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ABSTRACT OF DISSERTATION

DECAY ESTIMATES ON TRACE NORMS OF LOCALIZED FUNCTIONS OF

SCHRÖDINGER OPERATORS

In 1973, Combes and Thomas discovered a general technique for showing exponential

decay of eigenfunctions. The technique involved proving the exponential decay of the

resolvent of the Schrödinger operator localized between two distant regions. Since

then, the technique has been been applied to several types of Schrödinger operators.

This dissertation will show that the Combes–Thomas method works well with trace,

Hilbert–Schmidt and other trace-type norms. The first result we prove shows expo-

nential decay on trace-type norms of a resolvent of a Schrödinger operator localized

between two distant regions. We build on this result by applying the Combes–Thomas

method again to prove polynomial and sub-exponential decay estimates on functions

of Schrödinger operators localized between two distant regions.
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Chapter 1 Introduction

We start our discussion not by dazzling the reader with the most general version of

our results, but rather by introducing the most basic form of a Schrödinger operator.

Define the Schrödinger operator as,

H = −∆ + V

acting on the space of functions L2(Rd), an infinite dimensional linear vector space.

The Laplacian, ∆ :=
∑d

k=1
∂2

∂x2k
, is a second order partial differential operator, and

V : Rd → R is an operator that acts by pointwise multiplication. The Hamiltonian

H represents the total energy of a quantum mechanical system with −∆ representing

the kinetic energy, and V (x) represents the potential energy. The eigenvalues of

H represent real energy states in quantum mechanics. We require that H be self-

adjoint on its domain to guarantee real energies. The Laplacian is formally self-adjoint

because of integration by parts, but what condition on V is there to make sure H is

self-adjoint? A theorem by T. Kato and F. Rellich[9] gives us this condition.

Theorem 1.1 (Kato–Rellich). Let A be a self-adjoint operator on its domain D(A),

and B be a symmetric operator with D(A) ⊂ D(B). If there exist positive real

constants a, b and a < 1 such that

‖Bu‖ ≤ a‖Au‖+ b‖u‖ for u in the domain of A

then A+B is self-adjoint on the domain of A.

If the above inequality is true for some constants a, b we say that B is relatively

A bounded with relative bound a.

Because of the Kato–Rellich theorem, we require that the potential V be relatively

Laplacian bounded. Two common examples of this kind of potential are a Coulomb

potential or a bounded potential. If V is relatively Laplacian bounded with relative

bound less than 1, then H is an unbounded self-adjoint operator on the Hilbert space

L2(Rd).
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For linear operators with infinite dimensional domains, the eigenvalue problem

becomes more complicated. Typically we ask, for what complex number z is the

operator H − z not invertible. However, it can be that H − z is invertible, but the

inverse is not a bounded operator. We say that z is in the spectrum of H if H−z does

not have a bounded inverse. The set of all z ∈ C such that z is in the spectrum of H

is a closed set that we denote as σ(H) ⊂ C. Since H is self-adjoint, the spectrum is

in fact a closed subset of the real line. As a complementary definition, the resolvent

set is defined as the set of all complex numbers z for which the operator H − z has

a bounded inverse. This open set is denoted as ρ(H). And for each z ∈ ρ(H), the

operator (H − z)−1 is called the resolvent of H and is denoted RH(z). For a given

z ∈ ρ(H) we use ηz to denote the distance of z to σ(H).

In the Combes–Thomas method, they introduce another operator that acts by

pointwise multiplication, Uα : Rd → C defined as Uα(x) = eiα·x with α ∈ Rd. We

use Uα by considering UαHU
−1
α . This operator is denoted Hα. The Combes-Thomas

method asserts that Hα is an analytic family of operators in α when we extend α

from merely being vector in Rd to an open subset of Cd. Since Hα is an analytic

family, the resolvent of Hα is also bounded holomorphic for |α| small enough.

To define a trace norm on an operator that acts on an infinite dimensional vector

space we must wrestle with three restrictions. First, does the operator have any

eigenvalues? The prototypical operator that has eigenvalues is one of finite rank.

What’s more, finite rank operators can approximate the class of compact operators

which have discrete eigenvalue except possibly at 0. As for the next two problems,

there are many non zero operators that have a trace of zero, and the trace may not

even be real. To fix these for some bounded operator A, we choose an associated

operator that is both symmetric and positive definite. We choose A∗A, where A∗ is

the adjoint of A. The operator A∗A is bounded self-adjoint and always has positive

real eigenvalues. If A is compact, the nth singular value of an operator is µn(A) :=√
λn(A∗A), where λn(A∗A) is the nth eigenvalue of A∗A. For 1 ≤ p < ∞ the pth

2



trace norm is defined as,

‖A‖p :=

[∑
k

µk(A)p

]1/p

When p = 1, the norm is called the trace norm. When p = 2, it is called the Hilbert-

Schmidt norm. To localize the resolvent, let χ : Rd → R act as an operator by

pointwise multiplication. Also, let χ have compact support inside a ball of radius

one centered at the origin. Let the sup norm of χ be less than 1. And let χ be

infinitely differentiable. Furthermore, for p, q, w ∈ Rd, let χx(w) = χ(w − x) and

χy(w) = χ(w − y).

In this thesis, we prove the following basic result that gives exponential decay in

trace norm extending the operator norm result of Combes–Thomas.

Theorem 1.2 (Basic Result). Let V be a real valued potential that is relatively Lapla-

cian bounded with relative bound less than 1 and z ∈ ρ(H). There exists positive

integers k,m and d such that k > d
2m

, and there exists real positive finite constants,

C and c, that depend on m, d, k, z, χ and V so that,

‖χxRk
H(z)χy‖m ≤ Ce−c

√
ηz‖x−y‖

Functions of Schrödinger operators

The resolvent may be thought of as a function of a Schrödinger operator. That is, let

Gz(x) = (x − z)−1. Then RH(z) = Gz(H). The exponential decay in Theorem 1.2

is allowed because of the particular form of the resolvent illustrated by Gz(x). If we

want to generalize Theorem 1.2 to functions of Schrödinger operators, we will very

likely lose the exponential decay. To this end, define a set of functions called slowly

decreasing smooth functions by choosing f : R → C to be infinitely differentiable

functions such that,

|f (n)(x)| ≤ cn
〈x〉1+n

where 〈x〉 :=
√
x2 + 1

3



for some cn < ∞ and all x ∈ R and all n = 0, 1, 2, ... When the imaginary part of z

is not 0, then Gz(x) is a slowly decreasing smooth functions.

A paper by F. Germinet and A. Klein [6] studied functions of Schrödinger operator

by using what is known as the Helffer–Sjöstrand formula. I follow their approach

but instead apply a pth trace norm. In the following theorem, the price we pay for

generalizing Theorem 1.2 is trading exponential decay for polynomial decay. In the

next two theorems a basic quantity we will need is M a real number such that −M

is below the infimum of the spectrum of H.

Theorem 1.3. Let k and m be an integer such that k > d
2m

. Let f be such that

f(x)(x+M)k is a slowly decreasing smooth function for x > −1, then χpf(H)χq has

a finite mth trace norm. And there exists a constant C that depends on d, k, V, f and

f ’s derivatives such that

‖χpf(H)χq‖m ≤
C

〈p− q〉k

The next result I prove explores what happens when f is close to an analytic

function.

In a paper by J. Bouclet, F. Germinet and A. Klein [3] the L1-Gevrey class of

order a ≥ 1 is used with the Helffer–Sjöstrand formula to show sub-exponential decay

in the operator norm. We say a function is Gevrey class of order a ≥ 1 if for each

compact subset K ⊂ R there are constants, C, that depend on K such that,

|f (n)(x)| ≤ C(C(n+ 1)a)n with x ∈ K andn = 0, 1, 2, ...

Recall that a function is real analytic if and only if there exists a positive real constant

C that depends on the compact subset K ⊂ R such that for each n and every x ∈ K,

|f (n)(x)| ≤ Cn+1n!

We see, after using Stirling’s formula on n!, that when a = 1 the Gevrey class of

functions are analytic. Mixing the idea of slowly decreasing functions with the Gevrey

class, L1-Gevrey is defined as follows.

4



Definition 1.4. Let I be an open interval and a ≥ 1, f ∈ C∞(R). The function f is

L1-Gevrey of class a on I if for all k = 0, 1, 2, ... there exists a constant Cf,I greater

than one that depends on f and I such that∫
I

|f (k)(u)|〈u〉k−1du ≤ Cf,I(Cf,I(k + 1)a)k

In my research, I apply the techniques of Bouclet–Germinet–Klein[3] and use the

pth trace norm of an operator to obtain sub-exponential decay in the following result.

Theorem 1.5. Let f be a function such that f(x)(x + M)k is L1-Gevrey Class of

order a ≥ 1 when x > −M . Let d,m and k be integers such that k > d/2m. There

exists real positive constants, C and c, that depends on d,m, k, a, V and f and a

constant γ ∈ (0, 1] that depends on a, such that

‖χpf(H)χq‖m ≤ Cec‖p−q‖
−γ

The constant γ = 1 corresponds to when a = 1. Therefore the above theorem

gives us back exponential decay when a = 1.

Copyright c© Aaron D. Saxton, 2014.
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Chapter 2 Trace Ideals

2.1 Brief Introduction to Operators

Good references for an introduction to functional analysis are, [12] [14] and the ap-

pendices of [8]. Everything stated in this section can be found in one or more of these

sources.

We start our discussion by defining the objects that we are operating on. A

Banach space is a complete, normed, linear vector space over a field. The field we

will exclusively use is the complex numbers. Let X denote a Banach space. An inner

product on X is a complex valued function on X ×X with the following properties.

For every x, y, z ∈ X and α ∈ C,

• 〈x, x〉 ≥ 0

• 〈x, x〉 = 0 if and only if x = 0

• 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉

• 〈αx, y〉 = α〈x, y〉

• 〈x, y〉 = 〈y, x〉

Remark 2.2. The above choice of axioms for the inner product make it linear in the

first argument, and conjugate linear in the second. That is, for β ∈ C, 〈x, αy+βz〉 =

ᾱ〈x, y〉+ β̄〈x, z〉

A Hilbert space is a Banach space with an inner product that is complete in the

induced norm. The induced norm on H is ‖f‖H :=
√
〈f, f, 〉. All Hilbert spaces in

this document are separable. See [12] for more details.

An operator is a linear map on a Hilbert space into another. We will usually

work with operators that are maps on a Hilbert space into itself. To fully define an

operator one must take care, for it may be that the operator is not “compatible”

with every element of its Hilbert space. Take for example the derivative operating
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on L2(Rd). There are plenty of elements of L2(R2) that are not differentiable. But,

there is a linear subspace that is compatible, namely L2(Rd) ∩ C1(Rd). Notice that

L2(Rd)∩C1(Rd) is dense in L2(Rd). When one defines an operator, they must define

the map, the Hilbert space it operates on, and a linear subspace that the operator is

defined on. The linear subspace for which an operator is defined is call the domain.

Let A be an operator form H into itself. We denote the domain of A as D(A). The

domain of all operators in this document will be dense subspaces.

Next we define some properties that combine an operator with the inner product.

Let A and B be some operators on the Hilbert space H. Fixing A we define B in the

following way. Let the set D(B) be all g ∈ H for which there exists h ∈ H such that

〈Af, g〉 = 〈f, h〉 for all f ∈ D(A)

and define the action of B as Bg := h. We call B the adjoint of A. And denote the

adjoint of A as A∗ := B. In compact notation, the definition of adjoint is written as

〈Af, g〉 = 〈f, A∗g〉 for all f ∈ D(A) and g ∈ D(A∗)

Remark 2.3. One may think that the above definition of adjoint is overly complicated

because the Riesz representation Theorem tells us that the h always exists. But we

have not distinguished between bounded and unbounded operators yet. The Riesz

representation Theorem does not apply if A is an unbounded operator.

The utility of the adjoint will become apparent later. Now we define some prop-

erties of an operator that involve the adjoint. An operator, A, is symmetric if

〈Af, g〉 = 〈f, Ag〉 for all f, g ∈ D(A)

Remark 2.4. Notice that this implies that D(A) ⊂ D(A∗) because A∗ will agree with

A on D(A), thus A = A∗ on D(A). But, A∗ may still be defined outside of D(A).

Taking the definition of symmetric one step further, an operator is self-adjoint if

it is symmetric and D(A) = D(A∗).

Given a fixed Hilbert space, the set of all operators is divided into two classes,

bounded and unbounded. A bounded operator is one that is defined on all of H and

7



there exist a positive real constant C such that,

‖Af‖H ≤ C‖f‖H for all f ∈ H

The operator norm is defined as,

‖A‖ := inf{C ∈ [0,∞) | ‖Af‖H ≤ C‖f‖H, for all f ∈ H}

An operator is called semi-bounded if there exists a positive real number C such that,

−C〈f, f〉 ≤ 〈Af, f〉 for all f ∈ H

We say A is a positive operator if 0 ≤ 〈f, Af〉 for every f in the domain of A.

Example 2.5. Consider the Hilbert space of C1 complex valued differentiable func-

tions on a closed interval [0, 1] ⊂ R. For f, g ∈ C1([0, 1]), define the inner product on

this space as

〈f, g〉 :=

∫ 1

0

f(x)ḡ(x)dx

Since the space that an operator acts on and the domain of an operator can be

different, the question of invertibility becomes a bit more complicated. The inverse

of an operator is the map, A−1, such that AA−1 is the identity in the linear subspace

that is the range of A. And, A−1A is the identity in D(A). However, if one is able to

find an inverse map, that does not mean that an operator is invertible. An operator

is invertible if an inverse for A exists, so A is injective, and it is a bounded operator

on the range of A that extends to a bounded operator on L2(Rd).

The set of all z ∈ C such that A − z is invertible is called the resolvent set of

A. To reiterate, that means that an inverse exists and it is a bounded operator. We

denote the resolvent set as ρ(A) ⊂ C. The resolvent of A is denoted as

RA(z) := (A− z)−1

The resolvent has a couple of interesting properties that will be of great use.

Lemma 2.6 (First resolvent formula). Let A be a linear operator on a Banach space

X. Then for µ, λ ∈ ρ(A),

RA(λ)−RA(µ) = (λ− µ)RA(λ)RA(µ)

8



Proof. Since µ and λ are two complex numbers that are in the resolvent set. Then,

by definition, A− µ and A− λ are invertible. Then we can write,

RA(λ)−RA(µ) = RA(λ)[(A− µ)RA(µ)]− [RA(λ)(A− λ)]RA(µ)

= RA(λ)[(A− µ)− (A− λ)]RA(µ)

This first resolvent formula can be used to prove two convenient results; that

RA(λ) and RA(µ) commute, and ρ(A) is open. Another useful result, and one we will

be using frequently, is

Lemma 2.7 (Second resolvent formula). Let A and B be two linear operators on a

Banach space X. Then for z ∈ ρ(A) ∩ ρ(B),

RA(z)−RB(z) = RA(λ)(B − A)RB(µ)

Proof. This proof is very similar to the first resolvent formula’s proof.

RA(z)−RB(z) = RA(z)[(B − z)RB(z)]− [RA(z)(A− z)]RB(z)

= RA(z)[(B − z)− (A− z)]RB(z)

= RA(z)[B − A]RB(z)

Compact Operators

In a certain sense, compact operators are operators that most resemble matrices

operating on a finite dimensional vector space.

Let {fn} be a sequence in H. Then {fn} is said to converge strongly to f in H if

‖fn− f‖H → 0. And {fn} is said to converge weakly to f in H if 〈fn, φ〉 → 〈f, φ〉 for

each φ ∈ H. There are many equivalent definitions of compact operators. The one

we choose to begin our description of compact operators with is the following.

Definition 2.8. A bounded operator A on a Hilbert space is compact if for every

weakly convergent sequence {fn} in H, then Afn is a strongly convergent sequence.

9



The set of all bounded linear operators, L(H), forms an algebra. An ideal is a

subring such that if y ∈ I∞ then xy ∈ I∞ and yx ∈ I∞ for all x ∈ L(H). Let I∞ be

the set of all compact operators. Then I∞ is an ideal inside of L(H).

Singular Values and Trace Ideals

Let S be a compact operator acting on a Hilbert space. We define the trace ideals

and trace norms as they are described in Simon’s book Trace Ideals and Their

Applications [14]. We summarize the definitions in the following list.

• Denote λn(S) as the n’th eigenvalue of S.

• Define µn(S) :=
√
λ(S∗S) as the n’th singular value of S.

• Define ‖S‖1 :=
∑

n=1 µn(S) to be the trace norm of S.

• For any real p ≥ 0, Define the p’th trace norm of S as ‖S‖p := {
∑

n=1 µn(S)p}1/p.

• In the special case when p = 2, we call ‖S‖2 the Hilbert Schmidt norm of S.

• Denote Ip as the set of all operators such that ‖S‖p <∞.

Theorem 2.9. If p > 0 is a real number then Ip is an ideal in the algebra of bounded

operators L(H).

In Simon’s book [14] he goes on to describe the complete structure of ideals in L(H).

Three interesting features of Ip are the following. First, Ip ⊂ I∞ for every p > 0. It

turns out that when H is infinite dimensional then I∞ is the largest proper ideal in

L(H). Second, if 1 ≤ p < q then Ip ⊂ Iq. And third, if A and B are in some ideal for

a large p, then the product AB is in some smaller ideal. Formally, if we raise A to

higher and higher powers, then Am will be in smaller and smaller ideals. This third

fact is precisely stated in the next theorem which can be referenced in [14, p21].

Theorem 2.10 (Abstract Hölder’s inequality). Suppose that A ∈ Ip and B ∈ Iq.

Let p, q and r be positive real number such that

1

p
+

1

q
=

1

r

10



Also suppose that A ∈ Ip and B ∈ Iq. Then AB ∈ Ir and

‖AB‖r ≤ ‖A‖p‖B‖q

Compact Operators of the Form f(x)g(−i∇)

The typical Schrödinger operator, H = −∆ +V , is not bounded, much less compact.

Therefore the object we will be studying is the resolvent of H, RH(z). Unfortunately

RH(z) still has a problem, it is not compact. Many of the techniques we will use

localize the resolvent by multiplying it by some bounded function that has compact

support. So the general form of many operators we will be working with is f(x)g(−i∇)

where f is chosen to be some localization function. Once we localize the resolvent,

it will be important to know which trace ideals it belongs to. Chapter 4 of [14] is

dedicated to this question. A key result from that chapter is,

Theorem 2.11. If f, g ∈ Lp(Rd) for 2 ≤ p <∞, then f(x)g(−i∇) ∈ Ip and,

‖f(x)g(−i∇)‖p ≤ (2π)−d/p‖f‖p‖g‖p (2.1)

2.12 Magnetic Schrödinger Operators

From Chapter 1 we know that a Schrödinger operator is the negative Laplacian plus a

scalar potential V . The scalar potential allows us to study many interesting phenom-

ena in electrostatics using the Coulomb potential. If we want to study magnetism,

we must modify H. Let a(x) be a vector potential from Rd → Rd. Then the magnetic

Schrödinger operator is,

Ha = (−i∇− a)2 + V

Once again, we are challenged with the question of what trace ideal is χRHa(z) in? To

answer this, we start by defining a pointwise bound between two compact operators

and state the diamagnetic inequality [14, p. 24] and [1, p. 850].

11



Definition 2.13. Let A and B be bounded operators on L2(Rd) then we write A ≤. B

if and only if

|(Ah)(x)| ≤ (B|h|)(x)

for all h ∈ L2(Rd).

Theorem 2.14 (Diamagnetic Inequality). If a ∈ L2

loc(Rd), H0 = −∆ and Ha0 =

(−i∇− a)2 then

e−Ha0 ≤. e−H0

What is more, from Simon’s [15] Theorem 1 and Theorem 3 and the Diamagnetic

Inequality above, we can prove that

e−Ha0+V ≤. e−H0+V

This result will let us prove the next technical lemma.

Lemma 2.15. If a ∈ L2

loc(Rd), H = −∆ + V and Ha = (−i∇− a)2 + V and χ is a

positive bounded function with compact support then,

χRm
Ha

(z) ≤. χRm
H(z)

for z ∈ ρ(H) ∩ ρ(Ha) and Re(z) < 0.

Proof. Notice that we can write,

χRm
Ha

(z) = χ

∫ ∞
0

tm−1e−t(Ha0+V )e−t(−z)dt

and

χRm
H(z) = χ

∫ ∞
0

tm−1e−t(H0+V )e−t(−z)dt

Then for φ ∈ L2(Rd) and Re(z) < 0, we can write the first expression as

|χRm
Ha

(z)φ| ≤ χ

∫ ∞
0

tm−1|e−t(Ha0+V )φ|e−t(−Re(z))dt

Then use the pointwise bound e−Ha0+V ≤. e−H0+V to show,

|χRm
Ha

(z)φ| ≤ χ

∫ ∞
0

tm−1e−tH0+V |φ|e−t(−Re(z))dt

12



So,

|χRm
Ha0+V

(z)φ| ≤ χRm
H0+V (z)|φ| when Re(z) < 0

The next result is from [14, p. 24] and tells us that if χRm
H(z) is in a certain trace

ideal then so is χRm
Ha

(z).

Theorem 2.16. If n ≥ 1 is an integer, A ≤. B , and B ∈ I2p then A ∈ I2p and

‖A‖2n ≤ ‖B‖2n

Therefore, if we can show that χRm
H(z) is in a particular trace ideal, then χRm

Ha0
(z)

will be also for Re(z) < 0. Lastly we can use the first resolvent formula, RA(ζ) =

RA(z) + (z− ζ)RA(z)RA(ζ), to show χRm
Ha0

(z) is in a particular trace ideal for every

z ∈ ρ(H) ∩ ρ(Ha).

Copyright c© Aaron D. Saxton, 2014.
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Chapter 3 Combes-Thomas Method With Trace Norms

In this chapter we generalize Theorem 1.2 from the introduction. That is, H is no

longer the simple H = −∆ + V acting on L2(Rd) but rather we use the magnetic

Schrödinger operator as it was defined in the previous chapter,

H := (−i∇− a)2 + V

acting on L2(Rd), and with a ∈ L2

loc(Rd). This result will also expose a more precise

rate of decay than just
√
ηz that was stated in Theorem 1.2. To this end, define the

constants γ and νz as follows. Choose γ be a real number such that 0 < γ < 1. Let νz

be a positive real constant that is a function of z and also depends on γ, the potential

V , and and vector potential a, then

νz :=
3ηzγ
√

1− a
8
√
ηz + |z|+ b

with ηz = dist{z, σ(H)}

Theorem 3.1. Let s and p be positive real numbers such that p ≥ 1 and s > d
2p

. Let

0 < γ < 1. Let x, y ∈ Rd, χx, χy : Rd → R be functions with compact support, bounded

by 1, and the support of χx, χy contain x, y ∈ Rd respectively. Then χxR
s
H(z)χy is

in the pth trace ideal for z ∈ ρ(H). And there exists a constant that depends on

γ, d, p, s, V, z such that,

‖χxRs
H(z)χy‖p ≤ C

(s,d)
γ,V,ze

−νz‖x−y‖

Proof of Theorem 3.1

Because of Lemma 2.15 we can assume H = −∆ + V with out loss of generality.

As with Germinet and Klein’s paper [6], and Combes, Thomas paper before that

[4], we consider the operator Uα = eiα·x that acts by multiplication on a function

f ∈ H(n) as (Uαf)(x) = eiα·xf(x). If α ∈ Rd then Uα is a unitary operator on H(n).

The operator Uα will be the source of exponential decay in this result. We follow the

14



Combes–Thomas method that uses Uα with a Schrödinger operator H to build the

family of operators UαHU
−1
α parameterized by α. Then analytically continue α so

that (UαHU
−1
α − z)−1 remains a bounded operator for z ∈ ρ(H).

To this end we define H(α) := UαHU
−1
α and first write,

H(α) = −
(
Uα∇U−1

α

)2
+ V

Computing Uα∇U−1
α gives

Uα∇U−1
α = ∇− iα

Then H(α) becomes,

H(α) = −∆ + 2iα · ∇+ |α|2 + V

Then we have,

H(α)− z

= H − z + 2iα · ∇+ |α|2

=
[
1 + 2iα · ∇RH(z) + |α|2RH(z)

]
(H − z) (3.1)

We want to know for what α is the operator RH(α)(z) is bounded on L2(Rd). Or

in other words, when is H(α)−z invertible. We assumed z ∈ ρ(H), therefore (H−z)

is invertible. So we concern ourselves with the first multiplicative term on (3.1). Let

B(α, z) := 2iα · ∇RH(z) + |α|2RH(z)

We establish when the first term is invertible through the Neumann series

(1−B)−1 =
∞∑
m=0

Bm

This series converges if and only if ‖B‖ < 1. We want to find the α’s for which

‖B‖ < 1. To bound the first term of B we prove the following technical lemma.

Lemma 3.2. Let V be ∆ bounded with relative bound a < 1, and let z ∈ ρ(H).

Then

‖∇RH(z)‖ ≤ 1

ηz

√
ηz + |z|+ b

1− a
(3.2)

where b is defined in Theorem 1.1
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Proof. See appendix.

Next we introduce another parameter γ that α will depend on and 0 < γ < 1.

This parameter is the radius of a closed ball in the algebra of bounded operators on

which the Neumann series converges. Therefore we are searching for an α such that,

‖B(α, z)‖ ≤ γ < 1 (3.3)

There is a constant, νz that will depend on γ, z, the potential, the coefficient matrices

K,R and will bound |α|. It is defined as,

νz :=
3ηzγ
√

1− a
8
√
ηz + |z|+ b

Lemma 3.3. Let α ∈ Cd, z ∈ ρ(H), and V be a potential that is relatively ∆ bounded

with relative a < 1. Then RH(α)(z) is a bounded operator on L2(Rd) when |α| ≤ νz

Proof. See appendix.

For α ∈ Rd, let RH(α) = RH(α)(z). Next, we apply the Combes–Thomas method

to χxR
s
H(z)χy.

χxR
s
H(z)χy = χxUαR

s
H(α)U

−1
α χy

Without loss of generality, we may assume s is an even integer. If s is odd use

Rs
H(α) = R

s−1
2

H(α)RH(α)R
s−1
2

H(α) below. So we assume that s ∈ N is even. Because the

trace norm has a Hölder type inequality it will be useful to write,

χxR
s
H(z)χy = χxUαR

s/2
H(α)R

s/2
H(α)U

−1
α χy

Since RH(α)(z) is a bounded, but not necessarily a compact operator our strategy

centers around getting functions with compact support to act on the resolvent. We

choose,

J(x), J̄(x) ∈ C∞0 (Rd)

such that,

J(x)χx(x) = χx(x) and J̄(x)χy(x) = χy(x)
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Then we write,

χxR
s
H(z)χy = χxUαJ

s/2R
s/2
H(α)R

s/2
H(α)J̄

s/2U−1
α χy (3.4)

The next thing to do is commute the J ’s past the resolvents so that Js/2Rs/2 become a

product of s/2 JR’s. A technical result found in S. Nakamura’s paper [11, Appendix

A] will help us do just that. This lemma allows us to exchange the power s/2 from

Js/2R
s/2
H(α) into a product of s/2 JRH(α)Q’s, where Q is a bounded operator. In

the following proof, Q will come from commuting J past RH(α). This will produce

an extra resolvent and gradient. The proof will show how resolvents and gradients

combine so that we indeed do get a bounded operator Q.

The bounded operator Q will be made up of the following parts. Choose a

J ∈ C∞0 (Rd). Let J be a linear subspace of C∞(Rd) generated by linear com-

binations of {∂ji J}, derivatives on J . Define Qi, i = 1, 2, 3, 4 to be the following

{Q1 = RH(α), Q2 = ∇RR(α), Q3 = RH(α)∇, Q4 = ∇RH(α)∇}. Let R = RH(α)(z) for

z ∈ ρ(H), |α| ≤ νz. Define an algebra Q generated by polynomials of Q1, Q2, Q3, Q4

and the identity with coefficients from J ∪ C. Note that the elements of Q depend

on z.

Lemma 3.4. For an integer s ≥ 2 there exists Jγδ ∈ J and Qγδ ∈ Q such that,

JsRs
H(α) =

N∑
δ=1

s∏
β=1

JβδRH(α)Qβδ (3.5)

Formally that is, one may exchange powers on JsRs for a product of s many JRQ

terms.

As an example, we compute J2R2, where R = RH(α)(z), to understand where Qγδ

comes from. With the Hamiltonian H = −∆ + V , start by commuting J past R,

JR = RJ + [J,R]

= RJ +R[J,H(α)]R

Notice that [J,H(α)] is a first order differential operator that is localized on the right.

[J,H(α)] = 2∇ · ∇J + ∆J − 2α · ∇J

= ∇ · J1 + J2 − α · J1 (3.6)
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The first term has a gradient that must be combined with a resolvent on the right

to make a bounded operator. J1 in the first term must be commuted past another

resolvent to do this.

[J,R] = R∇ · J1R +R(J2 − iα · J1)R

= R∇R · J1 +R∇ · [J1, R] +R(J2 − iα · J1)R

= R∇R · J1

+R∇ ·R(∇ · J2 + J3 − iα · J2)R

+RJ2R−Riα · J1R

= RQ2 · J1

+RQ4J2R +RQ2 · J3R +RJ2R

−RQ2 · iαJ2R−Riα · J1R (3.7)

(recall Q1 = R)

JJRR = JRJR + J [J,R]R

= JRJR + JRQ2 · J1R

+JRQ4J2RQ1 + JRQ2 · J3RQ1 + JRJ2RQ1

−JRQ2 · iαJ2RQ1 − JRiα · J1RQ1 (3.8)

J2R2 =
6∑
δ=0

2∏
γ=0

JδγRQδγ

With Q11 = I,Q12 = I,Q21 = Q2, Q22 = I,Q31 = Q4, Q32 = Q2 etc.

Continuing with the general case, the next lemma establishes that Q1, Q2, Q3, Q4

are bounded operators, and thus Q is indeed an algebra of bounded operators.

Lemma 3.5. Let γ be as defined above in (3.3), then

‖RH(α)(z)‖ ≤ 1

ηz(1− γ)
(3.9)

and

‖∇RH(α)(z)‖ ≤ 1

ηz(1− γ)

√
ηz + |z|+ b

1− a
(3.10)
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Let ∇V be relatively bounded with respect to ∆ with bounding constants ã, b̃. Then,

‖∇RH(z)∇‖ ≤ ηz + |z|+ b

(1− a)ηz
+

1

ηz

√
ηz + |z|+ b

1− a

[
1

ηz

√
ηz + |z|+ b

1− a
ã+

b̃

ηz

]

and

‖∇RH(α)∇‖ ≤
9

16

γ2

1− γ
+

(
1 +

3

4

ηzγ√
ηz + |z|+ b

)
‖ARHA‖.

Proof. See appendix.

With the previous result we can rewrite (3.4) as,

χxUαJ
s/2R

s/2
H(α)R

s/2
H(α)J̄

s/2Uαχy

= χxUα

 N∑
δ=1

s/2∏
γ=1

JγδRH(α)Qγδ

 N∑
δ=1

s/2∏
γ=1

Q̄γδRH(α)J̄γδ

Uαχy
where Q̄γδ ∈ Q is the result of commuting J̄ past R. Then using Hölders inequality

s times we do the following. Let p be such that ps > d
2
. Then,

‖χxRs
Hχy‖p

≤ ‖χxUα‖
N∑
δ=1

∥∥∥∥∥∥
s/2∏
γ=1

JγδRH(α)Qγδ

∥∥∥∥∥∥
p/2

N∑
δ=1

∥∥∥∥∥∥
s/2∏
γ=1

Q̄γδRH(α)J̄γδ

∥∥∥∥∥∥
p/2

‖Uαχy‖

Then consider just one of the products,∥∥∥∥∥∥
s/2∏
γ=1

JγδRH(α)Qγδ

∥∥∥∥∥∥
p/2

≤
∥∥J1δRH(α)Q1δ

∥∥
p/s

∥∥∥∥∥∥
s/2∏
γ=2

JγδRH(α)Qγδ

∥∥∥∥∥∥
p(s−2)

2s

(3.11)

If one continues to iterate Hölders inequality through the above product, we see how

to construct the following inequality.

‖χxRs
Hχy‖p

≤ ‖χxUα‖

 N∑
δ=1

s/2∏
γ=1

‖JγδRH(α)‖p/s‖Qγδ‖

 N∑
δ=1

s/2∏
γ=1

‖Q̄γδ‖‖RH(α)J̄γδ‖p/s

 ‖Uαχy‖
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From the above inequality, the next task is to study which trace classes that each

JγδRH(α) is in. The main tool we have to study an operators of this form is result

2.11 from B. Simon’s book [14, Chapter 4]. We apply the Theorem 2.11 by letting

f(x) = J(x) and g(x) = gz(x) :=
1

x2 − z
. Let’s investigate the Lp(Rd) norm ‖gz‖pp

Lemma 3.6. Suppose x ∈ Rd, z ∈ C− [0,∞), and p > d/2. Then, gz,s(x) ∈ Lp(Rd).

Furthermore, if Re(z) ≥ 0 there exists a constant, C̃d,p, that depends on d, p, such

that,

‖gz‖pp ≤
C̃d,p|z|d/2

|Im(z)|p
(3.12)

If Re(z) < 0 there exists a constant, Cd,p, that depends on d, p, such that,

‖gz‖pp ≤
Cd,p
|z|p−d/2

(3.13)

The above result illustrates the character of the singularity of gz, which further

reflects the spectrum of −∆. Meaning, −∆ has a spectrum that is the positive real

axis. When z gets close to the spectrum of −∆, the estimates get larger. Lemma 3.6

is what causes the behavior in the following result.

Corollary 3.7. Let p ≥ 2 and p > d/2. Then χR0 is in the p-th trace ideal.

Also there is a constant, Cd,p, that depends on d and p such that,

‖χR0(z)‖p ≤
Cd,p
|z|1−d/2p

(3.14)

when Re(z) < 0.

And there is a constant, C̃d,p, that depends on d and p such that,

‖χR0(z)‖p ≤
C̃d,p|z|d/2p

|Im(z)|
(3.15)

when Re(z) ≥ 0

The Hamiltonian we want to work with is more complicated than just −∆, so we

wish to extend the trace ideal results to χRH(z) and χRH(α)(z).
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Corollary 3.8. Assume the hypothesis from Lemma 3.3 and Corollary 3.7. Then for

α ≤ νz, χRH(z) and, χRH(α)(z) are all in the pth trace ideal for p > d/2 and p ≥ 2.

And they have the following estimates.

‖χRH(z)‖p ≤
Cd,p
|z|1−d/2p

[
1 +

a(ηz + |z|) + b

ηz(1− a)

]
Re(z) < 0 (3.16)

‖χRH(z)‖p ≤
C̃d,p|z|d/2p

|Im(z)|

[
1 +

a(ηz + |z|) + b

ηz(1− a)

]
Re(z) ≥ 0 (3.17)

‖χRH(α)(z)‖p ≤
Cd,p(1 + γ)

|z|1−d/2p
Dz,γ,V Re(z) < 0 (3.18)

‖χRH(α)(z)‖p ≤
C̃d,p|z|d/2p

|Im(z)|
Dz,γ,V Re(z) ≥ 0 (3.19)

With,

Dz,γ,V =

(
1 +

a(ηz + |z|) + b)

ηz(1− a)

)(
1 +

2γ

ηz(1− γ)

√
ηz + |z|+ b

1− a

)
(3.20)

Corollary 3.7 and 3.8 tells us precisely which trace ideals a cutoff function acting

on a resolvent will be in. And furthermore how they depend on z ∈ ρ(H).

The next result we state for convenience in proving later results and to summarize

what we have shown so far. It can be proven by looking at how we iterated Hlöders

inequality in 3.11 and using Corollary 3.8.

Lemma 3.9. Recall α ∈ Cd and that s and r are integers such that r > d/s. Let

C
(s,d,r)
γ,V,z be a positive constant that depends on γ, the potential V , s, d, z and r. Then

‖χxUαRs/2
H(α)‖r ≤ C

(s,d,r)
γ,V,z |e

iα·x| (3.21)

and

‖Rs/2
H(α)U

−1
α χy‖r ≤ C

(s,d,r)
γ,V,z |e

−iα·y|. (3.22)
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Let n̂ = x−y
‖x−y‖ . From lemma 3.3, let α ∈ Cd with α = iνzn̂. Then using lemma

3.9 and Hölder’s inequality write,

‖χxRs
Hχy‖p ≤ ‖χxUαRs/2

H(α)‖2p‖Rm/2
H(α)U

−1
α χq‖2p

≤ C
(m,d,p)
γ,V,z |e

iα·x||e−iα·y|

≤ C
(m,d,p)
γ,V,z e−νzn̂·xeνzn̂·y

≤ C
(m,d,p)
γ,V,z e−νz‖y−x‖

Copyright c© Aaron D. Saxton, 2014.
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Chapter 4 Polynomial Decay

In the previous result a lot of effort was put into analytically continuing RH(α)(z) in α.

When we allowed α to be complex then ‖χxUα‖ gives us exponential decay. The price

we payed was that there was an additional U−1
α that had to combine with another

operator, namely the resolvent of H, and still stay bounded when we analytically

continued in α. In the next two chapters we generalize the previous main result and

replace the resolvent of H with a function of H. To illustrate this we consider only

the most basic ingredients.

Let H = −∆ and f̃ : R → R be a Lp(R) function with compact support. Define

f(x) := f̃(x2). Then formally, f̃(H) = f(−i∇). We apply the Combes–Thomas

method to χxf(−i∇)χy in the following way,

χxf(−i∇)χy = χxUαU
−1
α f(−i∇)UαU

−1
α χy

And so,

‖χxf(−i∇)χy‖s ≤ ‖χxUα‖‖U−1
α f(−i∇)Uα‖s‖U−1

α χy‖

Now, when we analytically continue in α, say α = i y−x|x−y| then

‖χxf(−i∇)χy‖s ≤ Ce
(y−x)·x
|x−y| ‖U−1

α f(−i∇)Uα‖se−
(y−x)·y
|x−y|

≤ Ce−|x−y|‖U−1
α f(−i∇)Uα‖s

We still need to know if U−1
α f(−i∇)Uα has an analytic extension in α and is in the

right trace class. For that we use Theorem 2.11 again.

The resolvent may be thought of as a function of a Schrödinger operator. That

is, let Gz(x) = (x − z)−1. Then formally RH(z) = Gz(H). As it was described in

the previous chapter, the Combes–Thomas method is about analytically continuing

the family of operators RH(α) from α ∈ Rd into α ∈ Cd. This was done by using a

Neumann series. Therefore, the reason we were able to analytically continue RH(α)

is because the form of Gz(x) allowed us to use a Neumann series. The next result
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replaces Gz(x) with a more general class of functions. Fortunately, this class of

functions is tailored so that we may use the Helffer-Sjöstrand formula as found in

[5]. As a result we will still be able to apply the Combes–Thomas method but we

will not be able to get exponential decay. To this end, we define a set of functions

called slowing decreasing smooth functions. Just as in [6], slowly decreasing smooth

functions will be used with the Helffer-Sjöstrand formula as found in [5].

Definition 4.1.

• For a function f : R→ C, define the following norms,

‖|f‖|n :=
n∑
r=0

∫
R
|f (r)(u)|〈u〉r−1du, n = 1, 2, ... (4.1)

• We say f : R → C is a slowly decreasing smooth function if it is infinitely

differentiable and ‖|f‖|n is finite for every n.

In order to extend the domain of a slowly decreasing smooth function to the

complex plane, we use the following extention.

Definition 4.2. Let z = u + iv and τ(t) be some even function on R that is equal

to 1 when t < 1/2 and 0 when t > 1. Define an almost analytic extension as,

f̃(z) :=

{
n∑
r=0

f (r)(u)(iv)r/r!

}
σ(u, v), σ(u, v) := τ(v/〈u〉) (4.2)

The derivative of an almost analytic extension is,

∂f̃(z)

∂z̄
:=

1

2

{
∂f̃

∂u
+ i

∂f̃

∂v

}

=
1

2

{
n∑
r=0

f (r)(u)(iv)r/r!

}
{σu(u, v) + iσv(u, v)}

+
1

2
fn+1(u)(iv)n(n!)−1σ(u, v) (4.3)

In the coming proofs, an important feature of f̃(z) and ∂f̃(z)
∂z̄

is their support. In

Figure 4.1 the support of σ(u, v) is the entire colored region. The support of ∂σ(u,v)
∂z̄

are the two blue bands above and below the real axis.
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Figure 4.1: Illustrates the support of σ(u, z), the union of the red and blue regions,

and ∂σ(u,v)
∂z̄

, the blue region, when f has non-compact support.

For z = u+ iv, the Helffer-Sjöstrand formula is,

f(H) :=
1

π

∫
C

∂f̃(z)

∂z̄
(H − z)−1dvdu (4.4)

Theorem 4.3. Let k and p be positive real numbers such that k > d/2p. Let V

be relatively −∆ bounded with relative bound a < 1 and M be the lower semi-bound

of H such that −∞ < −M ≤ H. Let f be such that f(u)(u + M)k is a slowly

decreasing function, then χxf(H)χy is in the p trace ideal. There exists a constant C

that depends on d, k, p, V and M such that

‖χxf(H)χy‖p ≤ C
‖|f(u)(u+M)k‖|k+2

〈x− y〉k
(4.5)

Remark 4.4. If f has compact support, then the integral in (4.6) is over a bounded

set in C and ν̂ is bounded. If one skips approximating e−ν̂‖x−y‖ and performs the

calculations up to (4.10) and (4.11), then one would discover that ‖χxf(H)χy‖p ≤

Ce−c‖x−y‖ for some positive nonzero constants C, c.
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Proof of Theorem 4.3

Since V is relatively −∆ bounded, H has a lower semi-bound, −M ∈ R. Let f be a

slowly decaying function. Let m be an integer greater than d/2p. Now if m is even,

insert the operator H +M into χxf(H)χy in the following way,

χxf(H)χy = χx(H +M)−m/2(H +M)m/2f(H)(H +M)m/2(H +M)−m/2χy.

If m is odd then write,

χxf(H)χy = χx(H +M)−(m−1)/2(H +M)(m−1)/2f(H)

×(H +M)(m−1)/2(H +M)−(m−1)/2χy

Without loss of generality, we consider the m is even case. The m odd case is a

straight forward reprise of the even case.

Let gM(u) = (u + M)mf(u). Apply the Helffer-Sjöstrand formula, and write the

following,

χxf(H)χy = χxR
m/2
H (−M)gM(H)R

m/2
H (−M)χy

=
1

π

∫
C
χxR

m/2
H (−M)

∂g̃M(z)

∂z̄
RH(z)R

m/2
H (−M)χydvdu.

Just as for Theorem 3.1, we consider the unitary operator Uα with α ∈ Rd and

from continuing α to Cd we require |α| ≤ νz. However, the above equality contains

resolvents that are evaluated at two different points in the resolvent set, one is from

inserting powers of (H+M)−1 and the other comes from the Helffer-Sjöstrand formula,

(H − z)−1. Let νz be defined as before,

νz :=
3ηzγ
√

1− a
8
√
ηz + |z|+ b

Since both RH(α)(z) and RH(α)(−M) will be analytically continued, we choose

|α| ≤ ν̂ := min{ν−M , νz}

We write,

χxf(H)χy = χxUαR
m/2
H(α)(−M)gM(H(α))R

m/2
H(α)(−M)U−1

α χy

=
1

π

∫
C
χxUαR

m/2
H(α)(−M)

∂g̃M(z)

∂z̄
RH(α)(z)R

m/2
H(α)(−M)U−1

α χydvdu.
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Then, for |α| ≤ ν̂, we use Hölder’s inequality to obtain the upper bound,

‖χxf(H)χy‖p ≤
1

π

∫
C
‖χxUαRm/2

H(α)(−M)‖2p

∣∣∣∣∂g̃M(z)

∂z̄

∣∣∣∣
Then use (6.6) and Lemma 3.9 to get,

·‖RH(α)(z)‖‖Rm/2
H(α)(−M)U−1

α χy‖2pdvdu

≤
∫
C

C
(m,d,2p)
γ,V,−M e−ν̂‖p−q‖

ηz(1− γ)

∣∣∣∣∂g̃M(z)

∂z̄

∣∣∣∣ dvdu (4.6)

We must show that the integral of (4.6) is finite. To control the behavior of 1
ηz

we

use e−ν̂‖p−q‖ and bound it in the following way. If k is a positive integer then

e−t ≤ bk
tk
, where bk = ekkk.

Then choose k to be a positive integer such that k ≥ m. Also notice that when

z ∈ ρ(H) then ηz ≥ |v|. Write,

‖χxf(H)χy‖p ≤
∫
C

bkC
(m,d,2p)
γ,V,−M

ν̂k‖x− y‖k|v|(1− γ)

∣∣∣∣∂g̃M(z)

∂z̄

∣∣∣∣ dvdu
≤

bkC
(m,d,2p)
γ,V,−M

(1− γ)‖x− y‖k

∫
C

1

ν̂k|v|

∣∣∣∣∂g̃M(z)

∂z̄

∣∣∣∣ dvdu (4.7)

Davies’ book [5, p.25] gives us an estimate on
∣∣∣∂g̃M (z)

∂z̄

∣∣∣. Let C be a constant that

only depends on τ from equation (4.2).∣∣∣∣∂g̃M(z)

∂z̄

∣∣∣∣ ≤ C

{
n∑
r=0

1

r!
|g(r)
M (u)| |v|

r

〈u〉

}
χA(u, v) +

1

2n!
|g(n+1)
M (u)||v|nχB(u, v) (4.8)

Where A and B are sets in C such that

A = {1
2
〈u〉 < |v| < 〈u〉} and B = {0 ≤ |v| < 〈u〉}.

The supports of σu and σv lie in A and the support of σ lies in B where σ, σu and

σv are defined in (4.2). In the Figure 4.1, A corresponds to the bands above and

below the real axis and B corresponds to the entire colored region. χA and χB are

the corresponding characteristic functions.

In the integral of (4.7) notice that ν̂ depends on z. In some regions of C ν−M ≥ νz

and in other regions ν−M ≤ νz. Divide the integral in equation (4.7) into two cases:
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ν−M ≤ νz and ν−M ≤ νz. The final result will be the max of the two cases. First

suppose that ν−M ≤ νz. Then ν̂ is constant with respect to z.

Combine (4.8), (4.7) and consider the integration only over region A.

C
n∑
r=0

2bkC
(m,d,2p)
γ,V,−M

r!‖x− y‖k

∫
A

|v|r−1|g(r)
M (u)|

(1− γ)ν̂k〈u〉
dvdu (4.9)

Combine the constants C, C
(m,d,2p)
γ,V,−M , 1

ν̂
, 1 − γ and the 2 into the constant C̃ and do

the following computation with (4.9),

C̃
n∑
r=0

bk
r!‖x− y‖k

∫
A

|v|r−1|g(r)
M (u)|
〈u〉

dvdu

= C̃
n∑
r=0

bk
r!‖x− y‖k

∫ ∞
−∞

2

∫ 2〈u〉

〈u〉

|v|r−1|g(r)
M (u)|
〈u〉

dvdu

≤ C̃
n∑
r=0

bkcr
r! · ‖x− y‖k

∫ ∞
−∞
〈u〉r−1|g(r)

M (u)|du

with c0 = ln 2, and cr =
2r+1

r
otherwise

≤ C̃
bkcn

n! · ‖x− y‖k
n∑
r=0

∫ ∞
−∞
〈u〉r−1|g(r)

M (u)|du (4.10)

Again, we combine (4.8), (4.7) then consider region B.

C̃
bk

n!‖x− y‖k

∫
B

|v|n−1|g(n+1)
M (u)|dvdu

(recall n ≥ 1) = C̃
bk

n!‖x− y‖k
2

∫ ∞
−∞

2n

n
〈u〉ng(n+1)

M (u)|dvdu

= C̃
bkcn

n!‖x− y‖k

∫ ∞
−∞
〈u〉ng(n+1)

M (u)|dvdu (4.11)

The estimate (4.10) together with (4.11) show that

‖χxf(H)χy‖p ≤ C̃
bkcn

n! · ‖x− y‖k
‖|f(u)(u+M)k‖|n

Next consider the case ν−M > νz. Then ν̂ depends on z as ν̂ = 3ηzγ
√

1−a
8
√
ηz+|z|+b

. Since

from (4.7) we must integrate over u and v, we will want to manipulate ν̂ so that it is

explicitly in terms of u and v. From Theorem 3.1, we may choose γ to be any number
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between 0 and 1. Following the same technique from [6] we let γ depend on z and

choose γ = (2 +
√
ηz)
−1 which gives,

ν̂ =
3ηz
√

1− a
8(
√
ηz + 2)

√
ηz + |z|+ b

Notice that ηz ≥ |v| for every z ∈ ρ(H). Since ν̂ increases with respect to ηz, the first

estimate we do on ν̂ is,

ν̂ ≥ 3|v|
√

1− a
8(
√
|v|+ 2)

√
|v|+ |z|+ b

Just as before, combine (4.8), (4.7) and consider the integration only over region

A just like in (4.9). In this region, we remind ourselves that 〈u〉 ≤ |v| ≤ 2〈u〉. Now,

let’s derive a lower estimate on ν̂ that is specific to A. Since 〈u〉 ≤ |v|, then v ≥ 1

and u2 ≤ v2 − 1. Also |z| =
√
v2 + u2. Therefore |z| ≤

√
2|v|. And we also get that,

ν̂ ≥ 3|v|
√

1− a

8
√
|v|(1 + 2/

√
|v|)
√
|v|(1 +

√
2 + b/|v|)

≥ 3|v|
√

1− a
8 · 3|v|

√
1 +
√

2 + b

≥
√

1− a
8
√

3 + b

Or in other words, ν̂ is bounded below by a constant that is greater than 0. Therefore,

one may repeat the calculation for (4.10) and conclude that

(4.9) ≤ C̃2
bkcn

n! · ‖x− y‖k
n∑
r=0

∫ ∞
−∞
〈u〉r−1|g(r)(u)|du

Lastly, we consider combining (4.8), (4.7) then integrating over region B with

ν̂ = ν. Just as in the previous calculation we have that

ν̂ ≥ 3|v|
√

1− a
8(
√
|v|+ 2)

√
|v|+ |z|+ b

Since z is in the region B recall that |v| ≤ 2〈u〉. We will also need the estimate

|z| ≤ 3〈u〉 which we derive in the following way,

|z| ≤
√
u2 + v2 ≤

√
u2 + 4〈u〉2

≤
√
u2 + 4(1 + u2) ≤

√
5〈u〉

≤ 3〈u〉
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Another inequality we use is for two positive numbers, say x and y. There is the

fundamental inequality 2xy ≤ x2 + y2. With the above inequalities we may write,

ν̂ ≥ 3|v|
√

1− a
8(
√

2〈u〉+ 2)
√

5〈u〉+ b
≥ 3|v|

√
1− a

81
2
[(
√

2〈u〉+ 2)2 + 5〈u〉+ b]

≥ 3|v|
√

1− a
81

2
[2〈u〉+ 2

√
2〈u〉+ 4 + 5〈u〉+ b]

≥ 3|v|
√

1− a
81

2
[15〈u〉+ b]

≥ 3|v|
√

1− a
8〈u〉[8 + b]

Use the above estimate while combining (4.8), (4.7). Recall that we chose γ =

(2 +
√
ηz)
−1, therefore γ ≤ 1

2
. This give the following estimate,

bkC
(m,d,2p)
γ,V,−M

(1− γ)2n!‖x− y‖k

∫
B

1

ν̂k|v|
|g(n+1)(u)||v|ndvdu

≤
bkC

(m,d,2p)
γ,V,−M

4n!‖x− y‖k

∫
B

(
8[8 + b]

3
√

1− a

)k |v|n−1−k

〈u〉k
|g(n+1)(u)|dvdu

In the above estimate we are consolidating the constants into Ĉ. In order for the

integration in the v variable to be finite, we require that n− 1− k ≥ 0.

bkĈ

n!‖x− y‖k

∫ ∞
−∞

∫ 〈u〉
0

|v|n−1−k

〈u〉k
|g(n+1)(u)|dvdu

≤ bkĈ

n!(n− k)‖x− y‖k

∫ ∞
−∞
〈u〉n|g(n+1)(u)|du

Then we choose n = k + 1 and obtain our result.

Copyright c© Aaron D. Saxton, 2014.
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Chapter 5 Sub-Exponential Decay

The next result explores what happens when f is close to an analytic function. In

a paper by J. Bouclet, F. Germinet and A. Klein [3] the L1-Gevrey class of order

a ≥ 1 is used with the Helffer–Sjöstrand formula to show sub-exponential decay in

the operator norm. We say a function is Gevrey class of order a ≥ 1 [3] if f ∈ C∞(R)

and for each compact subset K ⊂ R there is a constant, C, that depend on K such

that,

|f (n)(x)| ≤ C(C(n+ 1)a)n with x ∈ K andn = 0, 1, 2, ...

Recall that a function is real analytic if and only if there exists a positive real constant

C that depends on the compact subset K ⊂ R such that for each n and every x ∈ K,

|f (n)(x)| ≤ Cn+1n!

To see this, Taylor’s theorem with remainder says that a real function with k + 1

derivatives can be written in a series with a remainder as

f(x) =
k∑

n=0

f (n)(a)

n!
(x− a)n +

f (k+1)(ξ)

(k + 1)!
(x− a)k+1

Then using |f (n)(x)| ≤ Cn+1n!, and apply it to the remainder, we can see that the

remainder converges to 0 for a certain radius of convergence. Therefore f has a power

series about the point a, and thus f is analytic.

We see, after using Stirling’s formula on n!, that when a = 1 the Gevrey class

of functions are analytic. Mixing the idea of slowly decreasing functions with the

Gevrey class, L1-Gevrey is defined as follows.

Definition 5.1. Let I be an open interval and a ≥ 1, f ∈ C∞(R), and Cf,I be a

constant greater than one that depends on f and I. The function f is L1-Gevrey of

class a on I if for all k = 0, 1, 2, ... we have

∥∥f (k)〈u〉k−1
∥∥
L1(I)

=

∫
I

|f (k)(u)|〈u〉k−1du ≤ Cf,I(Cf,I(k + 1)a)k (5.1)
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Our final result we prove by following the proof from [3]. For a function f that is

L1-Gevery, we prove a sub-exponential result of the form ‖χxf(H)χy‖p ≤ Ce−c|x−y|
α

for some α ∈ (0, 1] that depends on a and χx, χy are the same localization functions

as in the previous chapters.

Theorem 5.2. Let I ⊂ R be an open interval that contains the spectrum of H. Let

x, y ∈ Rd such that |x− y| > 1. Let M be a positive real number such that −M ≤ H.

And, let m, p be positive real numbers such that m > d/2p. Then, given a real number

a ≥ 1, we have:

• If a > 1, then for each a′ > a there exists Ca,a′,I > 0 such that for f such that

f(u)(u+M)m is L1- Gevrey of class a on I,

‖χxf(H)χy‖p ≤ Ca,a′,I(eCf,I)
3+|p−q|

1
a′ exp

(
−a
′ − a
2a′
|x− y|

1
a′ ln |x− y|

)
(5.2)

Also, there exists a constant Ca,a′,I,f > 0 and ca,a′ > 0 such that,

‖χpf(H)χq‖p ≤ Ca,a′,I,f exp
(
−ca,a′|x− y|

1
a′
)

(5.3)

• If a = 1, then there exists CI , cI > 0 such that for all L1- Gevrey functions f of

class a on I

‖χxf(H)χy‖p ≤ CI
Cf,I〈x− y〉
1 + lnCf,I

exp

(
− cI
Cf,I(1 + lnCf,I)

|x− y|
)

(5.4)

Proof of Theorem 5.2

Notice that if a function is L1-Gevrey then it is also slowly decreasing. Therefore we

may apply the Helffer-Sjöstrand formula the same way we did in proving Theorem

4.3. As before we let gM(u) = (u + M)mf(u). Then apply the Helffer-Sjöstrand

formula to g(u). Since g̃(z) may not be analytic when the imaginary part of z is zero,

the main idea in the proof is to divide the complex plane into two regions: a region

close to the real axis, and everything else.
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Figure 5.1: ε Region

To this end let ε > 0 and recall z = u+ iv. Then,

gM(H) =
1

π

∫
C

∂g̃M(z)

∂z̄
RH(z)dvdu

=
1

π

∫ ∫
|v|<ε〈u〉

∂g̃M(z)

∂z̄
RH(z)dvdu

+
1

π

∫ ∫
|v|≥ε〈u〉

∂g̃M(z)

∂z̄
RH(z)dvdu

= I + II

In Figure 5.1 region I is the area between the two black lines that surround the

real axis and region II is everything outside. To prove our result we tackle I and II

by themselves in the next two lemmas.

Lemma 5.3. There exists C, c > 0 that depend on I such that,

‖χx(H +M)−m/2I(H +M)−m/2χy‖p ≤
Cεn

n!

∥∥g(n+1)〈u〉n
∥∥
L1(I)

for all n ≥ 1, 0 < ε < 1/2, and x, y ∈ Rd
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Proof. Let ε < 1/2 so that we are integrating I in the region that σ(u, v) = 1 and

σu(u, v) = σv(u, v) = 0. Therefore (4.3) just becomes,

∂g̃(z)

∂z̄
=

1

2
gn+1(u)(iv)n(n!)−1 (5.5)

Then,

‖χx(H +M)−m/2I(H +M)−m/2χy‖p

=

∥∥∥∥ 1

π

∫
R

∫
|v|≤ε〈u〉

χxR
m/2
H (−M)

1

2
gn+1(u)

(iv)n

n!
RH(z)R

m/2
H (−M)χydvdu

∥∥∥∥
p

≤ 1

2πn!

∫
R

∫
|v|≤ε〈u〉

∥∥∥χxJm/2Rm/2
H (−M)

∥∥∥
2p

∥∥∥Rm/2
H (−M)J̄m/2χy

∥∥∥
2p

×
∣∣gn+1(u)(iv)n

∣∣ ‖RH(z)‖ dvdy

Using an earlier result from Corollary 3.8 and Lemma 3.4 one can show∥∥∥χxJm/2Rm/2
H (−M)

∥∥∥
2p
≤ ‖χx‖∞

∥∥∥Jm/2Rm/2
H (−M)

∥∥∥
2p
≤ CM

Then we can write,

‖χx(H +M)−m/2I(H +M)−m/2χy‖p ≤
CM
2πn!

∫
I

∫
|v|≤ε〈u〉

|gn+1(u)||v|n−1dvdu

≤ CM

∫
I

|gn+1(u)|〈u〉nεndu

=
CMε

n

n!
‖g(n+1)〈u〉n‖L1(I)

Next we address II which deals with integrating ∂g̃
∂z̄

in the complex plane but away

from the real axis. See Figure 5.1. In this region we will apply the Combes-Thomas

method and will be able to show exponential decay.

Lemma 5.4. There exists constants C, c > 0 such that

‖χx(H +M)−m/2II(H +M)−m/2χy‖p

≤ Ce−c|x−y|
n∑
r=0

1

r!

∥∥f (r)〈u〉r−1
∥∥
L1(I)

+
C

n!
e−cε|x−y|

∥∥f (n+1)〈u〉n
∥∥
L1(I)

(5.6)

For all ε > 0, n ≥ 1, x, y ∈ Rd
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Proof. We start our calculation,

‖χx(H +M)−m/2II(H +M)−m/2χy‖p

≤ 1

2π

n∑
r=0

1

r!

∫ ∫
|v|≥ε〈u〉

|g(r)(u)||v|r
∣∣∣∣∂σ(u, v)

∂z̄

∣∣∣∣ · Z dvdu
+

1

2πn!

∫ ∫
|v|≥ε〈u〉

σ(u, v)|g(n+1)(u)||v|n · Z dvdu

with Z = ‖χx(H +M)−m/2RH(z)(H +M)−m/2χy‖p

Just as in the proof of Theorem 3.1 we apply the Combes–Thomas method to Z to

obtain,

Z ≤ C

ηz
e−ν̂|x−y|

where C does not depend on z or x, y. Therefore,

‖χx(H +M)−m/2II(H +M)−m/2χy‖p

≤ C

2π

n∑
r=0

1

r!

∫ ∫
|v|≥ε〈u〉

|g(r)(u)| |v|
r

ηz

∣∣∣∣∂σ(u, v)

∂z̄

∣∣∣∣ e−ν̂|x−y| dvdu
+

C

2πn!

∫ ∫
|v|≥ε〈u〉

σ(u, v)|g(n+1)(u)| |v|
n

ηz
e−ν̂|x−y| dvdu

Next notice that from the definition of σ(u, v) we can estimate
∣∣∣∂σ(u,v)

∂z̄

∣∣∣ ≤ C
〈u〉 where

C only depends on τ(t). Also notice that since ε < 1
2

the support of
∣∣∣∂σ(u,v)

∂z̄

∣∣∣ and

σ(u, v) allow us to write,

‖χx(H +M)−m/2II(H +M)−m/2χy‖p

≤ C

2π

n∑
r=0

1

r!

∫
R

2

〈u〉

∫ 〈u〉
1
2
〈u〉
|g(r)(u)| |v|

r

ηz
e−ν̂|x−y| dvdu

+
C

2πn!

∫
R

2

∫ 〈u〉
ε〈u〉
|g(n+1)(u)| |v|

n

ηz
e−ν̂|x−y| dvdu

On the domain of integration from II, we can compute that |v|〈u〉 ≤ ν̂. Furthermore,
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since |v| ≥ ε〈u〉 we have ε ≤ |v|
〈u〉 . Also notice that 〈u〉 ≤ |v| ≤ ηz. Then,

‖χx(H +M)−m/2II(H +M)−m/2χy‖p

≤ Ce−
1
2
|x−y|

π

n∑
r=0

1

r!

∫
I

1

〈u〉2

∫ 〈u〉
1
2
〈u〉
|g(r)(u)||v|r dvdu

+
Ce−ε|x−y|

πn!

∫
I

∫ 〈u〉
ε〈u〉
|g(n+1)(u)||v|n−1 dvdu

≤ Ce−
1
2
|x−y|

π

n∑
r=0

1

r!

∫
I

|g(r)(u)|〈u〉r−1 du+
Ce−ε|x−y|

πn!

∫
I

|g(n+1)(u)|〈u〉n du

To lemma 5.3 and 5.4 we apply the L1(I)-Gevery of class a estimates to write,

‖χxf(H)χy‖p

≤ Ce−c|x−y|
n∑
r=0

1

r!

∥∥g(r)〈u〉r−1
∥∥
L1(I)

+
C

n!

[
εn + e−cε|x−y|

] ∥∥g(n+1)〈u〉n
∥∥
L1(I)

≤ Ce−c|x−y|
n∑
r=0

Cg,I(Cg,I(r + 1)a)r

r!
+
C

n!

[
εn + e−cε|x−y|

]
Cg,I(Cg,I(n+ 2)a)n+1

Next we want to estimate (r+1)ar

r!
. Use Stirling’s approximation we know r! ≥ (r/e)r

for r ≥ 1. Therefore, (r+1)ar

r!
≤ er(r+1)ar

rr
. To estimate (r+1)ar

rr
we start by looking at

the series expansion of the exponential function to see 1 + 1
r
≤ e

1
r . Then

ln

(
r + 1

r

)
≤ 1

r
and further

(
r + 1

r

)r
≤ e.

But then (r + 1)ra ≤ earra, so (r+1)ra

rr
≤ earr(a−1).

To estimate (n + 2)a(n+1)/nn and show (n + 2)a(n+1)/nn ≤ e4ana(n+1)−n notice

that it is equivalent to (n + 2)a(n+1) ≤ e4ana(n+1) then start with the inequalities

1 + 4
n+1
≤ e

4
n+1 and n + 1 ≤ 2n. Therefore 1 + 2/n ≤ e

4
n+1 or n+1

n
≤ e

n
n+1 . With

a little more algebra it is clear that (n + 2)a(n+1)/nn ≤ e4ana(n+1)−n. Now we can

estimate ‖χxf(H)χy‖p in the following way,

‖χxf(H)χy‖p

≤ Ce−c|x−y|
n∑
r=0

CgC
r
g,Ie

aerrr(a−1) + C
[
εn + e−cε|x−y|

]
Cg,IC

n+1
g,I e

4aenna(n+1)−n

≤ Ce−c|x−y|naCg,IC
n
g,Ie

aennn(a−1) + C
[
εn + e−cε|x−y|

]
Cg,IC

n+1
g,I e

4aennann(a−1)

≤ Ce4a
[
en ln ε + e−cε|x−y| + e−c|x−y|

]
(eCg,I)

n+2ea lnn+(a−1)n lnn (5.7)
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Since the Gevrey class of functions is supposed to be analytic functions when a = 1,

we expect to recover exponential decay in the above estimate and when a > 1 we do

not. To this end, we consider two cases.

In the first case take a = 1. Fix ε. We will let n depend on x and y and let it

grow as δ|x− y|. Formally we write n = δ|x− y| so n is the smallest integer that is

greater than δ|x− y|. So,

‖χxf(H)χy‖p ≤ Cn(eCg,I)
n+2
[
e−c|x−y| + en ln ε + e−cε|x−y|

]
(5.8)

The term (eCg,I)
n+2, by itself, does not exponentially decay. So it must be com-

pared agains each of the terms e−c|p−q| + en ln ε + e−cε|x−y|. Notice (eCg,I)
n+2 =

(eCg,I)
2en ln(eCg,I). Comparing to the first term means δ must be such that δ ln(eCg,I) <

c. Comparing to the second term means we must choose ε such that ln(eCg,I) < − ln ε.

So let ε = 1
e2Cg,I

. Comparing the third term, δ and ε must be chosen so that

δ ln(eCg,I) < cε. We can combine these estimates and see that we can choose

δ = c
2 ln(eCg,I)e2Cg,I

. With our choice of δ, ε and n = δ|x − y| the equation (5.8)

can be written

‖χxf(H)χy‖1 ≤ Cn(eCg,I)
n+2en ln ε

Then feeding δ, ε and n = δ|x− y| into the above will yield our result.

Next let a > 1. The sub-exponential decay of Theorem 5.2 centers around using

our control over n and ε to simultaneously cause the following expressions from the

exponents of (5.7), (a− 1)n lnn− c|p− q|, (a− 1)n lnn+ n ln ε, and (a− 1)n lnn−

cε|p− q|, to be negative.

For s, δ > 0 pick n ∼ |x − y|δ then we formally choose n = |x − y|δ and let

ε = |x − y|−s. Or, formally, we can write n1/δ = |x − y|. So furthermore, ε = n−s/δ.

Then we have

‖χxf(H)χy‖p

≤ Cna(eCg,I)
n+2
[
e(a−1)n lnn−cn1/δ

+ e(a−1)n lnn+−s
δ
n lnn + e(a−1)n lnn−cn(1−s)/δ

]
≤ C(eCg,I)

n+2
[
ea lnn+(a−1)n lnn−cn1/δ

+ ea lnn+(a−1)n lnn+−s
δ
n lnn + ea lnn+(a−1)n lnn−cn(1−s)/δ

]
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In this case we look at each term of

ea lnn+(a−1)n lnn−cn1/δ

+ ea lnn+(a−1)n lnn+−s
δ
n lnn + ea lnn+(a−1)n lnn−cn(1−s)/δ

and examine how the exponent causes it to decay. But in the first term, cn1/δ dom-

inates over n lnn provided 1/δ > 1. Similarly for the last term (1 − s)/δ > 1. The

middle term is what gives us our slowest decay. Observe that (a−1)−s/δ < 0 comes

from the middle term. Define ν and a′ as ν = a′ − a > 0. Use ν to consider the

following equalities,

1− s
δ

= 1 + ν and (a− 1)− s

δ
= −1

2
ν

and you will discover that δ = 1/a′ then 1− s = 1/2ν+1
a+ν

. Since the middle term above

had the slowest decay, we substitute back in δ, 1− s, and n = |x− y|1/a′ to get

‖χpf(H)χq‖p ≤ Ca,a′C
|x−y|1/a′+2
g,I e

(
a−a′

2

)
|x−y|1/a′ ln |x−y|1/a′

Copyright c© Aaron D. Saxton, 2014.
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Chapter 6 Appendix

Proof of Lemma 3.2 and related results.

Lemma 3.2 Let V be ∆ bounded with relative bound less than 1 and let z ∈ ρ(H).

Then

‖∇RH(z)‖ ≤ 1

ηz

√
ηz + |z|+ b

1− a
(6.1)

Proof. First, because V is ∆ bounded we can write

‖V u‖ ≤ a‖ −∆u‖+ b‖u‖

where u ∈ H2(Rd) and a, b ∈ R. Let u = RHv with v ∈ L2(Rd). Then

‖V RH(z)‖ ≤ a‖∆RH(z)‖+ b‖RH(z)‖ (6.2)

Add and subtract V − z between ∆ and RH(z) to compute

∆RH(z) = 1− V RH(z) + zRH(z)

‖∆RH(z)‖ ≤ 1 + ‖V RH(z)‖+ |z|‖RH(z)‖ (6.3)

Recall that ‖RH(z)‖ ≤ 1
ηz

and combine (6.2) and (6.3) to write

‖V RH(z)‖ ≤ a+ a‖V RH(z)‖+
a|z|
ηz

+
b

ηz

and so,

‖V RH(z)‖ ≤ a(ηz + |z|) + b

ηz(1− a)

Next is to show ‖∇RH(z)‖ ≤ 1
ηz

√
ηz+|z|+b

1−a . We start with ‖∇RH(z)‖2 = ‖(∇RH(z))∗∇RH(z)‖,

‖∇RH(z)‖2 = ‖RH(x)WRH(x)‖

≤ 1

ηz
‖WRH(z)‖

≤ 1

ηz

(
1 + ‖V RH(z)‖+

|z|
ηz

)
≤ 1

ηz

(
1 +

a(ηz + |z|) + b

ηz(1− a)
+
|z|
ηz

)
=

ηz + |z|+ b

η2
z(1− a)
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And so

‖∇RH(z)‖ ≤ 1

ηz

√
ηz + |z|+ b

1− a

Recall that,

νz :=
3ηzγ
√

1− a
8
√
ηz + |z|+ b

Lemma 3.3 Let α ∈ Cd, z ∈ ρ(H), and V be a potential that is relatively ∆ bounded

with relative a < 1. Then RH(α)(z) is a bounded operator on L2(Rd) when |α| ≤ νz

Proof. Recall B = 2iα · ∇RH(z) + |α|RH(z). We wish to bound ‖B‖ ≤ γ < 1.

‖B‖ ≤ 2‖α · ∇RH(z)‖+ |α|‖RH(z)‖ (6.4)

Let C :=
√

ηz+|z|+b
1−a . Then ‖B‖ is bounded by,

‖B‖ ≤ |α|2 1

ηz
+ |α| 2

ηz
C

We use the parameter 0 < γ < 1 and stipulate that,

|α|2 1

ηz
+ |α| 2

ηz
C ≤ γ

Fix the potential V , ∆, and z. Let γ be a free parameter, then α will be constrained

by solving,

|α|2 1

ηz
+ |α|2C

ηz
− γ ≤ 0

To which we get,

|α| ≤ C

[√
1 +

ηzγ

C2
− 1

]
Let ν̃ := C

[√
1 + ηzγ

C2 − 1
]

and we will use
√

1 + x ≥ 1 + 1
2
x− 1

8
x2, 0 < x, then,

ν̃ ≥ C

[
1

2

ηzγ

C2
− 1

8

η2
zγ

2

C4

]
=

1

2

ηzγ

C

[
1− 1

4

ηzγ

C2

]
(6.5)

We want to estimate 1
4
ηzγ
C2 in the above expression. Write

ηz
1− a

≤ ηz + |z|+ b

1− a
ηz

1− a
≤ C2

ηzγ

4C2
≤ (1− a)γ

4

(
<

1

4

)

40



Feeding this estimate back into (6.5) we can write,

ν̃ ≥ 1

2

ηzγ

C

[
1− (1− a)γ

4

]
≥ 3

8

ηzγ

C

Lemma 3.5 Let γ be as defined above in (3.3), then

‖RH(α)(z)‖ ≤ 1

ηz(1− γ)
(6.6)

and

‖∇RH(α)(z)‖ ≤ 1

ηz(1− γ)

√
ηz + |z|+ b

1− a
(6.7)

Let ∇V be relatively bounded with respect to W with bounding constants ã, b̃. Then,

‖∇RH(z)A‖ ≤ ηz + |z|+ b

(1− a)ηz
+

1

ηz

√
ηz + |z|+ b

1− a

[
1

ηz

√
ηz + |z|+ b

1− a
ã+

b̃

ηz

]

and

‖∇RH(α)∇‖ ≤
9

16

γ2

1− γ
+

(
1 +

3

4

ηzγ√
ηz + |z|+ b

)
‖∇RH∇‖.

Proof. The first result,

‖RH(α)(z)‖ ≤ 1

ηz(1− γ)

follows almost immediately from (3.1) and the Neumann series.

For the bound on ‖ARH(α)(z)‖ we start with the second resolvent formula,

RH(α)(z) = RH(z) +RH(α)B̃RH . (6.8)

Where,

B̃ := 2iα · ∇+ |α|2

Then,

∇RH(α)(z) = ∇RH(z) +∇RH(α)B̃RH

∇RH(α)(z)(1− B̃RH) = ∇RH(z).
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But, we have already chosen α so that B̃RH ≤ γ < 1. So we can invert, and take an

operator norm to get,

‖∇RH(α)(z)‖ ≤ 1

1− γ
‖∇RH(z)‖

or

‖∇RH(α)(z)‖ ≤ 1

ηz(1− γ)

√
ηz + |z|+ b

1− a
Next, we prove the bound on ‖∇RH(z)∇‖. Let RH = RH(z).

∇RH∇ = ∆RH +∇[RH ,∇]

= ∆RH +∇RH [V,∇]RH

= ∆RH −∇RH∇V RH

ã and b̃ are the relative and operator bounds for ∇V . Also we know how to bound

∆RH form (6.3). Therefore,

‖∇RH∇‖ ≤ ‖∆RH‖+ ‖∇RH‖‖∇V RH‖

≤ ‖∆RH‖+ ‖∇RH‖
[
ã‖∆RH‖+ b̃‖RH‖

]
Next, revisit (6.3) to get a bound on ‖∆RH‖.

‖∆RH‖ ≤ 1 + ‖V RH‖+ |z|‖RH‖

≤ ηz + |z|
ηz

+ a‖∆RH‖+ b‖RH‖

≤ ηz + |z|+ b

(1− a)ηz
(6.9)

So then,

‖∇RH∇‖ ≤
ηz + |z|+ b

(1− a)ηz
+

1

ηz

√
ηz + |z|+ b

1− a

[
1

ηz

√
ηz + |z|+ b

1− a
ã+

b̃

ηz

]
.

To show the bound on ‖∇RH(α)∇‖, recall the 2nd resolvent formula (6.8). Then

∇RH(α)∇ = ∇RH(α)(2iα · ∇+ |α|2)RH∇+∇RH∇

= |α|2∇RH(α)RH∇+ (~1 + 2iα)∇RH∇

‖∇RH(α)∇‖ ≤ ν2‖∇RH(α)‖‖∇RH‖+ (1 + 2ν)‖∇RH∇‖

≤ 9

16

γ2

1− γ
+

(
1 +

3

4

ηzγ√
ηz + |z|+ b

)
‖∇RH∇‖
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Proof of Lemma 3.6

Let

gz(x) :=
1

x2 − z
Lemma 3.6 Suppose x ∈ Rd, z ∈ C− [0,∞), and p > d/2. Then, gz(x) ∈ Lp(Rd).

Furthermore, if Re(z) ≥ 0 there exists a constant, C̃d,p, that depends on d, p, such

that,

‖gz‖pp ≤
C̃d,p|z|d/2

|Im(z)|p
(6.10)

If Re(z) < 0 there exists a constant, Cd,p, that depends on d, p, such that,

‖gz‖pp ≤
Cd,p
|z|p−d/2

(6.11)

Proof. Compute ‖gz‖pp. Let cd be the volume of a unit d− 1 dimensional sphere.

‖gz‖pp = cd

∫
Rd

1

|x2 − z|p
dx

=

∫ ∞
0

rd−1

|r2 − z|p
dr

Let z = v + wi. Then |r2 − z|2 = (r2 − v)2 + w2.

‖gz‖pp = cd

∫ ∞
0

rd−1

(r4 − 2r2v + v2 + w2)
p
2

dr

=
cd
|z|p

∫ ∞
0

rd−1

( r4

|z|2 −
2r2v
|z|2 + 1)

p
2

dr

Now suppose that Re(z) < 0. Then −2r2v
|z|2 > 0. So

‖gz‖pp ≤
cd
|z|p

∫ ∞
0

rd−1

( r4

|z|2 + 1)
p
2

dr

Make the substitution u = r√
|z|

and get,

‖gz‖pp ≤
cd
|z|p

∫ ∞
0

ud−1|z| d−1
2 |z| 12

(u4 + 1)
p
2

dr

≤ Cd,p

|z|p− d2
(6.12)
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For the above integral to converge, we must stipulate that 2p− d+ 1 > 1 or p > d/2

Next suppose that Re(z) ≥ 0. Recall z = v + iw. Then |r2 − z| ≥ |v|. Also, since

|r2 − z| > |r2 − w|, so |r2 − z|−1 ≤ |w|−1 and |r2 − z|−1 < |r2 − v|−1. So write the

integral,

‖gz‖pp =

∫ 2
√
v+
√
|w|

0

rd−1

|r2 − z|p
dr +

∫ ∞
2
√
v+
√
|w|

rd−1

|r2 − z|p
dr

= I + II

For 0 < r < 2
√
v+
√
|w| we use |r2− z|−1 < |w|−1 so the first integral is bounded by,

I ≤
∫ 2
√
v+
√
|w|

0

rd−1

|w|p
dr

≤
(2
√
v +

√
|w|)d

d|w|p

As for the region 2
√
v +

√
|w| < r ≤ ∞ we use |r2 − z|−1 < |r2 − v|−1 so the second

integral II is bounded as,

II ≤
∫ ∞

2
√
v+
√
|w|

C̃rd−1

|r2 − v|p
dr

≤ C̃vp−d/2

vp−
d
2

|w|d/2−p

Therefore, combining I and II we get,

‖gz,m‖pp ≤
C̃d,p,m(2

√
v +

√
|w|)d

|w|p

≤ C̃d,p,m|z|d/2

|w|p
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Proof of Corollary 3.8

Corollary 3.8 Assume the hypothesis from lemma 3.3 and corollary 3.7. Let p > d/2.

Then χRH(z) and, χRH(α)(z) are all in the p-th trace ideal. And they have the

following estimates.

‖χRH(z)‖p ≤
Cd,p
|z|1−d/2p

[
1 +

a(ηz + |z|) + b

ηz(1− a)

]
Re(z) < 0 (6.13)

‖χRH(z)‖p ≤
C̃d,p|z|d/2p

|Im(z)|

[
1 +

a(ηz + |z|) + b

ηz(1− a)

]
Re(z) ≥ 0 (6.14)

‖χRH(α)(z)‖p ≤
Cd,p(1 + γ)

|z|1−d/2p
Dz,γ,V Re(z) < 0 (6.15)

‖χRH(α)(z)‖p ≤
C̃d,p|z|d/2p

|Im(z)|
Dz,γ,V Re(z) ≥ 0 (6.16)

With,

Dz,γ,V =

(
1 +

a(ηz + |z|) + b)

ηz(1− a)

)(
1 +

2γ

ηz(1− γ)

√
ηz + |z|+ b

1− a

)
(6.17)

Proof. To prove this, combine 3 things: Corollary 3.7, Lemma 3.2, and the second

resolvent formula, R0 −RH = R0V RH and RH −RH(α) = 2iα ·RH∇RH(α).

First, use R0 −RH = R0V RH to do the computation,

χRH = χR0(1− V RH)

‖χRH‖p ≤ ‖χR0‖p‖(1− V RH)‖

‖χRH‖p ≤ ‖χR0‖p
(

1 +
a(ηz + |z|) + b)

ηz(1− a)

)
Then apply Corollary 3.7 with m = 1 to get the result.

Next, use RH −RH(α) = 2iα ·RH∇RH(α) to do the following computation,

χRH(α) = χRH(1− 2iα · ∇RH(α))

‖χRH(α)‖p ≤ ‖χRH‖p
(
1 + 2γ‖∇RH(α)‖

)
‖χRH(α)‖p ≤ ‖χR0‖p

(
1 +

a(ηz + |z|) + b)

ηz(1− a)

)(
1 +

2γ

ηz(1− γ)

√
ηz + |z|+ b

1− a

)
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Thus proves our result.

Proof of Lemma 3.4

Lemma 3.4 For an integer s ≥ 2 there exists Jγδ ∈ J and Qγδ ∈ Q such that,

JsRs
H(α) =

N∑
δ=1

s∏
β=1

JβδRH(α)Qβδ (6.18)

with B = 2iα · ∇ + |α|2 and H(α) = H + B. Formally that is, one may exchange

powers on JsRs for a product of s JRQ terms.

Proof. The proof goes by induction. The statement trivially holds for the m = 1

case. We assume that the following is true.

JmRm
H+B =

N∑
δ=1

m∏
γ=1

JγδRH+BQγδ

and we want to calculate JJmRm
H+BRH+B, or,

JJmRm
H+BRH+B =

N∑
δ=1

J

[
m∏
δ=1

JγδRH+BQγδ

]
RH+B (6.19)

Considering one additive term from above,

JJγ1RH+BQγ1

[
m∏
δ=2

JγδRH+BQγδ

]
RH+B (6.20)

Further consider JJ1δRH+BQ1δ, and commute J past RH+B to get,

= J1,δ(RJ +RQ2J1)Q1,δ +

J1,δ(RJ2R +RQ2J3R +RQ4J4R +RQ2J5,αR +RJ6,αR)Q1,δ (6.21)

The second additive term above is exactly what we want. Feed it back into (6.20)

then into (6.19) to see that you get m+ 1 more mutiplicative terms, and N + 4 more

additive terms. Let’s focus on J1,δ(RJ +RQ2J1)Q1,δ, and commute J∗ past Q1,δ.

J1,δ(RJ +RQ2J1)Q1,δ

= J1,δ(RQ1,δJ +RQ2Q1,δJ1) + J1,δ(R[J,Q1,δ] +RQ2[J1, Q1,δ]) (6.22)
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Computing [J,Q1,δ] and [J1, Q1,δ] amounts to computing [J,Qi], i = 1, 2, 3, 4. You

can appeal to appendix A in [11] lemma 14 to see [J∗, Q∗], but we’ll write it here for

convenience. Assume R = RH(α)(z)

[J,Q1] = RQ2J3 +RJ1R +RQ2J4R +RQ4 · J5R

+RQ2α · J6R +Rα · J2R (6.23)

[J,Q2] = J∗R +Q2{Q2J∗ + J∗R +Q2J∗R +Q4J∗R

+α · [Q2J∗R + J∗R]} (6.24)

[J,Q3] = RJ∗ +Q3{Q3J∗ + J∗Q3 +RJ∗Q3 +RJ∗Q4 +RJ∗Q3

+α · [RJ∗R∇+ J∗R∇]} (6.25)

The calculation of [J,Q4] is similar to the above comutators.

We appeal to appendix A in [11] lemma 14 to calculate [J∗, Q∗]. The lemma says

that

[J∗, Q∗] =
∑

Q̃iS̃i +
∑

Q̄iJ̃i (6.26)

where S∗ is as we defined it before, S∗ = J∗RB∗. Feed (6.22) and (6.26) back into

(6.21) and (6.20), reindex Q∗, J∗ and expand another multiplicative term from (6.20)

to get,

(6.20) =
N̂∑

γ=Ñ+1

SγJγ1Jγ2RQγ2

m∏
δ=3

JγδRQγδ +
Ñ∑
δ=1

m+1∏
γ=1

JγδRQγδ (6.27)

To the first term of (6.27), we play the same game that happened after (6.20). Repeat

this process, and observe from (6.22) and (6.26) that at the end of this process,

(6.20) =

[
m∏
i

Si

]
JN̂1 +

Ñ∑
δ=1

m+1∏
γ=1

JγδRQγδ

Recall form (6.19), RH+B multiplies on the right side, and this gives us our result.

Copyright c© Aaron D. Saxton, 2014.
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