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ABSTRACT OF DISSERTATION

Boij-Söderberg Decompositions, Cellular Resolutions, and Polytopes

Boij-Söderberg theory shows that the Betti table of a graded module can be written as a
linear combination of pure diagrams with integer coefficients. In chapter 2 using Ferrers
hypergraphs and simplicial polytopes, we provide interpretations of these coefficients for
ideals with a d-linear resolution, their quotient rings, and for Gorenstein rings whose res-
olution has essentially at most two linear strands. We also establish a structural result on
the decomposition in the case of quasi-Gorenstein modules. These results are published
in the Journal of Algebra, see [25].

In chapter 3 we provide some further results about Boij-Söderberg decompositions.
We show how truncation of a pure diagram impacts the decomposition. We also prove
constructively that every integer multiple of a pure diagram of codimension 2 can be re-
alized as the Betti table of a module.

In chapter 4 we introduce the idea of a c-polar self-dual polytope. We prove in 4.3.7
that in dimension 2 only the odd n-gons have an embedding which is polar self-dual. We
also define the family of Ferrers polytopes in 4.4.1. In 4.4.8 we prove that the Ferrers
polytope in dimension d is d-polar self-dual hence establishing a nontrivial example of
a polar self-dual polytope in all dimension. In 4.5.6 we prove that the Ferrers polytope
in dimension d supports a cellular resolution of the Stanley-Reisner ring of the (d+3)-gon.

KEYWORDS: Boij-Söderberg Decomposition, Cellular Resolutions, Polytopes, Posets,
Gorenstein
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Chapter 1 Introduction

The study of free resolutions has its roots in understanding solutions to systems of poly-
nomial equations. Given a system of polynomial equations we know that in general there
are many solutions. A standard question to ask is what is the “best” solution in some
sense. To answer this question it is first important to understand what the set of solu-
tions looks like. One of the first natural questions is what is the dimension of the solution
space? The theory of free resolutions answers this questions and many others.

The idea of a system of equations can be reformulated in the language of an “ideal”.
Another simple, but surprisingly useful step is to transform a standard ideal into a graded
ideal and consider solutions to the ideal in projective space. This simplification motivates
the study of graded free resolutions which were first introduced by David Hilbert, perhaps
the most influential mathematician of the late nineteenth century and early twentieth cen-
tury.

Although systems of equations provide a sufficient reason for the study of free res-
olutions, they also arise in many other areas of study. One such area is the study of
combinatorial structures. Throughout this paper we exploit the many connections be-
tween combinatorial objects such as graphs and polytopes and their corresponding ideals.

Along with giving the dimension of a ring, free resolutions provide many numerical
invariants of a ring, known as the Betti numbers. One convenient way to display the
numerical information in a free resolution is called the Betti table. This is essentially just
a matrix with integer entries. One natural question is to ask if a given integer matrix is
actually the Betti table of a module.

In 2009 Eisenbud and Schreyer proved the existence of a Boij-Söderberg decomposition
for the Betti table of any module over the polynomial ring k[x1, ..., xn]. This theory gives
a simple algorithm for decomposing the Betti table into a sequence of “pure diagrams”
with positive integer coefficients. This algorithm gives us a partial way to answer the
question posed in the last paragraph. If this algorithm fails then we know the integer
matrix we were considering was not the Betti table of a module. On the other hand if
the algorithm succeeds then there is an integer multiple of this table which is the Betti
table of a module. However, to date there is no known significance to the particular “pure
diagrams” or their coefficients.

Chapter 2 seeks to restrict the study of the Boij-Söderberg decompositions to rings
where the “pure diagrams” are easy to predict, and then find meaning in the integer
coefficients. These results are published in the Journal of Algebra, see [25].

In section 2.2 we introduce the necessary background for our results in Boij-Söderberg
theory. In section 2.3 we describe the Boij-Söderberg decompositions of ideals with linear
resolutions in terms of their associated Ferrers ideals. In particular Theorem 2.3.6 char-
acterizes the decompositions of ideals with linear resolutions.
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In section 2.4 we show that Boij-Söderberg decompositions of Quasi-Gorenstein mod-
ules have symmetric decompositions. The main theorem of this section is Theorem 2.4.4
which presents the symmetry arguement.

In section 2.5 we explicitly describe the decompositions of some Gorenstein rings.
In particular we point out in 2.5.6 that if R/I is the quotient ring associated with the
Stanley-Reisner ring of a stacked polytope, then the coefficients in the decomposition are
either the dimension of the polytope, or the dimension minus one.

Chapter 3 is a collection of smaller disconnected results in Boij-Söderberg theory.
Considering Theorems 2.3.2 and 2.3.9 we might try to classify how the Boij-Söderberg
decomposition changes when we pass from a quotient ring to the corresponding ideal.
This corresponds to understanding how Boij-Söderberg decompositions change when we
truncate a Betti table. We provide some results in this area in section 3.2.

Another important question in Boij-Söderberg theory is an integer combination of
“pure diagrams” not actually the Betti table of a module? Considering all possible linear
combinations of “pure diagrams” with positive coefficients we get a cone in which the
“pure diagrams” form the extremal rays. Then we show in this section 3.3 that every
integer point which lies along one of these extremal rays of codimension 2 is actually the
Betti table of a module.

The theory of cellular resolutions was developed in [7] and [8]. A cellular resolution
is a way of encoding the minimal graded free resolution of a monomial ideal in a labeled
cell complex. Once each face is labeled by a monomial the maps in the associated free
resolution become:

∂i(eP ) =
∑

Q facet of P

ε(Q,P )
mP

mQ

eQ,

This theory allows us to associate the Betti numbers of the free resolution with the face
vector of our cell complex. The biggest question in the theory of cellular resolutions is
which monomial ideals have a cellular resolution? In [27] Velasco shows that there are
monomial ideals whose resolutions are not supported on a CW-complex.

In chapter 4 we seek to construct a cellular resolution of the Stanley-Reisner ring of
the n-gon. In order to do this we first introduce several of the basic notions of cellular
resolutions and cite a few particular cases in 4.2.

In section 4.3 we introduce the idea of a c-polar self-dual polytope. We prove that the
set of polar self-dual polytopes is strictly smaller than the set of self-dual polytopes in
Theorem 4.3.7. In order to do this we prove Lemma 4.3.6, which provides some necessary
conditions on the face-poset of a polytope in any dimension in order for it to have a polar
self-dual embedding. We conclude the section by giving some results about polar self-dual
simplices and defining the overlap between polar self-dual an reflexive polytopes.

In section 4.4 we construct the Ferrers polytopes 4.4.1. We prove that the d dimen-
sional Ferrers polytope is actually d-polar self-dual in Theorem 4.4.8 thus establishing a
nontrivial example of polar self-dual polytopes in all dimensions.

In section 4.5 we label the Ferrers polytope in 4.5.2, hence turning the Ferrers polytope
into a labeled polytope. In 4.5.6 we show that the labeled Ferrers polytope in dimension

2



d supports a minimal free resolution of the Stanley-Reisner ring of the (d + 3)-gon. We
extend this result to show that a different labeling of the Ferrers polytope supports a
minimal free resolution of the Stanley-Reisner ring of some stacked polytopes in Corollary
4.5.9.

Copyright c© Stephen Sturgeon, 2014.
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Chapter 2 Combinatorial Interpretations of some Boij-Söderberg
Decompositions

2.1 Introduction

Boij-Söderberg theory classifies all Betti tables of graded modules over a polynomial ring
R up to a rational multiple. This is achieved by writing the Betti table of such a module
as a unique linear combination of pure diagrams whose coefficients are positive integers
(see Section 2.2 for details). The purpose of this chapter is to demonstrate combinatorial
significance of these coefficients in a few cases. Each of these cases is related to ideals that
are derived from some combinatorial objects. Moreover, we show that the self-duality of
the minimal free resolution of a quasi-Gorenstein module is reflected in its Boij-Söderberg
decomposition. This includes all standard graded Gorenstein algebras.

In Section 2.3 we first consider the Boij-Söderberg decompositions of ideals with a
d-linear resolution. The Ferrers ideals associated to d-uniform Ferrers hypergraphs pro-
vide examples of such ideals. Their resolutions are well-understood thanks to results in
[11], [12], and [23]. We show that each Betti table of an ideal with a d-linear resolu-
tion corresponds to the Betti table of a suitable Ferrers hypergraph. This allows us to
give a combinatorial interpretation of the Boij-Söderberg coefficients. In particular, they
must form an O-sequence. This result (see Theorem 2.3.6) provides a characterization
of the Betti numbers of ideals with a d-linear resolution that complements the recent
characterization obtained in [18].

Then we consider the Boij-Söderberg decomposition of certain quotient rings R/I.
The Betti tables of the ideal I and R/I are closely related. However, their Boij-Söderberg
decompositions are very different in general and the precise relationship is not known.
In the case where I has a d-linear resolution, we obtain an interpretation of the Boij-
Söderberg coefficients of R/I (see Theorem 2.3.9). Again it relies on a suitable Ferrers
hypergraph though the coefficients are extracted by counting different subsets in the
hypergraph this time.

Quasi-Gorenstein modules were introduced in [22]. They are important in the liai-
son theory of modules. Gorenstein rings are examples of cyclic such modules. Quasi-
Gorenstein modules have a self-dual minimal free resolution.

In Section 2.4 we consider the Boij-Söderberg decompositions of such modules. We
show that their Betti table can be rewritten as a linear combination of self-dual diagrams,
where each summand is the sum of at most two pure diagrams (see Theorem 2.4.4). Spe-
cific instances of such decompositions are derived in Section 2.5. We consider the Betti
tables of Gorenstein rings with few linear strands. Such Betti tables arise naturally. In
particular, they can be obtained from the resolutions of Stanley-Reisner rings correspond-
ing to boundary complexes of simplicial polytopes. The Boij-Söderberg decomposition are
described in Theorem 2.5.3. The coefficients admit a very transparent interpretation in
the case of stacked polytopes (see Corollary 2.5.6).

We review basic facts on Boij-Söderberg decompositions and Ferrers hypergraphs in
Section 2.2. Furthermore, given any strongly stable monomial ideal I whose generators
have degree d, an explicit construction of a d-uniform Ferrers hypergraph with the same
graded Betti numbers as I is provided in Remarks 2.2.5 and 2.2.6.

4



2.2 Boij-Söderberg decomposition, O-sequences, and Ferrers hypergraphs

We recall some results and concepts that are needed in subsequent sections.
We work over a polynomial ring R = K[x1, . . . , xn] in n variables, where K is any

field. All modules are assumed to be graded finitely generated R-modules. We denote
the graded Betti numbers of M (as an R-module) by

βi,j(M) = dimK [TorRi (M,K)]j.

The numerical information of the minimal free resolution of M is captured in the Betti
table β(M) = (βi,j(M)) of M .

Definition 2.2.1. Given an increasing sequence of integers σ = (d0, d1, . . . , ds) we denote
by πσ the matrix with entries βi,j, where

βi,j =


s∏

k=0,k 6=i

1

|di − dk|
if j = di

0 otherwise.

It is called the pure diagram to the degree sequence σ.

Note that this is the convention used in [10], which differs from the original proposal
in [9]. We point out that βi,j = 0 in any Betti table when j < i. For this reason we will
compress our Betti tables so that the first column entry is bei,i. For example:

π(0,2,3,5) =

βi,j 0 1 2 3
0 1

30
0 0 0

1 0 1
6

1
6

0
2 0 0 0 1

30

Every pure diagram is a rational multiple of the Betti table of a Cohen-Macaulay
module. Due to the seminal results by Eisenbud and Schreyer in [14], much more is
true. Define a partial order on the set of pure diagrams by setting πσ ≤ πτ , where
σ = (d0, d1, . . . , ds) and τ = (d′0, d

′
1, . . . , d

′
t) are degree sequences, if s ≥ t and di ≤ d′i for

all i = 0, 1, . . . , t. Boij-Söderberg theory as developed by Boij and Söderberg in [9], [10]
and Eisenbud and Schreyer in [14] classifies all Betti tables of graded R-modules up to a
rational multiple. More precisely, one has (see [10, Theorem 2]):

Theorem 2.2.2. For every graded, finitely generated R-module M , there are unique pure
diagrams πσ1 < πσ2 < · · · < πσt and positive integers a1, . . . , at such that

β(M) =
t∑
i=1

aiπσi , (2.2.1)

We call the right-hand side in Equation (2.2.1) the Boij-Söderberg decomposition of
the Betti table of M , the pure diagrams πσi its summands and the integers ai the Boij-
Söderberg coefficients of M .

5



Next, we recall Macaulay’s characterization of Hilbert functions of graded K-algebras.
Given positive integers b and d, there are unique integers md > md−1 > ms ≥ s ≥ 1 such
that

b =

(
md

d

)
+

(
md−1

d− 1

)
+ . . .+

(
ms

s

)
.

Then define

b〈d〉 :=

(
md + 1

d+ 1

)
+

(
md−1 + 1

d

)
+ . . .+

(
ms + 1

s+ 1

)
and b〈d〉 := 0 if b = 0. A sequence of non-negative integers (hj)j≥0 is called an O-sequence

if h0 = 1 and hj+1 ≤ h
〈j〉
j for all j ≥ 1. Macaulay (see, e.g., [5, Theorem 4.2.10]) showed

that, for a numerical function h : Z→ Z, the following conditions are equivalent:

(a) h is the Hilbert function of a standard graded K-algebra R/I, that is, dimK [R/I]j =
h(j) for all integers j;

(b) h(j) = 0 if j < 0 and {h(j)}j≥0 is an O-sequence.

Finally, we consider Ferrers hypergraphs. Ferrers graphs are parametrized by parti-
tions and form an important class of bipartite graphs. Their edge ideals admit an explicit
minimal free resolution (see [11]). They can be specialized to the edge ideals of threshold
graphs (see [12]). These results have been extended to d-partite hypergraphs, d ≥ 2, in
[23].

Definition 2.2.3. A Ferrers hypergraph is a d-partite d-uniform hypergraph F on a
vertex set X(1) t ...tX(d) such that there is a linear ordering on each X(j) and whenever
(i1, ..., id) ∈ F and (i′1, ..., i

′
d) satisfies i′j ≤ ij in X(j) for all j, one also has (i′1, ..., i

′
d) ∈ F .

In other words, F is an order ideal in the componentwise partial ordering on X(1) × ...×
X(d).

The ideal I(F ) generated by all the monomials x
(1)
i1
· · ·x(d)

id
, where (i1, ..., id) ∈ F , is

called a (generalized) Ferrers ideal.

We may assume that the sets X(j) consist of consecutive positive integers 1, 2, . . . , nj.

Example 2.2.4. Monomial ideals generated by variables correspond to 1-uniform Fer-
rers hypergraphs. Ferrers tableaux describe 2-uniform Ferrers graphs, whereas 3-uniform
Ferrers hypergraphs correspond to cubical stackings. For example, consider the stacking
Using variables x1, x2, . . ., y1, y2, . . ., and z1, z2, . . . to avoid super scripts, the associated
Ferrers ideal is

I(F ) = (x1y1z1, x1y1z2, x1y1z3, x1y2z1, x1y2z2, x2y1z1).

Recall that a monomial ideal I ⊂ R is said to be strongly stable if, for any monomial
u ∈ S, the conditions u ∈ I and xi divides u imply that xj · uxi is in I whenever j ≤ i.
A squarefree monomial ideal I ⊂ R is said to be squarefree strongly stable if, for any
squarefree monomial u ∈ R, the conditions u ∈ I, xi divides u, and xj does not divide u
imply that xj · uxi is in I whenever j ≤ i.

6



Figure 2.1: 3-uniform Ferrers Hypergraph

z

x

y

Remark 2.2.5. It is well-known how to associate to a given strongly stable ideal a square-
free strongly stable ideal in a ring with enough variables that has the same graded Betti
numbers. Indeed, define a map

ϕ : {monomials} −→ {squarefree monomials}

by
xi1xi2 · · ·xij 7→ xi1xi2+1 · · ·xij+j−1, where 1 ≤ i1 ≤ i2 · · · ≤ ij.

If I is a strongly stable ideal with minimal generators u1, ..., ut, then J = (ϕ(u1), ..., ϕ(ut))
is a squarefree strongly stable ideals with the same graded Betti numbers as I by Lemmas
1.2 and 2.2 in [1].

According to [23, Propostion 3.7], every Ferrers hypergraph is isomorphic to a skew
squarefree strongly stable hypergraph. However, here we need a different construction.

Remark 2.2.6. Using new variables x
(j)
i , where i ≥ 1 and 1 ≤ j ≤ d, consider the map

ψ defined by

xi1xi2 · · · xid 7→ x
(1)
i1
x

(2)
i2−i1 · · · x

(d)
id−id−1

if 1 ≤ i1 ≤ i2 · · · ≤ ij.

If J is a squarefree strongly stable ideal whose minimal generators v1, . . . , vt all have degree
d, then one checks that the ideal generated by ψ(v1), . . . , ψ(vt) is the Ferrers ideal I(F )
of a d-uniform Ferrers graph F . Moreover, the ideals J and I(F ) have the same graded
Betti numbers by [23, Theorem 3.13] as their minimal free resolutions can be described by
using isomorphic cell complexes.

We illustrate the passage from a strongly stable ideal to a Ferrers ideal.

Example 2.2.7. Consider the strongly stable ideal I = (x3
1, x

2
1x2, x1x

2
2, x1x2x3, x

2
1x3). Ap-

plying the above map ϕ to each of its generators we get:

I = (x3
1, x

2
1x2, x1x

2
2, x1x2x3, x

2
1x3) 7→ (x1x2x3, x1x2x4, x1x3x4, x1x3x5, x1x2x5)

Using the above map ψ we get a Ferrers ideal. However, to avoid superscripts we use
variables yi = x

(2)
i and zi = x

(3)
i . We obtain:

(x1x2x3, x1x2x4, x1x3x4, x1x3x5, x1x2x5) 7→ I(F ) = (x1y1z1, x1y1z2, x1y2z1, x1y2z2, x1y1z3).

7



2.3 Ideals with d-linear resolutions

In this section, our goal is to describe the Boij-Söderberg decompositions of the Betti
tables of ideals with a d-linear resolution and of the tables of their quotient rings.

Notation 2.3.1. We use πd−lin;k to denote the pure diagram representing a d-linear res-
olution, that is, πd−lin;k = πσ, where σ = (d, d+ 1, . . . , d+ k).

We begin by considering Ferrers ideals. Notice that the graded Betti numbers of an
ideal I over R are the same as the ones of the extension ideal IR[t] over R[t], where t is
a new variable. Thus, we may drop the reference to the polynomial ring R.

Proposition 2.3.2. Let F be a d-uniform Ferrers hypergraph. Then the Boij-Söderberg
decomposition of the associated Ferrers ideal I(F ) is

β(I(F )) =
∑
k≥0

αk(F ) k! πd−lin;k,

where:
αk(F ) := #{(i1, .., id) ∈ F :

∑
j

ij = k + d}.

Proof. Observe that the non-zero entry in homological degree i of πd−lin;k is 1
i!(k−i)! . Hence,

the i-th non-zero entry in the diagram
∑

k≥0 αk(F ) k! πd−lin;k is[∑
k≥0

αk(F ) k! πd−lin;k

]
i

=
∑
k≥0

αk(F )

(
k

i

)
.

Our claim follows because

βi(I(F )) =
∑
k≥0

αk(F )

(
k

i

)
by Corollary 3.14 in [23].

Example 2.3.3. Consider the 3-uniform Ferrers hypergraph

F = {(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 1), (1, 2, 2), (2, 1, 1)}.
Its Ferrers ideal (see Example 2.2.4)

I(F ) = (x1y1z1, x1y1z2, x1y1z3, x1y2z1, x1y2z2, x2y1z1)

has Betti table

β(I(F )) =
βi,j 0 1 2
3 6 7 2

.

Since α2(F ) = 2, α1(F ) = 3, and α0(F ) = 1, by Theorem 2.3.2, its Boij-Söderberg
decomposition is

β(I(F )) = α2(F ) · 2! · βi,j 0 1 2
3 1

2
1 1

2

+ α1(F ) · 1! · βi,j 0 1 2
3 1 1 ·

+ α0(F ) · 0! · βi,j 0 1 2
3 1 · ·

= 4 · βi,j 0 1 2
3 1

2
1 1

2

+ 3 · βi,j 0 1 2
3 1 1 · +

βi,j 0 1 2
3 1 · · .
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The following result characterizes the α-sequences of Ferrers graphs as defined in
Proposition 2.3.2. Recall that an O-sequence h0, h1, . . . is a sequence of non-negative
integers such that h0 = 1 and hi+1 ≤ h<i>i for all i ≥ 1 (see Section 2.2). This following
result follows from [19, Proposition 3.8] and the fact that αk+1(F ) = l∗k(F (I)) in the
notation of that paper. We provide a direct proof by construction.

Proposition 2.3.4. Let (h0, ..., hs) be a sequence of non-negative integers. Then the
following conditions are equivalent:

(a) The given sequence is the α-sequence of a d-uniform Ferrers hypergraph, that is,
there is such a graph F such that αi(F ) = hi whenever 0 ≤ i ≤ s and αi = 0 if
i > s.

(b) The given sequence is an O-sequence with h1 ≤ d.

Proof. Denote by M the set of monomials in the polynomial ring R = K[x1, ..., xd] and
consider the map

ϕ : M −→ S := K[x
(j)
i |1 ≤ j ≤ d], xa = xa11 x

a2
2 · · ·x

ad
d 7→ x

(1)
a1+1x

(2)
a2+1 . . . x

(d)
ad+1

First, we show that (b) implies (a). By Macaulay’s theorem, Assumption (b) provides
that there is a lexsegment ideal I of R such that its Hilbert function satisfies

dimK [R/I]j =

{
hj if 0 ≤ j ≤ s

0 if s < j.

Denote by Lj the monomials of degree j in M \I. Let J ⊂ S be the ideal that is generated
by ϕ(L0) ∪ . . . ∪ ϕ(Ls). Note that all minimal generators of J have degree d. We claim
that J is a Ferrers ideal. Indeed, if ϕ(xa) is a minimal generator of J , then xa /∈ I. Thus,
xa

xi
/∈ I for each variable xi, so ϕ(x

a

xi
) ∈ J .

Let F be the d-uniform Ferrers graph such that J = I(F ). Then αi(F ) = hi follows
from the construction of F .

Second, we assume (a) and show (b). Let L ⊂ R be the set of monomials consisting
of the preimages under ϕ of the minimal generators of the Ferrers ideal I(F ). It consists
of monomials whose degree is at most s. Let Lj ⊂ L be the subset of monomials having
degree j. Then the cardinality of Lj is αj(F ) by construction. Moreover, observe that L
is an order ideal of M with respect to the partial order given by divisibility because F is
a Ferrers hypergraph.

Let I ⊂ R be the ideal that is generated by all the monomials that are not in L. Then
I is an artinian ideal whose inverse system is the order ideal L. Thus, we get

dimK [R/I]j = #Lj = αj(F ) = hj.

Hence Macaulay’s characterization of Hilbert functions implies that (h0, ..., hs) is an O-
sequence.

Remark 2.3.5. Although we construct a Ferrers hypergraph for each O-sequence this is
not in general the unique Ferrers hypergraph for that sequence. For example consider Fer-
rers ideals I = (x1y1, x1y2, x1y3, x2y1, x2y2) and J = (x1y1, x1y2, x1y3, x2y1, x3y1). These
hypergraphs are clearly not isomorphic and yet their Boij-Söderberg decompositions give
the same O-sequence.
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We are ready for the first main result of this section. We use Notation 2.3.1 in our
characterization of the Betti numbers of ideals with a d-linear resolution.

Theorem 2.3.6. Let R = K[x1. . . . , xn] and consider the diagram

β =
v∑
k=0

αk k! πd−lin;k,

where α0, . . . , αv are rational numbers and v ≤ n. Then the following conditions are
equivalent:

(a) β is the Betti table of an ideal of R with a d-linear resolution.

(b) β is the Betti table of a strongly stable ideal I whose minimal generators have degree
d.

(c) β is the Betti table of the ideal to a d-uniform Ferrers hypergraph F with

αi(F ) =

{
αi if 0 ≤ i ≤ v

0 if v < i.

(d) (α0, α1, ..., αv) is an O-sequence with α1 ≤ d.

Proof. (a)⇒ (b): Let I be an ideal with Betti table β. Then the generic initial ideal of I
with respect to the reverse lexicographic order has the same graded Betti numbers as I (see
[16, Corollary 4.3.18] and [16, Corollary 6.1.5]). Furthermore, if K has characteristic zero,
then gin I is strongly stable, and we are done. If the characteristic of K is positive, then
gin I is at least a stable monomial ideal. This follows, for example, by [24, Theorem 2.5].
Consider now gin I as an ideal in a polynomial ring whose base field, L, has characteristic
zero. Since the minimal free resolution of gin I, as described by Eliahou and Kervaire,
does not depend on the characteristic, the Betti numbers of gin I remain the same when
considered over L. Passing now to the generic initial ideal with respect to the reverse
lexicographic order gives the desired strongly stable ideal.

(b)⇒ (c): Remarks 2.2.5 and 2.2.6 provide to each strongly stable ideal whose gener-
ators have degree d a Ferrers ideal of a d-uniform hypergraph with the same graded Betti
numbers.

(c) ⇒ (a): This is true by Proposition 2.3.2.
Conditions (c) and (d) are equivalent by Proposition 2.3.4.

Remark 2.3.7. A related, but compared to Theorem 2.3.6 different characterization of the
Betti tables of ideals with a d-linear resolution has been established by Herzog, Sharifan,
and Varbaro in [18, Theorem 3.2]. It uses combinatorial information on the generators of
a strongly stable monomial ideal. The proposition by Murai in [19, Proposition 3.8] gives
a similar characterization of strongly stable ideals based on the existence of a simplicial
complex whose Stanley-Reisner ideal has the desired O-sequence. The author would like
to thank Isabella Novik and Alexander Engström for pointing out related work.

Since the Betti numbers of the quotient ring R/I are determined by the Betti numbers
of the ideal I, one might expect the decompositions of the Betti tables to be similar or,
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at least, related. However, in general the precise relationship is not known. We solve this
problem if the ideal I has a d-linear resolution. By the previous result, we may assume
that I is a Ferrers ideal. In this case we show that the decomposition of the quotient ring
can be found by counting the same set that defined the numbers αk(F ), just in a different
fashion.

In order to state the result, we need some notation.

Notation 2.3.8. We use π0,d−lin;k to denote the pure diagram πd, where the degree se-
quence is d = (0, d, d+ 1, . . . , d+ k).

In the following result we exclude the case d = 1 in which the Boij-Söderberg decom-
position is trivial. It has only one summand.

Theorem 2.3.9. Let F be a d-uniform Ferrers hypergraph on the vertex set X(1) t . . . t
X(d), where d ≥ 2. Then the Boij-Söderberg decomposition of the quotient ring R/I(F ) is

β(R/I(F )) =
d∑
j=1

∑
S∈Fj

nS · kS! · π0,d−lin;kS ,

where Fj is the Ferrers hypergraph

Fj := {(i1, . . . , îj, . . . , id) : There is some ij ∈ X(j) such that (i1, . . . , ij, . . . , id) ∈ F},
nS := max{ij ∈ X(j) : (i1, . . . , ij, . . . , id) ∈ F} if S = (i1, . . . , îj, . . . , id) ∈ Fj, and

kS := nS − d+
d∑

p=1,p 6=j

ip.

Proof. Note that the non-zero entries in π0,d−lin;kS are

βi(π0,d−lin;kS) =


(d− 1)!

(d+ kS)!
if i = 0

1

(i− 1)! · (kS − i+ 1)! · (d+ i− 1)
if 1 ≤ i ≤ kS + 1.

(2.3.1)

Thus, the entry of
∑d

j=1

∑
S∈Fj

nS · kS! · π0,d−lin;kS in homological degree i is

βi

 d∑
j=1

∑
S∈Fj

nS · kS! · π0,d−lin;kS

 =
1

d+ i− 1

d∑
j=1

∑
S∈Fj

nS ·
(
kS
i− 1

)
.

Consider first the Betti numbers with positive index, i.e., assume that i ≥ 1. Then
[23, Corollary 3.14] gives that

βi(R/I(F )) =
∑

(i1,...,id)∈F

(∑
p ip − d
i− 1

)
.

It follows that we have to show the identity

(d+ i− 1)
∑

(i1,...,id)∈F

(∑
p ip − d
i− 1

)
=

d∑
j=1

∑
S∈Fj

nS ·
(
kS
i− 1

)
. (2.3.2)

11



To this end denote by N the number of possibilities for choosing pairs (X, y), where
y ∈ X and X is a subset of X(1) t . . . tX(d) with cardinality d + i − 1 and, for each p,
maxima mp = max(X ∩X(p)) in X(p) such that (m1, . . . ,md) ∈ F . We establish Identity
(2.3.2) by determining N in two different ways.

Approach 1.: We classify the possible subsets X according to their maxima in each
set X(p).

Fix (m1, . . . ,md) ∈ F . To extend {m1, . . . ,md} to a subsetX with maximam1, . . . ,md,
we can choose i− 1 numbers among any of the first mp − 1 elements in each X(p). There

are
(∑

pmp−d
i−1

)
such choices. Taking into account the number of choices for y ∈ X, we

conclude that

N = (d+ i− 1)
∑

(m1,...,md)∈F

(∑
pmp − d
i− 1

)
. (2.3.3)

Approach 2.: This time we classify the possibilities for choosing (X, y) according to
the number j such that y ∈ X(j) and the maxima of X in all X(p), except X(j).

Fix j ∈ {1, . . . , d} and S = (m1, . . . , m̂j, . . . ,md) ∈ Fj. We want to pick y in S(j)

and extend {m1, . . . , m̂j, . . . ,md, y} to a subset X with d + i − 1 elements and maxima
vector (m1, . . . ,max(X ∩X(j)), . . . ,md) in F . In order to ensure the latter condition, all
elements in X ∩X(j) have to be among the first nS elements of X(j) by definition of nS
and using the defining property of a Ferrers hypergraph. Thus, there are nS choices for
y in S(j). The other i − 1 numbers in X can be chosen among any of the first mp − 1
elements in each X(p) if p 6= j and among the first nS elements in X(j), except y. We
conclude that

N =
d∑
j=1

∑
S∈Fj

nS ·
(
nS − d+

∑d
p=1,p 6=j ip

i− 1

)
=

d∑
j=1

∑
S∈Fj

nS ·
(
kS
i− 1

)
. (2.3.4)

Comparing Equations (2.3.3) and (2.3.4), we obtain the desired Identity (2.3.2).
It remains to consider the 0-th Betti number. However, the alternating sum of the

total Betti numbers in a minimal free resolution is zero. Hence our claim for i = 0 follows
from our results for i ≥ 1.

Remark 2.3.10. Theorem 2.3.9 extends the conclusions of group 10.2 (E. Celikbas, D.
Linsay, S. Sanyal, S. Sturgeon, K. Yu) at the MSRI summer workshop in commutative
algebra 2011. In their report they show the conclusion in the case d = 2.

We illustrate the last result in case d = 3.

Example 2.3.11. Consider again the ideal I(F ) = (x1y1z1, x1y1z2, x1y1z3, x1y2z1, x1y2z2, x2y1z1),
corresponding to the cubical stacking

12
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x

y

The Betti table of R/I(F ) is

β(R/I(F )) =

βi,j 0 1 2 3
0 1 · · ·
1 · · · ·
2 · 6 7 2

.

Abusing notation by, for example, identifying (i, j, k) ∈ F with the monomial xiyjzk,
we get the following data for the Ferrers graphs F1, F2, and F3:

F1 :
S y1z1 y1z2 y1z3 y2z1 y2z2

nS 2 1 1 1 1
kS 1 1 2 1 2

,

F2 :
S x1z1 x1z2 x1z3 x2z1

nS 2 2 1 1
kS 1 2 2 1

,

and

F3 :
S x1y1 x1y2 x2y1

nS 3 2 1
kS 2 2 1

.

Since 20 = (ny1z3 +ny2z2 +nx1z2 +nx1z3 +nx1y1 +nx1y2) · 2! and 8 = (ny1z1 +ny1z2 +ny2z1 +
nx1z1 + nx2z1 + nx2y1) · 1!, Theorem 2.3.9 yields the Boij-Söderberg decomposition

β(R/I(F )) = 20 ·

βi,j 0 1 2 3
0 1

60
· · ·

1 · · · ·
2 · 1

6
1
4

1
10

+ 8 ·

βi,j 0 1 2
0 1

12
· ·

1 · · ·
2 · 1

3
1
4

.

Notice that the Boij-Söderberg decomposition of the Betti table of I(F ) has three sum-
mands (see Example 2.3.3), whereas the one of R/I(F ) has only two summands.

Theorem 2.3.9 provides a curious identity for each Ferrers hypergraph.

Corollary 2.3.12. Let F be a d-uniform Ferrers hypergraph and adopt the notation of
Theorem 2.3.9. Then

d =
d∑
j=1

∑
S∈Fj

nS(
d+kS
d

) .
13



Proof. Considering the 0-th Betti numbers in Theorem 2.3.9 and using Equation (2.3.1)
we get the identity

1 =
d∑
j=1

∑
S∈Fj

nS · kS! · (d− 1)!

(d+ kS)!
.

Our claim follows.

Our argument for Corollary 2.3.12 is rather indirect. There also is a more direct
argument to establish this identity using induction on the number of vertices in the
Ferrers hypergraph.

2.4 Quasi-Gorenstein modules

Quasi-Gorenstein modules were introduced in [22] as the graded perfect R-modules that
are isomorphic to a degree shift of their canonical module. A cyclic module R/I is
quasi-Gorenstein if and only if I is a Gorenstein ideal. In module liaison theory quasi-
Gorenstein modules assume the role Gorenstein ideals play in Gorenstein liaison theory.
These modules have a self-dual minimal free resolution. The goal of this section is to
show that this self-duality is reflected in the Boij-Söderberg decomposition of the Betti
table.

Let M be a finitely generated graded module over R = K[x1, . . . , xn]. We denote its
R-dual HomR(M,R) by M∗. It also is a graded module. We call c = dimR − dimM =
n−dimM the codimension of M . The canonical module of M is KM = ExtcR(M,R)(−n).
If M is Cohen-Macaulay and there is an integer t such that M ∼= KM(t), then M is said
to be a quasi-Gorenstein module.

Let now M be a Cohen-Macaulay R-module of codimension c with minimal free res-
olution

0 −→ Fc
ϕc−→ Fc−1 −→ · · ·

ϕ1−→ F0 −→M −→ 0.

Dualizing with respect to R we get the minimal free resolution

0 −→ F ∗0
ϕ∗
1−→ F ∗1 −→ · · ·

ϕ∗
c−→ F ∗c −→ ExtcR(M,R) −→ 0 (2.4.1)

because ExtiR(M,R) = 0 whenever i 6= c as M is Cohen-Macaulay. Hence, if M is a quasi-
Gorenstein module, then the two free resolutions are isomorphic as exact sequences, up to
a degree shift. It follows that the free modules Fi and F ∗c−i are isomorphic, up to a degree
shift that is independent of i. The resulting self-duality of the free resolution means in
particular that, for all integers i and j,

βi,j(M) = βc−i,m−j(ExtcR(M,R)), (2.4.2)

where m = regM + c+a(M). Here a(M) denotes the least degree of a minimal generator
of M and regM = −c + max{j : βc,j(M) 6= 0} its Castelnuovo-Mumford regularity.
In order to capture this self-duality of the free resolution of M in the Boij-Söderberg
decomposition, we introduce.

Definition 2.4.1. Consider the pure diagram πσ to the degree sequence σ = (d0, d1, . . . , dc).
Then its dual pure diagram is the pure diagram πσ∗, where σ∗ := (−dc, . . . ,−d1,−d0).

Moreover, for any integer m, we denote by πm+σ the pure diagram to the degree se-
quence m+ σ := (m+ d0,m+ d1, . . . ,m+ dc).
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We note that the new pure Betti diagrams have the following properties.

Lemma 2.4.2. (a) For each i, βi(πσ) = βc−i(πσ∗).

(b) For each integer m and each i, βi(πσ) = βi(πm+σ).

Proof. Both claims follow directly from the definition of the pure Betti diagrams.

We will refer to any Betti diagram of the form πσ+πm+σ∗ as a self-dual Betti diagram.
This is justified by comparing Equation (2.4.2) with the following observation.

Corollary 2.4.3. For each integers i and j, the entries of the diagram πσ +πm+σ∗ satisfy

βi,j = βc−i,m−j

Proof. This is a consequence of Lemma 2.4.2.

We are ready for the main result of this section.

Theorem 2.4.4. Let M be a quasi-Gorenstein module of codimension c. Set m = regM+
c+a(M). Then the Boij-Söderberg decomposition of M is an integer linear combination of
self-dual Betti diagrams of the form πσ +πm+σ∗ and, in case the number of Boij-Söderberg
summands of M is odd, a pure diagram πσ such that πσ = πm+σ∗ .

Proof. Consider the Boij-Söderberg decomposition of the Betti table of M

β(M) =
t∑
i=1

aiπσi ,

where πσ1 < πσ2 < · · · < πσt .
Observe that, for any pure diagrams πσ and πτ , the relation πσ < πτ implies πτ∗ < πσ∗ .

It follows (see Sequence (2.4.1)) that the Betti table of ExtcR(M,R) has the Boij-Söderberg
decomposition

β(ExtcR(M,R)) =
t∑
i=1

aiπσ∗
i
,

where πσ∗
1
> πσ∗

2
> · · · > πσ∗

t
.

By assumption, M is quasi-Gorenstein, and thus ExtcR(M,R)(−m) ∼= M as graded
R-modules. Hence, comparing the above decompositions and using the uniqueness of the
Boij-Söderberg decomposition, we conclude that, for all i,

πσi = πm+σ∗
t+1−i

.

Our claim follows.

A referee of the journal version of this work asked the question, if the number of
summands is odd then is the coefficient on the middle summand even? We are not aware
of an example where this is not the case.

If M is a Cohen-Macaulay module, then M ⊕KM(j) is a quasi-Gorenstein module for
each integer j (see [22, Remark 2.5(iii)]). Its Boij-Söderberg decomposition is determined
by the one of M . Notice that the number of summands in the decomposition of M⊕KM(j)
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is always even. This is not true for arbitrary quasi-Gorenstein modules. In the next
section, we will exhibit explicit examples in the case of cyclic quasi-Gorenstein modules.
Such a cyclic module is isomorphic to a Gorenstein ring, up to a degree shift. Here we
give an example arising in the birational geometry of surfaces.

Example 2.4.5. Let S be a regular surface of general type such that the canonical map
is a birational morphism onto its image Y ⊂ P4. If the geometric genus of S is five
and K2

S = 11, then the canonical ring M = ⊕m≥0H
0(S,OS(mKS)) is a quasi-Gorenstein

module over the coordinate ring R of P4 with minimal free resolution of the form (see [3,
Theorem 1.5])

0→ R(−6)⊕R2(−4)→ R6(−3)→ R⊕R2(−2)→M → 0.

The Boij-Söderberg decomposition of its Betti table is

β(M) =

βi,j 0 1 2
0 1 · ·
1 · · ·
2 2 6 2
3 · · ·
4 · · 1

= 8 ·

βi,j 0 1 2
0 1

12
· ·

1 · · ·
2 · 1

3
1
4

3 · · ·
4 · · ·

+ 6 ·

βi,j 0 1 2
0 1

18
· ·

1 · · ·
2 · 1

9
·

3 · · ·
4 · · 1

18

+ 8 ·

βi,j 0 1 2
0 · · ·
1 · · ·
2 1

4
1
3
·

3 · · ·
4 · · 1

12

.

Observe that the third summand is π(2,3,6) = π6+(0,3,4)∗ , where π(0,3,4) is the first sum-
mand, and that the second summand satisfies π(0,3,6) = π6+(0,3,6)∗ , as predicted by Theo-
rem 2.4.4.

2.5 Gorenstein rings

In this section we consider Gorenstein rings whose minimal free resolutions have at most
two linear strands of maximal length when one ignores the first and the last homological
degree. Gorenstein rings with such resolutions occur naturally. In fact, any such resolution
is the minimal free resolution of the Stanley-Reisner ring associated to the boundary
complex of a simplicial polytope, see [20].

The following result describes the Betti tables whose Boij-Söderberg decomposition
we derive in this section. It follows from [20, Theorem 8.13].

Lemma 2.5.1. Let s, t, c be positive integers such that s ≥ 2t and c ≤ n. Then there is
a homogeneous Gorenstein ideal I ⊂ R of codimension c such that the graded minimal
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resolution of R/I has the shape

0 −→ R(−s− c) −→
Rac−1(−t− c+ 1)

⊕
Ra1(−s+ t− c+ 1)

−→ · · ·

−→
Ra2(−t− 2)

⊕
Rac−2(−s+ t− 2)

−→
Ra1(−t− 1)

⊕
Rac−1(−s+ t− 1)

−→ R −→ R/I −→ 0,

where, for i = 1, . . . , c− 1,

ai =

(
c+ t− 1

i+ t

)(
t− 1 + i

t

)
.

We would like to point out that the ideals with this minimal free resolution arise in
various ways. Recall that the Hilbert series of any graded K-algebra R/I can be uniquely
written as

HR/I(t) :=
∑
j≥0

dimK [R/I]j =
h(t)

(1− t)d
,

where h(1) 6= 0, h(t) = h0 +h1t+ · · ·hrtr ∈ Z[t], and d = dimR/I. The coefficient vector
(h0, h1, . . . , hr) is called the h-vector of R/I.

Remark 2.5.2. (i) Assume R/I is a Gorenstein ring with a free resolution as in Lemma
2.5.1. Then its h-vector h = (h0, ..., hs) is given by

hi =


(
c−1+i
c−1

)
if 0 ≤ i ≤ t;(

c−1+t
c−1

)
if t ≤ i ≤ s− t;(

s−i+c−1
c−1

)
if s− t ≤ i ≤ s.

(ii) Conversely, Gorenstein rings with this h-vector are often forced to have a free
resolution as described in Lemma 2.5.1. To this end recall that a graded Gorenstein algebra
R/I of dimension d has the weak Lefschetz property if there are linear forms `, `1, . . . , `d
such that A = R/(I, `1, . . . , `d) has dimension zero and, for each j, the multiplication map

×` : [A]j−1 −→ [A]j, a 7→ `a,

has maximal rank, that is, it is injective or surjective. [20, Corollary 8.14] shows:
Let c, s, t be positive integers, where either s = 2t or s ≥ 2t + 2. Let R/I be a

Gorenstein algebra of dimension d = n − c with an h-vector as in (i) above. If R/I has
the weak Lefschetz property, then R/I has a minimal free resolution as in Lemma 2.5.1.

Furthermore, it follows by [20, Theorem 9.6] that each of the resolutions described in
Lemma 2.5.1 occurs as the minimal free resolution of the Stanley-Reisner ring associated
to the boundary complex of a simplicial polytope. Our main result in this section describes
the Boij-Söderberg decomposition of the corresponding Betti table.
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Theorem 2.5.3. Let R/I be a Gorenstein ring with a free resolution as in Lemma 2.5.1.
Then the Boij-Söderberg decomposition of R/I is

β(R/I) = a · [πσ1 + πσc ] + b ·
c−1∑
j=2

πσj , (2.5.1)

where

a =(s+ 1− t)(t+ c− 1)!

t!
,

b =(s+ 1− 2t)
(t+ c− 1)!

t!
,

and
σj = (0, dj,1, . . . , dj,c−1, s+ c)

with

dj,k =

{
t+ k if 1 ≤ k ≤ c− j
s− t+ k if c− j + 1 ≤ k ≤ c− 1

.

As preparation for its proof, we derive the following identity.

Lemma 2.5.4. If a, b,m are positive integers such that m ≤ a, then

m∑
j=1

(
a
j

)(
a+b
j

) = −
(a+ b+ 1−m)

(
a

m+1

)
(b+ 1)

(
a+b
m+1

) +
a

b+ 1
.

Proof. Define

µ(j) = −
(a+ b− j + 1)

(
a
j

)
(b+ 1)

(
a+b
j

) .

Then one checks that (
a
j

)(
a+b
j

) = µ(j + 1)− µ(j).

Hence, we get the telescope sum

m∑
j=1

(
a
j

)(
a+b
j

) =
m∑
j=1

µ(j + 1)− µ(j)

= µ(m+ 1)− µ(1)

= −
(a+ b+ 1−m)

(
a

m+1

)
(b+ 1)

(
a+b
m+1

) +
a

b+ 1
,

as claimed.

Proof of Theorem 2.5.3. Let 1 ≤ i ≤ c − 1, and consider the graded Betti number
βi,t+i = ai. According to Formula (2.5.1), we claim that precisely the pure Betti tables
πσ1 , . . . , πσc−i

contribute to this Betti number. For j = 1, . . . , c − i, the degree sequence
σj is

σj = (0, t+ 1, . . . , t+ i, . . . , t+ c− j, s− t+ c− j, . . . , s− t+ c− 1, c+ s).
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Hence, we get for the non-zero entry in homological degree i of πσj

βi(πσj) =
(s− 2t+ c− i− j)!

(t+ i)(s+ c− t− i)(i− 1)!(c− j − i)!(s− 2t+ c− 1− i)!
.

Using that a = s+1−t
s+1−2t

· b, our claim for βi,t+i is equivalent to

ai
b

=
s+ 1− t
s+ 1− 2t

· βi(πσ1) +
c−i∑
j=2

βi(πσj).

Simplify ai
b

by multiplying by (t+ i)(s+ c− t− i)(i− 1)!(c− 1− i)!, this means that we
have to show:

1

(t+ i)(s+ 1− 2t)(i− 1)!(c− j − i)!
=

s+ 1− t
s+ 1− 2t

· 1

(t+ i)(s+ c− t− i)(i− 1)!(c− 1− i)!

+
c−i∑
j=2

(s− 2t+ c− i− j)!
(t+ i)(s+ c− t− i)(i− 1)!(c− j − i)!(s− 2t+ c− 1− i)!

.

The latter is equivalent to

s+ c− i− t
s+ 1− 2t

=
s+ 1− t
s+ 1− 2t

+
c−i∑
j=2

(s− 2t+ c− i− j)!(c− 1− i)!
(s− 2t+ c− 1− i)!(c− j − i)!

=
s+ 1− t
s+ 1− 2t

+
c−i∑
j=2

(
c−1−i
j−1

)(
s−2t+c−1−i

j−1

)
=

s+ 1− t
s+ 1− 2t

+
c− 1− i
s+ 1− 2t

,

which is certainly true and where we used Lemma 2.5.4 with a = c− 1− i and b = s− 2t
to establish the last equality.

Using the symmetry on both sides of Identity (2.5.1), it only remains to check the
claim for the Betti number β0(R/I) = 1. To this end note that, for each j = 1, . . . , c,

β0(πσj) =
t! (s− t+ c− j)!

(s+ c) (t+ c− j)! (s− t+ c− 1)!
.

Thus, we have to show the identity

1 =
(t+ c− 1)!

t!

[
(s+ 1− t)

(
t!

(s+ c) (t+ c− 1)!
+

(s− t)!
(s+ c) (s− t+ c− 1)!

)

+ (s+ 1− 2t)
c−1∑
j=2

t! (s− t+ c− j)!
(s+ c) (t+ c− j)! (s− t+ c− 1)!

]
.
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It is equivalent to

s+ c

s+ 1− 2t
=

s+ 1− t
s+ 1− 2t

[
1 +

(s− t)! (t+ c− 1)!

(s− t+ c− 1)! t!

]
+

c−1∑
j=2

(t+ c− 1)! (s− t+ c− j)!
(t+ c− j)! (s− t+ c− 1)!

=
s+ 1− t
s+ 1− 2t

[
1 +

(
t+c−1
c−1

)(
s−t+c−1
c−1

)]+
c−1∑
j=2

(
t+c−1
j−1

)(
s−t+c−1
j−1

)
=

s+ 1− t
s+ 1− 2t

[
1 +

(
t+c−1
c−1

)(
s−t+c−1
c−1

)]− (s+ 1− t)
(
t+c−1
c−1

)
(s+ 1− 2t)

(
s−t+c−1
c−1

) +
t+ c− 1

s+ 1− 2t
,

which is certainly true and where we used Lemma 2.5.4 with a = t+c−1 and b = s+1−2t
to establish the last equality. This completes the argument.

Remark 2.5.5. Notice that the summands appearing in the Boij-Söderberg decomposition
in Theorem 2.5.3 satisfy

πσi = πs+c+σ∗
c+1−i

.

This is in accordance with Theorem 2.4.4.

We illustrate the last result in the case of stacked polytopes. Recall that a d-dimensional
simplicial polytope is stacked if it admits a triangulation Γ which is a (d − 1)-tree, that
is, Γ is a shellable (d − 1)-dimensional simplicial complex with h-vector (1, c − 1). For
example, such a polytope is obtained by pairwise gluing of d-simplices along a facet. The
following result shows how the decomposition of the Betti table of its boundary complex
reflects the data that determine the polytope.

Corollary 2.5.6. Let ∆ be the boundary complex of a stacked polytope with n = c + d
vertices that is obtained by stacking c simplices of dimension d. Then the Betti table of
its Stanley-Reisner ring K[∆] has the Boij-Söderberg decomposition

β(K[∆]) = d · c! · [πσ1 + πσc ] + (d− 1) · c! ·
c−1∑
j=2

πσj ,

where
σj = (0, 2, .., c− j + 1, n− 1− j, .., n− 2, n).

Proof. The graded Betti numbers of K[∆] are given by Lemma 2.5.1 with s = d = n− c
and t = 1. Hence Theorem 2.5.3 yields the claim.

Remark 2.5.7. In the special case of 3-dimensional stacked polytopes (d = 3), Corollary
2.5.6 establishes a conjecture made in the report of group 10.1 (V. Kalyankar, V. Lorman,
S. Seo, M. Stamps, Z. Yang) at the MSRI summer workshop in commutative algebra 2011.

We conclude by considering a specific instance of the last result.

Example 2.5.8. Consider a 3-dimensional polytope on the seven vertices a, . . . , f, v, ob-
tained by stacking four 3-simplices with common vertex v. Denote by ∆ its boundary
complex. Its Stanley-Reisner ideal is

I∆ = (ad, ae, af, be, bf, cf, bcv, cdv, dev).
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Figure 2.2: Example Stacked Polytope

a b

c d

e f

v

The Betti table of the Stanley-Reisner ring K[∆] is

β(K[∆]) =

βi,j 0 1 2 3 4
0 1 · · · ·
1 · 6 8 3 ·
2 · 3 8 6 ·
3 · · · · 1

It has the following Boij-Söderberg decomposition:

β(K[∆]) = 3 · 4!

βi,j 0 1 2 3 4
0 1

168
· · · ·

1 · 1
20

1
12

1
24

·
2 · · · · ·
3 · · · · 1

420

+ 2 · 4!

βi,j 0 1 2 3 4
0 1

210
· · · ·

1 · 1
30

1
24
· ·

2 · · · 1
60

·
3 · · · · 1

280

+ 2 · 4!

βi,j 0 1 2 3 4
0 1

280
· · · ·

1 · 1
60
· · ·

2 · · 1
24

1
30

·
3 · · · · 1

210

+ 3 · 4!

βi,j 0 1 2 3 4
0 1

420
· · · ·

1 · · · · ·
2 · 1

24
1
12

1
20

·
3 · · · · 1

168

Notice how one can read off the dimension and number of stacked simplices in the polytope
from the coefficients in the decomposition.

Copyright c© Stephen Sturgeon, 2014.
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Chapter 3 Further Observations in Boij-Söderberg Theory

3.1 Introduction

In this section we consider several complementary results on three different topics in
Boij-Söderberg theory.

The change in complexity of the decompositions given in Theorem 2.3.2 to those of
the quotient ring in 2.3.9 lead us to hope we might classify these changes. The change in
the Betti table of a quotient ring to the corresponding ideal is just truncation of the Betti
table. In section 3.2 we consider how the Boij-Söderberg decomposition changes when we
truncate a pure diagram. The main result of this section is 3.2.2. We point out example
3.2.4 as an example of how the Boij-Söderberg decomposition of the quotient ring can be
derived from the Boij-Söderberg decomposition of the ideal.

In [9, Remark 3.2] Boij and Söderberg showed how to construct a module of codimen-
sion 2 whose Betti table is the first integer multiple of a pure diagram when the shifts in
the degree sequence are relatively prime. In section 3.3 we extend their result to the case
where the degree sequences are not relatively prime. This shows that every integer table
which is a multiple of pure diagram is actually the Betti table of a module in codimension
2. Since we know of integer multiples of pure diagrams which are not the Betti table of
a pure module in codimension 3 this is as far as we can hope to extend this result by
dimension.

3.2 Truncation of Pure Diagrams

We wish to describe the change in a decomposition when we pass from considering the
graded free resolution of a quotient ring k[x1, ..., xm]/I to considering the resolution of
the ideal I as a module itself. As far as the Betti tables are concerned this transition is
completely understood.

In the free resolution of the quotient ring the first free module is simply a copy of
the ring, and hence the Betti table has a 1 in the zero column with zero shift. When
we pass to the resolution of the ideal I as a module in itself the free resolution is the
same as that of k[x1, ..., xm]/I except that the ith free module in the resolution of I is
the (i + 1)th free module in the resolution of k[x1, ..., xm]/I. This leads us to consider
how the Boij-Söderberg decomposition changes when we consider the abstract diagram
derived from removing the first column of a Betti table.

Definition 3.2.1. Let πd̄ be the pure diagram with degree sequence d̄ = (d0, d1, ..., dn).
Then define π∗

d̄
to be the truncated diagram such that βi,j(π

∗
d̄
) = βi+1,j(πd̄) for i ≥ 0.

It is important to notice π∗
d̄
6= π(d1,...,dn). We derive the following result based on the

definition above.
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Theorem 3.2.2. Let πd̄ be a pure diagram with degree sequence d̄ = (d0, d1, ..., dn), and
let π∗

d̄
be its truncated diagram. Let l = [πd̄]0 = 1∏n

i=1(di−d0)
. Then

π∗d̄ = l

n−1∏
i=1

(di − d0)π(d1,d2,...,dn) + ...+ l · (d1 − d0)π(d1,d2) + lπ(d1) (3.2.1)

Proof. We consider the truncated diagram and decomposition at a particular position.
For simplicity we may assume that d0 = 0. Then let [π∗

d̄
]i be the entry corresponding to

the ith Betti number in πd̄. Hence it suffices to show:

[π∗d̄]i = l

(
[π(d1)]i + d1[π(d1,d2)]i + ...+

n−1∏
i=1

di[π(d1,d2,...,dn)]i

)
(3.2.2)

We notice that [π(d1,d2,...,dk)]i = 0 if k < i. Then we collect all the terms.

[π∗d̄]i =
n∏
j=1

1

dj

n∑
k=i

k−1∏
j=1

dj

k∏
j=1,j 6=i

1

|dj − di|
(3.2.3)

We write out the left hand side and reduce the right to get:

n∏
j=0,j 6=i

1

|di − dj|
=

n∑
k=i

n∏
j=k

1

dj

k∏
j=1,j 6=i

1

|dj − di|
(3.2.4)

Then we notice that if j < i and j 6= 0 then 1
di−dj appears in each term.

1

di

n∏
j=i+1

1

dj − di
=

n∑
k=i

n∏
j=k

1

dj

k∏
j=i+1

1

dj − di
(3.2.5)

Then by finding a common denominator we get the following.∏n
j=i+1 dj

di
∏n

j=i+1 dj(dj − di)
=

∑n
k=i

∏n
j=k+1(dj − di)

∏k−1
j=i dj

di
∏n

j=i+1 dj(dj − di)
(3.2.6)

Then we just need to show the numerators are equal. The left hand side counts the
volume of the rectangular solid in Rn−i whose interior points satisfy 0 ≤ xj−i ≤ dj for
i+ 1 ≤ j ≤ n. Then consider a single term on the right hand side re-written.

n∏
j=k+1

(dj − di)
k−1∏
j=i

dj =
n∏

j=k+1

(dj − di)
k−1∏
j=i+1

dj · di (3.2.7)

This is the volume of the rectangular solid in Rn−i whose interior points (x1, ..., xn−i)
satisfy 0 ≤ xj−i ≤ dj for i + 1 ≤ j ≤ k − 1, 0 ≤ xk−i ≤ di, and dj − di ≤ xj−i ≤ dj for
k + 1 ≤ j ≤ n. Given any point (x1, ..., xn−i) in the first rectangular solid we can find
which of the right hand side blocks this point is in by looking for the last entry xk such
that xk ≤ di. The requirement that we look for the last such k also gives us that each of
these blocks intersect only on their boundary and hence this is a subdivision of the first
rectangular solid. Since this final equation is equivalent to the original expression this
proves the decomposition.
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Example 3.2.3. Consider the pure Betti table arising from the degree sequence (0, 3, 4, 5)

60 · β =

βi,j 0 1 2 3
0 1 · · ·
1 · · · ·
2 · 10 15 6

Then the decomposition of the truncation is below

60 · β∗ =
βi,j 0 1 2
3 10 15 6

= 12 · βi,j 0 1 2
3 1

2
1 1

2

+ 3 · βi,j 0 1 2
3 1 1 · + 1 · βi,j 0 1 2

3 1 · ·

Since l = 1 and d1 = 3,d2 = 4.

It is interesting to note that we can reverse this process in the case of Betti tables of
pure modules since we know the order of the pure diagrams. Given the decomposition of I
we can recover the decomposition of k[x1, ..., xn]/I by creating the longest pure diagrams
first, and then working sequentially. This process is shown in the following linear example.

Example 3.2.4. Consider the ideal I(F ) = (x1y1z1, x1y1z2, x1y1z3, x1y2z1, x1y2z2, x2y1z1)
as in 2.3.3. We know that

β(I(F )) = 4π(3,4,5) + 3π(3,4) + 1π(3)

Since I(F ) is an ideal we know this is the truncation of some quotient:

4π(3,4,5) + 3π(3,4) + 1π(3) = aπ∗(0,3,4,5) + bπ∗(0,3,4) + cπ∗(0,3) + dπ∗(0)

All that remains is to solve for the coefficients on the right. We know the leading coefficient
of π(0,3,4,5) is 1

3·4·5 , hence using the truncation formula we get:

4π(3,4,5) + 1π(3,4) +
1

3
π(3) = 20

(
1

5
π(3,4,5) +

1

20
π(3,4) +

1

60
π(3)

)
= 20π∗(0,3,4,5)

2π(3,4) +
2

3
π(3) = 8

(
1

4
π(3,4) +

1

12
π(3)

)
= 8π∗(0,3,4)

Hence the Boij-Söderberg decomposition of R/I(F ) is:

β(R/I(F )) = 20π(0,3,4,5) + 8π(0,3,4)

as seen in 2.3.11

3.3 Pure Codimension 2 Betti Tables

If πd̄ is a pure diagram then some integer multiple of that pure diagram is actually the
Betti table of a module, see [14]. However in general the construction in [14] does not give
the first integer multiple. This leads us to ask if all integer multiples of a pure diagram
are actually the Betti table of a pure module. This is not in fact true as is easily seen by
considering the first integer multiple of the pure diagram π(0,1,3,4).
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In this section we consider the question for pure diagrams with degree sequences
of length 3. These correspond to the codimension 2 modules. We show by explicit
construction that the first integer multiple of each of these is in fact the Betti table of a
module. Boij and Söderberg showed this for degree sequences with no common factors in
[9, Remark 3.2] and we extend their construction to those with common factors. We also
provide some constructions which give us pure diagrams with longer lengths.

Theorem 3.3.1. Let π(d0,d1,d2) be a pure diagram. Then every table of integers that is a
multiple of that pure diagram is actually the Betti table of a module.

Proof. Without loss of generality let d0 = 0. Then if gcd(d1, d2 − d1) = 1 then let
I = (xd1 , yd1)d2−d1−1 and J = (xd2−d1 , yd2−d1)d1 . By [9, Remark 3.2] we note β(I/J(d1(d2−
d1−1)) = d1 ·d2 · (d2−d1)π(0,d1,d2). Note this is the first integer multiple of π(0,d1,d2) which
has entries 1

d1d2
, 1
d1(d2−d1)

, and 1
d2(d2−d1)

. Also note that any later integer multiple must be
a multiple of this Betti table since we must at least clear the denominators of the pure
diagram to get an integer multiple which means we must have that the coefficient is a
multiple of d1 · d2 · (d2 − d1).

If gcd(d1, d2−d1) = d then we can generate this Betti table by considering the module
generated in step one with degree sequence (0, d1

d
, d2
d

), call this module M where M =
I/J(s). Then we notice that if F• is the free resolution of M then if we use the map
f : k[x, y] −→ k[x, y] such that f(x) = xd and f(y) = yd then f(F•) is a free resolution of
f(M). We consider the module f(M)((d− 1) · s). Since the resolution F• was pure, then
the resolution f(F•) is pure and has degree sequence (0, d1, d2). Notice that this Betti
table is the smallest integer table along this ray and every integer point along this ray is
again an integer multiple of this Betti table.

Example 3.3.2. We wish to construct a Betti table with degree sequence (0, 6, 15). First
we construct a module with degree sequence (0, 2, 5). Let I = (x2, y2)2 and J = (x3, y3)2.
Then the resolution of I/J is below:

0 −−−→ R2(−5) ϕ2−−−→ R5(−2) ϕ1−−−→ R3 ϕ0−−−→ I/J(−4) −−−→ 0, (3.3.1)

where

ϕ0 =
(
x4 x2y2 y4

)
, ϕ1 =

 x2 y2 0 0 0
0 −x2 y2 0 xy
0 0 −x2 y2 0

 , ϕ2 =


−y3 0
x2y 0
0 xy2

0 x3

x3 −y3


Then using the map f(x) = x3 and f(y) = y3 and shifting the degrees by multiplying the
degree shift by 3 we get

0 −−−→ R2(−15) ϕ2−−−→ R5(−6) ϕ1−−−→ R3 ϕ0−−−→ I/J(−12) −−−→ 0, (3.3.2)

where

ϕ0 =
(
x12 x6y6 y12

)
, ϕ1 =

 x6 y6 0 0 0
0 −x6 y6 0 x3y3

0 0 −x6 y6 0

 , ϕ2 =


−y9 0
x6y3 0

0 x3y6

0 x9

x9 −y9


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Theorem 3.3.3. Given a monomial ideal with pure resolution and βi,di 6= 0 only in
degrees 0 = d0, d1, ..., dn where gcd(d1, d2 − d1, ..., dn − dn−1) = 1 we can apply the map
f : k[xi] −→ k[xi] such that f(xi) = xdi to get a monomial ideal with pure resolution and
degree sequence (0, d · d1, d · d2, ..., d · dn).

Proof. Let (m1, ...,mk) be the generators of I. Then let LI be the lcm lattice of (m1, ...,mk)
then LI = Lf(I) so by [15, Lemma 2.2] the total Betti numbers of these two modules are
the same.

Corollary 3.3.4. Let d̄ = (0, d, d + k, d + 2k, ..., d + ck) where k divides d. Then there
exist an quotient ring whose Betti table is the smallest integer point on the Boij-Söderberg
ray πd̄.

Proof. Let d
k

= l, then d̄
k

= (0, l, l + 1, l + 2, ..., l + c). Let m = (x1, x2, ..., xc), then it
is well known that the Betti table of R/ml is the first multiple of the pure diagram πd̄.
Then applying the map xi 7→ xki gives us the desired result.

Copyright c© Stephen Sturgeon, 2014.
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Chapter 4 A Cellular Resolution and Stacked Polytopes

4.1 Introduction

Cellular resolutions have been a topic of great interest in commutative algebra for the
past decade (see [7], [2], [27], [11], [12], [15], [23] [21], [5]). We use the theory of cellular
resolutions and polyhedral cell complexes as developed in [7] and [8]. The general concept
is to interpret the maps in the free resolution of a monomial ideal as the boundary maps of
some labeled cell complex. This gives some combinatorial meaning to the Betti numbers
as the ith Betti numbers are now the i− 1 dimensional faces of the cell complex.

There are a few general constructions such as the Taylor, Hull, and Scarf resolutions
(see [21, 5] for details) but these are not always minimal, and the ideals for which these
are minimal have been classified. Outside of these constructions a number of results have
been published for specific families of ideals, most of which have linear resolutions. In
[2] Biermann gives a recursive construction of a cell complex which supports a cellular
resolution of the n-gon. Our construction is not the same beyond dimension 2. We also
note that our construction is more explicit and we show it is in fact the boundary of a
polytope.

In this chapter we construct a cellular resolution of the Stanley-Reisner ring of the
n-gon in 4.4.1 and 4.5.2. This case is interesting because this is a Gorenstein ring, and
hence its resolution is nonlinear.

In section 4.2 we introduce some of the basic notions of cellular resolutions and the
family of Ferrers and specialized Ferrers ideals along with their resolutions given in [11]
and [12].

In section 4.3 we introduce the notion of a c-polar self dual polytope. There are several
definitions of what it means for a polytope in Rd to be self-dual. Our definition is stricter
than all these and hence polar self-dual polytopes are a subset of self-dual polytopes in
general. However we prove some results which show that this restriction is actually helpful
in constructing polytopes with a desired face structure.

In Lemma 4.3.6 we give some necessary conditions on the face-poset of a polytope for
such a polytope to have a polar self-dual embedding. Using this lemma we prove Theorem
4.3.7 which shows that the family of polar self-dual polytopes is strictly smaller than the
family of self-dual polytopes. In particular we show that all the odd n-gons have polar
self-dual embeddings and none of the even n-gons have such an embedding. In Lemma
4.3.13 we show that a c-polar self-dual polytope is reflexive if and only if c = 1.

In section 4.4 we explicitly construct the family of Ferrers polytopes 4.4.1. In 4.4.8 we
prove that the Ferrers polytope in dimension d is d-polar self-dual. In 4.4.10 we establish
an pairing of faces in the Ferrers polytope which we show in the next section models
Gorenstein duality in the cellular resolution.

In section 4.5 we label the Ferrers polytope by monomials, see 4.5.2, to make it a
labeled polytope. Then we show in 4.5.6 that this labeled polytope supports the minimal
free resolution of the Stanley-Reisner ring of the n-gon. We extend this result in 4.5.9 to
a cellular resolution of certain stacked polytope. Since the Betti numbers of all stacked d-
polytopes with a fixed number of vertices are the same we can interpret the Betti numbers
of Stanley-Reisner rings of all stacked polytopes as the f -vector of the appropriate Ferrers
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polytope.

4.2 Preliminaries

A finite regular cell complex X is a finite collection C of sets, called cells, such that their
union is a non-empty topological space and

(i) ∅ ∈ C;

(ii) The cells in C are pairwise disjoint; and

(iii) For each non-empty cell P ∈ C, there is a homeomorphism from a closed i-dimensional
unit ball B ∈ Ri onto the closure of P that maps the interior of B onto P .

The number i in (iii) is uniquely determined by P and called the dimension of the cell
P . The empty set has dimension −1. The dimension of C is the maximum dimension of
its cells. A cell Q is a face of a cell P if Q is in the closure of P .

Each d-dimensional convex polytope P ⊂ Rd determines a d-dimensional regular cell
complex. Its cells are the relative interiors of the faces of P .

A (finite) simplicial complex ∆ on a finite vertex set V is a collection of subsets of
V , including the empty set, that is closed under taking subsets. It is common to call the
elements of ∆ faces. It may be naturally identified with a regular cell complex whose
open cells correspond the faces of ∆. The dimension of a face is its cardinality minus one.
If ∆ consists of all subsets of V , then it is the face complex of the (abstract) simplex V .

Definition 4.2.1. Let ∆1 and ∆2 be two simplicial complexes on disjoint vertex sets V1

and V2, respectively. Then their product is the simplicial complex ∆1 ×∆2 on the vertex
set V1 ∪ V2 defined by

∆1 ×∆2 = {A ∪B | A ∈ ∆1, B ∈ ∆2}.

Note that ∆1 ×∆2 is the face complex of a convex polytope P if ∆1 and ∆2 are face
complexes of simplices. In fact, if P1 ⊂ Rd1 and P2 ⊂ Rd2 are convex hulls of d1 + 1 and
d2 + 1 linearly independent points, then P ⊂ Rd1+d2 is a convex hull of d1 + d2 + 2 points
of dimension d1 + d2. Its boundary is the set

{A ∪ V2 | A a facet of ∆1} ∪ {V1 ∪B | B a facet of ∆2}.

Each regular cell complex X admits an incidence function ε, where ε(Q,P ) ∈ {1,−1}
if Q is a codimension one face of P ∈ X. It is determined by an orientation of the cells.
We use it to define a complex of free modules.

Definition 4.2.2. Let X be a finite regular cell complex of dimension d with an incidence
function ε. Given a labeling of the vertices, i.e. 0-dimensional cells, of X by monomials
in a polynomial ring R = K[x1, . . . , xN ], one defines a labeling of each face P ∈ X by
the least common multiple mP of the monomials that label the vertices of P . The cellular
complex FX supported on X is the complex of free ZN -graded R-modules

FX : 0→ Fd
∂d−→ Fd−1

∂d−1−→ · · · ∂2−→ F1
∂1−→ F0

∂0−→ F−1 = R→ 0,
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where Fi is a free R-module with basis elements eP , indexed by the i-dimensional cells P
of X, and eP has the same multidegree as the monomial label mP . The differentials are
the ZN -graded R-module homomorphisms defined by

∂i(eP ) =
∑

Q facet of P

ε(Q,P )
mP

mQ

eQ,

where i = dimP .
If the complex FX is acyclic, then it provides a free ZN -graded resolution of the image

I of ∂0, that is, of the ideal generated by the labels of the vertices of X. In this case, FX
is called a cellular resolution of I (or R/I), and one says that the cell complex X supports
a free resolution of I.

Each monomial ideal I admits a cellular resolution by a result of Taylor (see [13]).
If I has s minimal monomial generators, then the Taylor resolution of I is the cellular
resolution supported by a simplex with s vertices labelled by the generators of I. However,
this resolution is only minimal if I is generated by an R-regular sequence.

For ease of notation, we typically write down a cellular resolution with its Z-grading.
If M = ⊕i∈ZMi = ⊕i∈Z[M ]i is a Z-graded module, then M(j) is obtained by just shifting
the degrees so that [M(j)]i = Mi+j.

We illustrate the above definition by some specific examples. They concern ideals with
few generators that belong to classes of ideals that we study in this paper.

Example 4.2.3. Let I = (x1x3, x1x4, x2x4, x2x5, x3x5) and consider the labeled cell com-
plex X of the polytope below:

Figure 4.1: Example Cellular Resolution
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The associated cellular complex FX is:

0→ R(−5) −−−−−→

x2x5

x3x5

x1x3

x1x4

x2x4



R5(−3) −−−−−−−−−−−−−−−−−−−−−−−−→

x4 0 0 0 −x5

−x3 x2 0 0 0
0 −x1 x5 0 0
0 0 −x4 x3 0
0 0 0 −x2 x1



R5(−2) −−−−−−−−−−−−−−−−−−−−−−−−−−→[
x1x3 x1x4 x2x4 x2x5 x3x5

] I → 0.

It is a graded minimal free resolution of the ideal I.

Recall that a partition λ = (λ1, ..., λn) is a sequence of weakly decreasing non-negative
integers. To every partition λ we associate a Ferrers diagram Fλ. We here define Fλ to
be the right-justified diagram of boxes in which there are λi boxes in the ith row. We will
display Fλ throughout this paper as an upper right adjusted diagram. We give the boxes
a label by the ordered pair (row, column). We label the columns left to right beginning
with one, so the right-most column has number λ1. The Ferrers ideal to a partition λ is

Iλ = {xiyj | (i, j) ∈ Fλ} = (xiyj | λ1 − λj + 1 ≤ i ≤ λ1).

Example 4.2.4. Given the partition λ = (3, 2, 1), its Ferrers diagram is

y1 y2 y3

x1

x2

x3

The corresponding Ferrers ideals is

Iλ = (x1y1, x1y2, x1y3, x2y2, x2y3, x3y3).

Every Ferrers ideal admits a minimal cellular resolution. In fact, Corso and Nagel
defined a polyhedral cell complex Xλ which supports a minimal free resolution of Iλ for
each partition λ (see [11, Theorem 3.2]). The faces of this cell complex are in bijection
with the disjoint union of subsets of rows r = {i1, . . . , ik} and columns c = {j1, . . . , jl}
such that (i, j) ∈ Fλ for all i ∈ r and all j ∈ c. The face with these rows and columns can
be realized geometrically as the product of two simplices with k and l vertices, respectively.
In fact, the cell complex Xλ can be realized as a subcomplex of a face complex of a product
of two simplices.

Example 4.2.5. The labelled polyhedral cell complex Xλ for the partition λ = (3, 2, 1) is
show in figure 4.2:

In [12] Corso and Nagel consider partitions λ such that their Ferrers diagram satisfies
i < j whenever (i, j) ∈ Fλ. Replacing the variables yj by xj one obtains from the Ferrers
ideal Iλ the specialized Ferrers ideal

Jλ = (xixj | (i, j) ∈ Fλ) = (xixj | λ1 − λj + 1 ≤ i ≤ λ1).

By [12, Theorem 3.12], the cell complex Xλ also supports a minimal cellular resolution of
Jλ, once the labeling is adjusted accordingly.

Example 4.2.6. For the partition λ = (3, 2, 1), the specialized Ferrers diagram is
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Figure 4.2: Cellular Resolution of a Ferrers Ideal
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The corresponding specialized Ferrers ideal

Jλ = (x1x3, x1x4, x1x5, x2x4, x2x5, x3x5)

has a minimal cellular resolution supported on the labeled cell complex in figure 4.3:

Every cell complex has a corresponding graded face-poset. Then if this cell complex
is labeled with monomial labels, this corresponds to labeling the poset elements by the
same monomial labels. Hence when we consider the map used in a cellular resolution:

∂(G) =
∑

F facet of G

ε(G,F )
mG

mF

eF

Where G,F are faces in the cell complex ,mG,mF are their corresponding monomial
label, and ε(G,F ) is an incidence function. Since this map depends only on the incidence
function, the monomial labels, and the facets of a given face, then all this information is
already stored in the corresponding face-poset. Hence we can rewrite the formula as:

∂(G) =
∑

F < G

ε(G,F )
mG

mF

eF (4.2.1)

Where G,F are elements in the face-poset, mG,mF are their corresponding monomial
labels, and ε(G,F ) is an incidence function.

Hence to give a resolution by a poset it is sufficient to create a resolving poset with
the diamond property. The diamond property is simply the property that poset interval
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Figure 4.3: Cellular Resolutions of a Specialized Ferrers Ideal
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[x, y] where dim(x) = n and dim(y) = n + 2 should be isomorphic to B2 (the boolean
algebra on 2 elements). If this property does not hold then either the mappings given by
this formula do not give a complex, or the incidence function may fail to take values in
the set {1,−1}.

This view of resolving by poset is actually natural given the construction of a resolution
in general. If we consider the maps in a resolution as matrices then we can think of the
columns as giving us the dim = n elements of the poset and the rows giving us the
dim = n+ 1 elements of the poset. Then we can consider a dim = n element as a parent
of a dim = n+1 element whenever there is a nonzero entry in that position in the matrix.

Then every cellular resolution can be translated into a poset resolution through its
face-poset.

Theorem 4.2.7. Every resolution of a monomial ideal is a poset resolution.

Proof. First consider that a monomial ideal is naturally finely graded (Zn graded) and
the resolution is finely graded. Then by considering the free modules in the poset we can
construct a graded poset where the covering relations are given by GlF if im(φn)eG 6= 0.
Given this fine grading if R(−ā) appears in the resolution we can label the corresponding
poset element with the monomial xā. Then the map below is well defined.

ϕi(eF ) =
∑
GlF

[G : F ]xaF−aGeG

Where [G : F ] is the coefficient that appears in the matrix representation of φn in the
column and row associated with eF and eG.

Remark 4.2.8. Every monomial ideal has a unique maximal poset resolution in the sense
that there is a unique poset with the most possible relations and every poset resolution of
that monomial ideal is a sub-poset of the maximal poset in the sense that fewer elements
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are related. This poset is the poset we get by considering the multigraded Betti numbers
as a set of elements labeled by the multigrade. Then every monomial appearing in the
resolution is greater than every element whose monomial label divides its own. This poset
then has the most possible connections since we cannot connect two monomials if the lower
one does not divide the higher.

Construction 4.2.9. Begin with any minimal poset resolution P of I. Then let vmi
be the

vector in the resolution corresponding to the ith monomial m in the multigraded minimal
free resolution. Let vm1 , ..., vml

be the set of all vectors that correspond to the monomial m
in the multigraded minimal free resolution. Then choose β1, ..., βl to be sufficiently general
coefficients. If we replace

vmi
7→ vmi

+
∑
k 6=i

βkvmk

then this changes the resolving poset P to a new poset P ′ where P ′ is the graded poset
with the same graded elements as P in each grade and P ′ has covering relations x ≤ y
for any two poset elements if mx|my and gr(x) = gr(y)− 1.

4.3 Polar Self-Dual Polytopes

The study of self-dual polytopes is an attractive topic. Here we introduce a subclass of
these polytopes that we call polar self-dual polytopes. Let us first recall the standard
concept.

Definition 4.3.1. An (abstract) polytope P is said to be self-dual if its face-poset is
isomorphic to its dual face-poset.

For an embedded polytope, there is a stronger condition. We use the standard inner
product of Rn.

Definition 4.3.2. Let P be a polytope in Rd. Then

P ∗ = {x ∈ Rd | x · y ≥ −1 for all y ∈ P}

is the dual polyhedron of P . We note that when the origin is interior to P then P ∗ is a
polytope and we call it the dual polytope.

Remark 4.3.3. These two definitions align with the use of the word dual since the face-
poset of P ∗ is the dual of the face-poset of P when P ∗ is a polytope. If P is self-dual then
we usually write P ∼= P ∗. However, P in general is not equal to P ∗ as a subset of Rd.

We now relax the condition P = P ∗ somewhat.

Definition 4.3.4. Let P be a polytope in Rd, and let c > 0 be a real number. Then we
define the c-dual of P as

P ∗c = {x ∈ Rd | x · y ≥ −c for all y ∈ P}.

The polytope P is said to be c-polar self-dual if P = P ∗c . We simply say P is polar
self-dual if c is understood or not relevant.

33



Note that this definition is dependent on the particular embedding of P . Observe also
that a polytope is c-polar self-dual if some scalar multiple of it is equal to its dual. More
precisely, of P ⊂ Rd is c-polar self-dual, then ( 1√

c
P )∗ = 1√

c
P .

We present several examples of polar self-dual polytopes. The first one is very simple.

Example 4.3.5. The triangle conv{(0, 1), (1,−1), (−2,−1)} is 1-polar self-dual.

Figure 4.4: Example of a Polar Self-Dual Polytope
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We wish to point out that not all self-dual polytopes have a polar self-dual embed-
ding. The following result gives a necessary condition on the face poset of polar self-dual
polytopes.

Lemma 4.3.6. Let P = (P , <) be the face poset of a c-polar self-dual polytope, partially
ordered by inclusion. Then there is an order reversing automorphism ι : P → P such that
the following conditions hold:

1. ι ◦ ι = idP ; and

2. Each face F ∈ P satisfies F ∩ ι(F ) = ∅.

Proof. The existence of ι and Condition (1) are an immediate consequence of polar self-
duality.

To see the second condition, consider any vertex a of a face F ∈ P . Then a·b = −c < 0
for each point b of ι(F ). Since a · a > 0 we get a /∈ ι(F ).

There are 2-dimensional polytopes whose face posets do not admit such an involution.
The following result characterizes these.

Theorem 4.3.7. Let P ⊂ R2 be a 2-dimensional convex polytope with n vertices. Then
there is a polar self-dual polytope in R2 whose face poset is combinatorially equivalent to
the one of P if and only if n is odd.

Proof. Let P ⊂ R2 be a 2-dimensional polar self-dual polytope. For this argument, it
is more convenient to enumerate the vertices of P from zero to n − 1. Each vertex vi
determines a dual line {x ∈ R2 | x · vi = −c}. We denote this line by `i. Then there is
the following easy, but useful observation. Two lines `i and `j meet in a vertex vk of P if
and only if i and j are the vertices of the edge that is dual to vk.
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Assume first that n is odd. Fix any c > 0. We will recursively construct certain
polyhedra. The last one will be the desired c-polar self-dual polytope.

Write n = 2m + 1. Because of Example 4.3.5, we may assume n ≥ 5. Choose as
vertices v0 and v1 any points in the plane other than the origin such that the line through
v0 and v1 does not pass through the origin. The dual lines `0 and `1 meet in a point. This
is the vertex vm+1. Thus, `m+1 is the line through v0 and v1. Let P1 be the intersection
of the half spaces determined by the lines `0, `1, and `m+1 that contain the origin. We
continue to construct polyhedra P2, . . . , Pm such that Pi is the intersection of Pi−1 and
two other half-spaces and Pi has vertices v0, . . . , vi, vm+1, . . . , vm+i.

In order to describe the additional half-spaces, assume the polyhedra P1, . . . , Pi−1 have
been constructed, where i ≤ m. Let H be the half-space bounded by the line through
vertices vm+1 and vi−1 that does not contain the origin. If i < m, then pick the vertex vi
in the interior of the polyhedron Pi−1 ∩H. If i = m, then pick the vertex vm in the open
interior of the edge of Pm−1 that is supported on the line `0.

With this choice of vi, the vertex vm+i is the intersection of the lines `i−1 and `i. Thus,
`m+i is the line through vi−1 and vi. The polyhedron Pi is now defined as the intersection
of Pi−1 and the half-spaces bounded by the lines `i and `m+i that contain the origin.

It is not difficult to see that Pm is the desired c-polar self-dual polyhedron. We leave
the details to the reader.

Second, assume that P ⊂ R2 is a polar self-dual polytope with n vertices, where n is
even. Label its vertices clock-wise so that the vertices v0, v1, . . . , vn−1 are adjacent. Let
(j, j + 1) be the edge that is dual to the vertex v0. It is adjacent to the dual edge of v1

by the observation above. There are two cases.
Assume first (j + 1, j + 2) is the edge dual to vertex v1. It then follows that, for each

vertex vi, its dual edge is (j + i, j + i+ 1), where k denote the remainder of an integer
k on dividing by n. In particular, the edges (n − 1, 0) and (0, 1) are dual to the vertices
vn−j−1 and vn−j. It follows that the the edge (n− j− 1, n− j) must be dual to the vertex
v0. However, by assumption its dual edge is (j, j + 1). This forces n = 2j + 1, which is
impossible since n is even.

In the second case, where the edge (j − 1, j) is dual to v1 we get that, for each i, the
vertex vi is dual to the edge (j − i, j − i+ 1). Applying this for i =

⌈
j
2

⌉
, it follows that

the vertex vd j2e is a vertex of its dual edge. This is impossible (see Lemma 4.3.6).

Since every 2-dimensional convex polytope is self-dual, the above theorem shows that
the class of polar self-dual polytopes is strictly smaller than that of self-dual polytopes.

Now we observe that the face complex of each simplex can be realized as the face
complex of a polar-self-dual polytope.

Proposition 4.3.8. There is a polar self-dual embedding of the simplex in each dimension.

Proof. Choose vertices v1, . . . , vn+1 ∈ Rn recursively as follows:

1. Place v1 6= 0.

2. Assume v1, . . . , vi−1 are chosen. Then place vi outside of the affine span of v1, . . . , vi−1

such that vk · vi = −c for all k = 1, . . . , i− 1.

The convex hull of v1, . . . , vn+1 is clearly a c-polar self-dual polytope of dimension n.
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Remark 4.3.9. The two previous constructions call for solutions to linear equations and
linear inequalities. Hence, we can make these polytopes rational. In fact, we give explicit
examples of simplices with integer coordinates below.

Example 4.3.10. Let c > 0 be a real number, and let d be a positive integer. Then define
points v1, . . . , vd+1 ∈ Rd by

vk = (1, . . . , 1,−c− k + 1, 0, . . . , ),

where the entry −c− k + 1 is in position k. In particular,

v1 = (−c, 0, . . . , 0) and vd+1 = (1, . . . , 1).

Then one checks easily that vi · vj = −c for all i 6= j. Hence the convex hull of the points
v1, . . . , vd+1 ∈ Rd is a c-polar self-dual d-dimensional simplex because of the following
observation.

Lemma 4.3.11. If points v1, . . . , vd+1 ∈ Rd satisfy vi · vj = −c for all i 6= j, then their
convex hull is a c-polar self-dual d-simplex.

Proof. For the convenience of the reader we provide the argument.
Assume there are real numbers λ1, . . . , λd+1 such that∑

i

λivi = 0,
∑
i

λi = 0, and λj 6= 0.

Then

0 = vj ·

(∑
i

λivi

)
= λj(vj · vj)− c

∑
i 6=j

λi = λj(vj · vj + c),

which is a contradiction because vj · vj > 0.

Remark 4.3.12. Using the notation of Example 4.3.10, observe that the d-dimensional
1-polar self-dual simplex conv{v1, . . . , vd+1} ⊂ Rd has normalized volume d + 1. This
follows by evaluating the determinant with row vectors vi − v1, where i = 2, . . . , d+ 1.

We close this section by pointing out a relation to an important class of polytopes.
Recall that a d-polytope with interior point (0, ..., 0) is reflexive if it is a lattice polytope
whose supporting hyperplanes can be written in the form

∑d
i=1 hixi = 1 where the hi ∈

Z and have no common factors. Reflexive polytopes were introduced by Batyrev in
[3, Definition 4.1.4,4.1.5], in order to construct mirror families as predicted by mirror
symmetry.

Lemma 4.3.13. A c-polar self-dual lattice polytope is reflexive if and only if c = 1.

Proof. If P = P ∗1 and it is a lattice polytope, then it is reflexive by definition.
If P is reflexive and P = P ∗c , then each defining hyperplane supported on a facet is of

the form
∑d

i=1 hixi = c, where (h1, ..., hd) is a vertex of P . The defining hyperplanes of

P ∗1 are
∑d

i=1 hixi = 1. By [3, Theorem 4.1.6] if P ∗ is reflexive then P ∗1 is also reflexive.
If the hi have no common factor, then the supporting hyperplanes of P are not of the

correct form, and hence P is not reflexive. If the hi have common factor a, then we can
rewrite the hyperplane

∑d
i=1 hixi = 1 as

∑d
i=1

hi
a
xi = 1

a
, and hence P ∗1 is not reflexive.

Hence P is reflexive only when c = 1.

In this case the two mirror partners are in fact equal.
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4.4 A Family of d-Polar Self-Dual Polytopes

In this section we explicitly construct, for each positive integer d, a d-polar self-dual
polytope of dimension d. This family shows that the set of polar self-dual polytopes is
richer than just a set of simplices. We show in the next section that his particular family
support a cellular resolution of the d+ 3-gon.

Construction 4.4.1. Fix an integer d ≥ 1. We construct a d-dimensional polytope as the
convex hull of specified points. Let Td be the Ferrers tableau associated with the partition
λ = (d, d− 1, . . . , 1). Note that there is a box in row n and column m of Td if and only if
1 ≤ n ≤ m ≤ d. We define two kinds of points that, as we will show, are the vertices of
the polytope.

1. For (n,m) ∈ Td, define the point Qn,m by

Qn,m = (0, . . . , 0,−d+ n− 1, 1, . . . , 1,−m, 0, . . . , 0) ∈ Rd,

where the first 1 is in position n and the last 1 is in position m. In particular, we
get

Q1,m = (1, ..., 1,−m, 0, . . . , 0) if n = 1 ≤ m < d,

Qn,d = (0, , 0,−d+ n− 1, 1, . . . , 1) if 2 ≤ n ≤ m = d,

and
Q1,d = (1, . . . , 1).

Observe that each of these
(
d+1

2

)
points has at most two negative coordinates and

each positive coordinate equals one.

2. We also use the d points L1 = (−d, 0, . . . , 0), L2 = (0,−d, 0, . . . , 0), . . . , Ld =
(0, . . . , 0,−d) in Rd.

Let Vd = {Qn,m | (n,m) ∈ Td} ∪ {Li | 1 ≤ i ≤ d}. We call the convex hull of V the
Ferrers polytope P = Pd ⊂ Rd. It has dimension d because the convex hull of the points
L1, . . . , Ld, and Q1,d is a d-dimensional simplex. (Theorem 4.4.8 below shows that its
vertex set is in fact Vd.)

Note that the 2-dimensional Ferrers polytope P2 is depicted in Example 4.2.3.
Recall that the cell complex Xλ described above Example 4.2.5 provides a cellular

resolution of the Ferrers ideal Iλ. Using the pointsQn,m, we provide a geometric realization
of this cell complex in Rd if λ = (d, d − 1, . . . , 1) (see Proposition 4.4.5 below). Its faces
are products of simplices. This fact becomes more apparent if we arrange the points in a
Ferrers tableau. We illustrate this by two examples.

Example 4.4.2. Let d = 3. Below we give the coordinates of the vertices in the Ferrers
cell complex Xλ by presenting them in a Ferrers tableau. To the right of it we list the
points L1, L2, and L3.

(1,−1, 0) (1, 1,−2) (1, 1, 1) (−3, 0, 0)
(−2, 1,−2) (−2, 1, 1) (0,−3, 0)

(0,−1, 1) (0, 0,−3)

The convex hull of these nine points is our 3-dimensional Ferrers polytope P3. This
polytope is combinatorially equivalent to the one pictured below.
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Figure 4.5: The 3-Dimensional Ferrers Polytope
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Example 4.4.3. Consider the case d = 4. Again we present the points Qn,m in a Ferrers
tableau and the points L1, . . . , L4 to its right.

(1,−1, 0, 0) (1, 1,−2, 0) (1, 1, 1,−3) (1, 1, 1, 1) (−4, 0, 0, 0)
(−3, 1,−2, 0) (−3, 1, 1,−3) (−3, 1, 1, 1) (0,−4, 0, 0)

(0,−2, 1,−3) (0,−2, 1, 1) (0, 0,−4, 0)
(0, 0,−1, 1) (0, 0, 0,−4)

The convex hull of these points is the 4-dimensional Ferrers polytope P4.

We will show that the following polytopes generate a polyhedral cell complex.

Definition 4.4.4. Fix d ≥ 1 and adopt the notation of Construction 4.4.1. For k =
1, . . . , d, define the polytopes

Fk = conv{Qn,m | 1 ≤ n ≤ k ≤ m ≤ d}.

Proposition 4.4.5. The polytopes F1, . . . ,Fd form the facets of a polyhedral cell complex
Yd that we call the (d− 1)-dimensional Ferrers complex. Each facet has dimension d− 1
and is the product of two simplices. If i ≤ j, then

Fi ∩ Fj = conv{Qn,m | 1 ≤ n ≤ i and j ≤ m ≤ d},

which is a (d+ i− j − 1)-dimensional face of Fi and Fj, respectively.
Furthermore, the polytope Fk is contained in the hyperplane defined by xk = 1.

Proof. First note that F1 and Fd are (d − 1)-simplices. Indeed, projecting the points
Q1,1, . . . , Q1,d onto the hyperplane {x1 = 0}, we get the vertices of a 1-polar self-dual
simplex by Lemma 4.3.11. We argue similarly for Fd by projecting the pointsQ1,d, . . . , Qd,d

onto the hyperplane {xd = 1}.
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Second, fix k such that 2 ≤ k < d. Then the last d − k coordinates of the points
Q1,k, . . . , Q1,d give the vertices of a k-polar self-dual (d− k)-simplex (see Lemma 4.3.11).
Similarly, the first (k − 1) coordinates of the points Q1,d, . . . , Qk,d determine the vertices
of a (d− k+ 1)-polar self-dual (k− 1)-simplex. The product of these two simplices is Fk,
considered as a polytope in {xk = 1} ∼= Rd−1.

Finally, notice that Fi ∩ Fj = Fi ∩ {xj = 1} = Fj ∩ {xi = 1}.

This result implies that Yd is combinatorially equivalent to the complex Xλ, where
λ = (d, d− 1, . . . , 1). Thus, the Ferrers complex Yd is an embedded realization of Xλ. We
will use this when establishing properties of the Ferrers polytopes.

Corollary 4.4.6. The Ferrers complex Yd is homeomorphic to a ball of dimension d− 1.

Proof. This is true because, for each i ≤ d, the complex Zi with facets F1, . . . ,Fi is
homeomorphic to a (d−1)-dimensional ball. Indeed, Proposition 4.4.5 shows that Zi∩Fi+1

is a (d− 2)-dimensional polytope, which implies our claim.

Proposition 4.4.5 also provides the following technical observation that turns out use-
ful.

Corollary 4.4.7. Fix k ∈ {1, . . . , d}, and let i, j be any integers such that 1 ≤ i ≤ k ≤
j ≤ d. Then the coordinate vectors of the d points Qi,k, Qi,k+1, . . . , Qi,d, Q1,j, Q2,j, . . . , Qk,j

are linearly independent. (The point Qi,j is listed twice for convenience.)

Proof. Observe that the last d− k coordinates of Qi,m and Q1,m agree if k ≤ m ≤ d and
that the first k − 1 coordinates of Qn,j and Qn,d are the same if 1 ≤ n ≤ k. Hence, the
points Qi,k, Qi,k+1, . . . , Qi,d are the vertices of a (d − k)-simplex, and Q1,j, Q2,j, . . . , Qk,j

are the vertices of a (k − 1)-simplex. It follows that the projections of the d considered
points onto the hyperplane {xk = 1} are the vertices of a (d− 1)-dimensional polytope in
this hyperplane. Hence, their coordinate vectors are linearly independent in Rd.

Note that the d points considered in the above result are the vertices of the polytope
Fk that are in row i and column j of the Ferrers tableau presentation of all the points
Qn,m.

We are ready for the main result of this section.

Theorem 4.4.8. Each Ferrers polytope Pd ⊂ Rd (see Construction 4.4.1) is d-polar
self-dual. Its vertex set is Vd.

Proof. Fix d > 0, and consider the Ferrers polytope P = Pd as well as the set V = Vd of
points. We have to show that P = {x ∈ Rd | x · y ≥ −d for all y ∈ P}. We divide the
argument in to several steps.

1. First we show that all the points in V are vertices of P . To this end we prove that,
for each point v ∈ V, there is a linear functional that is maximized at v.

It n 6= 1 and m 6= d, then define HQn,m = (0, , 0,−1
d
, 1, ..., 1,−1

d
, 0, , 0) ∈ Rd, where

the first 1 is in position n and the last 1 is in position m. If n = 1, then set
HQ1,m = (1, ..., 1,−1

d
, 0, , 0), and if m = d we put HQn,d

= (0, , 0,−1
d
, 1, ..., 1).

Furthermore, set HQ1,1 = (1, . . . , 1) ∈ Rd, and let HL1 = (−d, 0, . . . , 0), HL2 =
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(0,−d, 0, . . . , 0), . . . , HLd
= (0, . . . , 0,−d). Using the structure of the coordinates of

the points in V , one sees that, for each v ∈ V ,

Hv · v > Hv · w for all w ∈ V \ {v}.

Hence, each point in V is in fact a vertex of P , and so V is the vertex set of P .

2. We determine the dot product of each pair of vertices v, w of P . We show that
v · w ≥ −d and record the cases, where this is in fact an equality.

Fix a vertex Qn,m. Then we consider ten different cases for choosing a point Qk,l.
The corresponding ten regions are shown in the picture below. Depending on n and
m, some of these regions can be empty.

Figure 4.6: Duality Regions in the Ferrers Polytope

a b

c
d

e

f

g

h

i

j

Qn,m

Qn−2,n−2

Qm+2,m+2

a) If k < n and n− 2 < l < m, then Qn,m ·Qk,l = −d+n− 1 + l−n+ 1− l = −d.

b) If k < n and m < l, l ≤ d, then Qn,m ·Qk,l = −d+n−1 +m−n+ 1−m = −d.

c) If n < k and l < m, k < l, then Qn,m ·Qk,l = −d+ k − 1 + l− k + 1− l = −d.

d) If n < k < m+2 and m < l, then Qn,m ·Qk,l = −d+k−1+m−k+1−m = −d.

e) If l < n− 2, then Qn,m ·Qk,l = 0 > −d.

f) If m+ 2 < k, then Qn,m ·Qk,l = 0 > −d.

g) If l = n− 2, then Qn,m ·Qk,l = (−l)(−d+ n− 1) > 0 > −d.

h) If k = m+ 2, then Qn,m ·Qk,l = (−m)(−d+ k − 1) > 0 > −d.

i) Assume k = n. If l = m, then clearly Qn,m · Qk,l > 0. Otherwise, we may
assume l < m. Then

Qn,m ·Qk,l =

{
(−d+ n− 1)2 + l − n+ 1− l if 1 < n

0 if 1 = n.
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Since (−d+n−1)2−n+1 ≥ −d+2 > −d, we set that always Qn,m ·Qk,l > −d
in this case.

j) If l = m and n < k, then

Qn,m ·Qk,l =

{
−d+ k − 1 +m− k + 1 +m2 if m < d

0 if m = d.

It follows that Qn,m ·Qk,l > −d.

These considerations show that, for all points Qn,m, Qk,l ∈ V ,

Qn,m ·Qk,l ≥ −d,

and equality is true if and only if one of the conditions (a) - (d) is satisfied.

It remains to consider the points L1, . . . , Ld. Notice Li · Lj = 0 if i 6= j.

Furthermore, for each point Qk,l, we get Lj ·Qk,l ≥ −d, where equality is true if and
only if the j-th coordinate of Qk,l is 1. This yields

Lj ·Qk,l = −d if and only if k ≤ j ≤ l. (4.4.1)

3. For each point v ∈ V , define a half-space

D+
v := {x ∈ Rn | x · v ≥ −d},

and denote by Dv its boundary hyperplane. Simplifying notation, denote the d-dual
of P by P∗. It is

P∗ =
⋂
v∈V

D+
v .

Hence, Step (2) implies P ⊂ P∗.

4. Now we show that each vertex of P is the intersection of d supporting hyperplanes
of P∗ whose normal vectors are linearly independent. Since P ⊂ P∗, it follows in
particular that V is a subset of the vertices of P∗.
To see this let us simplify our notation and set Di,j := DQi,j

and D+
i,j := D+

Qi,j
.

We begin by observing that each point Lj is indeed a vertex of P∗ because

Lj ∈
⋂

j<m≤d

Dj,m ∩
⋂

1≤n≤j

Dn,j

and the normal vectors of these d hyperplanes are linearly independent by Corol-
lary 4.4.7.

Let now Qn,m ∈ Rd be any point among the other vertices of P . We consider four
cases.

Case 1: Assume 1 < n and m < d. Then Step (2) shows that

Qn,m ∈
⋂

n−1≤j<m

D1,j ∩
⋂

m<j≤d

D1,j ∩
⋂

1≤i<n

Di,d ∩ DLn .
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Figure 4.7: Hyperplane Choices for a Vertex

Qn,m

The following picture illustrates the choice of the normal vectors of the first d − 1
hyperplanes. These normal vectors are linearly independent by Corollary 4.4.7.
Moreover, they are all contained in the hyperplane xn−1 = 0. Since this hyperplane
does not contain Ln we conclude that the above intersection of d hyperplanes is the
point Qn,m, as desired.

Case 2: Assume 1 = n and m < d. Then we argue similarly to see that

{Q1,m} ∈
⋂

m<j≤d

D2,j ∩
⋂

3≤i≤m+1

Di,d ∩ DLm .

Case 3: Assume 1 < n and m = d. Then we get

{Qn,d} =
⋂

n−1≤j<d

D1,j ∩
⋂

2≤i<n

Di,d−1 ∩ DLn .

Case 4: Assume 1 = n and m = d. Then Step (2) provides

{Q1,d} =
⋂

1≤j≤d

DLj
.

5. Fix integers k and j satisfying 2 ≤ k, j ≤ d. If k ≤ j, then the point Qk,j is a vertex
of P and satisfies Qk,j = Q1,j + Qk,d −Q1,d by Proposition 4.4.5. If k > j, then we
define a point Qk,j by setting

Qk,j := Q1,j +Qk,d −Q1,d.

Since the positive entries of Q1,j and Qk,d are in disjoint positions and are equal to
one, it follows that the entries of Qk,j are not positive.
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Observe also that the definition implies that whenever i < k and l < j

Qk,j +Qi,l = Qi,j +Qk,l. (4.4.2)

Furthermore, using Q1,j ·Q1,d = 0 = Qk,d ·Q1,d, we conclude

Qk,j ·Q1,d = −Q1,d ·Q1,d = −d if k > j, (4.4.3)

that is, the sum of the entries of Qk,j is −d.

6. Let Qi,j, Qk,l be vertices of P (so i ≤ j and k ≤ l). Then we claim that

Di,j ∩Dk,l ∩ P∗ = Di,j ∩Di,l ∩Dk,j ∩Dk,l ∩ P∗.

Furthermore, if one of the points Qi,l and Qk,j is not a vertex of P , then there is
some integer m ∈ {1, . . . , d} such that the m-th coordinate of each point in the
above set equals one.

To show this let T = (t1, . . . , td) be a point in Di,j ∩ Dk,l ∩ P ∗ and consider two
cases.

First, assume that i < k and j > l. By Equation (4.4.2), we can write Qi,j = Q,
Qi,l = Q+ v, Qk,j = Q+ w, and Qk,l = Q+ v + w. By the choice of T we know

Q · T = (Q+ v + w) · T = −d.

Moreover, Q+ v and Q+ w are vertices of P , so T ∈ P∗ gives

(Q+ v) · T ≥ −d and (Q+ w) · T ≥ −d.

The last four relations imply that the latter two of them are in fact equalities, so T
is in Di,l ∩Dk,j, as required.

Second, assume i < k and j < l. Then Qi,l is a vertex of P . Suppose that Qk,j is
not a vertex of P , that is, k > j. By Step (5), the entries of Qk,j are not positive
and their sum is −d. Moreover, T ∈ P∗ implies that all its coordinates are at most
one. It follows that

Qk,j · T ≥ −d.

This inequality is also true if k ≤ j because then Qk,j is a vertex of P . Now we
argue as in the first case to conclude T ∈ Di,l ∩Dk,j.

Moreover, if k > j, then Qk,j · T = −d forces each entry of T to equal one if the
entry of Qk,j at the corresponding position is not zero.

7. Now we show that the polytope P∗ has no edge that connects any vertex Li to a
vertex that is not in V , the vertex set of P .

Consider all the supporting hyperplanes of P∗ that contain Li. By Equation (4.4.1),
these are precisely the hyperplanes Dn,m satisfying n ≤ i ≤ m. By Proposition 4.4.5,
the convex hull of the dual vertices Qn,m is the (d−1)-dimensional polytope Fi that is
a product of two simplices. It follows that the supporting lines of edges in P∗ through
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Li are of the form
⋂
n 6=k,n≤i≤mDn,m for some k ∈ {1, . . . , i} or

⋂
m 6=k,n≤i≤mDn,m for

some k ∈ {i, . . . , d}.
In the first case, this line contains the vertex Qk,i−1 if k < i. If k = i, this line con-
tains Li−1. In the second case, the line contains the vertex Qi+1,k, provided k > i,
and the vertex Li+1 if k = i. Hence each of these lines through Li supports an edge
of P∗ whose other vertex is a vertex of P , as claimed.

8. Since Yd ⊂ P ⊂ P∗, the polyhedron
⋂
n≤mD

+
n,m contains the Ferrers complex Yd

(as introduced in Proposition 4.4.5). Denote the boundary of the polyhedron by
∂
(⋂

n≤mD
+
n,m

)
. We define the boundary of Yd as the set ∂Yd of faces of Yd that are

properly contained in exactly one of its facets F1, . . . ,Fd. We claim

Yd ∩ ∂

(⋂
n≤m

D+
n,m

)
= ∂Yd.

Indeed, the left-hand side certainly contains ∂Yd. It remains to show the opposite
inclusion.

Proposition 4.4.5 implies that the (d − 2)-dimensional faces of Yd in its boundary
are of the form conv{Qn,m | n ≤ i ≤ m,n 6= k} for some integers k < i or
conv{Qn,m | n ≤ i ≤ m,m 6= k} for some integers k > i, where in both cases k and
i are in in {1, . . . , d}. Notice that

conv{Qn,m | n ≤ i ≤ m,n 6= k} = Dk,i−1 ∩ Fi

and
conv{Qn,m | n ≤ i ≤ m,m 6= k} = Di+1,k ∩ Fi.

The claimed equality follows.

9. Our next goal is to show that, for each integer i = 1, . . . , d,

P∗ ∩DLi
= Yd ∩DLi

.

Indeed, since Yd ∩DLi
= Fi ⊂ P∗ it remains to prove P∗ ∩DLi

⊂ Fi. Assume there
is some point T ∈ (P∗ ∩DLi

) \Fi. Then consider any line L through T and a point
P in Fi. Since the affine hull of Fi is DLi

, the line L meets ∂Fi in a point. If this
point is in ∂Yd, then L intersects ∂

(⋂
n≤mD

+
n,m

)
properly by Step (8). It follows

that T lies outside P∗, a contradiction.

Hence the line L intersects Fi∩Fi−1 or Fi∩Fi+1 in a point. Since P ∈ D+
Li−1
∩D+

Li+1
,

the points P and T are in opposite half-spaces determined by DLi−1
in the first

case and DLi+1
in the second case, respectively. It follows that T · Li−1 < −d or

T · Li+1 < −d. In either case this gives T /∈ P ∗, a contradiction to our original
assumption.
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10. Finally, we show that there is no edge in P∗ that connects a vertex Qn,m and a
vertex T of P ∗ that is not a vertex of P . Together with Step (7) this proves that
the polytopes P∗ and P have the same vertex set, and thus P∗ = P , as required.

By Step (9) we know that T cannot lie on any hyperplane DLi
.HencetheedgeofP∗

with vertices Qn,m and T is supported on a line L that is the intersection of hyper-
planes of the form Di,j with i ≤ j.

Assume T is in Di,j ∩Dk,l, where i ≤ j and k ≤ l. If one of the points Qi,l and Qk,j

is not a vertex of P , then Step (6) shows that one of the entries of T is equal to
one. But then T is in DLq for some integer q, a contradiction. Therefore, Step (6)
gives that L is the intersection of hyperplanes Di,j with i ≤ j such that the convex
hull of the vertices Qi,j is a (d− 2)-dimensional product of simplices. By Step (2),
it follows that L is

⋂
i≤n−1≤j,j 6=mDi,j or

⋂
i≤m+1≤j,i6=nDi,j. In the first case the point

Ln−1 is on L, which forces T = Ln−1, and in the second case the point Lm+1 is on
L, which yields T = Lm+1. This completes the argument.

In order to state an important consequence, we make the following definition.

Definition 4.4.9. Let F be a face of the Ferrers polytope Pd. Then its dual face F ∗ is

F ∗ = Pd ∩
⋂
v

Dv,

where the intersection is taken over the vertices of F .

Note that dimF ∗ = d− 1− dimF , where the empty set is defined to have dimension
−1.

Now we can state the following property of Ferrers polytopes.

Corollary 4.4.10. Let F be a face of the Ferrers polytope Pd. Then:

(a) If F is a face of Yd, then F ∗ is not a face of Yd.

(b) If F is not a face of Yd, then there is a face G of Yd such F = G∗.

Proof. Consider a facet Fi of Yd. By Step (9) of the above proof, it is a face of Pd.
Equation (4.4.1) shows that F∗i = Li, which is not a vertex of Yd. Now Claim (a) follows.

In order to show (b), consider a face F of Pd that is not a face of Yd. Then

F = Pd ∩
⋂
v

Dv,

where the intersection is taken over the vertices of F ∗. Using again Step (9) of the above
proof, it follows that none of the points L1, . . . , Ld can be a vertex of F ∗. In other words,
the vertices of F ∗ are in {Qi,j | 1 ≤ i ≤ j ≤ d}. We now consider two cases.

First, assume that the vertex set V of F ∗ has the following property: Whenever Qi,j

and Qk,l are in V , then so are the points Qi,l and Qj,k. In this case, Proposition 4.4.5
implies that F ∗ is a face of Yd, and we are done.

Second, assume that Qi,j and Qk,l are vertices of F ∗, but one of the Qi,l and Qj,k is not
in V . Then Step (6) of the above proof gives that there is some integer m ∈ {1, . . . , d}
such that the m-th coordinate of each vertex of F equals one. However, then the point
Lm is a vertex of F ∗, a contradiction to our initial observation.
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It also allows us to determined the face vector of a Ferrers polytope.

Corollary 4.4.11. Let d be a positive integer. Then:

(a) The face vector of the Ferrers complex Yd is given by

fi(Yd) = (i+ 1)

(
d+ 1

i+ 2

)
(0 ≤ i ≤ d− 1).

(b) The face vector of the Ferrers polytope Pd is given by fd(Pd) = 1 and

fi(Pd) = (i+ 1)

(
d+ 1

i+ 2

)
+ (d− i)

(
d+ 1

i

)
if 0 ≤ i ≤ d− 1.

Proof. According to Proposition 4.4.5, an i-dimensional face of Yd is given by choosing k
rows and i+ 2− k suitable columns in the Ferrers tableau Td, where 1 ≤ k ≤ i+ 1.

First consider the faces of Yd obtained by using k rows. Assume the largest index of a
choice of k rows is r. Fixing r, there are

(
r−1
k−1

)
choices for the other columns and

(
d+1−r
i+2−k

)
choices for picking i+ 2− k column indices in {r, r+ 1, . . . , d}. Varying r, we see that Yd
has

(
d+1
i+2

)
i-dimensional faces that use k columns. Since k can be any integer between 1

and i+ 1, the required formula for Yd follows.
Second, Corollary 4.4.10 gives fi(Pd) = fi(Yd) + fd−1−i(Yd) if 0 ≤ i ≤ d − 1. Thus,

Claim (b) follows from (a).

4.5 A Cellular Resolution of the n-gon

In this section we consider the simplicial complex ∆n of a convex n-gon, where n ≥ 4. Our
goal is to establish that the (n− 3)-dimensional Ferrers polytope Pn−3 (see Construction
4.4.1) supports a minimal graded free resolution of the Stanley-Reisner ring on ∆n. In
particular, this provides a combinatorial interpretation of the graded Betti numbers of
stacked polytopes.

We begin by enumerating the vertices of the n-gon consecutively from 1 to n. Then
the Stanley-Reisner ideal of its face complex in the polynomial ring R = K[x1, . . . , xn] is

I∆n = (x1xn−1, xixj | 3 ≤ i+ 2 ≤ j ≤ n− 1) + xn(x2, . . . , xn−2).

Its generators correspond to the diagonals.
Using the diagonals through the vertex n, we get a triangulation of the polytope

enclosed by the n-gon. Its Stanley-Reisner ideal is

In = (xixj | 3 ≤ i+ 2 ≤ j ≤ n− 1).

Hence we get
I∆n = In + Jn, (4.5.1)

where
Jn = xn(x2, . . . , xn−2).

We consider two gradings on R: the standard Z-grading and the fine Zn-grading,
where the degree of xi is the i-th vector in the standard basis of Rn.

Now we use the Ferrers complex Yn−3 (see Proposition 4.4.5).
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Lemma 4.5.1. The polyhedral complex Yn−3 supports a minimal Zn-graded free resolution
of R/In:

F• : 0→ Fn−3 → · · · → F1 → F0 → R/In → 0.

Proof. Consider the Ferrers tableau to the partition λ = (n − 2, n − 3, . . . , 2, 1), where
the rows are labeled by the variables x1, x2, ..., xn−3 and the columns by x3, x4, ..., xn−1.
Its boxes correspond to the generators of the ideal In. Hence, In is a specialization of the
Ferrers ideal to λ. Labeling each vertex Qi,j of Yn−3 by xixj+2, the claim follows from [12,
Theorem 3.12].

We have seen that the complex Yn−3 is part of the face complex of the Ferrers polytope
Pn−3. We use the following labels on its face complex.

Definition 4.5.2. For an integer n ≥ 4, label the vertices Qi,j (1 ≤ i ≤ j ≤ n− 3) of the
Ferrers polytope Pn−3 by xixj+2 (as above) and the vertices Li (1 ≤ i ≤ n− 3) by xi+1xn.
The labeled polyhedral cell complex X(Pn−3) associated to the Ferrers polytope Pn−3 is the
complex whose faces are the faces of Pn−3 and whose labeling is induced by the specified
labels of its vertices.

We need some preliminary result as preparation for the main result of this section.
A key observation is a relation between the labels of a face G of Pn−3 and its dual face
G∗ (see Definition 4.4.9). We denote the label of G in X(Pn−3) by mG. It is the least
common multiple of the label of the vertices of G.

Lemma 4.5.3. Let G be any face of the Ferrers polytope Pn−3. Then the labels of G and
G∗ satisfy

mG ·mG∗ = x1x2 · · ·xn.

Proof. By Corollary 4.4.10, it suffices to show this for a face G in the Ferrers complex
Yn−3. Thus, none of the points L1, . . . , Ln−3 is a vertex of G.

Observe that the label of each face of Pn−3 is a squarefree monomial because the
vertices have squarefree labels. We also use the computations in Step (2) of the proof of
Theorem 4.4.8.

Consider now a vertex Qi,j of Yn−3. The mentioned computations show that a point
Qk,l is in Q∗i,j if and only if

k ∈ {1, . . . , n− 3} \ [{i} ∪ {p | j + 2 ≤ p ≤ n− 3}]

and
l ∈ {1, . . . , n− 3} \ [{j} ∪ {p | 1 ≤ p ≤ i− 2].

This implies that the labels of Qi,j and Q∗i,j are relatively prime and that their product is
divisible by x1, . . . , xn−1.

In order to extend this observation, denote the set of row indices of the vertices Qi,j

of G by R = {i1, . . . , im}, where i1 < · · · < im. Similarly, let C = {j1, . . . , jr} be the
set of the column indices of these vertices, where j1 < · · · < jr. Note that im ≤ j1 and
m + r ≤ n − 2 by the description of faces in Proposition 4.4.5. Step (6) of the proof of
Theorem 4.4.8 provides

G∗ = Q∗i1,j1 ∩Q
∗
i1,j2
∩ . . . ∩Q∗i1,jr ∩Q

∗
i2,jr
∩ . . . ∩Q∗im,jr .
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It follows that the labels of G and G∗ are relatively prime and that their product is
divisible by x1, . . . , xn−1.

Finally, since G is in Yn−3, it must be contained in one of its facets, say in Fq. Then
the point Lq is a vertex of G∗. Since its label is xq+1xn, the label mG∗ is divisible by xn,
and we get mG ·mG∗ = x1 · · ·xn, as required.

Corollary 4.5.4. Let G be any face of the Ferrers polytope Pn−3. Then the variable xn
divides the label mG if and only if G is not a face of Yn−3.

Proof. If G is in Yn−3, then xn does not divide mG because the only vertices of Pn−3 whose
labels are divisible by xn are the points L1, . . . , Ln−3. These points are not in Yn−3.

If G is not in Yn−3, then G = F ∗ for some face F of Yn−3 by Corollary 4.4.10. As we
just saw, xn does not divide mF . Thus, it must divide mF ∗ = mG by Lemma 4.5.3.

Recall that the canonical module of an R-module M , denoted by ωM , is the K-dual
of the local cohomology module HdimM(M), where = (x1, . . . , xn). Using the fine Zn-
grading of R, the canonical module of R is ωR ∼= R(−1, . . . ,−1). If M is a finely graded
R-module, then so is its canonical module and local duality gives an isomorphism of
finely graded modules ωM ∼= ExtcR(M,ωR), where c = dimR− dimM = n− dimM . For
Cohen-Macaulay modules, this extends to a relation among the free resolutions of M and
ωM .

Lemma 4.5.5. Let I be a squarefree monomial ideal in R with minimal free Zn-graded
resolution F•. If R/I is Cohen Macaulay, then HomR(F•, ωR) is a minimal free Zn-graded
resolution of ωR/I .

Proof. This follows by local duality (see, for example, [5, Corollary 3.3.9]).

We are ready to establish the goal of this section.

Theorem 4.5.6. The cellular complex supported on the labeled cell complex X(Pn−3) to
the (n − 3)-dimensional Ferrers polytope Pn−3 is a minimal Zn-graded free resolution of
the Stanley-Reisner ring R/I∆n of the n-gon ∆n.

Proof. We use the notation introduced at the beginning of this section. The triangulation
of the polytope enclosed by the n-gon at vertex n is a disk whose boundary is the n-gon.
Since I∆n = In + Jn by Equation (4.5.1), a result of Hochster (see [5, Theorem 5.7.2])
gives the following exact sequence of Zn-graded modules

0→ ωR/In → R/In → K[∆n]→ 0, (4.5.2)

where K[∆n] = R/I∆n is the Stanley-Reisner ring of ∆n.
By Lemma 4.5.1, R/In has a minimal Zn-graded free resolution

F• : 0→ Fn−3
αn−3−→ · · · α2−→ F1

α1−→ F0 → R/In → 0,

where the basis elements eG of Fi are indexed by the (i− 1)-dimensional faces G of Yn−3

and have degree equal to degmG. Therefore Lemma 4.5.5 shows that the minimal free
Zn-graded resolution of ωR/In has the form

0→ Gn−3
βn−3−→ · · · β2−→ G1

β1−→ G0 → ωR/In → 0,
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where Gi = HomR(Fn−3−i, ωR). Hence

Gi =
⊕

G∈Yn−3

R(degmG − (1, . . . , 1)) =
⊕

G∈Yn−3

e∗GR,

where the sum is taken over the faces G of Yn−3 with dimension n − 4 − i and the dual
basis elements have degree deg e∗G = (1, . . . , 1)− deg eG = (1, . . . , 1)− degmG.

Let ε be an incidence function on the cell complex X(Pn−3). It induces an incidence
function on its subcomplex Yn−3. We assume that the cellular resolution F• is constructed
by using this induced incidence function.

Consider now an (n−4−i)-dimensional face G of Yn−3. Its dual face G∗ has dimension
i and is not a face of Yn−3 by Corollary 4.4.10. Moreover, Lemma 4.5.3 shows that its
label has degree

degmG∗ = (1, . . . , 1)− degmG = deg e∗G.

This is the degree of the generator eG∗ to the face G∗ of Pn−3 at homological degree i+ 1
in the cellular complex supported by X(Pn−3). Using again Corollary 4.4.10, it follows
that we can rewrite Gi as

Gi =
⊕

F /∈Yn−3

eFR,

where now the sum is taken over the i-dimensional faces F of Pn−3 that are not in Yn−3.
Thus, we can use the incidence function on X(Pn−3) to define a map βi : Gi → Gi−1 on
the generators of Gi by

βi(eF ) :=
∑

P facet of F, P /∈Yn−3

−ε(P, F )
mF

mP

eP .

Comparing with the maps αj in the cellular resolution supported on Yn−3, we obtain

βi = −HomR(αn−2−i, ωR).

Thus, our definition of the maps βi gives indeed a minimal free Zn-graded resolution of
ωR/In , as required.

In order to apply the mapping cone procedure we need comparison maps ϕi : Gi → Fi.
We define these on the generators by

ϕi(eF ) =
∑

Q facet of F,Q∈Yn−3

ε(Q,F )
mF

mQ

eQ.

Note that the right-hand side is indeed in Fi because the facets Q have dimension i− 1.
Furthermore, since F is not in Yn−3, but Q is, the coefficient mF

mQ
is not a constant because

it is divisible by xn, due to Corollary 4.5.4. It follows that each map ϕi is minimal.
Next, we want to show that the following diagram commutes if i ≥ 1:

Gi
ϕi−−−→ Fiyαi

yβi
Gi−1

ϕi−1−−−→ Fi−1.
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It is enough to check this on the generators of Gi. Let eF be such a generator, i.e., F is
an i-dimensional face of Pn−3, but not of Yn−3. Then βi(ϕi(eF )) as well as ϕi−1(αi(eF ))
is a linear combination of generators eG, where each G is an (i − 2)-dimensional face of
G that is in Yn−3.

Consider any codimension two face G of F . Since Pn−3 is a polytope there are precisely
two facets P and Q of F that contain G. Since ε is an incidence function there is the
following relation

ε(G,P ) · ε(P, F ) + ε(G,Q) · ε(Q,F ) = 0.

Assume now that G is in Yn−3. There are two cases.
First, assume P and Q are both either in Yn−3 or both not in Yn−3. Then the coefficient

of eG in βi(ϕi(eF )) as well as in ϕi−1(αi(eF )) is zero.
Second, assume that one of P and Q is in Yn−3, but the other is not. Say, Q ∈

Yn−3. Then eG occurs in βi(ϕi(eF )) and ϕi−1(αi(eF )) with the same coefficient, namely
ε(G,Q) · ε(Q,F ) · mF

mG
= −ε(G,P ) · ε(P, F ) · mF

mG
.

These considerations establish the desired commutativity of diagrams. It follows that
the mapping cone procedure gives a Zn-graded free resolution of K[∆n], which is exactly
the cellular resolution supported on X(Pn−3).

Moreover, by Lemma 4.5.1 the maps αi are minimal if 1 ≤ i ≤ n − 3. Thus, so are
the maps βi = −HomR(αn−2−i, ωR). As pointed out above, each comparison map ϕi is
also minimal. Hence, the mapping cone procedure yields a minimal resolution of K[∆n],
which completes the argument.

We would like to point out that 4.2.3 is the cellular resolution supported on X(P2).
The face complex of a Ferrers polytope Pn−3 supports also cellular resolutions of

boundary complexes of other simplicial polytopes if we adjust the labeling of the vertices
L1, . . . , Ln−3 suitably. We use the following construction.

Construction 4.5.7. Let P be a convex simplicial polytope on n vertices. Triangulate P
at the vertex n, and let P ′ be a cone over this triangulation with a new vertex (n+ 1).

There is the following extension of Theorem 4.5.6.

Proposition 4.5.8. Starting with a two-dimensional convex simplicial polytope on n ver-
tices, apply Construction 4.5.7 t ≥ 0 times, and denote by P the resulting polytope on
n+ t vertices of dimension t+ 2. Let X ′(Pn−3) be the labelled cell complex obtained from
X(Pn−3) (see Definition 4.5.2) by only relabelling the vertices L1, . . . , Ln−3 so that Li has
label xi+1xnxn+1 · · ·xn+t. Then X ′(Pn−3) supports a minimal Zn+t-graded free resolution
of the Stanley-Reisner ring of the boundary complex ∂P of P over R = K[x1, . . . , xn+t].

In particular, a minimal Z-graded free resolution of K[∂P ] has the form

0 −→ R(−n− t) −→
Rfn−4(−n+ 2)

⊕
Rf0(−n− t+ 2)

−→ · · ·

−→
Rf1(−3)
⊕

Rfn−3(−3− t)
−→

Rf0(−2)
⊕

Rfn−4(−2− t)
−→ R −→ K[∂P ] −→ 0,
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where

fi = (i+ 1)

(
n− 2

i+ 2

)
= fi(Yn−3).

Proof. Notice that the Stanley-Reisner ideal of the boundary complex ∂P is

I∂P = In + xnxn+1 · · ·xn+t · (x2, . . . , xn−2).

Thus, we get again an exact sequence

0→ ωR/In → R/In → K[∆n]→ 0,

but this time of Zn+t-graded modules.
Each i-dimensional face G of Yn−3 has still a label of Z-degree i+ 2, but the Z-degree

of the label to its dual face is n+ t− i− 2 because

mG ·mG∗ = x1x2 · · ·xn+t.

Now we conclude as in the proof of Theorem 4.5.6.

Recall that a d-dimensional simplicial polytope is stacked if it admits a triangulation
Γ which is a (d− 1)-tree, that is, Γ is a shellable (d− 1)-dimensional simplicial complex
with h-vector (1, c − 1). For example, such a polytope is obtained by pairwise gluing of
d-simplices along a facet. The Betti numbers of these rings are the same as the Betti
numbers of some stacked polytopes and these have been calculated previously in several
places, including [26], [17], [20], and [6]. We offer the following interpretation of their
Betti numbers.

Corollary 4.5.9. Let P be a d-dimensional stacked polytope on v vertices. The i-th
total Betti number of the Stanley-Reisner ring to the boundary complex of P equals
fi−1(Pv−d−1), the number of i-dimensional faces of the Ferrers polytope of dimension
v − d− 1.

Proof. For fixed d and v, the boundary complexes of all such polytopes have the same
graded Betti numbers, see [26, Theorem 1.1]. Thus, it is enough to consider a polytope
P that is obtained from a 2-dimensional convex simplicial polytope on v − d+ 2 vertices
by applying Construction 4.5.7 (d2) times. It is stacked. Now the claim follows from
Proposition 4.5.8.

Copyright c© Stephen Sturgeon, 2014.
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