hold true for the left hand side.

2.2 The Left Quotient Module

Let now a ∈ F∗ := F\{0} and n ∈ N. We will use the notation •(f) = Rf to denote

the principal left ideal generated by f ∈ R. Similarly, we will use (f)• = fR to

denote the principal right ideal generated by f ∈ R. Throughout this paper we will

be concerned with the quotient module

Sa := R/•(xn − a).

Note that in general Sa is not a ring, but simply a left R-module. This naturally

induces a left F-vector space structure as well.

The coset f + R(xn − a) of f ∈ R will be denoted by f . The left R-module

structure implies t f = tf for any t, f ∈ R. From right division with remainder it is

clear that every coset in Sa has a unique representative of degree less than n.

Occasionally we will pay special attention to the case where Sa is a ring.

6



Remark 2.2.1. An element f ∈ R is called two-sided if •(f) = (f)•. In this case

the left ideal •(f) is even two-sided and thus R/•(f) = R/(f)• is a ring. It is not

hard to see [19, Thm. 1.1.22] that the two-sided elements of R are exactly the skew-

polynomials of the form cxtf , where c ∈ F and t ∈ N0, and f is in the center Z(R).

In particular, a polynomial of the form xn − a, where a 6= 0, is two-sided if and only

if it is central and this is the case if and only if |θ| divides n and a ∈ FixF(θ). Only

in this case is the module Sa = R/•(xn − a) a ring.

Let us return to the general case. The module Sa is the skew-constacyclic analogue

of the quotient ring F[x]/(xn − 1) for cyclic codes or, more generally, of F[x]/(xn − a)

for constacyclic codes. We have the left F-linear isomorphism

pa : Fn −→ Sa, (c0, . . . , cn−1) 7−→
n−1∑
i=0

cixi. (2.2.1)

It is crucial that the coefficients ci appear on the left of x, because only this turns pa

into an isomorphism of (left) F-vector spaces. This map will relate codes in Fn to

submodules in Sa. We set

va := pa
−1. (2.2.2)

The following facts about submodules of Sa are straightforward generalizations

of the commutative case and are proven in exactly the same way (with the aid of

Remark 2.1.1). Just as for left ideals, we use the notation •(g) for the left submodule

of Sa generated by g.

Proposition 2.2.2. Let M be a left submodule of Sa.
(1) Then M = •(g), where g ∈ R is the unique monic polynomial of smallest degree

such that g ∈M. Moreover,

(i) g |r f for any f ∈ R such that f ∈M. In particular, g |r (xn − a).

(ii) g is the unique monic right divisor of xn − a such that •(g) =M.

(2) Let f ∈ R. Then •(f) = •(g), where g = gcrd(f, xn − a).

We mention in passing that in the central case (see Remark 2.2.1) the ring Sa is

Frobenius. This is a trivial consequence of the fact that Sa is finite and by Proposi-

tion 2.2.2(1) a principal left ideal ring; see [17, Th. 1].
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2.3 Constacyclic Codes

Let us return to the general case. The following is now immediate and forms a

standard generalization of the classical case of cyclic codes; a short proof is added for

completeness. We use the notation im (M) for the rowspace of a matrix M .

Corollary 2.3.1 (see also [7]). Let g ∈ R be a right divisor of xn − a, and let

deg(g) = r. Set M := •(g). Then M is a left F-vector space of dimension k := n− r
with basis {g, xg, . . . , xk−1g}. Writing g =

∑r
i=0 gix

i, we conclude

va(M) = im (M),

where

M =


va(g)

va(xg)
...

va(xk−1g)

 =


g0 g1 · · · gr

θ(g0) θ(g1) · · · θ(gr)
. . .

. . .
. . .

θk−1(g0) θk−1(g1) · · · θk−1(gr)

 ∈ Fk×n.

(2.3.1)

Proof. Let hg = xn − a. Consider fg ∈ M. Then fg = sg, where s ∈ R is the

remainder upon right division of f by h. Thus deg(s) < deg(h) = k and sg is in the

span of {g, xg, . . . , xk−1g}. Linear independence is clear from the matrix M .

We close this chapter with the definition of (θ, a)-constacyclicity and an illustrat-

ing example. The definition is a special case of [7, Def. 1].

Definition 2.3.2. A subspace C ⊆ Fn is called (θ, a)-constacyclic if pa(C) is a sub-

module of Sa. The code C ⊆ Fn is called skew-constacyclic if it is (θ, a)-constacyclic

for some θ ∈ Aut(F) and a ∈ F∗. The code is called θ-cyclic if it is (θ, 1)-constacyclic.

It is easy to see [5, Sec. 2] that a subspace C ⊆ Fn is (θ, a)-constacyclic if and only

if

(f0, . . . , fn−1) ∈ C =⇒ (aθ(fn−1), θ(f0), . . . , θ(fn−2)) ∈ C. (2.3.2)

In particular, the (id, 1)-constacyclic codes are exactly the classical cyclic codes.

From the previous results it is clear that any (θ, a)-constacyclic code has a genera-

tor matrix of the form M as in (2.3.1) for some g =
∑r

i=0 gix
i and θ ∈ Aut(F). As one

can see, the matrix M does not depend on a. This raises the question when a code

C = imM with M as in (2.3.1) is skew-constacyclic and, if so, for which constant a.
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This can easily be answered. Indeed, C = imM is (θ, a)-constacyclic if and only if

g |r (xn − a). The if-part is clear from Corollary 2.3.1, and for the only-if-part one

notices that g is, up to a constant factor, the unique non-zero polynomial of smallest

degree in pa(C). Thus g |r (xn − a) by Proposition 2.2.2(1). In this context it is also

worthwhile to note that if {0} ( C ( Fn, the constant a is unique because distinct

polynomials xn− a and xn− b have no common non-constant right divisors. In other

words, if a 6= b then the images pa(C) and pb(C) of a nontrivial subspace {0} ( C ( Fn

cannot both be submodules in Sa and Sb.
Proposition 2.2.2 tells us that, as in the classical commutative case, the (θ, a)-

constacyclic codes in Fn are in bijection with the distinct monic right divisors of xn−a.

However, as is well known, skew-polynomials do not factor uniquely into irreducible

polynomials (but see also [25, Thm. 1, Page 494]), which often results in a large

number of right divisors. We provide the following small example, which will be used

again in later sections.

Example 2.3.3. Consider the field F8 = F2[α], where α3 = α + 1, and let θ be the

Frobenius homomorphism on F8, thus θ(c) = c2 for all c ∈ F8. Let f := x7 +α. With

the aid of an exhaustive search one finds that f has the monic right divisors

g(0) = 1, g(1) = x+ α, g(2) = x3 + α4x2 + 1, g(3) = x3 + α6x+ 1,

g(4) = x4 + αx3 + α5x2 + α, g(5) = x4 + α5x2 + x+ α,

g(6) = x6 + α4x5 + α6x4 + x3 + α4x2 + α6x+ 1, g(7) = x7 + α.

The polynomials g(2), g(3), g(6) are not left divisors of x7 + α, while all others are.

Moreover, we have the lattice shown in Figure 2.1 with respect to right division, which

in turn provides us with the lattice of the (θ, α)-constacyclic codes C(i) := va
(•(g(i)))

in F7
8 with respect to inclusion.

This means, for instance, that g(1) is a right divisor of g(5) and thus C(5) ⊆ C(1).
The latter implies that (C(1))⊥ ⊆ (C(5))⊥. The lattice of right divisors (in a suitable

skew polynomial ring) corresponding to the dual codes will be provided in Section 5.2.

It is worth noting that the codes generated by g(2), g(3), g(4), g(5) are near-MDS

(but not MDS), that is, both the code and its dual have defect 1 (recall that the

defect of a code is the difference between the Singleton bound and the distance of the

code). The codes generated by g(1) and g(6) are trivial MDS codes.

Of course, as in the classical commutative case, general skew-constacyclic codes are

not MDS or otherwise optimal. In fact, as has been observed already by Boucher/Ul-

9



Figure 2.1: Lattice of monic right divisors of x7 + α and the corresponding codes

mer [8, Tables 1 – 3], for many choices of n there are no skew-constacyclic codes

of length n that have the best possible distance among all codes with the same

parameters (q, n, k). But at the same time there are plenty of parameters for which

skew-constacyclicity leads to the best codes known. Tables can be found in [3, 11].

Copyright c© Neville Lyons Fogarty, 2016.
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Chapter 3 Factorizations of xn − a

In the previous chapter, we defined the left quotient module Fq[x; θ]/•(xn − a) and

looked at its submodules. Again in this chapter, we consider the skew-polynomial

ring R := F[x; θ] for some fixed θ ∈ Aut(F). We will explore factorizations of xn− a,

which in turn gives us characterizations of those submodules using right divisors. In

the first section of this chapter, we will manipulate these factorizations to obtain

new factorizations, allowing us to relate skew-polynomials that will play critical roles

in future chapters. In the second section, we will explore techniques for efficiently

factorizing xn− a using a computer algebra system and discuss the existence of right

roots and linear factors of xn − a.

3.1 Manipulating Factorizations of xn − a

In this section we study factorizations of the form xn − a = hg in R. They give

rise to an abundance of further factorizations and lead to various identities for the

coefficients of h and g. In order to derive these results we need the following maps.

The natural extension of θ to R will be denoted by θ as well, thus

θ : R −→ R,
r∑
i=0

fix
i 7−→

r∑
i=0

θ(fi)x
i. (3.1.1)

As a consequence,

xf = θ(f)x for all f ∈ R. (3.1.2)

In addition, on the ring of skew-Laurent polynomials F[x, x−1; θ] we consider the map

ϕ : F[x, x−1; θ] −→ F[x, x−1; θ],
n∑

i=m

aix
i 7−→

n∑
i=m

x−iai. (3.1.3)

It gives rise to two reciprocal polynomials, a left reciprocal ρl and a right reciprocal ρr,

defined as follows:

ρl : R −→ R, f 7−→ xdeg fϕ(f) and ρr : R −→ R, f 7−→ ϕ(f)xdeg f . (3.1.4)

11



Explicitly these maps are given by

ρl

( t∑
i=0

fix
i
)

=
t∑
i=0

xt−ifi =
t∑
i=0

θi(ft−i)x
i and ρr

( t∑
i=0

fix
i
)

=
t∑
i=0

θi−t(ft−i)x
i

(3.1.5)

where ft 6= 0.

The following proposition summarizes the main properties of these maps. The

anti-isomorphism in Part (b) appears also in [4, p. 282] for skew-polynomial rings

over Galois rings, and the multiplicativity rule for the left reciprocal in Part (h) can

also be found in [5, Def. 3, Lem. 1].

Proposition 3.1.1.

(a) θ is a ring isomorphism of R.

(b) ϕ is a ring anti-isomorphism: ϕ(f + f ′) = ϕ(f) + ϕ(f ′) and ϕ(ff ′) = ϕ(f ′)ϕ(f)

for all f, f ′ ∈ F[x, x−1; θ].

(c) ρr|F = idF = ρl|F.

(d) ρl(f) = θdeg(f)(ρr(f)) for all f ∈ R.

(e) θ ◦ ρl = ρl ◦ θ and θ ◦ ρr = ρr ◦ θ.

(f) ρl ◦ ρl(f) = θdeg f (f) and ρr ◦ ρr(f) = θ− deg f (f) for all f ∈ R.

(g) ρr ◦ ρl = ρl ◦ ρr = idR.

(h) ρl(f1f2) = θk1(ρl(f2))ρl(f1) and ρr(f1f2) = ρr(f2)θ
−k2(ρr(f1)) for all f1, f2 ∈ R

and where ki = deg fi.

Proof. (a) and (c) are obvious. The additivity in (b) is clear, and for the multiplicativ-

ity it suffices to show that ϕ(axmbxn) = ϕ(bxn)ϕ(axm), which can easily be verified.

(d) and (e) are immediate from (3.1.5). For (f) we compute ρl(ρl(
∑t

i=0 fix
i)) =

ρl(
∑t

i=0 θ
i(ft−i)x

i) =
∑t

i=0 θ
i(θt−i(fi))x

i = θt(f). Similarly, ρr(ρr(
∑t

i=0 fix
i)) =

ρr(
∑t

i=0 θ
i−t(ft−i)x

i) =
∑t

i=0 θ
i−t(θ−i(fi))x

i = θ−t(f). (g) follows from (d), (e),

and (f). For (h) we use (3.1.2) and the previous properties to compute ρl(f1f2) =

xk1+k2ϕ(f1f2) = xk1+k2ϕ(f2)ϕ(f1) = xk2θk1(ϕ(f2))x
k1ϕ(f1) = ρl(θ

k1(f2))ρl(f1). The

second identity follows from the first one using (d).

Now we turn to an identity of the form xn − a = hg and derive various conse-

quences. We introduce the notation

γ(a, g) := ag−10 θn(g0) for any right divisor g of xn − a, (3.1.6)
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where g0 is the constant coefficient of g. One may note that γ(a, g) is the conjugate

ag0 in the skew-polynomial ring F[x; θn] in the sense of [21, Eq. (2.5)].

Theorem 3.1.2 (see also [5, Lem. 2]). Let g =
∑n−k

i=0 gix
i, h =

∑k
i=0 hix

i ∈ R such

that deg(h) = k and deg(g) = n − k, and let a ∈ F∗. Define c = γ(a, g). Then the

following are equivalent.

(1) xn − a = hg,

(2) xn − c = θn(g)h,

(3) xn − θ−n(c) = gθ−n(h),

Furthermore, if any, hence all, of the above is true then

θn(g)a = cg and aθ−n(h) = hθ−n(c). (3.1.7)

Proof. (1) ⇒ (2) Left-multiplying xn − a = hg with θn(g) and using θn(g)xn = xng,

we obtain (xn − θn(g)h)g = θn(g)a. This shows that g is a right divisor of θn(g)a.

Since both polynomials have the same degree we conclude cg = θn(g)a with c as in

the theorem. Now we have (xn − θn(g)h)g = cg, and cancellation of g results in

xn − c = θn(g)h, as desired.

(2) ⇒ (3) follows by applying θ−n.

(3) ⇒ (1) follows from using the implication (1) ⇒ (2) along with g0h0 = −a.

It remains to show the identities in (3.1.7). The first one has been derived already in

the first part of this proof. For the second one we right-multiply (1) by θ−n(h) and

compute aθ−n(h) = xnθ−n(h) − hgθ−n(h) = h(xn − gθ−n(h)) = hθ−n(c), where the

last step follows from (3).

In the next section, we will elaborate on how the search for all right factors of

xn − a (thus of all (θ, a)-constacyclic codes) can be aided by the above theorem. To

do so, we will assume that g has constant term 1.

Definition 3.1.3. An element f ∈ R is called constamonic if it has constant term 1.

Remark 3.1.4. If g is constamonic, then c = γ(a, g) = ag−10 θn(g0) = a1−1θn(1) = a.

In this case, xn − a = hg = θn(g)h.

Comparing left coefficients in the identities in (3.1.7) yields

Corollary 3.1.5. Let a ∈ F∗ and g, h ∈ R such that xn−a = hg and let c = γ(a, g).

Write g =
∑n−k

i=0 gix
i and h =

∑k
i=0 hix

i. Then

cgt = θt(a)θn(gt) and aθ−n(ht) = htθ
t−n(c) for all t ≥ 0.
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The following additional identities will be crucial in the next sections when turning

to transpositions of circulants and duals of θ-constacyclic codes.

Corollary 3.1.6. Let a ∈ F∗ and g, h ∈ R such that xn−a = hg and let c = γ(a, g).

Define

ĥ
l

:= ρl(θ
−n(h)) and ĝr := ρr(θ

n(g)).

Then

(a) ga−1h = c−1(xn − c),

(b) −θk−n(c−1)θk(c−1)ĥ
l
aĝr = xn − θk(c−1),

(c) −ĝrθk−n(c−1)ĥ
l

= xn − a−1.

Proof. (a) Using (3.1.7) and (2) of Theorem 3.1.2 we compute ga−1h = c−1θn(g)h =

c−1(xn − c).
(b) Applying ρl to (a) yields −xn + c−1 = ρl(ga

−1h) = θn−k(ρl(a
−1h))ρl(g) by

virtue of Proposition 3.1.1(h). Applying θk and using that θk(ρl(g)) = ρr(θ
n(g)) =

ĝr, we obtain −θn(ρl(a
−1h))ĝr = xn − θk(c−1). Hence it remains to show that

θk−n(c)θk(c)θn(ρl(a
−1h)) = ĥ

l
a. First observe that θn(ρl(a

−1h)) = ρl(θ
n(a−1h)) =

ρl(hc
−1) due to (3.1.7). Using again Proposition 3.1.1(h) and once more (3.1.7) we

derive θk−n(c)θk(c)ρl(hc
−1) = θk−n(c)ρl(h) = ρl(hθ

−n(c)) = ρl(aθ
−n(h)) = ĥ

l
a, and

this establishes (b).

(c) We apply ρl to Theorem 3.1.2(1) to obtain −xna + 1 = ρl(hg) = ρl(θ
k(g))ρl(h).

Thus, xn − a−1 = −ĝrρl(h)a−1 = −ĝrρl(a−1h). By (3.1.7) we have that a−1h =

θ−n(h)θ−n(c−1), and thus xn − a−1 = −ĝrρl(θ−n(h)θ−n(c−1)) = −ĝrθk−n(c−1)ĥ
l
, as

desired.

Remark 3.1.7. Let a ∈ F∗ and g, h ∈ R such that xn − a = hg and let c = γ(a, g).

Suppose g and h are monic. Then c = θn−k(a), which follows from t = n − k in

Corollary 3.1.5. As a consequence, the constant θk(c−1) in Corollary 3.1.6(b) equals

θn(a−1) and is thus independent of the choice of g, h and the degree k.

The rest of this section is devoted to a brief discussion of how to find all right

divisors of the polynomials of the form xn− a. For the general factorization problem

in F[x; θ] and fast algorithms we refer to [15, 10].

A major cost saver for finding all right divisors is obtained from Theorem 3.1.2.

Indeed, note that if g0 = 1 then c = a and the implication (1) ⇒ (2) of that theorem

shows that the left divisor h of xn − a is also a right divisor. Thus, in order to

determine all right divisors of xn− a it suffices to compute all right divisors, g, up to
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degree bn/2c with constant term 1; the corresponding left factors, h, will then be the

remaining right divisors with degree at least bn/2c (but in general not with constant

term 1).

Next, we observe that xn − a = hg ⇐⇒ xn − abθn(b−1) =
(
θn(b−1)h

)
gb for any

a, b ∈ F∗. This is seen by right-multiplying xn − a = hg by b and left-multiplying

by θn(b−1). Thus, the map g 7−→ gb provides us with a bijection between the right

divisors of xn − a and those of xn − â, where â = abθn(b−1). Note that the map

ϑ : F∗ −→ F∗, b 7−→ bθn(b−1) (3.1.8)

is a group homomorphism with kernel F̃∗, where F̃ = FixF(θn). As a consequence,

by varying b we obtain for â all values in the coset a(imϑ) in F∗. This coset is

exactly the set of all conjugates of a in F[x; θn] in the sense of [21]. All of this shows

that factorizations of xn − a provide us easily with factorizations of |imϑ| distinct

polynomials of the form xn − â.

We summarize as follows.

Proposition 3.1.8. Let a, b ∈ F∗ and set â := abθn(b−1). Let g ∈ R. Then

g |r (xn − a)⇐⇒ (gb) |r (xn − â).

We will come back to this result in Theorem 4.2.4, where we also relate the

corresponding skew-constacyclic codes.

In addition to this result, Corollary 3.1.6 may provide additional information

about the right divisors because it relates those of xn − a to those of xn − a−1. We

illustrate all of this by some examples.

Example 3.1.9. (1) Let char(F) = 2 and FixF(θn) = F2. Then the map ϑ is surjec-

tive and thus the set of right divisors of any xn − a leads immediately to the set

of all right divisors of xn− â for any â ∈ F∗. This is for instance the case for any

field F2p , where p is prime, along with any non-trivial automorphism θ and any n

such that p - n.

(2) Let F = F16 and θ be the Frobenius map. Let n = 6. Then FixF(θ6) = F4.

Thus im (ϑ) is the unique subgroup of F∗ of order |F∗|/|F∗4| = 5. Precisely, with α

being a primitive element of F we have imϑ = {1, α3, α6, α9, α12}, and the other

two cosets are {α, α4, α7, α10, α13} and {α2, α5, α8, α11, α14}. One finds that x6−1

has 35 distinct monic right divisors, and hence the same is true for x6 − α3i for

i = 1, . . . , 4. One also finds that the polynomial x6 − α has no non-trivial right
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divisors. Now we may also use Corollary 3.1.6 and conclude that also x6−α−1 has

no non-trivial right divisors. Since α−1 = α14, we conclude that x6 − a, where a

is any element in the last two cosets has no non-trivial right divisors.

(3) Let F = F9 and θ be the Frobenius map. Let n = 4. Then θ4 = id and thus

im (ϑ) = {1}. An exhaustive search shows that x4−2 has 12 monic right divisors,

whereas x4 − 1 has 36 such divisors.

3.2 Finding Factorizations

To find factorizations xn − a = hg, we can use a computer algebra system, such

as Maple. Rather than exhaustively searching for all right divisors, we begin by

listing all constamonic polynomials of degree at most bn
2
c. (Recall from Def. 3.1.3

that a polynomial is constamonic if and only if its constant term is 1.) Using the

computer algebra system, determine which of these polynomials are right divisors

of xn − a = hg. Each constamonic right divisor g of degree strictly less than bn
2
c

corresponds to a right divisor of degree strictly greater than bn
2
c. We can determine

this high degree right divisor by using Thm. 3.1.2: since g0 = 1, we have that c = a.

Thus if xn − a = hg, the left divisor h is also a right divisor of xn − a. Note that the

constant term of h is −a, so h is not necessarily constamonic. Thus if we are looking

for all constamonic divisors of xn−a, we should rescale our high degree right divisors

by multiplying them by −a−1 on the left. To obtain all right divisors of xn − a,

we must multiply our right divisors by all non-zero constants on the left. Note that

rescaling by a constant on the left does not change the code generated by a right

divisor.

We present some results on factorizing skew polynomials. First, we examine the

case where n = 2.

Theorem 3.2.1. Let x2−a = hg = h̃g̃ ∈ Fq[x; θ], where g = g1x+1 and g̃ = g̃1x+1.

Then gg̃ = g̃g if and only if g̃1 = ±g1.

Proof. (=⇒) Assume that gg̃ = g̃g. We can multiply out either side to get gg̃ =

(g1x + 1)(g̃1x + 1) = g1θ(g̃1)x
2 + (g1 + g̃1)x + 1 and g̃g = (g̃1x + 1)(g1x + 1) =

g̃1θ(g1)x
2 + (g̃1 + g1)x+ 1. By comparing coefficients, we see that g1θ(g̃1) = g̃1θ(g1),

or g1g̃
−1
1 = θ(g1g̃

−1
1 ). We will return to this fact shortly.

We have factorizations of xn−a for some h1, h̃1 ∈ F∗q: x2−a = (h1x−a)(g1x+1) =

h1θ(g1)x
2+(h1−ag1)x−a and x2−a = (h̃1x−a)(g̃1x+1) = h̃1θ(g̃1)x

2+(h̃1−ag̃1)x−a.

Again, by comparing coefficients, we see that h1θ(g1) = h̃1θ(g1). We also have h1 =
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g1a and h̃1 = g̃1a. Making these substitutions, we obtain g1aθ(g1) = g̃1aθ(g̃1),

or θ(g1g̃
−1
1 ) = g̃1g

−1
1 . Therefore g1g̃

−1
1 = θ(g1g̃

−1
1 ) = g̃1g

−1
1 . Equivalently, g21 = g̃21,

or 0 = g21 − g̃21 = (g1 + g̃1)(g1− g̃1). The solutions to this equation are g1 = ±g̃1, as a

field has no zero divisors.

(⇐=) If g1 = g̃1, then g = g̃, so clearly gg̃ = g̃g. So suppose g1 = −g̃1. We

compute gg̃ and g̃g: gg̃ = (g1x + 1)(−g1x + 1) = g1θ(−g1)x2 + 1 = −g1θ(g1)x2 + 1

and g̃g = (−g1x+ a)(g1x+ 1) = −g1θ(g1)x2 + 1, so gg̃ = g̃g, as desired.

We know that in the standard polynomial ring F[x], every polynomial has a root

in some extension, a fact which is key to factoring polynomials. It is not obvious that

the same generalizes to skew polynomial rings, but it does in the following way.

Definition 3.2.2. Let K be an extension of Fq. An element α ∈ K is called a right

root of f ∈ F[x; θ] if x− α is a right divisor of f ∈ K[x; θ].

Let f =
n∑
i=0

fix
i ∈ Fq[x; θ = Frobr], and let Fq have characteristic p. We want to

check if (x− α) is a right divisor of f for some α in an field extension K of Fq. Thus

we examine f = g(x− α) + s, with g ∈ K[x; θ] and s ∈ K.

Notice that we can write θj(α) = αp
rj

. Define

N0(α) := 1, Ni(α) := α

i−1∑
j=0

prj

for i ≥ 1. (3.2.1)

Observe that the product
i−1∏
j=0

θj(α) = Ni(α). Then one can easily show (as in

[19, (1.3.10)]), that s =
n∑
i=0

fiNi(α). To that end, α is a right root of f if and only

if s =
n∑
i=0

fiNi(α) = 0.

Theorem 3.2.3. Every skew polynomial f ∈ Fq[x; θ] has a right root in some exten-

sion field.

Proof. Let f =
n∑
i=0

fix
i ∈ Fq[x; θ = Frobr] be given. Put f̃ :=

n∑
i=0

fiNi(y) ∈ Fq[y], the

usual commutative ring. Then f̃ has a root α (in the commutative sense) in some

(perhaps trivial) extension of Fq. Then we have the equivalence:
n∑
i=0

fiNi(α) = 0⇐⇒

α is a right root of f .

Using this theorem, we can easily find constamonic linear right divisors of (xn−a).
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Corollary 3.2.4. Let xn − a ∈ Fq[x; θ = Frobr], where Fq has characteristic p.

Then (g1x+ 1) |r (xn− a) if and only if −g−11 is an N th root of a, where N =
n−1∑
i=0

pri.

Proof. Let f = xn − a and take −g−11 as α in the equivalences in the proof of The-

orem 3.2.3. Assume (g1x + 1) |r (xn − a), or equivalently (x + g−11 ) |r (xn − a). By

definition, this is equivalent to −g−11 being a right root of (xn − a). Equivalently, by

the proof of Theorem 3.2.3, Nn(−g−11 ) − a = 0, hence (−g−11 )N = a. Thus −g−11 is

an Nth root of a.

Copyright c© Neville Lyons Fogarty, 2016.

18



Chapter 4 Circulants

In the previous chapter, we explored ways to factor xn − a. In this chapter, we

begin by defining a skew-generalized circulant to describe (θ, a)-constacyclic codes.

A skew-constacyclic code can be written as the row space of a circulant matrix. This

generalizes the well-known circulant description of classical cyclic codes. We will show

that our circulant is additive, and under certain conditions, it is multiplicative.

Special attention is paid to the circulant of a right divisor g of xn − a, which

behaves particularly nicely. For example, a circulant of a left multiple of a right

divisor of xn − a can be written as the product of two associated skew-generalized

circulants. Importantly, if g is a right divisor of xn − a, then the transpose of its

circulant is again a circulant, a fact that we will use in the next chapter.

4.1 Definition and Properties

In this section, we associate with each coset f ∈ Sa = R/•(xn − a) a certain skew-

generalized circulant matrix. This is a matrix in Fn×n defined in such a way that its

rows reflect the module structure in Sa and its row space is, up to the isomorphism pa,

the left submodule of Sa generated by f . The situation becomes particularly nice

when xn − a is central, in which case this circulant provides a ring embedding of Sa
as a subring in Fn×n.

As before, let R = F[x; θ] and Sa = R/•(xn − a) for some fixed a ∈ F∗. Recall

the left F-isomorphism pa and its inverse va from (2.2.1) and (2.2.2). These maps

give rise to the following type of circulant matrices. For the special (central) case

where Sa = S1 = Fqn [x; θ]/•(xn − 1) with θ(x) = xq, these matrices also appear in

the context of linearized polynomials and are known as Dickson matrices; see [31,

p. 80]

Definition 4.1.1. The (θ, a)-circulant of the coset f ∈ Sa is defined as

M θ
a (f) :=



va(f)

va(xf)
...

va(x
n−2f)

va(x
n−1f)


∈ Fn×n. (4.1.1)
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Thus we have a map

M θ
a : Sa −→ Fn×n, f 7−→M θ

a (f).

A matrix in Fn×n is called a skew-generalized circulant or simply a circulant if it is a

(θ, a)-circulant for some θ ∈ Aut(F) and a ∈ F∗.

Explicitly, the circulant of f is given as follows. Without loss of generality assume

deg(f) < n and thus f =
∑n−1

i=0 fix
i. For any i ∈ N0 and γ ∈ F we have xγxi =

θ(γ)xi+1 and hence xγxn−1 = θ(γ)xn = θ(γ)a. This leads to

M θ
a (f) =



f0 f1 f2 . . . fn−2 fn−1

aθ(fn−1) θ(f0) θ(f1) . . . θ(fn−3) θ(fn−2)

aθ2(fn−2) θ(a)θ2(fn−1) θ2(f0) . . . θ2(fn−4) θ2(fn−3)
...

...
. . .

...
...

aθn−2(f2) θ(a)θn−2(f3) θ2(a)θn−2(f4) . . . θn−2(f0) θn−2(f1)

aθn−1(f1) θ(a)θn−1(f2) θ2(a)θn−1(f3) . . . θn−2(a)θn−1(fn−1) θn−1(f0)


.

(4.1.2)

In other words, M θ
a (f) = (Mij)i,j=0,...,n−1, where

Mij =

{
θi(fj−i), if i ≤ j,

θj(a)θi(fn+j−i), if i > j.
(4.1.3)

For example,

M θ
a (x) =



1

1
. . .

1

a


and M θ

a (x2) =



1
. . .

1

a

θ(a)


.

Remark 4.1.2. (a) The map M θ
a is injective and additive, i.e.,

M θ
a (f + f ′) = M θ

a (f) +M θ
a (f ′) for all f, f ′ ∈ R.

(b) M θ
a (cf) = M θ

b (c)M θ
a (f) for all c ∈ F and f ∈ R and all b ∈ F∗. This follows
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directly from the definition along with the fact that

M θ
b (c) =


c

θ(c)
. . .

θn−1(c)

 for any b ∈ F∗. (4.1.4)

As a consequence, M θ
a is not F-linear (unless θ = idF), but it is FixF(θ)-linear.

(c) The map M θ
a is not multiplicative, that is, M θ

a (ff ′) 6= M θ
a (f)M θ

a (f ′) in general.

This simply reflects the fact that Sa is not a ring.

As a particular case of Part (c) above, we observe that the identity hg = xn − a
does not imply M θ

a (h)M θ
a (g) = 0. (For an example take the right divisor g = x+α5 of

x5− α ∈ F8[x; θ], where θ is the Frobenius homomorphism and α3 + α+ 1 = 0.) The

situation becomes much nicer when xn−a is central, as we will see in Theorem 4.1.6.

For the general case we will establish a certain product formula later in Theorem 4.2.3.

The next result shows that the row space of the circulant of f corresponds to the

left submodule •(f) under the isomorphism va.

Proposition 4.1.3. We have

pa(uM
θ
a (f)) = pa(u)f for all u ∈ Fn and f ∈ R.

As a consequence, imM θ
a (f) = va(

•(f)).

Proof. Writing u = (u0, . . . , un−1), we can compute uM θ
a (f) =

∑n−1
i=0 uiva(x

if) =

va(pa(u)f). This proves the first statement. The containment “⊆” of the second

statement is an immediate consequence. As for “⊇” consider hf ∈ •(f) for some

h ∈ R. If we can show that hf = kf for some k ∈ R with deg(k) < n, then

the first part yields va(hf) = va(kf) = va(k)M θ
a (f), as desired. For the existence

of such k, let uf = v(xn − a) = lclm(f, xn − a) with some u, v ∈ R and where

deg(u) ≤ n. Such polynomials exist due to Remark 2.1.1(c). Using right division

with remainder we obtain h = qu + k for some q, k ∈ R with deg(k) < n. Then

hf = quf + kf = qv(xn − a) + kf = kf , as desired.

The last proposition and Proposition 2.2.2(2) provide us with the following.

Corollary 4.1.4. (a) Let f, g ∈ R. Then imM θ
a (f) ⊆ imM θ

a (g)⇐⇒ g |r f .

(b) Let f ∈ R and g = gcrd(f, xn − a). Then imM θ
a (f) = imM θ

a (g).

21



Note that imM θ
a (f) ⊆ imM θ

a (g) if and only if M θ
a (f) = QM θ

a (g) for some Q ∈
Fn×n. Therefore, using the notation · |r · for “is a right divisor of” in both the ringsR
and Fn×n, statement (a) above may be rephrased as

g |r f ⇐⇒M θ
a (g) |rM θ

a (f), (4.1.5)

that is, g is a right divisor of f in the ring R if and only if M θ
a (g) is a right divisor

of M θ
a (f) in the ring Fn×n. In other words, M θ

a induces an isomorphism between the

lattice of monic polynomials in R with right division and the lattice of associated

(skew-generalized) circulants in Fn×n with right division. In Theorem 4.2.3 we will

see that if g is a right divisor of xn − a, then the matrix Q above may be chosen as

a particular circulant as well. However, if g is not a right divisor of xn − a, then the

matrix Q cannot be chosen as a circulant in general (see Example 4.2.7).

Combining Corollary 2.3.1, Propositions 2.2.2, 4.1.3, and Corollary 4.1.4 we obtain

the following description of (θ, a)-constacyclic codes.

Theorem 4.1.5. Let g ∈ R be a right divisor of xn − a of degree n − k. Then the

circulant M θ
a (g) has rank k and its first k rows form a basis of the (θ, a)-constacyclic

code va(
•(g)). As a consequence, the (θ, a)-constacyclic codes in Fn are exactly the

subspaces of the form imM θ
a (g), where g is a monic right divisor of xn− a. Different

such divisors result in different codes. We call g the generator polynomial of the

code imM θ
a (g).

In the case where xn − a is central (see Remark 2.2.1) we obtain a particularly

nice situation for the circulants. It generalizes the isomorphism in [31, Thm. 4.3] (see

also Thm. 2.1 therein), which covers the case where Sa = Fqn [x; θ]/•(xn − 1) with

θ(x) = xq for all x ∈ Fqn .

Theorem 4.1.6. Let xn − a be central; thus Sa is a ring. Then

M θ
a (fg) = M θ

a (f)M θ
a (g) for all f, g ∈ R.

Hence M θ
a is a ring isomorphism between Sa and the subring M θ

a (Sa) ⊆ Fn×n.

Proof. Note first that the product fg is well-defined and equals fg thanks to the

centrality of xn − a; see Remark 2.2.1. Thus, with the aid of Proposition 4.1.3 we

obtain pa
(
uM θ

a (f)M θ
a (g)

)
= pa

(
uM θ

a (f)
)
g = pa(u)fg = pa(u)fg = pa(uM

θ
a (fg)) for

all u ∈ Fn. Since pa is an isomorphism, this yields the desired result.
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Using identities pertaining to factorizations of xn−a, we can look at relationships

of particularly nice circulants.

4.2 Circulants of right divisors of xn − a

As before, we consider the skew-polynomial ring R := F[x; θ] for some fixed θ ∈
Aut(F). Recall from the paragraph right after Remark 4.1.2 that in general xn− a =

hg does not imply M θ
a (h)M θ

a (g) = 0. In this section we will prove instead a specific

product formula for (skew-generalized) circulants of right divisors of xn − a that will

be sufficient for our investigation of skew-constacyclic codes. Moreover, we will show

that the transpose of such a circulant is a circulant again.

Throughout, let a ∈ F∗. In order to compute modulo the left ideal •(xn − a) we

will need the following lemma.

Lemma 4.2.1. In the left R-module Sa = R/•(xn − a) we have

xtn+j =
( t−1∏
l=0

θln+j(a)
)
xj for all t ∈ N, j = 0, . . . , n− 1.

Proof. For t = 1 we compute xn+j = xj(xn − a+ a) = xja = θj(a)xj, as desired. The

rest follows similarly using induction on t.

We now turn to circulants of left multiples of g, where g is a right divisor of xn−a.

Before presenting the general result, let us first compute the circulant of xg in terms

of the circulant of g.

Example 4.2.2. Let xn − a = hg. Then xn = θn(g)h + c by Theorem 3.1.2(2) and

where c = γ(a, g); see (3.1.6). This yields

xng = θn(g)hg + cg = cg in Sa,

and therefore

M θ
a (xg) =


va(xg)

va(x
2g)
...

va(x
ng)

 =


1

. . .

1

c




va(g)

va(xg)
...

va(x
n−1g)

 =


1

. . .

1

c

M θ
a (g).
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Note that this can be written as M θ
a (xg) = M θ

c (x)M θ
a (g), where x := x+ •(xn − c) ∈

Sc, while, as before, g = g + •(xn − a) ∈ Sa.

The product formula for circulants in the previous example can be generalized.

From now on we have to consider circulants for different bases and therefore use the

convention that for a circulant M θ
b (f) the coset f is taken in Sb, thus f = f+•(xn − b).

Recall the notation γ(a, g) from (3.1.6).

Theorem 4.2.3. Let xn − a = hg and f ∈ R. Then

M θ
a (fg) = M θ

c (f)M θ
a (g), where c = γ(a, g).

Note that if |θ| divides n, then c = a and thus M θ
a (fg) = M θ

a (f)M θ
a (g) for all

f ∈ R. For the case where xn−a is central we have proven the same formula already

for general g in Theorem 4.1.6.

Proof. Due to Remark 4.1.2 it suffices to show the statement for f = xi for any

i ∈ N0. Write i = tn + j, where 0 ≤ j < n. Then Lemma 4.2.1 yields xi = dxj,

where d :=
∏t−1

l=0 θ
ln+j(c). Thus, again Remark 4.1.2(b) shows that we may restrict

ourselves to the case 0 ≤ i < n. Now we compute

M θ
c (xi)M θ

a (g) =



1

1
. . .

1

c

θ(c)
. . .

θi−1(c)





va(g)

va(xg)
...

va(xi−1g)

va(xig)

va(xi+1g)
...

va(xn−1g)



=



va(xig)

va(xi+1g)
...

va(xn−1g)

va(cg)

va(θ(c)xg)
...

va(θi−1(c)xi−1g)


.
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Using θl(c)xl = xlc as well as c = xn − θn(g)h from Theorem 3.1.2(2), the cosets

modulo the left ideal •(xn − a) satisfy θl(c)xlg = xlcg = xl(xng − θn(g)hg) = xn+lg

for l = 0, . . . , i− 1. Hence the last matrix is M θ
a (xig), which is what we wanted.

The leftmost matrix in above identity will be needed again. Clearly this matrix

is invertible, and one easily verifies that(
M θ

b (xi)T
)−1

= M θ
b−1(xi) for all i = 0, . . . , n− 1 and any b ∈ F∗. (4.2.1)

Before we move on to discuss the transpose of a circulant, we take a brief digression

and consider the situation of Proposition 3.1.8 again.

Theorem 4.2.4. Let xn − a = hg and b ∈ F∗. Then gb |r (xn − â), where â =

γ(a, b−1) = abθn(b−1), and

M θ
â (gb) = M θ

a (g)M θ
â (b).

As a result, the skew-constacyclic codes va(
•(g)) and vâ(

•(gb)) are scale-equivalent,

that is, they differ only by rescaling each codeword coordinate with a fixed nonzero

constant. In particular, the codes have the same Hamming weight enumerator and

Hamming distance.

Proof. The first statement is due to Proposition 3.1.8. As for the circulants, we have

trivially b |r (xn− â) and γ(â, b) = a. Thus Theorem 4.2.3 yields the desired identity.

The scale-equivalence follows from the fact that M θ
â (b) is a non-singular diagonal

matrix.

Example 4.2.5. Consider the situation of Example 3.1.9(1) in which the map ϑ

from (3.1.8) is surjective. The above tells us that it suffices to study θ-cyclic codes,

and thus the right divisors of xn − 1, because each (θ, a)-constacyclic code is scale-

equivalent to a θ-cyclic one.

We return now to general circulants and show that if g is a right divisor of xn− a
then the transpose of M θ

a (g) is a circulant, see (1) below. While this is an interesting

result by itself, for us the version in (2) relating the transpose to a different circulant

is more powerful. This is so because the polynomial aĝr appearing in (2) is a right

divisor of xn − θk(c−1), see Corollary 3.1.6(b), while g# in (1) is not a right divisor

of xn − c−1 (not even in the classical commutative case and with a = c = 1). As for

Part (2) below note that left multiplication of M θ
a (g) by M θ

c (xk) is simply a reordering
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and rescaling of the rows of M θ
a (g); see the proof of Theorem 4.2.3. Part (3) is

essentially a special case of (2) and is exactly the form needed to show that the dual

of a skew-constacyclic code is a skew-constacyclic code again (see Theorems 4.2.8

and 5.1.1).

Theorem 4.2.6. Let xn − a = hg, where deg(h) = k, and let c = γ(a, g). As in

Corollary 3.1.6 let ĝr = ρr(θ
n(g)) and ĥ

l
= ρl(θ

−n(h)). Then

(1) M θ
a (g)T = M θ

c−1(g#), where g# = aĝrxk − cg0(xn − c−1),

(2) M θ
c (xk)M θ

a (g) = M θ
θk(c−1)

(aĝr)T,

(3) M θ
θk−n(c−1)

(xn−k)M θ
a−1(ĥ

l) = M θ
c (a−1h)T.

Proof. (1) Write g =
∑n−k

i=0 gix
i and set gi = 0 for i = n − k + 1, . . . , n − 1. Due

to (4.1.3) we have M θ
a (g) = (Mij)i,j=0,...,n−1, where

Mij =

{
θi(gj−i), if i ≤ j,

θj(a)θi(gn+j−i), if i > j.
(4.2.2)

On the other hand, ĝr = ρr(θ
n(g)) =

∑n−k
i=0 θ

i+k(gn−k−i)x
i, and thus we have aĝrxk =∑n

i=k aθ
i(gn−i)x

i. Using that cg0 = aθn(g0), this leads to

g# =
n−1∑
i=0

six
i, where s0 = g0 and si = aθi(gn−i) for i > 0.

Note that si = 0 for i = 1, . . . , k − 1. By (4.1.3), M θ
c−1(g#) = (Pij)i,j=0,...,n−1, where

Pij =


θi(sj−i) = θi(a)θj(gn−j+i), if i < j,

θi(s0) = θi(g0), if i = j,

θj(c−1)θi(sn+j−i) = θj(c−1)θi(a)θn+j(gi−j), if i > j.

This shows immediately that Pij = Mji for all i ≤ j. The remaining case, that

is, Pij = Mji for i > j, is equivalent to the identities gt = c−1θt(a)θn(gt) for all

t := i− j > 0. But the latter have been established in Corollary 3.1.5.

(2) On the one hand, M θ
c (xk)M θ

a (g) = M θ
a (xkg) due to Theorem 4.2.3. On the

other hand, for M θ
θk(c−1)

(aĝr)T we may use part (1) because aĝr is a right divisor of

xn − θk(c−1) due to Corollary 3.1.6(b). Thus M θ
θk(c−1)

(aĝr)T = M θ
b−1((aĝr)#), where

b = γ
(
θk(c−1), aĝr

)
and (aĝr)# is according to (1). The constant coefficient of aĝr is
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aθk(gn−k) and hence

b = γ
(
θk(c−1), aĝr

)
= θk(c−1)a−1θk(g−1n−k)θ

n(a)θn+k(gn−k) = a−1, (4.2.3)

where the last step follows from the fact that the product of the last three factors

is θk(c) due to Corollary 3.1.5. This shows that M θ
θk(c−1)

(aĝr)T = M θ
a ((aĝr)#); it re-

mains to prove that (aĝr)# = xkg in Sa. By definition, (aĝr)# = θk(c−1)ρr(θn(aĝr))xk.

Making use of Proposition 3.1.1(d),(f),(h) we compute

ρr(θ
n(aĝr))xk = ρr

(
θn(a)ρr(θ

2n(g))
)
xk = ρr ◦ ρr(θ2n(g))θk−n(θn(a))xk

= θk−n(θ2n(g))θk(a)xk = xkθn(g)a.

Now (3.1.7) leads to θk(c−1)ρr(θ
n(aĝr))xk = xkc−1θn(g)a = xkg, as desired.

(3) follows from (2): first ĥ
l
is a right divisor of xn−a−1 due to Corollary 3.1.6(c); sec-

ondly γ(a−1, ĥ
l
) = a−1

(
ĥ

l

0

)−1
θn(ĥ

l

0) = θk−n(c−1) due to Corollary 3.1.5 and because

ĥ
l

0 = θ−n(hk); and finally a−1
̂̂
hl
r

= a−1ρr(θ
n(ρl(θ

−n(h)))) = a−1h, as desired.

Theorems 4.2.3 and 4.2.6, true for right divisors g of xn− a, do not hold for more

general polynomials.

Example 4.2.7. Let R = F8[x; θ], where θ is the Frobenius homomorphism, thus

θ(λ) = λ2 for all λ ∈ F8. Let α ∈ F∗8 be the primitive element satisfying α3 =

α + 1. Consider the polynomial f := x5 − α2, hence n = 5 and a = α2. Then

h := α6 + x + α2x2 + α6x3 + x4 is a left divisor of f , but not a right divisor. In this

case M θ
a (h) is in GL5(F8), and one can easily check that M θ

a (xh)M θ
a (h)−1 is not a

circulant of the form M θ
b (s) for any s ∈ R and any b ∈ F∗8. This means that there is

no identity of the form M θ
a (xh) = M θ

b (s)M θ
a (h), illustrating that Theorem 4.2.3 does

not generalize. Moreover, the transpose M θ
a (h)T is not a circulant either.

We conclude the section with the following product formula for various circulants

related to the factorization xn − a = hg. In the next chapter, it will be translated

into a duality result for skew-constacyclic codes.

Theorem 4.2.8. Let xn − a = hg, and as in Corollary 3.1.6 let ĥ
l

= ρl(θ
−n(h)).

Then

M θ
a (g)M θ

c (a−1h) = M θ
a (g)M θ

a−1(ĥ
l)T = 0, where c = γ(a, g).

Proof. For the first product we aim at using Theorem 4.2.3 and thus need to check the

requirements. By Theorem 3.1.2(2) the polynomial a−1h is a right divisor of xn − c.
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Moreover, γ(c, a−1h) = c(a−1h0)
−1θn(a−1h0) = cah−10 θn(h0)θ

n(a−1) = a by Corol-

lary 3.1.5. Hence we may use Theorem 4.2.3 and this yields M θ
a (g)M θ

c (a−1h) =

M θ
c (ga−1h). But the last matrix is zero because ga−1h = 0 in Sc due to Corol-

lary 3.1.6(a). The rest follows from Theorem 4.2.6(3).

Copyright c© Neville Lyons Fogarty, 2016.
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Chapter 5 Dualization of Skew-Constacyclic Codes

In the previous chapter, we developed a skew-generalized circulant to describe a

skew-constacyclic code by using the structure of skew-polynomial rings. We begin

this chapter by recovering a result from Boucher/Ulmer: the dual code of a skew-

constacyclic code is also a skew-constacyclic code. In particular, we rely on Theo-

rem 4.2.8 on the transposes of circulants. Following this, we use another circulant

formula to obtain anti-isomorphisms between the lattice of right divisors of xn − a,

the lattice of right divisors of xn − a−1, the lattice of skew-constacyclic codes in Fn

and the lattice of dual codes.

5.1 Main Theorem

LetR := F[x; θ] for some fixed θ ∈ Aut(F). The previous sections lead to the following

result, which was first presented and proven in a different form by Boucher/Ulmer in

[6, Thm. 8] and [5, Thm. 1].

Theorem 5.1.1. Let a ∈ F∗ and C ⊆ Fn be a (θ, a)-constacyclic code. Then there

exists a unique monic polynomial g ∈ R such that xn − a = hg for some h ∈ R
and C = imM θ

a (g) = va(
•(g)). In this case C⊥ is (θ, a−1)-constacyclic and C⊥ =

imM θ
a−1(ĥ

l) = va−1(•(ĥl)), where ĥ
l

= ρl(θ
−n(h)).

Proof. The first part about C is in Theorem 4.1.5 and Proposition 4.1.3. As for

the dual code, note first that rk(M θ
a (g)) = n − deg(g) = deg(h) = deg(ĥ

l
) = n −

rk(M θ
a−1(ĥ

l)). Since Theorem 4.2.8 yields M θ
a (g)M θ

a−1(ĥ
l)T = 0 we conclude that

imM θ
a (g) and imM θ

a−1(ĥ
l) are mutually dual codes.

Now we recover [6, Prop. 13] about self-dual codes (see also [9, Prop. 5]).

Corollary 5.1.2. If there exists a self-dual (θ, a)-constacyclic code in Fn, then n is

even and a = ±1.

5.2 The Lattices of Skew-Constacyclic Codes

We are now in a position to formulate the interplay between right divisors of xn − a
and the associated codes as well as their duals in terms of lattice (anti-)isomorphisms.
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For a ∈ F∗ define the sets

Da := {g ∈ R | g |r (xn − a), g monic},

Ia := {I ⊆ Sa | I is a submodule of Sa},

Ta := {C ⊆ Fn | C is (θ, a)-constacyclic}.

Clearly, (Da, |r ), (Ia, ⊆ ), (Ta, ⊆ ) are lattices. Consider the maps

Da
σa−→ Ta

pa−→ Ia
g 7−→ imM θ

a (g) 7−→ pa
(
imM θ

a (g)
) (5.2.1)

Because of Corollary 4.1.4(a) and Theorem 4.1.5, the map σa is a lattice anti-

isomorphism, while pa is a lattice isomorphism thanks to Proposition 4.1.3.

We now turn to the dual situation. Let xn − a = hg with monic polynomials

g, h ∈ R.

Theorem 5.2.1. Define the map δa : Da −→ Da−1 , g 7−→ θ−deg(g)(−a−1g0)ĥ
l
,

where g0 is the constant coefficient of g and, as before, set ĥ
l

:= ρl
(
θ−n(h)

)
. More-

over, define τa : Ta −→ Ta−1 , C 7−→ C⊥, and let σa be as in (5.2.1). Consider the

diagram

Da Da−1

Ta Ta−1

//δa

//τa ��

σa−1

��

σa

Then all maps are lattice anti-isomorphisms and the diagram commutes. In other

words, if C = imM θ
a (g) for some g ∈ Da, then C⊥ = imM θ

a−1(δa(g)) = imM θ
a−1(ĥ

l).

Proof. First of all, δa(g) is indeed a right divisor of xn − a−1 thanks to Corol-

lary 3.1.6(c), and it is monic because the leading coefficient of ĥ
l

is θ− deg(g)(−ag−10 ),

as one can easily verify. Next, Theorem 5.1.1 yields that the diagram commutes. This

in turn implies that δa is a lattice anti-isomorphism because σa, τa, σa−1 are.

Now we can present the dual lattices to those in Example 2.3.3.

Example 5.2.2. Consider again the field F8 = F2[α], where α3 = α+ 1, and let θ be

the Frobenius homomorphism on F8. In Example 2.3.3 we presented all monic right

divisors of x7+α. Using the map δα we obtain all right divisors of x7+α−1 = x7+α6.
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Setting h̃(i) := δα(g(i)) for i = 0, . . . , 7, we obtain

h̃(0) = x7 + α6, h̃(1) = x6 + α3x5 + αx4 + x3 + α3x2 + αx+ 1,

h̃(2) = x4 + α2x2 + x+ α6, h̃(3) = x4 + α6x3 + α2x2 + α6, h̃(4) = x3 + αx+ 1

h̃(5) = x3 + α3x2 + 1, h̃(6) = x+ α6, h̃(7) = 1.

From the above we know that (C(i))⊥ = σα(h̃(i)), and thus we obtain the lattices given

in Figure 5.1. They are dual to those in Figure 2.1.

Figure 5.1: Lattice of monic right divisors of x7 + α−1 and the corresponding codes

We now turn to the notion of a check polynomial for skew-constacyclic codes.

Proposition 5.2.3. Let xn − a = hg and c = γ(a, g). Then the map

ψ : Sa −→ Sθ−n(c), f 7−→ fθ−n(h)

is a well-defined R-module homomorphism with kerψ = •(g).

Proof. Theorem 3.1.2(3) gives us both well-definedness and the containment kerψ ⊇
•(g), and R-linearity is clear. For kerψ ⊆ •(g) note that fθ−n(h) = t(xn − θ−n(c))

for some t ∈ R implies fθ−n(h) = tgθ−n(h) and thus f ∈ •(g) by right cancellation

in R.

The last result justifies to call θ−n(h) the check polynomial of the code C =

va(
•(g)). The only thing to keep in mind that the check equation is carried out

modulo xn − θ−n(c). This generalizes [7, Lem. 8] (see also [14, Thm. 2.1(iii)]), where

a central polynomial xn − 1 is considered. In that case θn is the identity on R and
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thus θ−n(h) = h. In particular, all of this generalizes the classical commutative case

where h is the check polynomial of C [23, Ch. 7, §4].

We close with a brief summary of the central case. The results bear some re-

semblance with those obtained for cyclic convolutional codes in [16]; see especially

Theorem 7.5 therein. The last part of (4) appears already in [24, Cor. 1] by Matsuoka,

where even skew-polynomial rings over arbitrary finite rings are considered.

Theorem 5.2.4. Let n be such that θn = |r R and consider xn − a for some a ∈
FixF(θ), hence xn − a is central. Suppose xn − a = hg. Then

(1) M θ
a induces an injective ring homomorphism from Sa into Fn×n.

(2) xn − a = gh.

(3) M θ
a (g)M θ

a (h) = M θ
a (h)M θ

a (g) = 0.

(4) We have left R-module homomorphisms

ψh : Sa −→ Sa, f 7−→ fh and ψg : Sa −→ Sa, f 7−→ fg.

Moreover, kerψh = •(g) = annl((h)•), the left annihilator of the right ideal gen-

erated by h. In the same way, kerψg = •(h) = annl((g)•). In this sense h is the

check polynomial of the code C = va(
•(g)).

(5) We have right R-module homomorphisms

ψ′h : Sa −→ Sa, f 7−→ hf and ψ′g : Sa −→ Sa, f 7−→ gf,

and kerψ′h = (g)• = annr(
•(h)), the right annihilator of the left ideal generated

by h, and kerψ′g = (h)• = annr(
•(g)).

(6) Let C = va(
•(g)) and h =

∑k
i=0 hix

i. Then

C⊥ = va−1(•(ρl(h))), where ρl(h) = hk + θ(hk−1)x+ . . .+ θk(h0)x
k.

One may regard (5) and (6) as the counterpart to (4) in terms of ideals.

Proof. (1) is in Theorem 4.1.6. (2) follows from Theorem 3.1.2 because γ(a, g) = a

for all right divisors g of xn − a. (3) is a consequence of (1) and (2). (4) is a

special case of Proposition 5.2.3, and (5) follows by symmetry. (6) is a special case

of Theorem 5.1.1.

In this context it is worth pointing out that if xn − a is central and xn − a = hg

then g and h need not even be two-sided: for instance, in F4[x; θ] with θ being the
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Frobenius homomorphism, we have the identity x4−1 = (x2 +αx+α2)(x2 +αx+α),

and neither factor is two-sided. Furthermore, if xn − a is a product of three or more

factors, the factors do not commute arbitrarily. This can be seen with x6 − 1 =

(x+1)(α2x2 +1)(αx3 +αx2 +x+1) 6= (αx3 +αx2 +x+1)(α2x2 +1)(x+1) in F4[x; θ].

It is well known that every two-sided element can be factored into a product of two-

sided maximal elements, and in this case the factors commute [19, Sec. 1.2]. Further

information about the case where a = 1 and xn − 1 is central can be found in [14].

Copyright c© Neville Lyons Fogarty, 2016.
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Chapter 6 Idempotents

In this chapter, we turn to idempotent elements of our quotient module. We begin by

generalizing the idea of idempotents and generating idempotents from the cyclic case

to our skew-constacyclic case. After some brief examples demonstrating the quirks

of idempotents modulo •(xn − a), we restrict ourselves to the case where xn − a is

central. We generalize a result from [14], in which Gao/Shen/Fu showed the existence

of unique central generating idempotents modulo •(xn − 1) (where xn− 1 is central).

We extend this to all central xn − a, and give a formula for the unique central

generating idempotent of a skew-constacyclic code generated by a central divisor

of xn − a.

We then remove the restriction that xn − a be central and give results on the

existence of generating idempotents of skew-constacyclic codes, including an explicit

formula for a generating idempotent in a particularly nice case. Evidence is provided

to demonstrate that this nice case occurs non-trivially. We end the chapter with gen-

eralizations of other well-known results from the classical cyclic case on intersections

and sums of codes.

6.1 Preliminaries

We continue to consider the skew-polynomial ring R := Fq[x; θ] for some fixed θ ∈
Aut(Fq). The generator polynomial is not the only polynomial that can be used to

generate a particular skew-constacyclic code.

In the cyclic case, when gcd(n, q) = 1, a code C has a unique generating idem-

potent e, where e ∈ Fq[x]. That is, e = e2 in Fq[x]/(xn − 1) and C = v1((e)) [18,

p. 132]. We wish to generalize this concept to skew-constacyclic codes. But we need

to proceed with care, because in contrast to the commutative case idempotency of

cosets is in general not a well-defined notion.

Example 6.1.1. (1) Consider x9 − 1 ∈ F4[x; θ = Frob], where ω2 + ω = 1. One can

check that the polynomial e := ω2x8 + ω2x7 + ωx6 + ω2x5 + ω2x4 + ωx3 + ω2x2 +

ω2x+ω2 satisfies e2−e ∈ •(x9 − 1). Define ẽ := e+x9−1. By construction, ẽ ∈ e.
However, ẽ2 − ẽ /∈ •(x9 − 1). In general, just because one polynomial in a coset

is an idempotent modulo •(xn − a), this does not mean that every polynomial in

the same coset is also an idempotent modulo •(xn − a).
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(2) Consider x4 − ω ∈ F4[x; θ = Frob], where ω2 + ω = 1. One can check that

polynomial e := ωx4 + ωx3 + ω2x2 + ω2x + 1 satisfies e2 − e ∈ •(x4 − w). We

see that e ∈ ωx3 + ω2x2 + ω2x+ ω, but ωx3 + ω2x2 + ω2x+ ω is not idempotent

modulo •(x4 − ω).

Definition 6.1.2. An element e ∈ R is said to be an idempotent modulo •(xn − a)

if e2 − e ∈ •(xn − a). We say that it is a generating idempotent of •(g) if, in addi-

tion, •(g) = •(e).

If our polynomial xn − a is central, then idempotency of a coset is well-defined,

as we see in the following proposition.

Proposition 6.1.3. Let xn − a ∈ Z(R) and let e ∈ R be an idempotent mod-

ulo •(xn − a). Then ẽ ∈ e is also an idempotent modulo •(xn − a).

Proof. Since ẽ ∈ e, we can write ẽ = e+ t(xn − a) for some t ∈ R. Then

ẽ2 − ẽ = (e+ t(xn − a))((e+ t(xn − a))− ((e+ t(xn − a))

= e2 + et(xn − a) + t(xn − a)e+ t(xn − a)t(xn − a)− e− t(xn − a)

≡ e2 + t(xn − a)e− e = e2 + et(xn − a)− e ≡ e2 − e ≡ 0 mod •(xn − a).

Thus ẽ is also an idempotent modulo •(xn − a).

So in the central case, if we want to search for idempotents modulo •(xn − a) in

some left ideal •(g), we may restrict ourselves to checking left multiples of g with

degree less than n. All idempotents of greater degree will be equivalent to one of

these smaller degree idempotents.

We present a small result on idempotents in the classical cyclic case to further aid

in illustrating the differences between the classical and skew-constacyclic cases. The

following proposition is given for the general constacyclic case (not skew-constacyclic);

for the cyclic result, take a = 1.

Proposition 6.1.4. Let e be a non-zero idempotent in Fq[x]/(xn − a) and u ∈ F∗q.
Then ue is an idempotent in Fq[x]/(xn − a) if and only if u = 1.

Proof. We have that e2 − e ∈ (xn − a). Then

(ue)2 − ue = u2e2 − ue = u2e2 − u2e+ u2e− ue

= u2(e2 − e) + (u2 − u)e = (u2 − u)e.
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Then ue is a idempotent if and only if (u2 − u)e = 0. Because u ∈ F∗, we know

that u2 − u ∈ F is not a zero divisor. Since e 6= 0, we have (u2 − u)e = 0 exactly

when we have u2 − u = 0, or u = 1.

In contrast with the classical cyclic case, we present a concrete example from the

skew-constacyclic case to demonstrate some of the ways in which idempotents behave

differently.

Example 6.1.5. Let x4 − 1 ∈ R := F9[x; θ = Frob], where ω2 + ω = 1, and

consider g = x3 +x2 +x+ 1, which is a right divisor of x4− 1. Observe that x4− 1 ∈
Z(R), but g is not central. Note also that gcd(n, q) = 1 as is desired in the classical

cyclic case.

One can easily examine the left multiples of g with degree less than 4 to see which

ones are idempotents modulo •(x4 − 1). From Prop. 6.1.3, we know that all idempo-

tents of greater degree are equivalent to one of these polynomials modulo •(xn − a).

We find the following non-zero idempotents modulo •(x4 − 1): g, ωg, ω3g. Unlike in

the classical cyclic case (see Prop. 6.1.4), idempotents may be non-trivial constant

left multiples of each other.

Further, each of these three idempotents is a generating idempotent of •(g). Thus

we know that in the skew-cyclic case, there may be multiple generating idempotents,

and not just a unique one as in the classical cyclic case.

Example 6.1.6. (1) Recall that in Example 6.1.1(1), we saw that there is a polyno-

mial e such that e2 − e ∈ •(x9 − 1) ⊂ F4[x; θ = Frob], but there exists an ẽ ∈ e
such that ẽ2 − ẽ /∈ •(x9 − 1). There are eight right divisors of x9 − 1 (including 1

and x9 − 1), and there is exactly one generating idempotent e corresponding to

each divisor such that every polynomial in e is also an idempotent. There are

also four idempotents modulo •(x9 − 1) of degree less than 9 that do not have

this nice property: not every polynomial in its coset is an idempotent.

(2) Consider x4−ω ∈ F4[x; θ = Frob], where ω2+ω = 1. One can check that the only

idempotents modulo •(x4 − ω) of degree less than 4 are 0 and 1. However, there

are twelve idempotents modulo •(x4 − ω) of degree 4. Six of these idempotents

are elements of either 0 or 1; the remaining six are not. And as there were no

other idempotents of degree less than 4, we know that these six idempotents do

not correspond to idempotent cosets. We see that we can have idempotents of

degree n or greater that do not correspond to lower degree idempotents.
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In some cases, we can quickly show that an idempotent’s coset contains only

idempotents modulo •(xn − a) by examining the relationship between θ, n, a, and the

idempotent, as we will see in the following proposition. The following is a general-

ization of Proposition 6.1.3.

Proposition 6.1.7. Let xn−a ∈ R and let e ∈ R be an idempotent modulo •(xn − a).

If ae = θn(e)a, then every ẽ ∈ e is also an idempotent modulo •(xn − a).

Proof. Let e be an idempotent modulo •(xn − a) with ae = θn(e)a. Let ẽ ∈ e; we can

write ẽ = e+ s(xn − a) for some s ∈ R. We compute

ẽ2 − ẽ = (e+ s(xn − a))2 − (e+ s(xn − a))

= e2 + es(xn − a) + s(xn − a)e+ (s(xn − a))2 − e− s(xn − a)

= s(xn − a)e+ t(xn − a)

for some t ∈ R. Thus ẽ2− ẽ ∈ •(xn − a) exactly when (xn−a) |r s(xn−a)e. We have

s(xn − a)e = sxne− sae = sθn(e)xn − sθn(e)a = sθn(e)(xn − a),

so ẽ is an idempotent modulo •(xn − a).

6.2 The Central Case

Though we will not need it until Proposition 6.2.7, throughout this section, let xn−a ∈
Z(R) with a 6= 0. Further, let m := |θ|. Recall that Z(R) = F̂[xm], where F̂ :=

FixF(θ) is the fixed field of θ. Thus m | n and a ∈ F̂. Equivalently, Sa := R/•(xn − a)

is a ring. In this section, we will adapt [14, Thm. 2.11] to find idempotents modulo
•(xn − a).

Recall that in Remark 2.2.1, we defined an element f ∈ R to be two-sided if •(f) =

(f)•. Further, f is two-sided if and only if for all g ∈ R, there exists g̃ ∈ R such

that gf = fg̃, and there exists ĝ such that fg = ĝf .

Thus for a two-sided element f , the left ideal •(f) is two-sided, and we simply

write (f). Note that central elements are two sided. From [19, Thm. 1.1.22], we have

that if f ∈ R is two-sided, then it has the form f = cf̂xt, where c ∈ Fq, t ∈ N0,

and f̂ ∈ Z(R). One can easily check that if f, g are two-sided elements, then their

product fg is also two-sided. However, two-sided elements do not in general commute.

(Consider, for example, f = x and g = ax, where a /∈ F̂.) Recall that R is a left
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principal ideal domain; since each two-sided ideal is also a left ideal, each two-sided

ideal is also principal.

Proposition 6.2.1. If f, g ∈ R are two-sided, then gcrd(f, g) = gcld(f, g).

Proof. Because f is two-sided, any left multiple of f can also be written as a right

multiple of f , and vice versa. The same applies for g. Thus given the Bézout iden-

tity gcrd(f, g) = uf + vg for some u, v ∈ R, we also have gcrd(f, g) = fû + gv̂

for some û, v̂ ∈ R. So gcld(f, g) |l gcrd(f, g). On the other hand, given the Bézout

identity gcld(f, g) = fs + gt for some s, t ∈ R, we also have gcld(f, g) = ŝf + t̂g

for some ŝ, t̂ ∈ R. So gcrd(f, g) |r gcld(f, g). Since gcrd(f, g) and gcld(f, g) are both

monic, gcrd(f, g) = gcld(f, g).

Later, it will be useful to factor a two-sided element into two-sided factors. The

following theorem leads to a useful tool: the quotient of a two-sided element and one

of its two-sided divisors is also two-sided.

Theorem 6.2.2. Let f, h ∈ Z(R) with f = hg = gh for some g ∈ R. Then g ∈ Z(R)

as well. Hence Z(R) ∩ (h) = Z(R)h.

Proof. Suppose g has a non-zero term of degree that is not a multiple of m. Let axt

be the term of least such degree in g. Let bxsm be the non-zero term of least degree

in h. Consider the product of these two terms: bxsmaxt = abxsm+t. Since each term

was non-zero and F[x; θ] is a domain, abxsm+t 6= 0. No other term of degree sm + t

arises in the product of h and g, as all terms of h have degrees that are multiples

of m, and any term of greater degree in g would need to be multiplied with a non-zero

term of h with degree less than sm, which does not exist. Thus abxsm+t is a term

of f . But m - (sm+ t), so f is not central, a contradiction. Thus every non-zero term

of g has degree divisible by m.

Now suppose that g has a term with coefficients not in F̂ := FixF(θ). Let axt be

the term of least degree such that a /∈ F̂. Let s be the degree of the non-zero term of

least degree in h. Write g =
deg(g)∑
i=0

gix
i and h =

deg(h)∑
j=0

hjx
j. Then the term of f with

degree s + t is
∑

i+j=s+t

hjx
jgix

i =
∑

i+j=s+t

gihjx
s+t = ahsx

s+t +
∑

i+j=s+t
i<t

gihjx
s+t. Since

each gi ∈ F̂ for i < t, we have that
∑

i+j=s+t
i<t

gihj ∈ F̂. But since a /∈ F̂ and hs ∈ F̂, we

have ahs /∈ F̂, and even (ahs +
∑

i+j=s+t
i<t

gihj) /∈ F̂. But this is a contradiction, as each

coefficient of f must be in F̂. Thus every coefficient of g is in F̂. So g ∈ F̂[xm] = Z(R).
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For Z(R) ∩ (h) = Z(R)h, this gives us the containment Z(R) ∩ (h) ⊆ Z(R)h,

and the containment Z(R) ∩ (h) ⊇ Z(R)h is trivial.

Corollary 6.2.3. Let f ∈ R be a non-zero two-sided element with f = hg. Then g

is two-sided if and only if h is two-sided.

Proof. We show that if h is two-sided, then g is as well. Since f and h are two-

sided, we may write f = cf̂xt and h = dĥxs for some c, d ∈ F∗ and f̂ , ĥ ∈ Z(R)

with non-zero constants. Thus f = hg implies that cf̂xt = dĥxsg, or d−1cf̂xt =

ĥxsg. We can write g = xlg̃ for some g̃ with a non-zero constant. Then t = s + l.

So xtθ−t(d−1c)f̂ = d−1cf̂xt = ĥxsxlg̃ = xsxlĥg̃. By left cancellation, θ−t(d−1c)f̂ = ĥg̃.

Since f̂ and ĥ are central, then Theorem 6.2.2 gives us that θ−t(dc−1)g̃ is central.

So g = xlg̃ = xlθ−t(d−1c)(θ−t(dc−1)g̃) is two-sided.

The other direction follows in a similar fashion.

There is a particular class of two-sided elements that we will consider: two-sided

maximal elements.

Definition 6.2.4. A two-sided element f ∗ ∈ R is said to be two-sided maximal if (f ∗)

is a two-sided maximal ideal in R.

Note that (0) is never a two-sided maximal ideal, as it is contained in the ideal

generated by any other two-sided element. For example, (0) ⊂ (x).

Proposition 6.2.5. The two-sided maximal elements in R are exactly those two-sided

elements with no proper two-sided factors in R.

Proof. First, let f ∈ R be a two-sided element with no non-trivial factorization into

two-sided element. Suppose there exists a two-sided element g ∈ R such that (f) ⊆
(g). Then g | f . Since f has no proper two-sided factors, either g = cf or g = c for

some c ∈ F∗. Thus either (g) = (f) or (g) = R, so (f) must be a maximal ideal.

Thus f is a two-sided maximal element.

On the other hand, let f ∗ ∈ R be a two-sided maximal element. Suppose f ∗ =

f ∗1 f
∗
2 is a proper factorization of f ∗ into non-unit two-sided elements. Then (f ∗) ⊂

(f ∗1 ) ⊂ R. This contradicts the fact that f ∗ is two-sided maximal; thus f ∗ has no

proper two-sided factors.

Thus we see that finding two-sided maximal elements in R amounts to finding

the two-sided elements with no proper two-sided factors.

We can characterize a class of two-sided elements that do commute with each

other.
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Proposition 6.2.6. If f ∗ and g∗ are two-sided maximal elements in R with non-zero

constant terms, then f ∗ and g∗ commute.

Proof. Let f ∗, g∗ be as described. Then •(f ∗)•(g∗) = •(g∗)•(f ∗) by [19, Lem. 1.2.16],

which states that any two two-sided maximal ideals commute. So •(f ∗g∗) = •(g∗f ∗),

and since f ∗g∗ ∈ •(f ∗g∗), we have f ∗g∗ = cg∗f ∗ for some c ∈ R. By degree, c must

be a non-zero constant. However, since the constant terms of f ∗g∗ and g∗f ∗ are the

same, c = 1. Thus f ∗g∗ = g∗f ∗ as desired.

In the following proposition, we introduce the condition that gcd(n, q) = 1. This

condition guarantees that xn − a ∈ Fq[x] has no repeated irreducible factors (see, for

example, [18], Section 4.1); we will exploit this fact by converting our central skew-

polynomials into standard polynomials. This assumption will reappear throughout

the rest of this section for that purpose, but we will call attention to it where it is

needed.

As mentioned at the beginning of this section, we assume that xn − a ∈ Z(R)

with a ∈ F∗ for the duration of this section.

Proposition 6.2.7. Suppose m | n and gcd(n, q) = 1. Then xn− a can be factorized

as xn − a = f ∗1 f
∗
2 · · · f ∗t , where the f ∗i ’s are distinct and pairwise coprime two-sided

maximal polynomials.

Recall that in Proposition 6.2.1 we showed that the greatest common left divisor

and greatest common right divisor of two two-sided elements are the same. Thus

in this case, being left coprime and right coprime are the same, and we just write

coprime.

Proof. Since xn − a ∈ Z(R) is two-sided and not a unit, [19, Thm. 1.2.17’] gives

us that it can be factorized as xn − a = f ∗1 f
∗
2 · · · f ∗t , where each f ∗i is a two-sided

maximal element. Since xn− a has a non-zero constant term, so must each f ∗i . Then

each f ∗i ∈ Fq[xm].

Now, set ñ := n/m and y := xm. Then in Fq[y; θ] = Fq[y], we have yñ − a =

f̃ ∗1 f̃
∗
2 · · · f̃ ∗t , where f̃ ∗i is simply f ∗i with y substituted in for xm. Since gcd(n, q) = 1,

so does gcd(ñ, q) = 1. Hence yñ − a is separable, and thus f̃ ∗1 , . . . , f̃
∗
t are distinct.

Then, substituting xm back in for y, we see that the original two-sided maximal

factors f ∗1 , f
∗
2 , · · · , f ∗t are distinct. Further, since each (f ∗i ) is maximal, f ∗i and f ∗j are

coprime for all i 6= j.
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As used in the previous proof, each two-sided element has a factorization into

two-sided maximal elements that is unique (up to order and unit factors). Recall

also from Proposition 6.2.6 that two-sided elements with non-zero constant terms

commute. In particular, factors of xn − a must have non-zero constants; thus its

two-sided maximal factors commute.

However, we can convert these two-sided maximal factors into central elements to

make computations easier, as we will see in Proposition 6.2.9.

Definition 6.2.8. If f ∈ Z(R) is two-sided maximal, call it central maximal.

From 6.2.5, it follows that as a two-sided maximal element has no proper two-sided

factors, a central maximal element has no proper central factors.

Proposition 6.2.9. Suppose xn−a ∈ Z(R) has a factorization into two-sided maxi-

mal elements xn−a = f1f2 · · · ft. Then we also have a factorization xn−a = f̂1f̂2 · · · f̂t
into monic central maximal elements, where f̂i = difi for some constant di ∈ F∗.

Proof. Each fi is two-sided, so it can be written as fi = cif̂ix
ti , with ci ∈ F∗,

monic f̂i ∈ Z(R), and ti ∈ N0. Since each fi |r (xn − a), the constant term of

each fi is non-zero. Thus ti = 0 for all i. Then fi = cif̂i, or f̂i = c−1i fi. Then we

write xn − a = c1f̂1 · · · ctf̂t = (
t∏
i=1

ci)f̂1 · · · f̂t. Since each f̂i is monic and xn − a is

monic,
t∏
i=1

ci = 1. Thus xn − a = f̂1 · · · f̂t. Further, (f̂i) = (fi), so each f̂i is indeed

central maximal.

Thus we can convert our factorization from Prop. 6.2.7 into a factorization of

distinct and pairwise coprime central maximal elements. (The fact that the central

maximal elements are distinct and pairwise coprime is carried over by the construction

in Prop. 6.2.9.) Thus when gcd(n, q) = 1, we have a unique factorization (up to order)

of pairwise coprime monic central maximal elements:

xn − a = f ∗1 f
∗
2 · · · f ∗t . (6.2.1)

In addition, we will consider the product of all but one of these central maximal

elements. For a fixed factorization as in (6.2.1), put

f̂ ∗i := f ∗1 f
∗
2 · · · f ∗i−1f ∗i+1 · · · f ∗t . (6.2.2)
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Since these elements are all central, f̂ ∗i is well-defined regardless of our choice

of ordering. Note also that f̂ ∗i f
∗
i = f ∗i f̂

∗
i = xn − a. Further, gcrd(f̂ ∗i , f

∗
i ) = 1

because xn − a has no repeated right roots in any extension field since gcd(n, q) = 1.

Finding this central maximal factorization can be accomplished concretely by first

searching for all monic right divisors of xn− a as previously described. One can then

identify which factors are central by checking if they are elements of FixF(θ)[xm].

Finally, one can determine which of those central factors are central maximal by

determining which ones have no non-trivial central factors themselves. (One needs

only to test the central factors that have been previously found, as for a central

element to right divide a right divisor g of xn − a, it must also right divide xn − a
itself.) Thus one can truly find the factorization in the following theorems, which

generalize [14, Thm. 2.11].

Recall that in Section 2.2, we defined left quotient module Sa := R/•(xn − a),

and demonstrated that Sa is even a ring exactly when xn−a is central. We now turn

to our attention to the quotient ring Sa.

Theorem 6.2.10 (see also [14, Thm. 2.11]). Let gcd(n, q) = 1. Let xn− a be factor-

ized as in (6.2.1) and (6.2.2). Since gcrd(f̂ ∗i , f
∗
i ) = 1, there exist polynomials bi, ci ∈

Z(R) such that bif̂
∗
i + cif

∗
i = 1 with deg(bi) < deg(f ∗i ). Define ei := bif̂

∗
i ∈ Z(R).

Thus deg(ei) < n. Then (ei) = (f̂ ∗i ) ⊆ Sa is a ring with identity ei. In particu-

lar, ei
2 = ei.

Proof. Immediately, (ei) ⊆ (f̂ ∗i ). On the other hand, using f
∗
i f̂
∗
i = 0 and centrality,

we have f̂ ∗i = f̂ ∗i (bif̂ ∗i + cif ∗i ) = f̂ ∗i bif̂
∗
i + f̂ ∗i cif

∗
i = f̂ ∗i bif̂

∗
i + cif̂ ∗i f

∗
i = f̂ ∗i bif̂

∗
i in Sa,

which implies that (f̂ ∗i ) ⊆ (ei). Thus (ei) = (f̂ ∗i ).

It is a standard result in ring theory that an idempotent serves as the identity

in the ring it generates, but we prove this in our case for completeness. Let gei

be an element in (ei) ⊆ Sa. We have ei gei = (1− cif ∗i )gei = gei − cif ∗i gbif̂ ∗i =

gei − cigbif ∗i f̂ ∗i = gei. Taking g := 1, we see that ei ei = ei. As such, gei ei = g ei ei =

gei. So indeed, ei is the identity of the ring (ei).

Theorem 6.2.11 (see also [14, Thm. 2.11]). Let gcd(n, q) = 1. Let xn − a be fac-

torized as in (6.2.1) and (6.2.2). Since gcrd(f̂ ∗i , f
∗
i ) = 1, there exist polynomi-

als bi, ci ∈ Z(R) such that bif̂
∗
i + cif

∗
i = 1. Define ei := bif̂

∗
i ∈ Z(R). Then:

(1) e1, e2, . . . , et are mutually orthogonal non-zero elements in Sa, i.e., ei ej = 0 for

all i 6= j.

(2) e1 + e2 + · · ·+ et = 1 in Sa.
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(3) Sa = (e1)⊕ (e2)⊕ · · · ⊕ (et).

(4) For each i = 1, 2, . . . , t, the map ψ : R/(f ∗i ) −→ (ei), g + (f ∗i ) 7−→ gei, is a

well-defined isomorphism of rings.

(5) Sa ∼= R/(f ∗1 )⊕R/(f ∗2 )⊕ · · ·R/(f ∗t ) as rings.

Proof. (1) Suppose ei = 0 for some i ∈ {1, 2, . . . , t}, i.e., bif̂ ∗i ∈ (xn − a) in R.

Then bif̂
∗
i ∈ (f)∗i . Thus 1 = bif̂

∗
i + cif

∗
i ∈ (f ∗i ), a contradiction. Hence for

each i ∈ {1, 2, . . . , t}, ei 6= 0. For i 6= j, eiej = bif̂
∗
i bj f̂

∗
j = bibj f̂

∗
i f̂
∗
j ∈ (xn − a),

so ei ej = 0.

(2) For any i = 1, . . . , t and i 6= j, we see that each f̂ ∗j is a left multiple of f ∗i , as

is bif̂
∗
i −1 = cif

∗
i . Thus we have b1f̂

∗
1 + · · ·+btf̂ ∗t −1 ∈ (f ∗i ) for all i ∈ {1, 2, . . . , t},

and the f ∗i ’s are pairwise coprime. Therefore b1f̂
∗
1 + · · ·+ btf̂

∗
t − 1 ∈ (xn − a), the

product of the f ∗i ’s. Thus e1 + · · ·+ et = 1 ∈ Sa.

(3) This is a standard result in ring theory, but we provide a proof for completeness.

Let g ∈ Sa. Then g can be represented as g = ge1 + ge2 + · · · + get by (2).

Since gei ∈ (ei) and our choice of g was arbitrary, Sa = (e1)+(e2)+ · · ·+(et). For

the directness of the sum, assume that g1 +g2 + · · ·+gt = 0, where each gi ∈ (ei).

Multiplying by ei on the right (or left) and using (1), we get 0 = g1ei + g2ei +

· · · + gtei = giei = gi, for i ∈ {1, 2, . . . , t}. So each gi = 0, and our sum is

direct: Sa = (e1)⊕ (e2)⊕ · · · ⊕ (et).

(4) First, we show that ψ is a well-defined map. Suppose that g+ (f ∗i ) = g′ + (f ∗i ) ∈
R/(f ∗i ). Then g−g′ ∈ (f ∗i ); write g−g′ = df ∗i for some d ∈ R. Then (g − g′)ei =

(g − g′)bif̂ ∗i = df ∗i bif̂
∗
i = dbif ∗i f̂

∗
i = 0. Thus ψ is a well-defined map.

Next, we check that ψ is indeed a ring homomorphism. Let g, g′ ∈ R. We eas-

ily see that ψ respects addition: ψ(g + (f ∗i ) + g′ + (f ∗i )) = ψ(g + g′ + (f ∗i )) =

(g + g′)ei = gei + g′ei = ψ(g + (f ∗i )) + ψ(g′ + (f ∗i )). Further, we confirm that ψ

respects multiplication: ψ((g + (f ∗i ))(g′ + (f ∗i ))) = ψ(gg′ + (f ∗i )) = gg′ei = gg′ei.

Using Theorem 6.2.10, we see that gg′ei = geig′ei = geig′ei = gie g′e = ψ((g +

(f ∗i )))ψ((g′+ (f ∗i ))), as desired. Finally, we see that indeed ψ(1 + (f ∗i )) = ei, so ψ

is a ring homomorphism.

Clearly ψ is a surjective ring homomorphism. For injectivity, let g+(f ∗i ) ∈ R/(f ∗i )

satisfy gei = 0. Then gei ∈ (xn − a) ⊆ (f ∗i ). Since f ∗i and ei = bif̂
∗
i are relatively

prime, g ∈ (f ∗i ), or put differently, g+(f ∗i ) = (f ∗i ). Thus the kernel of ψ is trivial.

Hence ψ is injective, and thus an isomorphism.
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(5) This follows immediately from (3) and (4).

Remark 6.2.12. Each of the ei in Theorems 6.2.10 & 6.2.11 is an idempotent mod-

ulo •(xn − a); this follows directly from Theorem 6.2.10. Remember that these two

theorems only apply when xn − a ∈ Z(R) and gcd(n, q) = 1.

In the commutative case, a polynomial xn − 1 ∈ Fq[x] with gcd(n, q) = 1 can be

factored into distinct irreducible polynomials f1, f2, . . . , ft. Then the polynomials f̂i =

(xn − 1)/fi generate ideals (f̂i) of Fq[x]/(xn − 1). By [18, Thm. 4.3.8], these are all

of the minimal ideals of Fq[x]/(xn − 1). Further, the only idempotents in (f̂i) are its

(unique) generating idempotent êi and 0. Finally, [18, Thm. 4.3.8] also gives us that

if e is a nonzero idempotent in Fq[x]/(xn − 1), then there is a subset T of {1, 2, . . . , t}
such that e =

∑
i∈T

êi and (e) =
∑
i∈T

(f̂i).

In the central non-commutative case, when the right divisor g of xn − a is itself

central, we obtain a similar result.

Remark 6.2.13. If f, g ∈ Z(R), then gcd(f, g) in the ring Z(R) equals the gcrd(f, g)

in R. We see this by carrying out the right Euclidean algorithm in the skew poly-

nomial ring. Because f, g ∈ Z(R), each quotient and remainder from the algorithm

must also be central. By Proposition 6.2.1, we also have gcd(f, g) = gcld(f, g).

Proposition 6.2.14. Let gcd(n, q) = 1 and let f ∗1 f
∗
2 · · · f ∗t be a factorization of xn−a

into central maximal elements taken from (6.2.1) and let g be a proper central right

divisor of xn−a. Then we can factor g as g∗1g
∗
2 · · · g∗s , where each gi is some distinct f ∗j .

Proof. Since g is a proper central right divisor of xn − a, we can factor it into cen-

tral maximal elements g∗1g
∗
2 · · · g∗s ; each of these central maximal elements must also

divide xn − a. Because the central maximal elements that divide xn − a are distinct,

each gi is some distinct fj.

Note that without loss of generality, we can write g = f ∗1 f
∗
2 · · · f ∗s , where each f ∗i

is central maximal, and s < t. This is because we can reorder the central maximal

elements and by the uniqueness of (6.2.1).

Theorem 6.2.15. Let g be a proper central right divisor of xn − a, and suppose g =

f ∗1 f
∗
2 · · · f ∗s is a factorization of g into central maximal elements taken from (6.2.1).

Then eg :=
t∑

i=s+1

ei (as in Theorem 6.2.10) is the unique central generating idempotent

of •(g) of degree less than n.
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Proof. We have such a factorization of g from Proposition 6.2.14. Observe that g |r f̂ ∗i
for s < i ≤ t. Clearly g = gcd(f̂ ∗s+1, . . . , f̂

∗
t ) in Z(R), and by Remark 6.2.13, g =

gcrd(f̂ ∗s+1, . . . , f̂
∗
t ) in our skew-polynomial ring. Then the elements es+1, . . . et ∈ •(g)

all correspond to idempotent polynomials. Consider the polynomial eg :=
∑t

i=s+1 ei.

Each ei has degree at most n, so deg(eg) < n as well. Using the orthogonality and

idempotency of the ei’s from Theorems 6.2.10 and 6.2.11, we see that

eg
2 =

(
t∑

i=s+1

ei

)2

=

(
t∑

i=s+1

ei

)2

=
t∑

i=s+1

ei
2 =

t∑
i=s+1

ei = eg.

Thus the polynomial eg is idempotent modulo •(xn − a).

It remains to show that •(eg) = •(g). Since g |r f̂ ∗i for s < i ≤ t, we have that eg =
t∑

i=s+1

ei =
t∑

i=s+1

bif̂
∗
i is a left multiple of g. Thus •(eg) ⊆ •(g). Now let j ∈ {s+1, . . . , t}

be given, and set r := f̂ ∗j ej. We will again exploit the orthogonality and idempotency

of the ei’s from Theorems 6.2.10 and 6.2.11, as well as the fact that
∑t

i=1 ei = 1.

Using the fact that (f̂ ∗j ) = (ej), and that ej is the identity of this ring, we compute:

f̂ ∗j − reg = f̂ ∗j − f̂ ∗j ej
t∑

i=s+1

ei = f̂ ∗j − f̂ ∗j e2j = f̂ ∗j − f̂ ∗j ej = 0.

Thus each f̂ ∗j ∈ •(eg) for s + 1 ≤ j ≤ t. So g = gcrd(f̂ ∗s+1, . . . , f̂
∗
t ) ∈ •(eg) as well,

so •(eg) = •(g) as desired.

Finally, we note that since eg and g are central, •(eg) = •(g) = (eg) = (g). Let regs

be an element in the ring (eg). Multiplying by eg on the left, we see that eg regs =

egregs = rsegeg = rs egeg = rs eg = regs. Similarly, if we multiply by eg on the right,

we have regs eg = regseg = rsegeg = · · · = regs. Thus eg is the multiplicative identity

of (g). Suppose there exists another central generating idempotent of •(g) of degree

less than n; call it ê. Then by the previous argument, ê is also the multiplicative

identity of (g). By the uniqueness of the multiplicative identity of rings, ê = eg, and

by the uniqueness of coset representatives of degree less than n, we have ê = eg.

Thus eg is the unique generating idempotent of •(g) of degree less than n.

6.3 The General Case

As we showed in the previous section, we are able to find idempotents in the central

case when gcd(n, q) = 1. What about when xn− a is not central? In many cases, we
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will require that gcrd(h, g) = 1, with Bézout identity 1 = uh+ vg satisfying vg = gv

and deg(v) < deg(h). In fact, we make a strong conjecture based on the data in

Appendix A that grants us these conditions. We feel confident in this conjecture, but

have been unable to prove it.

Conjecture 6.3.1. If gcd(n, q) = gcd(n, |θ|) = 1 and xn−a = hg with constamonic g,

then:

(1) gcrd(h, g) = 1.

(2) Let 1 = uh+ vg with deg(u) < deg(g) and deg(v) < deg(h). Then vg = gv.

Notice that the existence of u, v in Conjecture 6.3.1(2) comes from part (1) of

the same conjecture by Remark 2.1.1(b). One can also see that if g is constamonic

and gcrd(h, g) = 1, then lclm(h, g) = xn−a. (This is a special case of.) We now look

to Appendix A for some particular examples.

Example 6.3.2. (1) Consider x5 − 1 ∈ F8[x; θ = Frob]. Observe that gcd(n, q) =

gcd(5, 8) = 1 and gcd(n, |θ|) = gcd(5, 3) = 1. Indeed, for any factorization x5 −
1 = hg with g0 = 1, gcrd(h, g) = 1. There are only two nontrivial right divi-

sors: x+ 1 and x4 +x3 +x2 +x+ 1. For these, 1 = (x3 +x)(x+ 1) + (1)(x4 +x3 +

x2 +x+ 1), with (x3 +x)(x+ 1) = (x+ 1)(x3 + 1) and (1)(x4 +x3 +x2 +x+ 1) =

(x4 + x3 + x2 + x+ 1)(1). Conjecture 6.3.1 is supported by this example.

(2) Consider x10 − ω ∈ F4[x; θ = Frob], where ω2 + ω = 1. Observe that gcd(n, q) =

gcd(10, 4) = 2 and gcd(n, |θ|) = gcd(10, 2) = 2. Despite not meeting the hypothe-

sis of Conjecture 6.3.1, the conclusions still hold for any factorization x10−ω = hg

with g0 = 1. Thus while gcd(n, q) = gcd(n, |θ|) = 1 may be a sufficient condition,

it is certainly not necessary.

(3) Consider x8 − 1 ∈ F4[x; θ = Frob], where ω2 + ω = 1. Observe that gcd(n, q) =

gcd(8, 4) = 4 and gcd(n, |θ|) = gcd(8, 2) = 2. This polynomial satisfies neither

the hypothesis nor (in general) the conclusions of Conjecture 6.3.1. For example,

consider the factorization x8−1 = (ωx7+x6+ωx5+x4+ωx3+x2+ωx+1)(ωx+1).

One computes that gcrd(ωx7+x6+ωx5+x4+ωx3+x2+ωx+1, ωx+1) = x+ω2,

and there exist no u, v ∈ R such that 1 = u(ωx7 + x6 + ωx5 + x4 + ωx3 + x2 +

ωx+ 1) + v(ωx+ 1).

(4) Consider x5 − ω ∈ F8[x; θ = Frob], where ω3 + ω = 1. Observe that gcd(n, q) =

gcd(5, 8) = 1 and gcd(n, |θ|) = gcd(5, 3) = 1. We can factor x5 − ω = hg,

where g = ω2x+1 and h = ω3x4+ωx3+x2+ω3x+ω. We have that gcrd(h, g) = 1.

Set u = ωx+ω2 and v = ω3x4 +ω3x3 +x2 +ω5x+ω. Notice that deg(u) = deg(g)

46



and deg(v) = deg(h). Then we have the identity 1 = uh + vg. However, vg =

x5 +ω2x4 + x3 +ω6x2 +ω2x+ω 6= ωx5 + x4 +ω4x3 +ω5x2 + x+ω = gv. Thus if

we do not use the u and v of low degree as described in Conjecture 6.3.1(2), we

do not have vg = gv.

(5) As in (4), consider x5 − ω ∈ F8[x; θ = Frob], where ω3 + ω = 1. Rescaling our

previous right divisor, we have a factorization x5 − ω = hg, where g = x + ω5

and h = x4 + ω3x3 + ωx2 + x + ω3. We have that gcrd(h, g) = 1, but notice

that g is no longer constamonic. Set u = ω5 and v = ω5x3 + x2 + ω5. Then we

have the identity 1 = uh + vg with degree restrictions satisfied. However, vg =

ω5x4 + ωx3 + ω6x2 + ω5x+ ω3 6= ω3x4 + ωx3 + ω5x2 + ω3x+ ω3 = gv. Thus if we

do not have g constamonic, we do not have vg = gv.

We see in Appendix A that Conjecture 6.3.1 holds in each tested case where it

applies; this is a non-trivial number of cases. We can find generating idempotents

when these conclusions hold. Notice that we do not rely on gcd(n, q) = 1 or a

constamonic right divisor g for this proof, but we instead assume the conclusions

of Conjecture 6.3.1.

Theorem 6.3.3. Let xn−a = hg ∈ R with 1 = uh+vg and vg = gv for some u, v ∈
R. Then vg is a generating idempotent of •(g).

Proof. We begin by showing that vg is an idempotent modulo •(xn − a). From Re-

mark 2.1.1(d), we have deg(lclm(h, g)) = deg(h) + deg(g) − deg(gcrd(h, g)) = n.

Thus there exist w, z ∈ R such that wh = −zg (where deg(wh) = n), or alterna-

tively, wh+ zg = 0.

Note that gcld(w, z) = 1; this is because if w and z had a common left divisor of

degree greater than zero, then deg(lclm(h, g)) < n, a contradiction. Therefore, there

exist ŵ, ẑ ∈ R such that 1 = wŵ + zẑ. Put f := uŵ + vẑ. Then we have(
u v

w z

)(
h ŵ

g ẑ

)
=

(
1 f

0 1

)
. (6.3.1)

We can multiply both sides of this equation by the matrix
(
1 −f
0 1

)
on the right to

get (
u v

w z

)(
h ŵ

g ẑ

)(
1 −f
0 1

)
=

(
1 f

0 1

)(
1 −f
0 1

)
=

(
1 0

0 1

)
. (6.3.2)
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Define w̃ := h(−f) + ŵ · 1 and z̃ := g(−f) + ẑ · 1. This gives us(
u v

w z

)(
h w̃

g z̃

)
=

(
1 0

0 1

)
. (6.3.3)

Now R is a right principal ideal domain, and thus is right noetherian. By [20,

Prop. 1.13], any right noetherian ring is stably finite, so if AB = I, then BA = I,

where A and B are square matrices with entries in R. This gives us(
h w̃

g z̃

)(
u v

w z

)
=

(
1 0

0 1

)
. (6.3.4)

We use the matrix identities (6.3.3) and (6.3.4) to show that vg is an idempotent

modulo •(xn − a): (vg)2 − vg = (1 − uh)vg − vg = vg − uhvg − vg = −uhvg =

uw̃zg = −vz̃zg = −v(1−gv)v = −v(1−vg)g = −vuhg ∈ •(xn − a), i.e., (vg)2−vg ∈
•(xn − a), so vg is an idempotent modulo •(xn − a).

To show that vg is a generating idempotent modulo •(xn − a), we show that g ∈
•(vg). By assumption, uh + vg = 1, and since vg = gv, we have uh + gv = 1.

Multiplying by g on the right, we get uhg+gvg = g. Thus g ≡ g(vg) mod •(xn − a),

or g ∈ •(vg). Ergo vg is a generating idempotent modulo •(xn − a) of •(g).

This idempotent vg has some additional nice properties.

Proposition 6.3.4. Let xn − a = hg ∈ R with 1 = uh + vg for some u, v ∈ R, and

let vg = gv. Then vg serves as a right identity in •(g) in the sense that fvg = f for

all f ∈ •(g).

Proof. Since f ∈ •(g), we can write f = f̃ g for some f̃ ∈ R. Then fvg = f̃ gvg =

f̃vgg = f̃(1− uh)g = f̃ g − f̃uhg = f − f̃u(xn − a) = f , as desired.

Remark 6.3.5. Under the same assumptions, vg does not necessarily serve as a left

identity in •(g); in general, vgf 6= f for f ∈ •(g). Consider, for example, x5 − ω ∈
F9[x; θ = Frob], where ω2 +ω = 1. We can factor x5−ω = hg, with h = 2ωx4 +x3 +

ωx2 +2x+2ω and g = ω3x+1. Using Theorem 6.3.3, vg = x4 +ω3x3 +2x2 +2ω3x+2

is a generating idempotent modulo •(x5 − ω) of •(g). If we take f = 2ωg, we can see

that that vgf 6= f .

Recall that in Definition 6.1.2 being an idempotent modulo •(xn − a) is a property

of a skew-polynomial f ∈ R, not of a coset f ∈ •(g). In general, we do not have that

this property is independent of choice of coset representative. However, as we show
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next, in the case of the generating idempotent vg that we get from Theorem 6.3.3,

any other polynomial in the coset vg is also an idempotent modulo •(xn − a).

Proposition 6.3.6. Let xn − a = hg ∈ R with 1 = uh + vg for some u, v ∈ R, and

let vg = gv. Let e := vg + t(xn − a) for some t ∈ R. Then e is also a generating

idempotent of •(g). As a consequence, we may call vg a generating idempotent of •(g).

Proof. Recall that vg is an idempotent modulo •(xn − a) by Theorem 6.3.3, and

thus vgvg − vg ∈ •(xn − a). Observe that

e2 = vgvg + vgt(xn − a) + t(xn − a)vg + t(xn − a)t(xn − a)

= vgvg + t(xn − a)vg = vgvg + thgvg = vgvg + thvgg

= vgvg + th(1− uh)g = vgvg + thg − thuhg

= vgvg + t(xn − a)− thu(xn − a) = vgvg.

Then we can easily compute:

e2 − e = e2 − e = vgvg − vg + t(xn − a) = vgvg − vg = 0.

So e2 − e ∈ •(xn − a), as desired.

Further, e = vg, and by Theorem 6.3.3 we have •(e) = •(vg) = •(g). Thus e is a

generating idempotent modulo •(xn − a) of •(g).

So, we are able to find generating idempotents if Conjecture 6.3.1 holds. In Ex-

ample 6.1.6(1), the eight generating idempotents modulo •(x9 − 1) which correspond

to idempotent cosets are the idempotents found using the method in Theorem 6.3.3.

And by Proposition 6.3.6, their cosets are idempotent. Notice, though, that these

are not unique generating idempotents, as in the same example, there are four other

idempotent elements of degree less than 9.

We now attempt to find more generating idempotents. In [18, Thm. 4.3.7], we

see that if C1 and C2 are cyclic codes from the commutative case with respective

generating polynomials g1 and g2 and generating idempotents e1 and e2, then C1∩C2 is

a cyclic code with generator polynomial lcm(g1, g2) and generating idempotent e1e2,

and C1 + C2 is a cyclic code with generator polynomial gcd(g1, g2) and generating

idempotent e1 + e2 − e1e2. It turns out that skew-cyclic codes behave similarly, but

not identically with regard to idempotents. In the commutative case, idempotent

elements are cosets. Because idempotents are defined generally as polynomials in the

skew-cyclic case, our generalization looks at polynomials, not cosets.
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Theorem 6.3.7. Let xn − a = h1g1 = h2g2 ∈ R. Put C1 := va(
•(g1)) and C2 :=

va(
•(g2)). Then:

(1) C1 ∩ C2 is a (θ, a)-constacyclic code generated by lclm(g1, g2).

(2) C1 + C2 is a (θ, a)-constacyclic code generated by gcrd(g1, g2).

Proof. (1) Let c ∈ C1 ∩ C2. Then there exist t1, t2 ∈ R such that pa(c) = t1g1 = t2g2.

Since pa(c) is a left multiple of g1 and g2, it must be a left multiple of lclm(g1, g2).

Thus C1 ∩ C2 ⊆ va(
•(lclm(g1, g2))). On the other hand, let c ∈ va(

•(lclm(g1, g2))).

Then pa(c) is a left multiple of both g1 and g2, so c ∈ C1∩C2. Therefore C1∩C2 =

va(
•(lclm(g1, g2))), as desired.

(2) We have the Bézout identity gcrd(g1, g2) = ug1 + vg2 for some u, v ∈ R. Then

for any t ∈ R, t · gcrd(g1, g2) = tug1 + tvg2, so va(
•(gcrd(g1, g2))) ⊆ C1 + C2. On

the other hand, gcrd(g1, g2) is a right divisor of both g1 and g2, so C1, C2 ⊆
va(
•(gcrd(g1, g2))), and thus C1 + C2 ⊆ va(

•(gcrd(g1, g2))). Thus C1 + C2 =

va(
•(gcrd(g1, g2))).

But what about idempotents modulo •(xn − a)? In the commutative case, the

generating idempotents of C1 ∩ C2 and C1 + C2 are e1e2 and e1 + e2 − e1e2 respec-

tively, where e1 and e2 are the generating idempotents for C1 and C2, respectively [18,

Thm. 4.3.7]. Immediately we see that these polynomials do not work in the skew-

constacyclic case. We examine two examples:

Example 6.3.8. (1) Consider x3 − 1 ∈ R = F8[x, θ = Frob], where ω3 + ω = 1,

which has right divisors g1 = ωx2 + ω5x+ 1 and g2 = ω6x2 + ω2x+ 1. Let C1 :=

va(
•(g1)), C2 := va(

•(g2)). (Note that gcrd(n,m) = 3.) By Theorem 6.3.7, C1 ∩
C2 = va(

•(lclm(g1, g2))). In this example, lclm(g1, g2) = x3−1, so C1∩C2 = {0}. In

Appendix A, we see that for any factorization x3−1 = hg ∈ R with g constamonic,

gcrd(h, g) = 1 and vg = gv, where u, v ∈ R are the unique polynomials such

that 1 = uh + vg and deg(v) < deg(h), deg(u) < deg(g). (Note that this is true

despite gcd(n, |θ|) = gcd(3, 3) = 3.) Indeed, from g1 we get v1 = 1, and from g2

we also get v2 = 1. By Theorem 6.3.3, v1g1 = g1 and v2g2 = g2 are generating

idempotents modulo •(x3 − 1) of •(g1) and •(g2) respectively. However, g1g2 6=
g2g1, so we cannot use the method from the commutative case to compute a unique

generating idempotent for C1 ∩ C2.
Further, one can check that g1g2 is not an idempotent modulo •(x3 − 1). And

while g2g1 is an idempotent modulo •(x3 − 1), it is not a generating idempo-

tent modulo •(x3 − 1) of •(lclm(g1, g2)), as g2g1 = ω4x2 + ωx+ ω3 = ω3g1 /∈
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•(lclm(g1, g2)) = •(x3 − 1) = •(0). So this method cannot in general be used to

find generating idempotents.

(2) Consider x2 − 1 ∈ R = F9[x, θ = Frob], where ω2 + ω = 1, which has right

divisors g1 = 2x + 1 and g2 = ω2x + 1. Note that gcrd(n,m) = 2.) Let C1 :=

va(
•(g1)), C2 := va(

•(g2)). By Theorem 6.3.7, C1 +C2 = va(
•(gcrd(g1, g2))). In this

example, gcrd(g1, g2) = 1, so C1 + C2 = F2
9. Again, we see in Appendix A that

for any factorization x2 − 1 = hg ∈ R with g0 = 1, gcrd(h, g) = 1 and vg = gv,

where u, v ∈ R are the unique polynomials such that 1 = uh + vg and deg(v) <

deg(h), deg(u) < deg(g). (Note that this is true despite gcd(n, |θ|) = gcd(2, 2) =

2.) Indeed, from g1 we get v1 = 2, and from g2 we also get v2 = 2. By Theo-

rem 6.3.3, v1g1 = g1 and v2g2 = g2 are generating idempotents modulo •(x2 − 1)

of •(g1) and •(g2) respectively. However, 2g1 + 2g2− 2g12g2 6= 2g2 + 2g1− 2g22g1,

so we are clearly unable to compute a unique generating idempotent for C1 + C2
using the method from the commutative case.

Further, one can check that neither 2g1 + 2g2 − 2g12g2 nor 2g2 + 2g1 − 2g22g1 is

an idempotent modulo •(x2 − 1). So this method cannot in general be used to

find generating idempotents.

So we see that the constructions C1 ∩ C2 and C1 + C2 do not behave so nicely in

the skew-constacyclic case. However, we notice in each of these examples, we did not

have gcd(n, |θ|) = 1. Looking at the data in Appendix A, as well as other experiments

in Maple, we formulate an additional conjecture.

Conjecture 6.3.9. Let gcd(n, q) = gcd(n, |θ|) = 1 and xn − a = h1g1 = h2g2 be two

right coprime factorizations with constamonic g1, g2. Furthermore let 1 = uihi + vigi

with deg(vi) < deg(hi), deg(ui) < deg(gi) and vigi = givi. Then

(1) g1g2 = g2g1.

(2) v1g1v2g2 = v2g2v1g1.

Briefly, this means that the idempotents from Theorem 6.2.11 for two factor-

izations of xn − a commute. With this assumption, we are able to show that the

commutative formulation for idempotents modulo •(xn − a) partially generalizes to

the skew-constacyclic case.

Proposition 6.3.10. Let e1, e2 be idempotents modulo •(xn − a) such that e1e2 =

e2e1. Then

(1) e1e2 is an idempotent modulo •(xn − a).

(2) e1 + e2 − e1e2 is an idempotent modulo •(xn − a).
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Proof. Let e1, e2 be as described.

(1) (e1e2)
2−e1e2 = e1e2e1e2−e21e2−e1e2+e21e2 = e21(e

2
2−e2)+e2(e

2
1−e1) ∈ •(xn − a).

(2) We compute:

(e1 + e2−e1e2)2 − (e1 + e2 − e1e2)

= e21 + e1e2 − e21e2 + e2e1 + e22 − e2e1e2
− e1e2e1 − e1e22 + e1e2e1e2 − e1 − e2 + e1e2

= (e21 − e1) + (e22 − e2) + 3e1e2 − 2e1e
2
2 − 2e21e2 + e21e

2
2

≡ −2e1(e
2
2 − e2)− e2(e21 − e1) + e21(e

2
2 − e2) mod •(xn − a)

≡ 0 mod •(xn − a).

While we believe that these idempotents are generating idempotents of their re-

spective codes, it remains to be shown. However, we can show that they are generating

idempotents when we reintroduce some familiar hypotheses

Theorem 6.3.11. Let xn − a = h1g1 = h2g2, with 1 = u1h1 + v1g1 = u2h2 + v2g2 for

some u1, v1, u2, v2 ∈ R, where e1 := v1g1 = g1v1 and e2 = v2g2 = g2v2 are generating

idempotents of •(g1) and •(g2), respectively. Suppose also that e1e2 = e2e1. Then

(1) •(e1e2) = •(lclm(g1, g2)).

(2) •(e1 + e2 − e1e2) = •(gcrd(g1, g2)).

Proof. (1) Notice that e1e2 is a left multiple of both g1 and g2. Thus •(e1e2) ⊆
•(lclm(g1, g2)). Now let t ∈ •(lclm(g1, g2)) = •(g1)∩•(g2) = •(e1)∩•(e2). Then t =

s1v1g1 = s2v2g2 for some s1, s2 ∈ R. Then for some w ∈ R we can write s1v1g1 =

s2v2g2 + w(xn − a). We then compute:

s1v1g1v2g2 = s2v2g2v2g2 + w(xn − a)v2g2 = s2v2g2v2g2 + wh2g2v2g2

= s2v2v2g2g2 + wh2v2g2g2 = s2v2(1− u2h2)g2 + wh2(1− u2h2)g2
= s2v2g2 − s2v2u2h2g2 + wh2g2 − wh2u2h2g2 ≡ s2v2g2 mod •(xn − a)

≡ t mod •(xn − a).

So t = s1e1e2 ∈ •(e1e2). Thus •(e1e2) = •(lclm(g1, g2)).

(2) Notice that each term of e1 + e2 − e1e2 = v1g1 + v2g2 − v1g1v2g2 is clearly right

divisible by gcrd(g1, g2). Thus •(e1 + e2 − e1e2) ⊆ •(gcrd(g1, g2)). We now want

to show that g1, g2 ∈ •(e1 + e2 − e1e2). Put s := g1e1 and compute using Propo-
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sition 6.3.4:

g1 − s(e1 + e2 − e1e2) = g1 − se1 − se2 + se1e2

= g1 − g1e1e1 − g1e1e2 + g1e1e1e2

= g1 − g1e1e1 − g1e2e1 + g1e2e1e1

= g1 − g1e1e1 − g1e2e1 + g1e2e1

= g1 − g1e1e1 = g1 − g1e1
= g1 − g1 = 0.

Thus g1 = s(e1 + e2 − e1e2) ∈ •(e1 + e2 − e1e2). By taking s := g2e2, we can

similarly show that g2 ∈ •(e1 + e2 − e1e2). Thus •(g1) + •(g2) = •(gcrd(g1, g2)) =
•(e1 + e2 − e1e2).

We have created new (θ, a)-constacyclic codes by intersecting and summing two

existing codes. We can also decompose a vector space into the direct sum of two (θ, a)-

constacyclic codes and, in certain cases, find their generating idempotents.

Corollary 6.3.12. Let xn − a = hg ∈ R, with g constamonic and gcrd(h, g) = 1.

Put Cg := va(
•(g)) and Ch := va(

•(h)). Then Fnq = Cg ⊕ Ch.

Proof. Notice that since g is constamonic, 3.1.4 gives us that h |r (xn − a). By The-

orem 6.3.7(2), Cg + Ch is a (θ, a)-constacyclic code generated by gcrd(h, g) = 1.

Thus •(g) + •(h) = •(1), so Cg + Ch = Fnq .

Further, we inspect the dimensions of our codes: dim(Cg) + dim(Ch) = (n −
deg(g)) + (n − deg(h)) = 2n − (deg(g) + deg(h)) = 2n − n = n = dim(Fnq ),

so Cg ⊕ Ch = Fnq .

Remark 6.3.13. (1) Given a factorization xn − a = hg with gcrd(h, g) = 1 and g

constamonic, and Cg, Ch defined as above, Ch is not necessarily the only (θ, a)-

constacyclic code C such that Cg ⊕ C = Fnq . For example, consider x6 − 1 = hg ∈
F8[x; θ = Frob] with g = ωx2+1. There are 16 distinct (θ, 1)-constacyclic codes C
such that Cg ⊕ C = F6

b , as determined by an exhaustive search.

(2) Given a factorization xn−a = hg with gcrd(h, g) = 1 and g constamonic, let u, v ∈
R such that 1 = uh + vg. If vg = gv, then by Theorem 6.3.3, vg is a generating

idempotent modulo •(xn − a) of •(g). Similarly, if uh = hu, then uh is a gener-

ating idempotent modulo •(xn − a) of •(h). Note that vg = gv and uh = hu are

typically independent conditions. For example, consider x9 − ω = hg ∈ F4[x; θ =
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Frob] with g = ω2x+ 1. Then h = ωx8 +x7 +ωx6 +x5 +ωx4 +x3 +ωx2 +x+ω,

and u = ω2, v = ω2x7 + ω2x5 + ω2x3 + ω2x satisfy 1 = uh + vg. While vg =

gv, uh 6= hu.

If we restrict ourselves to xn − a ∈ Z(R), we can guarantee a relationship be-

tween the commutativity of v and g and the commutativity of u and h from Re-

mark 6.3.13(2). In Theorem 6.2.10, we explored what happens in the central case

with gcd(n, q) = 1. We now drop the restriction that gcd(n, q) = 1.

Proposition 6.3.14. Let xn − a = hg ∈ Z(R), and let u, v ∈ R be such that 1 =

uh+ vg. Then vg = gv if and only if uh = hu.

Proof. Suppose vg = gv. Then 1 = uh+ vg = uh+ gv. Multiplying either side by h

on the left and g on the right, we get hg = huhg + hgvg, or equivalently xn − a =

hu(xn − a) + (xn − a)vg. Since xn − a is central, we can commute it to the right

of each product and remove it via right cancellation. We are left with 1 = hu + vg.

Since 1 = uh+ vg as well, it follows that uh = hu as desired. The opposite direction

follows easily by taking uh for vg and vice versa.

So in this case, we can easily find either both or neither generating idempotent

modulo •(xn − a) for Cg ⊕ Ch = Fnq based solely on whether or not vg = gv.

Copyright c© Neville Lyons Fogarty, 2016.
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Appendix A: Data on Factorizations

The following table gives data on factorizations xn − a = hg ∈ Fq[x; θ]. We are
considering only the factorizations in which the right divisor g is constamonic, i.e.,
it has constant term 1. The first five columns are self-explanatory; they define the
parameters q, θ, n, and a. The “Commute” column lists whether or not all consta-
monic right divisors of xn − a commute with each other pairwise. The “gcrd = 1”
column lists whether or not gcrd(h, g) = 1 for every factorization xn − a = hg. Re-
gardless of the value of the greatest common right divisor, we can always write the
Bézout identity gcrd(h, g) = uh = vg with deg(u) < deg(g) and deg(v) < deg(h).
The column “vg = gv” lists whether or not all right divisors g commute with their
respective polynomials v from this particular Bézout identity.

The next two columns list the given greatest common right divisors. In the case
that both gcd(n, q) = 1 and gcd(n, |θ|) = 1, the row is listed in boldface; this corre-
sponds exactly to those cases when the hypotheses of Conjecture 6.3.1 are met. Note
that in each of these bold rows, both the “gcrd = 1” and “vg = gv” columns list
“Yes,” supporting Conjecture 6.3.1.

The final column gives the total number of constamonic right divisors of the given
polynomial xn − a. Note that this number is always at least 2, as the polynomi-
als 1 and −a−1xn + 1 are always trivial right divisors of xn − a. We want to know
that there are a non-trivial number of factorizations when we have gcd(n, q) = 1
and gcd(n, |θ|) = 1. For instance, each x15 − a ∈ F4[x; θ = Frob] has 32 consta-
monic right divisors. We often see many factorizations of central xn − a. For exam-
ple, x8 − 1 ∈ Z(F9[x; θ = Frob]) has 432 constamonic right divisors. Recall though
that in Section 6.2, specifically Theorem 6.2.10 and following, we are only interested
in central right divisors of xn − a.
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|F|=q θ |θ| n a Commute gcrd=1 vg=gv gcd(n,q) gcd(n,|θ|) # of divisors

4 Frob 2 2 1 No No Yes 2 2 5

4 Frob 2 2 w Yes Yes Yes 2 2 2

4 Frob 2 2 w^2 Yes Yes Yes 2 2 2

4 Frob 2 3 1 Yes Yes Yes 1 1 4

4 Frob 2 3 w Yes Yes Yes 1 1 4

4 Frob 2 3 w^2 Yes Yes Yes 1 1 4

4 Frob 2 4 1 No No No 4 2 15

4 Frob 2 4 w Yes No Yes 4 2 3

4 Frob 2 4 w^2 Yes No Yes 4 2 3

4 Frob 2 5 1 Yes Yes Yes 1 1 4

4 Frob 2 5 w Yes Yes Yes 1 1 4

4 Frob 2 5 w^2 Yes Yes Yes 1 1 4

4 Frob 2 6 1 No No No 2 2 35

4 Frob 2 6 w Yes Yes Yes 2 2 2

4 Frob 2 6 w^2 Yes Yes Yes 2 2 2

4 Frob 2 7 1 Yes Yes Yes 1 1 8

4 Frob 2 7 w Yes Yes Yes 1 1 8

4 Frob 2 7 w^2 Yes Yes Yes 1 1 8

4 Frob 2 8 1 No No No 4 2 83

4 Frob 2 8 w Yes No Yes 4 2 5

4 Frob 2 8 w^2 Yes No Yes 4 2 5

4 Frob 2 9 1 Yes Yes Yes 1 1 8

4 Frob 2 9 w Yes Yes Yes 1 1 8

4 Frob 2 9 w^2 Yes Yes Yes 1 1 8

4 Frob 2 10 1 No No No 2 2 95

4 Frob 2 10 w Yes Yes Yes 2 2 8

4 Frob 2 10 w^2 Yes Yes Yes 2 2 8

4 Frob 2 11 1 Yes Yes Yes 1 1 4

4 Frob 2 11 w Yes Yes Yes 1 1 4

4 Frob 2 11 w^2 Yes Yes Yes 1 1 4

4 Frob 2 12 1 No No No 4 2 495

4 Frob 2 12 w Yes No Yes 4 2 3

4 Frob 2 12 w^2 Yes No Yes 4 2 3

4 Frob 2 13 1 Yes Yes Yes 1 1 4

4 Frob 2 13 w Yes Yes Yes 1 1 4

4 Frob 2 13 w^2 Yes Yes Yes 1 1 4

4 Frob 2 14 1 No No No 2 2 605

4 Frob 2 14 w Yes Yes Yes 2 2 8

4 Frob 2 14 w^2 Yes Yes Yes 2 2 8

4 Frob 2 15 1 Yes Yes Yes 1 1 32

4 Frob 2 15 w Yes Yes Yes 1 1 32

4 Frob 2 15 w^2 Yes Yes Yes 1 1 32
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|F|=q θ |θ| n a Commute gcrd=1 vg=gv gcd(n,q) gcd(n,|θ|) # of divisors

8 Frob, Frob^2 3 2 1 Yes No Yes 2 1 3

8 Frob, Frob^2 3 2 w Yes No Yes 2 1 3

8 Frob, Frob^2 3 2 w^2 Yes No Yes 2 1 3

8 Frob, Frob^2 3 2 w^3 Yes No Yes 2 1 3

8 Frob, Frob^2 3 2 w^4 Yes No Yes 2 1 3

8 Frob, Frob^2 3 2 w^5 Yes No Yes 2 1 3

8 Frob, Frob^2 3 2 w^6 Yes No Yes 2 1 3

8 Frob, Frob^2 3 3 1 No Yes Yes 1 3 16

8 Frob, Frob^2 3 3 w Yes Yes Yes 1 3 2

8 Frob, Frob^2 3 3 w^2 Yes Yes Yes 1 3 2

8 Frob, Frob^2 3 3 w^3 Yes Yes Yes 1 3 2

8 Frob, Frob^2 3 3 w^4 Yes Yes Yes 1 3 2

8 Frob, Frob^2 3 3 w^5 Yes Yes Yes 1 3 2

8 Frob, Frob^2 3 3 w^6 Yes Yes Yes 1 3 2

8 Frob, Frob^2 3 4 1 Yes No Yes 4 1 5

8 Frob, Frob^2 3 4 w Yes No No 4 1 5

8 Frob, Frob^2 3 4 w^2 Yes No No 4 1 5

8 Frob, Frob^2 3 4 w^3 Yes No No 4 1 5

8 Frob, Frob^2 3 4 w^4 Yes No No 4 1 5

8 Frob, Frob^2 3 4 w^5 Yes No No 4 1 5

8 Frob, Frob^2 3 4 w^6 Yes No No 4 1 5

8 Frob, Frob^2 3 5 1 Yes Yes Yes 1 1 4

8 Frob, Frob^2 3 5 w Yes Yes Yes 1 1 4

8 Frob, Frob^2 3 5 w^2 Yes Yes Yes 1 1 4

8 Frob, Frob^2 3 5 w^3 Yes Yes Yes 1 1 4

8 Frob, Frob^2 3 5 w^4 Yes Yes Yes 1 1 4

8 Frob, Frob^2 3 5 w^5 Yes Yes Yes 1 1 4

8 Frob, Frob^2 3 5 w^6 Yes Yes Yes 1 1 4

8 Frob, Frob^2 3 6 1 No No No 2 3 129

8 Frob, Frob^2 3 6 w Yes No Yes 2 3 3

8 Frob, Frob^2 3 6 w^2 Yes No Yes 2 3 3

8 Frob, Frob^2 3 6 w^3 Yes No Yes 2 3 3

8 Frob, Frob^2 3 6 w^4 Yes No Yes 2 3 3

8 Frob, Frob^2 3 6 w^5 Yes No Yes 2 3 3

8 Frob, Frob^2 3 6 w^6 Yes No Yes 2 3 3

8 Frob, Frob^2 3 7 1 Yes Yes Yes 1 1 8

8 Frob, Frob^2 3 7 w Yes Yes Yes 1 1 8

8 Frob, Frob^2 3 7 w^2 Yes Yes Yes 1 1 8

8 Frob, Frob^2 3 7 w^3 Yes Yes Yes 1 1 8

8 Frob, Frob^2 3 7 w^4 Yes Yes Yes 1 1 8

8 Frob, Frob^2 3 7 w^5 Yes Yes Yes 1 1 8

8 Frob, Frob^2 3 7 w^6 Yes Yes Yes 1 1 8
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|F|=q θ |θ| n a Commute gcrd=1 vg=gv gcd(n,q) gcd(n,|θ|) # of divisors

8 Frob, Frob^2 3 8 1 Yes No Yes 8 1 9

8 Frob, Frob^2 3 8 w Yes No No 8 1 9

8 Frob, Frob^2 3 8 w^2 Yes No No 8 1 9

8 Frob, Frob^2 3 8 w^3 Yes No No 8 1 9

8 Frob, Frob^2 3 8 w^4 Yes No No 8 1 9

8 Frob, Frob^2 3 8 w^5 Yes No No 8 1 9

8 Frob, Frob^2 3 8 w^6 Yes No No 8 1 9

9 Frob 2 2 1 No Yes Yes 1 2 6

9 Frob 2 2 w Yes Yes Yes 1 2 2

9 Frob 2 2 w^2 Yes Yes Yes 1 2 2

9 Frob 2 2 w^3 Yes Yes Yes 1 2 2

9 Frob 2 2 w^4 No Yes Yes 1 2 6

9 Frob 2 2 w^5 Yes Yes Yes 1 2 2

9 Frob 2 2 w^6 Yes Yes Yes 1 2 2

9 Frob 2 2 w^7 Yes Yes Yes 1 2 2

9 Frob 2 3 1 Yes No Yes 3 1 4

9 Frob 2 3 w Yes No No 3 1 4

9 Frob 2 3 w^2 Yes No No 3 1 4

9 Frob 2 3 w^3 Yes No No 3 1 4

9 Frob 2 3 w^4 Yes No Yes 3 1 4

9 Frob 2 3 w^5 Yes No No 3 1 4

9 Frob 2 3 w^6 Yes No No 3 1 4

9 Frob 2 3 w^7 Yes No No 3 1 4

9 Frob 2 4 1 No No No 1 2 36

9 Frob 2 4 w Yes Yes Yes 1 2 2

9 Frob 2 4 w^2 Yes Yes Yes 1 2 4

9 Frob 2 4 w^3 Yes Yes Yes 1 2 2

9 Frob 2 4 w^4 No Yes Yes 1 2 12

9 Frob 2 4 w^5 Yes Yes Yes 1 2 2

9 Frob 2 4 w^6 Yes Yes Yes 1 2 4

9 Frob 2 4 w^7 Yes Yes Yes 1 2 2

9 Frob 2 5 1 Yes Yes Yes 1 1 4

9 Frob 2 5 w Yes Yes Yes 1 1 4

9 Frob 2 5 w^2 Yes Yes Yes 1 1 4

9 Frob 2 5 w^3 Yes Yes Yes 1 1 4

9 Frob 2 5 w^4 Yes Yes Yes 1 1 4

9 Frob 2 5 w^5 Yes Yes Yes 1 1 4

9 Frob 2 5 w^6 Yes Yes Yes 1 1 4

9 Frob 2 5 w^7 Yes Yes Yes 1 1 4
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|F|=q θ |θ| n a Commute gcrd=1 vg=gv gcd(n,q) gcd(n,|θ|) # of divisors

9 Frob 2 6 1 No No No 3 2 76

9 Frob 2 6 w Yes No Yes 3 2 4

9 Frob 2 6 w^2 Yes No Yes 3 2 4

9 Frob 2 6 w^3 Yes No Yes 3 2 4

9 Frob 2 6 w^4 No No No 3 2 76

9 Frob 2 6 w^5 Yes No Yes 3 2 4

9 Frob 2 6 w^6 Yes No Yes 3 2 4

9 Frob 2 6 w^7 Yes No Yes 3 2 4

9 Frob 2 7 1 Yes Yes Yes 1 1 4

9 Frob 2 7 w Yes Yes Yes 1 1 4

9 Frob 2 7 w^2 Yes Yes Yes 1 1 4

9 Frob 2 7 w^3 Yes Yes Yes 1 1 4

9 Frob 2 7 w^4 Yes Yes Yes 1 1 4

9 Frob 2 7 w^5 Yes Yes Yes 1 1 4

9 Frob 2 7 w^6 Yes Yes Yes 1 1 4

9 Frob 2 7 w^7 Yes Yes Yes 1 1 4

9 Frob 2 8 1 No No No 1 2 432

9 Frob 2 8 w Yes Yes Yes 1 2 2

9 Frob 2 8 w^2 Yes Yes Yes 1 2 4

9 Frob 2 8 w^3 Yes Yes Yes 1 2 2

9 Frob 2 8 w^4 No No No 1 2 144

9 Frob 2 8 w^5 Yes Yes Yes 1 2 2

9 Frob 2 8 w^6 Yes Yes Yes 1 2 4

9 Frob 2 8 w^7 Yes Yes Yes 1 2 2

16 Frob, Frob^3 4 2 1 No No Yes 2 2 5

16 Frob, Frob^3 4 2 w Yes Yes Yes 2 2 2

16 Frob, Frob^3 4 2 w^2 Yes Yes Yes 2 2 2

16 Frob, Frob^3 4 2 w^3 No No Yes 2 2 5

16 Frob, Frob^3 4 2 w^4 Yes Yes Yes 2 2 2

16 Frob, Frob^3 4 2 w^5 Yes Yes Yes 2 2 2

16 Frob, Frob^3 4 2 w^6 No No Yes 2 2 5

16 Frob, Frob^3 4 2 w^7 Yes Yes Yes 2 2 2

16 Frob, Frob^3 4 2 w^8 Yes Yes Yes 2 2 2

16 Frob, Frob^3 4 2 w^9 No No Yes 2 2 5

16 Frob, Frob^3 4 2 w^10 Yes Yes Yes 2 2 2

16 Frob, Frob^3 4 2 w^11 Yes Yes Yes 2 2 2

16 Frob, Frob^3 4 2 w^12 No No Yes 2 2 5

16 Frob, Frob^3 4 2 w^13 Yes Yes Yes 2 2 2

16 Frob, Frob^3 4 2 w^14 Yes Yes Yes 2 2 2
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|F|=q θ |θ| n a Commute gcrd=1 vg=gv gcd(n,q) gcd(n,|θ|) # of divisors

16 Frob, Frob^3 4 3 1 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 3 w Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 3 w^2 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 3 w^3 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 3 w^4 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 3 w^5 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 3 w^6 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 3 w^7 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 3 w^8 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 3 w^9 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 3 w^10 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 3 w^11 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 3 w^12 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 3 w^13 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 3 w^14 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 4 1 No No No 4 4 67

16 Frob, Frob^3 4 4 w Yes Yes Yes 4 4 2

16 Frob, Frob^3 4 4 w^2 Yes Yes Yes 4 4 2

16 Frob, Frob^3 4 4 w^3 Yes Yes Yes 4 4 2

16 Frob, Frob^3 4 4 w^4 Yes Yes Yes 4 4 2

16 Frob, Frob^3 4 4 w^5 No No Yes 4 4 7

16 Frob, Frob^3 4 4 w^6 Yes Yes Yes 4 4 2

16 Frob, Frob^3 4 4 w^7 Yes Yes Yes 4 4 2

16 Frob, Frob^3 4 4 w^8 Yes Yes Yes 4 4 2

16 Frob, Frob^3 4 4 w^9 Yes Yes Yes 4 4 2

16 Frob, Frob^3 4 4 w^10 No No Yes 4 4 7

16 Frob, Frob^3 4 4 w^11 Yes Yes Yes 4 4 2

16 Frob, Frob^3 4 4 w^12 Yes Yes Yes 4 4 2

16 Frob, Frob^3 4 4 w^13 Yes Yes Yes 4 4 2

16 Frob, Frob^3 4 5 w^14 Yes Yes Yes 1 1 2
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|F|=q θ |θ| n a Commute gcrd=1 vg=gv gcd(n,q) gcd(n,|θ|) # of divisors

16 Frob, Frob^3 4 5 1 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 5 w Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 5 w^2 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 5 w^3 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 5 w^4 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 5 w^5 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 5 w^6 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 5 w^7 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 5 w^8 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 5 w^9 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 5 w^10 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 5 w^11 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 5 w^12 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 5 w^13 Yes Yes Yes 1 1 4

16 Frob, Frob^3 4 5 w^14 Yes Yes Yes 1 1 4

16 Frob^2 2 2 1 No No Yes 2 2 7

16 Frob^2 2 2 w Yes Yes Yes 2 2 2

16 Frob^2 2 2 w^2 Yes Yes Yes 2 2 2

16 Frob^2 2 2 w^3 Yes Yes Yes 2 2 2

16 Frob^2 2 2 w^4 Yes Yes Yes 2 2 2

16 Frob^2 2 2 w^5 No No Yes 2 2 7

16 Frob^2 2 2 w^6 Yes Yes Yes 2 2 2

16 Frob^2 2 2 w^7 Yes Yes Yes 2 2 2

16 Frob^2 2 2 w^8 Yes Yes Yes 2 2 2

16 Frob^2 2 2 w^9 Yes Yes Yes 2 2 2

16 Frob^2 2 2 w^10 No No Yes 2 2 7

16 Frob^2 2 2 w^11 Yes Yes Yes 2 2 2

16 Frob^2 2 2 w^12 Yes Yes Yes 2 2 2

16 Frob^2 2 2 w^13 Yes Yes Yes 2 2 2

16 Frob^2 2 2 w^14 Yes Yes Yes 2 2 2
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|F|=q θ |θ| n a Commute gcrd=1 vg=gv gcd(n,q) gcd(n,|θ|) # of divisors

16 Frob^2 2 3 1 Yes Yes Yes 1 1 8

16 Frob^2 2 3 w Yes Yes Yes 1 1 2

16 Frob^2 2 3 w^2 Yes Yes Yes 1 1 2

16 Frob^2 2 3 w^3 Yes Yes Yes 1 1 8

16 Frob^2 2 3 w^4 Yes Yes Yes 1 1 2

16 Frob^2 2 3 w^5 Yes Yes Yes 1 1 2

16 Frob^2 2 3 w^6 Yes Yes Yes 1 1 8

16 Frob^2 2 3 w^7 Yes Yes Yes 1 1 2

16 Frob^2 2 3 w^8 Yes Yes Yes 1 1 2

16 Frob^2 2 3 w^9 Yes Yes Yes 1 1 8

16 Frob^2 2 3 w^10 Yes Yes Yes 1 1 2

16 Frob^2 2 3 w^11 Yes Yes Yes 1 1 2

16 Frob^2 2 3 w^12 Yes Yes Yes 1 1 8

16 Frob^2 2 3 w^13 Yes Yes Yes 1 1 2

16 Frob^2 2 3 w^14 Yes Yes Yes 1 1 2

16 Frob^2 2 4 1 No No No 4 2 33

16 Frob^2 2 4 w Yes No Yes 4 2 3

16 Frob^2 2 4 w^2 Yes No Yes 4 2 3

16 Frob^2 2 4 w^3 Yes No Yes 4 2 3

16 Frob^2 2 4 w^4 Yes No Yes 4 2 3

16 Frob^2 2 4 w^5 No No No 4 2 33

16 Frob^2 2 4 w^6 Yes No Yes 4 2 3

16 Frob^2 2 4 w^7 Yes No Yes 4 2 3

16 Frob^2 2 4 w^8 Yes No Yes 4 2 3

16 Frob^2 2 4 w^9 Yes No Yes 4 2 3

16 Frob^2 2 4 w^10 No No No 4 2 33

16 Frob^2 2 4 w^11 Yes No Yes 4 2 3

16 Frob^2 2 4 w^12 Yes No Yes 4 2 3

16 Frob^2 2 4 w^13 Yes No Yes 4 2 3

16 Frob^2 2 4 w^14 Yes No Yes 4 2 3
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|F|=q θ |θ| n a Commute gcrd=1 vg=gv gcd(n,q) gcd(n,|θ|) # of divisors

16 Frob^2 2 5 1 Yes Yes Yes 1 1 8

16 Frob^2 2 5 w Yes Yes Yes 1 1 8

16 Frob^2 2 5 w^2 Yes Yes Yes 1 1 8

16 Frob^2 2 5 w^3 Yes Yes Yes 1 1 8

16 Frob^2 2 5 w^4 Yes Yes Yes 1 1 8

16 Frob^2 2 5 w^5 Yes Yes Yes 1 1 8

16 Frob^2 2 5 w^6 Yes Yes Yes 1 1 8

16 Frob^2 2 5 w^7 Yes Yes Yes 1 1 8

16 Frob^2 2 5 w^8 Yes Yes Yes 1 1 8

16 Frob^2 2 5 w^9 Yes Yes Yes 1 1 8

16 Frob^2 2 5 w^10 Yes Yes Yes 1 1 8

16 Frob^2 2 5 w^11 Yes Yes Yes 1 1 8

16 Frob^2 2 5 w^12 Yes Yes Yes 1 1 8

16 Frob^2 2 5 w^13 Yes Yes Yes 1 1 8

16 Frob^2 2 5 w^14 Yes Yes Yes 1 1 8

25 Frob 2 2 1 No Yes Yes 1 2 8

25 Frob 2 2 w Yes Yes Yes 1 2 2

25 Frob 2 2 w^2 Yes Yes Yes 1 2 2

25 Frob 2 2 w^3 Yes Yes Yes 1 2 2

25 Frob 2 2 w^4 Yes Yes Yes 1 2 2

25 Frob 2 2 w^5 Yes Yes Yes 1 2 2

25 Frob 2 2 w^6 No Yes Yes 1 2 8

25 Frob 2 2 w^7 Yes Yes Yes 1 2 2

25 Frob 2 2 w^8 Yes Yes Yes 1 2 2

25 Frob 2 2 w^9 Yes Yes Yes 1 2 2

25 Frob 2 2 w^10 Yes Yes Yes 1 2 2

25 Frob 2 2 w^11 Yes Yes Yes 1 2 2

25 Frob 2 2 w^12 No Yes Yes 1 2 8

25 Frob 2 2 w^13 Yes Yes Yes 1 2 2

25 Frob 2 2 w^14 Yes Yes Yes 1 2 2

25 Frob 2 2 w^15 Yes Yes Yes 1 2 2

25 Frob 2 2 w^16 Yes Yes Yes 1 2 2

25 Frob 2 2 w^17 Yes Yes Yes 1 2 2

25 Frob 2 2 w^18 No Yes Yes 1 2 8

25 Frob 2 2 w^19 Yes Yes Yes 1 2 2

25 Frob 2 2 w^20 Yes Yes Yes 1 2 2

25 Frob 2 2 w^21 Yes Yes Yes 1 2 2

25 Frob 2 2 w^22 Yes Yes Yes 1 2 2

25 Frob 2 2 w^23 Yes Yes Yes 1 2 2
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|F|=q θ |θ| n a Commute gcrd=1 vg=gv gcd(n,q) gcd(n,|θ|) # of divisors

25 Frob 2 3 1 Yes Yes Yes 1 1 4

25 Frob 2 3 w Yes Yes Yes 1 1 4

25 Frob 2 3 w^2 Yes Yes Yes 1 1 4

25 Frob 2 3 w^3 Yes Yes Yes 1 1 4

25 Frob 2 3 w^4 Yes Yes Yes 1 1 4

25 Frob 2 3 w^5 Yes Yes Yes 1 1 4

25 Frob 2 3 w^6 Yes Yes Yes 1 1 4

25 Frob 2 3 w^7 Yes Yes Yes 1 1 4

25 Frob 2 3 w^8 Yes Yes Yes 1 1 4

25 Frob 2 3 w^9 Yes Yes Yes 1 1 4

25 Frob 2 3 w^10 Yes Yes Yes 1 1 4

25 Frob 2 3 w^11 Yes Yes Yes 1 1 4

25 Frob 2 3 w^12 Yes Yes Yes 1 1 4

25 Frob 2 3 w^13 Yes Yes Yes 1 1 4

25 Frob 2 3 w^14 Yes Yes Yes 1 1 4

25 Frob 2 3 w^15 Yes Yes Yes 1 1 4

25 Frob 2 3 w^16 Yes Yes Yes 1 1 4

25 Frob 2 3 w^17 Yes Yes Yes 1 1 4

25 Frob 2 3 w^18 Yes Yes Yes 1 1 4

25 Frob 2 3 w^19 Yes Yes Yes 1 1 4

25 Frob 2 3 w^20 Yes Yes Yes 1 1 4

25 Frob 2 3 w^21 Yes Yes Yes 1 1 4

25 Frob 2 3 w^22 Yes Yes Yes 1 1 4

25 Frob 2 3 w^23 Yes Yes Yes 1 1 4
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|F|=q θ |θ| n a Commute gcrd=1 vg=gv gcd(n,q) gcd(n,|θ|) # of divisors

25 Frob 2 4 1 No No No 1 2 64

25 Frob 2 4 w Yes Yes Yes 1 2 2

25 Frob 2 4 w^2 Yes Yes Yes 1 2 4

25 Frob 2 4 w^3 Yes Yes Yes 1 2 2

25 Frob 2 4 w^4 Yes Yes Yes 1 2 4

25 Frob 2 4 w^5 Yes Yes Yes 1 2 2

25 Frob 2 4 w^6 No Yes No 1 2 28

25 Frob 2 4 w^7 Yes Yes Yes 1 2 2

25 Frob 2 4 w^8 Yes Yes Yes 1 2 4

25 Frob 2 4 w^9 Yes Yes Yes 1 2 2

25 Frob 2 4 w^10 Yes Yes Yes 1 2 4

25 Frob 2 4 w^11 Yes Yes Yes 1 2 2

25 Frob 2 4 w^12 No No No 1 2 64

25 Frob 2 4 w^13 Yes Yes Yes 1 2 2

25 Frob 2 4 w^14 Yes Yes Yes 1 2 4

25 Frob 2 4 w^15 Yes Yes Yes 1 2 2

25 Frob 2 4 w^16 Yes Yes Yes 1 2 4

25 Frob 2 4 w^17 Yes Yes Yes 1 2 2

25 Frob 2 4 w^18 No Yes No 1 2 28

25 Frob 2 4 w^19 Yes Yes Yes 1 2 2

25 Frob 2 4 w^20 Yes Yes Yes 1 2 4

25 Frob 2 4 w^21 Yes Yes Yes 1 2 2

25 Frob 2 4 w^22 Yes Yes Yes 1 2 4

25 Frob 2 4 w^23 Yes Yes Yes 1 2 2
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