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Chapter 1 Introduction

In this thesis we will consider problems involving the eigenvalues of the Laplacian in

various settings. First, we will consider the case of Dirichlet boundary conditions.

Here we will look at the Payne-Pólya-Weinberger conjecture, which states that the

ratio of the first two Dirichlet eigenvalues for a domain Ω is bounded above by the

same eigenvalue ratio for a ball having the same volume. Then we will move on to the

case of Neumann boundary conditions and look at the Szegö-Weinberger inequality for

the first nonzero Neumann eigenvalue. In both cases we will first look at known results

in Euclidean space, Rn, and then hyperbolic space, Hn. We give the generalization

of these results to a certain family of spherically symmetric Riemannian manifolds.

Ashbaugh and Benguria first proved the Payne-Pólya-Weinberger conjecture for

bounded domains in Euclidean space in [2], and then extended this result for domains

contained in a hemisphere of Sn in [3]. The original conjecture considered the problem

of bounding eigenvalue ratios for the homogeneous membrane problem





−∆u = λu on Ω ⊂ R2

u = 0 on ∂Ω
(1.1)

for a bounded domain Ω in the plane. In this work, a domain is an open, connected

set. In 1955 and 1956, Payne, Pólya, and Weinberger were able to show that the ratio

of the first two eigenvalues for this problem satisfies

λ1

λ0

≤ 3 (1.2)

and further conjectured that

λ1

λ0

≤ λ1

λ0

|Ω=disk ≈ 2.539. (1.3)

Later, Thompson [26] conjectured an n-dimensional extension of this result, namely

λ1

λ0
≤ λ1

λ0
|Ω=n−dimensional ball = (jn/2,1/jn/2−1,1)

2, (1.4)
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where jp,k denotes the kth positive zero of the Bessel function Jp(x).

This was proved in the following result by Ashbaugh and Benguria in [2].

Theorem 1. The ratio of the first two Dirichlet eigenvalues of the Laplacian on a

domain Ω ⊂ R
n satisfies

λ1

λ0

≤ λ1

λ0

|Ω=unit n−dimensional ball =
j2
n/2,1

j2
n/2−1,1

(1.5)

Moreover, equality is obtained if and only if Ω is a ball.

Observe that in Euclidean space, the ratio λ1

λ0
is independent of the radius of the

ball. Later Benguria and Linde gave an analogous result as it applied to hyperbolic

space in [8], stated as follows.

Theorem 2. Let Ω ⊂ Hn be an open bounded domain in the hyperbolic space of

constant negative curvature and call λi(Ω) the i-th Dirichlet eigenvalue on Ω. If

S1 ⊂ Hn is a geodesic ball such that λ0(Ω) = λ0(S1) then

λ1(Ω) ≤ λ1(S1) (1.6)

with equality if and only if Ω is a geodesic ball.

They had to add the extra condition of λ0(Ω) = λ0(S1) since, in hyperbolic space,

the ratio of the first two eigenvalues is a decreasing function of the radius of the ball

where as in Euclidean space it is independent of the radius of the ball. In the next

several chapters we will present the proofs for these cases.

In the final chapter we move to the Neumann case and consider the Szegö-

Weinberger inequality. In 1952, Weinberger [27] proved the following result.
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Theorem 3. Let µ1(Ω) be the first nonzero Neumann eigenvalue for a bounded do-

main Ω ⊂ Rn. Then

µ1(Ω) ≤ µ1(Ω
∗)

with equality if and only if Ω = Ω∗. Here Ω∗ is the symmetric rearrangement of Ω,

so it has the same volume.

In 1992, Ashbaugh and Benguria [4] extended this result to hyperbolic space and

proved the following theorem.

Theorem 4. Let Ω be a bounded domain in a space of constant negative sectional

curvature. Then its first nonzero Neumann eigenvalue µ1(Ω) satisfies

µ1(Ω) ≤ µ1(Ω
∗),

where Ω∗ is a geodesic ball in the same space having the same n-volume as Ω. Equality

occurs if and only if Ω is a geodesic ball.

We seek to generalize these results under the following hypotheses. In general, we

want to work in a space defined by the following metric

ds2 = dr2 + f(r)2|dω|2. (1.7)

Here dω is the standard spherical portion of the metric on Sn−1. Observe that the

spaces R
n and H

n also have metrics of this form. For R
n, we would take f(r) = r

and for Hn, f(r) = sinh r, as is outlined in section 4.1. To generate our family of

spherically symmetric manifolds, we take f so that f > 0, f(0) = 0, and f ′(0) = 1.

Henceforth, we will refer to this space as Fn. Typically, in this paper, we will take

f(r) =






∼ r, as r → 0

∼ rα, as r → ∞
(1.8)

so that f satisfies our above conditions, f ∈ C2(Ω), r ∈ [0,∞) and α ≥ 2. Two

examples of these functions are f(r) = r + βrα and f(r) given by a polynomial

3



interpolation as described below in (1.20). So from this we see that by separation of

variables the eigenvalues and eigenfunctions of −∆ on a geodesic ball of radius r̃ are

determined by the differential equation

−z′′(r) − (n− 1)f ′

f
z′(r) +

l(l + n− 2)

f 2
z(r) = λz(r), (1.9)

where l = 0, 1, 2, ... with the boundary conditions z′(0) = 0 for l = 0 or z(r) ∼ rl as

r ↓ 0 for l > 0 and z(r̃) = 0. We will use the convention that zl(r) > 0 for r ↓ 0.

In the later sections we will state and give the proof of our theorems and the sub-

sequent sections will give the remaining details needed for the proof. In these sections

we will obtain necessary monotonicity properties and rearrangement inequalities as

in previous works. Also, we look at a generalized center of mass argument and Chiti

comparison result.

Here we will set up and state the our results for the family of spherically symmetric

manifolds. As mentioned above, we refer to the set of manifolds generated by the

functions f chosen to satisfy the above properties as Fn. We first seek to generalize

the PPW result. However, we see that in the space Fn, we no longer have the property

that the Laplacian commutes with translations. Thus, the center of mass theorem of

Weinberger that allows us to show the orthogonality of our optimal test functions no

longer holds. Hence we obtain an error term in addition to the expected upper bound

of the eigenvalue gap on the geodesic disk having the same volume as our domain.

4



Theorem 5. (A PPW-like result for F
n) Let Ω ⊂ F

n be an open bounded domain

and call λi(Ω) the i-th Dirichlet eigenvalue on Ω. Denote by Ω∗ the geodesic ball in

Fn having the same volume as Ω and r̃ its geodesic radius. Also, we denote by ~ν the

vector associated with the center of mass theorem for Ω in Fn. So, if we have that

the angle between ~x and ~ν is between −π/2 and π/2 for all x ∈ Ω, then

λ1(Ω) − λ0(Ω) ≤
{

sup
x∈Ω

B(|x+ ν|)
B(|x|)

}[
1 + 2ǫ2 + bΩ(ν, ǫ)

]
(λ1(Ω

∗) − λ0(Ω
∗)) + F(ν, ǫ),

(1.10)

where

B(r) = g′(r)2 + (n− 1)f−2(r)g2(r), (1.11)

g(r) =






z1(r)
z0(r)

r ∈ [0, r̃),

limr↑r̃ g(r) r ≥ r̃,
(1.12)

F(ν, ǫ) =

(
1 + ǫ2 +

1

ǫ2

)
sup

x∈Ω+ν

{
∑

k

[(
f ′(|x− ν|) − 1

f(|x− ν|)2

)
|(x− ν)kl(x− ν) + 1|

∣∣∣∣
∂J(−ν, x − ν)

∂xk
J(ν, x)

∣∣∣∣
]}

, (1.13)

and

bΩ(ν, ǫ) ≡ max
k=1,...,n

sup
x∈Ω+ν

{(
f ′(|x− ν|) − 1

f(|x− ν|)2

)(
f(|x|)2

f ′(|x|) − 1

)

[
|νkl(ν) − xkl(ν) − νkl(x)| +

|F (x, ν)|f(|x− ν|)2

f ′(|x− ν|) − 1
|xkl(x)|

]

[
f ′(|x|) − 1

f(|x|)2
|xkl(x)| + 1

]−1
}(

1 +
2

ǫ2

)
, (1.14)

where

F (x, ν) =

[
f ′(|x− ν|) − 1

f(|x− ν|)2
− f ′(|x|) − 1

f(|x|)2

]
. (1.15)

Next, we would like to look at a certain set of domains having additional symmetry

properties. We will take S ⊂ Fn to be the set of domains Ω such that Ω contains

the origin, is rotationally symmetric to the xi axes for i = 3, ...n, and is symmetric

5



with respect to the x1 − x2 plane. This subset of domains allows us to choose our

test functions without the need for shifting the domains as in the previous result. So

in this case, we obtain the following theorem.

Theorem 6. Let Ω ⊂ S be an open bounded domain in Fn and call λi(Ω) the i-th

Dirichlet eigenvalue on Ω. Take Ω∗ to be the geodesic ball in Fn having the same

volume as Ω. Then,

1)

λ1(Ω) − λ0(Ω) ≤ λ1(Ω
∗) − λ0(Ω

∗). (1.16)

2) If S1 ⊂ Fn is a geodesic ball such that λ0(Ω) = λ0(S1) then

λ1(Ω) ≤ λ1(S1). (1.17)

Also, we present a result based on using Gram-Schmidt orthogonalization to find

a suitable test function for the Rayleigh-Ritz inequality.

Theorem 7. Let Ω ⊂ Fn be an open bounded domain and call λi(Ω) the i-th Dirichlet

eigenvalue on Ω, ui the i-th eigenfunction. Take g(r) to be a continuous, differentiable,

positive function on [0,∞). Then for

Pj(x) =
xj

f(r)
g(r), (1.18)

j = 1, ..., n, we have

λ1(Ω) − λ0(Ω) ≤

∫
Ω
u2

0

(
g′(r)2 + (n− 1)

(
g(r)
f(r)

)2
)
dV

∫
Ω
g(r)2u2

0 dV −∑j |〈Pju0, u0〉|2
. (1.19)

Finally, we state the Szegö-Weinberger theorem. In order to construct suitable

test functions we must restrict ourselves to domains Ω containing the origin.

Theorem 8. Let Ω ⊂ S be a bounded open set in Fn. Then its first nonzero Neumann

eigenvalue µ1(Ω) satisfies

µ1(Ω) ≤ µ1(Ω
∗),

6



where Ω∗ is a geodesic ball in the same space having the same n-volume as Ω. Equality

occurs if and only if Ω is a geodesic ball.

Also, for the Szegö-Weinberger theorem we will show some examples of functions

f that satisfy the properties we have claimed above. In general, it appears that

several functions that satisfy our properties can be generated in the following way.

f(r) =






r r ≤ r̃1

p(r) r̃1 < r < r̃2

rα r ≥ r̃2

(1.20)

so that f satisfies our above conditions for Fn, f ∈ C2(Ω), r ∈ [0,∞) and α ≥

2, α ∈ Z. In order to find p(r), we use the data from f at r̃1 and r̃2 and its first and

second derivatives to generate a C2 fifth degree polynomial on the interval [r̃1, r̃2]. In

the proof of the theorem, we see that r̃1, r̃2 depend on α and it turns out that, for

example,

r̃1 = .5, r̃2 = 1.5 for 2 ≤ α ≤ 4

r̃1 = 1, r̃2 = 2 for 5 ≤ α ≤ 9.

(1.21)

We can compute p(r) for each of our intervals, and so it turns out that for α = 2, 3, 4,

p(r) = (−6 − 1

2
α1.5α−2 − 3α1.5α−1 + 6 · 1.5α + .5α21.5α−2)r5 (1.22)

+(30.5 + 2.25α1.5α−2 + 14.5α1.5α−1 − 30 · 1.5α − 2.25α21.5α−2)r4

+(−57 − 3.75α1.5α−2 − 25.5α1.5α−1 + 55 · 1.5α + 3.75α21.5α−2)r3

+(47.25 + 2.875α1.5α−2 + 20.25α1.5α−1 − 45 · 1.5α − 2.875α21.5α−2)r2

+(−16.875 − 1.03125α1.5α−2 − 7.4375α1.5α−1 + 16.875 · 1.5α + 1.03125α21.5α−2)r

+(2.53125 − .140625α1.5α−2 + 1.03125α1.5α−1 − 2.375 · 1.5α − .140625α21.5α−2)

7



and for 5 ≤ α ≤ 9,

p(r) = (−9 − 1

2
α2α−2 − 3α2α−1 + 6 · 2α + .5α22α−2)r5 (1.23)

+(68 +
7

2
α2α−2 + 22α2α−1 − 45 · 2α − 3.5α22α−2)r4

+(−198 − 19

2
α2α−2 − 62α2α−1 + 130 · 2α + 9.5α22α−2)r3

+(276 +
25

2
α2α−2 + 84α2α−1 − 180 · 2α − 12.5α22α−2)r2

+(−184 − 8α2α−2 − 55α2α−1 + 120 · 2α + 8α22α−2)r

+(48 + 2α2α−2 + 14α2α−1 − 31 · 2α − 2α22α−2).

In the remainder of the thesis, we will refer to these examples and show specific cases

to see that we can find functions that satisfy the properties we have claimed.

Copyright c© Julie Miker, 2009.
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Chapter 2 Some Preliminaries

In this section we will outline some of the basic background material and tools that

are used in the proofs of the various cases for the Payne-Pólya-Weinberger conjecture

and for the Szegö-Weinberger result. We begin with stating the classical isoperimetric

inequality for domains in Rn. Let V denote n-dimensional Lebesgue measure and A

denote (n − 1)-dimensional Lebesgue measure. Take Bn to be the unit ball in Rn,

and Sn−1 to be the unit sphere in Rn.

Theorem 9 (Isoperimetric inequality). Let Ω be any bounded domain in Rn and ∂Ω

its boundary. Then we have

A(∂Ω)

V (Ω)1−1/n
≥ A(Sn−1)

V (Bn)1−1/n
.

Also, equality is achieved if and only if Ω is an n-ball.

So from this we see that for a fixed volume in R
n, the ball has the least area of

all domains enclosing this volume. Now we would like to relate this to an eigenvalue

problem defined on domains in Rn, Hn, and Fn.

In general, we would like to see how changing the shape of the domain affects the

first nonzero eigenvalue of the Laplacian, both with Dirichlet and Neumann boundary

conditions and then also the ratio of the first two Dirichlet eigenvalues. The Faber-

Krahn inequality looks at how the lowest eigenvalue for the Dirichlet Laplacian is

affected by the shape of a domain with fixed volume. We see that it is minimized

when the domain is a ball. We prove this using an approach involving the symmetric

rearrangement of a function. This result is extended by Chavel to domains of constant

positive and constant negative sectional curvature. In the final chapter, we move to

the Neumann case and look at the result of Szegö and Weinberger and we see here

that the first eigenvalue is maximized when the domain is a ball.

9



2.1 The Dirichlet and Neumann Eigenvalues

This thesis focuses on studying the properties of some of the eigenvalues of both the

Dirichlet and Neumann Laplacian. Here we outline the basic set-up of these problems.

See [25] for a discussion of this topic.

Definition (Dirichlet Problem). Let Ω be a bounded domain in Rn,Hn, or Fn. Find

a unique function u such that





−∆u = λu in Ω

u = 0 on ∂Ω

We define the eigenvalues of this problem in the following way.

Definition (Rayleigh-Ritz Formulation). For any open set Ω ∈ Rn and φ ∈ H1
0 (Ω),

one considers the functional

F [φ] =
‖∇φ‖2

‖φ‖2
(2.1)

and the associated infimum

λ0(Ω) = inf
φ∈H1

0
(Ω)

0 6= φ

F [φ]. (2.2)

Here ‖ · ‖ is the L2(Ω) norm. We refer to λ0(Ω) as the fundamental tone of Ω.

λ0(Ω) is the infimum of the spectrum of the Laplacian −∆ on Ω, subject to Dirichlet

boundary conditions. If Ω has compact closure and C∞ boundary, then λ0(Ω) is an

eigenvalue of −∆ on Ω, i.e. there exists Φ ∈ C∞(Ω) which satisfies ∆Φ+λ0(Ω)Φ = 0

with Φ|∂Ω = 0.

Next we move to the Neumann Laplacian. Here the problem is stated as follows.

Definition (Neumann Problem). Let Ω be a bounded domain in Rn,Hn, or Fn. Let

∂
∂n

denote the outward normal derivative. Find a unique function u such that





−∆u = µu in Ω

∂u
∂n

= 0 on ∂Ω
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We may also describe this problem variationally, as follows.

F [φ] =
‖∇φ‖2

‖φ‖2
(2.3)

and the associated infimum

µ1(Ω) = inf
φ∈H1(Ω)

0 6= φ⊥1

∫
Ω
|∇φ|2∫
Ω
φ2

. (2.4)

In the case of the Neumann problem, we recognize that we must be able to define the

outward normal on the boundary to be able to solve this problem and this imposes a

restriction on the boundary. This restriction is lifted in the variational set-up and so

we see that the eigenvalues generated need not necessarily be the same. In the case

of nice regions that obey what Reed and Simon [25] call the segment property, which

is satisfied if the boundary is either a smooth curve or is bounded by finitely many

smooth curves that meet at nonzero angles, the eigenvalues in these two formulations

agree.

2.2 Symmetric Rearrangements

Now we move to the concept of symmetric rearrangements to define the framework

to relate the isoperimetric inequality to the eigenvalue problem.

Definition. Let D be a Borel set of finite measure , i.e.

µ(D) =

∫

D

χD(r, ψ)f(r)n−1 dr dω(ψ) <∞. (2.5)

Note that µ is a Borel measure, and µ is absolutely continuous with respect to

Lebesgue measure since f(r)
r

is a bounded function on bounded sets. Also, note

that r = |x| is the geodesic distance in our space.

Definition. We define D∗, the symmetric rearrangement of the set D, to be the open

geodesic ball centered at the origin whose volume is that of D.

11



D∗ = {x : |x| < r} with A(Sn−1)
∫ r

0
f(s)n−1 ds = |D|

This definition allows us to define the symmetric decreasing rearrangement, f ∗,

of a function f as follows:

Definition. Let χD
∗ = χD∗ . If f : Rn → C is a Borel measurable function vanishing

at infinity in the sense that µ({x : |f(x)| > t}) is finite for all t > 0, we define

f ∗(x) =

∫ ∞

0

χ∗
{|f |>t}(x) dt (2.6)

Note that f ∗ is nonnegative. Also, the level sets of f ∗ are simply the rearrange-

ments of the level sets of |f |, i.e.

{x : f ∗(x) > t} = {x : |f(x)| > t}∗

so

µ({x : f ∗(x) > t}) = µ({x : |f(x)| > t}∗) = µ({x : |f(x)| > t})

for all t > 0.

If f : [0,∞) → R+ is a monotone decreasing function then f ∗ = f since {x :

|f(x)| > t}∗ = {x : f(x) > t}.

We can see that ‖f‖p = ‖f ∗‖p by combining this with the layer cake representation

given in Lieb-Loss [22]. Let ν be a measure on the Borel sets of [0,∞) such that

Φ(t) := ν([0, t))

is finite for every t > 0. Let (Ω,Σ, µ) be a measure space and f any nonnegative

measurable function on Ω. Then

∫

Ω

Φ(f(x))µ(dx) =

∫ ∞

0

µ({x : f(x) > t}) ν(dt)

and by choosing ν(dt) = ptp−1 dt for p > 0 we have

12



∫

Ω

|f(x)|p µ(dx) = p

∫ ∞

0

tp−1µ({x : |f(x)| > t}) dt =

p

∫ ∞

0

tp−1µ({x : f ∗(x) > t}) dt =

∫

Ω

(f ∗)p µ(dx)

So ‖f‖p = ‖f ∗‖p.

This fact and the following rearrangement inequality of Riesz are the key steps

of the first proof of the Faber-Krahn inequality for Rn to show that the norm of the

gradient decreases under symmetric rearrangement.

Theorem 10 (Riesz’s rearrangement inequality). Let f, g, and h be three nonnegative

functions on R
n. Then, with

I(f, g, h) :=

∫

Rn

∫

Rn

f(x)g(x− y)h(y) dx dy, we have

I(f, g, h) ≤ I(f ∗, g∗, h∗),

with the understanding that I(f ∗, g∗, h∗) = ∞ if I(f, g, h) = ∞.

Lemma 1. Let f : R
n → R

n be a nonnegative measurable function that vanishes

at infinity, i.e. V ({x : |f(x)| > t}) is finite for all t > 0, and let f ∗ denote its

symmetric decreasing rearrangement. Assume that ∇f , in the sense of distributions,

is a function that satisfies ‖∇f‖2 <∞. Then ∇f ∗ has the same property and

‖∇f ∗‖2 ≤ ‖∇f‖2.

Proof. This proof is taken from [22].

Step 1: First, we show that it suffices to prove the lemma for f ∈ L2(Rn). Define

fc(x) = min[max(f(x) − c, 0), 1
c
] for c > 0.

Note that for

c > f(x) we have fc(x) = 0,

for

c < f(x) <
1

c
+ c we have fc(x) = f(x) − c,
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and for

1

c
+ c < f(x) we have fc(x) =

1

c
.

So ∇fc = 0 when x ∈ Rn is such that f(x) /∈ (c, 1
c

+ c) and for x ∈ Rn such that

c < f(x) < 1
c

+ c, we have ∇fc(x) = ∇f(x).

Also, by definition of the rearrangement, (fc)
∗ = (f ∗)c and since f vanishes at

infinity, fc ∈ L2(Rn). So by the monotone convergence theorem,

lim
c→0

‖∇fc‖2 = ‖∇f‖2.

Likewise,

lim
c→0

‖∇(fc)
∗‖2 = lim

c→0
‖∇(f ∗)c‖2 = ‖∇f ∗‖2.

Step 2: Now, define

I t(f) = t−1[(f, f) − (f, e∆tf)]

for f ∈ H1(Rn) where

e∆tf =

∫

Rn

et∆(x, y)f(y) dy =

∫

Rn

et∆(x− y)f(y) dy

and the heat kernel is

et∆(x, y) = (4πt)−n/2e
−|x−y|2

4t .

We would like to show that

lim
t→0

I t(f) = ‖∇f‖2
2.

Let f̂ denote the Fourier transform of f defined as

f̂(k) =

∫

Rn

e−2πi(k,x)f(x) dx

where

(k, x) :=
n∑

i=1

kixi.

So for f ∈ L2 we also have

∇̂f(k) = 2πikf̂(k).
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Observe that

‖f‖2
H1(Rn) =

∫

Rn

|f̂(k)|2(1 + 4π2|k|2) dk.

So by Plancherel’s Theorem we have

I t(f) =
1

t

∫

Rn

[1 − e−4π2|k|2t]|f̂(k)|2 dk.

Note that y−1(1 − e−y) is a decreasing function for y > 0. So if we look at the

following limit, we see

lim
t→0+

1 − e−4π2|k|2t

t
= lim

t→0+
4π2|k|2e−4π2|k|2t = 4π2|k|2 = |2πk|2

by L’Hospital’s rule.

So since [1 − e−4π2|k|2t] converges monotonically to |2πk|2, we see that I t(f) is

uniformly bounded so the monotone convergence theorem gives

lim
t→0+

I t(f) =

∫

Rn

|2πk|2|f̂(k)|2 dk = ‖∇̂f‖2
2 = ‖∇f‖2

2.

Step 3: Observe that

(f, et∆f) =

∫

Rn

f(x)

∫

Rn

et∆(x− y)f(y) dy dx

so by using Fubini’s theorem, the Riesz rearrangement inequality, Theorem 10, and

the fact that (f, f) = (f ∗, f ∗) we see that

(f, e∆tf) ≤ (f ∗, e∆tf ∗) ⇒

(f ∗, f ∗) − (f ∗, e∆tf ∗) ≤ (f, f) − (f, e∆tf) ⇒

I t(f ∗) ≤ I t(f)

and we also have that I t(f ∗) → ‖∇f ∗‖2
2 as t→ 0+. Hence

‖∇f ∗‖2 ≤ ‖∇f‖2.
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2.3 Faber-Krahn Inequality

One of the earliest isoperimetric inequalities for an eigenvalue is the Faber-Krahn in-

equality which bounds the first eigenvalue of the Dirichlet Laplacian. This inequality

was conjectured by Rayleigh [24] in 1877 and was later proved (independently) by

Faber [19] and Krahn [21] in the 1920’s. We state the result and give its proof in this

section.

Theorem 11 (Faber-Krahn). Let Ω be a bounded domain in R
n, and let Ω∗ be the

open ball in Rn satisfying V (Ω) = V (Ω∗), where V denotes n-dimensional Lebesgue

measure. Then

λ0(Ω
∗) ≤ λ0(Ω).

If Ω also has C∞ boundary, then one has equality if and only if Ω is isometric to Ω∗.

Proof of theorem. Here we follow the argument given in Ashbaugh’s paper [1]. Let

u0 be the first real eigenfunction for Ω where u0 satisfies

∆u0 + λ0(Ω)u0 = 0 (2.7)

and normalize it so that ∫

Ω

u2
0 = 1.

Multiplying (2.7) by u0 and integrating gives us

λ0(Ω) =

∫

Ω

u0λ0(Ω)u0 =

∫

Ω

−u0∆u0 =

∫

Ω

|∇u0|2

where the last equality comes from Green’s identity and the fact that we have Dirichlet

boundary conditions. So we get the following, where the last inequality comes from

the Rayleigh-Ritz inequality and the fact that u0 ∈ H1
0(Ω) implies that u∗0 ∈ H1

0(Ω
∗).

Thus u∗0 is an admissible test function.

λ0(Ω) =

∫

Ω

|∇u0|2 ≥
∫

Ω∗

|∇u∗0|2 ≥ λ0(Ω
∗).
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We also have the Faber-Krahn inequality for hyperbolic space, which is stated as

follows.

Theorem 12 (Faber-Krahn for Hn). Let Ω ⊂ Hn be a bounded domain with smooth

boundary and Ω∗ ⊂ Hn an open geodesic ball of the same measure. Denote by λ0(Ω)

and λ0(Ω
∗) the lowest eigenvalue of the Dirichlet-Laplace operator on the respective

domain. Then

λ0(Ω
∗) ≤ λ0(Ω) (2.8)

with equality only if Ω itself is a geodesic ball.

For the proof of this theorem, we refer to Chavel’s book, [12], where an analog of

this result for general Riemannian manifolds is presented. We also state it here as it

would apply to the space F
n.

Theorem 13 (Faber-Krahn for Fn). Let Ω ⊂ Fn be a bounded domain with smooth

boundary and Ω∗ ⊂ Fn an open geodesic ball of the same measure. Denote by λ0(Ω)

and λ0(Ω
∗) the lowest eigenvalue of the Dirichlet-Laplace operator on the respective

domain. Then

λ0(Ω
∗) ≤ λ0(Ω) (2.9)

with equality only if Ω itself is a geodesic ball.
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2.4 The Gap Inequality for the Eigenvalues of the Dirichlet Laplacian

Here we will define the Dirichlet Laplacian −∆ on some bounded open set Ω, where

Ω will be contained in either Rn,Hn, or Fn depending on the situation considered.

The operator −∆ will be defined by the quadratic form

D[u] = (∇u,∇u), (2.10)

whose domain is the completion of C∞
0 (Ω) with respect to the norm induced by

D[u]
1

2 . Here we define ∇ on a space having the metric (gij) and local coordinates xj

as follows,

(∇u)k =
∑

l

(gkl ∂u

∂xl

). (2.11)

Here gij is the (i, j)th element of g−1. The operator −∆ is a positive self-adjoint

operator having positive eigenvalues with finite multiplicity. We will use λi to denote

its i-th eigenvalue, where the distinct eigenvalues are labeled in increasing order,

λi < λi+1. Also we use 〈·, ·〉 to denote the usual inner product on L2(Ω).

Thus we have the usual Rayleigh-Ritz characterization of the eigenvalues λi of −∆

as in [25]: if u ∈ L2(Ω) is some function in the domain of D and if u is orthogonal to

the first k − 1 eigenfunctions of −∆, then

λk ≤ D[u]

〈u, u〉 . (2.12)

We can then use this inequality to derive the following gap inequality for the first

two eigenvalues. First, we are going to use a function P so that Pu0⊥u0 for our trial
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function in the Rayleigh-Ritz inequality, which gives

λ1(Ω) ≤
∫
Ω
〈∇Pu0,∇Pu0〉 dV∫

Ω
P 2u2

0 dV
(2.13)

=

∫
Ω
u2

0〈∇P,∇P 〉+ 2Pu0〈∇P,∇u0〉 + P 2〈∇u0,∇u0〉 dV∫
Ω
P 2u2

0 dV

=

∫
Ω
u2

0〈∇P,∇P 〉 dV +
∫
Ω
〈∇(P 2u0),∇u0〉 dV∫

Ω
P 2u2

0 dV

=

∫
Ω
u2

0〈∇P,∇P 〉 dV +
∫
Ω
P 2u0(−∆u0) dV∫

Ω
P 2u2

0 dV

=

∫
Ω
u2

0〈∇P,∇P 〉 dV + λ0(Ω)
∫
Ω
P 2u2

0 dV∫
Ω
P 2u2

0 dV

where the next to last step follows from integration by parts and the last step from

our initial set-up of the Dirichlet problem. Hence we obtain the gap inequality

λ1(Ω) − λ0(Ω) ≤
∫
Ω
u2

0〈∇P,∇P 〉 dV∫
Ω
P 2u2

0 dV
. (2.14)

Copyright c© Julie Miker, 2009.
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Chapter 3 Payne-Pólya-Weinberger Inequality in Euclidean space

In this chapter we present the proof given in [2] for the PPW conjecture in Rn.

Theorem 14. The ratio of the first two Dirichlet eigenvalues of the Laplacian on a

domain Ω ⊂ Rn satisfies

λ1

λ0
≤ λ1

λ0
|Ω=n−dimensional ball =

j2
n/2,1

j2
n/2−1,1

(3.1)

Moreover, equality is obtained if and only if Ω is a disk.

Proof. Let λ0, λ1, λ2, ... denote the eigenvalues of problem (1.1) and u0, u1, u2, ... de-

note an orthonormal sequence of corresponding eigenfunctions, assumed to be posi-

tive. Also recall that jp,k denotes the kth positive zero of the Bessel function Jp(x).

We want to make use of the Rayleigh-Ritz inequality for λ1, so we take a set of n

trial functions P = Pi for i = 1, ..., n defined by

Pi(x) = g(r)
xi

r
, i = 1, ..., n, (3.2)

where g(r) is a nonnegative and nontrivial function of the radial variable r = |x| and

the xi’s are the standard cartesian variables. The function g will be chosen to be

continuous, differentiable, and bounded on (0,∞). So we have that

λ1 − λ0 ≤
∫
Ω
|∇P |2u2

0 dx∫
Ω
P 2u2

0 dx
(3.3)

provided that ∫

Ω

Pu2
0 dx = 0 and P 6= 0, (3.4)

as is shown in section 2.4. Here dx denotes the standard Lebesgue measure in Rn.

So now we apply Weinberger’s center of mass argument from [27] to see that we may

choose our origin so that

∫

Ω

Pi(x)u
2
0 dx = 0 for i = 1, ..., n. (3.5)
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The proof of this theorem is given at the end of this chapter. Thus, rewriting (3.1)

as

(λ1 − λ0)

∫

Ω

P 2
i u

2
0 dx ≤

∫

Ω

|∇Pi|2u2
0 dx (3.6)

and summing on i for i = 1, ..., n gives us that

λ1 − λ0 ≤
∫
Ω

(
∑n

i=1 |∇Pi|2) u2
0 dx∫

Ω
(
∑n

i=1 P
2
i )u2

0 dx
. (3.7)

So from (3.2) it is easy to see that

n∑

i=1

P 2
i (x) = g(r)2. (3.8)

Also, we can compute that

∇Pi =

n∑

j=1

ej

[(
g(r)

r

)′
xixj

r
+ δij

g(r)

r

]
(3.9)

which gives

|∇Pi|2 =

(
g′

r

)2

x2
i +

g2

r2
− g2

r4
x2

i (3.10)

and then finally
n∑

i=1

|∇Pi|2 = (g′)2 + (n− 1)
g2

r2
. (3.11)

Thus our basic gap inequality becomes

λ1 − λ0 ≤
∫
Ω

[
(g′)2 + (n− 1)g2

r2

]
u2

0 dx∫
Ω
g(r)2u2

0 dx
. (3.12)

So now we want to pick a trial function g(r) as a ratio of Bessel functions so that

(3.12) is an equality if Ω is an n-dimensional ball. Hence we take

g(r) = g̃(γr), (3.13)

where

g̃(x) ≡






Jn/2(βx)

Jn/2−1(αx)
for 0 ≤ x < 1,

g̃(1) ≡ limx→1− g̃(x) for x ≥ 1,
(3.14)
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with α = jn/2−1,1, β = jn/2,1 and γ =
√
λ0/α. Substituting this into (3.12) gives us

that

λ1 − λ0 ≤
λ0

∫
Ω
B(γr)u2

0 dx

α2
∫
Ω
g̃(γr)2u2

0 dx
, (3.15)

where

B(x) ≡ g̃′(x)2 + (n− 1)
g̃(x)2

x2
. (3.16)

It is shown in [2] that g̃(x) is increasing and B(x) is decreasing, since both g̃′(x) and

g̃(x)/x are positive and decreasing. It should be noted that this is the difficult step of

the proof, but is omitted here for brevity. Now let f ∗ denote the spherical decreasing

rearrangement of f and f∗ denote the spherical increasing arrangement and we obtain

∫

Ω

B(γr)u2
0 dx ≤

∫

Ω∗

B(γr)∗u∗20 dx ≤
∫

Ω∗

B(γr)u∗20 dx ≤
∫

S1

B(γr)z2 dx (3.17)

and

∫

Ω

g̃(γr)2u2
0 dx ≥

∫

Ω∗

g̃(γr)2
∗u

∗2
0 dx ≥

∫

Ω∗

g̃(γr)2u∗20 dx ≥
∫

S1

g̃(γr)2z2 dx. (3.18)

Here S1 is the n-dimensional ball so that





−∆z = λz on S1,

z = 0 on ∂S1,
(3.19)

has λ0 as its first eigenvalue. Then we see that

z = cr1−n/2Jn/2−1(
√
λ0r), (3.20)

where c is a nonzero constant. Chiti’s comparison result [14] gives us that if c is

chosen so that ∫

Ω

u2
0 dx =

∫

Ω∗

u∗20 dx =

∫

S1

z2 dx, (3.21)

then there exists a point r1 ∈ (0, 1/γ) such that






u∗0(r) ≤ z(r) for 0 ≤ r ≤ r1,

u∗0(r) ≥ z(r) for r1 ≤ r ≤ 1/γ.
(3.22)
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The last of the inequalities in (3.17) and (3.18) follows from the fact that

∫

Ω∗

f(r)u∗20 dx ≥
∫

S1

f(r)z2 dx if f is increasing (3.23)

and ∫

Ω∗

f(r)u∗20 dx ≤
∫

S1

f(r)z2 dx if f is decreasing. (3.24)

We prove (3.24) as follows: Let f be an increasing function and let r∗ be the radius

of Ω∗. Then we have

∫

S1

f(r)z2 dx−
∫

Ω∗

f(r)u∗20 dx = nCn

[∫ r1

0

f(r)(z2 − u∗20 )rn−1 dr

+

∫ 1/γ

r1

f(r)(z2 − u∗20 )rn−1 dr

−
∫ r∗

1/γ

f(r)u∗20 r
n−1 dr

]

≤ nCn

[
f(r1)

∫ r1

0

(z2 − u∗20 )rn−1 dr

+f(r1)

∫ 1/γ

r1

(z2 − u∗20 )rn−1 dr

−f(r1)

∫ r∗

1/γ

u∗20 r
n−1 dr

]

= f(r1)

[∫

S1

z2 dx−
∫

Ω∗

u∗20 dx

]

= 0

by equation (3.21). Here Cn is the volume of the unit ball in n dimensions; nCn

represents its surface area. Also, an analogous result proves the reverse inequality for

f decreasing.

Now that we have shown (3.17) and (3.18), we combine them with (3.15) to obtain

λ1 − λ0 ≤
λ0

α2

∫
S1
B(γr)z2 dx

∫
S1
g̃(γr)2z2 dx

=
λ0

α2

∫ 1

0
B(r)J2

n/2−1(αr)r dr∫ 1

0
g̃(r)2J2

n/2−1(αr)r dr

=
λ0

α2
[(λ1 − λ0)for the ball of radius 1]

=
λ0

α2
(β2 − α2); (3.25)
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which immediately gives

λ1/λ0 ≤ β2/α2 = j2
n/2,1/j

2
n/2−1,1. (3.26)

The identification of λ1−λ0 for the ball of radius 1 follows by observing that (3.12) is

an equality if Ω is a ball of radius 1 and g(r) is chosen to be g̃(r) = Jn/2(βr)/Jn/2−1(αr)

for 0 ≤ r ≤ 1.

Finally, we look at when we have equality. It is easy to see that equality is obtained

when Ω is an n-dimensional ball. To see that this is the only case for which equality

holds we need only note that the last two inequalities in (3.17) and (3.18) are strict

unless Ω is a ball.

3.1 Center of Mass Theorem for Rn

Here we present the proof of the center of mass theorem that allows us to choose

our coordinate system to satisfy the condition needed for the proof of the PPW

conjecture. This can be found in [9].

Lemma 2 (Center of Mass Theorem). The origin may be chosen in such a way so

that ∫

Ω

G(r)xi

r
dV = 0, (3.27)

where G(r) is a continuous, differentiable, positive function on [0,∞).

Proof. Consider the n-vector

~v(~a) =

∫

Ω+~a

G(r)~x

r
dV (3.28)

where

~vi(~a) =

∫

Ω+~a

G(r)~xi

r
dV (3.29)

as a function of the origin of the xi coordinates and note that it is a continuous

vector field. Take B ⊂ Rn to be the ball containing Ω such that the origin of the
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xi coordinates is the center of B. Now take ~a ∈ ∂B. It is a known theorem in

topology that any nonvanishing vector field on a ball must point directly inward at

some point. See Theorem 29 for a proof of this in the appendix. Hence, if we can

show that ~a · ~v(~a) > 0, then this vector field is always pointing outwards. Thus, it

must vanish at some point ~a0 ∈ B. We will take this point to be our origin.

To show this, we calculate

~a · ~v(~a) =

∫

Ω+~a

G(r)~x · ~a
r

dV (3.30)

=

∫

Ω

G(|x+ a|)(~x+ ~a) · ~a
|x+ a| dV.

Since G > 0, we must now show that

(~x+ ~a) · ~a
|x+ a| > 0. (3.31)

To do this, we recognize

(~x+ ~a) · ~a
|x+ a| =

|a|2 + ~a · ~x
|x+ a| (3.32)

≥ |a|2 − |a||x|
|x+ a| (3.33)

=
|a|(|a| − |x|)

|x+ a| > 0, (3.34)

where (3.33) follows from the definition of the dot product and (3.34) follows from

the fact that ~x ∈ Ω,~a ∈ ∂B, and Ω ⊂ B. Hence our vector field here would always

be outward pointing and must vanish at some point.

Remark. Observe also from this that if Ω is already a ball, then the origin must

be located in the center of the ball, for no matter the radius of the ball, the above

argument would show that the vector field would always point outward. Hence we

could take smaller and smaller concentric balls to see that the vanishing point must

be the center of the ball.

Copyright c© Julie Miker, 2009.
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Chapter 4 Payne-Pólya-Weinberger Inequality in Hyperbolic Space

In this section we will discuss the result obtained by Benguria and Linde in [8] which

is the extension of the Payne-Pólya-Weinberger Inequality in hyperbolic space. First,

we give some preliminaries of the space in which we are working, then move on to

the proof of the main result.

4.1 The Geometry of Hyperbolic Space

We define hyperbolic space Hn as the unique simply connected n-dimensional man-

ifold of constant negative sectional curvature, which is normalized to −1. The ball

model of this space is given by

B
n = {x ∈ R

n : |x| < 1}

with the Riemannian metric

ds2 =
4|dx|2

(1 − |x|2)2
.

If we define spherical coordinates about x = 0 by

x = |x|ξ |x| = tanh(r/2),

where |x| ∈ [0, 1), r ∈ [0,∞), ξ ∈ Sn−1, then we obtain

dx =
sech2( r

2
)

2
(dr)ξ + tanh(r/2)dξ

and

|dx|2 =
sech4( r

2
)

4
(dr)2 + tanh2(r/2)|dξ|2.

So this gives us

ds2 = (dr)2 + sinh2(r)|dξ|2
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for our metric on [0,∞) × S
n−1 and the Riemannian measure is

dV = ρn−1 sinhn−1(r) dr dξ,

where dξ is the measure on S
n.

Another way to view this space is through the hyperboloid model. This model is

useful for our center of mass argument in hyperbolic space. Here Hn is realized as a

subset of Rn+1 determined by the indefinite quadratic form q : Rn+1×Rn+1 → R+∪{0}

defined as

q(x, y) ≡ xn+1yn+1 −
n∑

i=1

xiyi.

We wish to find the group of linear transformations that preserve q. Denote the matrix

representation of our metric by gM . Then gM is a diagonal matrix with (1, ..., 1,−1)

as the diagonal entries, so that this group is the group of transformations that satisfy

RTgMR = I. We denote this group by O(n, 1). Now we consider the surface

Q+
n ≡ {x ∈ R

n+1|q(x, x) = 1 and xn+1 > 0}

which is the positive sheet of the two-sheeted hyperboloid in R
n+1 determined by

q(x, x) = 1. The metric on Q+
n is given by

ds2 =
n∑

i=1

dx2
i − dx2

n+1.

4.2 Eigenvalue properties

The standard separation of variables for the Laplacian gives us that the eigenvalues

and eigenfunctions of −∆ on a geodesic ball in Hn of radius r̃ are determined by the

differential equation

−z′′(r) − (n− 1)

tanh r
z′(r) +

l(l + n− 2)

sinh2 r
z(r) = λz(r), (4.1)

where l = 0, 1, 2..., with the boundary conditions z′(0) = 0 (for l = 0) or z(r) ∼ rl as

r ↓ 0 (for l > 0) and z(r̃) = 0. Here we use the convention that zl(r) > 0 for r ↓ 0.
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Let hl denote the operator applied to z on the left hand side of (4.1) with the given

boundary conditions. Then it is easy to see that hl′ > hl in the sense of quadratic

forms if l′ > l. Thus we know that the lowest eigenvalue on the geodesic ball is given

by λ0(h0). Next we show that the second eigenvalue must be λ0(h1).

Lemma 3. The first eigenvalue of the Dirichlet Laplacian on a geodesic ball in Hn is

the first eigenvalue of (4.1) with l = 0, while the second eigenvalue on the geodesic ball

is the first eigenvalue of (4.1) with l = 1. The second eigenvalue is n-fold degenerate.

Proof. Assume that zl solves (4.1) for some fixed λ. Then it is not hard to show that

if you replace l with l + 1, then

−z′l − l coth rzl

satisfies (4.1) and for l replaced by l − 1

z′l + (l + n− 2) coth rzl

satisfies (4.1). So then we obtain that

zl+1 = −z′l − l coth rzl (4.2)

zl−1 = z′l + (l + n− 2) coth rzl (4.3)

Setting l = 0 in (4.2) we get

z1 = −z′0. (4.4)

Letting l = 1 in (4.3) and multiplying both sides by sinhn−1 r we obtain

sinhn−1 rz0 = (sinhn−1 rz1)
′. (4.5)

Rolle’s Theorem tells us that between any two zeros of z0 there is a zero of z′0. Also,

since we have (4.4) it is clear z1 will also have a zero between any two zeros of z0.

Similarly, between any two zeros of sinhn−1 rz1 there is a zero of its derivative. From

(4.5) we also get that z0 will have a zero here. Thus for fixed λ > 0 the zeros of z0
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and z1 on [0,∞) interlace. Now look at z0 and z1 for λ = λ0(h1). Then we know

from the boundary conditions that the first positive zero of z1 is equal to the radius

r̃ of the geodesic ball. From what we have just shown we have that z0 has exactly

one zero in [0, r̃] and the second zero of z0 is greater than r̃. Combining this with

the fact that the positive zeros of any zl are decreasing functions of λ shows that

λ1(h0) > λ0(h1). Hence we have that the second eigenvalue of −∆ on the geodesic

ball is given by λ0(h1).

The degeneracy of the second eigenvalue on the geodesic ball follows from the

separation of variables.

4.3 The Payne-Pólya-Weinberger Inequality

Theorem 15. Let Ω ⊂ Hn be an open bounded domain in the hyperbolic space of

constant negative curvature and call λi(Ω) the i-th Dirichlet eigenvalue on Ω. If

S1 ⊂ Hn is a geodesic ball such that λ0(Ω) = λ0(S1) then

λ1(Ω) ≤ λ1(S1) (4.6)

with equality if and only if Ω is a geodesic ball.

Proof. We proceed with the proof of the main theorem. Let u0 be the first eigen-

function of −∆ on Ω. Take S1 to be a geodesic ball such that λ0(S1) = λ0(Ω) and

take z0 to be the corresponding eigenfunction. From Lemma 3, the second eigenvalue

λ1(S1) is n-fold degenerate and the corresponding eigenspace is spanned by the func-

tion z1(r)χk, where z1 is the solution of (1.9) for l = 1 and χk is the k-th spherical

coordinate.

Let P 6= 0 be a function on Ω such that Pu0 is in the domain of the quadratic

form D where

D[u] = (∇u,∇u) (4.7)
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and ∫

Ω

Pu2
0 dV = 0. (4.8)

By the Rayleigh-Ritz theorem we have the estimate

λ1(Ω) − λ0(Ω) =
D[Pu0]

(Pu0, Pu0)

= (Pu0, Pu0)
−1

∫

Ω

(〈∇Pu0,∇Pu0〉 − λ0P
2u2

0) dV

Using (4.7) and the argument in section 2.4 we can find the gap inequality

λ1(Ω) − λ0(Ω) ≤
∫
Ω
u2

0〈∇P,∇P 〉 dV∫
Ω
P 2u2

0 dV
. (4.9)

We choose the following set of n functions,

Pi(r, ~χ) := g(r)χi (4.10)

where χi is the i-th spherical coordinate and with

g(r) =






z1(r)
z0(r)

r ∈ [0, r̃),

limr↑r̃ g(r) r ≥ r̃.
(4.11)

Recall the r̃ is the geodesic radius of S1, and that by convention z0 and z1 are positive.

With our choice of Pi and the center of mass theorem, we may always shift Ω such

that (4.8) is satisfied.

We may then calculate, following [12], that

n∑

i=1

P 2
i (r, ~χ) = g2(r), (4.12)

n∑

i=1

〈∇Pi,∇Pi〉 =

(
∂g

∂r

)2

+ (n− 1) sinh−2(r)g2(r). (4.13)

Then multiply (4.9) by
∫
Ω
P 2u2

0 dV and then sum over i = 1, ..., n to obtain

λ1(Ω) − λ0(Ω) ≤
∫
Ω
u2

0(r, ~χ)B(r) dV∫
Ω
u2

0(r, ~χ)g2(r) dV
(4.14)

where

B(r) = g′(r)2 + (n− 1) sinh−2(r)g2(r). (4.15)
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To finish the proof, we need the following inequalities to hold:
∫

Ω

u2
0(r, ~χ)B(r) dV ≤

∫

Ω∗

u∗0(r)
2B∗(r) dV (4.16)

≤
∫

Ω∗

u∗0(r)
2B(r) dV

≤
∫

S1

z2
0(r)B(r) dV

and
∫

Ω

u2
0(r, ~χ)g(r)2 dV ≥

∫

Ω∗

u∗0(r)
2g∗(r)

2 dV (4.17)

≥
∫

Ω∗

u∗0(r)
2g(r)2 dV

≥
∫

S1

z2
0(r)g(r)

2 dV.

Here we assume that z0 is normalized such that
∫
Ω
u2

0 dV =
∫

S1
z2
0 dV. Also, f ∗ is

used to denote the spherical decreasing rearrangement of f , and f∗ the spherical in-

creasing rearrangement. In each of (4.16) and (4.17), the first inequality follows from

the properties of rearrangements. The second inequality follows from the monotonic-

ity properties of g and B, which will be proven below. Finally, the third inequality

follows from a modified version of Chiti’s comparison result and also from the mono-

tonicity properties of g and B. This will also be proven later. Finally, from (4.14),

(4.16), and (4.17) we have

λ1(Ω) − λ0(Ω) ≤
∫

S1
z2
0(r)B(r) dV∫

S1
z2
0(r)g

2(r) dV
= λ1(S1) − λ0(S1). (4.18)

Since we have chosen λ0(Ω) = λ0(S1) we have that

λ1(Ω) ≤ λ1(S1), (4.19)

which proves our theorem.

4.4 The Center of Mass Argument in Hyperbolic Space

Recall that we need a center of mass argument to aid in selecting appropriate test

functions for the Rayleigh-Ritz variational inequality, so here we have the version of
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this argument for H
n. First let’s take H

n to be hyperbolic space in the blown-up ball

model and H̃n to be hyperbolic space in the hyperboloid model. Then

I : H
n → H̃

n, |x| = tanh(r/2)ξ → y = ((sinh r)ξ, cosh r)

is an isometry between the two spaces.

Now observe that for the space H̃n with y = ((sinh r)ξ, cosh r) we have that

q(y, y) ≡ yn+1yn+1 −
n∑

i=1

yiyi

= cosh2(r) − sinh2(r)(ξ2
1 + ξ2

2 + . . .+ ξ2
n) = 1,

hence this is a valid quadratic form for our space.

Also, each Lorentz transformation in Rn+1 induces an isometry of H̃n onto itself.

This group of transformations has the transitivity property, so for any two points

p1, p2 ∈ Hn, there exists a Lorentz transformation that maps p1 on p2. So then we

have that I−1RI is an isometry on H
n. So now we are ready to state and prove our

theorem.

Theorem 16. Let Ω be a bounded domain in Hn and ξ ∈ Sn−1. Take h(r) to be a

positive continuous function on [0,∞) and Pi(ξ, r) = ξih(r). Then one can shift Ω

such that ∫

Ω

Pi(r, ξ)u
2
0(x) dV = 0 for all i = 1, ..., n. (4.20)

Proof. Let Ω̃ = I(Ω) and P̃i(y) = Pi(I
−1(y)). Then

∫

Ω

Pi(x) dV =

∫

Ω̃

P̃i(y) dṼ . (4.21)

Because it doesn’t matter whether we shift Ω or Pi (changing variables shows these

are equivalent), we need only to show that there is some Lorentz transformation R

such that ∫

Ω̃

P̃i(Ry) dṼ = 0. (4.22)
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Take Θ(z, y) to be the (n + 1) coordinate of y after a Lorentz transformation that

maps z to e = (0, ..., 0, 1) and then define the vector field

v(z) =

∫

Ω̃

y

sinh Θ(z, y)
h(Θ(z, y)) dṼ ,

where y is the variable of integration. Also, let

Πy = (y1, ..., yn) for y ∈ H̃
n. (4.23)

With this definition we see that

I−1(y) = (cosh−1(yn+1),
Πy

sinh r
). (4.24)

Now we assume that there exists some z0 ∈ H̃n and α ∈ R such that

v(z0) = αz0. (4.25)

Under this assumption we choose R to be a Lorentz transformation that maps

z0 to (0, ..., 0, 1). Then the r-coordinate of Ry is Θ(z, y) and the ξ-coordinate is

ΠRy/ sinhΘ(z0, y), such that

∫

Ω̃

P̃i(Ry) dṼ =

∫

Ω̃

(ΠRy)i

sinh Θ(z0, y)
h(Θ(z0, y)) dṼ

= (ΠRv(z0))i

= α(ΠRz0)i = 0

So now we must show that such a z0 exists. Note that the projection Π has a well

defined inverse

Π−1ξ = (ξ1, ..., ξn,
√

1 + ξ2
1 + ...+ ξ2

n) for ξ ∈ R
n. (4.26)

Also ΠΩ̃ ⊂ R
n is a bounded domain since Ω is bounded so we can find a ball BR ⊂ R

n,

that is centered at the origin of Euclidean radius R, such that ΠΩ̃ is contained in BR.

On BR we define the vector field w : BR → Rn with

w(x) = Π

(
v(Π−1x) − [v(Π−1x)]n+1

[Π−1x]n+1
Π−1x

)
. (4.27)
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From our definition of Π−1 we see that the set Π−1BR and the origin of R
n+1 span

the cone

C =

{
y ∈ R

n+1|yn+1 ≥ 0 and
y2

1 + ... + y2
n

y2
n+1

≤ R2

R2 + 1

}

and Ω̃ is contained in C. Therefore, since v(z) is an integral over vectors in Ω̃ with

positive coefficients it also lies in this cone for every z ∈ H̃
n. From this we have the

estimate

||Πv(z)||
[v(z)]n+1

≤ R√
R2 + 1

. (4.28)

Now if we apply the Cauchy-Schwartz inequality and the above inequality we obtain

for any x ∈ ∂BR the following inequality,

w(x) · x = Πv(Π−1x) · x− [v(Π−1x)]n+1

[Π−1x]n+1

||x||2 (4.29)

≤ ||Πv(Π−1x)||R− [v(Π−1x)]n+1√
R2 + 1

R2

≤ [v(Π−1x)]n+1√
R2 + 1

R2 − [v(Π−1x)]n+1√
R2 + 1

R2 = 0

So we see that w(x) cannot point directly outward at any point of ∂BR. So as a

consequence of the Brouwer Fixed Point Theorem, the vector field must vanish at

some point. So there exists some x0 ∈ BR such that w(x0) = 0. Thus from our

definition of w and the fact that Π−1(0) = 0 we have that

v(Π−1x0) =
[v(Π−1x0)]n+1

[Π−1x0]n+1
Π−1x0. (4.30)

So by setting z0 = Π−1x0 and α = [v(Π−1x0)]n+1

[Π−1x0]n+1
we see the proof is complete.

4.5 Chiti’s Comparison Argument in Hn

This section will give the justification for the last step in the chains of inequalities

(4.16) and (4.17). Here we take Ω∗ to be the symmetric rearrangement of Ω, which

is the geodesic ball centered at the origin having the same n-dimensional volume of

Ω. Define Ωt = {x ∈ Ω|u0(x) > t} and ∂Ωt = {x ∈ Ω|u0(x) = t}. Let µ(t) = |Ωt| and
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|∂Ωt| = Hn−1(∂Ωt), where Hn−1 denotes the (n-1)-dimensional measure on H
n. For

any function f : Ω → R+ we define the decreasing rearrangement, f ♯ to be

f ♯(s) = inf{t ≥ 0|µ(t) < s}. (4.31)

Also, we still take f ∗(r, ~χ) = f ∗(r) to be the symmetric decreasing rearrangement.

The former is a decreasing function from [0, |Ω|] to R+ and is equimeasurable with

f . The latter is defined on Ω∗, spherically symmetric, equimeasurable with f , and is

decreasing in r. The relationship between f ∗ and f ♯ is given by

f ∗(r, ~χ) = f ♯(A(r)), (4.32)

where

A(r) = nCn

∫ r

0

sinhn−1 r̄ dr̄ (4.33)

is the volume of a geodesic ball in Hn with radius r. Here nCn is the surface area of

the (n-1)-dimensional unit sphere in Euclidean space. We analogously define f♯ and

f∗ to be the increasing rearrangements of f .

Lemma 4. (Chiti comparison result) Let u0(r, ~χ) be the first Dirichlet eigenfunction

of −∆ on Ω and z0(r) the first eigenfunction of −∆ on S1, normalized such that

∫

Ω

u2
0 dV =

∫

S1

z2
0 dV. (4.34)

Then there exists some r0 ∈ (0, r̃) such that

z0(r) ≥ u∗0(r) for r ∈ (0, r0) and

z0(r) ≤ u∗0(r) for r ∈ (r0, r̃).

Proof. Observe that the co-area formula gives the following

−µ′(t) =

∫

∂Ωt

1

|∇u0|
dHn−1 (4.35)
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(see [12], p. 86). Also, applying Gauss’ Theorem (see [12], p. 7) to −∆u0 = λ0u0 we

obtain ∫

Ωt

λ0u0 dV =

∫

∂Ωt

|∇u0| dHn−1, (4.36)

since the outward normal to Ωt is −∇u0/|∇u0|. Using the Cauchy-Schwarz inequality

and equations (4.35) and (4.36) we find that

(Hn−1(∂Ωt))
2 =

(∫

∂Ωt

dHn−1

)2

≤ −µ′(t)λ0

∫

Ωt

u0 dV. (4.37)

In Hn we also have that the classical isoperimetric inequality holds, so we have

Hn−1(∂Ωt) ≥ Hn−1(∂(Ω
∗
t )). (4.38)

Recall definition (4.33) and let A−1 be the inverse function of A. Then the (n-1)-

dimensional measure of ∂(Ω∗
t ) can be written as

Hn−1(∂(Ω
∗
t )) = nCn sinhn−1 rA−1(|Ω∗

t |) = A′(A−1(|Ω∗
t |)). (4.39)

Hence, substituting into (4.38) yields

Hn−1(∂Ωt) ≥ A′(A−1(|Ω∗
t |)) (4.40)

and (4.37) can be written as

λ0

∫

Ωt

u0 dV ≥ − 1

µ′(t)
A′(A−1(|Ω∗

t |))2. (4.41)

Then we use the fact that

∫

Ωt

u0 dV =

∫ µ(t)

0

u♯
0(s) ds, (4.42)

which follows from the definition of u♯
0. Since it is not hard to see that u♯

0(s) is the

inverse function of µ(t), we have that

−du
♯
0

ds
= − 1

µ′(t)
, (4.43)
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which, when combined with (4.41) and (4.42), gives that

−du
♯
0

ds
≤ λ0A

′(A−1(s))−2

∫ s

0

u♯
0(s

′) ds′. (4.44)

Also, one can check that for Ω replaced by Ω∗ and u0 replaced by z0 then equality

holds in all of the steps leading to the previous equation, so we also have

−dz
♯
0

ds
≤ λ0A

′(A−1(s))−2

∫ s

0

z♯
0(s

′) ds′. (4.45)

Using these two relations and recalling the assumed normalization, we will show that

the functions u♯
0 and z♯

0 are either identical or they cross each other exactly once on

the interval [0, |Ωt|]. In the following, we make use of the fact that u♯
0 and z♯

0 are

continuous. By the definition of the decreasing rearrangement, both functions are

decreasing and we know that z♯
0(|Ωt|) = u♯

0(|Ω|) = 0. Recall that from the Rayleigh-

Faber-Krahn inequality and since we took λ0(S1) = λ0(Ω) it follows that |S1| ≤ |Ω|.

From the normalization, it is clear that z♯
0 and u♯

0 are either identical or cross at least

once on [0, |S1|]. To show that they cross exactly once, we assume that they cross at

least twice and obtain a contradiction. Under this assumption, there are two points

0 ≤ s1 < s2 < |S1| where u♯
0(s) > z♯

0(s) for s ∈ (s1, s2), u
♯
0(s2) = z♯

0(s2) and either

u♯
0(s1) = z♯

0(s1) or s1 = 0. Now we define the following function

v(s) =






u♯
0(s) on [0, s1] if

∫ s1

0
u♯

0(s) ds >
∫ s1

0
z♯
0(s) ds,

z♯
0(s) on [0, s1] if

∫ s1

0
u♯

0(s) ds ≤
∫ s1

0
z♯
0(s) ds,

u♯
0(s) on [s1, s2],

z♯
1(s) on [s2, |S1|].

(4.46)

Then by substituting v(s) into (4.44) and (4.45) we see that

−dv
ds

≤ λ0A
′(A−1(s)))−2

∫ s

0

v(s′) ds′ (4.47)

for all s ∈ [0, |S1|].

Finally, we define the test function Ψ(r, ~χ) = v(A(r)). If z0 and u0 are not identical,

using the Rayleigh-Ritz characterization of λ0, (4.47), and integration by parts, we
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obtain

λ0

∫

S1

Ψ2 dV <

∫

S1

|∇Ψ|2 dV (4.48)

=

∫ r̄

0

(A′(r)v′(A(r)))2A′(r) dr

≤ −
∫ r̄

0

A′(r)v′(A(r))λ0

∫ A(r)

0

v(s′) dr

= λ0

∫ |S1|

0

v(s)2 ds

= λ0

∫

S1

Ψ2 dV

So we see that we obtain a contradiction to the assumption that u♯
0 and z♯

0 intersect

twice, so the lemma is proved.

Copyright c© Julie Miker, 2009.
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Chapter 5 Payne-Pólya-Weinberger-like Inequalities for a Family of

Spherically Symmetric Riemannian Manifolds

In this chapter we will set up and state our results for our family of spherically

symmetric Riemannian manifolds, Fn. In the first section we present an overview

of the geometry of this space. We then go on to state and prove our main result,

which is a PPW-type inequality for the gap of the first two Dirichlet eigenvalues.

In the subsequent sections we present several lemmas and theorems needed for the

proof of the main theorem, including a modified center of mass theorem and Chiti

comparison argument. Finally, we look at another approach to finding test function

for the Rayleigh-Ritz inequality and present one more gap inequality based on Gram-

Schmidt orthogonalization.

5.1 The Geometry of Fn

In this section we will talk more about the space Fn, which serves as an interpola-

tion space between Euclidean space and hyperbolic space. As is mentioned in the

introduction, in general we take a function f so that f > 0, f(0) = 0, and f ′(0) = 1.

Specifically, we use

f(r) = r + βrα (5.1)

so that f satisfies our above conditions, f ∈ C2(Ω), r ∈ [0,∞), α ≥ 2, and β > 0 is

a constant.

Using this f , we take

ds2 = dr2 + f(r)2|dω|2. (5.2)

to be the metric of this space, relative to a fixed origin. Note that the straight

lines from this origin are geodesics in Fn. For any x ∈ Rn, r(x) or |x| denotes the

geodesic distance from 0 to x. We can also write the metric in the following way with
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(r, θ1, θ2, ..., θn−2, φ) as our coordinates. Also, the off-diagonal elements are zero in

this case. So then the metric is

gij =




1 0

0 f(r)2 0

0 f(r)2 sin2 θ1 0

0 f(r)2 sin2 θ1 sin2 θ2 0

. . .

0 f(r)2 sin2 θ1 · · · sin2 θn−2




.

We also occasionally need to use the modified Cartesian coordinates for this space,

which are given as

x1 = f(r) sin θn−2 · · · sin θ1 cosφ (5.3)

x2 = f(r) sin θn−2 · · · sin θ1 sin φ

...

xn−1 = f(r) sin θn−2 cos θn−3

xn = f(r) cos θn−2.

We can compute the gradient in the spherical system to obtain

∇v =
∂v

∂r
+

1

f(r)

∂v

∂θ1
+ · · · + 1

f(r) sin θ1 · · · sin θn−2

∂v

∂φ
, (5.4)

and in (x1, ..., xn) to obtain

∇v =

n∑

k=1

êk

[(
f ′(r) − 1

f 2(r)

)
xkl(x) + 1

]
∂v

∂xk
, (5.5)

where

l(x) =

n∑

m=1

xm. (5.6)
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Also,

∆v =
1

f(r)n−1

∂

∂r

(
f(r)n−1∂v

∂r

)
+

1

f(r)2
∆Sn−1v, (5.7)

where ∆Sn−1 is the spherical Laplacian. Finally, the volume form dV is given by the

following formula,

dV = f(r)n−1 sinn−2 θ1 · · · sin θn−2 dr dθ1 · · ·dφ. (5.8)

Under this definition, we can find that the sectional curvature of F
n with respect to

the spherical coordinates is given by

Kii = 0 for 1 ≤ i ≤ n (5.9)

K1i = Ki1 =
−f ′′

f
for 2 ≤ i ≤ n (5.10)

Kij =
1 − (f ′)2

f 2
for 2 ≤ i, j ≤ n, i 6= j. (5.11)

Also, the Ricci curvature is given by

Ric(x1) =
−f ′′

f
(5.12)

Ric(xi) =

−f ′′

f
+ (n−2)(1−(f ′)2)

f2

n− 1
, for 2 ≤ i ≤ n (5.13)

and the scalar curvature by

κ =
1

n

(
−f ′′

f
+

−f ′′

f
+ (n−2)(1−(f ′)2)

f2

n− 1

)
. (5.14)

From these calculations we see that the metric would be degenerate for f = rα

when r = 0, hence the reason we add the linear term so that the manifold agrees with

Euclidean space near the origin. Also, as r grows large, this manifold grows closer to

Euclidean space. We remark that for Fn, R =
∫∞

0
ds

f(s)
is finite. This means that Fn

is conformal to an open ball in Rn of radius R. For a discussion of this see [17].

5.2 A PPW-type Inequality for the Eigenvalues of the Dirichlet Laplacian

In this section, we find a bound for difference of the first two Dirichlet eigenvalues of

a bounded domain contained in Fn. For our main result, we obtain a version of the
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Payne-Pólya-Weinberger inequality for our set of manifolds. The optimal result is

not obtained here because the Laplacian does not commute with translations in Fn.

To account for this, we must now work on shifted domains in our manifold. So first

define

Tν : L2(Ω) → L2(Ω + ν), (5.15)

and

−∆ν = Tν(−∆Ω)T−1
ν (5.16)

on L2(Ω + ν). From this definition we see that

−∆ν(Tνu0)(x) = λ0(Ω)Tνu0(x). (5.17)

Also,

Tνu0(x) = J(ν, x)u0(x− ν), (5.18)

and we would like to find the Jacobian term J(ν, x). We will show this computation

in three dimensions, and note that this method will work for higher dimensions as

well. First, note that for n = 3,

dV = f(r)2 sin θ dr dθ dφ, (5.19)

and

x1 = f(r) sin θ cosφ

x2 = f(r) sin θ sinφ

x3 = f(r) cos θ.

So then we find

dx1 = f ′(r) sin θ cos θ dr + f(r) cos θ cos φ dθ − f(r) sin θ sinφ dφ

dx2 = f ′(r) sin θ sinφ dr + f(r) cos θ sinφ dφ+ f(r) sin θ cos φ dφ

dx3 = f ′(r) cos θ dr − f(r) sin θ dθ. (5.20)
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Next, we compute that

dx1 ∧ dx2 ∧ dx3 = f(r)2f ′(r) sin θdr ∧ dθ ∧ dφ = dV (x)f ′(|x|). (5.21)

So the Jacobian term J(ν, x) is given by

J(ν, x)2 =

[
dV (x− ν)

dV (x)

]
=

f ′(|x|)
f ′(|x− ν|) . (5.22)

Thus, there is an extra error term along with the upper bound of the eigenvalues on

the geodesic disk having the same volume as our original domain. Now we state our

bound based on the PPW inequality.

Theorem 17. (A PPW-like result for Fn) Let Ω ⊂ Fn be an open bounded domain

and call λi(Ω) the i-th Dirichlet eigenvalue on Ω. Denote by Ω∗ the geodesic ball in

Fn having the same volume as Ω and r̃ its geodesic radius. Also, we denote by ~ν the

vector associated with the center of mass theorem for Ω in Fn. So, if we have that

the angle between ~x and ~ν is between −π/2 and π/2 for all x ∈ Ω, then

λ1(Ω) − λ0(Ω) ≤
{

sup
x∈Ω

B(|x+ ν|)
B(|x|)

}[
1 + 2ǫ2 + bΩ(ν, ǫ)

]
(λ1(Ω

∗) − λ0(Ω
∗)) + F(ν, ǫ),

(5.23)

where

B(r) = g′(r)2 + (n− 1)f−2(r)g2(r), (5.24)

g(r) =






z1(r)
z0(r)

r ∈ [0, r̃),

limr↑r̃ g(r) r ≥ r̃,
(5.25)

F(ν, ǫ) =

(
1 + ǫ2 +

1

ǫ2

)
sup

x∈Ω+ν

{
∑

k

[(
f ′(|x− ν|) − 1

f(|x− ν|)2

)
|(x− ν)kl(x− ν) + 1|

∣∣∣∣
∂J(−ν, x − ν)

∂xk
J(ν, x)

∣∣∣∣
]}

, (5.26)
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and

bΩ(ν, ǫ) ≡ max
k=1,...,n

sup
x∈Ω+ν

{(
f ′(|x− ν|) − 1

f(|x− ν|)2

)(
f(|x|)2

f ′(|x|) − 1

)

[
|νkl(ν) − xkl(ν) − νkl(x)| +

|F (x, ν)|f(|x− ν|)2

f ′(|x− ν|) − 1
|xkl(x)|

]

[
f ′(|x|) − 1

f(|x|)2
|xkl(x)| + 1

]−1
}(

1 +
2

ǫ2

)
, (5.27)

where

F (x, ν) =

[
f ′(|x− ν|) − 1

f(|x− ν|)2
− f ′(|x|) − 1

f(|x|)2

]
. (5.28)

Proof. Let u0 be the first eigenfunction of −∆ on Ω. We again wish to find suitable

test functions to substitute into the Rayleigh-Ritz inequality. Using our modified

center of mass argument, Theorem 19, we may choose the following test function,

PjTνu0 = hj(ψ)g(r)Tνu0, (5.29)

where

hj(ψ) =
xj

f(r)
. (5.30)

Thus, we get the following upper bound

λ1(Ω) ≤
∫
Ω+ν

|∇νPjTνu0|2 dV∫
Ω+ν

|PjTνu0|2 dV
, (5.31)

where ∇ν = Tν∇T−1
ν . The next step is to compute the numerator of this bound, so

observe that

|∇νPjTνu0|2 = |(∇νPj)Tνu0 + Pj(∇νTνu0)|2 (5.32)

= |∇νPj |2|Tνu0|2 + 2∇νPj · ∇ν(Tνu0)PjTνu0

+ P 2
j |∇νTνu0|2.

Then recognize that

∇ν(P 2
j Tνu0) = 2Pj(∇νPj)Tνu0 + P 2

j (∇νTνu0) (5.33)
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and so we may substitute to see that

|∇νPjTνu0|2 = |∇νPj |2|Tνu0|2 + ∇ν(P 2
j Tνu0) · ∇ν(Tνu0)

− P 2
j |∇νTνu0|2 + P 2

j |∇νTνu0|2. (5.34)

Finally, integrating by parts allows us to find

∫

Ω+ν

|∇νPjTνu0|2 dV =

∫

Ω+ν

|∇νPj |2|Tνu0|2 dV + λ0(Ω)

∫

Ω+ν

P 2
j |Tνu0|2 dV. (5.35)

So, substituting into (5.31) gives us that

λ1(Ω) − λ0(Ω) ≤
∫
Ω+ν

|∇νPj|2|Tνu0|2 dV∫
Ω+ν

|PjTνu0|2 dV
. (5.36)

Next, we again want to calculate this numerator, so

(∇νPj)(x) = (Tν∇T−1
ν Pj)(x) (5.37)

= J(ν, x)(∇T−1
ν Pj(x− ν))

= J(ν, x)J(−ν, x− ν)

{
∑

k

êk

[(
f ′(|x− ν|) − 1

f(|x− ν|)2

)

(x− ν)kl(x− ν) + 1]
∂Pj(x)

∂xk

}

+ J(ν, x)

{
∑

k

êk

[(
f ′(|x− ν|) − 1

f(|x− ν|)2

)
(x− ν)kl(x− ν) + 1

]

[
∂J(−ν, x − ν)

∂xk

]}
Pj(x).

Observe that

J(ν, x)J(−ν, x− ν) = 1, (5.38)

and now write

(∇νPj)(x) = ∇Pj(x) + Lg(ν)Pj(x) +

(
∑

k

êkJk(ν, x)

)
Pj(x), (5.39)

where

Lg(ν) = −
∑

k

êk

[(
f ′(|x− ν|) − 1

f(|x− ν|)2

)
[xkl(ν) − νkl(x) − νkl(ν)]

+F (x, ν)[xkl(x) + 1]]
∂

∂xk
, (5.40)
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F (x, ν) =

[
f ′(|x− ν|) − 1

f(|x− ν|)2
− f ′(|x|) − 1

f(|x|)2

]
, (5.41)

and

Jk(ν, x) =
∑

k

(
f ′(|x− ν|) − 1

f(|x− ν|)2

)
[(x− ν)kl(x− ν) + 1]

(
∂J(−ν, x− ν)

∂xk
J(ν, x)

)
.

(5.42)

We will now use the notation that

(∇νPj)(x) = a+ b+ c (5.43)

to see that

|∇νPj(x)|2 = |a|2 + |b|2 + |c|2 + 2〈a, b〉 + +2〈a, c〉 + 2〈b, c〉 (5.44)

≤
(
1 + 2ǫ2

)
|a|2 +

(
1 +

2

ǫ2

)
|b|2 +

(
1 + ǫ2 +

1

ǫ2

)
|c|2

=
(
1 + 2ǫ2

)
|∇Pj(x)|2 +

(
1 +

2

ǫ2

)
|Lg(ν)Pj(x)|2

+

(
1 + ǫ2 +

1

ǫ2

)
g(r)2F(ν),

where

F(ν, ǫ) =

(
1 + ǫ2 +

1

ǫ2

)
sup

x∈Ω+ν

{
∑

k

[(
f ′(|x− ν|) − 1

f(|x− ν|)2

)
|(x− ν)kl(x− ν) + 1|

∣∣∣∣
∂J(−ν, x − ν)

∂xk
J(ν, x)

∣∣∣∣
]}2

. (5.45)

Also we compute, using the formula (5.5) for the gradient in Fn,

∇Pj(x) =

n∑

k=1

êk

[(
f ′(r) − 1

f 2(r)

)
xkl(x) + 1

]
∂Pj(x)

∂xk
, (5.46)

and

∑

j

|∇Pj|2 =
∑

j

g′(r)2hj(ψ)2 +
∑

j

g(r)2|∇hj(ψ)|2

= g′(r)2 + g(r)2
∑

j

|∇hj|2 (5.47)

= g′(r)2 + (n− 1)

(
g(r)

f(r)

)2

.
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Recall the definition that

B(r) = g′(r)2 + (n− 1)f−2(r)g2(r), (5.48)

so substituting into (5.36) gives that

λ1(Ω) − λ0(Ω) ≤
∫
Ω+ν

(1 + 2ǫ2)B(r)|Tνu0|2 dV + E(ν, u0) + g(r)2|Tνu0|2F(ν, ǫ)∫
Ω+ν

∑
j |PjTνu0|2 dV

,

(5.49)

where

E(ν, u0) =
∑

j

∫

Ω+ν

|Tνu0|2|Lg(ν)Pj(x)|2 dV. (5.50)

We now would like to obtain an upper bound for this error term, so observe that

|b|2 = |(Lg(ν)Pj)(x)|2 = bΩ(ν)|∇Pj(x)|2, (5.51)

where

bΩ(ν) ≡ max
k=1,...,n

sup
x∈Ω+ν

{(
f ′(|x− ν|) − 1

f(|x− ν|)2

)(
f(|x|)2

f ′(|x|) − 1

)

[
|νkl(ν) − xkl(ν) − νkl(x)| +

|F (x, ν)|f(|x− ν|)2

f ′(|x− ν|) − 1
|xkl(x)|

]

[
f ′(|x|) − 1

f(|x|)2
|xkl(x)| + 1

]−1
}
, (5.52)

and

F (x, ν) =

[
f ′(|x− ν|) − 1

f(|x− ν|)2
− f ′(|x|) − 1

f(|x|)2

]
. (5.53)

So now combining (5.49) and (5.51) gives

λ1(Ω) − λ0(Ω) ≤
[
1 + 2ǫ2 + bΩ(ν, ǫ)

]
∫
Ω+ν

B(r)|Tνu0|2 dV∫
Ω+ν

g(r)2|Tνu0|2 dV
+ F(ν, ǫ). (5.54)

Now we want to make use of the tools of symmetric rearrangement as well as a

modified version of the Chiti comparison result that is proved later in this chapter.

We also will later prove that B(r) is a decreasing function of r, while g(r) is increasing.

Let us use f ∗ to denote the spherical decreasing rearrangement of f , and f∗ the
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spherical increasing rearrangement. Thus
∫

Ω+ν

|(Tνu0)(x)|2B(r) dV =

∫

Ω

|u0(x)|2B(|x+ ν|) dV (5.55)

≤
∫

Ω∗

|u∗0(x)|2B∗(|x+ ν|) dV

≤
{

sup
x∈Ω

B(|x+ ν|)∗
B(|x|)∗

}∫

Ω∗

|u∗0(x)|2B(r) dV

≤
{

sup
x∈Ω

B(|x+ ν|)
B(|x|)

}∫

Ω∗

z2
0(r)B(r) dV.

Here the first inequality follows from the properties of rearrangements, the second

inequality from the monotonicity properties of g and B, and the third inequality

from the modified Chiti comparison argument proved in section 5.6 and the fact that

B∗ = B since B is decreasing.

We also need a lower bound for the denominator, so we now make use of the fact

the the angle between ~x and ~ν is between −π/2 and π/2 to see that

|x+ ν|2 = |x|2 + |ν|2 + 2|x||ν| cosϕ ≥ |x|2. (5.56)

Thus we apply a similar argument as for the numerator to see that

∑

j

∫

Ω+ν

Pj(x)
2|(Tνu0)(x)|2 dV =

∫

Ω+ν

g(r)2|(Tνu0)(x)|2 dV (5.57)

=

∫

Ω

g(|x+ ν|)2|u0(x)|2 dV

≥
∫

Ω

g(|x|)2|u0(x)|2 dV

≥
∫

Ω∗

g∗(|x|)2|u∗0(x)|2 dV

≥
∫

Ω∗

g(|x|)2|u∗0(x)|2 dV

≥
∫

Ω∗

g(r)2z2
0(r) dV.

Also, we prove that the first two eigenvalues of the Laplacian on a geodesic disk are

the first eigenvalues of (1.9) with l = 0 and l = 1, respectively. So now we can apply

these inequalities to (5.49) and make use of the fact that

λ1(Ω
∗) − λ0(Ω

∗) =

∫
Ω∗ z

2
0(r)B(r) dV∫

Ω∗ g(r)2z2
0(r) dV

(5.58)
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to see that

λ1(Ω) − λ0(Ω) ≤
{

sup
x∈Ω

B(|x+ ν|)
B(|x|)

}[
1 + 2ǫ2 + bΩ(ν, ǫ)

]
(λ1(Ω

∗) − λ0(Ω
∗)) + F(ν, ǫ),

(5.59)

which is our desired result.

Remark. Observe that

lim
ν→0

bΩ(ν, ǫ) = 0, (5.60)

and

lim
ν→0

{
sup
x∈Ω

B(|x+ ν|)
B(|x|)

}
= 1. (5.61)

Also, F(ν, ǫ) goes to zero as ν goes to zero. Thus, we see that as ν → 0 and ǫ → 0,

we recover the expected result as in Euclidean space. In the case where ν → 0 and

ǫ→ 0, we still impose the condition that λ0(Ω) = λ0(S1), where S1 is a geodesic ball

as in the hyperbolic case. Then we would obtain the analogous result for F
n and the

modified Chiti comparison theorem would apply in a similar manner.

In addition, we can bound the maximum size of the translation ν. Let BΩ be

the smallest ball centered at the origin such that Ω ⊂ BΩ. If R = supx,y∈BΩ
dg(x, y),

where dg is the distance for the metric g, then |ν| ≤ R/2. This follows from the center

of mass argument since we take ν ∈ ∂BΩ.

We also obtain the following corollary by slightly modifying our lower bound of

the denominator in the Rayleigh-Ritz inequality. The result is stated below.

Corollary 1. Let Ω ⊂ Fn be an open bounded domain and call λi(Ω) the i-th Dirichlet

eigenvalue on Ω. Denote by Ω∗ the geodesic disk in Fn having the same volume as Ω

and r̃ its geodesic radius. Also, we denote by ~ν the vector associated with the center

of mass theorem for Fn. So, if we have that
{

infx∈Ω
g(|x+ν|)

g(|x|)

}
> 0, then

λ1(Ω) − λ0(Ω) ≤ C(Ω, ν)
[
1 + ǫ2 + bΩ(ν, ǫ)

]
(λ1(Ω

∗) − λ0(Ω
∗)) + F(ν, ǫ), (5.62)
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where

C(Ω, ν) =

{
supx∈Ω

B(|x+ν|)
B(|x|)

}

{
infx∈Ω

g(|x+ν|)
g(|x|)

} , (5.63)

and the other terms are defined as in the statement of the main theorem.

Proof. The proof follows just as in the main theorem, only here we replace the first

inequality in (5.57) with

∫

Ω

g(|x+ ν|)2|u0(x)|2 dV ≥
{

inf
x∈Ω

g(|x+ ν|)
g(|x|)

}∫

Ω

g(|x|)2|u0(x)|2 dV, (5.64)

so that

∫

Ω

g(|x+ ν|)2|u0(x)|2 dV ≥
{

inf
x∈Ω

g(|x+ ν|)
g(|x|)

}∫

Ω∗

g(r)2z2
0(r) dV. (5.65)

We now would like to look at a certain set of domains having additional symmetry

properties. We will take S ⊂ Fn to be the set of domains Ω such that Ω contains

the origin, is rotationally symmetric to the xi axes for i = 3, ...n, and is symmetric

with respect to the x1 − x2 plane. This subset of domains allows us to choose our

test functions without the need for shifting the domains as in the previous result. So

in this case, we obtain the following theorem.

Theorem 18. Let Ω ⊂ S be an open bounded domain in Fn and call λi(Ω) the i-th

Dirichlet eigenvalue on Ω. Take Ω∗ to be the geodesic ball in Fn having the same

volume as Ω. Then,

1)

λ1(Ω) − λ0(Ω) ≤ λ1(Ω
∗) − λ0(Ω

∗). (5.66)

2) If S1 ⊂ Fn is a geodesic ball such that λ0(Ω) = λ0(S1) then

λ1(Ω) ≤ λ1(S1). (5.67)
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Proof. 1) We see here that if Ω has the assumed symmetries, then u0 has the same

symmetries and hence the center of mass theorem would give

∫

Ω

Pju0(x)
2 dV = 0. (5.68)

Thus we would have ν = 0, and as is mentioned in the remarks after the main

theorem, we can now recover that 1)

λ1(Ω) − λ0(Ω) ≤ λ1(Ω
∗) − λ0(Ω

∗). (5.69)

Essentially, choosing our domains having the specified symmetries forces the center

of mass to lie at the origin. Hence we can take Pju0 to be our trial functions.

2) Now let u0 be the first eigenfunction of −∆ on Ω. Take S1 to be a geodesic

ball such that λ0(S1) = λ0(Ω) and take z0 to be the corresponding eigenfunction.

We first observe that it is possible to choose S1 such that λ0(S1) = λ0(Ω) using the

idea of domain monotonicity. Since if |Ω| ≤ |S1|, we have that λ0(S1) ≤ λ0(Ω) and if

|S1| ≤ |Ω|, then λ0(Ω) ≤ λ0(S1). Since λ0(Ω) is a continuous function, we can apply

the intermediate value theorem to see that we must be able to find a domain S1 to

satisfy our condition.

Also we can find the gap inequality

λ1(Ω) − λ0(Ω) ≤
∫
Ω
u2

0〈∇P,∇P 〉 dV∫
Ω
P 2u2

0 dV
. (5.70)

Using our observation about the center of mass theorem we choose the following set

of n functions,

Pj(x) := g(r)hj(ψ) (5.71)

where

g(r) =






z1(r)
z0(r)

r ∈ [0, r̃),

limr↑r̃ g(r̃) r ≥ r̃.
(5.72)

Recall that r̃ is the geodesic radius of S1, and that by convention z0 and z1 are

positive.
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We may then calculate, following [12], that

n∑

j=1

P 2
j (x) = g2(r), (5.73)

n∑

j=1

〈∇Pj,∇Pj〉 =

(
∂g

∂r

)2

+ (n− 1)f−2(r)g2(r). (5.74)

Then multiply (5.70) by
∫
Ω
P 2u2

0 dV and then sum over i = 1, ..., n to obtain

λ1(Ω) − λ0(Ω) ≤
∫
Ω
u2

0(r, ~χ)B(r) dV∫
Ω
u2

0(r, ~χ)g2(r) dV
(5.75)

where

B(r) = g′(r)2 + (n− 1)f−2(r)g2(r). (5.76)

To finish the proof, we need the following inequalities to hold:

∫

Ω

u2
0(x)B(r) dV ≤

∫

Ω∗

u∗0(r)
2B∗(r) dV (5.77)

≤
∫

Ω∗

u∗0(r)
2B(r) dV

≤
∫

S1

z2
0(r)B(r) dV

and

∫

Ω

u2
0(x)g(r)

2 dV ≥
∫

Ω∗

u∗0(r)
2g∗(r)

2 dV (5.78)

≥
∫

Ω∗

u∗0(r)
2g(r)2 dV

≥
∫

S1

z2
0(r)g(r)

2 dV.

Here we assume that z0 is normalized such that
∫
Ω
u2

0 dV =
∫

S1
z2
0 dV. Also, f ∗

is used to denote the spherical decreasing rearrangement of f , and f∗ the spherical

increasing rearrangement. In each of (5.77) and (5.78), the first inequality follows

from the properties of rearrangements. The second inequality follows from the fact

that g is increasing in r and B is decreasing in r, which will be proven below. Finally,

the third inequality follows from a modified version of Chiti’s comparison result and
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also from the monotonicity properties of g and B. This will also be proven later.

Finally, from (5.75), (5.77), and (5.78) we have

λ1(Ω) − λ0(Ω) ≤
∫

S1
z2
0(r)B(r) dV∫

S1
z2
0(r)g

2(r) dV
= λ1(Ω) − λ0(S1). (5.79)

Since we have chosen λ0(Ω) = λ0(S1) we have that

λ1(Ω) ≤ λ1(S1), (5.80)

which proves our theorem.

5.3 Monotonicity Properties

In this section we will establish that g is an increasing function of r and that B is a

decreasing function of r. Here we follow the approach of Benguria and Linde from

[9]. We will prove the necessary monotonicity properties of g and B by analyzing the

function

q(r) = f(r)
g′(r)

g(r)
= f(r)

(
z′1
z1

− z′0
z0

)
. (5.81)

Recall that in our space Fn, the eigenfunctions are determined by a function f .

We will take this function to be

f(r) = r + βrα. (5.82)

By showing that

q(r) ≥ 0, (5.83)

q(r) ≤ f ′(r), (5.84)

q′(r) ≤ 0, (5.85)

we may prove the desired properties of g and B as follows. If q satisfies the above

inequalities, then from (5.83), the definition of q and the fact that g ≥ 0 we can easily

see that g′ ≥ 0 and thus g is increasing.
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Next we show that

B(r) = g′(r)2 +
(n− 1)g2(r)

f 2(r)

is decreasing in r. First, if we solve (5.81) for g′ and differentiate both sides, substi-

tuting (5.81) again, we obtain

g′′(r) =
g(r)

f(r)2
(f(r)q′ + q(q − f ′(r))) (5.86)

So from (5.83), (5.84), and (5.85) we see that g′ is decreasing.

Thus, the first summand of B(r) is decreasing. Additionally, since g(0) = 0 and

g′ is decreasing we have the estimate

g(r) =

∫ r

0

g′(τ) dτ ≥
∫ r

0

g′(r) dτ = g′(r)r. (5.87)

Thus we see that

(
g(r)

f(r)

)′

=
1

f(r)

(
g′(r) − g(r)f ′(r)

f(r)

)

≤ 1

f(r)

(
g′(r) − rg′(r)f ′(r)

f(r)

)

=
g′(r)

f(r)

(
1 − rf ′(r)

f(r)
.

)
(5.88)

Then we compute

f ′(r) = 1 + αβrα−1 (5.89)

r
f ′(r)

f(r)
= r

1 + αβrα−1

r(1 + βrα−1)
=

1 + βrα−1 + (α−)βrα−1

1 + βrα−1

= 1 +
(α− 1)βrα−1

1 + βrα−1
. (5.90)

Hence we obtain (
g(r)

f(r)

)′

≤ g′(r)

f(r)

[
−(α− 1)βrα−1

1 + βrα−1

]
< 0 (5.91)

for α ≥ 2 and so g/f is decreasing. We now need to show the properties of q that we

have claimed are true. First, note that these properties clearly hold for r ≥ r̃ since g

is constant there and hence q(r) = 0. Thus, we now look at 0 ≤ r < r̃.
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Also, we can quickly see from the definition of q that

q(0) = 1 and q′(0) = 0. (5.92)

Differentiating (5.81) and replacing the second derivatives of z0 and z1 according to

the differential equations they fulfill (see equation (1.9) for l = 0 and l = 1) gives the

equation

q′ =
[(f ′(r)(2 − n) − q)q + (n− 1)]

f(r)
− f(r)(λ1 − λ0) − 2sq (5.93)

where

s(r) =
z′0(r)

z0(r)
. (5.94)

From equation (5.93) we establish

q′′(0) =
2

n+ 2

[
λ0(Ω)

(
1 +

2

n

)
− λ1(Ω)

]
. (5.95)

Similarly, we can establish the following equation for s and obtain

s′ = −s2 − (n− 1)sf ′

f
− λ0. (5.96)

From these equations we see that

s(0) = 0 and s′(0) =
−λ0(Ω)

n
. (5.97)

Next we make the definitions

ε = λ1(Ω) − λ0(Ω) > 0 (5.98)

Nq = q2 − n+ 1 (5.99)

and so our formula for q′ becomes

T (r, q) = −εf(r) −
[
f ′(r)(n− 2)q +Nq

f(r)

]
− 2sq (5.100)

and so we find

∂T

∂r
= −εf ′(r) − 2s′q −

[
f(r)f ′′(r) − f ′(r)2

f(r)2

]
(n− 2)q +

f ′(r)

f(r)2
Nq. (5.101)
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We are now interested in points (r, q) where T = 0, so we first solve (5.93) to see

s|T=0 =
−εf(r)

2q
− f ′(r)(n− 2)

2f(r)
− Nq

2qf(r)
, (5.102)

and then from (5.96) and (5.102) we find that

s′|T=0 = −λ0(Ω) +
(n− 1)f ′(r)

f(r)

(
εf(r)

2q
+
f ′(r)(n− 2)

2f(r)
+

Nq

2qf(r)

)
(5.103)

−
(
εf(r)

2q
+
f ′(r)(n− 2)

2f(r)
+

Nq

2qf(r)

)2

.

Now we substitute into (5.101) to obtain

∂T

∂r
|T=0 =

Mq

f(r)2
+ (λ1(Ω) − λ0(Ω))2 f(r)2

2q
+Qq (5.104)

where

Mq = −(n− 2)2

2
qf ′(r)2 +

N2
q

2q
, (5.105)

Qq = (λ1(Ω) − λ0(Ω))

(
Nq

q
− 2f ′(r)

)
− f ′′(r)

f(r)
(n− 2)q + 2qλ0(Ω). (5.106)

5.4 Properties of q

In this section, we now proceed to prove equations (5.83), (5.84), and (5.85), which

will establish the desired monotonicity properties of g(r) and B(r).

Lemma 5. For 0 ≤ r ≤ r̃, we have q(r) ≥ 0.

Proof. Assume this is not true. Since q(0) = 1, q′(0) = 0, and q(r̃) = 0, this means

there must exist two points, s1, s2, such that 0 < s1 < s2 ≤ r̃ and q(s1) = q(s2) = 0

with q′(s1) ≤ 0 and q′(s2) ≤ 0. If s2 < r̃ we see from (5.93) that

q′(s1) = −εf(s1) +
n− 1

f(s1)
≤ 0 (5.107)

q′(s2) = −εf(s2) +
n− 1

f(s2)
≥ 0. (5.108)
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Also, recall that f is monotone increasing, so f(s2) > f(s1) and ε > 0 and so

−εf(s2) < −εf(s1). Thus we obtain

0 ≥ q′(s1) = −εf(s1) +
n− 1

f(s1)
> −εf(s2) +

n− 1

f(s2)
= q′(s2) ≥ 0 (5.109)

and hence arrive at a contradiction. Now supposed s2 = r̃. Then, similarly we see

0 ≥ q′(s1) = −εf(s1) +
n− 1

f(s1)
> −εf(r̃) +

n− 1

f(r̃)
= q′(r̃) ≥ 0 (5.110)

and arrive at the same contradiction.

Lemma 6. There exists some r0 > 0 such that q(r) ≤ 1 for all r ∈ (0, r0) and

q(r0) < 1.

Proof. Again, suppose the contrary, i.e., that q(r) first increases away from r = 0.

Then, since q(0) = 1 and q(r̃) = 0 and q is continuous and differentiable, we find two

points s1 < s2 so that q̂ := q(s1) = q(s2) > 1 and q′(s1) > 0 > q′(s2). Also, we may

choose these points so that q̂ is arbitrarily close to one. So we take q̂ = 1 + δ and

then calculate from (5.106) that

Q1+δ = Q1 + δn

(
λ1(Ω) −

(
n− 2

n

)(
λ0(Ω) +

f ′′(r)

f(r)

))
+ O(δ2). (5.111)

Also, we can easily see that

λ1(Ω) −
(
n− 2

n

)
λ0(Ω) ≥ λ1(Ω) − λ0(Ω) > 0. (5.112)

We may also assume that Q1 > 0, for otherwise we see that q′′(0) < 0 so that q is

concave down. Note that in this case, we are done. Thus, we may choose s1 and s2 so

that δ is sufficiently small, ensuring that Qq̂ > 0. Next we want to consider T (r, q̂) as

a function of r for our fixed q̂. From the definition of T and our original assumptions,

we have that T (s1, q̂) > 0 > T (s2, q̂). Also, we see that

lim
r→0+

T (r, q̂) = −∞. (5.113)
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Thus, it is apparent that T (r, q̂) must change sign at least twice on [0, r̃]. So we can

find two zeros 0 < ŝ1 < ŝ2 < r̃ of T (r, q̂) such that

T ′(ŝ1, q̂) ≥ 0 and T ′(ŝ2, q̂) ≤ 0. (5.114)

Recalling our formula (5.104), we see that

T ′(r, q̂) =

[
N2

q̂

2q̂f(r)2
− (n− 2)2

2

(
f ′(r)

f(r)

)2

q̂

]
+
ε2f(r)2

2q̂
+Qq̂. (5.115)

We now wish to inspect the term in brackets. We find

N2
q̂ = ((1 + δ)2 − n+ 1)2 = (2 − n+ 2δ + δ2)2 (5.116)

= (2 − n)2 + 4δ(2 − n) + O(δ2)

and (
f ′(r)

f(r)

)′

=
−2βαrα−1 + β2α2r2(α−1)

(r + βrα)2
. (5.117)

So we see that the right hand side of (5.115) is either positive or increasing. So we

cannot have that T ′(ŝ2, q̂) ≤ 0. Hence, we arrive at contradiction and so our lemma

is proved.

Lemma 7. For all 0 ≤ r ≤ r̃, q′(r) ≤ 0.

Proof. We again proceed by contradiction. So because of our boundary conditions

q(0) = 1 and q(r̃) = 0, there must exist three points s1 < s2 < s3 in (0, r̃) with

0 < q̂ := q(s1) = q(s2) = q(s3) < 1 and q′(s1) < 1, q′(s2) > 0, q′(s3) < 0. We again

look at the function T (r, q̂) and make the observation that for i = 1, 2, 3 we have

T (si, q̂) = q′(si). (5.118)

Taking (5.113) into account, we see T (r, q̂) must have at least three sign changes.

Hence, T (r, q̂) has at least three zeros ŝ1 < ŝ2 < ŝ3 so that

T ′(ŝ1, q̂) ≤ 0, T ′(ŝ2, q̂) ≥ 0, T ′(ŝ3, q̂). (5.119)

But we see again as in the previous lemma that this is impossible. Hence we arrive

at our contradiction.
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5.5 Center of Mass Theorem in F
n

Now we generalize the center of mass theorem to the space F
n. As before, we use

this result to properly choose our coordinate system to apply the gap estimate for

eigenvalues.

Theorem 19. Let g(r) be a positive continuous function on [0,∞) and Pj =
xj

f(r)
g(r).

Then one can shift Ω ⊂ Fn such that

∫

Ω+ν

Pj(x)Tνu0(x)
2 dV (x) = 0 (5.120)

for all j = 1, ..., n.

Proof. Here we will use the technique of Weinberger to construct a vector field which

must vanish, and hence our test function will satisfy the necessary orthogonality

condition. So we make the definition

ν → 〈PjTνu0, Tνu0〉Ω+ν (5.121)

and then consider the n-vector

~v(~ν) =

∫

Ω+~ν

Tνu0(~x)
g(r)~x

f(r)
Tνu0(~x)

2 dV (~x) (5.122)

=

∫

Ω

u0(~u− ~ν)

(
T−1

ν

g(r)~x

f(r)
Tν

)
u0(~u− ~ν) dV (~x)

=

∫

Ω

(~u+ ~ν)
g(|~u+ ~ν|)
f(|~u+ ~ν|)u

2
0(~u− ~ν) dV (~u)

as a function of the origin of the xi coordinates and note that it is a continuous

vector field. Take B ⊂ Fn to be the ball containing Ω such that the origin of the xi

coordinates is the center of B. Now take ~ν ∈ ∂B. It is a known theorem in topology

that any nonvanishing vector field on a ball must point directly inward at some point.

Hence, if we can show that ~ν · ~v(~ν) > 0, then we have that this vector field is always

pointing outwards. Thus, it must vanish at some point ~ν0 ∈ B. We will take this

point to be our origin.
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To show this we calculate

~ν · ~v(~ν) =

∫

Ω

~ν · (~u+ ~ν)
g(|~u+ ~ν|)
f(|~u+ ~ν|)u

2
0(~u− ~ν) dV (~u). (5.123)

Since we know that g > 0 and f > 0, we must now show that

(~u+ ~ν) · ~ν > 0. (5.124)

To do this we recognize

(~u+ ~ν) · ~ν = |ν|2 + ~ν · ~u (5.125)

≥ |ν|2 − |ν||u| (5.126)

= |ν|(|ν| − |u|) > 0, (5.127)

where (5.126) follows from the definition of the dot product and (5.127) follows from

the fact that ~u ∈ Ω, ~ν ∈ ∂B, and Ω ⊂ B. Hence our vector field here would always

be outward pointing and must vanish at some point.

5.6 Chiti’s Comparison Argument

This section will give the justification for the last step in the chains of inequalities

(5.55) and (5.57). Here we take Ω∗ to be the symmetric rearrangement of Ω, which

is the geodesic ball centered at the origin having the same n-dimensional volume of

Ω. Define Ωt = {x ∈ Ω|u0(x) > t} and ∂Ωt = {x ∈ Ω|u0(x) = t}. Let µ(t) = |Ωt|

and |∂Ωt| = Vn−1(∂Ωt), where Vn−1 denotes the (n-1)-dimensional measure. For any

function f : Ω → R+ we define the decreasing rearrangement, f ♯ to be

f ♯(s) = inf{t ≥ 0|µ(t) < s}. (5.128)

Also, we still take f ∗(r, ~χ) = f ∗(r) to be the symmetric decreasing rearrangement.

The former is a decreasing function from [0, |Ω|] to R+ and is equimeasurable with

f. The latter is defined on Ω∗, spherically symmetric, equimeasurable with f, and is
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decreasing in r. The relationship between f ∗ and f ♯ is given by

f ∗(r, ~χ) = f ♯(A(r)), (5.129)

where

A(r) = nCn

∫ r

0

fn−1(r̄) dr̄ (5.130)

is the volume of a geodesic ball with radius r. Here nCn is the surface area of the

(n-1)-dimensional unit sphere in Euclidean space. We analogously define f♯ and f∗

to be the increasing rearrangements of f.

Lemma 8. (Chiti comparison result) Let u0(r, ~χ) be the first Dirichlet eigenfunction

of −∆ on Ω and z0(r) the first eigenfunction of −∆ on S1, normalized such that

∫

Ω

u2
0 dV =

∫

S1

z2
0 dV. (5.131)

Then there exists some r0 ∈ (0, r̃) such that

z0(r) ≥ u∗0(r) for r ∈ (0, r0) and

z0(r) ≤ u∗0(r) for r ∈ (r0, r̃).

Proof. Observe that the co-area formula gives the following

−µ′(t) =

∫

∂Ωt

1

|∇u0|
dVn−1 (5.132)

(see [12], p. 86). Also, applying Gauss’ Theorem (see [12], p. 7) to −∆u0 = λ0u0 we

obtain ∫

Ωt

λ0u0 dV =

∫

∂Ωt

|∇u0| dVn−1, (5.133)

since the outward normal to Ωt is −∇u0/|∇u0|. Using the Cauchy-Schwarz inequality

and equations (5.132) and (5.133) we find that

(Vn−1(∂Ωt))
2 =

(∫

∂Ωt

dVn−1

)2

≤ −µ′(t)λ0

∫

Ωt

u0 dV. (5.134)
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On our manifold, we also have that the classical isoperimetric inequality holds, so we

have

Vn−1(∂Ωt) ≥ Vn−1(∂(Ω
∗
t )). (5.135)

Recall definition (5.130) and let A−1 be the inverse function of A. Then the (n-1)-

dimensional measure of ∂(Ω∗
t ) can be written as

Vn−1(∂(Ω
∗
t )) = nCnf

n−1rA−1(|Ω∗
t |) = A′(A−1(|Ω∗

t |)). (5.136)

Hence, substituting into (5.135) yields

Vn−1(∂Ωt) ≥ A′(A−1(|Ω∗
t |)) (5.137)

and (5.134) can be written as

λ0

∫

Ωt

u0 dV ≥ − 1

µ′(t)
A′(A−1(|Ω∗

t |))2. (5.138)

Then we use the fact that

∫

Ωt

u0 dV =

∫ µ(t)

0

u♯
0(s) ds, (5.139)

which follows from the definition of u♯
0. Since it is not hard to see that u♯

0(s) is the

inverse function of µ(t), we have that

−du
♯
0

ds
= − 1

µ′(t)
, (5.140)

which, when combined with (5.138) and (5.139), gives that

−du
♯
0

ds
≤ λ0A

′(A−1(s))−2

∫ s

0

u♯
0(s

′) ds′. (5.141)

Also, one can check that for Ω replaced by Ω∗ and u0 replaced by z0 then equality

holds in all of the steps leading to the previous equation, so we also have

−dz
♯
0

ds
≤ λ0A

′(A−1(s))−2

∫ s

0

z♯
0(s

′) ds′. (5.142)
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Using these two relations and recalling the assumed normalization, we will show that

the functions u♯
0 and z♯

0 are either identical or they cross each other exactly once on

the interval [0, |Ωt|]. In the following, we make use of the fact that u♯
0 and z♯

0 are

continuous. By the definition of the decreasing rearrangement, both functions are

decreasing and we know that z♯
0(|Ωt|) = u♯

0(|Ω|) = 0. Recall that from the Rayleigh-

Faber-Krahn inequality and since we took λ0(S1) = λ0(Ω) it follows that |S1| ≤ |Ω|.

From the normalization, it is clear that z♯
0 and u♯

0 are either identical or cross at least

once on [0, |S1|]. To show that they cross exactly once, we assume that they cross at

least twice and obtain a contradiction. Under this assumption, there are two points

0 ≤ s1 < s2 < |S1| where u♯
0(s) > z♯

0(s) for s ∈ (s1, s2), u
♯
0(s2) = z♯

0(s2) and either

u♯
0(s1) = z♯

0(s1) or s1 = 0. Now we define the following function

v(s) =






u♯
0(s) on [0, s1] if

∫ s1

0
u♯

0(s) ds >
∫ s1

0
z♯
0(s) ds,

z♯
0(s) on [0, s1] if

∫ s1

0
u♯

0(s) ds ≤
∫ s1

0
z♯
0(s) ds,

u♯
0(s) on [s1, s2],

z♯
1(s) on [s2, |S1|].

(5.143)

Then by substituting v(s) into (5.141) and (5.142) we see that

−dv
ds

≤ λ0A
′(A−1(s)))−2

∫ s

0

v(s′) ds′ (5.144)

for all s ∈ [0, |S1|].

Finally, we define the test function Ψ(r, ~χ) = v(A(r)). If z0 and u0 are not identical,

using the Rayleigh-Ritz characterization of λ0, (5.144), and integration by parts, we
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obtain

λ0

∫

S1

Ψ2 dV <

∫

S1

|∇Ψ|2 dV (5.145)

=

∫ r̄

0

(A′(r)v′(A(r)))2A′(r) dr

≤ −
∫ r̄

0

A′(r)v′(A(r))λ0

∫ A(r)

0

v(s′) dr

= λ0

∫ |S1|

0

v(s)2 ds

= λ0

∫

S1

Ψ2 dV

So we see that we obtain a contradiction to the assumption that u♯
0 and z♯

0 intersect

twice, so the lemma is proved.

5.7 Eigenvalue Properties

In this section we see that, in Fn, the first eigenvalue is a decreasing function of the

geodesic radius. Also, we prove that the first two eigenvalues of the Laplacian on a

geodesic disk are the first eigenvalues of (1.9) with l = 0 and l = 1, respectively.

Lemma 9. Take a geodesic ball B ⊂ Fn of radius r0. Then for any c > 0 we have

λ0(cr0) = c−2λ0(r0). (5.146)

That is, the first eigenvalue is a decreasing function of the radius of the geodesic ball.

Proof. The proof is straightforward. Observe that, from our differential equation,

−z′′0 (r0) −
(n− 1)f ′(r0)

f(r0)
z′0(r0) = λz0(r0). (5.147)

Then if we make the change of variables r0 → r0/c we obtain

−z
′′
0 (r0/c)

c2
− (n− 1)f ′(r0/c)

c2f(r0/c)
z′0(r0/c) = λz0(r0/c). (5.148)

Thus it is easy to see we have the desired relationship.
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Lemma 10. The first eigenvalue of the Dirichlet Laplacian on a geodesic ball in F
n

is the first eigenvalue of (1.9) with l = 0, while the second eigenvalue on the geodesic

ball is the first eigenvalue of (1.9) with l = 1.

Proof. First, we define

hlz = −z′′l (r) − (n− 1)f ′

f
z′l(r) +

l(l + n− 2)

f 2
zl(r) = λzl(r),

as the operator hl applied to z (with the boundary conditions as given in the intro-

duction). Recall that z0 and z1 are the eigenfunctions corresponding to l = 0 and

l = 1, respectively, in the above equation. We then have that hl′ > hl in the sense

of quadratic forms if l′ > l (see [25]). Thus the lowest eigenvalue of the Dirichlet

Laplacian on a geodesic ball is λ0(h0).

The next step is to determine whether the second eigenvalue is λ0(h1) or λ1(h0).

We will show that it is the former. To do so, we will make use of the following result

from Coddington and Levinson, [15].

Theorem 20. Suppose ϕ is a real solution on (a, b) of

(px′)′ + g1x = 0 (5.149)

and ψ is a real solution on (a, b) of

(px′)′ + g2x = 0 (5.150)

Let g2(t) > g1(t) on (a, b). If t1 and t2 are successive zeros of ϕ on (a, b), then ψ

must vanish at some point of (t1, t2).

Now observe that we may rewrite (1.9) for l = 0 as

−(fn−1z′)′ − λfn−1z = 0 (5.151)

and for l = 1 as

−(fn−1z′)′ − (λfn−1 − fn−3(n− 1))z = 0 (5.152)
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If we take g1 = λfn−1 − fn−3(n − 1) and g2 = λfn−1 we see we have that g2 > g1.

Hence, the comparison result gives us that between any two zeros of z1 there is a zero

of z0.

Next we consider z0 and z1 for λ = λ0(h1). We know that for λ = λ0(h1), z1(0) = 0

and z1(r̃) = 0 and there are no other zeros of z1 on this interval. The first consequence

we obtain from the comparison theorem is that the first zero of z0 must be strictly

positive. Also, there cannot be two positive zeros of z0 on (0, r̃), else we would arrive

at a contradiction to the interlacing of zeros on this interval. Now we need only show

that as we force the second zero of z0 to be at r̃, we must increase the energy. So we

must show that the positive zeros of any zl are decreasing functions of λ. To do this,

we may apply the comparison theorem to general zl, here taking

gi = λif
n−1 − fn−3l(l + n− 2), (5.153)

and

gj = λjf
n−1 − fn−3l(l + n− 2). (5.154)

Thus we see if λi > λj then gi > gj so the positive zeros of any zl are decreasing

functions of λ. Thus it must be the case that λ1(h0) > λ0(h1). This gives us that the

second eigenvalue must be λ0(h1).

5.8 Another Gap Inequality for Fn

In this final section, we present a result based on using Gram-Schmidt orthogonal-

ization to find a suitable test function for the Rayleigh-Ritz inequality.

Theorem 21. Let Ω ⊂ Fn be an open bounded domain and call λi(Ω) the i-th Dirichlet

eigenvalue on Ω, ui the i-th eigenfunction. Take g(r) to be a continuous, differentiable,

positive function on [0,∞). Then for

Pj(x) =
xj

f(r)
g(r), (5.155)
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j = 1, ..., n, we have

λ1(Ω) − λ0(Ω) ≤

∫
Ω
u2

0

(
g′(r)2 + (n− 1)

(
g(r)
f(r)

)2
)
dV

∫
Ω
g(r)2u2

0 dV −
∑

j |〈Pju0, u0〉|2
. (5.156)

Proof. Our goal here is to find a suitable trial function for the Rayleigh-Ritz formula,

so that we may obtain an upper bound on the gap of the first two Dirichlet eigenvalues.

First we recognize that

Pj(x) =
xj

f(r)
g(r) = g(r)hj(ψ), (5.157)

where hj(ψ) are the spherical coordinates on the unit sphere, Sn. Hence we have that

∑

j

|hj(ψ)|2 = 1. (5.158)

So we now compute, using the formula for the gradient in Fn,

∇Pj(x) =

n∑

k=1

êk

[(
f ′(r) − 1

f 2(r)

)
xjl(x) + 1

]
∂Pj(x)

∂xk
, (5.159)

and

∑

j

|∇Pj|2 =
∑

j

g′(r)2hj(ψ)2 +
∑

j

g(r)2|∇hj(ψ)|2

= g′(r)2 + g(r)2
∑

j

|∇hj|2 (5.160)

= g′(r)2 + (n− 1)

(
g(r)

f(r)

)2

.

Let us now take for a trial function

Φju0 = (Pj − 〈Pju0, u0〉)u0, (5.161)

under the assumption that ||u0|| = 1. Thus we easily see that

〈Φju0, u0〉 = 0, (5.162)

and so we have a suitable test function. Hence, we are able to substitute into the

Rayleigh-Ritz gap formula to see that

λ1(Ω) − λ0(Ω) ≤
∫
Ω
|∇Φj |2u2

0 dV∫
Ω

Φ2
ju

2
0 dV

. (5.163)
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Also, we immediately see that

∇Φj = ∇Pj , (5.164)

which we know from (5.159). So now we compute that

∫

Ω

Φ2
ju

2
0 =

∫

Ω

((Pj − 〈Pju0, u0〉)u0)(Φju0) dV

=

∫

Ω

u0Pj(Pj − 〈Pju0, u0〉)u0 dV

=

∫

Ω

P 2
j u

2
0 dV − |〈Pju0, u0〉|2, (5.165)

which allows us to see that

∑

j

∫

Ω

Φ2
ju

2
0 dV =

∫

Ω

g(r)2u2
0 dV −

∑

j

|〈Pju0, u0〉|2. (5.166)

Thus we may now substitute into (5.163) to see that

λ1(Ω) − λ0(Ω) ≤

∫
Ω
u2

0

(
g′(r)2 + (n− 1)

(
g(r)
f(r)

)2
)
dV

∫
Ω
g(r)2u2

0 dV −
∑

j |〈Pju0, u0〉|2
. (5.167)

Copyright c© Julie Miker, 2009.
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Chapter 6 Szegö-Weinberger Inequality

We now find an eigenvalue inequality for the first nonzero eigenvalue of

−∆u = µu on Ω

with the boundary condition

∂u

∂n
= 0 on ∂Ω.

Here Ω is a bounded domain, and ∂/∂n denotes the outward normal derivative.

However this places a restriction on our boundary in that we must be able to define the

normal derivative there. Another way to formulate this problem is in the variational

sense where we consider the functional

F [φ] =
||∇φ||2
||φ||2 (6.1)

and the associated infimum

µ1(Ω) = inf
φ∈H1(Ω)

0 6= φ⊥1

∫
Ω
|∇φ|2∫
Ω
φ2

. (6.2)

We observe that in the case of a “nice” boundary as is outlined in section 2.1, we do

get that this eigenvalue agrees with our first set-up.

In this chapter we will look at this problem for the spaces Rn,Hn,Fn, and for

more general manifolds as outlined in the final section. The proofs in the first two

sections are due to Weinberger [27] and Ashbaugh and Benguria [4]. The first result

is stated in the following theorem.

6.1 Szegö-Weinberger in Rn

Theorem 22. Let µ1(Ω) be the first nonzero Neumann eigenvalue for a bounded

domain Ω ⊂ Rn. Then

µ1(Ω) ≤ µ1(Ω
∗)
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with equality if and only if Ω = Ω∗. Here Ω∗ is the symmetric rearrangement of Ω,

so it has the same volume.

Proof. We follow the proof given in [27]. The general method involves finding suitable

test functions to put in the Rayleigh-Ritz formula to obtain an upper bound for the

first nonzero eigenvalue. We first look at the eigenfunctions on the sphere as potential

candidates. The key property we will observe is that the eigenfunctions satisfy the

orthogonality condition required for valid test functions, as is shown in the Center of

Mass Theorem below.

1. Let R be the radius of the n-sphere of a given volume, V and let µ1(Ω
∗) be the

first nonzero Neumann eigenvalue for the sphere. This eigenvalue has multiplicity n

and corresponding eigenfunctions

g(r)xi

r
, i = 1, ..., n. (6.3)

In this case, r is the distance from the origin, the xi are Cartesian coordinates, and

g(r) satisfies the following differential equation

g′′ +
n− 1

r
g′ +

(
µ1(Ω

∗) − n− 1

r2

)
g = 0 (6.4)

for 0 < r < R and vanishes at r = 0. Note also that the first zero of the outward

normal derivative, g′(r), occurs at r = R.

Define the function G(r) as follows

G(r) =






g(r) r ≤ R

g(R) r > R
(6.5)

and then substitute into the eigenfunctions to obtain the functions

fi =
G(r)xi

r
. (6.6)

We fix our origin at the point so that

〈fi, 1〉L2(Ω) =

∫

Ω

G(r)xi

r
dV = 0, (6.7)
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using the center of mass theorem from Chapter 3 and the fact that the Laplacian

commutes with translations. Then by substituting f into the inequality given by the

variational principle, we obtain that

µ1(Ω) ≤
∫
Ω
[G′2xixi/r

2 +G2(1 − xixi/r
2)/r2] dV∫

Ω
[G2xixi/r2] dV

. (6.8)

Now by summing and simplifying, we get

µ1(Ω) ≤
∫
Ω
[G′2(r) + (n− 1)G2(r)/r2] dV∫

Ω
G2(r) dV

. (6.9)

2. Take Ω∗ to be the ball of radius R centered at the origin. Let Ω1 be the intersection

of Ω∗ and Ω. Since R is the first zero of g′(r), G(r) is non-decreasing for r > 0. We now

would like to obtain a lower bound for the denominator in our variational inequality.

Thus, ∫

Ω

G2(r) dV =

∫

Ω1

G2(r) dV +

∫

Ω−Ω1

G2(r) dV

≥
∫

Ω1

G2(r) dV +G2(R)

∫

Ω−Ω1

dV , (6.10)

and ∫

Ω∗

G2(r) dV =

∫

Ω1

G2(r) dV +

∫

Ω∗−Ω1

G2(r) dV

≤
∫

Ω1

G2(r) dV +G2(R)

∫

Ω∗−Ω1

dV. (6.11)

Thus ∫

Ω1

G2(r) dV ≥
∫

Ω∗

G2(r) dV −G2(R)|Ω∗ − Ω1|, (6.12)

where | · | is the standard Lebesgue measure on R
n. Note that by definition, Ω∗ and

Ω have the same volume. This gives us that

∫

Ω−Ω1

G2(R) dV =

∫

Ω∗−Ω1

G2(R) dV , (6.13)
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so substituting into the above inequalities gives

∫

Ω

G2(r) dV ≥
∫

Ω∗

G2(r) dV =

∫

Ω∗

g2(r) dV . (6.14)

3. Next, we would like to obtain an upper bound for the numerator in our variational

inequality. Hence, we differentiate to get that

d

dr

[
G′2 + (n− 1)

G2

r2

]
= 2G′G′′ + 2(n− 1)(rGG′ −G2)/r3, (6.15)

which is clearly negative for r > R since G is constant there. If r ≤ R observe that

g(r) ≡ G(r) and from (6.4) we see that

G′′ = −n− 1

r
G′ +

(
n− 1

r2
− µ1(Ω

∗)

)
G. (6.16)

Thus we can substitute into (6.15) to obtain

d

dr

[
G′2 + (n− 1)

G2

r2

]
= 2G′

[
−n− 1

r
G′ +

(
n− 1

r2
− µ1(Ω

∗)

)
G

]

+ 2(n− 1)
(rGG′ −G2)

r3

= −2

[
µ1(Ω

∗)GG′ +
(n− 1)(G′)2

r
− (n− 1)GG′

r2

]

+ 2(n− 1)
(rGG′ −G2)

r3

= −2

[
µ1(Ω

∗)GG′ + (n− 1)

(
(G′)2

r
− 2

GG′

r2
+
G2

r3

)]

= −2
[
µ1(Ω

∗)GG′ + (n− 1)(rG′ −G)2/r3
]
< 0. (6.17)

So since g′(r) ≥ 0 for 0 ≤ r ≤ R, the integrand in the numerator is decreasing for

r > 0.

4. Let us define the following function,

B(r) = G′2 + (n− 1)
G2

r2
. (6.18)

Then we may apply a method similar to that used for the denominator to show that

∫

Ω

B(r) dV =

∫

Ω1

B(r) dV +

∫

Ω−Ω1

B(r) dV
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≤
∫

Ω1

B(r) dV +B(R)

∫

Ω−Ω1

dV , (6.19)

and ∫

Ω∗

B(r) dV =

∫

Ω1

B(r) dV +

∫

Ω∗−Ω1

B(r) dV

≥
∫

Ω1

B(r) dV +B(R)

∫

Ω∗−Ω1

dV. (6.20)

Again by definition, Ω∗ and Ω have the same volume. This gives us that
∫

Ω−Ω1

B(R) dV =

∫

Ω∗−Ω1

B(R) dV , (6.21)

so substituting into (6.19) and (6.20) gives
∫

Ω

[
G′2 + (n− 1)

G2

r2

]
dV ≤

∫

Ω∗

[
g′2 + (n− 1)

g2

r2

]
dV . (6.22)

This is only equality if Ω is a sphere (except for a set a measure zero). So we have

shown that

µ1(Ω) ≤
∫
Ω∗ B(r) dV∫
Ω∗ g2(r) dV

. (6.23)

Thus we need only now show
∫
Ω∗ B(r) dV∫
Ω∗ g2(r) dV

= µ1(Ω
∗). (6.24)

Now if we apply polar coordinates and then integration by parts, we obtain
∫

Ω∗

(g′)2 dV =

∫ R

0

∫

Sn−1

(g′)2rn−1 dσ dr = ωn

∫ R

0

(g′)2rn−1 dr (6.25)

= −ωn

∫ R

0

[g′′g +
(n− 1)

r
g′]rn−1 dr = −

∫

Ω∗

g′′g +
(n− 1)

r
g′ dV . (6.26)

So if we recall (6.4), we see this gives
∫

Ω∗

[(g′)2 +
n− 1

r2
g2] dV = µ1(Ω

∗)

∫

Ω∗

g2 dV . (6.27)

Thus we have the desired result

µ1(Ω) ≤ µ1(Ω
∗). (6.28)

73



6.2 Szegö-Weinberger in Hyperbolic Space

We now consider this problem for domains contained in the space of constant negative

sectional curvature. This proof was outlined in [4], and we give the details here. We

again wish to show that the first non-zero Neumann eigenvalue is maximized on the

geodesic ball of a given hyperbolic volume. So now, given the new metric as is outlined

in section 4.1, our differential equation becomes

h1(g) =
−1

sinhn−1 r

d

dr
sinhn−1 r

dg

dr
+

n− 1

sinh2 r
g = µg, (6.29)

and in the same manner as before we obtain that the first nonzero Neumann eigenvalue

for the geodesic ball of radius R on Hn, µ1(R) is the first eigenvalue of this equation.

Next we see that g is an increasing function on [0, R] via the following lemma.

Lemma 11. If 0 < R, then g′ > 0 on [0, R), where g is the eigenfunction for the first

nonzero eigenvalue of

−1

sinhn−1r

d

dr
sinhn−1r

dg

dr
+

n− 1

sinh2r
g = µg,

(with g > 0 on (0, R] assumed). Thus g is strictly increasing on [0, R]. In addition,

the first eigenvalue µ1 satisfies

µ1 >
n− 1

sinh2R
.

Proof. Define the following function

N(r) ≡ (sinh r)n−1g′(r). (6.30)

Then we see that N(0) = 0, N(R) = 0 and by differentiation and substituting into

the differential equation

g′′ = −µ1g +
n− 1

sinh2 r
g − (n− 1)g′ coth r (6.31)

one obtains

N ′(r) =

[
n− 1

sinh2 r
− µ1

]
(sinh r)n−1g(r). (6.32)
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Next we notice that our function N first increases from 0 and then decreases to

0 as we move along the interval [0, R]. First note that for small r we have that

N ′(r) must be positive. Next observe since
n− 1

sinh2 r
is monotonic decreasing, this

implies that (n − 1)csch2r − µ1 changes sign at most once. However, also note that

since N decreases to 0, (n − 1)csch2r − µ1 must change sign at least once. Hence

(n−1)csch2r−µ1 changes sign once in (0, R) and from this we see that µ1 >
n− 1

sinh2R
.

Thus we see N > 0 on (0, R) and so it follows that g′ > 0.

Similarly, our function B(r) becomes g′(r)2 + (n − 1)g(r)2/ sinh2(r). So we need

to see that B(r) is decreasing on [0, R]. Writing the differential equation as

g′′ = −(n− 1)g′ cothr + (n− 1)g csch2r − µ1g,

we can easily compute that

B′ = −2[µ1gg
′ + (n− 1){cosh r(sinh rg′ − g)2 + 2(cosh r − 1) sinh rgg′}/ sinh3 r].

Recall that we have g′ > 0, g > 0, µ1 > 0, and (cosh r− 1) > 0 so we see that B′ < 0.

Finally, we arrive at our main theorem.

Theorem 23. Let Ω be a bounded domain in a space of constant negative sectional

curvature κ = −1. Then its first nonzero Neumann eigenvalue µ1(Ω) satisfies

µ1(Ω) ≤ µ1(Ω
∗),

where Ω∗ is a geodesic ball in the same space having the same n-volume as Ω. Equality

occurs if and only if Ω is a geodesic ball.

Proof. The proof follows in a manner very similar to the Weinberger case substituting

the equations for g and B involving sinh r. We follow the sketch of this proof given

in [4] and fill in the necessary details. First we apply separation of variables and

compare the eigenfunctions of the resulting family of equations to see that the first
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eigenvalue of

−1

sinhn−1 r

d

dr
sinhn−1 r

dg

dr
+

n− 1

sinh2 r
g = µg, (6.33)

is the first nonzero Neumann eigenvalue of the Laplacian. We use the same argument

as in the case of constant positive curvature and note that we have the result for all

r ∈ [0,∞) since cothr > 0 here. Also we have that g(0) is finite. Now we must pick

trial functions for the Rayleigh-Ritz variational inequality which gives

µ1 ≤
∫
Ω
|∇φ|2dV∫
Ω
φ2dV

, where φ ∈ H1(Ω)\{0} and

∫

Ω

φ dV = 0. (6.34)

So we then apply the center of mass argument in Theorem 16 to Ω taking Pi(r) =

G(r)xi/ sinh r to get a choice of coordinates as in section 4.1 so that

∫

Ω

G(r)(xi/ sinh r) dV = 0 (6.35)

for i = 1, 2, ..., n, where

G(r) =






g(r) 0 ≤ r ≤ R

g(R) R ≤ r

We now compute an upper bound on µ1. Substituting Pi(r) into (6.34) gives us

the n inequalities

µ1

∫

Ω

G(r)2(xi/ sinh r)2 dω ≤
∫

Ω

|∇(G(r)xi/ sinh r)|2 dω for 1 ≤ i ≤ n.

Then we apply the formula from page 51 of [12] and use the metric given in section

4.1 to see that

|∇(G(r)xi/ sinh r)|2 = G′(r)2
( xi

sinh r

)2

+

(
G(r)

sinh r

)2∑

α,β

∂xi

∂uα
gαβ ∂xi

∂uβ
. (6.36)

Thus by summing the inequalities we obtain

µ1 ≤
∫
Ω
[G′(r)2 + (n− 1)G(r)2/ sinh2 r] dω∫

Ω
G(r)2 dω

.
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Now we make the definition that

G′(r)2 + (n− 1)G(r)2/ sinh2 r =






B(r) 0 ≤ r ≤ R

(n− 1)g(R)2/ sinh2R R ≤ r.
(6.37)

As noted above, B′ < 0 and so it is a decreasing function. So our inequality becomes

µ1 ≤
∫
Ω
B(r) dV∫

Ω
G(r)2 dV

. (6.38)

Now we may apply rearrangement results to the following integrals

∫

Ω

B(r) dV =

∫

Ω∗

B(r)∗ dV ≤
∫

Ω∗

B(r) dV (6.39)

and ∫

Ω

G(r)2 dV =

∫

Ω∗

G(r)2
∗ dV ≥

∫

Ω∗

G(r)2 dV =

∫

Ω∗

g(r)2 dV, (6.40)

where Ω∗ denotes the geodesic ball in H
n having the same n-volume as Ω. Thus we

see that

µ1 ≤
∫
Ω∗ B(r) dV∫
Ω∗ g(r)2 dV

= µ1(Ω
∗). (6.41)

We also note that if we had started with Ω = D then we would arrive at equality since

the functions g(r)xi/ sinh r for 0 ≤ r ≤ R are all exact eigenfunctions corresponding

to µ1 in that case. In addition, if Ω is not a geodesic ball we see that the inequalities

must be strict, hence our proof is completed.

6.3 Szegö-Weinberger for F
n

Finally, we consider the Neumann problem for our set of spherically symmetric Rie-

mannian manifolds. Here we will follow a method similar to the previous two cases,

only now our metric is the one given in section 5.1. We wish to show this theorem

holds for the set of f we have chosen to define the manifolds.

So now, given the new metric our differential equation for the first nonzero Neu-

mann eigenvalue becomes

h1(g) =
−1

fn−1

d

dr
fn−1dg

dr
+
n− 1

f 2
g = µg. (6.42)
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The first nonzero Neumann eigenvalue for the geodesic ball of radius r̃ on F
n, µ1(r̃)

is the first solution of this equation, as is shown in the following lemma. Next we see

that g is an increasing function on [0, r̃] via the following lemma.

Lemma 12. Let µ1(r̃) be the first nonzero Neumann eigenvalue for the geodesic ball

of radius r̃ on Fn. If r ∈ [0,∞), then µ1(r̃) is given by the first eigenvalue of

−1

fn−1(r)

d

dr
fn−1(r)

dg

dr
+
n− 1

f 2(r)
g = µg. (6.43)

Proof. By separation of variables in spherical coordinates, we can see that the eigen-

values of the Neumann Laplacian for a geodesic ball in Fn of radius r̃ are the eigen-

values of the one-dimensional problems

hl(y) ≡
−1

fn−1(r)

d

dr

(
fn−1(r)

dy

dr

)
+
l(l + n− 2)

f 2(r)
y = µy (6.44)

on (0, r̃) for l = 0, 1, 2..., where y must satisfy the boundary conditions y(0) is finite

and y′(r̃) = 0. It is easy to see that hl′ > hl in a quadratic form sense if l′ > l since

we see for fixed n, the only change is in the term involving l. Thus µ1(r̃) is either

the second eigenvalue of h0 (the first eigenvalue is 0) or the first eigenvalue of h1. We

show that the latter is the case. We proceed by comparing the first eigenvalue µ1 of

h1,g =
−1

fn−1(r)

d

dr
fn−1(r)

dg

dr
+
n− 1

f 2(r)
g = µg, (6.45)

where g(0) is finite and g′(r̃) = 0 with the second eigenvalue τ2 for

h0,ν =
−1

fn−1(r)

d

dr
fn−1(r)

dv

dr
= τv, (6.46)

where v(0) is finite and v′(r̃) = 0. Note that g is a first eigenfunction we may assume

that g > 0 in (0, r̃].

Now take h(r) to be a nonsingular and nontrivial solution to the equation

−h′′ − (n− 1)f ′

f
h′ = µ1h on (0, r̃]. (6.47)

78



We see by differentiating the operator for l = 0 that g and h′ must be proportional

so we may assume that g = h′. Also we see by differentiation that v and h satisfy the

same equation except for the associated eigenparameters, we can compute that

d

dr
[fn−1(vh′ − v′h)] = (τ2 − µ1)vhf

n−1. (6.48)

Since v is a second eigenfunction, it must change signs in (0, r̃) else we would not

have that v is orthogonal to the constant function. Thus we can pick a ∈ (0, r̃) such

that v(a) = 0 and v′(a) < 0. Now integrate (6.48) from 0 to a to get

(τ2 − µ1)

∫ a

0

vhfn−1 dr = [fn−1(vh′ − v′h)]|a0 = (f(a))n−1(−v′(a))h(a). (6.49)

From this we see that the inequality µ1 < τ2 will follow if we show that h < 0 on

(0, r̃). Since h′ = g > 0 on (0, r̃] we have that h is increasing on this interval so we

need only show that h(r̃) ≤ 0. To see this rewrite (6.47) as

µ1h(r̃) = −g′(r̃) − (n− 1)f ′(r̃)

f(r̃)
g(r̃) = −(n− 1)f ′(r̃)

f(r̃)
g(r̃).

Thus we see that h(r̃) ≤ 0 if r̃ ∈ (0,∞], so it follows that h(a) < 0.

Now we want to show that the function g associated with µ1 is strictly increasing

on [0, r̃] since this function will appear in the denominator of the ratio we will obtain

as an upper bound for the first nonzero Neumann eigenvalue from the Rayleigh-Ritz

characterization.

Lemma 13. We assume g > 0 on (0, r̃], then g′ > 0 on [0, r̃), where g is the first

eigenfunction for (6.42).

Thus g is strictly increasing on [0, r̃]. In addition, the first eigenvalue µ1 satisfies

µ1 >
n− 1

f 2(r̃)
. (6.50)

Proof. Define the following function

N(r) ≡ (f(r))n−1g′(r).
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Then we see that N(0) = 0, N(r̃) = 0 and by differentiation and substituting into

the differential equation one obtains

N ′(r) =

[
n− 1

f 2(r)
− µ1

]
(f(r))n−1g(r).

Next we notice that our function N first increases from 0 and then decreases to 0 as

we move along the interval [0, r̃]. First note that since
n− 1

f 2(r)
is monotonic decreasing,

this implies that
n− 1

f 2(r)
−µ1 changes sign at most once. However, also note that since

N decreases to 0, it must change sign at least once. Hence
n− 1

f 2(r)
− µ1 changes sign

once in (0, r̃) and from this we see that µ1 >
n− 1

f 2(r̃)
. Also, since we see N > 0 on (0, r̃)

it follows that g′ > 0.

Lemma 14. We have that f ′ ≥ 1 for the f associated with the metric on Fn.

Proof. Clearly

f ′(r) = 1 + αrα−1 ≥ 1 (6.51)

for r ∈ [0,∞), α ≥ 2. Now for our second set of potential f , observe that for r ∈ [0, r̃1],

f ′(r) = 1 and for r ≥ r̃2, f
′(r) = αrα−1. Hence here f ′ ≥ 1 since α ≥ 2 and r̃2 ≥ 1.

Also observe that by definition, we have that f(r̃1) = 1. As before, we appeal to

numerical data to show that our examples satisfy this condition. In the following

figures we will present the graphs of these functions for 2 ≤ α ≤ 9 to see that f has

the desired property here.
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Figure 6.1: f ′(r) for α = 2 on [.5,1.5]

Figure 6.2: f ′(r) for α = 3 on [.5,1.5]
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Figure 6.3: f ′(r) for α = 4 on [.5,1.5]

Figure 6.4: f ′(r) for α = 5 on [1,2]
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Figure 6.5: f ′(r) for α = 6 on [1,2]

Figure 6.6: f ′(r) for α = 7 on [1,2]
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Figure 6.7: f ′(r) for α = 8 on [1,2]

Figure 6.8: f ′(r) for α = 9 on [1,2]
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Finally, we arrive at our main theorem. Here we also need the extra symmetry

conditions on our domain Ω as in Theorem 18 so that we may choose the appropriate

test functions.

Theorem 24. Let Ω ⊂ S be a bounded open set in Fn. Then its first nonzero

Neumann eigenvalue µ1(Ω) satisfies

µ1(Ω) ≤ µ1(Ω
∗),

where Ω∗ is a geodesic ball in the same space having the same n-volume as Ω. Equality

occurs if and only if Ω is a geodesic ball.

Proof. The proof follows in a manner very similar to the Weinberger case substituting

the equations for g and B involving f . First we apply separation of variables and

compare the eigenfunctions of the resulting family of equations to see that the first

eigenvalue of

−1

fn−1

d

dr
fn−1dg

dr
+
n− 1

f 2
g = µg,

is the first nonzero Neumann eigenvalue of the Laplacian. We use the same argument

as in the case of constant curvature and note that we have the result for all r ∈ [0,∞)

since f ′

f
> 0 here. Also we have that g(0) is finite. Now we must pick trial functions

for the Rayleigh-Ritz variational inequality which gives

µ1 ≤
∫
Ω
|∇φ|2dω∫
Ω
φ2dω

, where φ ∈ H1(Ω)\{0} and

∫

Ω

φ dω = 0.

So we then take Pi(r) = G(r)xi/f(r) to be our trial functions and get a choice of

coordinates so that
∫
Ω
G(r)(xi/f(r)) dV = 0 for i = 1, 2, ..., n, which is possible as in

Theorem 18, where

G(r) =






g(r) 0 ≤ r ≤ r̃

g(r̃) r̃ ≤ r.

Thus we have an upper bound on µ1. This gives us the n inequalities

µ1(Ω) ≤
∫
Ω
|∇(G(r)xi/f(r))|2 dV∫
Ω
G(r)2(xi/f(r))2 dV

for 1 ≤ i ≤ n. (6.52)
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So we now want to compute |∇(G(r)xi/f(r))|2. We now make use of our metric given

in section 5.1 and we write

Pi(r, xi) =
G(r)

f(r)
xi (6.53)

and take the xi to be the spherical coordinates in our space and

|dω|2 =
∑

α,β

gαβdu
αduβ.

Then we apply the formula from page 51 of [12] to see that

|∇(G(r)xi/f(r))|2 = G′(r)2

(
xi

f(r)

)2

+

(
G(r)

f(r)

)2∑

α,β

∂xi

∂uα
gαβ ∂xi

∂uβ
. (6.54)

Thus by summing the inequalities we obtain

µ1(Ω) ≤
∫
Ω
[G′(r)2 + (n− 1)G(r)2/f(r)2] dV∫

Ω
G(r)2 dV

. (6.55)

Now we make the definition that

G′(r)2 + (n− 1)G(r)2/f(r)2 =






B(r) 0 ≤ r ≤ r̃

(n− 1)g(r̃)2/f(r̃)2 r̃ ≤ r,
(6.56)

Now we need the function in the numerator of the bound we obtain from the Rayleigh-

Ritz characterization of the first nonzero eigenvalue to be decreasing. So we show

that B(r) is decreasing on [0, r̃]. Writing the differential equation as

g′′ = −n− 1

f
g′ +

n− 1

f 2
g − µ1g (6.57)

we can easily compute that

B′ = −2[µ1gg
′ + (n− 1){f ′(fg′ − g)2 + 2(f ′ − 1)fgg′}/f 3]. (6.58)

Recall that we have g′ > 0, g > 0, µ1 > 0, and (f ′ − 1) > 0 so we see that B′ < 0. So

our inequality becomes

µ1(Ω) ≤
∫
Ω
B(r) dV∫

Ω
G(r)2 dV

. (6.59)
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Now we may apply rearrangement results to the following integrals

∫

Ω

B(r) dV =

∫

Ω∗

B(r)∗ dV ≤
∫

Ω∗

B(r) dV (6.60)

and ∫

Ω

G(r)2 dV =

∫

Ω∗

G(r)2
∗ dV ≥

∫

Ω∗

G(r)2 dV =

∫

Ω∗

g(r)2 dV, (6.61)

where Ω∗ denotes the geodesic ball in Fn having the same n-volume as Ω. Thus we

see that

µ1(Ω) ≤
∫
Ω∗ B(r) dV∫
Ω∗ g(r)2 dV

= µ1(Ω
∗).

We also note that if we had started with Ω = Ω∗ then we would arrive at equality since

the functions g(r)xi/f(r) for 0 ≤ r ≤ r̃ are all exact eigenfunctions corresponding to

µ1 in that case. In addition, if Ω is not a geodesic ball we see that the inequalities

must be strict, hence our proof is completed.

6.4 Szegö-Weinberger for More General Spherically Symmetric Mani-

folds

In this final section, we observe that the theorem of Szegö-Weinberger will hold in

a more general set of spherically symmetric Riemannian manifolds than the set Fn.

We again take

ds2 = dr2 + f(r)2|dω|2. (6.62)

to be the metric of this space. However, we only the need the following restrictions on

our function f : f(r) > 0, f(0) = 0, f ′(0) = 1, f ′(r) ≥ 1, and f ∈ C2(Ω) for r ∈ [0,∞).

So if we take a bounded domain Ω contained in this set of manifolds, we again have

that the Szegö-Weinberger Theorem holds. For example, we could take the functions

f(r) = r + rα or f(r) = 1
2
r(1 + er). We will call this more general set of manifolds

F̃n. So then the theorem becomes
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Theorem 25. Let Ω ⊂ S be a bounded open set in F̃
n. Then its first nonzero

Neumann eigenvalue µ1(Ω) satisfies

µ1(Ω) ≤ µ1(Ω
∗),

where Ω∗ is a geodesic ball in the same space having the same n-volume as Ω. Equality

occurs if and only if Ω is a geodesic ball.

Copyright c© Julie Miker, 2009.
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Chapter 7 Vector Fields on Spheres

In order to prove the various center of mass theorems, we need the following theorems

from topology. First we will introduce some definitions and notation.

Definition. If A ⊂ X, a retraction of X onto A is a continuous map r : X → A such

that r|A is the identity map of A. If such a map r exists, we say that A is a retract

of X.

We will denote the n-th reduced homology group of X by H̃nand the n-th homol-

ogy group of X by Hn(X).

Definition. For a map f : X → Y , there is an induced homomorphism

f∗ : Hn(X) → Hn(Y )

defined by

f∗([c]) = [f ◦ c].

Theorem 26. For each n, there is no retraction r : Bn → S
n−1.

Proof. The proof is found on page 186 of [11]. If r : Bn+1 → Sn is a retraction map,

and i : Sn−1 → Bn is the inclusion, then r ◦ i = 1. Thus the composition

G = H̃n−1(S
n−1)

i∗−→ H̃n−1(B
n)

r∗−→ H̃n−1(S
n−1) = G (7.1)

factors the identity map 1 = r∗◦i∗ : G→ G through the middle group which is 0. This

implies that the coefficient group G is zero. However, we know that H̃n−1(S
n−1) = Z.

Thus we arrive at a contradiction.

Theorem 27. The inclusion map j : Sn−1 → B2 − 0 is not nulhomotopic.
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Proof. There is a retraction of R
n − 0 onto S

n+1 given by the equation r(x) = x
||x||

.

Therefore, j∗ is injective, and hence nontrivial.

The center of mass theorems all use a result that is related to the Brouwer fixed-

point theorem, as is referred to in Weinberger’s paper. Here we state the theorem

and then state and prove the related result that is used for our proof of the center of

mass theorem.

Theorem 28 (Brouwer’s fixed-point theorem). Let B ⊂ Rn be the unit ball for n ≥ 0.

If f : B → B is continuous then f has a fixed point, i.e., there is some x ∈ B such

that f(x) = x.

The proof of this theorem is found in many topology texts, for example, [23].

Theorem 29. Every nonvanishing vector field on Bn points directly outward at some

point of Sn−1, and directly inward at some point of Sn−1.

Proof. Here we follow [23]. A vector field on Bn is an ordered pair (x, v(x)), where

x is in Bn and v is a continuous map of Bn into R
n. To say that a vector field is

nonvanishing means that v(x) 6= 0 for every x; in such a case v : Bn → Rn − 0.

We suppose first that v(x) does not point directly inward at any point x of Sn−1

and derive a contradiction. Consider the map v : Bn → Rn−0; let w be its restriction

to Sn−1. Because Bn is contractible and the map w extends to a map of Bn into Rn−0

it is nulhomotopic.

On the other hand, w is homotopic to the inclusion map j : Sn−1 → Rn − 0. Now

we define the homotopy

F (x, t) = tx− (1 − t)w(x), (7.2)

for x ∈ S
n−1. We must show that F (x, t) 6= 0. Clearly, F (x, t) 6= 0 for t = 0 and

t = 1. If F (x, t) = 0 for some t with 0 < t < 1, then tx + (1 − t)w(x) = 0, so that

w(x) equals a negative scalar multiple of x. But this means that w(x) points directly
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inward at x. Hence F maps S
n−1 × [0, 1] into R

n − 0 as desired. It follows that j is

nulhomotopic, but this contradicts the preceding theorem.

To show that v points directly outward at some point of Sn−1, we apply the result

just proved to the vector field (x,−v(x)).

Copyright c© Julie Miker, 2009.
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