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ABSTRACT OF DISSERTATION

Equivalence Theorems and the Local-Global Property

In this thesis we revisit some classical results about the MacWilliams equivalence
theorems for codes over fields and rings. These theorems deal with the question
whether, for a given weight function, weight-preserving isomorphisms between codes
can be described explicitly. We will show that a condition, which was already known
to be sufficient for the MacWilliams equivalence theorem, is also necessary. Further-
more we will study a local-global property that naturally generalizes the MacWilliams
equivalence theorems. Making use of F-partitions, we will prove that for various sub-
groups of the group of invertible matrices the local-global extension principle is valid.
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Chapter 1 Introduction

In this thesis we consider isometries between codes. Codes will be submodules of some
Rn for a suitable finite, commutative ring R, and isometries are R-isomorphisms be-
tween such codes that preserve certain weight functions. Our goal is to describe, for
various instances, such isometries explicitly. These considerations are motivated by
a fundamental result of MacWilliams from 1962, which has enjoyed various gener-
alizations and has led to many activities at the interface of coding theory and ring
theory.

Let us briefly report these results and developments. Let F be a finite field. In
her thesis [29], MacWilliams showed that every Hamming-weight-preserving linear
isomorphism f between codes (subspaces) in Fn is a monomial map; that is, f is
given by a permutation and a rescaling of the codeword coordinates. We refer to
this result as the MacWilliams equivalence theorem. By translating the Hamming-
weight-preserving property into character-theoretic language, an alternative proof for
the same result was given by Ward and Wood [38].

In [12], Goldberg generalized the MacWilliams equivalence theorem in the follow-
ing direction. Let U be a multiplicative subgroup of F∗, the group of units of F, and
denote the cosets of U in F∗ by U1, U2, . . . , Us. Then the U -coset weight of x ∈ Fn

is defined as WU (x) := (w1 (x) , w2 (x) , . . . , ws (x)), where wj (x) counts the number
of components of x that belong to the coset Uj. In the same paper [12], Goldberg
showed that every WU -preserving linear isomorphism f between codes in Fn extends
to a U -monomial map f : Fn → Fn; that is, f is a permutation and a rescaling of
the coordinates by units from U . This result is a generalization of the MacWilliams
equivalence theorem since for U = F∗ the U -coset weight is exactly the Hamming
weight. Goldberg also noticed that his result is an analogue to Witt’s extension
theorem (see [1]).

In the early 1990’s, Hammons et. al. [15] proved the groundbreaking result that
the binary nonlinear Kerdock and Preparata codes can be considered as linear codes
over Z4 via the Gray map. This initiated the research area of codes over Z4 and even
over more general finite rings, which eventually became an integral part of coding
theory. Furthermore, motivated by the particular role of the Lee weight on Z4, more
general weight functions than just the Hamming weight were taken into consideration.

In 1997, Wood [42] generalized the above-mentioned result of Goldberg to codes
over finite Frobenius rings. Two years later, in [43] he also extended the MacWilliams
equivalence theorem to finite Frobenius rings. The two generalizations were proven
using the same character-theoretic techniques that he used with Ward in their proof of
the MacWilliams equivalence theorem over fields. A few months after Wood published
this result, Greferath and Schmidt [13] gave a combinatorial proof of the MacWilliams
equivalence theorem over finite Frobenius rings. Finally, following a strategy of Dinh
and López-Permouth [9], Wood [46] showed that the result cannot be extended to
more general rings by proving that finite rings for which the MacWilliams equivalence
theorem holds true must necessarily be Frobenius rings.
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Another direction to generalize the equivalence theorem is to consider weights
other than the Hamming weight. In his 1997 paper [42], Wood considered sub-
groups U of the group of units U(R) and introduced the notion of a U -weight for
weight functions that are constant on the U -orbits. In the same paper, he gave a suf-
ficient condition for a U -weight, extended additively to Rn, to satisfy the equivalence
theorem. Using this condition, he showed that all U(R)-weights on chain rings R sat-
isfy the equivalence theorem if the weight function is positive on its domain. Wood
claimed in [40] and proved in [41] that the Lee weight and the Euclidean weight sat-
isfy the equivalence theorem for the residue rings ZN if N is of the form 2k or 3k or
if N is a prime number of the form N = 2p+ 1, where p is also prime.

Before we describe our contributions to this research area, we would like to high-
light a question raised by Goldberg in [12]. Goldberg observed that the MacWilliams
equivalence theorem and Witt’s extension theorem are similar in the sense that any
linear isomorphism between two subspaces that preserves a certain metric (Hamming
metric in the first case and a quadratic form for the second) can be extended to a
matrix multiplication map (in the first case the matrix is a monomial matrix and
in the second case the matrix is an orthogonal matrix). Goldberg then asked if one
can find subgroups G of GL(n,R) together with some metric such that every linear
isomorphism between two subspaces that preserves this metric can be extended to a
G-map.

The main contribution of this thesis is to provide some answers to Goldberg’s
question. We first reformulate Goldberg’s problem as an existence problem of sub-
groups G of GL(n,R) that satisfy the local-global property in the sense that every
map that is a pointwise G-map is a global G-map. We then show that the group of
U -monomial matrices satisfies the local-global property. This result not only gives
a more natural proof of Wood’s result in [42], but also serves as a model of how to
prove the local-global property for other subgroups G of GL(n,R). We show that
the groups of invertible diagonal and invertible lower triangular matrices satisfy the
local-global property. This puts us in the position to derive the following results for
codes over finite Frobenius rings; they have the same flavor as Witt’s extension theo-
rem over fields. We show that every support-preserving linear isomorphism between
codes can be extended to a diagonal map. We also prove that every Rosenbloom-
Tsfasman-weight-preserving linear isomorphism between codes can be extended to a
lower triangular map. Finally, we establish a certain class of subrings of the ring of
n×n-matrices, whose group of units is guaranteed to satisfy the local-global property.

Another contribution is in the following area. As we mentioned earlier, Wood [42]
provided a sufficient condition, in terms of the invertibility of a certain matrix A,
for a weight function on Rn to satisfy the equivalence theorem. We will show that
this condition is in fact necessary for weight functions attaining rational values. For
certain classes of rings and certain weight functions, namely finite chain rings and
finite fields, we reveal the structure of the matrix A and take advantage of this
additional information to establish the invertibility of A. More precisely, for a U(R)-
weight function on Rn, where R is a finite chain ring, we show that up to row and
column permutations, the matrix A is a triangular matrix. This leads us to recover
some of Wood’s result in [42]. Furthermore, for a U -weight over finite fields, the
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matrix A is circulant. By exploiting this circulant structure, we reprove Wood’s result
that the Lee weight satisfies the equivalence theorem over the rings ZN , where N is
a prime of the form 2p+1 with p being prime itself, and we also show the new result
that the same is true for prime numbers N = 4p+ 1 where p is prime.

Summarizing, the following results in this thesis are new: Theorem 5.6 and conse-
quences, Theorem 5.28, and all results in Chapter 6 without Theorem 6.2 and Lemma
6.32.

The thesis is organized as follows. In Chapter 2 we introduce some basic notions
of coding theory over rings. We also discuss some basic properties of characters over
additive abelian groups that will be needed in the following chapters.

In Chapter 3 we reprove the classical result of MacWilliams’ equivalence theorem
in two ways. The first leads to a general condition for weight functions over fields to
satisfy the equivalence theorem. The second one familiarizes us with the character-
theoretic technique that we will employ often later.

In Chapter 4 we present Wood’s proof for the generalization of MacWilliams’ and
Goldberg’s result over admissible rings (Frobenius rings). We present the proof in
such away that admissible rings appear naturally as those that make the proofs over
fields work again.

In Chapter 5 we first observe that in order for the equivalence theorem between
any two modules to be valid it is enough to show the validity for cyclic modules. This
helps us to immediately obtain a sufficient condition, in terms of the invertibility of
a certain matrix A, for a weight function to satisfy the equivalence theorem. For
rational-valued weight functions, we show that this condition is necessary and show
that – although the condition is much simpler than the one in Chapter 3 – the two
conditions are actually equivalent. Furthermore, we will show that over finite fields,
the matrix A has the nice structure of a circulant. By exploiting this structure, we
prove the equivalence theorem for the Lee weight over the residue rings ZN , where N
takes the particular values mentioned above.

In Chapter 6 we start with a motivation that Witt’s extension theorem and Gold-
berg’s result can be formulated in terms of the local-global property. Then we intro-
duce and discuss some properties of F -partitions. These partitions form a close link
to characters and will be a main tool for establishing that certain subgroups satisfy
the local-global property. They will allow us to derive the results we discussed on the
previous page.

Finally, in the last chapter we give a broad overview that connects the results of
the two previous chapters and offers some directions of how to further the research.

Copyright c© Aleams Barra, 2012.
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Chapter 2 General Notions and Basic Results

Before we start with the formal notation, let use give a brief motivation.
Linear block codes are the main tool for ensuring the integrity of data transmission

over a channel. Messages are assumed to be vectors over a certain finite field. Before
being sent, they are encoded in such a way the receiver has a chance to reconstruct the
original message from the received, and generally erroneous, message. Algebraically,
encoding is simply a linear map from the domain of all possible messages. The
image, a certain vector space, is called the associated code. In order to deal with
transmission errors, one needs a tool for measuring such errors. Traditionally, this is
achieved by the Hamming metric, which simply counts the number of distinct entries
in two vectors. Decoding, that is recovering the original message, amounts to finding
the codeword that most likely has been sent. Under certain assumptions on the
transmission channel, this is equivalent to applying the minimum distance decoding
rule: if a word y is received, this rule will decode y to xy so that the Hamming
distance between xy and y is minimal among all possible codewords. A code is called
ε-error-correcting if this procedure is able to correct up to ε errors.

One main theme of coding theory is to find codes with large error-correcting ca-
pability. Furthermore, mathematically one is interested in understanding as to when
two codes can be regarded the same with respect to their error-correcting capability.
Taken the above into account, this translates into when two codes are isomorphic
as vector spaces and such that the isomorphism preserves the Hamming metric. In
other words, when are two codes isometric? The classical MacWilliams equivalence
theorem, discussed in Chapter 3, gives an explicit description of isometric codes.

Around 1970 several binary non-linear codes having at least twice as many code-
words as any linear code with the same error-correcting capability have been con-
structed. Among them are the Preparata codes and the Kerdock codes. Mysteriously,
the transform of the weight enumerator of the Preparata is that of the Kerdock code
of the same length, while they are not dual to each other. In 1994 Hammons et.
al. ([15]) made a breakthrough in explaining this problem. They showed that the
Kerdock code can be viewed as a cyclic linear code over Z4 and the dual of its binary
image under the Gray map can be considered as a variant of the Preparata code. The
Gray map gives a weight preserving map from Zn4 with the Lee weight to Z2 with the
Hamming weight. This result has led to active research of codes over Z4 and over
finite rings in general and also triggered interest in codes with different weights.

For application, the Gray map is also used in data transmission with the QPSK
modulation. It is implemented to assign 2 information bits into four possible phases.
The advantage of this assignment is that only a single bit error occurs in the 2-bit
sequence when noise causes the incorrect selection of an adjacent phase to the trans-
mitted phase. Some of the popular applications of QPSK include CDMA systems,
digital video broadcasting satellite (DVB-S) and cable modems.

In this chapter we will introduce the basic notions for codes over rings as needed
for this thesis. After introducing the general concept of a weight function, we will
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discuss weight preserving maps (called isometries) and various forms of monomial
maps. Finally we will present some basic concepts of character theory.

Throughout this chapter, let R be a finite commutative ring with identity. We
will denote the group of units of R by U(R).

2.1 Linear Codes Over Rings

Definition 2.1. Let Rn be the R-module of all n-tuples over the ring R. Elements of
Rn will be written as row vectors. A linear code C over R is an R-submodule of Rn.
The members of C are called codewords. A generator matrix G for C is a matrix whose
rows generates C, i.e., every codeword in C can be written as a linear combination of
the row vectors of G.

We need here to emphasize the difference between linear codes over rings and
linear codes over fields. If R is a field, then C is a subspace of Rn. If C has dimension
k then we say that C is an [n, k] linear code and in this case we also require the rows of
the generator matrix for C to be linearly independent. So all the generator matrices
are of the size k × n.

When R is just a ring, C is not necessary a free module, hence we cannot talk
about dimension and there is no specific size of the generator matrix for C.

2.2 Weight Functions

When a codeword x ∈ C is sent trough a channel, the noise in the form of an error
vector e distorts the codeword and produces the vector y = x + e at the other end
of the channel. To measure this distortion, Hamming [14] introduced the distance
function D(x, y) which measures in how many positions x and y differ, that is

D(x, y) = |{i | xi 6= yi}| for x, y ∈ Rn.

This distance function satisfies the distance axiom for a metric space as we can
see from the following proposition.

Proposition 2.2. The distance function D(x, y) satisfies the distance properties:

1. D(x, y) ≥ 0 for all x, y ∈ Rn.

2. D(x, y) = 0 if and only if x = y.

3. D(x, y) = D(y, x) for all x, y in Rn.

4. D(x, z) ≤ D(x, y) +D(y, z) for every x, y, z ∈ Rn.

Properties (i),(ii) and (iii) are obvious; (iv) is a simply exercise [18] pp.8 or [30]
pp.13.

Another metric that is commonly used for error correcting purposes is the Lee
distance. It was first introduced by Lee [27] in 1958 and measures the distance

5



between two points on a circle. Suppose there are N points on the circle and that
we label them with 0, 1, ..., N − 1. The distance between two points x and y is
the minimum number of arcs (clockwise or counter-clock wise) to go from x to y.
Because of this reason, originally Lee called this distance the circular distance. We
will formally define this metric on the integer residue ring ZN as follows. First we
denote the elements of ZN by 0, 1, . . . , N −1. Then the Lee distance on ZN is defined
as

ρ(x, y) = min{x− y mod N, y − x mod N}.

For example in Z8, we have ρ(7, 2) = 3 since 7− 2 = 5 and 2− 7 = −5 = 3 in Z8.
One can also see that ρ(7, 2) = 3 from the picture below.

�

��

�

�

� �

�

Figure 2.1: The Lee distance between 2 and 7

We can extend this distance to the module ZnN by defining

ρ(x, y) =
n∑

i=1

ρ(xi, yi).

It is easy to see that the Lee distance satisfies the properties of Proposition 2.2.
In this thesis we will consider very general weight functions. In the following

definition note that we do not require a weight to satisfy the properties of a metric
given in Proposition 2.2.

Definition 2.3. A weight w on the ring R is a function w : R → C such that
w(0) = 0. Let U be a multiplicative subgroup of U(R). We say that the weight w is
a U-weight if w(αx) = w(x) for all x ∈ R and α ∈ U . The biggest subgroup U for
which w is a U -weight is called the symmetry group of the weight w and we denote
it by Sym(w).
Each weight function on R can naturally be extended to Rn. The resulting function
on Rn will be denoted by w as well, thus,

w(x) =
n∑

i=1

w(xi) for all x ∈ Rn. (2.1)

If w is a U -weight, then w(αx) = w(x) for all x ∈ Rn and α ∈ U .

Obviously, every weight function on R is a {1}-weight. To present non-trivial
examples of U -weights, we first give the following definition.

6



Definition 2.4. The Hamming weight wH on any ring R is defined by

wH(x) =

{
1 , if x 6= 0

0 , if x = 0
.

The Lee weight wL on the ring ZN is defined as

wL(m) = min{m mod N, (N −m) mod N} for all m ∈ ZN

(where, as usual, mod N refers to the remainder in the set {0, . . . , N − 1}).

From the definition above we can see that the Hamming weight is a U(R)-weight
and the Lee weight is a {±1}-weight. In fact Sym(wH) = U(R) and Sym(wL) = {±1}.
We can view the Hamming weight and the Lee weight on Rn in terms of the Hamming
distance D and the Lee distance ρ. Using the extension in Equation (2.1) we have

wH(x) = D(x, 0) = |{i | xi 6= 0}|

wL(x) = ρ(x, 0).

2.3 Isometries and Monomial Maps

We would like to have a notion to say that two codes, C and C ′ are “essentially the
same”. As a first attempt, we can say that C and C ′ are the same if every codeword
in C ′ is just a rearrangement of some codeword in C, that is, if there is a permutation
σ ∈ Sn such that the assignment (x1, . . . , xn) 7→ (xσ(1), . . . , xσ(n)) gives a one-to-one
correspondence between C and C ′. In this case we say that C and C ′ are permutation
equivalent.

If we also take the Hamming weight into account, we can allow some scaling to
take place and still consider the two codes as being the same. This is because the
scaling process does not change the Hamming weight of a vector. We say that C
and C ′ are monomially equivalent if there is some permutation σ in Sn and scalars
α1, . . . , αn ∈ U(R) such that the map from C to C ′ given by

(x1, . . . , xn) 7→ (α1xσ(1), . . . , αnxσ(n))

is a one-to-one correspondence.
To make these two notions of equivalence more compact we will write them in

matrix form. To do so we need the following definition.

Definition 2.5. Denote the set of n × n permutation matrices over the ring R by
P(n,R). A monomial matrix over R is a matrix M that can be written as M = PD
where P is in P(n,R) and D is a diagonal matrix where the diagonal entries are
elements of U(R). If the diagonal entries in D are elements of a subgroup U of U(R),
we say that M is a U -monomial matrix. We denote the set of all monomial and
U -monomial n× n matrices over R respectively by M(n,R) and MU(n,R).
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Let GL(n,R) be the group of all n×n invertible matrices with entries from R. It is
not difficult to see that P(n,R),M(n,R) and MU(n,R) are subgroups of GL(n,R).
Now we are ready to give the definition of permutation equivalence and monomial
equivalence in terms of permutation and monomial matrices.

Definition 2.6. Two codes C and C ′ in Rn are permutation equivalent (respectively
monomially equivalent) if there are generator matrices G for C and G′ for C ′ such that
G′ = GP for some P ∈ P(n,R) (respectively G′ = GM for some M ∈ M(n,R)). If
M is in MU(n,R) then we say that C and C ′ are U -monomially equivalent. We also
write C ′ = CP or C ′ = CM to indicate that C and C ′ are permutation or monomially
equivalent without explicitly mentioning specific generator matrices.

Another key concept is that of a monomial map. A map f : Rn → Rn is said to be
a monomial map if there is a monomial matrix M that represents f . More generally
we define the following.

Definition 2.7. A linear map f : Rn → Rn is called a U -monomial map if there is
an M ∈ MU(n,R) such that f(x) = xM for all x ∈ Rn or, equivalently, if there are
α1, . . . , αn ∈ U and σ ∈ Sn such that

f(x) = (α1xσ(1), . . . , αnxσ(n))

for all x ∈ Rn. If U = U(R) we simply call f a monomial map.

Notice that every M ∈ M(n,R) preserves the Hamming weight in the sense that
wH(x) = wH(xM) for every x ∈ Rn. In this case we say that a monomial map is a
Hamming weight isometry in the sense of the following definition.

Definition 2.8. Let w be a U -weight and C, C ′ be codes in Rn. We say that a map
f : C → C ′ is a w-isometry (and C and C ′ are w-isometric) if f is a linear isomorphism
and f preserves w, that is, for every x ∈ C we have

w(x) = w(f(x)).

Obviously, if f : C → C ′ is the restriction of a U -monomial map on Rn, then f
is a w-isometry for every U -weight w. In this thesis we will be concerned with the
converse, that is, whether a given w-isometry f : C → C ′, where w is a U -weight, is
the restriction of a U -monomial map on Rn.

The most classical case is that of a Hamming weight isometry, and the question
amounts to whether a wH-isometry f : C → C ′ is the restriction of some monomial
mapM on C. It was first proved by MacWilliams [29] that this is indeed true when R
is a field. Since then there have been many generalizations of that result to more
general rings and weights. We will discuss these results in the next chapters.
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2.4 Basic Notions of Character Theory

In this section G will always be a finite abelian group, written additively. A char-
acter χ on G is a group homomorphism χ : G → C∗, where C∗ is the multiplicative
group of nonzero complex numbers.

While all the results in this section are well known (see for example [36] and [19]),
they do not always appear in the form needed for our purposes. Therefore, we choose
to devote this section to deriving the necessary character theory in a self-contained
form.

If G is of order n and χ is a character on G, we have

χ(g)n = χ(ng) = χ(0) = 1

for all g ∈ G. Hence χ(g) is an nth root of unity. Since

1 = χ(0) = χ(g + (−g)) = χ(g)χ(−g),

we also have
χ(−g) = χ(g)−1 = χ(g)

where the bar indicates the complex conjugation. We call the character χ0 defined
by χ0(g) = 1 for every g ∈ G the principal character.

Let Ĝ be the set of all characters on G. By defining (χ · ψ)(g) = χ(g)ψ(g) for all

g ∈ G, the set Ĝ is an abelian group, and χ defined by χ(g) := χ(g) is the inverse of

χ in Ĝ. We call Ĝ the character group of G.
Below we will show that the character group Ĝ is isomorphic to G. In order to do

so we will use the fundamental theorem of finite abelian groups which says that G is
isomorphic to a direct sum Zn1 ⊕ · · · ⊕ Znk

for some n1, . . . , nk. Then to prove that

G ∼= Ĝ, it is enough to show that the result is true for G = Zn and to show that

Ĥ1 ⊕H2
∼= Ĥ1 ⊕ Ĥ2. We will prove this in the following lemmas.

Lemma 2.9. Ẑn ∼= Zn

Proof. Let ω ∈ C be a primitive nth root of unity. For any j ∈ {0, 1, . . . , n− 1}, the
map χj defined by

χj(g) := ωjg

for g ∈ Zn = {0, 1, . . . , n − 1} is well-defined and in fact a character on Zn. Let χ
be any character. Then χ(1) is a nth root of unity and hence χ(1) = ωj for some j.

It follows that χ = χj . Thus Ẑn = {χ0, χ1, . . . , χn−1}. By definition of χj, we

have χj = (χ1)
j for all j = 0, . . . , n − 1. Hence Ẑn is a cyclic group of order n and

isomorphic to Zn.

Lemma 2.10. If G = H1 ⊕H2 then Ĝ ∼= Ĥ1 ⊕ Ĥ2.

Proof. Let χ1 ∈ Ĥ1 and χ2 ∈ Ĥ2. Define χ = χ1 ⊕ χ2 by

χ(h1, h2) := χ1(h1)χ2(h2)

9



for all (h1, h2) ∈ H1⊕H2. One can check that χ ∈ Ĝ. The map Ĥ1⊕Ĥ2 → Ĝ given by
(χ1, χ2) 7→ χ1⊕χ2 is clearly a homomorphism. If 1 = (χ1⊕χ2)(h1, h2) = χ1(h1)χ2(h2)
for all (h1, h2) then χ1(h1) = 1 and χ2(h2) = 1 for all h1 ∈ H1 and h2 ∈ H2. Hence
χ1, χ2 are principal characters and hence the map (χ1, χ2) 7→ χ1 ⊕ χ2 is injective.

Conversely, if χ ∈ Ĝ, then the restriction χi := χ |Hi
is a character on Hi and

χ = χ1 ⊕ χ2.

As a consequence of the above, G and Ĝ are isomorphic.

Proposition 2.11. G ∼= Ĝ

Proof. By the fundamental theorem of abelian groups we have G ∼= Zn1 ⊕ · · · ⊕ Znk
.

It follows that
G ∼= Zn1 ⊕ · · · ⊕ Znk

∼= Ẑn1 ⊕ · · · ⊕ Ẑnk
∼= Ĝ.

Remark 2.12. Let g be a non-zero element in Zn. Let χj be the character on Zn
as defined in the proof of Lemma 2.9. Choose j such that gcd(j, n) = 1. Suppose
that χj(g) = 1. Then ωjg = 1 and hence n | gj. But since gcd(j, n) = 1, then n | g.
But this is impossible because g ∈ {1, . . . , n− 1}. Therefore there exists a character

χ ∈ Ẑn for which χ(g) 6= 1. We will show in the following lemma that this result is
true for a general group G.

Lemma 2.13. Let g 6= 0 ∈ G. Then there exist a χ ∈ Ĝ such that χ(g) 6= 1.

Proof. By the fundamental theorem of finite abelian groups we may assume that
G = Zn1 ⊕ · · · ⊕ Znk

. Let g 6= 0 ∈ G. Write g = (g1, g2, . . . , gk) ∈ Zn1 ⊕ · · · ⊕ Znk
.

Since g 6= 0, then gi 6= 0 for some i. Without loss of generality let g1 6= 0. By
Remark 2.12, there is a character χ1 on Zn1 such that χ1(g1) 6= 1. Let χ2, . . . , χk be
the principal characters on Zn2 , . . . ,Znk

. Then χ := χ1 ⊕ χ2 ⊕ · · · ⊕ χk is a character
on G and

χ(g) = χ1(g1)χ2(g2) · · ·χk(gk) = χ1(g1) 6= 1.

The following results will be important in translating weight preserving properties
in character theory language.

Proposition 2.14.

∑

g∈G
χ(g) =

{
|G|, if χ is principal

0, otherwise

Proof. The case where χ is principal is obvious since χ(g) = 1 for all g ∈ G. If χ is
not principal, there is an a ∈ G such that χ(a) 6= 1. Then

∑

g∈G
χ(a+ g) =

∑

g∈G
χ(a)χ(g) = χ(a)

∑

g∈G
χ(g)

10



On the other hand ∑

g∈G
χ(a+ g) =

∑

h∈G
χ(h) =

∑

g∈G
χ(g).

Therefore
(χ(a)− 1)

∑

g∈G
χ(g) = 0.

Since χ(a) 6= 1, the conclusion follows.

Corollary 2.15. Let χ and ψ be two characters on G. Then

∑

g∈G
χ(g)ψ(g) =

{
|G|, if χ = ψ

0, if χ 6= ψ
.

Proof. If χ = ψ, then χ(g)ψ(g) = 1 and the conclusion follows. If χ 6= ψ, then χψ is
a non principal character and hence

∑
g χ(g)ψ(g) = 0.

Consider the C-vector space CG consisting of all functions φ : G → C. One can
check that

〈φ, ψ〉 :=
1

|G|

∑

g∈G
φ(g)ψ(g)

defines an inner product on CG. By Corollary 2.15, the set of all characters on G forms
an orthonormal set. But every orthonormal set is linearly independent. Therefore we
have the following proposition (often attributed to Dedekind) that we will use often.

Proposition 2.16. Let n ∈ N. If χ1, . . . , χn are distinct characters on G, then they
are linearly independent as elements of CG.

Corollary 2.17. Let χi, i = 1, . . . , n, and ψj, j = 1, . . . ,m, be characters on G. If

χ1 + · · ·+ χn = ψ1 + · · ·+ ψm, (2.2)

then {χ1, . . . , χn} = {ψ1, . . . , ψm} as multisets.

Proof. Let φ1, . . . , φs be all distinct characters among χ1, . . . , χn, ψ1, . . . , ψm. For
i = 1, . . . , s, let ai (respectively bi) be the number of characters on the left-side
(respectively right-side) of the Equation (2.2) that are equal to φi. Then Equation
(2.2) can be written as

s∑

i=1

aiφi =
s∑

i=1

biφi

which is equivalent to
s∑

i=1

(ai − bi)φi = 0.

By Proposition 2.16, ai = bi for all i = 1, . . . , s. Then obviously {χ1, . . . , χn} =
{ψ1, . . . , ψm} as multisets.
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Notice that since G ∼= Ĝ, clearly G ∼=
̂̂
G. In fact we can identify G with

̂̂
G via

the map g 7→ θg, where θg is defined by θg(χ) := χ(g) for all χ ∈ Ĝ. By Lemma 2.13

the map g 7→ θg is a group isomorphism. As a consequence, G and
̂̂
G are canonically

isomorphic (whereas there is in general no canonical isomorphism between G and Ĝ).

Applying Proposition 2.14 to the characters on Ĝ, we have

∑

χ∈Ĝ

θg(χ) =

{
|
̂̂
G|, θg is principal in

̂̂
G

0, otherwise.

Now since θg(χ) = χ(g) and G ∼=
̂̂
G and θg is principal iff g = 0 (by Lemma 2.13),

we have the following.

Proposition 2.18.
∑

χ∈Ĝ

χ(g) =

{
|G|, g = 0,

0, g 6= 0.

Copyright c© Aleams Barra, 2012.
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Chapter 3 Equivalence Theorems for Codes over Fields

In this chapter let R be a finite field.
We will begin with revisiting the classical MacWilliams Equivalence Theorem

which states that every Hamming weight preserving map between codes over fields is a
monomial map ([29]). We first reproduce an elementary proof and next, in Section 3.2,
a character theoretic proof. Both are from the literature, but will be presented in a
way that will allow us to use the central ideas for later generalizations. In Section 3.3
we derive a sufficient criterion for the MacWilliams Equivalence Theorem to hold
true for general U -weights, where U is a multiplicative subgroup of R. Thereafter, a
result from the literature will be derived that establishes the MacWilliams equivalence
theorem for certain partition preserving isomorphisms. Finally, in the last section
the equivalence theorem will be rephrased as an extension theorem, which then will
motivate our approach in Chapter 6.

3.1 MacWilliams Equivalence Theorem for the Hamming Weight

We consider the following situation. Let C and C ′ be two [n, k] codes inRn and suppose
f : C → C ′ is a Hamming weight isometry (see Definition 2.8). The MacWilliams
Equivalence Theorem states that C and C ′ are monomially equivalent, i.e., there is
an M ∈ M(n,R) such that C ′ = CM . We will present a proof similar to that in [18].
It will allow us later on to adopt the idea for more general U -weights. In the next
section we will also reproduce a character theoretic proof as found by Ward and Wood
in [38].

Before stating and proving the result, let us first discuss the main idea and con-
cepts. We need two k × n generator matrices G and G′ of C and C ′ respectively such
that G′ = GM . This means that the two generator matrices are the same up to
column permutation and column scaling by units in R. Since the column vectors of
G ∈ Rk×n are vectors in Rk, the following notation will be crucial.

Let V1, . . . , Vr be all one-dimensional subspaces of the vector space Rk, and let vi
be a fixed basis vector of Vi. It is known that if |R| = q, then the number of such

subspaces is r =
qk − 1

q − 1
. For G ∈ Rk×n denote by ni(G) the number of nonzero

columns of G that belong to Vi (of course we allow ni(G) to be zero here). We
slightly abuse the notation since technically vectors in Vi are row vectors. Now it
is clear that two codes C and C ′ are monomially equivalent if there exist generator
matrices G and G′ of C and C ′ such that ni(G) = ni(G

′) for all i = 1, . . . , r.
Recall the Hamming weight wH onR from Definition 2.4 and its extension wH(x) =∑n

i=1wH(xi) to R
n from Definition 2.3.

Theorem 3.1 (MacWilliams Equivalence Theorem [29]). Let C and C ′ be two [n, k]
codes over R. Then C and C ′ are wH-isometric if and only if C and C ′ are monomially
equivalent.
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Proof. (see also [18]) (⇐) If C ′ = CM for someM ∈ M(n,R), then the map x 7→ xM
defines a wH-isometry.

(⇒) Let f : C → C ′ be a wH-isometry. Moreover, let G be a k × n generator
matrix for C and let ri be the ith row of G. Define G′ to be the matrix whose ith row
is f(ri). Then it is clear that G′ ∈ Rk×n is a generator matrix of C ′. As we discussed
earlier, it is enough to show that ni(G) = ni(G

′) for every i.
Note that f(xG) = xG′ for all x ∈ Rk. Since f is a wH-isometry, we have

wH(xG) = wH(xG
′) for every x ∈ Rk. Let ci and c

′
i, i = 1, . . . , n, be the columns of

G and G′. Then
wH(xc1, . . . , xcn) = wH(xc

′
1, . . . , xc

′
n),

thus
n∑

i=1

wH(xci) =
n∑

i=1

wH(xc
′
i).

Each of the nj(G) columns in G which are in Vj contributes wH(x · vj) to the total
weight on the left-side. Here x · vj is the usual dot product on R

k (recall that vectors
in Rk are row vectors). It follows that

r∑

j=1

wH(x · vj)nj(G) =
r∑

j=1

wH(x · vj)nj(G
′).

By choosing x = vi for i = 1, . . . , r we obtain r equations that can be written in the
form

A




n1(G)
n2(G)
...

nr(G)


 = A




n1(G
′)

n2(G
′)

...
nr(G

′)


 ,

where

A =




wH(v1 · v1) wH(v1 · v2) · · · wH(v1 · vr)
wH(v2 · v1) wH(v2 · v2) · · · wH(v2 · vr)

...
...

...
wH(vr · v1) wH(vr · v2) · · · wH(vr · vr)


 ∈ Qr×r. (3.1)

If we can show that A is invertible, then all this implies nj(G) = nj(G
′) for all j and

thus C and C ′ are monomially equivalent, as desired. The invertibility of A follows
from the next two lemmas.

Lemma 3.2. Let W be a subspace of Rk and v 6∈ W⊥. Then

∑

w∈W
wH(w · v)

does not depend on the choice of v 6∈ W⊥.
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Proof. Let v 6∈ W⊥. The linear map

αv : W → R

w 7→ w · v

has rank 1, and hence kerαv is of co-dimension 1. Therefore kerαv := {w ∈ W |
v ·w = 0} is isomorphic to RdimW−1. So the cardinality of kerαv does not depend on
the choice of v 6∈ W⊥. Now since

∑

w∈W
wH(w · v) = |W | − | kerαv|

then
∑

w∈W wH(w · v) is also independent of the choice of v 6∈ W⊥.

Lemma 3.3. The matrix A = (wH(vi · vj)) ∈ Qr×r is invertible.

Proof. First we want to show that if we add all the rows of A, the resulting vector x
is of the form x = (α, · · · , α) for some α 6= 0. The jth entry of x is given by

r∑

i=1

wH(vi · vj) =
1

|R| − 1

r∑

i=1

∑

w∈Vi

wH(w · vj)

=
1

|R| − 1

∑

w∈Rk

wH(w · vj). (3.2)

The first equality is true since for each i there are |R| − 1 non-zero multiples of vi in
Vi. By Lemma 3.2, the sum on the right-hand side of Equation (3.2) is independent
of the choice of j. Hence x = (α, . . . , α), where α is the right-side of (3.2). It follows
that (1, 1, . . . , 1) is in the row space of A.

Next fix some t ∈ {1, . . . , r} and consider all rows of A for which vi is orthogonal
to vt. Add all these rows and call the resulting vector y. Then for j 6= t the jth
component of y is

∑

i:vi⊥vt

wH(vi · vj) =
1

|R| − 1

∑

i:vi⊥vt

∑

v∈Vi

wH(v · vj)

=
1

|R| − 1

∑

v∈〈vt〉⊥
wH(v · vj). (3.3)

For any j 6= t, the vector vj is not a multiple of vt, that is vj 6∈ 〈vt〉 = 〈vt〉
⊥⊥. So

by Lemma 3.2 we have that y = (β, . . . , β,
tth

0 , β, · · · , β), where β is the right-side of

(3.3). It follows that for every t the vector (1, . . . , 1,
tth

0 , 1, . . . , 1) is in the row space
of A. As a consequence, for every t = 1, . . . , r

et = (1, . . . , 1)− (1, . . . , 1,
tth

0 , 1, . . . , 1)

is in the row space of A, and therefore A is invertible over Q.

All of this concludes the proof of Theorem 3.1.
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3.2 Character Theoretic Proof of the MacWilliams Equivalence Theorem

In this section we will present a character theoretic proof of the MacWillams equiv-
alence theorem as given by Ward and Wood in [38]. Before we start with the proof
we need some preparation.

Throughout, let χ be a fixed non principal character on R (considered as an
additive group).

Let V be an R-vector space. Then every linear map g : V → R, that is g ∈
HomR(V,R), gives rise to a character χ ◦ g on V . We will show that this assignment
is injective.

Lemma 3.4. Consider HomR(V,R) as an additive group. Then the map g 7→ χ ◦ g

from HomR(V,R) to V̂ is an injective group homomorphism.

Proof. If g is in the kernel of the map, then χ ◦ g(v) = 1 for all v ∈ V . Notice that
since R is a field, the range of g : V → R is either R or {0}, since these are the only
subspaces of R. But if the range of g is R, then χ(x) = 1 for all x ∈ R, that is χ
is the principal character; contradiction. Hence {0} must be the range of g, i.e., g is
the zero map in HomR(V,R).

Every linear endomorphism on R is a multiplication map µr : R → R given by
µr(x) = rx for some r ∈ R. Thus |HomR(R,R)| = |R|. On the other hand, using

Proposition 2.11, |R| = |R̂|. Therefore by Lemma 3.4 we have the following.

Lemma 3.5. Every character ψ on R can be written as ψ = χ ◦ µr for some r ∈ R.

We will now translate the Hamming weight into character theoretic language. Let
n0 be the function that counts the number of zero entries of a vector in Rn, that is
n0(x) = #{xi | xi = 0}. Then two vectors x, y ∈ Rn have the same Hamming weight
if and only if n0(x) = n0(y). Now notice that by using Proposition 2.18 we have

n0(x) =
n∑

i=1

1

|R|

∑

ψ∈R̂

ψ(xi)

Thus we have

Lemma 3.6. Let x, y ∈ Rn. Then wH(x) = wH(y) if and only if

n∑

i=1

∑

ψ∈R̂

ψ(xi) =
n∑

i=1

∑

ψ∈R̂

ψ(yi)

Now we are ready to prove the MacWilliams equivalence theorem using character
theory.

Proof of Theorem 3.1, following Wood and Ward [38]. We will only prove “⇒”. Let
f : C → C ′ be a wH-isometry between the [n, k] codes C, C ′ over R. Denote by πi
the projection of Rn onto the ith coordinate. Then every x ∈ C can be written as
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x = (π1(x), . . . , πn(x)). Similarly, f(x) = (f1(x), . . . , fn(x)), where fi = πi ◦ f . Since
f preserves the Hamming weight, Lemma 3.6 implies

n∑

i=1

∑

ψ∈R̂

ψ(πi(x)) =
n∑

i=1

∑

ψ∈R̂

ψ(fi(x)) for all x ∈ C.

By Lemma 3.5, we have

n∑

i=1

∑

r∈R
χ ◦ µr ◦ πi =

n∑

i=1

∑

r∈R
χ ◦ µr ◦ fi. (3.4)

Notice that for each i the maps χ ◦ µr ◦ πi and χ ◦ µr ◦ fi are characters on C. Hence
the Equation (3.4) is an equation of characters on C. If r = 0 notice that χ ◦ µr ◦ πi
and χ ◦ µr ◦ fi are principal characters for all i = 1, . . . , n . Hence the case r = 0 can
be removed from the summation to get

n∑

i=1

∑

r∈R−{0}
χ ◦ µr ◦ πi =

n∑

i=1

∑

r∈R−{0}
χ ◦ µr ◦ fi. (3.5)

Consider the character χ ◦ µ1 ◦ f1 on the right hand side, that is where i = 1 and
r = 1. By Corollary 2.17, there is j ∈ {1, . . . , n} and s ∈ R− {0} such that

χ ◦ µs ◦ πj = χ ◦ µ1 ◦ f1 = χ ◦ f1.

Now by Lemma 3.4
f1 = µs ◦ πj. (3.6)

By using this result we have

∑

r∈R−{0}
χ ◦ µr ◦ f1 =

∑

r∈R−{0}
χ ◦ µr ◦ µs ◦ πj

=
∑

r∈R−{0}
χ ◦ µrs ◦ πj

=
∑

t∈R−{0}
χ ◦ µt ◦ πj.

Therefore we can remove the summands in Equation (3.5) corresponding to i = j on
the left and i = 1 on the right, reducing the index of the outer sum by 1. Then by
induction there exist σ ∈ Sn and si ∈ R− {0} such that

fi = µsi ◦ πσ(i) (3.7)

for all i = 1, . . . , n. Therefore for every x ∈ C we have

f(x) = (sixσ(1), . . . , snxσ(n))

as we desired.
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3.3 General Weight Functions

It is natural to ask if the equivalence theorem for the Hamming weight holds true for
general U -weights where U is any subgroup of U(R) (see Definition 2.3). In other
words, is each w-isometry between codes in Rn a U -monomial equivalence provided
that w is a U -weight? Recall from Equation (2.1) that we extend a weight w on R
to the vector space Rn via w(x) =

∑n

i=1w(xi). Unfortunately the above is not true
in general. The following two examples illustrate this fact.

Example 3.7. First, let R = Z5 and consider the zero function w : Z5 → C; it
defines a {±1}-weight. If the equivalence theorem is true, any w-isometry f : R → R
will be of the form f(x) = ux where u = ±1. But this is not always the case because
f(x) = 2x is a w-isometry and not of that form. However, one should notice that the
symmetry group of w, see Definition 2.3, is given by Sym(w) = U(R), and the map f
is indeed U(R)-monomial. This indicates already that one should, for a given weight
w, consider w as a Sym(w)-weight.

Example 3.8. A more compelling example has been given by Wood in [44, Ex. 8.3]:
choose again the field Z5 and consider the weight w(i) = i, i = 0, . . . , 4. Then w is a
{1}-weight and in fact Sym(w) = {1}. Consider the one-dimensional codes C and C ′

in Z2
5 generated by the vectors (1, 4) and (2, 3), respectively. It is easy to see that the

linear map f : C → C ′ defined by f(1, 4) = (2, 3) is a w-isometry. However, f is not
{1}-monomial. Obviously, f is the restriction of the map x 7→ 2x on Z2

5, which is not
a w-isometry on Z2

5. We will come back to this example in Example 5.9 at the end
of Section 5.1.

In light of these counterexamples, we may ask the following question. For what
U -weights w is every w-isometry f : C → C ′ a U -monomial equivalence? Before
we study this question we will first argue that the question can have an affirmative
answer only in the case where U = Sym(w). Indeed, let C = C ′ = R and let U be
a proper subgroup of Sym(w). If α ∈ Sym(w)\U , then the map g : C → C ′ given
by g(x) = αx is clearly a w-isometry. But this map is not a U -monomial map: if g
is a U -map then g(x) = βx for some β ∈ U and it follows that α = g(1) = β ∈ U ,
which contradicts the fact that α is not in U . So from this point on we assume that
U = Sym(w) and we phrase our question as follows.

Question 3.9. For which weights w is every w-isometry f : C → C ′ a U -monomial
equivalence, where U = Sym(w)?

Now to answer the above question, we try to mimic the line of thought of the
first proof of the equivalence theorem for the Hamming weight. Let w be a weight
on R, which we then extend to Rn as in Equation (2.1) via w(x) =

∑n

i=1w(xi).
Let f : C → C ′ be a w-isometry and U = Sym(w). Hence w is a U -weight. To show
that C and C ′ are U -monomially equivalent, we need to show that there are generator
matrices G and G′ for C and C ′ respectively and a U -monomial matrix M such that
G′ = GM .
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In the discussion prior to the proof of Theorem 3.1, we considered the one dimen-
sional subspaces V1, . . . , Vr with basis vectors v1, . . . , vr. For a U -weight the analogue
for these subspaces are the U -orbits of the multiplication action of U on Rk. No-
tice that {0} is one orbit of this action. We will call the nonzero orbits V1, . . . , Vr
and choose representatives v1, . . . , vr for them. Notice that each nonzero orbit con-

sists of |U | elements and thus there are r = |R|k−1
|U | orbits. In particular, r = |R|k−1

|R|−1

only when U = U(R). Moreover, Vi are not vector spaces and, more importantly,
distinct vi and vj may be linearly dependent.

Again, we use ni(G) to denote the number of (nonzero) columns of G that belong
to Vi. To prove that G′ = GM for some U -monomial matrix M it is enough to show
that ni(G) = ni(G

′) for all i = 1, . . . , r.
From here the line of reasoning is almost verbatim as in the proof of Theorem 3.1.

Let G and G′ be as in that proof given in Section 3.1. Since f preserves w, we have
w(xG) = w(xG′) for any x ∈ Rk. If ci and c

′
i are the ith columns of G and G′, then

w(xc1, . . . , xcn) = w(xc′1, . . . , xc
′
n),

and thus
n∑

i=1

w(xci) =
n∑

i=1

w(xc′i).

As we can see, these equations are identical to Equation (3.1). Hence following the
same argument we have the matrix equation

A




n1(G)
n2(G)
...

nr(G)


 = A




n1(G
′)

n2(G
′)

...
nr(G

′)


 (3.8)

where

A =




w(v1 · v1) w(v1 · v2) · · · w(v1 · vr)
w(v2 · v1) w(v2 · v2) · · · w(v2 · vr)

...
...

...
w(vr · v1) w(vr · v2) · · · w(vr · vr)


 .

Observe that the matrix A does not depend on the choice of the representatives vi
for the U -orbits in Rk. It is thus an invariant of the weight w and the parameter k.

Now an answer for Question 3.9 can be formulated as follows.

Proposition 3.10. Let w be a weight on R with U = Sym(w), and let v1, . . . , vr be
representatives of the nonzero U-orbits in Rk. If A = (w(vi · vj)) ∈ Cr×r is invertible,
then every w-isometry f : C → C ′ between [n, k] codes C and C ′ is a U-monomial
equivalence.

Note that if w is a nonzero U(R)-weight, then w is just some scaling of the
Hamming weight (recall that R is a field), i.e., w = αwH for some α ∈ C\{0}.
Therefore in this case, obviously the matrix A above is invertible.
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Let U 6= U(R). In this case, invertibility of A is not known in general. We
will briefly report on problems arising in proving this. One key ingredient for the
invertibility of (wH(vi · vj)) in Lemma 3.3 is Lemma 3.2. It turns out that Lemma
3.2 holds true for any weight function w on R.

Lemma 3.11. Let w be a weight function on R. Let W be a subspace of Rk and
v 6∈ W⊥. Then ∑

x∈W
w(x · v)

does not depend on the choice of v 6∈ W⊥.

Proof. As we have seen in the proof of Lemma 3.2, the cardinality of

X0(v) := {x ∈ W | x · v = 0}

is independent of the choice of v 6∈ W⊥. Consider now, for any r ∈ R, the set
Xr(v) := {x ∈ W | x · v = r}. Evidently, this is a translation of X0(v), that is
Xr(v) = X0(v) + y for any y in Xr(v). Thus the cardinality of Xr(v) equals that of
X0(v). Now

∑

x∈W
w(x · v) =

∑

r∈R

∑

x∈Xr(v)

w(x · v)

=
∑

r∈R
|Xr(v)|w(r)

= |X0(v)|
∑

r∈R
w(r) (since |Xr(v)| = |X0(v)| for all r ).

Since |X0(v)| is independent of v 6∈ W⊥, then
∑

x∈W w(x · v) is independent of the
choice of v 6∈ W⊥ as well.

Using Lemma 3.11, one can see as in the proof of Lemma 3.3 that if we add
all rows of matrix A, the resulting vector is of the form (α, α, · · · , α) for some non-
zero α. Hence again we can obtain the vector (1, 1, . . . , 1) in the row space of A.
Unfortunately, the method in that lemma does not apply when we try to obtain the

vector (1, · · · , 1,
jth

0 , 1, · · · , 1) in the row space of A. Indeed, if U 6= U(R), the orbit
representatives v1, . . . , vr are not necessary pairwise linearly independent. In fact for
any index j there is an index k such that vj = αvk for some α ∈ U(R)− U . So if we
add all rows of A that are perpendicular to vj, all these rows are perpendicular to vk
as well. Thus the resulting vector has more than one zero entry and we cannot receive

(1, · · · , 1,
jth

0 , 1, · · · , 1) in this way. Therefore, a general proof of the invertibility of A
is not known.

For example it is not known whether the matrix A is invertible in the case of the
Lee weight on general residue rings ZN . The MacWilliams equivalence theorem for
the Lee weight has been established only for a few cases. Even the case Zp for general
prime numbers p is still unsolved. Yet, empirical evidence suggests that the matrix
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is invertible for all primes p. We will discuss this in more depth in Chapter 5 after
reducing the problem to cyclic modules, that is, to the case where k = 1.

Considering the size of matrix A, in most cases it is not practical to use this
criterion to check whether the MacWilliams Equivalence Theorem is true for general
U -weights. Nevertheless, we will see some applications of Proposition 3.10. In the
next section, we will present a result of Goldberg that generalizes the MacWilliams
equivalence theorem via this matrix A. Also, in Chapter 5 we will use Proposition 3.10
to obtain a better and more useful sufficient condition for Question 3.9.

3.4 Weight Compositions

In this section we will discuss a result of Goldberg [12] that generalizes the MacWil-
liams equivalence theorem in a certain direction. Fixing a subgroup U of U(R) we will
investigate whether isomorphisms that preserve the U -orbits in R in a symmetrized
manner are U -monomial maps.

Observe that the Hamming weight wH partitions R into the two sets P0 := {0}
and P1 := R\{0} so that wH is constant on each of them (with value zero and one,
respectively). We call this partition the Hamming partition of R.

Let now P = P0, · · · , Pt be any partition on R with the property that P0 = {0}.
For i = 0, 1 . . . , t let δi be the indicator function for the set Pi, thus

δi(x) :=

{
1, if x ∈ Pi

0, if x 6∈ Pi
.

Notice that all functions δi except δ0 are weight functions on R. We can extend the
functions δi to R

n by

δi(x) =
n∑

j=1

δi(xj) =
∣∣{j | xj ∈ Pi}

∣∣

for every x ∈ Rn. Define the composition of x with respect to P by

compP(x) = (δ1(x), . . . , δt(x)). (3.9)

Thus, compP(x) keeps track of how many entries of x are contained in each partition
set. Notice that

∑t

i=0 δi(x) = n for all x ∈ Rn.

Definition 3.12. Let P be a partition of R. Let C be a code of length n over R. A
linear map f : C → Rn is called a P-preserving map if compP(x) = compP(f(x)) for
all x ∈ C. If f : C → C ′ is a P-preserving isomorphism, we say that f is a P-isometry.

Using this notion, a map f : C → C ′ is a Hamming weight preserving map if and
only if f preserves the Hamming partition.

The Hamming partition can obviously be realized as the orbits of the action of the
group U(R) on R by multiplication (recall that R is a field). Goldberg [12] considered
the partition P induced by the multiplication action of a general subgroup U of U(R)
on R and proved an equivalence theorem for this situation. We first fix the following
terminology.
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Definition 3.13. Let U be a subgroup of U(R). The orbits of the multiplication
action of U on R form a partition of R, denoted by PU . We will always write this
partition as PU = P0, P1, . . . , Pt (for some t), where the set P0 is the singleton set {0}
and P1 is the set that contains 1, i.e., P1 = U .

Note that the indicator functions δ1, . . . , δt of the sets P1, . . . , Pt in the partition
PU are U -weights. Even more, by construction Sym(δi) = U for all i. In this regard,
the PU -preserving maps are the maps that preserves the family δ1, . . . , δt of U -weights.

Remark 3.14. We even have that if a linear map f preserves δ1 then f is PU -
preserving. To see this, let ri be a representative of Pi for i = 1, . . . , t. Then for
r ∈ R we have r ∈ Pi if and only if r−1

i r ∈ U = P1. It follows that for x ∈ Rn we
have δi(x) = δ1(r

−1
i x). By linearity of f , if f preserves δ1 then f preserves δi for all

i = 1, . . . , t. Hence f is a PU -preserving map.

Now we can formulate an answer to the analogue of Question 3.9 in the context
of partition-preserving maps. The proof combines the ideas in [12] with our previous
results.

Theorem 3.15 (Goldberg [12]). Let U be a subgroup of U(R). If f : C → C ′ is a
PU -isometry, then C and C ′ are U-monomially equivalent.

Note that the converse is trivially true: a U -monomial map f : C → C ′ is a
PU -isometry.

Proof. We know that f preserves the U -weight δ1 and Sym(δ1) = U . By Proposi-
tion 3.10, the proof is complete if we can show that A = (δ1(vi · vj)) is invertible. We
will show this in the next proposition.

Proposition 3.16. Let U be a subgroup of U(R) and let V1, . . . , Vr be the nonzero
orbits of the multiplication action of U on Rk. For i = 1, . . . , r let vi be a fixed
representative of Vi. Define the matrices A = (δ1(vi · vj)) and B = (δ0(vi · vj)) in
Cr×r. Then

A−1 =
1

qk−1
(A− hB),

where |R| = q and |U | = h.

Proof. We will show that A2 − hAB = qk−1I by considering the (i, j) entries of A2

and h · AB in the three cases: (i) the diagonal entries, (ii) when vi = αvj for some
α ∈ U(R)− U , and (iii) when vi and vj are linearly independent.

Define W (i) := {u ∈ Rk | u · vi ∈ U}. One can view this set as the union⋃
α∈U{u ∈ Rk | u · vi = α}. Hence W (i) is a union of h parallel affine subspaces of

dimension k − 1. Since P1 = U , the (i, j) entry of A2 is given by

r∑

t=1

δ1(vi · vt)δ1(vt · vj) =
1

|U |

∑

u∈Rk

δ1(vi · u)δ1(u · vj)

=
1

h

∣∣{u ∈ Rk | u · vi ∈ U and u · vj ∈ U}
∣∣.
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Thus (A2)ij =
1
h
· |W (i) ∩W (j)|.

In (i) we have (A2)ii =
1
h
.|W (i)|. Hence (A2)ii = qk−1. In case (ii), since α 6∈ U

we cannot have u · vi ∈ U and u · αvi ∈ U at the same time. Hence in this case
(A2)ij = 0. For case (iii) since vi and vj are not parallel to each other, each affine
subspace in W (i) intersects with each affine subspace in W (j) resulting in h2 affine
subspaces of dimension k − 2. Therefore (A2)ij =

1
h
· h2qk−2 = hqk−2. In summary

(A2)ij =





qk−1, i = j

0, vi = αvj for some α 6∈ U

hqk−2, vi and vj are linearly independent

.

Now, the (i, j) entry of AB is

r∑

t=1

δ1(vi · vt)δ0(vt · vj) =
1

|U |

∑

u∈Rk

δ1(vi · u)δ0(u · vj)

Therefore (AB)ij =
1
h
|W (i) ∩ 〈vj〉

⊥|.
In case (i) and (ii) vi and vj are multiples of each other. Hence we cannot have

u · vj = 0 while u · vi is nonzero. Therefore in these cases (AB)ij = 0. For case (iii)
notice that W (i) ∩ 〈vj〉

⊥ is a union of h affine subspaces of dimension k − 2. Hence
(AB)ij = qk−2. Therefore

(AB)ij =





0, i = j,

0, vi = αvj for some α 6∈ U,

qk−2, vi, vj are linearly independent.

It follows that A2 − h(AB) = qk−1I, as desired.

Note that Theorem 3.15 implies the classical MacWilliams Equivalence case by
simply choosing U = U(R). It is also worth pointing out the case where U = {1}. In
this situation, a map f : C → C ′ is a PU -isometry if and only if for each x ∈ C there
exists a permutation σx ∈ Sn such that f(x) = (xσ(1), . . . , xσ(n)). Thus, f “is locally
a permutation”. Theorem 3.15 shows that f is indeed a global permutation, meaning
that there exists a uniform permutation σ ∈ Sn such that f(x) = (xσ(1), . . . , xσ(n))
for all x ∈ C. We will come back to the local-global extension principle in Chapter 6,
where we study codes over rings and also present further examples. At this point one
may have in mind already that the linearity of f is crucial in Theorem 3.15. One
can easily give two binary codes with the same Hamming weight enumerator (thus,
with a Hamming weight preserving bijection between them) that are not permutation
equivalent; see for instance [18], p. 20.

3.5 Reformulation as an Extension Theorem

It was Goldberg, who first recognized the resemblance between the MacWilliams
equivalence theorem and the Witt extension theorem. He even named his result

23



(Theorem 3.15) the Witt-MacWilliams extension theorem. To see the similarities
between the two results, we will formulate the Witt extension theorem and then
restate Theorem 3.15 accordingly.

For the following we refer to Lang [26] Theorem 10.2 in Chapter 15 or Roman [33]
Theorem 11.15.

Theorem 3.17 (Witt). Let Q be a nonsingular quadratic form on a finite-dimensional
vector space V over a not necessarily finite field of characteristic 6= 2. Let

Ω = Ω(V,Q) = {M ∈ Aut(V, V ) : Q(xM) = Q(x) for all x ∈ V }

be the Q-orthogonal group. If f : W1 → W2 is a Q-isometry of subspaces W1 and W2

of V , then f can be extended to an element of Ω.

In Theorem 3.15, compP (or equivalently δ1) plays the role of Q and the U -
monomial maps (given by the matrices in MU(n,R)) take the place of Ω. Indeed,
the theorem can obviously be reformulated as

Theorem 3.18 (Goldberg [12]). If f : C → C ′ is a PU -isometry, then f can be
extended to an element of MU(n,R).

At the end of his paper, Goldberg [12] asks the following question:

Question 3.19. For which subgroups G of GL(n,R) and modules S do there exist
maps v : Rn → S (taking the place of weight functions) such that

(i) v is constant on the G-orbits in Rn, and

(ii) every linear isomorphism f : C → C ′ preserving v extends to an element of G?

We will see in Chapter 6, that some of our results provide answers to this question.
We give a solution for the groups GL(n,R), ∆(n,R), and LT(n,R) where ∆(n,R)
and LT(n,R) are the groups of non-singular diagonal and lower triangular matrices,
respectively.

Copyright c© Aleams Barra, 2012.
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Chapter 4 Equivalence Theorem for the Hamming Weight and

Compositions on Rings

Throughout this chapter let R be a finite commutative ring with identity.
We will first derive the class of rings for which we can study the equivalence

theorem. These are the rings that allow a generating character, called admissible
rings. This way we will be able to use character theory again in a way similar
to the situation over fields. We will demonstrate this by showing the MacWilliams
equivalence theorem for the Hamming weight over admissible rings, which was proven
first by Wood in [43]. In the second section we will turn to isomorphisms that preserve
partitions induced by the action of a multiplicative group.

4.1 MacWilliams Equivalence Theorem for Rings

In this section we would like to extend the result of Theorem 3.1 to codes over
rings. For that purpose, we first investigate the possibility of applying the character
theoretic proof of Section 3.2.

The key element that made the proof work is Lemma 3.4. Recall that in that
lemma we showed that the map from HomR(V,R) to V̂ given by g 7→ χ◦g is injective
for any non principal character χ. A closer look at the proof of Theorem 3.1 in
Section 3.2 shows that we do not need that much generality. We just need a single
non principal character χ that satisfies Lemma 3.4.

Lemma 3.4 is true if R is a field because for any g ∈ HomR(V,R) we have either
g(V ) = R or g(V ) = 0. If R is not a field then we do not have this property in
general. If R is just a ring and V is an R-module, then g(V ) is an ideal in R. In order
to force the map g 7→ χ◦g to be injective we will require that the kernel of χ does not
contain any non-zero ideal. In the following proposition we show the interconnection
between the proposed condition and Lemma 3.4 and Lemma 3.5.

Proposition 4.1 ([4] and [43]). Let χ be a character on R (considered as additive
group). Then the following are equivalent:

(1) If I is an ideal of R and I ⊂ kerχ := {r ∈ R | χ(r) = 1}, then I = 0.

(2) For each R-module V the map from HomR(V,R) to V̂ given by g 7→ χ ◦ g is an
injective group homomorphism.

(3) The map from HomR(R,R) to R̂ given by g 7→ χ ◦ g is an injective group homo-
morphism.

(4) Every element ψ in R̂ can be written as ψ = χ ◦ µr for some r ∈ R.

Proof. (1 ⇒ 2) is obvious because g(V ) is an ideal. (2 ⇒ 3) obvious. (3 ⇒ 4) follows
in the same way as Lemma 3.5. (4 ⇒ 1) Suppose I ⊂ kerχ. Then for any r ∈ R we
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have 1 = χ(rI) = χ ◦ µr(I). Since all characters on R are of the form χ ◦ µr for some

r, we obtain ψ(I) = 1 for all ψ ∈ R̂. By Lemma 2.13, I = 0.

Following Claasen and Goldbach [4], we give the following definition.

Definition 4.2. A character χ ∈ R̂ is called an admissible character if every ψ ∈ R̂
can be written as χ ◦ µr for some r ∈ R. We say that R is an admissible ring if R
has an admissible character.

Thus an admissible character on R satisfies the conditions (1)–(4) of Proposi-
tion 4.1. Sometimes admissible characters are called generating characters in the
literature, see for instance [43], [17] and [3]. This originates from the fact that one

may regard R̂ as an R-module in a natural way. Admissibility of R simply means
that R̂ is a cyclic R-module generated by any admissible character.

Here are some examples of admissible rings.

Example 4.3. 1. Each field is admissible and each non principal character is ad-
missible. This has been dealt with in Lemma 3.5.

2. Zn is admissible since for every χj ∈ Ẑn we have χj = χ1 ◦ µj (see proof of
Lemma 2.9).

3. It is easy to see that the finite direct sum
⊕j

i=1Ri of admissible rings R1, . . . , Rj

with admissible characters χ1, · · · , χj is admissible with admissible character
⊕j
i=1χi (see proof of Lemma 2.10).

Hirano [16] was the first to show that a finite ring R is admissible if only if R is
Frobenius. For finite commutative rings, being Frobenius is equivalent to being self-
injective (see [43, Theorem 1.2 and Remark 1.3]). Since Frobenius rings have been
extensively studied, identifying admissible rings with Frobenius rings provides us
with many additional examples of admissible rings. Besides the examples mentioned
above, Frobenius rings includes the ring of n × n matrix over a Frobenius ring R,
Galois rings and group rings R[G] where R is Frobenius and G is a finite group (see
[43]).

The following is an example of a non-admissible ring given in [4].

Example 4.4. Consider the ring R = Z2[x, y]/(x
2, y2, xy). This ring has four non-

trivial ideals. They are {0, x}, {0, y}, {0, x+y} and {0, x, y, x+y} (the last one being
non-principal). Since every element in the additive group of R is of order 2, for any

χ ∈ R̂ and r ∈ R we have χ(r) = ±1. Suppose on the contrary that R has an
admissible character χ. Then χ(x) = χ(y) = χ(x + y) = −1 (because otherwise
χ(I) = 1 for some non zero ideal I). But this is impossible since this implies that
χ(x+ y) = χ(x)χ(y) = 1.

Notice that all the steps of the proof in Section 3.2 on Page 17 work flawlessly
up to Equation (3.6) in the case where R is an admissible ring. In that equation we
have f1 = µs ◦ πj where s ∈ R−{0}. To carry out the next step of the argument, we
need s to be a unit, which is not always the case if R is not a field. So we need a tool
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to force s to be a unit of R. For this purpose we introduce the following concepts.
We do this even for non-commutative rings because that will be needed in a later
chapter.

A (potentially non-commutative) ring R is called semilocal if R/rad(R) is a left
artinian ring (see for example [24] Section 20). If R is finite, then so is R/rad(R).
Moreover every finite ring is artinian. Hence every finite ring R is semilocal.

Lemma 4.5 (Bass, [2]). Let R be a semilocal ring, a ∈ R, and I be a left ideal of R.
If Ra+ I = R, then the coset a+ I contains a unit of R.

Proof. See [24] Proposition 20.8.

This result has the following nice consequence due to Wood [43].

Lemma 4.6 (Wood). Let M be a left module over a finite ring R (not necessarily
commutative). If x, y ∈M satisfy Rx = Ry, then x = αy for some unit α in R.

Proof. Since Rx = Ry, there are a, b ∈ R such that ax = y and x = by. It follows
that (1− ab)y = 0. Now

R = Rab+R(1− ab) ⊆ Rb+R(1− ab).

Thus R = Rb+R(1−ab), and by Lemma 4.5 there is a unit of the form α = b+r(1−ab)
for some r ∈ R. It follows that

αy = by + r(1− ab)y = by = x.

Now we are ready to give the full statement and proof of the MacWilliams exten-
sion theorem for the Hamming weight on admissible rings.

Theorem 4.7 (Wood [43]). Let R be admissible. Let C and C ′ be two codes over R.
Then C and C ′ are wH-isometric if and only if C and C ′ are monomially equivalent.

Proof. As in the proof of Theorem 3.1 in Section 3.2 we arrive at Equation (3.5).
Here we have to use an admissible character χ on R; then admissibility of the ring
and Proposition 4.1 replace Lemma 3.5 and Lemma 3.4. Next we need to show that
there is a unit α such that Equation (3.6) is true, that is

f1 = µα ◦ πj.

In order to do so, we may assume that the cyclic module Rf1 is maximal in the set
{Rf1, . . . , Rfn, Rπ1, . . . , Rπn} (that is Rf1 is not properly contained in any of these
modules). Note that the situation is symmetric with respect to fi and πi. Now we
may argue as in the proof on page 17 that f1 = µs ◦ πk for some s 6= 0. It follows
that Rf1 = R(µs ◦ πk) ⊆ Rπk. By maximality of f1, we conclude that Rf1 = Rπk.
Now Lemma 4.6 implies f1 = απk = µα ◦ πk for some unit α. The rest of the proof is
identical to that of Theorem 3.1 in Section 3.2.
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We wish to remark that being admissible is equivalent to the MacWilliams equiv-
alence theorem being true for the Hamming weight. Precisely, a finite commutative
ring R is admissible if and only if every wH-isometry between codes in Rn is a mono-
mial equivalence; see [43], [8],[46].

4.2 PU -isometries are U-monomial Maps

In this section we are going to generalize the result of Goldberg in Theorem 3.15 to
more general rings. Recall that the Hamming weight is a U(R)-weight. Moreover, in
the previous section we have seen that in order that the equivalence theorem works
for the Hamming weight on a ring, the ring needs to be admissible. Then it would
be natural to ask if Theorem 3.15 holds true for admissible rings. A positive answer
was given by Wood [42]. He proved the result using the character theoretic technique
that he developed with Ward in [38]; it is the same technique he used for the proof
of Theorem 4.7.

We will again look at the character theoretic proof of Section 3.2. By doing so we
are able to obtain a shorter proof of Theorem 3.15 for admissible rings than the one
originally given by Wood. Our proof is more elementary, and we manage to avoid
the averaging character argument that Wood used in his proof.

Before we formulate and prove Theorem 3.15 for admissible rings, let us first
collect the concepts from Section 3.4 that carry over straightforwardly from fields to
admissible rings.

Remark 4.8. First of all, for any partition P on a ring R we introduce the indi-
cator functions δi as in Section 3.4; they in turn give rise to the composition vector
compP(x) as in (3.9). Next, the notions of P-preserving maps and P-isometries will
be used for codes over admissible rings exactly as in Definition 3.12, and the nota-
tion PU stands as in Definition 3.13 for the partition of R given by the U -orbits,
where U is a subgroup of U(R). For U -monomial maps, matrices, and U -monomially
equivalent codes we refer to the definitions in Section 2.3.

Now we can reformulate Theorem 3.15 for admissible rings. A proof will be derived
further down.

Theorem 4.9 (Wood, [42]). Let R be an admissible ring and U a subgroup of U(R).
If f : C → C ′ is a PU -isometry, then f is a U-monomial map and thus C and C ′ are
U-monomially equivalent.

Again, the converse is trivially true.
Let us look at the character theoretic proof of Theorem 3.1 in Section 3.2 to get

some inspiration of how to prove the above theorem. In order for C and C ′ to be
U -monomially equivalent we want to show there is some σ ∈ Sn and some α1, . . . , αn
such that for all x ∈ C

f(x) = (α1xσ(1), . . . , αnxσ(n)).

So now if we look at proof on page 17, we are hoping to have an equation as Equation
(3.5). But we need the inner summation to run through all elements of U , that is we
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want to have
n∑

i=1

∑

r∈U
χ ◦ µr ◦ πi =

n∑

i=1

∑

r∈U
χ ◦ µr ◦ fi. (4.1)

Once we have this equation, all the arguments on page 17 carry over since Lemma
3.4 is replaced by Definition 4.2 if we choose χ to be an admissible character. Then
we have Equation (3.7)

f(x) = (s1xσ(1), . . . , snxσ(n)),

for some σ ∈ Sn and s1, . . . , sn ∈ U .
Therefore the proof of Theorem 4.9 is complete if we can show that Equation (4.1)

is true. We are going to establish that using the following argument.

Proof of Theorem 4.9. Recall that PU = P0, P1, . . . , Pt is the partition induced by
the (multiplication) action of U on R. We write x ∼U y if x = αy for some α ∈ U .
In this notation, x, y ∈ Pi for some i if and only if x ∼U y. As before we use the
notation πi : R

n → R for the projection map onto the ith component and fi := πi ◦f .
Now since f is a compPU

-isometry, for every x there is a σ (depending on x) such
that xi ∼U fσ(i)(x) for all i = 1, . . . , n. It follows that

∑

α∈U
χ(αxi) =

∑

α∈U
χ(αfσ(i)(x))

for all i = 1, . . . , n. Adding the above identities for all i = 1, . . . , n, we have

n∑

i=1

∑

α∈U
χ(αxi) =

n∑

i=1

∑

α∈U
χ(αfσ(i)(x))

=
n∑

i=1

∑

α∈U
χ(αfi(x)), (4.2)

where the second identity is true since {σ(1), . . . , σ(n)} = {1, . . . , n}. Writing αxi as
µα ◦ πi(x) and αfi(x) as µα ◦ fi(x), we have

n∑

i=1

∑

α∈U
χ ◦ µα ◦ πi(x) =

n∑

i=1

∑

α∈U
χ ◦ µα ◦ fi(x).

Since this identity is independent of σ, it holds true for all x ∈ C. Therefore we have
Equation (4.1) as we desired.

Example 4.10. Recall the Lee weight on ZN from Definition 2.4. Its symmetry
group is given by U = {1,−1}. Moreover, two elements have the same Lee weight if
and only if they are in the same U -orbit. Theorem 4.9 tells us that every isomorphism
between codes over ZN that preserves the number of entries in each codeword with the
same Lee weight is a U -monomial map. This fact is well-known as the MacWilliams
equivalence theorem for the symmetrized Lee weight composition; see also [42].

Copyright c© Aleams Barra, 2012.
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Chapter 5 Equivalence Theorem for General Weights On Rings

In this chapter we will generalize the equivalence theorem for the Hamming weight
in Chapter 4 to more general weight functions on admissible rings. By reducing to
the case of cyclic modules we reprove a result of Wood [44] which gives a criterion
for a weight function w to satisfy the equivalence theorem. This condition is an
improvement of Proposition 3.10 because, firstly, the new condition involves a matrix
A whose size is much smaller than in Proposition 3.10 and, secondly, the condition
applies to isometries between codes of any size. Specializing the ring to a field, we
observe that the A matrix is a circulant matrix – up to row and column reordering.
This additional structure allows us to prove a new result: the Lee weight on any
field ZN , where N = 4p + 1 and N and p are both prime, satisfies the equivalence
theorem. We will also recover a result of Wood’s which shows that the Lee weight
satisfies the equivalence theorem on fields ZN , when N = 2p + 1 and N and p are
both prime.

We will also show that the same reduction technique yields a more direct proof
of the fact that the homogeneous weight satisfies the equivalence theorem which was
originally proven by Greferath and Schmidt [13].

Throughout this chapter let R be a finite commutative admissible ring.

5.1 Reduction to Cyclic Modules

In Proposition 3.10 we gave a sufficient criterion for a w-isometry on a field R to be a
Sym(w)-monomial map. In this section we will present a more powerful criterion by
showing that we can reduce the situation to cyclic modules. Let us first reformulate
Question 3.9 for admissible rings.

Question 5.1. Let R be admissible and let C and C ′ be two codes in Rn. For which
weights w is every w-isometry f : C → C ′ a Sym(w)-monomial equivalence?

In Section 4.2 we showed that if f : C → C ′ is a PU -isometry, then f is a
U -monomial equivalence. For a U -weight w, the two notions w-isometry and PU -
isometry both involve the subgroup U , yet we have not clarified the connection be-
tween these two maps.

Let f : C → C ′ be a linear isomorphism and let U = Sym(w). Consider the
following types of isomorphisms between C and C ′:

(1) f is a U -monomial map.

(2) f is a PU -isometry.

(3) f is a w-isometry.
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By Theorem 4.9 property (1) is equivalent to (2). It is also clear that (1) ⇒ (3).
Answering Question 5.1 is the same as finding a sufficient condition for the implica-
tion (3) ⇒ (1). Since (1) ⇔ (2), it is enough to find a sufficient condition for the
implication (3) ⇒ (2). Before we do so we need to following related concept.

Definition 5.2. Let C be a code in Rn and let U be a subgroup of U(R). A map
f : C → Rn is called a local U-monomial map if for every x ∈ C there is a U -monomial
matrix M (depending on x) such that f(x) = xM .

Notice that, even without using Theorem 4.9, it is easy to see that being a PU -
isometry is equivalent to being a local U -monomial isomorphism. Now we claim that
in order to have (3) ⇒ (1) it is enough to consider the case where f is an isometry
between cyclic modules.

Proposition 5.3. If every w-isometry f ′ : D → D′ of cyclic modules D and D′

is a U-monomial map, then every w-isometry f : C → C ′ of any codes C, C ′ is a
U-monomial map.

Proof. Let x be a fixed element in C. Notice that f is also a w-isometry from the
cyclic module Rx to Rf(x). By the hypothesis, f is a U -monomial map on Rx. Then
f(x) = xM for some U -monomial matrix M that depends on x. But this means that
f is a local U -monomial map, and hence a PU -isometry. Now by Theorem 4.9, f is a
U -monomial map.

Notice that Proposition 3.10 remains valid for rings. In the ring case codes C and
C ′ that have generator matrices of size k×n replace the [n, k] codes C and C ′. The size
of the matrix A = (w(vi · vj)) depends on the number of non-zero of U -multiplication
orbits in Rk. By Proposition 5.3 it is enough to consider the case where k = 1.
Therefore we arrive at the following theorem which answers Question 5.1.

Theorem 5.4 ([44]). Let w be a U-weight on R and let a1, . . . , ar be representatives
of the nonzero U-orbits in R. If A = (w(ai · aj)) ∈ Cr×r is invertible, then every
w-isometry f : C → C ′ between two codes C and C ′ is a U-monomial equivalence.

The above criterion first appeared in the paper [44] of Wood ; however, he did
not make the reduction to cyclic modules explicit. One should note that if U is not
the symmetry group of w, then A is not invertible. Indeed, in this case we may pick
the representatives a1, . . . , ar of the nonzero U -orbits in such a way that a1 = 1 and
a2 ∈ Sym(w)\U . But then the first two rows of A are identical. As a consequence,
the criterion is interesting only for U = Sym(w).

We remark that compared to the size of A in Proposition 3.10 the matrix A in the
above theorem is significantly smaller. Even more, it does not depend on the size of
generator matrices for C and C ′ and therefore provides a sufficient criterion for codes
of all sizes.

We give the following example of how to apply the above theorem.
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Example 5.5. (1) Let wH be the Hamming weight on a finite field F. Clearly wH is
a U(F)-weight. There is only one non-zero U(F)-orbit of F namely F\{0}. Take
1 as the representative of this orbit. The 1 × 1 matrix A = (1) is obviously
invertible. Hence by Theorem 5.4, every wH-isometry between codes in Fn is a
U -monomial map. One should notice the difference to the criterion via the matrix

in Equation (3.1) used in Theorem 3.1. If F = q, then there are qk−1
q−1

non-zero

orbits in Fk, and this is the size of the A matrix in (3.1).

(2) Let wL be the Lee weight on Z4 (see Definition 2.4). Thus wL(1) = wL(3) = 1
and wL(2) = 2, and wL is a {±1}-weight. The non-zero {±1}-orbits are {1, 3}
and {2}. Take 1 and 2 respectively as the representative of these orbits. Then
we have

A =

(
wL(1 · 1) wL(1 · 2)
wL(2 · 1) wL(2 · 2)

)
=

(
1 2
2 0

)
.

Since det(A) 6= 0, every wL-isometry between codes in Zn4 is a {±1}-monomial
map.

We will see more applications of Theorem 5.4 in the next sections. At this point
we want to deal with the natural question whether the converse of Theorem 5.4 also
true: if the matrix A corresponding to a U -weight w on R is not invertible, is it then
true that we do not have the equivalence theorem for the weight w? We will show in
the next theorem that if w takes only rational values, then this is indeed the case.

Theorem 5.6. Let w be a U-weight with rational values on a finite admissible ring
R. Let A = w(ai · aj) be the matrix as in Theorem 5.4. If A is not invertible, then
there exist two one-dimensional codes C and C ′ and a w-isometry f : C → C ′ which is
not a U-monomial map.

Proof. Notice that A ∈ Qr×r for some r. If A is not invertible, then there exists a
non-zero column vector q = (q1 q2 · · · qr)

T ∈ Qr such that Aq = 0. By multiplying
q with a suitable integer α we can make all components of αq to be integers. Hence
without loss of generality we can assume that q is a column vector in Zr. Since
Aq = 0, we have for every i = 1, . . . , r

r∑

j=1

w(aiaj)qj = 0. (5.1)

For each i = 1, . . . , r define two constant vectors x(i) = (αi, . . . , αi︸ ︷︷ ︸
|qi|

) and y(i) =

(βi, . . . , βi︸ ︷︷ ︸
|qi|

) where αi and βi are defined as follows

αi =

{
ai if qi > 0

0 if qi ≤ 0
βi =

{
ai if qi < 0

0 if qi ≥ 0
.
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Now let x = (1, x(1), . . . , x(r)) (respectively y = (1, y(1), . . . , y(r))) be the vector that is
obtained by concatenating 1 and x(i) (respectively 1 and y(i)) for i = 1, . . . , r. Then
x, y ∈ RN where N = 1 +

∑r

i=1 |qi|. Consider the cyclic modules Rx and Ry and
define a map f : Rx→ Ry by f(γx) = γy for all γ ∈ R. The first entry, 1, of x and y
ensures that both Rx and Ry are one-dimensional free submodules of RN and, as a
consequence, the map f is clearly a well-defined isomorphism.

We want to show that f is a w-isometry. Let γ ∈ R. Then γ ∼U ai for some i. It
follows that w(γx) = w(aix) and w(γy) = w(aiy). By definition of x(j) and y(j) we
have

w(aix
(j))− w(aiy

(j)) =





w(aiaj)|qj| − 0 if qj > 0

0 if qj = 0

0− w(aiaj)|qj| if qj < 0

= w(aiaj)qj

It follows that

w(γx)− w(γy) = w(aix)− w(aiy)

=
r∑

j=1

w(aix
(j))− w(aiy

(j))

=
r∑

j=1

w(aiaj)qj

= 0 (by Equation (5.1)).

Therefore f is a w-preserving map.
We have f(x) = y. But, by definition of x and y, for any non-zero entry as in x

and at in y the elements as and at belong to different U -orbits. Therefore f cannot
be a U -monomial map.

Remark 5.7. One should notice that if one allows non-rational weights, then it is
possible for A to be singular and yet have no nonzero rational vectors in its kernel
(e.g., if the values of the weight are linearly independent over Q). In this situation,
the condition characterizing when the MacWilliams equivalence theorem is true is
not the invertibility of A, but simply kerA ∩Qr = {0}.

We want to illustrate Theorem 5.6 with an example that we have encountered
before. Before doing so, we coin the following notion.

Definition 5.8. Let w be a weight on R. We say that w satisfies the equivalence
theorem if every w-isometry f : C → C ′ is a Sym(w)-monomial map.

Example 5.9. Consider the weight w on Z5 in Example 3.8, defined by w(i) = i
for all i = 0, 1, . . . , 4. We will use Theorem 5.6 to show that w does not satisfy the

33



equivalence theorem. The matrix A corresponds to this weight is

A =




w(1 · 1) w(1 · 2) w(1 · 3) w(1 · 4)
w(2 · 1) w(2 · 2) w(2 · 3) w(2 · 4)
w(3 · 1) w(3 · 2) w(3 · 3) w(3 · 4)
w(4 · 1) w(4 · 2) w(4 · 3) w(4 · 4)


 =




1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1




One can check that det(A) = 0. Hence A is not invertible over Q and by Theorem 5.6
the weight w does not satisfy the equivalence theorem.

Let us apply the proof of Theorem 5.6 to construct two codes C and C ′ and an
isometry f : C → C ′ that violates the equivalence theorem. Notice that (1,−1,−1, 1)T

is in the kernel of A. According to the construction, we obtain x = (1, 1, 0, 0, 4) and
y = (1, 0, 2, 3, 0). To have shorter codes we may remove any common entry in x and
y. By doing so we obtain the shorter codes generated by x′ = (1, 4) and y′ = (2, 3),
and by construction the w-isometry between 〈x′〉 and 〈y′〉 is the map f sending γ(1, 4)
to γ(2, 3) for every γ ∈ Z5. But this is exactly the example given by Wood that we
have seen in Example 3.8.

Remark 5.10. The proof of Theorem 5.6 can be adapted to show that also the
invertibility of the bigger matrixA = (w(vi·vj)) in Proposition 3.10 is necessary for the
MacWilliams equivalence theorem to be true over admissible rings R (and whenever
the weight has rational values). Remember that in this case the vectors vi ∈ Rk are
representatives of the nonzero U -orbits in Rk, where again U = Sym(w). If A is not
invertible then the above proof has to be modified by replacing ai ∈ R by vi ∈ Rk.
This way, we obtain x(i), y(i) ∈ Rk×|qi|. Instead of appending an entry 1, we now have
to add the k× k-identity matrix. This way one can construct two generator matrices
G, G′ ∈ Rk×N , where N = k+

∑r

i=1 |qi|, in a similar fashion as we constructed x and y
in the proof of Theorem 5.6. Then G and G′ generate free modules of dimension k,
and the map f defined by f(xG) = xG′ is a w-isometry but not a U -monomial map.

Remark 5.10 has the following interesting consequence.

Theorem 5.11. Let w : R → Q be a weight function and U = Sym(w). Let a1, . . . , as
be representatives of the nonzero U-orbits in R and let v1, . . . , vr be representatives of
the nonzero U-orbits in Rk. Then A := (w(ai · aj)) ∈ Qs×s is invertible if and only if
A′ := (w(vi · vj)) ∈ Qr×r is invertible.

Proof. If A is invertible, then the invertibility of A′ follows from Theorem 5.4 and
Remark 5.10. If A′ is invertible, then the equivalence theorem is true for maps
between codes that can be generated with k generators; see Proposition 3.10, which
remains true for admissible rings. But then it is certainly also true for cyclic modules
(add k− 1 zero codewords as generators) and thus the invertibility of A follows from
Theorem 5.6.

It is not clear at this point how one could derive this result by purely matrix
theoretical arguments. The relationship between the matrices (w(ai ·aj)) ∈ Qs×s and
(w(vi · vj)) ∈ Qr×r is not trivial and cannot immediately be exploited.
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5.2 Homogeneous Weights

In this section we will see another application of Proposition 5.3 and show that the
homogeneous weight satisfies the equivalence theorem. Homogenous weights were
first introduced by Constantinescu and Heise [6] on ZN as a generalization of Lee
weight on Z4 having a certain homogeneity properties. Thereafter, several others
generalized this concept and defined homogenous weights on any finite ring and even
on modules (see [13], [31]). This has led to the following definition. We recall that R
is always a finite commutative admissible ring.

Definition 5.12. A weight w on R is called homogeneous, if w(0) = 0 and the
following is true:

(H1) If Rx = Ry then w(x) = w(y) for all x, y ∈ R.

(H2) There exist a real number γ ≥ 0 such that
∑

y∈Rx
w(y) = γ|Rx| for all x ∈ R\{0}.

In [13, Theorem 1.3] the authors show the existence and the uniqueness (up to
a constant factor) of homogeneous weights with the aid of the Möbius function on
the poset of principal ideals. Notice that the symmetry group of any homogeneous
weight is U(R).

IfR is not a field, R contains a zero divisor.In this case the Hamming weight onR is
not homogeneous. Indeed, if x ∈ R\{0}, then

∑
y∈RxwH(x) = |Rx| − 1 = |Rx|−1

|Rx| |Rx|.

Thus the constant γ has to be |Rx|−1
|Rx| , but this is not independent of x if R is not a

field (take x a unit and x a zero divisor). However, the Hamming weight is certainly
homogeneous on a field R, and so is the Lee weight on Z4; see Example 5.13 below.
Therefore, the homogeneous weight arises as a generalization of both the Hamming
weight on fields and the Lee weight on Z4.

Example 5.13. Let us consider the ring R := Zpr , where p is a prime number. Define

w(a) =





0, if a = 0,
p, if a ∈ Rpr−1\{0},
p− 1, if a 6∈ Rpr−1.

It is straightforward to check that w is a homogeneous weight with γ = p− 1. In
particular, on Z4 we obtain w(0) = 0, w(1) = w(3) = 1, w(2) = 2, which coincides
with the Lee weight given in Definition 2.4. On the other hand, for any other residue
ring ZN , where N > 4, the Lee weight differs from the homogeneous weight because
for the latter all units have the same weight (see Definition 5.12(H1)), while this is
not the case for the Lee weight if N > 4. One may also observe that on Z3 the
Hamming, Lee and the above homogeneous weight coincide, while on fields Zp the
above homogeneous weight is exactly the Hamming weight.

The following two results are due to Greferath and Schmidt [13].
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Proposition 5.14. Let whom be a homogeneous weight on R with constant γ as in
Definition 5.12(H2). Then we have

(H2’)
∑

y∈I whom(y) = γ|I| for all nonzero ideals I in R.

Proof. See [13, Theorem 1.3, Corollary 1.6].

Lemma 5.15. Let whom be a homogeneous weight on R with constant γ and consider
its extension to Rn as in (2.1). Let πi denote the projection of Rn onto its ith
coordinate. Then for every code C we have

∑

x∈C
whom(x) = |C| · γ|{i | πi(C) 6= 0}|.

Proof. The linear map πi : C → πi(C) is onto, and by the isomorphism theorem we
have |C|/|C ∩ ker πi| = |πi(C)|. Note that πi(C) is an ideal in R. If πi(C) 6= 0, then
by Lemma 5.14 we have

γ|C| = |C ∩ ker πi| · γ|πi(C)| = |C ∩ ker πi| ·
∑

r∈πi(C)
whom(r). (5.2)

If πi(x) = r for some x ∈ C, then πi(x + y) = r for every y ∈ C ∩ ker πi. Hence r
has exactly |C ∩ ker πi| preimages in C. It follows that

∑

x∈C
whom(x) =

n∑

i=1

∑

x∈C
whom(πi(x))

=
n∑

i=1

|C ∩ ker πi|
∑

r∈πi(C)
whom(r)

= |{i | πi(C) 6= 0}| · γ|C|.

The last lemma in combination with Proposition 5.3 allows us to derive the
MacWilliams equivalence theorem for the homogeneous weight. This result has been
shown before in [13, Theorem 2.5], but with different arguments and not via the
reduction to cyclic modules.

Fix x 6= 0 ∈ C. Applying Lemma 5.15 to the code generated by x we obtain

∑

y∈Rx
whom(y) = |{i | πi(Rx) 6= 0}| · γ|Rx|.

But since πi(Rx) = 0 if and only if xi = 0, the cardinality |{i | πi(Rx) 6= 0}| is exactly
the Hamming weight of x, i.e., wH(x). Therefore we have a direct relationship between
the homogeneous weight and the Hamming weight given by

γ|Rx| · wH(x) =
∑

y∈Rx
whom(y).
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If γ > 0, then

wH(x) =
1

γ|Rx|

∑

y∈Rx
whom(y).

Now we are ready to provide an alternative proof of the equivalence theorem for
homogenous weights.

Theorem 5.16 ([13]). Let whom be a homogeneous weight on R with γ > 0. Then
whom satisfies the equivalence theorem. That is, every whom-isometry between codes
in Rn is a U(R)-monomial map.
As a consequence, an isomorphism between codes is a whom-isometry if and only if it
is a Hamming isometry.

Proof. Recall that Sym(whom) = U(R). In view of Proposition 5.3, it is enough to
show that if f : D → D′ is a whom-isometry between two cyclic modules, then f is
a U(R)-monomial map. We can write D = Rx and D′ = Rf(x) for some nonzero
x ∈ D. Since the Hamming weight satisfies the equivalence theorem, it is enough to
show that f is a wH-isometry on D. For every z 6= 0 ∈ D the restriction of f to
Rz gives a whom-isometry between Rz and Rf(z). Then clearly |Rz| = |Rf(z)| and
whom(αz) = whom(f(αz)) = whom(αf(z)) for every α ∈ R. It follows that

wH(z) =
1

γ|Rz|

∑

y∈Rz
whom(y) =

1

γ|Rf(z)|

∑

y∈Rf(z)
whom(y) = wH(f(z)).

Therefore f is a wH-isometry and the conclusion follows from the MacWilliams equiv-
alence theorem 4.7 for the Hamming weight on Rn. This also shows the conse-
quence.

5.3 The Structure of A and Circulant Matrices

In this section we will investigate the structure of the matrix A in Theorem 5.4 for
the following two case: (1) w is a U(R)-weight on a chain ring R and (2) w is a
U -weight on a finite field, where U is any multiplicative group. We will start with
the definition of chain rings and some properties.

Definition 5.17. Let R be a finite commutative ring. We say that R is a finite chain
ring if its lattice of ideals forms a chain with respect to inclusion.

The following proposition gives several characterizations of finite chain rings. Let
RadR denote the radical of R, that is, RadR is the intersection of the maximal ideals
of R,

Proposition 5.18. Let R be a finite commutative ring and N = RadR 6= 0. Then
the following are equivalent.

(1) R is a chain ring;

(2) the principal ideals of R form a chain;
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(3) R is a local ring, and N = Rθ for some (any) θ in N which is not in N2.

Moreover, if R satisfies the above conditions, then every proper ideal has the form
N i = Rθi for some positive integer i.

Proof. See [5, Lemma 1]

Examples of finite chain rings include finite fields, the rings Zpr (where p is prime),
and Galois rings.

Here are some basic properties of chain rings which are not hard to prove. The
reader interested in the proof may consult [44].

Proposition 5.19. Let R be a chain ring with N = Rθ being the unique maximal
ideal in R. Then we have the following:

(1) There is a smallest positive integer s for which N s = 0. In this case we call s the
nilpotency index of R.

(2) R is admissible.

(3) The nonzero U(R)-orbits in R are given by Oθi = {αθi | α ∈ U(R)} for i =
0, . . . , s− 1.

Let now R be as in Proposition 5.19 and let w be a weight on R with Sym(w) =
U(R). Choose the elements 1, θ, θ2, . . . , θs−1 as the representatives of the U(R)-orbits.
Then the weight matrix A as in Theorem 5.4 corresponding to w is given by A =
w(θi−1 · θj−1). Using the fact that θi = 0 for all i ≥ s, the entries of A are as in the
inner part of the following table.

1 θ θ2 · · · θs−2 θs−1

1 w(1) w(θ) w(θ2) · · · w(θs−2) w(θs−1)
θ w(θ) w(θ2) w(θ3) · · · w(θs−1) 0

θ2 w(θ2) w(θ3) · · · . .
.

0 0
...

...
... . .

. ...
...

θs−2 w(θs−2) w(θs−1) 0 · · · 0 0
θs−1 w(θs−1) 0 0 · · · 0 0

It is easy to see that if w(θs−1) 6= 0, then detA 6= 0. Thus with the aid of
Theorem 5.4 we arrive at the following theorem.

Theorem 5.20. Let w be a weight on the finite commutative chain ring R with
Sym(w) = U(R) and such that w(θs−1) 6= 0. Then w satisfies the equivalence theorem.

The above theorem is a special case of a result by Wood [44, Theorem 16]. For his
more general result, Wood considered a weight with symmetry group U which is not
necessarily equal to U(R). He showed if

∑
a∈O

θs−1
w(a) 6= 0, then every w-isometry

f : C → C ′ extends to a U(R)-monomial map. We need to emphasize here that his
proof does not guarantee that f is a U -monomial map.
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Now, we turn our focus to finite fields Fq and investigate the structure of the
matrix A from Theorem 5.4. Recall that the non zero elements F∗

q, the units in Fq,
form a cyclic group. Let w be a U -weight on Fq, where U is any subgroup of F∗

q.

The U -orbits are the elements of the quotient group F∗
q/U , which has order s := q−1

|U | .

Notice that the quotient group F∗
q/U is also cyclic.

Let β be an element of Fq such that βU is a generator of the cyclic group F∗
q/U .

Relabel the partition P formed by the U -orbits as follows: P0 = {0} and Pj =
βj−1U for j = 1, . . . , s. In particular, for every j = 1, . . . , s we can take βj−1 as
a representative of Pj. It follows that the matrix A in Theorem 5.4 is given by
A = (w(βi−1 · βj−1)) = (w(βi+j−2)). Since the invertibility of A is invariant under
row operation, we may reorder the rows of A as follows:

1 β β2 · · · βs−2 βs−1

1 w(1) w(β) w(β2) · · · w(βs−2) w(βs−1)
βs−1 w(βs−1) w(1) w(β) · · · w(βs−3) w(βs−2)
βs−2 w(βs−2) w(βs−1) w(1) · · · w(βs−4) w(βs−3)
...

...
...

...
...

...
β2 w(β2) w(β3) w(β4) · · · w(1) w(β)
β w(β) w(β2) w(β3) · · · w(βs−1) w(1)

(5.3)

Here the first column gives the new labels for the rows of A and the entries in the
inner table are the entries of the reordered matrix A.

As one can see, the matrix A now has the special structure that each row is a
cyclic shift of the row above it. This is called a circulant matrix. We give the precise
definition and discuss some properties.

Definition 5.21. A complex circulant matrix is a matrix of the form

C :=




c0 c1 · · · cs−1

cs−1 c0 · · · cs−2

...
...

...
c1 c2 · · · c0


 ∈ Cs×s.

Thus each row is obtained from the previous row by a cyclic shift to the right. For
abbreviation, we write the above circulant matrix as C := Circ(c0, c1, . . . , cn−1), where
(c0, c1, . . . , cn−1) is the first row of C.

In the following we give some properties of complex circulant matrices. All the
results are taken from Kra and Simanca [22].

Definition 5.22. Let C = Circ(c0, . . . , cs−1). The polynomial PC (in the indetermi-
nate z) defined by

PC(z) = c0 + c1z + · · · cs−1z
s−1

is called the representer of C.

39



Let ε be an sth primitive root of unity in C. For l = 0, 1, . . . , s − 1 define a
column vector xl :=

1√
s
(1, εl, ε2l, . . . , ε(s−1)l). One can show that xl is an eigenvector

of C with eigenvalue PC(ε
l) for every l. The set {xl}l is linearly independent since

xTl are the rows of a Vandermonde matrix. It follows that C can be diagonalized and
the determinant of C is given by the product of all eigenvalues of C. Therefore we
have the following proposition.

Proposition 5.23. If C = Circ(c0, . . . , cs−1), then

detC =
s−1∏

l=0

PC(ε
l),

where ε is any sth primitive root of unity in C.

The following equivalent conditions characterizing the singularity of circulant ma-
trices are obvious consequences of the determinant formula above. These conditions
will be useful for us to determine the non-singularity of the circulant matrix as in (5.3).

Proposition 5.24. Let C ∈ Cs×s be a circulant matrix with a representer PC. The
following are equivalent:

(1) The matrix C is singular.

(2) PC(η) = 0 for some sth root of unity η in C.

(3) The polynomials PC(z) and z
s − 1 are not relatively prime.

We also have several special cases where a circulant matrix is invertible.

Theorem 5.25 ([22]). Let C = Circ(c0, . . . , cs−1). Then C is non-singular in the
following cases:

(1) If s is prime, (c0, . . . , cs−1) is in Qs and not a multiple of (1, 1, . . . , 1), and∑s−1
i=0 ci 6= 0.

(2) If (c0, . . . , cs−1) ∈ Cs and there is an index j such that |cj| >
∑

i 6=j |ci|.

(3) If (c0, . . . , cs−1) ∈ Rs and c0, c1, . . . , cs−1 is a strictly monotone sequence and
either all entries are nonpositive or all entries are nonnegative.

Proof. See [22, Proposition 18, 23, 24].

Here is a first example of how we can apply the above results to our question
about the equivalence theorem.

Example 5.26. Let F := {0, α1, . . . , αs} be a finite field. Define a weight function
w on F as follows: w(0) = 0 and

w(αi) = 21−i if i = 1, . . . , s
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Clearly Sym(w) = {1}. We will show that w satisfies the equivalence theorem. After
some reordering, the matrix A corresponding to the weight w is a circulant matrix.
More precisely, A = Circ(c1, . . . , cs) where {c1, . . . , cs} is a permutation of {21−i}1≤i≤s.
Let j be the index such that cj = 20 = 1. Notice that

∑

i 6=j
ci <

∞∑

i=1

2−i = 1 = cj.

Therefore by Theorem 5.25 we conclude that A is non-singular and hence w satisfies
the equivalence theorem due to Theorem 5.4. Since Sym(w) = {1}, this means that
any w-isometry is a permutation equivalence.

5.4 Equivalence Theorem for the Lee Weight on Certain Fields

Recall the Lee weight wL on ZN given in Definition 2.4. It is still an open problem
whether the Lee weight satisfies the equivalence theorem for a general residue ring
ZN . Wood claimed in [40] and proved in [41] that this is true for N of the form 2k, 3k

for any k, and for prime numbers N of the form N = 2p+ 1, where p itself is prime.
His proof for all these cases relies on the factorization of semigroup determinants that
he developed in [45].

In this section we will reproduce the result of Wood for the case N = 2p + 1,
where N and p are prime, by exploiting the structure of A that we have learned in the
previous section. By realizing that A is a circulant matrix and using Proposition 5.23,
our approach also gives a factorization of the determinant of A. The advantage of
our approach to Wood’s is that, modulo N we know explicitly the coefficients of the
representer polynomial PA that appear in the factorization of det(A). We will exploit
this advantage to show that the equivalence theorem for the Lee weight is also true
for the case N = 4p+ 1, where N and p are prime.

First we reprove the result of Wood.

Theorem 5.27 ([41]). The Lee weight wL on ZN satisfies the equivalence theorem
for N = 2p+ 1, where N and p are prime.

Recall that a prime number p is called a Sophie Germain prime if 2p + 1 is also
prime. In this case the prime number 2p+ 1 is also known as a safe prime. It is not
known but strongly believed that there are infinitely many such primes.

Proof. Notice that U = {±1} is the symmetry group of the Lee weight. Let β
be a generator of the cyclic group Z∗

N . Then clearly βU is a generator of Z∗
N/U

and from (5.3) we have that A = Circ(v), where v = (wL(1), wL(β), . . . , wL(β
p−1)).

Obviously, the vector v is in Qp where p is prime. The components of v are all possible
distinct values of the Lee weight on Z2p+1, and these are the values 1, 2, . . . , p. Hence
v is a permutation of (1, 2, . . . , p). It follows that v is not a multiple of (1, 1, . . . , 1)
and clearly

p−1∑

i=0

wL(β
i) =

p∑

j=1

j =
p(p+ 1)

2
> 0.
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Now Theorem 5.25 implies that A is non-singular and hence by Theorem 5.4, the Lee
weight satisfies the equivalence theorem.

Now we can generalize this result to the following case.

Theorem 5.28. The Lee weight wL on ZN satisfies the equivalence theorem for N =
4p+ 1, where N and p are prime.

The infinitude of Sophie Germain primes and prime numbers p such that 4p + 1
is also prime are special cases of a well known conjecture in number theory called
Dickson’s Conjecture (see [7] and [20, Problem 16.5]). A link to the first 5000 prime
numbers p where 4p+ 1 is also prime can be found in [39].

Proof. It is well-known (see for example [21, pp. 514]) that 2 is a generator of the
cyclic group Z∗

N . Then as in the proof of Theorem 5.27, we have

A = Circ(wL(1), wL(2), . . . , wL(2
2p−1)).

The representer P (x) of A is given by

P (x) =

2p−1∑

k=0

wL(2
k)xk.

By Proposition 5.24 we have to show that P (η) 6= 0 for each 2pth root of unity η.
Thus, fix such an η. Then ord(η) ∈ {1, 2, p, 2p}. Now we will consider each case
separately to show that P (η) 6= 0. For the rest of the proof we will simply write w
for the Lee weight wL. Notice also that w(1), w(2), . . . , w(22p−1) are, up to ordering,
the numbers 1, 2, . . . , 2p.

Case 1. ord(η) = 1.
Then η = 1 and we have

P (1) =

2p−1∑

k=0

w(2k) > 0 (since w(2k) ∈ N)

Case 2. ord(η) = 2.
Then η = −1. Suppose P (η) = 0. Then

0 = P (−1) =

p−1∑

k=0

w(22k)−

p−1∑

k=0

w(22k+1).

It follows that

2

p−1∑

k=0

w(22k) =

2p−1∑

k=0

w(2k) =

2p∑

k=1

k = p(2p+ 1). (5.4)

Hence the left hand side is even but the right hand side is odd. Thus P (η) 6= 0.
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Case 3. ord(η) = p.
Then ηp+k = ηk for k = 0, 1, . . . , p− 1. Suppose P (η) = 0. Then

0 = P (η) =

p−1∑

k=0

(
w(2k) + w(2p+k)

)
ηk.

Recall that 1+x+· · ·+xp−1 is the minimal polynomial of η over Q. Thus we conclude
that 1 + x + · · · + xp−1 divides q(x) =

∑p−1
k=0

(
w(2k) + w(2p+k)

)
xk. Since q(x) has

degree p− 1, this implies that the coefficients of q(x) are all equal, and thus equal to
w(1) + w(2p). By adding all these coefficients we obtain

p (w(1) + w(2p)) =

p−1∑

k=0

(
w(2k) + w(2p+k)

)
=

2p−1∑

k=0

w(2k).

Thus

p (1 + w(2p)) =

2p∑

k=1

k = p(2p+ 1).

It follows that
w(2p) = 2p. (5.5)

Recall that w(α) ≡ ±α (mod N) for α ∈ ZN , where one of the two identities must
be true. Reducing (5.5) modulo N and multiplying both sides by 2, we arrive at

2 (±2p) = 4p ≡ −1 (mod 4p+ 1).

Squaring both sides we have

22p+2 ≡ 1 (mod 4p+ 1).

But 2 has order 4p. So 4p ≤ 2p+ 2, which implies p ≤ 1, a contradiction.

Case 4. ord(η) = 2p
Then ηp = −1 and we have ηp+k = −ηk for k = 0, 1, . . . , p− 1. Suppose P (η) = 0.

Then

0 = P (η) =

p−1∑

k=0

(
w(2k)− w(2p+k)

)
ηk

Denote by Φm(x) the mth cyclotomic polynomial. It is known that Φm(x) is the
minimal polynomial over Q of every mth primitive root in C. This implies that
for odd primes p we have Φ2p(x) = Φp(−x) (see also [11, pp. 555]). Observe
also that since N = 4p + 1 is prime, our prime p is certainly odd. It follows that∑p−1

k=0

(
w(2k)− w(2p+k)

)
xk is a scalar multiple of Φp(−x) = 1−x+x2−x3+· · ·+xp−1.

Considering the constant coefficient and the coefficient of x, we conclude

w(1)− w(2p) = w(2p+1)− w(2)

It follows that
w(2p) + w(2p+1) = 3
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Reducing the equation modulo N we have

±2p ± 2p+1 ≡ 3 (mod 4p+ 1).

Squaring both sides we obtain

22p + 22p+2 ± 2 · 22p+1 ≡ 9 (mod 4p+ 1).

Recalling that 22p = −1 we have

−1− 4± 4 ≡ 9 (mod 4p+ 1)

±4 ≡ 14 (mod 4p+ 1).

Then N = 4p + 1 divides 18 or N | 10. Since N is prime, then N = 2, N = 3, or
N = 5. But then N is not of the form 4p+ 1, where p is prime. Thus P (η) 6= 0.

All of this shows that we may apply Proposition 5.24 and conclude that A is
nonsingular. Again, by Theorem 5.4 this means that the Lee weight on ZN for this
choice of N satisfies the equivalence theorem.

It is known that for primes N of the form N = 8p + 1, where p is prime (except
N = 41), the element 3 is a primitive root modulo N (see [32, Theorem 1.6]. Thus,
one may try to apply the above method to establish the equivalence theorem for the
Lee weight in this particular case. Unfortunately the method fails, even in the case
ord(η) = 2. Assuming P (η) = 0, one derives a similar equation as in Equation (5.4),
namely

2

2p−1∑

k=0

w(32k) =

4p−1∑

k=0

k = 2p(4p− 1).

But now we can not easily derive a contradiction from this identity as we did earlier.
Nevertheless, realizing the A matrix as a circulant matrix helps us to check the

validity of the equivalence theorem for the Lee weight for many cases. Wood [40,
p. 1012] checked that the equivalence theorem holds true for all numbers N ≤ 256.
Meanwhile, we have checked the validity of the equivalence theorem for the Lee
weight for all prime numbers N up to the 2012th prime, simply by verifying that the
representer PA(z) of A is relatively prime to zs − 1 (see 5.24). With this abundance
of evidence, we strongly believe that the equivalence theorem holds true for the Lee
weight on ZN for any prime N .

Although we did not succeed in proving the general equivalence theorem for the
Lee weight, we offer another perspective to solve the general situation. Recall that
in Section 2.2 we define the Lee weight on ZN via arc lengths on a circle. In that
situation, we assume that we place the elements of ZN on the circle using the order
0, 1, 2, . . . , N−1. In the following example, we will show that for N prime, a different
choice of the ordering on the circle leads to a new circular weight that satisfies the
equivalence theorem.
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Figure 5.1: Reordering the points on the circle

Example 5.29. Let N be prime. The set of units Z∗
N is a cyclic group, say generated

by some α. For N = 2 there is a unique ordering on the circle so we will not consider
this case and assume that N is odd. Write N = 2m+ 1. Then αm = −1. Now label
the points on the circle in the ordering 0, 1, α, . . . , αm−1,−αm−1, . . . ,−α,−1.

Define the α-Lee weight wαL similar to the Lee weight but by using the above new
ordering. So we have

wαL(x) =

{
0 if x = 0

i+ 1 if x = ±αi for i = 0, . . . ,m− 1

Notice that the α-Lee weight preserves many properties of the Lee weight. Among
them we observe that the α-Lee weight partitions ZN the same way as the Lee weight,
Sym(wαL) = {±1}, and the values of the α-Lee weight are still 0, 1, . . . ,m.

Now we will show that the α-Lee weight satisfies the equivalence theorem.

Theorem 5.30. Let N = 2m+ 1 be a prime number and let α be a generator of the
cyclic group Z∗

N . Then the α-Lee weight on ZN satisfies the equivalence theorem.

Proof. As in (5.3), the matrix A can be written as

A = Circ(w(1), w(α), . . . , w(αm−1)).

But now notice that the sequence w(1), w(α), . . . , w(αm−1) = 1, 2, . . . ,m is strictly
monotone. By Theorem 5.25, A is non-singular and this finishes the proof.

Copyright c© Aleams Barra, 2012.
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Chapter 6 Local Global Properties

In this chapter we will give some answers to a question originally raised by Gold-
berg [12] and which we formulated in Question 3.19. We will again use character
theoretic methods in our approach. We will use the character equations that arise
naturally from the concept of F -partitions and proceed in a similar fashion as we did
in Chapter 4.

In the first section we reformulate Goldberg’s question in terms of a local-global
property of a subgroup G of GL(n,R). As a motivation we show that Witt’s extension
theorem and the equivalence theorem for compositions fit into this new framework.
Since F -partitions play a central role in our methods, we will devote a full section to
discussing this concept. Among other things we will show how to create F -partitions
on Rn from the orbits of the multiplication action of certain subgroups G of GL(n,R)
on Rn. Then we present our main results which show that the local-global property
holds true for various subgroups of GL(n,R), and we show their connection to certain
weight functions that have been studied in the literature.

Throughout this chapter let R be a finite commutative admissible ring with ad-
missible character χ.

6.1 Motivation

In Definition 5.2 we defined, for a subgroup U of U(R), a local U -monomial map
f : C → R as a map that acts like a monomial map on each x ∈ C, that is for every
x ∈ C there is an Mx ∈ MU(n,R) such that f(x) = xMx. Let PU be the partition
formed by the U -orbits in Rn (Definition 3.13). Being able to recognize a PU -isometry
as a MU(n,R)-map has led us to some interesting results in the previous chapter. So
first we generalize the concept of a local map to any subgroup G of GL(n,R).

Definition 6.1. Let C be a submodule of Rn. Let G be a subgroup of GL(n,R). A
linear map f : C → Rn is called a local G-map if for every x ∈ C there is an Mx ∈ G
such that f(x) = xMx. We say that such f is a global G-map if there is an M ∈ G
such that f(x) = xM for all x ∈ C. As a consequence, a global G-map extends to a
G-automorphism on Rn.

We need to emphasize that from the definition above, local G-maps are always
linear. Let f : C → Rn be a local G-map. Suppose f(x) = 0. Then 0 = f(x) = xMx

for some Mx ∈ G. Since Mx is invertible, x = 0. Therefore all local G-maps are
injective.

Since a map is a PU -isometry if and only if it is a local MU(n,R)-map, Theo-
rem 4.9 can be reformulated as follows.

Theorem 6.2 (Wood, [42]). Every local MU(n,R)-map f : C → C ′ is a global
MU(n,R)-map.
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Let us also reformulate Witt’s extension theorem (Theorem 3.17) in terms of this
local-global property. Let Q be a nonsingular quadratic form on a finite-dimensional
vector space V over a field (not necessarily finite) of characteristic 6= 2. Let Ω = {M ∈
Aut(V, V ) : Q(xM) = Q(x) for all x ∈ V } be the Q-orthogonal group. Suppose
f : W1 → W2 is a local Ω-map of subspaces W1,W2 of V . More precisely, for all
x ∈ W1 there exists an automorphism Mx ∈ Ω such that f(x) = xMx. Then

Q(f(x)) = Q(xMx) = Q(x).

Therefore f is a Q-isometry on W1, and by Witt’s extension theorem (Theorem 3.17)
the following is true.

Theorem 6.3. Every local Ω-map f : W1 → W2 is a global Ω-map.

For anisotropic spaces the converse is true as well: Witt’s extension theorem
follows from Theorem 6.3. This can be seen as follows. A quadratic space (V,Q) is
called anisotropic if there is no x 6= 0 ∈ V such that Q(x) = 0. If (V,Q) is anisotropic
and Q(x) = Q(y), then there exist M ∈ Ω such that y = xM (see [25, Proposition
4.7]. Let (V,Q) be an anisotropic quadratic space. LetW1,W2 be subspaces of V and
let f : W1 → W2 be a Q-isometry. Note that for x ∈ W1 we have Q(x) = Q(f(x)). It
follows from the above that f(x) = xMx for some Mx ∈ Ω. Thus f is a local Ω-map.
Therefore for anisotropic space (V,Q), Theorem 6.3 is equivalent to Witt’s extension
theorem (Theorem 3.17). It is worth noting that no quadratic space of dimension at
least 3 over a finite field is anisotropic, see [35, Section 1.7]

All of this gives rise to the following terminology.

Definition 6.4. Let G be a subgroup of GL(n,R). We say that G satisfies the
local-global property if every local G-map f : C → Rn is a global G-map.

From the above theorems it is natural to ask if we also have the local-global
property for other subgroups G of GL(n,R).

Question 6.5. Which subgroups G of GL(n,R) satisfy the local-global property?

To show that the local-global property is not trivial, we give an example of a
subgroup G of GL(n,R) which does not satisfy the local-global property.

Example 6.6. Let F3 be the field with three elements. Consider the following sub-
group G of GL(n,F3)

G =

{(
a b
0 c

)
| a, b, c ∈ F3 and ac = 1

}
.

Let f : F2
3 → F2

3 be defined by f(α(1, 0)+β(0, 1)) = α(2, 1)+β(0, 1) for any α, β ∈ F3.
Obviously, f is linear. There are four one-dimensional subspaces of F2

3. The following

47



are bases for those subspaces: (1, 0), (0, 1), (1, 1), (1, 2). Notice that

f(1, 0) = (2, 1) = (1, 0)

(
2 1
0 2

)

f(0, 1) = (0, 1) = (0, 1)

(
1 ∗
0 1

)

f(1, 1) = (2, 2) = (1, 1)

(
2 0
0 2

)

f(1, 2) = (2, 0) = (1, 2)

(
2 2
0 2

)
,

where the matrices on the very right are the unique matrices in G satisfying the
identities, and where ∗ may be any element of F3. Hence f is a local G-map. But f is
not a global G-map because f(1, 0) and f(0, 1) cannot be expressed with a common

matrix M ∈ G. Even more, f is uniquely given by x 7→ x

(
2 1
0 1

)
. This is also shows

that f is a local SL(2,F3)-map, but not a global one. Thus, SL(n,R) does not satisfy
the local-global property in general.

Before we explore the local-global property further we need to develop some tools
in the next section.

6.2 F -Partitions

The notion of an F -partition was first introduced by Zinoviev and Ericson [47] to
study the existence of some types of MacWilliams identities between abelian group
codes and their duals.

Definition 6.7. Let A be a finite (additive) abelian group with character group Â.

Fix an isomorphism ϕ : A → Â given by a 7→ ϕa. Let P = P0, P1, . . . , Ps be a
partition of A. For x, y ∈ A we write x ∼P z to indicate that x and y belong to the
same partition set Pi. We say that P is an F -partition with respect to the isomorphism
a 7→ ϕa, if for every j = 0, . . . , s the sum

∑
y∈Pj

ϕy(x) does not depend on the choice
of x in its partition set Pi, that is

∑

y∈Pj

ϕy(x) =
∑

y∈Pj

ϕy(z) for j = 0, . . . , s

whenever x ∼P z.

The notion of an F -partition of an abelian group A with respect to a certain
isomorphism ϕ : A → Â was originally defined via a Fourier transform with respect
to that isomorphism. This explains the F in the terminology. We refer the interested
reader to [47].

The property of being an F -partition depends on the choice of the isomorphism
between A and Â; an example will be given in Example 6.24. We will always make
the underlying isomorphism explicit.
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Most of the time the abelian group A that we are dealing with is (Rn,+) where
R is our admissible ring with admissible character χ. Recall that every character ψ
on R can be written as χ ◦ µr (Definition 4.2). For short, we will write χr for χ ◦ µr.
One can easily check that the map r 7→ χr gives a group isomorphism from (R,+) to

(R̂, ·). Now we are ready to give several examples of F -partitions on R.

Example 6.8. Partition R into P0 = {0} and P1 = R\{0}. We call this partition
the Hamming partition. Since χ0 = χ ◦ µ0 is the principal character, it is clear that
χ0(x) = χ0(y) for every x, y ∈ P1. By the fact that χ is an admissible character and
by Proposition 2.18, we have for any x ∈ P1

∑

z∈P1

χz(x) = −1 +
∑

z∈R
χz(x) = −1 +

∑

ψ∈R̂

ψ(x) = |R| − 1.

Therefore the Hamming partition is an F -partition with respect to the isomorphism
r 7→ χr.

Example 6.9. Let U be a subgroup of U(R). Denote by PU = P0, P1, . . . , Ps the
U -orbits in R. In this context we always use the convention that P0 = {0} and
P1 = U . It is known that PU is an F -partition. This is a special case of a more
general situation that we will prove later in Theorem 6.18. F -partitions on R that
arise in this way are called multiplicative.

Before we discuss F -partitions on Rn we need to set several conventions.

Definition 6.10. Let � be the component-wise multiplication on Rn defined by

x� y = (x1y1, . . . , xnyn).

With respect to the usual addition and � multiplication, Rn is a ring. If we want to
emphasize the ring structure of Rn, we will denote Rn by Rn

�.

Consider again the admissible character χ on R and let Φ :=

n︷ ︸︸ ︷
χ⊕ · · · ⊕ χ be the

character on Rn defined by Φ(x) =
∏n

i=1 χ(xi) (see Lemma 2.10). Let x ∈ Rn. Denote
by µ�

x : Rn → Rn the �-multiplication map by x on Rn
�. Due to Lemma 2.10, every

character on Rn is of the form χx1⊕· · ·⊕χxn , and this in turn can be written as Φ◦µ�
x

where x = (x1, . . . , xn). Hence R
n
� is an admissible ring with admissible character Φ.

Let Φx := Φ ◦ µ�
x . Then x 7→ Φx is an isomorphism of the additive groups of Rn and

R̂n.
Denote the usual dot product between two vectors x, y ∈ Rn by 〈x, y〉 = x1y1 +

. . .+ xnyn. By using the multiplicative structure of R we can express Φx(y) nicely as
follows.

Φx(y) = (χx1 ⊕ . . .⊕ χxn)(y1, . . . , yn) =
n∏

i=1

χ(xiyi) = χ(〈x, y〉).

Using the isomorphism x 7→ Φx, Definition 6.7 now amounts to the following for
partitions in Rn.
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Proposition 6.11. A partition P = P0, P1, . . . , Ps on Rn is an F -partition with
respect to the isomorphism x 7→ Φx if for any j = 0, 1, . . . , s the quantity

∑

y∈Pj

χ(〈y, x〉)

only depends on the set Pi where x belongs to.

Zinoviev and Ericson gave the following construction.

Proposition 6.12 (Zinoviev and Ericson [47]). Let P and Q be F -partitions of
abelian groups A and B with respect to the isomorphisms a 7→ χa and b 7→ ψb,
respectively.. Then the partition P × Q consisting of all P × Q, where P and Q
are sets in P and Q, respectively, is an F -partition of A × B with respect to the
isomorphism (a, b) 7→ χa ⊕ ψb. In particular Pn := P × · · · × P︸ ︷︷ ︸

n

is an F -partition of

An with respect to the isomorphism x 7→ Φx.

Another natural construction of F -partitions is as follows. For any permutation
σ ∈ Sn and any x ∈ Rn define xσ := (xσ(1), . . . , xσ(n)). For any subset S ⊂ Rn

let Sσ := {xσ | x ∈ S}. Let P = P0, P1, . . . , Ps be a partition on R. Note that
(Pi1 × · · · × Pin)σ = Piσ(1)

× · · · × Piσ(n)
.

Definition 6.13. Define an equivalence relation ∼Pn
sym

on Rn by declaring that
x ∼Pn

sym
y if there is a permutation σ ∈ Sn such that x ∼Pn yσ. We call the

partition formed by this equivalence relation Pn
sym. Elements of Pn

sym are sets of the
form Q :=

⋃
σ∈Sn

Pσ for some P ∈ Pn.

For instance, the Hamming partition on Rn is Pn
sym, where P is as in Example

6.8. From the following proposition it follows that it is an F -partition on Rn.
Observe that Pn

sym may be regarded as a symmetrization of Pn. From the above
definition it is clear that Qτ = Q for every τ ∈ Sn. Also for each Q ∈ Pn

sym one can
find a subset SQ ⊂ Sn such that Q =

⊎
σ∈SQ

Pσ. For example for P := P0×P0×P0 ∈

P3 we have Q =
⋃
σ∈S3

Pσ = P =
⊎
σ∈{id} Pσ. Now we will show that Pn

sym is an
F -partition.

Proposition 6.14. If P is an F -partition on R with respect to the isomorphism
a 7→ χa, then Pn

sym is an F-partition with respect to x 7→ Φx.

Proof. Let x ∼Pn
sym

z. Then there is a τ ∈ Sn such that x ∼Pn zτ . For any Q =⊎
σ∈SQ

Pσ ∈ Pn
sym we have

∑

y∈Q
Φy(x) =

∑

y∈Q
χ(〈y, x〉) =

∑

σ∈SQ

∑

y∈Pσ
χ(〈y, x〉) =

∑

σ∈SQ

∑

y∈Pσ
χ(〈y, zτ〉),

where the last identity is true since Pσ is a set of the F -partition Pn; see Proposi-
tion 6.12. Now the above is equal to

∑

y∈Q
χ(〈y, zτ〉) =

∑

y∈Qτ−1

χ(〈yτ, zτ〉) =
∑

y∈Q
χ(〈y, z〉) =

∑

y∈Q
Φy(z),
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since Qτ−1 = Q and 〈yτ, zτ〉 = 〈y, z〉.

Now we introduce partitions on Rn that arise as orbits of the multiplication action
of some subgroup G of GL(n,R).

Definition 6.15. A partition P on Rn is called a multiplicative partition if the sets
of P are the G-right multiplication orbits for some subgroup G of GL(n,R).

This definition generalizes the concept of a multiplicative partition that we intro-
duced in Example 6.9.

We will recall some notation and introduce some new ones.

Definition 6.16. Let U be a subgroup of U(R). The set of all permutation, monomial
and U -monomial n × n matrices are denoted by P(n,R), M(n,R), and MU(n,R).
We define some more standard subgroups of GL(n,R) as follows

∆(n,R) := {diagonal matrices with the diagonal entries being units},

∆U(n,R) := {diagonal matrices where the diagonal entries are in U},

LT(n,R) := {lower triangular matrices where the diagonal entries are units},

LTU(n,R) := {lower triangular matrices where the diagonal entries are in U}.

We will also use Mat(n,R) for the ring of n× n-matrices with entries in R.

We have seen in Proposition 6.12 and Proposition 6.14 that for any F -partition
P , the two partitions Pn and Pn

sym are F -partitions on Rn. If P = PU is the partition
consisting of the U -orbits for some subgroup U of U(R), then the partitions Pn and
Pn
sym are in fact multiplicative partitions as well.

Proposition 6.17. Let U be a subgroup of U(R) and let PU be the associated mul-
tiplicative partition on R. Then Pn and Pn

sym
are the multiplicative partitions with

respect to ∆U(n,R) and MU(n,R), respectively.

Proof. If x ∼Pn y, then x and y belong to the same partition set Pi1 ×· · ·×Pin ∈ Pn.
Since P = PU , for each j = 1, . . . , n there is an αj ∈ U such that yj = αjxj.
Therefore x = y · diag(α1, . . . , αn). Similarly if x ∼Pn

sym
y, then there is a σ ∈ Sn

such that xσ, y belong to the same set P in Pn. It follows that there are α1, . . . , αn
such that xσ = y · diag(α1, . . . , αn). Thus x = y · diag(α1, . . . , αn)Pσ−1 where Pσ is
the permutation matrix that is obtained by permuting the identity matrix In under
σ. Since diag(α1, . . . , αn)Pσ−1 ∈ MU(n,R), then x, y belong to the same MU(n,R)-
orbit. The converse is obvious by simply reversing the arguments.

Next we will show that under a certain condition on the subgroup G of GL(n,R),
the multiplicative partition on Rn induced by G is an F -partition with respect to
a suitable isomorphism between Rn and R̂n. Recall that the map from Rn to R̂n,
defined by x 7→ Φx where Φx(y) = χ(〈x, y〉), is a group isomorphism. Since right-
multiplication by a matrix M ∈ GL(n,R) gives an isomorphism on Rn, it is easy to

see that the map x 7→ ΦxM is also a group isomorphism from Rn to R̂n.
For a subgroup G of GL(n,R) define GT := {AT | A ∈ G}.
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Proposition 6.18. Let G be a subgroup of GL(n,R) and let M ∈ GL(n,R) be such
that MGTM−1 ⊆ G. Then the multiplicative partition on Rn given by the G-orbits
is an F -partition with respect to the isomorphism x 7→ ΦxM .

Proof. Let x, z belong to the same G-orbit. Hence z = xA for some A ∈ G. Then
B :=MATM−1 ∈ G. Let O be a G-orbit. We have

∑

y∈O
ΦyM(z) =

∑

y∈O
χ(〈yM, z〉)

=
∑

y∈O
χ (〈yM, xA〉) (since z = xA)

=
∑

y∈O
χ
(
〈yMAT , x〉

)

=
∑

y∈O
χ
(
〈y(MATM−1)M,x〉

)

=
∑

y∈O
ΦyBM(x) (since B =MATM−1)

=
∑

y∈O
ΦyM(x) (since y 7→ yB is bijective on O).

Remark 6.19. Since A 7→ AT is a bijection from G to GT , the conditionMGTM−1 ⊆
G is equivalent to MGTM−1 = G. It follows that M−1GM = GT . If M = In is the
identity matrix, the hypothesis that MGTM−1 ⊆ G is equivalent to G being closed
under matrix transposition.

Corollary 6.20. For each of the groups

GL(n,R), P(n,R), ∆(n,R), ∆U(n,R), M(n,R), MU(n,R)

the multiplicative orbits form an F -partition with respect to the isomorphism x 7→ Φx.

Proof. All the subgroups above are closed under matrix transposition.

We also have the following interesting result.

Corollary 6.21. Let G be a Sylow subgroup of GL(n,R). Then there exists a ma-
trix M ∈ GL(n,R) such that the G-orbits form an F -partition with respect to the
isomorphism x 7→ ΦxM .

Proof. Since GT is a subgroup of the same order, it is a Sylow subgroup as well
(with respect to the same prime factor). But then GT and G are conjugate, and thus
MGTM−1 = G for some M ∈ GL(n,R). Now Proposition 6.18 applies.
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Definition 6.22. For a permutation σ ∈ Sn and A ∈ Mat(n,R) we will denote by
Aσ the matrix that is obtained by permuting the columns of A according to σ, that
is if (A)i is the ith column of A then (A)σ(i) is the ith column of Aσ. Similarly, we
define σA the matrix that is obtained by permuting the rows of A according to σ.

Let σ :=

(
1 2 · · · n
n n− 1 · · · 1

)
. The matrix J := Inσ is called the exchange matrix. It

is easy to see that J = J−1 = JT .

Now we show that the orbits under the action of the group of all invertible n× n
lower triangular matrices LT(n,R) is an F -partition with respect to a suitably chosen

isomorphism between Rn and R̂n.

Proposition 6.23. Let U be any subgroup of U(R). Then the LTU(n,R)-orbits
form an F -partition with respect to isomorphism x 7→ ΦxJ . Thus in particular, the
LT(n,R)-orbits form an F -partition.

Proof. In view of Proposition 6.18 we need to show that for every A ∈ LTU(n,R) we
have JATJ−1 ∈ LTU(n,R). Notice that det(JATJ−1) = det(A). So, to show that
JATJ−1 = JATJ ∈ LTU(n,R) it is enough to show that JATJ is lower triangular
with the diagonal elements being mapped to the diagonal. The following picture
shows that JATJ is obtained by reflecting the entries of A about the anti-diagonal.

� �
�

�
�

� �
�

� �

Therefore JATJ is in LTU(n,R), as we desired.

One may notice that ifR is a field then LT{1}(n,R) is a Sylow subgroup of GL(n,R)
so that in this case the last result is already covered by Corollary 6.21.

Now one can easily give an example showing that the notion of an F -partition
depends on the isomorphism between Rn and R̂n.

Example 6.24. On F2 the map χ(a) := (−1)a is an admissible character. For the
subgroup LT(2,F2), the orbits containing e1 = (1, 0) and e2 = (0, 1) are given by
O1 := {(1, 0)} and O2 := {(0, 1), (1, 1)}, respectively. Consider

∑
y∈O1

Φy(z) for
z ∈ O2. Then Φ(1,0)((0, 1)) = χ(0) = 1 while Φ(1,0)((1, 1)) = χ(1) = −1. Therefore
the LT(2,F2)-orbits do not form an F -partition with respect to the isomorphism
x 7→ Φx. But according to Proposition 6.23 they form an F -partition with respect to
isomorphism x 7→ ΦxJ .

6.3 Subgroups with the Local-Global Property

In this section we will show that the local-global property is satisfied by several
subgroups G of GL(n,R).

We start with some technical lemma that we will use several times in the future.
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Lemma 6.25. Let G be a subgroup of GL(n,R) such that the G-orbits form an F -
partition, say Q, on Rn with respect to the isomorphism x 7→ Φx. Let f : C → C ′ be a
local G-map between two codes C and C ′ in Rn. Then for any Q ∈ Q and any x ∈ C

∑

y∈Q
χ(〈y, f(x)〉) =

∑

y∈Q
χ(〈y, x〉).

Moreover, for every z ∈ Rn there is a matrix Az ∈ G such that

〈z, f(x)〉 = 〈x, zAz〉

for all x ∈ C.

Proof. Since f is a local G-map, clearly x ∼Q f(x) for every x ∈ C. It follows that
for any Q ∈ Q ∑

y∈Q
χ(〈y, f(x)〉) =

∑

y∈Q
χ(〈y, x〉) (6.1)

for all x ∈ C. This proves the first part.
For a fixed y ∈ C, the assignments x 7→ 〈y, x〉 and x 7→ 〈y, f(x)〉 are linear

maps from C to R. It follows that χ(〈y,−〉) and χ(〈y, f(−)〉) are characters on C.
From (6.1) we have the identity

∑

y∈Q
χ(〈y, f(−)〉) =

∑

y∈Q
χ(〈y,−〉)

of characters on C.
Let z ∈ Rn. Then z is contained in some partition set Q in Q. By choosing y = z

on the left hand side, Corollary 2.17 implies that there is a zAz ∈ Q for some Az ∈ G,
such that

χ(〈z, f(−)〉) = χ(〈zAz,−〉) ∈ Ĉ.

Since χ is an admissible character, we obtain from by Proposition 4.1(2)

〈z, f(−)〉 = 〈zAz,−〉 = 〈−, zAz〉

as maps from C to R. Now the conclusion follows.

Remark 6.26. If in the previous lemma, the G-multiplicative partition is an F -
partition with respect to the isomorphism x 7→ ΦxM for some M ∈ GL(n,R), it is
not difficult to adapt the proof to show that for every z ∈ Rn there is an Az ∈ G
such that

〈zM, f(x)〉 = 〈zAzM,x〉

for all x ∈ C.

Now we can show that MU(n,R) has the local-global property, as we stated
already in Theorem 6.2. This gives us a new proof of Theorem 4.9.
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Proof of Theorem 6.2. Let f : C → C ′ be a local MU(n,R) map. By Corollary 6.20
the partition Q induced by the MU(n,R)-multiplicative orbits is an F -partition with
respect to the isomorphism x 7→ Φx. Let Q ∈ Q be the partition set that contains e1.
Hence all the standard basis vectors e1, . . . , en are in Q. By Lemma 6.25 we have

∑

y∈Q
χ(〈y, f(x)〉) =

∑

y∈Q
χ(〈y, x〉) (6.2)

for all x ∈ C. Denote the coordinate functions of f by f1, . . . , fn . Using again
Lemma 6.25 for z = e1 we see that there exists an A1 ∈ MU(n,R) such that for all
x ∈ C

f1(x) = 〈e1, f(x)〉 = 〈x, e1A1〉 = 〈x, α1eτ(1)〉 = α1xτ(1)

where α1 ∈ U and τ(1) is some index in {1, 2, . . . , n}. Notice that

∑

α∈U
χ(〈αe1, f(x)〉) =

∑

α∈U
χ(αf1(x)) =

∑

α∈U
χ(〈αα1eτ(1), x〉) =

∑

β∈U
χ(〈βeτ(1), x).

Notice that Q contains all vectors αei for all α ∈ U and i = 1, . . . , n. Let Qi := {αei |
α ∈ U}. By the above the equation, then (6.2) can be reduced into

∑

y∈Q\Q1

χ(〈y, f(x)〉) =
∑

y∈Q\Qτ(1)

χ(〈y, x〉). (6.3)

By repeating the argument for z = e2 ∈ Q\Q1, there is α2 ∈ U and an index τ(2)
such that α2eτ(2) ∈ Q\Qτ(1) and f2(x) = 〈α2eτ(2), x〉 = α2xτ(2). Since eτ(1) 6∈ Q\Qτ(1),
α2eτ(2) is not a multiple of eτ(1). Thus τ(2) 6= τ(1).

By continuing in this fashion, we obtain for all i = 1, . . . , n a unit αi ∈ U such
that fi(x) = αixτ(i) where τ(1), τ(2), . . . , τ(n) are distinct elements of {1, 2, . . . , n}.
But this shows that f is a global MU(n,R)-map.

To see the connection between this proof and the proof of Theorem 4.9, notice
that when Q is the partition set that contains e1, . . . , en, (6.2) is equivalent to (4.2),
which was a major milestone in that proof. As we can see now, we arrive at (6.2) more
naturally as a consequence of the fact that the MU(n,R)-orbits form an F -partition.

Without difficulty we can carry over the above argument and establish the local-
global property for the group ∆U(n,R).

Theorem 6.27. For any subgroup U of U(R) the group ∆U(n,R) satisfies the local-
global property on Rn.

With this result we can now give a characterization of support-preserving maps.
For x ∈ Rn we define the support of x to be the set of all indices i for which the ith
component of x is nonzero, that is Supp(x) := {i | xi 6= 0}. Notice that if R is a
field, then Supp(x) = Supp(y) if and only if y = xD for some nonsingular diagonal
matrix D over R. So a map f : C → C ′ preserves the support if and only if f is a local
∆(n,R)-map. Hence Theorem 6.27 immediately leads to the the following result.
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Proposition 6.28. Let R be a field. Let f : C → C ′ be a linear isomorphism preserv-
ing the support. Then f is a global ∆(n,R)-map.

If R is not a field, there exist x, y ∈ Rn such that Supp(x) = Supp(y) but y 6= xD
for all D ∈ ∆(n,R). For example, let R = Z6. Clearly Supp(0, 2) = Supp(0, 3). But
since 2α = 3 has no solution α ∈ Z6, there is no invertible diagonal 2 × 2 matrix
D such that (0, 2)D = (0, 3). But we also see that any linear map f that satisfies
f((0, 2)) = (0, 3) is not support-preserving since Supp(3(0, 2)) 6= Supp(3(0, 3)). So
even in the case that R is not a field, Proposition 6.28 may still hold and in fact it
does for general finite admissible rings.

Theorem 6.29. Let R be a finite commutative admissible ring. Let f : C → C ′ be a
support-preserving linear isomorphism. Then f is a global ∆(n,R)-map.

Proof. Recall that a finite commutative admissible ring is self-injective (see [43, Re-
mark 3.11]). Hence by Lam [23, Theorem 15.1] R satisfies the double annihilator
property, that is for any ideal I in R, ann(ann(I)) = I. Fix an x ∈ C. Since f is
linear and preserves the support, for any j = 1, . . . , n we have αxj = 0 if and only if
αfj(x) = 0 for any α ∈ R. It follows that for all j = 1, . . . , n

ann(Rxj) = ann(xj) = ann(fj(x)) = ann(Rfj(x)).

By the double annihilator property we have

Rxj = ann(ann(Rxj)) = ann(ann(Rfj(x)) = Rfj(x).

Now by Lemma 4.6, there is an αj ∈ U(R) such that fj(x) = αjxj. Hence f(x) =
x·diag(α1, . . . , αn) and we conclude that f is a local ∆(n,R)-map. By the local-global
property of ∆(n,R) (Theorem 6.27), we conclude that f is a global ∆(n,R)-map.

One should observe that the support may be regarded as the desymmetrized
version of the Hamming weight: while the latter counts the number of nonzero entries,
the support keeps track of the position of the nonzero entries. As we have just seen it
is not too difficult to show that a support-preserving linear map is a local, and hence
global, ∆(n,R)-map. In contrast, proving that a Hamming-weight preserving map is
a local M(n,R)-map, is much more difficult (unless R is a field). Attempting this
leads essentially to the same proof as Theorem 4.7 which then shows right away that
the map is globally monomial.

Next we will show that LT(n,R), the group of all invertible lower triangular
matrices, satisfies the local-global property. This group is closely related to the
Rosenbloom-Tsfasman metric, which has been introduced by Rosenbloom and Tsfas-
man in [34] and is defined as follows. Let F be a finite field. For x = (x1, . . . , xn) ∈ Fn

the Rosenbloom-Tsfasman weight (RT-weight) is given by

ρ(x) :=

{
0, x = 0

max{i | xi 6= 0}, otherwise.
(6.4)
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One can check that the distance between two vectors x, y defined by d(x, y) := ρ(x−y)
is a metric on Fn. This metric becomes most powerful for matrices, to which it
generalizes straightforwardly by simply taking the sum of ρ(x) over all rows x of
the matrix (see also [10]). In the interesting paper [37], Skriganov showed that for
a given matrix code C (that is, a subspace in Fs×n for some fixed n, s), the orbit
of C under the action of the RT-weight-preserving group contains codes with large
Hamming distance; under certain conditions on C it even contains codes meeting the
Gilbert Varshamov bound. This way, the Rosenbloom-Tsfasman-metric is helpful for
detecting codes with large Hamming distance. Lee [28] proved that the RT-weight-
preserving automorphisms of the entire space Fn (and even on the matrix space Fs×n)
are exactly given by the invertible lower triangular matrices. This can be regarded
as a special case of our Theorem 6.31 below, where we show that every RT-weight-
preserving isomorphism between codes in Fn is given by an invertible lower triangular
matrix. In Theorem 6.34 we also extend this result to codes over admissible rings.

In order to see the connection between the RT-weight and LT(n,R) we first prove
the following lemma. This lemma is known to Dougherty ([10]).

Lemma 6.30. Let x, y ∈ Fn. Then ρ(x) = ρ(y) if and only if there exists a matrix
A ∈ LT(n,F) such that y = xA.

Proof. (⇐) Let A = (aij) ∈ LT(n,F). We are going to show that ρ(x) = ρ(xA). Note
that aij = 0 for all i < j and xi = 0 for all i > ρ(x). It follows that the jth entry of
xA is given by

n∑

i=1

xiaij =
n∑

i=j

xiaij =

ρ(x)∑

i=j

xiaij. (6.5)

So for j > ρ(x) we have (xA)j = 0 and for j = ρ(x) the jth entry of xA is xjajj 6= 0
(since ajj 6= 0 and xj 6= 0). It follows that ρ(xA) = ρ(x).

(⇒) Suppose x, y ∈ Fn such that ρ(x) = ρ(y) = l. We will construct a matrix
A = (aij) ∈ LT(n,F) such that xA = y. To make A lower triangular, first set aij = 0
for i < j. We see from (6.5) that in order to have xA = y for every j = 1, . . . l we
need to solve the equation

yj =
l∑

i=j

xiaij =
l−1∑

i=j

xiaij + xlalj (6.6)

for aij. Set arbitrary nonzero values to all aij where i ≥ j and i 6= l. By doing this
we ensure in particular that all main diagonal entries of A are nonzero. For the rest,

by setting alj = x−1
l

(
yj −

∑l−1
i=j xiaij

)
, the aij entries satisfy the equation (6.6).

Below we will show that LT(n,F) satisfies the local-global property. Thus, we
obtain the following result.

Theorem 6.31. If f : C → C ′ is an isometry between two codes in Fn with respect to
the Rosenbloom-Tsfasman metric, then f is a global LT(n,F)-map.
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Proof. By Lemma 6.30, f is a local LT(n,F)-map. Therefore, this is a special case of
Theorem 6.32 below.

In order to prove the local-global property for the group LT(n,R), where R is any
admissible ring, we will make use of the ring of all n × n lower triangular matrices
over R, which will be denoted by RLT(n,R). Clearly RLT(n,R) is a subring of
Mat(n,R) and the group of units of RLT(n,R) is LT(n,R). Now we are ready to
prove the local-global property of LT(n,R).

Theorem 6.32. The group LT(n,R) satisfies the local-global property.

Proof. Let f : C → C ′ be a local LT(n,R)-map. By Proposition 6.23 the LT(n,R)-
orbits form an F -partition with respect to the isomorphism x 7→ ΦxJ . By Lemma 6.25
and Remark 6.26 for every z ∈ Rn there exists a matrix Az ∈ LT(n,R) such that

〈zJ, f(x)〉 = 〈x, zAzJ〉 (6.7)

for every x ∈ C. For each i = 1, . . . , n let zi = eiJ
−1. Then by (6.7) there exists a

matrix Ai ∈ LT(n,R) such that

fi(x) = 〈(eiJ
−1)J, f(x)〉 = 〈x, eiJ

−1AiJ〉 = x(J−1AiJ)
T eTi . (6.8)

By Proposition 6.23, Bi := (J−1AiJ)
T ∈ LT(n,R). Let B ∈ RLT(n,R) be the matrix

whose ith column is the column vector Bie
T
i , that is, the ith column of Bi. Then we

obtain from (6.8)

f(x) = (f1(x), . . . , fn(x)) = (xB1e
T
1 , . . . , xBne

T
n ) = xB. (6.9)

for all x ∈ C, and it remains to show that B is invertible, that is B ∈ LT(n,R). In
this particular case, this can be seen directly from the diagonal of B. However, we
will give the following argument which then will be further exploited after the proof
for other subgroups.

Let G and G′ be generator matrices for C and C ′ such that rowi(G
′) = f(rowi(G)).

From (6.9) we conclude that GB = G′. Applying the same argument to the inverse
map g : C ′ → C of f , we get a matrix C such that G = G′C. Since GB = G′

and G = G′C, the two cyclic right RLT(n,R)-modules 〈G〉 and 〈G′〉 are equal. By
Lemma 4.6 there is a unit M in RLT(n,R) such that G′ = GM . But this means
that M is in LT(n,R), and therefore f is a global LT(n,R)-map.

Before we will extend the ideas of the last paragraph to further groups let us first
present the following generalization of the first part of the proof.

Remark 6.33. Let U be any subgroup of U(R). Then the group LTU(n,R) satisfies
the local-global property. This follows from the same line of arguments as in the
previous proof by noticing that the diagonal elements of the matrix B are now in U .
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We will use the idea of the above proof in two instances. First, we will use the ar-
gument of the last paragraph in the proof of Theorem 6.32 to generalize Theorem 6.31
to admissible rings. Thereafter, we will analyze the above proof to study for which
subrings S of Mat(n,R) the set of all units in S (which is a subgroup of GL(n,R))
satisfies the local-global property.

First we prove the following. We define the Rosenbloom-Tsfasman-metric as
in (6.4) for vectors over an admissible ring.

Theorem 6.34. Let R be an admissible ring. If f : C → C ′ is an isometry between
two codes in Rn with respect to the Rosenbloom-Tsfasman metric, then f is a global
LT(n,R)-map.

Proof. Due to Theorem 6.32 it suffices to show that f is a local LT(n,R)-map. Fix
any x ∈ C. Consider the cyclic right RLT(n,R)-modules generated by x and f(x). If
we can show that there exists a matrix A = (aij) ∈ RLT(n,R) such that f(x) = xA,
then the last paragraph of the proof of Theorem 6.32 establishes that f is a local
LT(n,R)-map.

Let y := f(x) and l := ρ(x) = ρ(y). To make A lower triangular, set aij = 0 for
i < j. By (6.6), in order to have y = xA for every j = 1, . . . , l, we need ajj, . . . , alj ∈ R

such that yj =
∑l

i=j xiaij. The existence of such ajj, . . . , alj ∈ R is guaranteed if we
can show that yj ∈ Rxj + . . .+Rxl.

Take α ∈ ann(Rxj+ . . .+Rxl). Then αxi = 0 for i ≥ j. It follows that ρ(αx) < j.
Since f is RT weight-preserving, we have ρ(αf(x)) = ρ(αy) < j as well. In particular
αyj = 0. It follows that ann(Rxj + . . . + Rxl) ⊂ ann(Ryj). Now by the double
annihilator property of ideals in R, we have

Ryj = ann(ann(Ryj)) ⊂ ann(ann(Rxj + . . .+Rxl)) = Rxj + . . .+Rxl.

Therefore yj ∈ Rxj + . . .+ Rxl and we conclude that f is a local LT(n,R)-map. By
the local-global property of LT(n,R) (Theorem 6.32), f is a global LT(n,R)-map.

Now we return to the general question of which subgroups satisfy the local-global
property. The proof of Theorem 6.32 works due to two particular properties of the
subring RLT(n,R):

(1) The group of units of RLT(n,R), which is LT(n,R), satisfies the hypothesis of
Proposition 6.18, that is, there is an M ∈ GL(n,R) such that MATM−1 ∈
LT(n,R) for every A ∈ LT(n,R). This property makes sure that the LT(n,R)-
orbits form an F -partition, which in turn implies the identities (6.7) and (6.8).

(2) If A1, . . . , An ∈ RLT(n,R) and A is defined as the matrix whose ith column is
the ith column of Ai, then A ∈ RLT(n,R). This property results in the matrix B
in (6.9).

We coin the following terminology for subrings satisfying the two conditions above.
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Definition 6.35. Let S be a subring of Mat(n,R) and let U(S) be the units of S.
Let M ∈ GL(n,R). The subring S is called M -constructible if MU(S)TM−1 ⊆ U(S)
and if for any A1, . . . , An ∈ S, the matrix A that is obtained by choosing the ith
column of A to be the ith column of Ai is an element of S.

Now one observes that the proof of Theorem 6.32 generalizes straightforwardly to
M -constructible rings and their groups of units. Thus we arrive at the following.

Theorem 6.36. Let S be an M-constructible subring of Mat(n,R). Then U(S)
satisfies the local-global property.

It is easy to see that Mat(n,R) is M -constructible for any M ∈ GL(n,R). More-
over, the ring of all diagonal matrices R∆(n,R) is both I and J-constructible, and
the ring of all upper triangular matrices RUT(n,R) is J-constructible. Denote the
set of all units of RUT(n,R) by UT(n,R).

By Theorem 6.36 we recover our results from Proposition 6.27 (for U = U(R))
and Theorem 6.32 and also we obtain the following.

Corollary 6.37. GL(n,R) satisfies the local-global property.

Two vectors x, y ∈ Rn belong to the same GL(n,R)-orbit if and only if the ideals
〈x1, . . . , xn〉, 〈y1, . . . , yn〉 are the same. For x ∈ Rn let I(x) := 〈x1, . . . , xn〉 be the
ideal in R generated by the components of x. Hence any global GL(n,R)-map f
preserves this ideal, i.e., I(x) = I(f(x)) for all x ∈ Rn.

Let us briefly relate the last result to properties of admissible rings. Recall that
the finite commutative admissible ring R is self-injective. Thus Rn is an injective
module, and this means that any injective map g : C → Rn, where C is a code in Rn,
can be extended to a map g̃ : Rn → Rn. However, it is not guaranteed that g̃ is an
isomorphism. According to the above corollary if we even have a local GL(n,R)-map
f : C → Rn (note that f is in particular injective), then f can be extended to an
isomorphism f̃ : Rn → Rn.

Here are more examples of M -constructible rings.

Example 6.38. Let RCH(n,R) be the set of all n×n checkerboard matrices A = (aij)
where aij = 0 if i + j is odd. It is easy to see that RCH(n,R) is an I (and also
J)-constructible ring. By Theorem 6.36, the group of all invertible checkerboard

Figure 6.1: 6× 6 checkerboard matrix

matrices, denoted by CH(n,R), satisfies the local-global property.
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Example 6.39. Let RX(n,R) be the set of all n× n X-shaped matrices, that is for
any A ∈ RX(n,R) all entries of A that are not on the diagonal or anti-diagonal are
zero. One can verify that RX(n,R) is an I and J-constructible ring. Therefore the
groupX(n,R) of all invertible matrices in RX(n,R) satisfies the local-global property.

Figure 6.2: 6× 6 and 7× 7 X-shaped matrix

The following is a more general construction of M -constructible rings. Given
n1, n2 ∈ N. Consider the group H := diag(GL(n1, R),LT(n2, R)) consisting of
all block diagonal matrices of the form diag(A1, A2) where A1 ∈ GL(n1, R), A2 ∈
LT(n2, R). Notice that H is the group of units of the ring

S := diag(Mat(n1, R),RLT(n2, R)),

which is a subring of Mat(n,R), where n = n1 + n2. It is not difficult to see that S
is diag(I, J)-constructible. Hence H satisfies the local-global property. Generalizing
this observation we arrive at the following result.

Theorem 6.40. (1) Let Si be an Mi-constructible subring of Mat(ni, R) for i =
1, . . . , t. Put N := n1 + . . . + nt. Then diag(S1, . . . , St) is a diag(M1, . . . ,Mt)-
constructible subring of Mat(N,R). As a consequence, the subgroup of Mat(N,R)
consisting of all block diagonal matrices of the form diag(A1, . . . , At) where Ai ∈
U(Si), satisfies the local-global property.

(2) Let S be an M-constructible subring of Mat(n,R) and let t ∈ N. The subring of
Mat(tn, R) consisting of all matrices of the form

A :=




A11 A12 · · · A1t

A22 · · · A2t

. . .
...
Att


 , (6.10)

where Aii ∈ S for i = 1, . . . , t and Aij is any matrix in Mat(n,R), is an M̂-

constructible subring of Mat(tn, R), where M̂ ∈ GL(tn, R) is the block-anti-
diagonal matrix with M along the anti-diagonal. As a consequence, the subgroup
of Mat(tn, R) consisting of all upper block triangular matrices as in (6.10) and
where Aii ∈ U(S), satisfies the local-global property.
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Proof. Part (1) is obvious. As for (2), notice that M̂ = diag(M, . . . ,M)Ĵ , where Ĵ
is the block-anti-diagonal matrix with In along the anti-diagonal. As in the proof
of Theorem 6.23, one observes that conjugation of AT , where A is as in (6.10), is
a reflection about the anti-diagonal (along with a block-wise transposition). Thus,
conjugation with diag(M, . . . ,M) leads to the desired result.

Example 6.38 and Example 6.39 are in a certain sense special cases of Theo-
rem 6.40. To see this we need the following result.

Proposition 6.41. Let G be a subgroup of GL(n,R) that satisfies the local-global
property. Then each conjugate GP := PGP−1, where P ∈ GL(n,R), also satisfies the
local-global property.

Proof. Let f : C → C ′ be a local GP -map. Then for any x ∈ C there is an Ax ∈ G such
that f(x) = x(PAxP

−1). It follows that f(x)P = xPAx for all x ∈ C. Now define a
map g : CP → C ′P by g(xP ) := f(x)P . Notice that g is linear and g(xP ) = xPAx.
Hence g is a local G-map. By the local-global property of G, there exists a matrix
A ∈ G such that g(xP ) = xPA for all x ∈ C. It follows that

f(x) = g(xP )P−1 = xPAP−1 for all x ∈ C,

and thus f is a global GP -map.

Consider again Examples 6.38 and 6.39. A matrix A ∈ RX(6, R) has the form
as on the left hand side of Figure 6.2. Now for P−1 :=

(
e1 e6 e2 e5 e3 e4

)
we

obtain that PAP−1 is a block diagonal matrix and an element of

diag(Mat(2, R),Mat(2, R),Mat(2, R)).

Similarly for all 6 × 6 checkerboard matrices B as in Figure 6.1, one can find a
permutation matrix Q ∈ GL(6, R) such that QAQ−1 is a block diagonal matrix of
the form diag(B1, B2) where B1, B2 ∈ Mat(3, R).

Copyright c© Aleams Barra, 2012.
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Chapter 7 Summary and Further Research

In this chapter we summarize our work of the previous two chapters, address some
problems that remain still open, and propose some directions for further research.

Chapter 5 and Chapter 6 mainly contain generalizations of two important theo-
rems due to Wood in Chapter 4. In Chapter 5, we generalize the MacWilliams equiva-
lence theorem over admissible rings (Theorem 4.7) to general weight functions. While
the result does not hold true in general (see Example 3.8), we obtained a necessary
and sufficient condition for rational valued weight functions to satisfy the equivalence
theorem (see Theorem 5.4 and 5.6). Using this condition and exploiting the structure
of circulant matrices, we recover the result of Wood (Theorem 5.27) which shows that
the Lee weight satisfies the equivalence theorem for residue fields ZN , where N is a
prime of the form N = 2p + 1 and where p is also prime. Furthermore, we proved
the new result that the Lee weight also satisfies the equivalence theorem for residue
fields ZN , where N = 4p+1 and again N and p are both prime (Theorem 5.28). While
we are not able to show that the Lee weight satisfies the condition in Theorem 5.4 in
general (which would guarantee that it satisfies the equivalence theorem in all cases),
this condition together with Proposition 5.24 allows us to check empirically that the
Lee weight satisfies the equivalence theorem on all residue fields ZN for the first 2010
prime numbers N . This leads us to believe that the equivalence theorem holds true
for the Lee weight on all fields ZN where N is prime. Yet, it is still open for ZN even
when N is prime.

In Chapter 6, we generalize the result in Theorem 4.9 by first realizing that a PU -
isometry is exactly a local MU(n,R)-map. Then we can reformulate Theorem 4.9 in
terms of a local-global property (Theorem 6.2). At that point it is natural to ask if
the local-global property holds true for other subgroups G of GL(n,R) as well. As
a motivation that this is a generalization in the right direction, we show that the
famous Witt extension theorem can be rephrase in terms of the local-global property
(Theorem 6.3).

We prove, among other things, that the groups ∆U(n,R), LTU(n,R) and GL(n,R)
satisfy the local-global property (see Theorem 6.27, Theorem 6.32 and Corollary 6.37).
We also show that the units of an M -constructible subring of Mat(n,R) satisfy the
local-global property (Theorem 6.36). By reducing to the local case we are able to see
that any linear isomorphism f : C → C ′ that preserves the support can be extended
to a ∆(n,R)-map (Theorem 6.28). Similarly, by reducing to the local case, we show
that any linear isomorphism f : C → C ′ that preserves the Rosenbloom-Tsfasman
weight can be extended to a LT(n,R)-map (Theorem 6.34).

Let us now turn to some open problems. Recall that we gave another proof for
Theorem 4.9 in Chapter 6, and the proof is independent from Theorem 4.7. Learning
from the situation for support-preserving or RT-preserving isomorphisms, one may
try to give another proof of the MacWilliams equivalence theorem for the Hamming
weight by showing that any wH-isometry f : C → C ′ is a local M(n,R)-map. While
this is obvious if R is a field, this is not clear for general admissible rings. Indeed, we
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are able to show this only for principal ideal rings (so that in this case Theorem 6.2
implies that f is a monomial map and we have yet another proof of the MacWilliams
equivalence theorem for the Hamming weight on principal ideal rings).

For a general weight function w on R with symmetry group U = Sym(w), we
see similar connections. We know that MU(n,R) satisfies the local-global property.
If we are able to show that any w-isometry f : C → C ′ is a local MU(n,R)-map,
then w satisfies the equivalence theorem. In fact, the condition in Theorem 5.4 tells
us precisely which weights w make f a local MU(n,R)-map.

Let us now focus on a different aspect of our investigation. Notice that the support
and the RT-weight, different from the Hamming weight on Rn, do not arise as an
extension of a weight function on R. They are just functions from Rn to some set T .
For a function ϕ : Rn → T we can consider the isomorphisms f : C → C ′ that preserves
ϕ, i.e., ϕ(x) = ϕ(f(x)) for all x ∈ C. Can one describe these maps explicitly in a
similar way as wH-preserving maps can be described as monomial maps? For this
goal we do not want our ϕ to be too general and certainly need additional conditions
on ϕ to stand a chance of deriving some interesting result and recover our previous
results.

Note that all the functions wH , support, and the RT-weight ρ (see (6.4)) have
something in common. They are all closely related to theG-orbits of some subgroupG
of GL(n,R) that has the local-global property. For x, y ∈ Rn write x ∼G y if x
and y belong to the same G-orbit. Using this notation, we can see the following:
if x ∼M(n,R) y, then wH(x) = wH(y); if x ∼∆(n,R) y, then Supp(x) = Supp(y); if
x ∼LT(n,R) y, then ρ(x) = ρ(y). It is known that the converse is not true in general
(unless R is a field); see for instance the example right before Theorem 6.29. This
leads to the following definition.

Definition 7.1. Let G be a subgroup of GL(n,R) that satisfies the local-global
property and let T be a set. We say that ϕ : Rn → T is a generalized weight on Rn

with respect to G if ϕ(x) = ϕ(y) for all x, y ∈ Rn that belong to the same G-orbit.

From this definition we clearly have that wH , Supp and the RT-weight ρ are gen-
eralized weights on Rn with respect to M(n,R), ∆(n,R) and LT(n,R), respectively.
Notice also that the Lee weight wL studied in Section 5.4 is a generalized weight with
respect to M{±1}(n,R).

We propose the following question to generalize the equivalence theorem.

Question 7.2. Let G be subgroup of GL(n,R) that satisfies the local-global property.
Which generalized weight functions ϕ with respect to G have the property that every
ϕ-preserving isomorphism f : C → C ′ extends to a G-map?

At this point it should be clear from our earlier work that the given linearity of f
is essential.

We conjecture that the correct way to approach generalized weight functions ϕ is
by considering the following equivalence relation. We say that two generalized weight
functions with respect to G, say ϕ1 and ϕ2, belong to the same class if for all x, y ∈ Rn

we have ϕ1(x) = ϕ1(y) if and only if ϕ2(x) = ϕ2(y). That is, ϕ1 and ϕ2 induce the

64



same partition on Rn. Using this notion, the map f : C → C ′ is ϕ1-preserving if and
only if it is ϕ2-preserving. Therefore ϕ1 is a solution to Question 7.2 if and only if ϕ2

is a solution as well.
Question 7.2 above is closely related and can be thought of as the natural contin-

uation of Question 3.19. The generalized weight takes now the place of the map v in
Question 3.19. We believe that the local-global property is helpful to approach this
question.

Copyright c© Aleams Barra, 2012.
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[8] H. Quang Dinh and S.R. López-Permouth. On the equivalence of codes over
finite rings. Appl. Algebra Engrg. Comm. Comput., 15:37–50, 2004.
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