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ABSTRACT OF DISSERTATION

THE HYDRODYNAMIC FLOW OF NEMATIC LIQUID CRYSTALS IN R
3

This manuscript demonstrates the well-posedness (existence, uniqueness, and regu-
larity of solutions) of the Cauchy problem for simplified equations of nematic liquid
crystal hydrodynamic flow in three dimensions for initial data that is uniformly lo-
cally L3(R3) integrable (L3

U
(R3)). The equations examined are a simplified version of

the equations derived by Ericksen and Leslie. Background on the continuum theory
of nematic liquid crystals and their flow is provided as are explanations of the related
mathematical literature for nematic liquid crystals and the Navier–Stokes equations.
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Chapter 1 Overview

1.1 Introduction

Liquid crystals and their mathematical description have a long and rich history dating
back over 100 years (see [28], [5]). Liquid crystals can be thought of as materials that
exhibit an intermediate phase between liquid and solid in the sense that while liquid
crystals may flow like liquids they exhibit additional structural properties.

Many chemical compounds have liquid crystal phases. For example concentrated
solutions of rigid polymers in suitable solvents, DNA, and certain viruses all exhibit
liquid crystal phases. Since there are many possible microscopic structures there are
accordingly many liquid crystal phases: nematic, smectic, cholesteric, for example.

The simplest example of a liquid crystal phase occurring in nature is the ne-
matic phase for a single chemical species. Physically, in the single-species case, liquid
crystals that exhibit a nematic phase, or nematic liquid crystals for short, are liq-
uids that are uniformly composed of rod-like molecules whose structure induce a
preferred average directional order. A historical example is the compound MBBA
N − (p−methoxybenzylidene)− p− butylaniline which is in the nematic phase for
approximately the range temperatures 20◦C to 47◦C and whose length is on the scale
of Angstroms.

For the modeling of a single species of nematic liquid crystal at a fixed tempera-
ture one can consider a continuum theory which disregards the individual molecular
structure. Such a continuum assumption is valid since the distance over which direc-
tional order occurs is much larger than the molecular dimensions (that is proportional
to µm versus proportional to Angstroms) see [5].

One of the major motivations for modeling nematic liquid crystals mathemati-
cally is to better understand their defect structure and its dynamics. Defects are
discontinuities that appear in materials and break local symmetry. For example, in
solids, such defects are dislocations that break translational symmetry and introduce
plastic deformation. A continuum model for the hydrodynamic flow of nematic liquid
crystals provides the first step in such an analysis of the dynamics of the defects for
nematic liquid crystals.

This dissertation gives strong mathematical evidence for the validity (well-
posedness) of commonly used continuum models for the three-dimensional hydro-
dynamic flow of nematic liquid crystals. By well-posedness, it is meant that the
modeling equations have a unique solution that is sufficiently smooth. Since the full
continuum equations for hydrodynamic flow of nematic liquid crystals proposed by
Ericksen and Leslie are complicated this dissertation analyzes equations that retain
the mathematical difficulties and physical properties of interest.

The system of equations analyzed can be intuitively thought of as a coupling be-
tween the three-dimensional Navier–Stokes equations and the equations for the trans-
ported heat flow of harmonic maps into spheres. Here, the Navier–Stokes equations
give the velocity whereas the transported heat flow of harmonic maps into spheres
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give the preferred average directional order via a unit vector. Such systems have been
widely analyzed throughout the literature, but the novel contributions of this work
is that it includes three-dimensional flows and analyzes the transported heat flow of
harmonic maps into spheres by directly enforcing the sphere constraint instead of
analyzing an approximation of this system.

1.2 Past mathematical work

Since the model that is examined in manuscript in a coupling between the Navier–
Stokes equations and the transported heat flow of harmonic maps into spheres the
following section summarizes the relevant mathematical works on Navier–Stokes and
nematic liquid crystals. The summary of past work relating to the Navier–Stokes
equation is highly selective due to the sizable amount of work in the area. An attempt
has been made to include the vital and motivating works for this dissertation.

Mathematical analysis of nematic liquid crystals

A rigorous mathematical analysis of the Oseen–Zocher–Frank continuum model for
nematic liquid crystals described in Section 2.1 was completed by Hardt, Kinderlehrer
and Lin in 1986 [13]. They established existence and partial regularity of minimizers
of the Oseen–Zocher–Frank functional F (see (2.1)). To be precise, the major results
of their work are summarized in the following two theorems.

Theorem 1.2.1 (Existence of minimizers). For n0 : ∂Ω → S2 a Lipshitz map, the
admissible class of minimizers

A(n0) := {u ∈ H1(Ω, S2) : n0 = trace of u on ∂Ω}

is non-empty. Furthermore, for any n0 : ∂Ω → S2 there exists n ∈ A(n0) such that

F [n] = inf
u∈A(n0)

F [u].

Theorem 1.2.2 (Interior partial regularity). If n ∈ H1(Ω, S2) is a minimizer of
F , then n is analytic on Ω \ Z for some relatively closed subset Z of Ω which has
one-dimensional Hausdorff measure zero.

Later, Lin and Liu [20] began mathematical study of the hydrodynamic flow of
nematic liquid crystals. They examined a simplified version of the Ericksen–Leslie
equations. They studied the equations

ut + (u · ∇)u+ ν∆u+∇p = −λ∇ · (∇d⊙ d)①

dt + (u · ∇)u = γ(∆d− f(d))

∇ · u = 0

(1.1)

It is noted that these equations can be derived in much the same way as the model
equations studied in this dissertation (those being (1.7)-(1.9)).

①The product ⊙ is given in components by (∇d⊙∇d)ij = ∇id
q∇jd

q.

2



The full Ericksen–Leslie equations describing the flow phenomena of nematic liq-
uid crystals reduces to the Oseen–Zocher–Frank theory for nematics in the static case.
Furthermore, minimizers of the Oseen–Zocher–Frank functional are simply harmonic
maps into spheres provided the physical constants are properly chosen (see (2.31)).
Hence, it is a helpful heuristic to consider the Ericksen–Leslie equations as a coupling
between the Navier–Stokes equation and the transported heat flow of harmonic maps
into spheres.

Lin and Liu motivated by the work on gradient flow of harmonic maps into spheres
used the standard penalty approximation to relax the sphere constraint (see [24], [3],
[4]). The difficulty with such approximations is that the convergence of solutions to
penalized problem to original problem is only understood in a few cases (see again,
[24], [3]).

These issues aside, Lin and Liu proved the following theorems for the system (1.1).

Theorem 1.2.3 (Existence global weak solutions). Under the assumptions that
u0(x) ∈ L2(Ω) and d0(x) ∈ H1(Ω) with d0|∂Ω ∈ H3/2(∂Ω), the system (1.1) has a
global weak solution (u,d) such that

u ∈ L2(0, T,H1(Ω)) ∩ L∞(0, T, L2(Ω))

d ∈ L2(0, T,H2(Ω)) ∩ L∞(0, T,H1(Ω))

for all T ∈ (0,∞)

Theorem 1.2.4 (Wellposedness for large viscosity). The problem (1.1) has a unique
global classical solution (u,d) provided that u0(x) ∈ H1(Ω), d0(x) ∈ H2(Ω),
dim(Ω) = 2, 3, and ν ≥ ν0(λ, γ,u0,d0).

Very recently, Lin, Lin, and Wang [19] revisited the nematic liquid crystal flow
problem for two-dimensional flows. Namely, they examined the system:

ut + (u · ∇)u+ ν∆u +∇p = −λ∇ · (∇d⊙ d)

dt + (u · ∇)u = |∇d|2d

∇ · u = 0

(1.2)

for u : Ω× (0,+∞) → R2 and d : Ω× (0,+∞) → S2 and initial data

u0 ∈ H,d0 ∈ H1(Ω, S2), and d0 ∈ C2,β(∂Ω, S2)② for some β ∈ (0, 1). (1.3)

Where,

H = closure of C∞
0 (Ω,R2) ∩ {u : ∇ · u = 0} in L2(Ω,R2),

J = closure of C∞
0 (Ω,R2) ∩ {u : ∇ · u = 0} in H1(Ω,R2), and

H1(Ω, S2) = {d ∈ H1(Ω,R3) : d(x) ∈ S
2 a.e. x ∈ Ω}.

Lin, Lin and Wang succeeded in proving the following theorems:

②The Banach spaces of functions denoted with C2,β will be the set of functions which have
second derivatives in the spatial variables that are Hölder β. See [10] or [29] for a more detailed
explanation of such spaces.
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Theorem 1.2.5 (Regularity). For 0 < T < +∞ assume u ∈ L∞([0, T ],H) ∩
L2([0, T ],J) and d ∈ L2([0, T ], H1(Ω, S2)) is a suitable weak solution of (1.2) with
(1.3). If in addition, d ∈ L2([0, T ], H2(Ω)), then (u,d) ∈ C∞(Ω× (0, T ])∩C2,1

β (Ω̄)×

(0, T ])③.

Theorem 1.2.6 (Global Weak Solutions of Partial Regularity). For data satisfying
(1.3), there exist global suitably weak solutions u ∈ L∞([0,∞),H)∩L2([0,∞),J) and
d ∈ L∞([0,∞), H1(Ω, S2)) of the equations (1.2), which has the following properties:

1. There exists L ∈ N depending only on (u0,d0) and 0 < T1 < · · · < TL, 1 ≤ i ≤
L, such that

(u,d) ∈ C∞(Ω× ((0,∞) \ {Ti}
L
i=1)) ∩ C

2,1
β (Ω̄× ((0,∞) \ {Ti}

L
i=1)).

2. Each singular time Ti, 1 ≤ i ≤ L, can be characterized by

lim inf
t↑Ti

max
x∈Ω̄

ˆ

Ω∩Br(x)

(|u|2 + |∇d|2)(y, t)dy ≥ 8π, ∀r > 0.

Moreover, there exist xim → xi0 ∈ Ω, ti ↑ Ti, rim ↓ 0 and a non-constant smooth
harmonic map ωi : R

2 → S2 with finite energy such that as m→ ∞,

(ui
m,d

i
m) → (0, ωi) in C

2
loc(R

2 × [∞, 0]),

where

ui
m(x, t) = rimu(x

i
m + rimx, t

i
m + (rim)

2t), di
m(x, t) = d(xim + rimx, t

i
m + (rim)

2t).

3. Set T0 = 0. Then, for 0 ≤ i ≤ L− 1,

|dt|+ |∇2d| ∈ L2(Ω× [Ti, Ti+1 − ǫ]), |ut|+ |∇2u| ∈ L4/3(Ω× [Ti, Ti+1 − ǫ])

for any ǫ > 0, and for any 0 < TL < T <∞,

|dt|+ |∇2d| ∈ L2(Ω× [TL, T ]), |ut|+ |∇2u| ∈ L4/3(Ω× [TL, T ]).

4. There exist tk ↑ ∞ and a harmonic map d∞ ∈ C∞(Ω, S2) ∩ C2,β(Ω̄, S2) with
d∞ = d0 on ∂Ω such that u(·, tk) → 0 in H1(Ω), d(·, tk) → d∞ weakly in
H1(Ω), and there exist l ∈ N, points {xi}li=1 ∈ Ω, and {mi}li=1 ⊂ N such that

|∇d(·, tk)|
2dx→ |∇d∞|2dx+

l∑

i=1

8πmiδxi
.

③Banach spaces of functions denoted with C
2,1
β are anisotropic Hölder spaces of functions that

have second spatial derivatives and first time derivatives which are Hölder β. See, [29].
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5. If (u0,d0) satisfies
ˆ

Ω

(|u0|
2 + |∇d0|

2) ≤ 8π, (1.4)

then (u,d) ∈ C∞(Ω × (0,∞)) ∩ C2,1
β (Ω̄ × (0,∞)). Moreover, there exist

tk ↑ ∞ and d∞ ∈ C∞(Ω, S2) ∩ C2,β(Ω̄, S2) with d∞ = d0 on ∂Ω such that
(u(·, tk),d(·, tk)) → (0,d∞) in C2(Ω).

Remark 1.2.7. In Theorem 1.2.6 item 4. illustrates the potential failure of strong
convergence whereas item 5. gives sufficient conditions to guarantee strong conver-
gence.

Definition 1.2.8 (Suitable Weak Solutions). For 0 < T ≤ ∞, u ∈ L∞([0, T ],H) ∩
L2([0, T ],J) and d ∈ L2([0, T ], H1(Ω, S2)) is a suitable weak solution of (1.2) if the
following local energy inequality holds

−

ˆ

Ω×[0,T ]

〈u, ψ′φ〉+

ˆ

Ω×[0,T ]

[〈u · ∇u, ψφ〉+ ν〈∇u, ψ∇φ〉]

= −ψ(0)

ˆ

Ω

〈u0, φ〉+ λ

ˆ

Ω×[0,T ]

〈∇d⊙∇d, ψ∇φ〉,

−

ˆ

Ω×[0,T ]

〈d, ψ′φ〉+

ˆ

Ω×[0,T ]

[〈u · ∇d, ψφ〉+ ν〈∇d, ψ∇φ〉]

= −ψ(0)

ˆ

Ω

〈d0, φ〉+ λ

ˆ

Ω×[0,T ]

|∇d|2〈d, ψφ〉,

for any ψ ∈ C∞([0, T ]) with ψ(T ) = 0 and φ ∈ J ∩ H1
0 (Ω,R

3). Moreover, (u,d)
satisfies prescribed boundary data in the trace sense.

Mathematical analysis of the Navier–Stokes equations

As mentioned earlier, due to the size and scope of the mathematical literature ded-
icated to the study of the Navier–Stokes equations it would be nearly impossible to
give a complete overview of the literature. In what follows, the key literature per-
taining to the new results presented subsequent chapters is summarized. One explicit
goal of this subsection is to clarify the use and origin of the class L3

xL
∞
t

④. Another
goal is to examine some of the similarities between theoretical difficulties encountered
in the analysis of the Navier–Stokes system and those encountered in the transported
heat flow of harmonic maps into spheres.

The first major mathematical work on the well-posedness of the incompressible
Navier–Stokes equations was by Jean Leray in his dissertation (published in [16]).
Leray worked on the pure Cauchy problem for the incompressible Navier–Stokes equa-
tions in all of R3, namely,

ut + u · ∇u−∆u+∇p = 0 in R
3 × [0,∞)

∇ · u = 0 in R
3 × [0,∞)

u(x, 0) = a(x) in R
3.

(1.5)

④Lp
xL

q
t (Ω× I) = Lp(I, Lq(Ω)) is a mixed or anisotropic Lp space.

5



for a a smooth divergence-free vector field in R
3 which has sufficient decay at infinity.

The results of Leray [16] are neatly summarized in [9]:

Theorem 1.2.9 (Leray 1934). 1. There exists T∗ > 0 such that the Cauchy prob-
lem (1.5) has a unique smooth solution with reasonable properties at infinity.

2. The problem (1.5) has at least one global weak solutions satisfying a local energy
inequality. Moreover, the weak solutions correspond with the smooth (strong)
solution in R

3 × (0, T∗) (and hence are unique in that domain).

3. If (0, T∗) is the maximal interval of existence of the smooth solution, then, for
each p > 3, there exists ǫp > 0 such that

(
ˆ

R3

|u(x, t)|dx

)1/p

≥
ǫp

(T∗ − t)1/2(1−3/p)

as t ↑ T∗.

4. For a given weak solution, there exists a closed set Sing ⊂ (0,∞) of measure
zero such that the solution is smooth in R3 × ((0,∞) \ Sing). (Leray’s proof
actually gives Sing with H1/2(Sing) = 0 ⑤).

An important generalization Theorem part 3. was provided collectively by Prodi
[23], Ladyzhenskaya [15], and Serrin [25]. Namely, as summarized by [9], the following
theorem is true.

Theorem 1.2.10 (Prodi-Ladyzhenskaya-Serrin). Suppose the initial data a for (1.5)
is in the L2 closure of the set of divergence free smooth vector fields. Let u and v be
two Leray-Hopf solutions of the Cauchy problem (1.5). If for some T > 0 the solution
u satisfies the so-called Ladyzhenskaya-Prodi-Serrin condition:

u ∈ Ls
xL

l
t(R

3 × (0, T )) with
3

s
+

2

l
= 1, s ∈ (3,∞), (1.6)

then u = v in R3 × (0, T ) and moreover, u is a smooth on R3 × (0, T ).

Later, Caffarelli, Kohn and Nirenberg expanded upon the idea of Theorem 1.2.9
part 4. by localizing in x. In [2], Caffarelli, Kohn and Nirenberg, building the work
of Scheffer prove a local partial regularity result for a certain class of suitable weak
solutions. Namely, they prove the following theorem for the parabolic Hausdorff
measure Ps ⑥.

⑤For A ∈ Rn, 0 ≤ s < ∞, 0 < δ ≤ ∞ define the s-dimensional Hausdorff measure of A by

Hs(A) := lim
δ→0

inf

{∑
|B1(0)|

(
diamCj

2

)s

: A ⊂
⋃

Cj , diamCj ≤ δ

}
.

⑥For A ∈ Rn, 0 ≤ s < ∞, 0 < δ ≤ ∞ define the parabolic Hausdorff measure of A by

Ps(A) := lim
δ→0

inf
{∑

rsj : A ⊂
⋃

Brj (x0)× [t0 − r2j , t0 + r2j ], rj ≤ δ
}
.

6



Theorem 1.2.11 (Partial Regularity for Navier–Stokes). For any suitable weak solu-
tion of the Navier–Stokes system on an open set in space-time, the associated singular
set S satisfies P1(S) = 0

Where, a suitable weak solution was defined by the author in the following way.

Definition 1.2.12. The pair (u,p) is a suitable weak solution of the Navier–Stokes
system

ut + u · ∇u−∆u+∇p = f

∇ · u = 0

on an open set D ⊂ R3 × R with force f if the following conditions are satisfied

1. Integrability hypotheses u,p, and f are measurable functions on D and

a) f ∈ Lq(D) for some q > 5/2 and ∇ · f = 0,

b) p ∈ L5/4(D),

c) for some constants E0, E1 <∞,
ˆ

Dt

|u|2dx ≤ E0, Dt = D ∩ (R3 × {t}),

for almost every t such that Dt = ∅, and
¨

D

|∇u|2dxdt ≤ E1.

2. Equations u, p, and f satisfy the the above Naiver–Stokes systems in the sense
of distributions on D.

3. Generalized energy inequality For each real-valued φ ∈ C∞
0 (D) with φ ≥ 0, the

following inequality is valid

2

¨

|∇u|2φ ≤

¨

[|u|(φt +∆φ) + (|u|2 + 2p)u · ∇φ+ 2(u · f)φ].

Recently, Escauriaza, Seregin, and Sverak completed the end-point case for Ser-
rin’s uniqueness in their paper [9]. Namely, they proved:

Theorem 1.2.13 (L3
xL

∞
t Regularity). Consider two function u and p defined in the

space-time cylinder Q = B1(0)×(0, 1). Assume that u and p satisfy the Navier–Stokes
equation in Q in the sense of distributions and have the following differentiability
properties

u ∈ L2
xL

∞
t (Q) ∩ L2

tH
1
x(B1(0)× (−1, 0)), p ∈ L3/2(Q).

Let, in addition,
‖u‖L3

xL
∞

t (Q) <∞.

Then the function u is Hölder continuous in the closure of the set

B1/2(0)× (−(1/2)2, 0).

7



Remark 1.2.14. 1. This result is the extension of Theorem 1.2.9 part 3. to p = 3.
That is, of (0, T∗) is the maximal interval of existence of the smooth solution to
the problem (1.5) and T∗ <∞, then

lim sup
t↑T∗

ˆ

R3

|u(x, t)|3 = +∞.

This means that if the solution u develops a singularity (hence the existence of
a T∗), then the L3

x-norm must blow-up.

2. The class L3
xL

∞
t is special in the sense that finiteness in ‖f‖L3

xL
∞

t (R3) does not im-
ply local smallness of f despite the fact that ‖f‖L3

xL
∞

t (R3) is still invariant under
the natural scalings of the Navier–Stokes equations, namely, if (u(x, t), p(x, t))
is a solution then so is

(λu(λx, λ2t), λ2p(λxλ2t)).

1.3 New contributions

The new results recorded in this dissertation are for solutions u : R3 × [0, T ) → R3

and d : R3 × [0, T ) → S2 to

ut + u · ∇u−∆u+∇p = −∇ · (∇d⊙∇d) in R
3 × [0, T ), (1.7)

∇ · u = 0 in R
3 × [0, T ), (1.8)

dt + u · ∇d−∆d = |∇d|2d in R
3 × [0, T ), (1.9)

(u,d)|t=0 = (u0,d0) in R
3 × {0}. (1.10)

This is the system examined by Lin, Lin and Wang in [19] for flow variable u :
Ω× [0, T ) → R2 for Ω ⊂ R2. It bears repeating that this system should be thought of
as a coupling being the Navier–Stokes equations and the equations for the transported
heat flow of harmonic maps into spheres. It should also be noted that this system
is the most basic form of the full continuum equations for the hydrodynamic flow of
nematic liquid crystals given by Ericksen and Leslie. The relation between the system
(1.7)-(1.9) and the Ericksen–Leslie equations will be examined in detail in the next
chapter.

This work demonstrates the existence, uniqueness, and regularity of solutions
to the Cauchy problem (1.7)-(1.10) for initial data (u0,d0) satisfying (u0,∇d0) ∈
L3
U
(R3) × L3

U
(R3). The definition of L3

U
(R3) and the precise statement of the result

are recorded now.

Definition 1.3.1. Let f ∈ L3
U
(R3) if

‖f‖L3
U
(R3) := sup

x∈R3

‖f‖L3(B1(x)) <∞.

The space is L3
U
(R3) is called the space of uniformly locally L3 integrable functions

on R3

8



Theorem 1.3.2 (Well-posedness). There exists ǫ0 > 0 and T0 > 0 such that if
u0 : R

3 → R3 and d0 : R
3 → S2 satisfy

‖u0‖L3
U
(R3) + ‖∇d0‖L3

U
(R3) ≤ ǫ0, (1.11)

then there exists a unique solution (u,d) : R3× [0, T0) → R3×S2 of (1.7)-(1.10) with
the following properties:

• (u,∇d) ∈ C([0, T0), L
3
U
(R3));

• (u,d) ∈ C∞(R3 × (0, T0)).

Furthermore, if T0 < +∞ is the maximum time interval, then

lim
t↑T0

‖u(t)‖L3
U
(R3) + ‖∇d(t)‖L3

U
(R3) > ǫ0.

This theorem has many parts and so it is useful to make a rough outline of its
proof and set down a plan for the later chapters of this manuscript. The proof of
Theorem 1.3.2 has the following ingredients:

I. global and local energy inequalities for (1.7) -(1.9);

II. a priori gradient estimates for smooth solutions (u, p,d) that have small renor-
malized energies;

III. short-time existence of classical solutions proven in [19].

Through a weak-strong type argument analogous to Leray’s proof of Theorem 1.2.9
part 2. these ingredients yield the desired well-posedness. Precise statements of the
results of I.-III. are given in the following paragraphs.

I. Global and local energy inequalities

For the system (1.7)-(1.9) one has the following a priori estimates of smooth solutions.

Theorem 1.3.3 (Global L3-energy inequality). If (u0,∇d0) ∈ L3(R3), then any
smooth solution to (1.7)-(1.9) obeys:

d

dt

{
ˆ

R3

|u|3 + |∇d|3
}
+
[
1− C‖u‖2L3(R3)

] ˆ

R3

|∇u|2|u|

+
[
1− C(‖u‖L3(R3) + ‖u‖L3(R3)‖∇d‖L3(R3) + ‖∇d‖2L3(R3))

]

×

ˆ

R3

|∇d||∇2d|2 ≤ 0.

(1.12)
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Theorem 1.3.4 (Local L3 energy inequality). For (u0,∇d0) ∈ L3
U
(R3), let φ ∈

C1
0(R

3), then any smooth solution to (1.7)-(1.9) obeys:

d

dt

ˆ

R3

(|u|3 + |∇d|3)φ2 +

ˆ

R3

[|∇(|u|3/2φ)|2 + |∇(|∇d|3/2φ)|2]

≤ C

ˆ

R3

(|u|3 + |∇d|3)|∇φ|2 + C

ˆ

R3

|u||P − c|2φ2

+ C

[{
ˆ

supp φ

|u|3
}2/3

+

{
ˆ

supp φ

|∇d|3
}2/3

]

×

ˆ

R3

[|∇(|u|3/2φ)|2 + |∇(|∇d|3/2φ)|2].

(1.13)

Lemma 1.3.5 (Local L3-pressure estimate). There exist c0 ∈ R and C0 > 0 such
that for any φ ∈ C1

0(R
3),

{
ˆ

R3

|p− c0|
3φ3

}1/3

≤ C0

{
ˆ

R3

(|u|6 + |∇d|6)φ3

}1/3

+
C0

R

{
ˆ

supp φ

(|u|3 + |∇d|3)

}2/3

+ C0R sup
z∈R3

{
ˆ

BR(z)

(|u|3 + |∇d|3)

}2/3

,

where R > 0 is such that supp φ ⊂ B2R.

II. A priori gradient estimates and regularity

The result in II. follows from building an appropriate framework for regularity. Fol-
lowing the work of Caffarelli, Kohn, and Nirenberg [2] one makes the following defi-
nition of suitable weak solutions (Definition 1.3.6) and can prove the corresponding
generalized energy L2 inequality (Theorem 1.3.7).

Definition 1.3.6. A triple (u, p,d) : Ω × (0, T ) → R3 × R × S2 is called a suitable
weak solution to (1.7)-(1.9) in Ω× (0, T ) if:

1. u ∈ L∞
t L

2
x∩L

2
tH

1
x(Ω×(0, T )), p ∈ L

3
2 (Ω×(0, T )) and d ∈ L2

tH
2
x(Ω×(0, T ), S2);

2. (u, p,d) satisfies (1.7)-(1.9) in the weak sense;

3. (u, p,d) satisfies the local L2 energy inequality (1.3.7) for φ ∈ C∞
0 (Ω× (0, T )).

Theorem 1.3.7 (Generalized L2-energy inequality). Suppose that (u, p,d) is a
sufficiently regular solution to (1.7)-(1.9) on ΩT ≡ Ω × (0, T ). Then for any
0 ≤ φ ∈ C∞

0 (Ω× (0, T )), it holds

2

ˆ

ΩT

(
|∇u|2 + |∆d+ |∇d|2d|2

)
φ

≤

ˆ

ΩT

(
|u|2 + |∇d|2

)
(φt +∆φ) +

ˆ

ΩT

(|u|2 + |∇d|2 + 2p)u · ∇φ

+ 2

ˆ

ΩT

(
∇d⊙∇d− |∇d|2I3

)
: ∇2φ+ 2

ˆ

ΩT

∇d⊙∇d : u⊗∇φ.

(1.14)
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With these results in hand, one can prove the following ǫ-regularity result (The-
orem 4.2.6) for smooth solutions over the parabolic cylinder Pr(x, t) = Br(x) × [t −
r2, t + r2]. The proof of this result involves a decay lemma, iteration, and Riesz
potential estimates between Morrey spaces.

Theorem 1.3.8 (ǫ0-regularity). Suppose that (u, p,d) is a suitable weak solution to
(1.7)-(1.9). There exists ǫ > 0 such that if

(
r−2

ˆ

Pr

|u|3
) 1

3

+

(
r−2

ˆ

Pr

|p|
3
2

) 2
3

+ sup
t−r2≤t≤t+r2

(
ˆ

Br

|∇d|3(t)

)1/3

≤ ǫ

where Pr ≡ Pr(x, t), then (u,d) ∈ C∞(Pr/2(x, t)). Moreover one has the estimate

‖(u,d)‖Ck(Pr/2(x,t)) ≤ C(k, ǫ0, r). (1.15)

III. Short-time existence of classical solution and end-game

The end-game argument for Theorem 1.3.2 includes the following steps.

1. Approximate initial data (u0,d0) by smooth initial data (uk
0,d

k
0) which also

satisfy (1.11).

2. Short-time existence of smooth solutions (uk,dk) is guaranteed by the contrac-
tion mapping principle (Theorem 3.1 of [19]) in R3 for initial data (uk

0,d
k
0).

3. Using the above local energy inequality and pressure estimate, one finds T0 > 0,
depending on ǫ0 > 0, such that

sup
0≤t≤T0

‖uk‖L3
U
(R3) + ‖∇dk‖L3

U
(R3) ≤ 2ǫ0.

4. Lastly, Theorem 4.2.6 implies ‖(uk,dk)‖C2
loc(R

3×(δ×T0)) ≤ C(δ), δ > 0. Hence,
by passing to the limit via the theorem of Arzela-Ascoli, one proves the result.

1.4 Outline of the remainder of the manuscript

The plan for the rest of this manuscripts is as follows:

• Chapter 2, “Continuum models for nematic liquid crystals,” gives a rapid in-
troduction to the continuum theory for nematic liquid crystals.

• Chapter 3, “Energy Inequalities,” is devoted to proving the energy inequalities
(1.12) and (1.13).

• Chapter 4, “Regularity,” contains the proof the generalized energy inequality
(4.1) and Theorem 4.2.6.

• Chapter 5, “Well-posedness,” brings together the facts from Chapters 2 and 3
and the short-time existence of [19] to complete the proof of Theorem 1.3.2.
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The notation throughout the manuscript is standard. Since this manuscript will
examine vector fields from R3 → R3–vectors, tensors, and their products will ap-
pear. Loosely, bold symbols will be used represent vectors, capital bold symbols
will represent tensors, components will be denoted with Latin superscripts, and par-
tial derivatives will be denoted with Greek subscripts. There are cases where these
convention must be violated, but care has been taken to leave few details out. As
is often necessary, the Einstein summation convention is employed throughout–that
is, repeated indices are summed. Reminders of other specific notations are made as
footnotes as to not interrupt the flow of the manuscript.

Copyright c© Jay Lawrence Hineman 2012
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Chapter 2 Continuum models for nematic liquid crystals

In this chapter the full continuum equations for the hydrodynamic flow of nematic
liquid crystals are formally derived. To do so it is necessary to consider the static
continuum theory for nematic liquid crystals based on work Oseen, Zocher, and Frank.
It is then instructive to consider a short derivation of the Navier–Stokes equations
before considering the derivation of the Ericksen–Leslie equations as both are derived
from conservation laws. The critical difference between the two systems is that the
Ericksen–Leslie equations require a third balance of angular momentum not present
in the Navier–Stokes equations.

It is remarked during the derivation of the Ericksen–Leslie equations what simpli-
fications must be made to arrive at the model equations analyzed in this manuscript,
that is (1.7)-(1.9). The necessary simplifications are drastic and leave room for future
investigation. Finally, it is noted that the derivations in this chapter do not include
thermal effects.

2.1 Oseen–Zocher–Frank static theory

The simplest and earliest continuum theory for liquid crystals was put forth by Oseen
[22], Zocher [30], and Frank [11] (1930-1960) (see also [28]). This model applies to both
the nematic and cholesteric phase. Following Virga, to give a continuum description
for liquid crystals (of any type) one must provide a free energy functional (hence
making such a theory variational). Excluding dependence on temperature, such a
free energy functional is the Helmholtz free energy. Let σ be the free energy density
and so a free energy functional will be of the form

F [n] =

ˆ

Ω

σ(n,∇n)dV. (2.1)

Here F acts upon function n : Ω → S2 where Ω ⊂ R3 is body occupied by the liquid
crystal and S2 = {x ∈ R3 : |x| = 1}. Such functions n describe the average direction
of molecules contained in Ω.

To build the theory one prescribes constitutive relations that describe the me-
chanical requirements of the material. For this manuscript it is prescribed that σ
have the following properties.

1. The energy density σ must be frame-indifferent. σ(Qn,QNQT ) = σ(n,N) for
n ∈ S2 and N ∈ L(n,V) ① and Q ∈ SO(V)②. That is, the free energy per unit
volume of the body must be the same in any two frames. It is noted that this
property applies to both nematics and cholesterics–that is, it is not reliant on
the material that occupies the body Ω. There are properties that do however
rely upon material properties (material-symmetries).

①L(n,V) = {L : V → V : LTn = 0}, V a vector space.
②SO(V) = {Q ∈ L(n,V) : det(Q) > 1,QQT = QTQ = I}.
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2. The energy density σ must be material-symmetric. Nematic and cholesteric
liquid crystals are differentiated at the microscopic level by which group trans-
formations they obey. Nematics, which can be visualized as ellipsoids, are left
unchanged after reflections. Cholesterics, having the shape of springs have a
chirality or handedness that changes under reflection. It is expected, that such
microscopic differences are also observed at the macroscopic scale. For nematics
it is demanded that the energy remains the same under reflections whereas in
cholesterics this is not required. Mathematically, the difference between nemat-
ics and cholestrics is that the condition that must hold for cholesterics is that
σ(Qn,QNQT ) = σ(n,N) for n ∈ S2 and N ∈ L(n,V) and Q ∈ O(V) ③.

3. The energy density σ must be even. On the macroscopic level, the direction
n at a material point p can be interpreted in a precise sense as the average
orientation. So in this statistical sense, it is impossible to distinguish head from
tail of a molecule–that is, one cannot distinguish n from −n. So, it should be in
either the nematic or cholesteric case that reversing the direction field leaves the
energy density unchanged. That is, mathematically, σ(−n,−∇n) = σ(n,∇n).

4. The energy density σ must be positive definite. In the absence of external forces
or boundary conditions (anchoring) that affect the orientation of the liquid
crystal, the liquid crystal reaches and undistorted ground state. It is common
assign this state zero, free energy and call such an orientation natural. This is
manifested mathematically as, σ(n,N) ≥ 0 for any n ∈ S2 and N ∈ L(n,V).

Frank’s Formula

Under the constitutive relations discussed in the last paragraph one can determine
which energy densities obey such relations. The final form of the energy density
is known as Frank’s formula–but, similar expressions can be found in the works of
Zocher [30] and Oseen [22]. Frank gave a formal derivation of Theorem 2.1.3 using
Taylor expansion. The rigorous proof of Theorem 2.1.3 recorded here is based upon
the abstract representation Theorem 2.1.1 from the book of Virga [28].

The physical meaning and constraints on the constants appearing in Frank’s for-
mula, Theorem 2.1.3, follow the proof in a series of remarks.

Theorem 2.1.1 (Virga [28]). For any n ∈ S
2, let ϕ(n, ·) be the scalar-valued function

on L(n,V) defined by

ϕ(n,N) := k(n) +K(n) : N+N : K(n)[N],

where k(n) is a scalar, K(n) is a tensor in L(n,V), and K(n) is a symmetric tensor
in L2(n,V) ④. The function ϕ satisfies

ϕ(Qn,QNQT ) = ϕ(n,N) for all Q ∈ SO(V)

③O(V) = {Q ∈ L(n,V) : QQT = QTQ = I}.
④L2(n,V) = {L : L(n,V) → L(n,V) : L Linear}
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if, and only if,

ϕ(n,N) = α0 + α2P (n) : N+ α3W(n) : N+ β1(W(n) : N)2

+ β2(P (n) : N)2 + β3(W(n) : N)(P (n) : N)

+ β4N : N+ β5P (n)N : N(P (n)).

where α0, α2, α3 and β1, . . . , β5, are scalars, and P (n) and W(n) are defined by

P (n) := I − n⊗ n⑤

W(n) := n ∧ v for all v ∈ V.⑥

Lemma 2.1.2. Let n ∈ C1(Ω, S2). The following equations hold identically in the
domain of n:

(∇n)n = −n ∧ curln; (2.2)

∇n : ∇n = tr(∇n)2 + (n · curln)2 + |n ∧ curln|2.⑦ (2.3)

Proof. The action of every skew symmetric W ∈ L(V) ⑧ may be represented as

Wv = w ∧ v

where w is the axial vector of W. Additionally, one may prove by representing w∧
as ǫikjwk that

W ·W = (w∧) · (w∧) = ǫikjwkǫiljwl = 2w ·w.

Then for the decomposition

∇n = S+W,S symmetric and W skew (2.4)

one has that the axial vector w of W is given as

w =
1

2
curln. (2.5)

Now, given that (∇n)Tn = 0 one has that

0 = (∇n)Tn = STn+WTn,

which is in turn,
Wn = Sn.

⑤The product ⊗ is the tensor product and is defined in components by (a⊗ b)ij = aibj .
⑥The product ∧ is the usual cross product which is defined in coordinates as (a∧b)i = ǫijkajbk.
⑦The symbols · and : denote the scalar (dot) products given by a ·b = aibi and A : B = AijBij .
⑧L(V) = {L : V → V : L linear } on v ∈ V
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Thus, collecting these facts, one has

(∇n)n = Sn+Wn = 2Wn = 2

(
1

2
curln

)
∧ n (2.6)

which is precisely (2.2).
For (2.3), one may compute that

∇n : ∇n = S : S+ 2S : W +W : W = S : S+W : W

and
tr(∇n∇n) = tr(S2 + SW +WS+W2)

= tr(S2) + tr(SW +WS) + tr(W2)

= tr(S2) + tr(W2)

from the decomposition ∇n = S +W and the fact that SW +WS is skew. Since,
trW2 = −W : W and trS2 = S : S, one has that

∇n : ∇n = tr(∇n)2 + 2W : W

The proof of (2.3) is completed with the observation that

2W : W = 4w ·w = curln · curln = | curln|2,

and the identity,
| curln|2 = (n · curln)2 + |n ∧ curln|2.

(The last equation may be verified quickly in component form).

Theorem 2.1.3 (Frank [11],[28]). Let n ∈ C1(Ω, S2) and σF be the scalar-valued
function of the form

σF (n,∇n) := k(n) +K(n) : ∇n+∇n : K(n)[∇n],

where k(n), K(n), and K(n) are as in Theorem 2.1.1. Then σF is frame indifferent
if, and only if, there are five scalars k1, . . . , k4 such that

σF (n,∇n) = k1(divn)
2 + k2(n · curln)2

+ k3|n ∧ curln|2 + (k2 + k4)(tr(∇n)2 − (divn)2),

Proof. It suffices to apply Theorem 2.1.1 to σF with N = ∇n. For terms involving
P (n) : N, observe, from the definition of P (n), that

P (n) : ∇n = I : ∇n+ (n⊗ n) : ∇n = tr(∇n) = div(n). (2.7)

Next, for terms involving W(n) : N, recall for skew matrices W1 and W2, that

W1 : W2 = 2(w1∧) : (w2∧).
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Then, making use of (2.4) and (2.5) one has that

W(n) : ∇n = W(n) : (S+W) = W(n) : W = 2n ·

(
1

2
curln

)
= n · curln. (2.8)

Lastly, since (∇n)Tn = 0 and (a⊗ b)A = (a⊗AT b), one has that

P (n)(∇n) · (∇n)P (n) = (I − n⊗ n)(∇n) : (∇n)P (n)

= (∇n) : (∇n)P (n)

= |∇n|2 −∇n · (n⊗ n)∇n

= |∇n|2 − |(∇n)n|2.

(2.9)

Where the last equality follows from the fact that tr(a⊗ b) = a · b and the identity:

(∇n)n⊗ (∇n)n = ((∇n)n⊗ n)(∇n)T

= [n⊗ (∇n)n]T (∇n)T

=
[
(n⊗ n)(∇n)T

]T
(∇n)T

= ∇n(n⊗ n)(∇n)T .

Applying Theorem 2.1.1 with (2.7) - (2.9) yields that

σF (n,∇n) = α0 + (α2 + β3n · curln) divn+ α3(n · curln)

+ k1(divn)
2 + k2(n · curln)2 + k3|n ∧ curln|2

+ (k2 + k4)
[
tr(∇n)2 − (divn)2

] (2.10)

for
β1 = −k4, β2 = k1 − k2 − k4, β4 = k3, β5 = k2 + k4 − k3. (2.11)

Now, for the desired evenness of the energy density σF one has in (2.10) that

σF (−n,−∇n) − σF (n,∇n) = −2(α2 + β4n · curln) divn

and so one must choose α2 = β4 = 0. To obtain the energy density for a nematic one
further chooses α0 = α3 = 0 and considers the admissible class

n ∈ N = set of all constant fields Ω → S
2

so that σF vanishes on N whenever α0 vanishes in (2.10).

Remark 2.1.4.

• The constants k1, . . . , k4 in (2.10) are known as Frank’s Constants. Some geo-
metric interpretations of the constants will be given in Remark 2.1.5.

• The term [tr(∇n)2 − (divn)2] in (2.10) is a null-Lagrangian, and thus, does not
contribute to the free energy F .
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• Theorem 2.1.3 shows that an energy density that is frame-indifferent, appropri-
ately materially symmetric. and even is of the form (2.10). For an appropriate
choice of k1, . . . , k4 it is also the case that σF (n,∇n) ≥ 0 (postive definite).
This is the conclusion of Ericksen’s inequalities [28].

Remark 2.1.5 (Special Orientations). For special choices of orientation n the energy
density σF in (2.10) is proportional to each term of σF with k1, . . . , k4 as a constant
of proportionality.

• Splay Field: Using cylindrical coordinates (r, θ, z) with origin o and coordinate
vectors er, eθ, ez

⑨ consider the orientation field ns : Ω \ ez → S
2

ns = er

for ez = {p ∈ Ω : p− o = zez , z ∈ R} where p− o = rer + zez for all p ∈ Ω \ ez.
It is elementary that

∇ns =
1

r
eθ ⊗ eθ

divns =
1

r
curlns = 0

tr(∇ns)
2 =

1

r2
.

Thus, one concludes that

σF (ns,∇ns) = k1
1

r2
.

That is, for the orientation field er, the energy density σF is proportional to
single term with proportionality constant k1. One should call such an orientation
field ns the splay field since it is the field that is purely spreading or splaying in
the plane (er, 0, ez).

• Bend Field: Using the same cylindrical coordinates, consider the orientation
field nb : Ω \ ez → S2 given by

nb = eθ.

Again, it is elementary that,

∇nb = −
1

r
er ⊗ eθ

divnb = 0

curlnb =
1

r2
ez

(∇nb)nb = −
1

r
er

(∇nb)
2 = 0.

⑨ (er, eθ, ez) = (cos θe1 + sin θe2,− sin θe1 + cos θe2, ez = e3)
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g Making use of Lemma 2.1.1 one has that

σF (n,∇n) = k3
1

r2
.

It is natural to call such an orientation field, the bend field as it measures the
bending out of the plane (er, 0, ez).

• Twist Field: Consider the orientation field

nc(x1, x2, x3) = cos(τx3 + ϕ0)e1 + sin(τx3 + φ0)e2

for (o, e1, e2, e3) a coordinate frame, and φ0 an arbitrary initial angle. By direct
calculations, one has that

divnc = 0

curlnc = −τnc

(∇nC)
2 = 0.

Then,
σF (nc,∇nC) = k2τ

2

• Saddle-Splay Field: Let each p ∈ Ω be represented in the coordinate frame

p− o = x1e1 + x2e2 + x3e3

for origin o ∈ E . Consider the level set ϕ(x1, x2, x3) = 0 of saddle surface of Ω
containing the origin given by

ϕ(x1, x2, x3) = x3 − x1x2.

The field nϕ given by

nϕ =
∇ϕ

|∇ϕ|
=

1√
x21 + x22 + 1

(−x2e1 − x1e2 + e3).

is the unit normal to the surface. In the cylinder Cǫ = {p ∈ E : x21 + x22 < ǫ}
one has

nϕ = −x2e1 − x1e2 + e3 + o(ǫ)

∇nϕ = −e1 ⊗ e2 − e2 ⊗ e1 − x1e3 ⊗ e1 − x2e3 ⊗ e2 + o(ǫ)

divnϕ = o(ǫ)

curlnϕ · nϕ = o(ǫ)

(∇nϕ)nϕ = −x1e1 − x2e2 + o(ǫ)

tr(∇nϕ)
2 = 2 + o(ǫ2).

Thus,
σF (nϕ,∇nϕ) = 2(k1 + k4) + o(ǫ).
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2.2 The Navier–Stokes and Ericksen–Leslie equations

Navier–Stokes equations for isotropic fluids

Before examining the Ericksen–Leslie equations for the hydrodynamic flow of nematic
liquid crystals it is instructive to give a brief derivation of the Navier–Stokes equations
for isotropic fluids–that is fluids in which microstructure is homogeneous. The Navier–
Stokes equations encapsulate the following physical laws:

1. mass is conserved,

2. the rate of change of momentum of a fluid parcel equals the force applied to it
(Newton’s second law),

3. energy is conserved.

Since the thermodynamic properties of liquid crystals and their flows will not be
addressed in this manuscript, only the conservation of mass and balance of momentum
are derived.

Conservation of mass is equivalent to the statement that

d

dt

ˆ

Ω

ρ(x, t)dV = −

ˆ

∂Ω

ρu · νdS

time change in mass in Ω = mass flowing across ∂Ω.

By the divergence theorem, the former is equivalent to
ˆ

Ω

[∂tρ+∇ · (ρu)] dV = 0,

and since this holds for all Ω one has the corresponding differential or point-wise
version of the conservation law,

∂tρ+∇ · (ρu) = 0.

To derive the balance of momentum let x(t) = (x(t), y(t), z(t)) be the trajectory
of a fluid particle. Then, the velocity field is given by

u(x(t), t) = u(x(t), y(t), z(t), t) = (ẋ(t), ẏ(t), ż(t)) = ẋ(t)

and the acceleration of the fluid particle is given by

ẍ(t) = u̇(x(t), t)

So, applying the chain rule one has

ẍ(t) = uxẋ+ uy ẏ + uz ż + utṫ

= ∂tu+ (u · ∇)u

=:
Du

Dt
⑩
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the so called material derivative.
For any continuum, material forces are of two types: stresses where the material

is acted upon by forces across its surface by the rest of the continuum and external
or body forces which exert a force per unit volume on the entire continuum. For
the derivation of the Navier–Stokes equation one may make the following physical
assumption: for a surface of the continuum S with normal ν the forces on S per unit
area are proportional to σ = p(x, t)ν + f(x, t) · ν where f is the stress tensor.

An integral form of the balance of momentum is then

d

dt

ˆ

Ωt

ρudV = −

ˆ

∂Ωt

(p · ν − f · ν)dA.

Furthermore, if one makes the standard assumptions on σ one arrives at the following
form,

f = λ(∇ · u)I + 2µ
∇u+ (∇u)T

2

= 2µ

[
∇u+ (∇u)T

2
−

1

3
(∇ · u)I

]
+ η(∇ · u)I

where µ and η are the first and second coefficients of viscosity. Applying Reynold’s
transport theorem and the divergence theorem to the integral form for the balance
of momentum one has that

ρ
Du

Dt
= −∇p+ (λ+ µ)∇(∇ · u) + µ∆u;

or if the fluid is incompressible one has that

ρ
Du

Dt
= −∇p+ µ∆u.

If ρ(x, t) = ρ is constant, it is common to rewrite the last equation as

Du

Dt
= −∇p̃ + ν∆u,

where ν = µ/ρ is the kinematic viscosity and p̃ = p/ρ. Any of the last three equations
may be referred to at the Navier–Stokes equation.

It is common in applications to non-dimensionalize the Navier–Stokes equations.
This is done by introducing a length scale L and a velocity scale U (and hence, by
dimensional analysis a time scale T = L

U
). Measuring u, x, and t as fractions of these

scales yields the following dimensionless quantities:

ũ =
u

U
, p̃ =

p

U2
, x̃ =

x

L
, and t̃ =

t

T
.

⑩The material or convective derivative for a general vector field v is given by Dv

Dt
= ∂tv+u ·∇v

where u is a velocity gradient.
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These, of course, induce variable transformations u = ũU , p = U2p̃, x = x̃L, and
t = t̃T and thus the Navier–Stokes equation in the new variables follows from the
following elementary calculations:

∂tU ũ(x̃, t̃) = U
∂ũ

∂(x̃, t̃)

∂(x̃, t̃)

∂t
=
U2

L

∂ũ

∂t̃
;

(U ũ · ∇)U ũ = U2[(∇ũ)ũ] = U2

[(
∂ũ

∂(x̃, t̃)

∂(x̃, t̃)

∂x̃

)
ũ

]
=
U2

L
(ũ · ∇)ũ;

∆U ũ = U
∂

∂xj

∂

∂xj
ũ =

U

L

∂

∂xj

∂

∂x̃j
ũ =

U

L2

∂

∂x̃j

∂

∂x̃j
ũ =

U

L2
∆ũ;

∇U2p̃(x̃, t̃) =
U2

L
∇p̃

where the chain rule is calculated in the sense of Jacobians. Thus, after division by
U2

L
the dimensionless quantities satisfy

ũt + ũ · ∇ũ = −∇p̃ +
1

Re
∆ũ

∇ · ũ = 0
(2.12)

where 1
Re

= ν
LU

defines the dimensionless constant, Re denoting the Reynolds number.
For the mathematical analysis of the Navier–Stokes equation it is common to choose
U = λ, L = 1

λ
. In this case, one has that whenever (u, p) is a solution to the

incompressible Navier–Stokes equation, then so is

(ũ, p̃) = (λu(λx, λ2t), λ2p(λx, λ2t)). (2.13)

Ericksen–Leslie equations

One is now in the position to develop a continuum theory for the hydrodynamic flow
of nematic liquid crystals. Though early dynamic theories exist for liquid crystals in
the first widely accepted theory was given by Ericksen [6] based on the static theory
(Oseen–Zocher–Frank) discussed in the earlier sections. Leslie [17] completed the
dynamic theory by formulating appropriate constitutive relations. As discussed in
previous sections, a constitutive relation describes the mechanical properties of the
material in question (in this case different compounds exhibiting a nematic phase).
The combined work on the hydrodynamic flow of nematic liquid crystals by Erick-
sen and Leslie is often referred to as the Ericksen–Leslie equations. Since only the
isothermal case is considered in this manuscript the derivation is short (see [18], or
[27]).

A nematic liquid crystal can be considered as a fluid with microstructure. It is the
goal of this section to explain how the microstructure interacts with continuum. The
Eulerian description of a fluid with microstructure employs two independent vector
fields the usual velocity field u(x, t) and the axial vector ŵ(x, t). In the case of liquid
crystals, ŵ is interpreted as the local angular velocity, that is, it represents the local
angular velocity of the director n. This differs from an ordinary continuum theory
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for a fluid in that only a velocity is required since the angular velocity is one-half the
curl of the velocity. Denote, the usual angular velocity as w̄ = 1

2
∇ ∧ u and set the

relative angular velocity

w = ŵ − w̄ = ŵ −
1

2
∇∧ u.

As in the static case, one considers orientation fields n with the property n ·n = 1.
Consequently, the motion of n is rigid and one has that

Dn

Dt
= ŵ ∧ n.

Define the following for the subsequent derivation:

Sij =
1

2
(∇ju

i +∇iu
j) = rate of strain tensor = symmetric part of ∇u; ❶

W ij =
1

2
(∇ju

i −∇iu
j) = skew part of ∇u;

N = w ∧ n = spin or angular velocity tensor.

A simple calculation in components shows that

N =
Dn

Dt
−Wn. (2.14)

It can be shown, see [27] that

u,∇u,W,
D

Dt
n are not (material) frame indifferent❷

and
n,N,S are (material) frame indifferent.

This indicates the variables that one should formulate constitutive relations for are
n, N, S.

As was done in the case of the Navier–Stokes equations earlier one seeks to find
balance laws for the system. For a volume of nematic liquid crystal Ω one has the
following conservation and balance laws:

1. conservation of mass
D

Dt

ˆ

Ω

ρdV = 0; (2.15)

2. balance of linear momentum

D

Dt

ˆ

Ω

ρudV =

ˆ

Ω

ρfbdV +

ˆ

∂Ω

fsdS; (2.16)

❶Generally, the symbol ∇α indicates the αth component of the gradient vector.
❷In this context, frame indifferent means that under the motion x∗(t∗) = c(t) + Q(t)x(t),

t∗ = t − a a vector a and second-order tensor B must obey a∗ = Qa and B∗ = QBQT for
Q ∈ SO(V).
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3. balance of angular momentum

D

Dt

ˆ

Ω

ρ(x ∧ u) =

ˆ

Ω

ρ(x ∧ fb + k)dV +

ˆ

∂Ω

(x ∧ fs + l)dS. (2.17)

Where,
ρ = density,

x = position,

u = fluid velocity,

fb = external body force,

fs = surface force (stress),

k = external body moment, and

l = surface moment.

From the conservation mass (2.15) one has using Reynolds transport theorem and
assuming ρ is constant that

∇ · u = 0,

and likewise,
Sii = tr(∇u) = ∇ · u = 0.

For ν the normal vector to the surface S one has

f i
s = F ij

s ν
j and li = Lijνj

where Fs = F ij
s is the stress tensor and L = Lij is the couple stress tensor. A straight-

forward application of the divergence theorem and Reynolds transport theorem show
that (2.16) may be written

ˆ

Ω

(
ρ
Du

Dt
− ρfb −∇ · Fs

)
dV = 0,

or in point-wise form,

ρ
Du

Dt
= ρfb +∇ · Fs or ρ

Dui

Dt
= ρf i

b +∇jF
ij
s . (2.18)

On the other hand, applying Reynolds transport theorem to the left-hand side of
(2.17) yields that

D

Dt

ˆ

Ω

ρx ∧ udV =

ˆ

Ω

ρǫijk
Dxjuk

Dt
dV

=

ˆ

Ω

ρǫijkxj
Duk

Dt
dV,

where the last equality follows from the identity,

ǫijk
Dxj

Dt
uk = ǫijkujuk = 0,
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since ujuk = u ⊗ u is symmetric. On the right-hand side of (2.17) one applies the
divergence theorem to find

ˆ

∂Ω

ǫijkxjfk
s dS =

ˆ

Ω

∇p(ǫ
ijkxjF kp

s ) =

ˆ

Ω

(ǫijkxj∇pF
kp
s + δjpF kp

s )dV.

Using these two facts, the balance of angular momentum (2.17) may be written as
ˆ

Ω

ǫijkxj
(
ρ
Duk

Dt
− ρfk

b −∇pF
kp

)
=

ˆ

V

(ρKi + ǫijkF kj
s +∇jL

ij)dV.

However, (2.18) implies that the left-hand side of the last equation is zero and so one
has that

ˆ

Ω

(ρKi + ǫijkF kj
s +∇jL

ij)dV = 0, (2.19)

or the point-wise equation,

ρKi + ǫijkF kj
s +∇jL

ij = 0. (2.20)

The equations giving mass conservation (incompressiblity), balance of linear mo-
mentum, and balance of angular momentum can be thought of as kinematic equations.
That is, they are equations that describe motion, but they do not explain the origin of
the forces generating the motion. Dynamic equations would also include the consti-
tutive relations for the material that describe the origins of forces. One constitutive
hypothesis that can be made for the derivation of the Ericksen–Leslie equations is a
rate of work assumption. Namely,

ˆ

Ω

ρ(fb · u+ k · ŵ)dV +

ˆ

∂Ω

(fs · u+ l · ŵ)dS

=
D

Dt

ˆ

Ω

(
1

2
ρu · u+ σ

)
dV +

ˆ

Ω

DdV

(2.21)

where D is the rate of viscous dissipation per unit volume and σF is the Oseen–
Zocher–Frank energy density.

In (2.21) one may apply the divergence theorem to find that
ˆ

∂Ω

f i
su

i + liwidS =

ˆ

∂Ω

F ij
s u

iνj + LijwiνjdS

=

ˆ

Ω

∇j(F
ij
s u

i) +∇j(L
ijwi)dV

=

ˆ

Ω

F ij
s ∇ju

i + Lij∇jw
i + ui∇jF

ij
s + wi∇jL

ijdV.

Then, using the previously derived point-wise forms of the balances of linear and
angular momentum, (2.18) and (2.20), one sees that

ˆ

∂Ω

f i
su

i + liwidS

=

ˆ

Ω

F ij
s ∇ju

i + Lij∇jw
i + ρui

(
Dui

Dt
− F i

b

)
− ρwi(Ki + ǫijkF kj

s )dV.

(2.22)
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Returning to (2.21), applying Reynolds transport theorem to the energy terms yields
that

D

Dt

ˆ

Ω

(
1

2
ρu · u+ σF

)
dV =

ˆ

Ω

ρui
Dui

Dt
+
DσF
Dt

dV.

Substituting the relations (2.22) and (2.2) into the rate of work balance (2.21) yields
the point-wise relation

F ij
s ∇ju

j + Lij∇jw
i − wiǫijkF kj

s =
DσF
Dt

+D. (2.23)

What remains is to find specific forms of the stress tensor F ij
s and the couple

stress tensor Lij . This is done using Ericksen’s identity [6]:

ǫijk
(
nj ∂σF
∂nk

+∇pn
j ∂σF
∂∇pnk

+∇pn
j ∂σF
∂∇knp

)
= 0. (2.24)

To apply Ericksen’s identity one first need to calculate the material derivative of the
Oseen–Zocher–Frank energy density σF . First, recall that

Dni

Dt
= ǫijkwjnk and

∇j

[
Dni

Dt

]
= ∂t∇jn

i +∇ju
k∇ku

j + vk∇k∇jn
i =

D∇ju
i

Dt
+∇ju

k∇kn
i.

Then for σF = σF (n,∇n) one has by the chain rule, after relabeling, that

DσF
Dt

=
∂σF
∂np

Dnp

Dt
+

∂σF
∂∇knp

D∇kn
p

Dt

= ǫipq
[(
nq
∂σF
∂np

+∇kn
q ∂σF
∂∇knp

)
ŵi + nq ∂σF

∂∇knp
∇kŵ

i

]
−

∂σF
∂∇knp

∇qn
p∇ku

q.

In the last expression, using (2.24), one replaces the terms in brackets and finds that

DσF
Dt

= ǫipq
[
nq ∂σF
∂∇knp

∇kŵ
i −∇qn

k ∂σF
∂∇pnk

ŵi

]
−

∂σF
∂∇knp

∇qn
p∇ku

q. (2.25)

With (2.25) and (2.23) one may express the dissipation as a function linear in ŵi,
∇jŵ

i, and ∇ju
i, namely, one has that

D =

(
F ij
s +

∂σF
∂∇jnp

∇in
p

)
∇jv

i

+

(
Lij − ǫiqpnq ∂σF

∂∇jnp

)
∇jŵ

i + ŵiǫipq
(
tpq −

∂σF
∂∇pnk

∇qn
k

)
.

(2.26)

Since the signs ŵi, ∇jŵ
i, and ∇ju

i are arbitrary it must be the case that the coeffi-
cients in (2.26) are identically zero. This in turn indicates that the stress tensor F ij

s

and the couple stress tensor Lij may take the forms

F ij
s = −pδij −

∂σF
∂∇jnp

∇in
p + F̃s

ij

Lij = ǫiqpnq ∂σF
∂∇jnp

+ L̃ij .

(2.27)

26



Here, p is the pressure arising from incompressibility and F̃s
ij
and L̃ij are the possible

dynamic contributions. Inserting the expressions for Fs
ij and Lij given in (2.27) into

(2.26) yields that

F̃s
ij
∇ju

i + L̃ij∇jŵ
i + ŵiǫijkF̃s

kj
= D. (2.28)

To see this reduction, notice in the first term of (2.26) that pδij∇jv
i = p∇iv

i = 0
from incompressibility, and in the third term of (2.26) that ǫipq ∂σF

∂∇pnk∇qn
k = 0 since

∂σF

∂∇pnk∇qn
k is symmetric in p, q.

To find constitutive relations for the dynamic terms F̃s
ij
, L̃ij it is assumed that

the dissipation D is positive. In this case, one has from (2.28) that

F̃s
ij
∇ju

i + L̃ij∇jŵ
i + ŵiǫijkF̃s

kj
= D ≥ 0.

As much of this information will be discarded to get a workable model for analysis,
namely (1.7)-(1.9), it is expedient to simply state one of the common expressions for
the dynamic terms. The interested reader is invited consult [27] and the references
therein for a derivation of the constitutive relations along these lines. From [27], the
most widely-adopted and well-known form for the dynamic (or viscous) stress is

F̃s
ij
= α1n

kSkpnpninj + α2N
inj + α3n

iN j + α4S
ij

+ α5n
jSiknk + α6n

iSjknk.
(2.29)

Where, α1, . . . , α6 are the Leslie viscosities. It is also easy to see that if L̃ij is assumed
to not depend on ∇jŵ

i, then it must be that

L̃ij = 0 (2.30)

since ∇jŵ
i does not necessarily have a single sign.

To arrive at model that retains the mathematically difficulties present in the
Ericksen–Leslie equations, but is sufficiently concise for analysis, one may make the
following simplifying assumptions. These assumptions are modeled after those made
by Lin and Liu in [20], but there are critical differences. Namely, Lin and Liu use
a Ginzburg–Landau type penalized energy for σF to enforce the sphere constraint
n ·n = 1. For simplicity assume that the body force fb and body moment k are zero,
and that Frank elastic constants obey

k1 = k2 = k3 = K and k4 = 0 (2.31)

and the Leslie viscosities in (2.29) obey

α1 = α5 = α6 = 0

α3 − α2 ≥ 0

α3 + α2 = 0

(2.32)

With the assumption (2.31) one may simplify the Oseen–Zocher–Frank energy density
to

σF (n,∇n) =
K

2
|∇n|2.
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To derive balance of angular momentum that will be studied in the remainder of
this manuscript one will need the following calculations for the energy density σF ,
the stress tensor F ij

s , and the couple stress tensor Lij :

∂σF
∂∇n

=
∂σF
∂∇jnq

(
∇jn

q∇jn
q

2

)
= K∇ju

q = K∇n;

∂σF
∂n

=
∂σF
∂nq

(
∇jn

q∇jn
q

2

)
= ∇j∇qn

q∇jn
q = 0;

ǫijkFs
kj = ǫijk

[
−pδij −

∂σF
∂∇jnp

∇kn
p + F̃s

kj
]

= ǫijk
[
−pδij −K∇jn

p∇kn
p + F̃s

kj
]

= ǫijkF̃s
kj

= ǫijk(α2N
knj + α3n

kN j + α4S
kj)

= ǫijk(α2 − α3)n
kN j ;

∇jL
ij = ∇jǫ

ipq

(
nq ∂σF
∂∇jnp

)

= K∇jǫ
ipq(nq∇jn

p)

= Kǫipq(∇jn
q∇jn

p + nq∇j∇jn
p)

= ǫipq(nqK∆np).

(2.33)

Using (2.33), the point-wise balance of angular momentum (2.20) with stress and
couple stress given by (2.27) can be written

0 = −(ǫijkFs
kj +∇jL

ij)

= ǫijknk((α3 − α2)N
j −K∆uj)

= ǫijknk

[
(α3 − α2)

(
Dnj

Dt
−W jlnl

)
−K∆uj

]
.

After further simplification, one may write the last equation in the form that will be
studied in the remainder of the manuscript (see Section 1.3), namely,

dt + u · ∇d−∆d = |∇d|2d.

Similarly, to derive balance of linear momentum that results from the constitutive
assumptions (2.31) and (2.32) one needs only calculate that

∇ · Fs = ∇jFs
ij

= −∇ip−∇j(∇in
q∇jn

q) +∇jF̃s
ij
;

= −∇ip−∇j(∇in
q∇jn

q) +∇j

[
α2N

inj + α3n
iN j + α4Sij

]
;

= −∇ip−∇j(∇in
q∇jn

q) + α4∆u
j +∇j

[
α2N

inj + α3n
iN j
]
;

and form,

ρ
Dui

Dt
= −∇ip−∇j(∇in

q∇jn
q) +∇jF̃s

ij
.
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Again, making further simplifying assumptions, one arrives at the form of the con-
servation of linear momentum that will be examined (see Section 1.3), namely,

ut + u · ∇u−∆u = −∇p−∇ · (∇d⊙∇d).

Copyright c© Jay Lawrence Hineman 2012
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Chapter 3 Energy inequalities

In this chapter inequalities that are similar to the standard energy inequalities com-
mon to the mathematical analysis of evolution problems are demonstrated for the
system (1.7)-(1.9).

Since the following estimates involve gradients (tensors), component notations
must be employed. The convention for this manuscript is to use superscripts with
Latin characters for components. Similarly, partial derivatives are either denoted with
subscripts or as components of the gradient via the notation ∇α. Since constants are
unimportant to the final result C represents and absolute constant, but it may vary
from line-to-line of an estimate.

3.1 Global energy inequality

A global energy-type inequality for the system (1.7)-(1.9) is proven using standard
PDE and harmonic analysis tools. Namely, the following proof uses the Sobolev
embedding theorem and the Riesz transform. Note that to achieve estimates on on
the L3-norm of u and ∇d one must choose appropriate test functions to multiply
against the equations (1.7) and (1.9). Unlike the strategy usually employed to arrive
at standard L2 energy inequalities, it is not sufficient to just use a solution or gradient
of a solution as a test function.

Theorem 3.1.1 (Global L3-energy inequality). If (u0,∇d0) ∈ L3(R3), then any
smooth solution to (1.7)-(1.9) obeys:

d

dt

{
ˆ

R3

|u|3 + |∇d|3
}
+
[
1− C‖u‖2L3(R3)

] ˆ

R3

|∇u|2|u|

+
[
1− C(‖u‖L3(R3) + ‖u‖L3(R3)‖∇d‖L3(R3) + ‖∇d‖2L3(R3))

]

×

ˆ

R3

|∇d||∇2d|2 ≤ 0.

(3.1)

Proof. Let d be a smooth solution of (1.9), then taking the gradient and integrating
against |∇d|∇d yields that

ˆ

R3

∇dt : |∇d|∇d =

ˆ

R3

∇(∆d) : |∇d|∇d

︸ ︷︷ ︸
(3.2)a

−

ˆ

R3

∇(u · ∇d) : |∇d|∇d

︸ ︷︷ ︸
(3.2)b

−

ˆ

R3

∇(|∇d|2d) : |∇d|∇d

︸ ︷︷ ︸
(3.2)c

(3.2)
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On left-hand side of (3.2)
ˆ

R3

∇dt : |∇d|∇d =

ˆ

R3

∂t

{
|∇d|2

2

}
|∇d|

=

ˆ

R3

1

3
∂t
{
|∇d|3

}

since

∂t|∇d|3 = ∂t(|∇d|2)3/2 = 3(|∇d|2)1/2∂t
|∇d|2

2
= 3|∇d|∂t

|∇d|2

2
. (3.3)

Next, from (3.2)a one has that
ˆ

R3

∇(∆d) : |∇d|∇d =

ˆ

R3

∆dα · |∇d|dα

= −

ˆ

R3

dαβ · (|∇d|dα)β

= −

ˆ

R3

dαβ · (|∇d|dαβ + |∇d|βdα)

= −

ˆ

R3

|∇2d|2|∇d|+

ˆ

R3

dαβdα · |∇d|β

= −

ˆ

R3

|∇2d|2|∇d| −

ˆ

R3

(∇2d : ∇d) ·

(
∇2d : ∇d

|∇d|

)

= −

ˆ

R3

|∇2d|2|∇d| −

ˆ

R3

|∇2d : ∇d|2

|∇d|

(3.4)

where

∇|∇d| = ∇(|∇d|2)1/2 =
1

2(|∇d|2)1/2
∇|∇d|2 =

∇2d · ∇d

|∇d|
. (3.5)

Integrating by parts in (3.2)b yields that
ˆ

R3

∇(u · ∇d) : |∇d|∇d = −

ˆ

R3

(u · ∇d) · ∇ · (|∇d|∇d)

= −

ˆ

R3

(u · ∇d) · ((∇|∇d|)∇d+∆d|∇d|)
(3.6)

Lastly, the term (3.2)c is
ˆ

R3

∇(|∇d|2d) : |∇d|∇d =

ˆ

R3

(∇|∇d|2)d : |∇d|∇d+

ˆ

R3

|∇d|2∇d : |∇d|2∇d

=

ˆ

R3

(∇α|∇d|2)|∇d|∇αd · d+

ˆ

R3

|∇d|5

=

ˆ

R3

(∇α|∇d|2)|∇d|∇α

{
|d|2

2

}
+

ˆ

R3

|∇d|5

=

ˆ

R3

|∇d|5.

(3.7)
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where the last holds since |d| = 1. Collecting what has been shown in (3.4), (3.6)
and (3.7) one has the following estimate from (3.2)

d

dt

ˆ

R3

|∇d|3 +

ˆ

R3

|∇2d · ∇d|

|∇d|
+ |∇2d|2|∇d| .

ˆ

R3

|∇d|5 + |u||∇d|2|∇2d|. (3.8)

Next, observing that

∇|∇d|3/2 =
3

2
|∇d|1/2∇|∇d|

and observing from the Cauchy-Schwarz inequality that

|∇|∇d|| = |∇d|−1|∇2d : ∇d| ≤ |∇2d|

one has that
ˆ

R3

|∇|∇d|3/2|2 . ①

ˆ

R3

||∇d|1/2|∇2d||2 =

ˆ

R3

|∇d||∇2d|2. (3.9)

The Sobolev embedding theorem and (3.9) imply
ˆ

R3

|∇d|9 =

ˆ

R3

(|∇d|3/2)6

.

{
ˆ

R3

|∇|∇d|3/2|2
}3

.

{
ˆ

R3

|∇d||∇2d|2
}3

.

(3.10)

By Hölder’s inequality and (3.10)

ˆ

R3

|∇d|5 ≤

{
ˆ

R3

|∇d|9
}1/3{ˆ

R3

|∇d|3
}2/3

.

{
ˆ

R3

|∇d||∇2d|2
}{

ˆ

R3

|∇d|3
}2/3

.

Substituting this in (3.8) with u = 0 yields

d

dt

ˆ

R3

|∇d|3 +
[
1− C‖∇d‖2L3(R3)

]ˆ

R3

|∇d||∇2d|2 ≤ 0 (3.11)

In the case that u 6= 0 Hölder’s inequality, the Sobolev embedding W 1,2(R3) →֒
L6(R3), and (3.9) yield that

ˆ

R3

|u||∇d|2|∇2d| ≤ ‖u‖L3(R3)‖|∇d|3/2‖L6(R3)‖|∇d|1/2|∇2d|‖L2(R3)

. ‖u‖L3(R3)‖∇|∇d|3/2‖L2(R3)‖|∇d|1/2|∇2d|‖L2(R3)

. ‖u‖L3(R3)

{
ˆ

R3

|∇d||∇2d|2
}1/2

‖|∇d|1/2|∇2d|‖L2(R3)

= ‖u‖L3(R3)‖|∇d|1/2|∇2d|‖L2(R3)‖|∇d|1/2|∇2d|‖L2(R3)

= ‖u‖L3(R3)‖|∇d|1/2|∇2d|‖2L2(R3).
①The relation A . B indicates that A ≤ CB for some constant C.
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Inserting this estimate into (3.8) and using Hölder’s inequality one has that

d

dt

ˆ

R3

|∇d|3 +
[
1− C

(
‖∇d‖2L3(R3) + ‖u‖L3(R3)

)]
‖|∇d|1/2|∇2d|‖2L2(R3) ≤ 0. (3.12)

Multiplying (1.7) by |u|u and integrate over R3, one obtains
ˆ

R3

ut · |u|u

=

ˆ

R3

∆u · |u|u
︸ ︷︷ ︸

(3.13)a

−

ˆ

R3

(u · ∇u) · |u|u
︸ ︷︷ ︸

(3.13)b

−

ˆ

R3

∇p · |u|u
︸ ︷︷ ︸

(3.13)c

−

ˆ

R3

(∇ · (∇d⊙∇d)) · |u|u
︸ ︷︷ ︸

(3.13)d

(3.13)
It is easy to see the left-hand side of (3.13) amounts to

ˆ

R3

ut · |u|u =
1

3

ˆ

R3

∂t|u|
3 =

1

3

d

dt

ˆ

R3

|u|3.

For (3.13)a one has that
ˆ

R3

(∆u) · |u|u =

ˆ

R3

uαα · |u|u

= −

ˆ

R3

uα · uα|u|+ uα · u|u|α

= −

ˆ

R3

|∇u|2|u|+ uα · u|u|α

= −

ˆ

R3

|∇u|2|u|+∇α

{
|u|2

2

}
∇α|u|

= −

ˆ

R3

|∇u|2|u|+ |u|∇|u| · ∇|u|

= −

ˆ

R3

|∇u|2|u|+ |u||∇|u||2.

The term (3.13)b vanishes by (1.8), that is,
ˆ

R3

(u · ∇u) · |u|u =

ˆ

R3

(uαuiα)|u|u
i

=

ˆ

R3

uα∇α

{
|u|2

2

}
|u|

=

ˆ

R3

uα∇α

{
|u|3

3

}

= 0.

For (3.13)c and (3.13)d one has that
ˆ

R3

∇p · |u|u = −

ˆ

R3

p(∇|u|) · u+ p|u|∇ · u

= −

ˆ

R3

p(∇|u|) · u
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and

−

ˆ

R3

(∇ · (∇d⊙∇d)) · |u|u =

ˆ

R3

(∇j · (∇id · ∇jd))|u|u
i

=

ˆ

R3

(∇id · ∇jd)∇j(|u|u
i)

=

ˆ

R3

(∇id · ∇jd)∇j |u|u
i + (∇id · ∇jd)|u|∇ju

i

=

ˆ

R3

(∇id · ∇jd)
uk∇ju

k

|u|
ui + (∇id · ∇jd)|u|∇ju

i

≤

ˆ

R3

|∇d|2
|u||∇u|

|u|
|u|+ |∇d|2|u||∇u|

= 2

ˆ

R3

|∇d|2|u||∇u|.

Substituting the results for (3.13)a − (3.13)d into (3.13) one arrives at the inequality

1

3

d

dt

ˆ

R3

|u|3 +

ˆ

R3

|∇u|2|u|+ |u||∇|u||2

≤

ˆ

R3

|p||∇|u|||u|+ 2

ˆ

R3

|∇d|2|u||∇u|.

(3.14)

Next, using Kato’s inequality |∇|u|| ≤ |∇u|, Cauchy’s inequality and Hölder’s in-
equality in (3.14) may be written as

1

3

d

dt

ˆ

R3

|u|3 +

ˆ

R3

|∇u|2|u|

≤

ˆ

R3

(|p|+ 2|∇d|2)|u||∇u|

≤

ˆ

R3

(|p|+ 2|∇d|2)2|u|

2
+

1

2

ˆ

R3

|u||∇u|2

≤ C(‖p‖2L3(R3) + ‖|∇d|2‖2L3(R3))‖u‖L3(R3) +
1

2

ˆ

R3

|u||∇u|2.

Therefore one obtains

d

dt

ˆ

R3

|u|3 +

ˆ

R3

|∇u|2|u| . (‖p‖2L3(R3) + ‖|∇d|2‖2L3(R3))‖u‖L3(R3). (3.15)

An estimate of the quantity ‖p‖L3(R3) is needed. Taking the divergence of (1.7)
yields

−∆p = ∇ · (∇ · (u⊗ u+∇d⊙∇d)) (3.16)

Set
gjk := (u⊗ u+∇d⊙∇d).

Then,
p = −RjRk(g

jk) (3.17)
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where Rj is the j
th Riesz transform. Thus, since Rj : L

q(R3) → Lq(R3) is a bounded
for 1 < q <∞ one has

‖p‖L3(R3) = ‖RjRk(g
jk)‖L3(R3) . ‖gjk‖L3(R3) ≤ ‖|u|2‖L3(R3) + ‖|∇d|2‖L3(R3). (3.18)

Inserting (3.18) into (3.15) yields:

d

dt

ˆ

R3

|u|3 +

ˆ

R3

|∇u|2|u| . (‖|u|2‖2L3(R3) + ‖|∇d|2‖2L3(R3))‖u‖L3(R3). (3.19)

Using Hölder’s inequality, the Sobolev embedding W 1,2(R3) →֒ L6(R3), and the
point wise inequality |∇|u|3/2| . |∇u||u|1/2 one has that

‖|u|2‖2L3(R3) ≤ ‖u‖L3(R3)‖u‖
3
L9(R3)

. ‖u‖L3(R3)‖∇|u|3/2‖2L2(R3)

= ‖u‖L3(R3)

ˆ

R3

|∇|u|3/2|2

≤ ‖u‖L3(R3)

ˆ

R3

|∇|u||2|u|.

(3.20)

Similarly one has that

‖|∇d|2‖2L3(R3) ≤ ‖∇d‖L3(R3)‖∇d‖3L9(R3)

. ‖∇d‖L3(R3)‖∇|∇d|3/2‖2L2(R3)

. ‖∇d‖L3(R3)

ˆ

R3

|∇d||∇2d|1/2.

(3.21)

Substituting (3.20) and (3.21), into (3.19) one has that

d

dt

ˆ

R3

|u|3 +

ˆ

R3

|∇u|2|u|

. (‖|u|2‖2L3(R3) + ‖|∇d|2‖2L3(R3))‖u‖L3(R3)

. ‖u‖2L3(R3)

ˆ

R3

|∇u|2|u|+ ‖u‖L3(R3)‖∇d‖L3(R3)

ˆ

R3

|∇d||∇2d|2.

(3.22)

Combining (3.12) and (3.22) yields the general inequality:

d

dt

{
ˆ

R3

|u|3 + |∇d|3
}

+
[
1− C‖u‖2L3(R3)

] ˆ

R3

|∇u|2|u|

+
[
1− C(‖u‖L3(R3) + ‖u‖L3(R3)‖∇d‖L3(R3) + ‖∇d‖2L3(R3))

] ˆ

R3

|∇d||∇2d|2

≤ 0.

(3.23)
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Lemma 3.1.2 (Case with u = 0). There exists ǫ0 > 0 such that if

ˆ

R3

|∇d|3(0) ≤ ǫ30, (3.24)

then t 7→
´

R3 |∇d|3(t) is non-increasing. In particular, we have that,

ˆ

R3

|∇d|3(t) ≤ ǫ30 for all t ∈ [0, T ). (3.25)

Proof. Set

Ẽ(t) :=

ˆ

R3

|∇d|3(t)

By continuity, there exists t0 ∈ (0, T ) such that,

Ẽ(t) ≤ 2Ẽ(0) = 2ǫ30 (3.26)

for t ∈ [0, t0). Assume that t0 ∈ (0, T ) is the maximal time such that (3.26) holds.
Inserting (3.26) in (3.11) yields the inequality:

d

dt

ˆ

R3

|∇d|3 +
[
1− Cǫ20

]ˆ

R3

|∇d||∇2d|2 ≤ 0, for t ∈ [0, t0].

If ǫ0 > 0 is chosen such that
1− Cǫ20 ≥ 0,

then
d

dt
Ẽ(t) =

d

dt

ˆ

R3

|∇d|3 ≤ 0 for t ∈ [0, t0].

Hence, Ẽ is non-increasing in [0, t0]. This implies that

Ẽ(t0) ≤ Ẽ(0) ≤ ǫ30 < 2ǫ30

and so t0 is not the maximal time such that (3.26) holds. Thus, t0 = T .

Lemma 3.1.3 (Case with u 6= 0). There exists ǫ0 > 0 such that if

ˆ

R3

|u|3(0) + |∇d|3(0) ≤ ǫ30 (3.27)

then t 7→
´

R3 |u|
3(t) + |∇d|3(t) is non-increasing.

Proof. Set:

E(t) :=

ˆ

R3

|u|3(t) + |∇d|3(t)

By continuity, there exists t0 ∈ (0, T ) such that

E(t) ≤ 2E(0) = 2ǫ30 (3.28)
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for t ∈ [0, t0). Then it is also true that

‖∇d‖L3(t) . ǫ0 and ‖u‖L3(t) . ǫ0. (3.29)

for t ∈ [0, t0). Assume that t0 ∈ (0, T ) is the maximal time such that (3.26) holds.
Inserting (3.29) in (3.11) yields the inequality:

d

dt
E(t) +

[
1− Cǫ20

]ˆ

R3

|∇u|2|u|+
[
1− C(ǫ0 + 2ǫ20)

]ˆ

R3

|∇d||∇2d|2 ≤ 0.

If ǫ0 > 0 is chosen such that

1− Cǫ20 ≥ 0 and 1− C(ǫ0 + 2ǫ20) ≥ 0,

then
d

dt
E(t) =

d

dt

ˆ

R3

|∇d|3 + |u|2 ≤ 0 for t ∈ [0, t0].

Hence, E is non-increasing in [0, t0]. This implies that

E(t0) ≤ E(0) ≤ ǫ30 < 2ǫ30

and so t0 is not the maximal time such that (3.28) holds. Thus, t0 = T .

Using the monotonicity proven in Lemma 3.1.3 one has immediately

Theorem 3.1.4. There exists an ǫ0 > 0 such that if (u0,d0) ∈ L3(R3,R3) ×
W 1,3(R3, S2) satisfies

ˆ

R3

|u0|
3 + |∇d0|

3 ≤ ǫ30 (3.30)

then there exists a unique global solution (u,d) in C([0,∞), L3(R3) ×W 1,3(R3)) to
the system of equations given by (1.9) and (1.7). Moreover, ǫ3 given by,

ǫ3(t) :=

ˆ

R3

(|u|3 + |∇d|3)(t) (3.31)

is a non-increasing function of t.

3.2 Local L3 energy inequality

In this section, a local L3 energy inequality is proven. That is, a local L3 norm
inequality for smooth solutions of (1.9)-(1.7) with data in L3

U
(R3). One should note

similarities between this inequality and the local L2 inequality of Leray [16] or the
local L2 inequality of Lin, Lin, and Wang [19].

As with the global L3 energy inequality, one must select test functions appropri-
ately to gain local L3 norm control.
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Theorem 3.2.1 (Local L3 energy inequality). For (u0,∇d0) ∈ L3
U
(R3), let φ ∈

C∞
0 (R3), then any smooth solution to (1.7)-(1.9) obeys

d

dt

ˆ

R3

(|u|3 + |∇d|3)φ2 +

ˆ

R3

[|∇(|u|3/2φ)|2 + |∇(|∇d|3/2φ)|2]

≤ C

ˆ

R3

(|u|3 + |∇d|3)|∇φ|2 + C

ˆ

R3

|u||P − c|2φ2

+ C

[{
ˆ

supp φ

|u|3
}2/3

+

{
ˆ

supp φ

|∇d|3
}2/3

]

×

ˆ

R3

[|∇(|u|3/2φ)|2 + |∇(|∇d|3/2φ)|2].

(3.32)

Here, supp φ is support of the function φ.

Proof. Let φ ∈ C∞
0 (R3). To find norm estimates for ∇d the equation (1.9) is differ-

entiated and integrated against |∇d|(∇αd)φ
2 over R3 to obtain that

ˆ

R3

∇αdt · |∇d|(∇αd)φ
2 =

1

3

d

dt

ˆ

R3

|∇d|3φ2,

−

ˆ

R3

(∇α∆d) · |∇d|(∇αd)φ
2 = −

ˆ

R3

[∇α(∇β∇βd)] · |∇d|(∇αd)φ
2

=

ˆ

R3

(∇α∇βd)∇β(|∇d|∇αdφ
2).

Since |d| = 1 one has that

ˆ

R3

[∇α(|∇d|2d)] · |∇d|(∇αd)φ
2

=

ˆ

R3

[∇α|∇d|2]|∇d|
∇α|d|2

2
φ2 +∇αd|∇d|2 · |∇d|∇αdφ

2

= 0 +

ˆ

R3

|∇d|5φ2.

Combining the last two results yields the inequality:

d

dt

ˆ

R3

|∇d|3φ2 + 3

ˆ

R3

(∇α∇βd) · ∇β(|∇d|∇αdφ
2)

︸ ︷︷ ︸
(3.33)a

≤ 3

ˆ

R3

|∇d|5φ2 + 3

ˆ

R3

(u · ∇d) · ∇α(|∇d|∇αdφ
2)

︸ ︷︷ ︸
(3.33)b

.

(3.33)
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For (3.33)a one sees that
ˆ

R3

(∇α∇βd) · ∇β(|∇d|∇αdφ
2)

=

ˆ

R3

(∇2d · ∇d) · (∇|∇d|)φ2

︸ ︷︷ ︸
(3.34)a

+

ˆ

R3

(∇2d · ∇d) · (∇φ2)|∇d|
︸ ︷︷ ︸

(3.34)b

+

ˆ

R3

|∇2d|2|∇d|φ2

︸ ︷︷ ︸
(3.34)c

.

(3.34)
Since

∇|∇d| =
∇2d · ∇d

|∇d|

one has that
ˆ

R3

(∇2d · ∇d) · (∇|∇d|)φ2 =

ˆ

R3

|∇2d · ∇d|2

|∇d|
φ2

ˆ

R3

(∇2d · ∇d) · (∇φ2)|∇d| =

ˆ

R3

(∇|∇d|)|∇d|2 · (∇φ2).

By putting these two identities together with (3.34) one has that
ˆ

R3

(∇α∇βd) · ∇β(|∇d|∇αdφ
2)

=

ˆ

R3

|∇2d · ∇d|2

|∇d|
φ2 +

ˆ

R3

(∇|∇d|)|∇d|2 · (∇φ2) +

ˆ

R3

|∇2d|2|∇d|φ2

≥
1

2

ˆ

R3

|∇2d|2|∇d|φ2 − C

ˆ

R3

|∇d|3|∇φ|2.

(3.35)

Estimating (3.33)b one has that
ˆ

R3

(u · ∇d) · ∇α(|∇d|(∇αd)φ
2)

≤

ˆ

R3

|u||∇d|
(
|∇|∇d|||∇d|φ2 + |∇d||∆d|φ2 + |∇d|2|∇φ2|

)

≤

ˆ

R3

|u|
(
|∇2d||∇d|2φ2 + |∇d|2|∇2d|φ2 + |∇d|3|∇φ2|

)

≤ 2

ˆ

R3

|u|
(
|∇d|2|∇2d|φ2 + |∇d|3φ|∇φ|

)

= 2

ˆ

R3

|u||∇d|2|∇2d|φ2

︸ ︷︷ ︸
(3.36)a

+2

ˆ

R3

|u||∇d|3φ|∇φ|
︸ ︷︷ ︸

(3.36)b

.

(3.36)

Applying Cauchy’s inequality to (3.36)a one has that

2

ˆ

R3

|u||∇d|2|∇2d|φ2 ≤
1

8

ˆ

R3

|∇d||∇2d|2φ2

︸ ︷︷ ︸
(3.37)a

+C

ˆ

R3

|u|2|∇d|3φ2

︸ ︷︷ ︸
(3.37)b

.
(3.37)
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Applying Hölder’s inequality to (3.36)b and (3.37)b yields that

ˆ

R3

|u||∇d|3φ|∇φ| ≤

{
ˆ

supp φ

|u|3
}1/3{ˆ

R3

|∇d|9φ6

}1/6{ˆ

R3

|∇d|3|∇φ|2
}1/2

,

ˆ

R3

|u|2|∇d|3φ2 ≤

{
ˆ

supp φ

|u|3
}2/3{ˆ

R3

|∇d|9φ6

}1/3

(3.38)
After collecting the appropriate terms one obtains the following inequalities:

ˆ

R3

(u · ∇d) · ∇α(|∇d|(∇αd)φ
2)

≤
1

4

ˆ

R3

|∇d||∇2d|2φ2 + C

{
ˆ

supp φ

|u|3
}2/3{ˆ

R3

|∇d|9φ6

}1/3

+ C

ˆ

R3

|∇d|3|∇φ|2,

(3.39)

and

d

dt

ˆ

R3

|∇d|3φ2 +

ˆ

R3

|∇2d|2|∇d|φ2

≤ C

ˆ

R3

|∇d|5φ2 + |∇d|3|∇φ|2 + C

{
ˆ

supp φ

|u|3
}2/3{ˆ

R3

|∇d|9φ6

}1/3

≤ C

ˆ

R3

|∇d|3|∇φ|2 + C

[{
ˆ

supp φ

|u|3
} 2

3

+

{
ˆ

supp φ

|∇d|3
} 2

3

]
ˆ

R3

|∇(|∇d|
3
2φ)|2.

(3.40)
Where, in the last step the following two inequalities were used:

{
ˆ

R3

|∇d|9φ6

} 1
3

= ‖|∇d|
3
2φ‖2L6(R3) . ‖∇(|∇d|

3
2φ)‖2L2(R3) =

ˆ

R3

|∇(|∇d|
3
2φ)|2

and
ˆ

R3

|∇d|5φ2 ≤

{
ˆ

supp φ

|∇d|3
} 2

3
{
ˆ

R3

|∇d|9φ6

} 1
3

.

{
ˆ

supp φ

|∇d|3
} 2

3
ˆ

R3

|∇(|∇d|
3
2φ)|2.

To obtain norm estimates for u one multiplies (1.7) by |u|uφ2 and integrates over
R3 to find that

d

dt

ˆ

R3

|u|3φ2 + 3

ˆ

R3

∇u · ∇(|u|uφ2)

︸ ︷︷ ︸
(3.41)a

.

ˆ

R3

(∇d⊙∇d) : ∇(|u|uφ2)

︸ ︷︷ ︸
(3.41)b

+

ˆ

R3

|∇u||u|3φ2

︸ ︷︷ ︸
(3.41)c

+

ˆ

R3

|P − c||∇(|u|uφ2)|
︸ ︷︷ ︸

(3.41)d

(3.41)
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where c ∈ R is an arbitrary constant. Estimating (3.41)a from below using Cauchy’s
inequality one finds that

ˆ

R3

∇u · ∇(|u|uφ2)

≥
1

2

ˆ

R3

|u||∇u|2φ2 − 4

ˆ

R3

|u|3|∇φ|2.

(3.42)

Whereas, estimating (3.41)c from above using Cauchy’s, Hölder’s and Sobolev’s in-
equalities one finds that

ˆ

R3

|∇u||u|3φ2 ≤
1

4

ˆ

R3

|u||∇u|2φ2 + C

{
ˆ

supp φ

|u|3
} 2

3
ˆ

R3

|∇(|u|3/2φ)|2. (3.43)

Now, using integration by parts on (3.41)b, one has that

ˆ

R3

∇d⊙∇d : ∇(|u|uφ2)

=

ˆ

R3

∇id
k∇jd

k∇i(|u|u
jφ2)

=

ˆ

R3

∇id
k∇jd

k∇iu
j(|u|φ2) +

ˆ

R3

∇id
k∇jd

kuj∇i(|u|φ
2)

=

ˆ

R3

∇id
k∇jd

k∇iu
j(|u|φ2)−

ˆ

R3

∇i∇id
k∇jd

kuj|u|φ2)

−

ˆ

R3

∇id
k∇i∇jd

kuj|u|φ2)−

ˆ

R3

∇id
k∇jd

k∇iu
j|u|φ2)

≤

ˆ

R3

2|∇d|2|∇u||u|φ2

︸ ︷︷ ︸
(3.44)a

+

ˆ

R3

2|∇d||∇2d||u|2φ2

︸ ︷︷ ︸
(3.44)b

.

(3.44)

Now, estimate (3.44)a and (3.44)b as follows

ˆ

R3

2|∇d|2|∇u||u|φ2 ≤
1

4

ˆ

R3

|u||∇u|2φ2

+ C

{
ˆ

supp φ

|u|3
}1/3{ˆ

supp φ

|∇d|3
}1/3{ˆ

R3

|∇d|9φ6

}
,

ˆ

R3

2|∇d||∇2d||u|2φ2 ≤
1

4

ˆ

R3

|∇d||∇2d|2φ2

+ C

{
ˆ

supp φ

|∇d|3
}1/3{ˆ

supp φ

|u|3
}1/3{ˆ

R3

|u|9φ6

}1/3

.

(3.45)
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Combining (3.44) and (3.45) and applying the Sobolev inequality yields that
ˆ

R3

∇d⊙∇d : ∇(|u|uφ2)

≤
1

4

ˆ

R3

|u||∇u|2φ2 +
1

4

ˆ

R3

|∇d||∇2d|2φ2

+ C

{
ˆ

supp φ

|∇d|3
}1/3{ˆ

supp φ

|u|3
}1/3 [ˆ

R3

|∇(|u|
3
2φ)|2 + |∇(|∇d|

3
2φ)|2

]
.

(3.46)

Finally estimating (3.41)d from above yields that
ˆ

R3

|P − c||∇ · (|u|uφ2)|

≤
1

8

ˆ

R3

|u||∇u|2φ2 + C

ˆ

R3

|P − c|2|u|φ2 + C

ˆ

R3

|u|3|∇φ|2.

(3.47)

Combining all these estimates yields that

d

dt

ˆ

R3

|u|3φ2 +

ˆ

R3

|u||∇u|2φ2

≤ C

ˆ

R3

|u|3|∇φ|2 +
1

4

ˆ

R3

|∇d||∇2d|φ2 + C

ˆ

R3

|P − c|2|u|φ2

+ C

[{
ˆ

supp φ

|u|3
}2/3

+

{
ˆ

supp φ

|∇d|3
}2/3

]
ˆ

R3

[|∇(|u|3/2φ)|2 + |∇(|∇d|3/2φ)|2].

(3.48)
Noticing that

|∇(|u|3/2φ)|2 . |u||∇u|2φ2 + |u|3|∇φ|2

|∇(|∇d|3/2φ)|2 . |∇d||∇2d|2φ2 + |∇d|3|∇φ|2,

and, combining the estimates for u and ∇d in (3.40) and (3.48) yields the desired
inequality:

d

dt

ˆ

R3

(|u|3 + |∇d|3)φ2 +

ˆ

R3

[|∇(|u|3/2φ)|2 + |∇(|∇d|3/2φ)|2]

≤ C

ˆ

R3

(|u|3 + |∇d|3)|∇φ|2 + C

ˆ

R3

|u||P − c|2φ2

+ C

[{
ˆ

supp φ

|u|3
}2/3

+

{
ˆ

supp φ

|∇d|3
}2/3

]
ˆ

R3

[|∇(|u|3/2φ)|2 + |∇(|∇d|3/2φ)|2].

(3.49)

What remains is to estimate the term involving pressure–as it will be required later
to have estimates involving only u and ∇d. It suffices to estimate ‖(P − c)φ‖L3(R3)

since from Hölder’s inequality

ˆ

R3

|u||P − c|2φ2 ≤

{
ˆ

supp φ

|u|3
}1/3{ˆ

R3

|P − c|3φ3

}2/3

. (3.50)
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Estimating the commutator of the Riesz transforms RiRj one obtains the following
lemma:

Lemma 3.2.2 (Local L3-pressure estimate). There exist c0 ∈ R and C0 > 0 such
that for any φ ∈ C1

0(R
3)

{
ˆ

R3

|p− c0|
3φ3

}1/3

≤ C0

{
ˆ

R3

(|u|6 + |∇d|6)φ3

}1/3

+
C0

R

{
ˆ

supp φ

(|u|3 + |∇d|3)

}2/3

+ C0R sup
z∈R3

{
ˆ

BR(z)

(|u|3 + |∇d|3)

}2/3

.

where R > 0 is such that supp (φ) ⊂ B2R.

Proof. Since
−∆p = ∇2

jkg
jk in R

3

where gjk := ujuk +∇jd · ∇kd, one has that

p = −RjRk(g
jk).

for Rj is the Riesz transform. Hence, for φ ∈ C∞
0 (R3), one has that

(p(x)− c0)φ = −RjRk(g
jk)φ− c0φ

= −RjRk(g
jkφ)− [φ,RjRk](g

jk)− c0φ
(3.51)

where [φ,RjRk] is the commutator, namely,

[φ,RjRk](f) = φ · RjRk(f)−RjRk(fφ) f ∈ C∞
0 (R3).

Now [φ,RjRk](g
jk) is estimated as follows

[φ,RjRk](g
jk)

= φ(x)RjRk(g
jk)(x)−RjRk((g

jkφ))(x)

= −φ(x)

ˆ

R3

(xj − yj)(xk − yk)

|x− y|5
gjk(y)dy +

ˆ

R3

(xj − yj)(xk − yk)

|x− y|5
φ(y)gjk(y)dy

=

ˆ

R3

(φ(x)− φ(y))(xj − yj)(xk − yk)

|x− y|5
gjk(y)dy

so that for any x ∈ supp φ,

[φ,RjRk](g
jk)(x) + c0φ(x)

=

ˆ

B2R

(φ(x)− φ(y))(xj − yj)(xk − yk)

|x− y|5
gjk(y)dy + c0φ(x)

+ φ(x)

[
ˆ

R3\B2R

(xj − yj)(xk − yk)

|x− y|5
gjk(y)dy + c0

]

=: I + II.
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Since
|φ(x)− φ(y)| ≤ ‖∇φ‖L∞|x− y| ≤ CR−1|x− y|

one has the estimate

|I(x)| ≤

ˆ

supp φ

|φ(x)− φ(y)||xj − yj||xk − yk|

|x− y|5
|gjk(y)|dy

≤ CR−1

ˆ

supp φ

|x− y|3

|x− y|5
(|u|2(y) + |∇d|2(y))dy

= CR−1I1
(
(|u|2 + |∇d|2)χsupp φ

)
(x),

where I1 is the Riesz potential of order 1 and χsupp φ is the characteristic function
of the support of φ. Using the Hardy–Littlewood–Sobolev theorem we have that
I1 : L

3/2(R3) → L3(R3) is bounded, that is,

‖I1(f)‖L3(R3) ≤ C‖f‖L3/2(R3). (3.52)

Since (|u|2 + |∇d|2)χsupp φ ∈ L3/2(R3) we have

‖I‖L3(R3) ≤ CR−1‖I1
(
(|u|2 + |∇d|2)χsupp φ

)
‖L3(R3)

≤ CR−1‖(|u|2 + |∇d|2)χsupp φ‖L3/2(R3)

≤ CR−1

{
ˆ

supp φ

|u|3 + |∇d|3
} 2

3

.

(3.53)

To estimate II, choose

c0 = −

ˆ

R3\B2R

yjyk

|y|5
gjk(y)dy

so that,

|II(x)| =

∣∣∣∣φ(x)
ˆ

R3\B2R

(
(xj − yj)(xk − yk)

|x− y|5
−
yjyk

|y|5

)
gjk(y)dy

∣∣∣∣

≤ CR|φ(x)|

ˆ

R3\B2R

1

|x− y|4
(|u|2 + |∇d|2)(y)dy.

In the last estimate, standard inequality of Stein (see [26])

∣∣∣∣
(xj − yj)(xk − yk)

|x− y|5
−
yjyk

|y|5

∣∣∣∣ ≤
C|x|

|x− y|4
for x ∈ B3R/2 and y ∈ R

3 \B2R. (3.54)
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was employed. Thus, continuing the estimate,

|II|(x) ≤ CR

ˆ

R3\B2R

1

|x− y|4
(|u|2 + |∇d|2)(y)dy

≤ CR

ˆ

R3\B2R

1

|y|4
(|u|2 + |∇d|2)(y)dy

≤ CR

∞∑

k=2

1

(kR)4

ˆ

B(k+1)R\BkR

(|u|2 + |∇d|2)(y)dy

=≤
C

R

[
∞∑

k=2

1

k2

]
sup
z∈R3

ˆ

BR(z)

(|u|2 + |∇d|2)(y)dy

≤ C sup
z∈R3

(
ˆ

BR(z)

(|u|3 + |∇d|3)(y)dy

)2/3

.

Integrating II over B2R yields

‖II‖L3(R3) ≤ CR sup
z∈R3

(
ˆ

BR(z)

(|u|3 + |∇d|3)(y)dy

)2/3

.

Finally,

‖RjRk(g
jkφ)‖L3(R3) ≤ C0

{
ˆ

R3

(|u|6 + |∇d|6)φ3

}1/3

which implies the desired estimate.

Copyright c© Jay Lawrence Hineman 2012
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Chapter 4 Regularity

In this chapter it is demonstrated that suitable weak solutions exist exist for the
system (1.7)-(1.9). Moreover, under the additional assumption that (u,∇d) is small
in L3, it is shown that such solutions are indeed smooth.

4.1 Suitable weak solutions

The notion of suitable weak solutions was introduced by Caffarelli, Kohn and Niren-
berg [2]. In their study of the two dimension flow of nematic liquid crystals Lin, Lin,
and Wang [19] also employed a similar notion of suitable weak solutions.

Definition 4.1.1. A triple (u, p,d) : Ω × (0, T ) → R3 × R × S2 is called a suitable
weak solutions to liquid crystal flow equations (1.7)-(1.9) in Ω× (0, T ) if:

1. u ∈ L∞
t L

2
x∩L

2
tH

1
x(Ω×(0, T )), p ∈ L

3
2 (Ω×(0, T )) and d ∈ L2

tH
2
x(Ω×(0, T ), S2);

2. (u, p,d) satisfies the liquid crystal flow equations (1.7)-(1.9) in the weak sense;

3. (u, p,d) satisfies the generalized energy inequality (4.1) for φ ∈ C∞
0 (Ω× (0, T )).

Lemma 4.1.2. Suppose that (u, p,d) is a sufficiently regular solution to the equations
(1.7)-(1.9) on Ω× (0, T ). Then for any 0 ≤ φ ∈ C∞

0 (Ω× (0, T )), it holds

2

ˆ

Ω×(0,T )

(
|∇u|2 + |∆d+ |∇d|2d|2

)
≤

ˆ

Ω×(0,T )

(
|u|2 + |∇d|2

)
(φt +∆φ)

+

ˆ

Ω×(0,T )

(|u|2 + |∇d|2 + 2p)u · ∇φ

+ 2

ˆ

Ω×(0,T )

(
∇d⊙∇d− |∇d|2I3

)
: ∇2φ

+ 2

ˆ

Ω×(0,T )

∇d⊙∇d : u⊗∇φ.

(4.1)

Proof. To obtain the estimates involving u multiply (1.7) by uφ and integrate to find
that

ˆ

Ω×(0,T )

ut · uφ

︸ ︷︷ ︸
(4.2)a

+

ˆ

Ω×(0,T )

(u · ∇u) · uφ

︸ ︷︷ ︸
(4.2)b

−

ˆ

Ω×(0,T )

∆u · uφ

︸ ︷︷ ︸
(4.2)c

+

ˆ

Ω×(0,T )

∇p · uφ

︸ ︷︷ ︸
(4.2)d

=

ˆ

Ω×(0,T )

∇ · (∇d⊙∇d)

︸ ︷︷ ︸
(4.2)e

.

(4.2)
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The terms (4.2)a − (4.2)d simplify to

ˆ

Ω×(0,T )

ut · uφ =

ˆ

Ω×(0,T )

1

2
∂t
{
|u|2φ

}
−

1

2
|u|2φt = −

ˆ

Ω×(0,T )

1

2
|u|2φt

ˆ

Ω×(0,T )

(u · ∇u) · uφ =

ˆ

Ω×(0,T )

∇|u|2

2
· uφ

= −

ˆ

Ω×(0,T )

|u|2

2
((∇ · u)φ+ u · ∇φ)

= −

ˆ

Ω×(0,T )

|u|2

2
u · ∇φ

ˆ

Ω×(0,T )

∆u · uφ = −

ˆ

Ω×(0,T )

∇u : ∇(uφ)

= −

ˆ

Ω×(0,T )

(∇u : ∇u)φ−

ˆ

Ω×(0,T )

∇u : u⊗∇φ

= −

ˆ

Ω×(0,T )

|∇u|2φ−

ˆ

Ω×(0,T )

u · ∇αu∇αφ

= −

ˆ

Ω×(0,T )

|∇u|2φ+

ˆ

Ω×(0,T )

|u|2

2
∆φ

ˆ

Ω×(0,T )

∇p · uφ = −

ˆ

Ω×(0,T )

p(∇ · u)φ −

ˆ

Ω×(0,T )

p(u · ∇φ)

= −

ˆ

Ω×(0,T )

p(u · ∇φ).

And for the term (4.2)e one has

−

ˆ

Ω×(0,T )

∇ · (∇d⊙∇d) · uφ =

ˆ

Ω×(0,T )

(∇d⊙∇d) : ∇ · (uφ)

=

ˆ

Ω×(0,T )

(∇d⊙∇d) : ((∇u)φ+ u⊗∇φ) .

Inserting the results for (4.2)a − (4.2)e into (4.2) yields that

ˆ

Ω×(0,T )

−
1

2
|u|2(φt −∆φ)−

[
|u|2

2
+ p

]
(u · ∇φ) +

ˆ

Ω×(0,T )

|∇u|2φ

=

ˆ

Ω×(0,T )

(∇d⊙∇d) : ((∇u)φ+ u⊗∇φ) .

(4.3)

Next, to obtain estimates involving ∇d differentiate the equation (1.9) and inte-

47



grate against (∇d)φ, this yields that
ˆ

Ω×(0,T )

(∇d)t : (∇d)φ

︸ ︷︷ ︸
(4.4)a

+

ˆ

Ω×(0,T )

∇(u · ∇d) : (∇d)φ

︸ ︷︷ ︸
(4.4)b

=

ˆ

Ω×(0,T )

∇
[
∆d+ |∇d|2d

]
: (∇d)φ

︸ ︷︷ ︸
(4.4)c

.

(4.4)

In (4.4)a it is easy to see that
ˆ

Ω×(0,T )

(∇d)t : (∇d)φ = −

ˆ

Ω×(0,T )

1

2
|∇d|2φt.

since φ has compact support. Using (1.8) the term (4.4)b is
ˆ

Ω×(0,T )

∇(u · ∇d) : (∇d)φ =

ˆ

Ω×(0,T )

∇α(u
jdj) · dαφ

=

ˆ

Ω×(0,T )

ujαdj · dαφ+

ˆ

Ω×(0,T )

ujdjα · dαφ

=

ˆ

Ω×(0,T )

∇u : ∇d⊗∇dφ +

ˆ

Ω×(0,T )

u · ∇

{
|∇d|2

2

}
φ

=

ˆ

Ω×(0,T )

∇u : ∇d⊗∇dφ −

ˆ

Ω×(0,T )

(u · ∇φ)
|∇d|2

2
.

Before proceeding to the term (4.4)c recall the following point-wise identities for
harmonic maps:

0 = ∇
|d|2

2
= ∇d · d

0 = ∇ · (∇d · d) = ∇α

{(
∇αd

i
)
di
}
= (∆d) · d+ |∇d|2.

(4.5)

Then, integrating by parts in (4.4)c yields that
ˆ

Ω×(0,T )

∇
[
∆d+ |∇d|2d

]
· (∇d)φ

= −

ˆ

Ω×(0,T )

[
∆d+ |∇d|2d

]
· φ [(∆d)φ+∇d · ∇φ]

= −

ˆ

Ω×(0,T )

|∆d+ |∇d|2d|2

−

ˆ

Ω×(0,T )

[
∆d+ |∇d|2d

]
· [∇d · ∇φ]

+

ˆ

Ω×(0,T )

[
∆d+ |∇d|2d

]
·
[
|∇d|2d

]
φ

= −

ˆ

Ω×(0,T )

|∆d+ |∇d|2d|2φ−

ˆ

Ω×(0,T )

∆d(∇d · ∇φ) + 0.

(4.6)
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where (4.5) has been used in the last line to arrive at

ˆ

Ω×(0,T )

[
∆d+ |∇d|2d

]
·
[
|∇d|2d

]
φ =

ˆ

Ω×(0,T )

[
−|∇d|2(∆d) · d+ |∇d|4|d|2

]
φ

=

ˆ

Ω×(0,T )

[
−|∇d|4 + |∇d|4

]
φ = 0.

Another integration by parts in (4.6), provides that

−

ˆ

Ω×(0,T )

∆d(∇d · ∇φ)

= −

ˆ

Ω×(0,T )

∇α (∇αd · ∇βd)∇βφ+

ˆ

Ω×(0,T )

∇αd · ∇αβd∇βφ

=

ˆ

Ω×(0,T )

(∇d⊗∇d) : ∇2φ−

ˆ

Ω×(0,T )

|∇d|2

2
∆φ

=

ˆ

Ω×(0,T )

(
∇d⊗∇d− |∇d|2I3

)
: ∇2φ+

ˆ

Ω×(0,T )

|∇d|2

2
∆φ.

Inserting these facts for (4.4)a − (4.4)c into (4.4) yields that

ˆ

Ω×(0,T )

[
−
1

2
|∇d|2(φt +∆φ−

1

2
|∇d|(u · ∇φ)

]
+

ˆ

Ω×(0,T )

∇u : ∇d⊗∇dφ

=

ˆ

Ω×(0,T )

(
∇d⊗∇d− |∇d|2I3

)
: ∇2φ−

ˆ

Ω×(0,T )

|∆d+ |∇d|2d|2φ.

(4.7)

Combining (4.3) and (4.7) one arrives at (4.1).

Corollary 4.1.3. Suppose that (u, p,d) is a suitable weak solution of the liquid crystal
flow equations in Ω × (0, T ). Then, for each t ∈ (0, T ) and each smooth, compactly
supported φ ≥ 0 on Ω× (0, T ), one has that

ˆ

Ω×{t}

(|u|2 + |∇d|2)φ+ 2

ˆ

Ω×(0,t)

(|∇u|2 + |∆d+ |∇d|2d|2)φ

≤

ˆ

Ω×(0,t)

(|u|2 + |∇d|2)(φt +∆φ)

+

ˆ

Ω×(0,t)

(|u|2 + |∇d|2 + 2p)u · ∇φ

+ 2

ˆ

Ω×(0,t)

(∇d⊙∇d− |∇d|2I3) : ∇
2φ

+ 2

ˆ

Ω×(0,t)

∇d⊙∇d : u⊗∇φ.

(4.8)
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4.2 L3 small solutions are smooth

In this section the Theorem 4.2.6 is proven. The technique that is employed has two
basic parts. The first is proving a decay lemma for solutions of small renormalized
energy L3 energy (Lemma 4.2.1) using a blow-up argument. The second is to obtain
estimates of Riesz potentials between Morrey spaces in the framework developed by
Huang and Wang in [14]. These estimates lead smoothness of solutions to (1.7)-(1.9)
with small renormalized L3 energy.

Define optimal Sobolev embedding constant for the embedding W 1,2(Ω) →֒ L6(Ω)
where Ω ⊂ R3 by:

C(3) = inf

{
‖∇f‖L2(Ω)

‖f‖L6(Ω)

: f 6= 0, f ∈ C∞
0 (R3)

}
.

It is noted that given Ω one may explicitly calculate C(3).

Lemma 4.2.1 (decay). There exist ǫ0 > 0 and θ0 ∈ (0, 1
2
) such that if (u, p,d) is a

suitable weak solution on Pr(x0, t0) ≡ Pr0 with supt0−r20≤t≤t0 ‖∇d‖L3(Br0 )
(t) < (C(3))−2

and
r
−2/3
0 ‖u‖L3(Pr0 )

+ r
−4/3
0 ‖p‖L3/2(Pr0 )

+ r
−2/3
0 ‖∇d‖L3(Pr0 )

≤ ǫ0 (4.9)

then

(θ0r0)
−2/3‖u‖L3(Pθ0r0

) + (θ0r0)
−4/3‖p‖L3/2(Pθ0r0

) + (θ0r0)
−2‖∇d‖L3(Pθ0r0

)

≤
1

2

[
r
−2/3
0 ‖u‖L3(Pr0 )

+ r
−4/3
0 ‖p‖L3/2(Pr0 )

+ r−2
0 ‖∇d‖L3(Pr0)

]
.

(4.10)

Proof. The equations (1.7)-(1.9) are invariant under translations and parabolic dila-
tions. Recall that

Pr(x, t) = (t− r2, t+ r2)×Br(x).

For r0 > 0 and z0 = (x0, t0) fixed, if (u, p,d) is a solutions of the liquid crystal flow
equations on Pr0(z0), then (uz0,r0, pz0,r0,dz0,r0) given by,

uz0,r0(x, t) = r0u(x0 + r0x, t0 + r20t)

pz0,r0(x, t) = r20p(x0 + r0x, t0 + r20t)

dz0,r0(x, t) = d(x0 + r0x, t0 + r20t)

is a solution on P1(0, 0). Thus it suffices to consider r0 = 1 and z0 = (x0, t0) = (0, 0).
Assume for contradiction that the conclusion were false. Then, there must exist

a sequence of suitable weak solutions to the equations (1.7)=(1.9) on P1(0, 0) such
that

(
ˆ

P1(0,0)

|ui|
3

) 1
3

+

(
ˆ

P1(0,0)

|pi|
3
2

) 2
3

+

(
ˆ

P1(0,0)

|∇di|
3

) 1
3

= ǫi → 0 (4.11)
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and where for any θ ∈ (0, 1
2
) one has that

[(
(θ)−2

ˆ

Pθ(0,0)

|ui|
3

) 1
3

+

(
(θ)−2

ˆ

Pθ(0,0)

|pi|
3
2

) 2
3

+

(
(θ)−2

ˆ

Pθ(0,0)

|∇di|
3

) 1
3

]

>
1

2

[(
ˆ

P1(0,0)

|ui|
3

) 1
3

+

(
ˆ

P1(0,0)

|pi|
3
2

) 2
3

+

(
ˆ

P1(0,0)

|∇di|
3

) 1
3

]
.

(4.12)

Now define a new sequence (vi, qi, ei) : P1(0, 0) → R3 × R× R3 by

vi(z) =
ui(z)

ǫi
, qi(z) =

pi(z)

ǫi
, ei(z) =

di(z)− (di)1
ǫi

where (di)1 =
1

|P1(0,0)|

´

P1(0,0)
di. Then (vi, qi, ei) satisfy

∂tvi −∆vi +∇qi = −ǫ[vi · ∇vi +∇ · (∇ei ⊙∇ei)]

∇ · vi = 0

∂tei −∆ei = ǫi[|∇ei|
2di − vi · ∇ei].

(4.13)

It follows from (4.11) that

(
ˆ

P1(0,0)

|vi|
3

) 1
3

+

(
ˆ

P1(0,0)

|qi|
3
2

) 2
3

+

(
ˆ

P1(0,0)

|ei|
3

) 1
3

= 1. (4.14)

Then for any θ ∈ (0, 1
2
) it follows from (4.12) that

(
θ−2

ˆ

Pθ(0,0)

|vi|
3

) 1
3

+

(
θ−2

ˆ

Pθ(0,0)

|qi|
3
2

) 2
3

+

(
θ−2

ˆ

Pθ(0,0)

|ei|
3

) 1
3

>
1

2
. (4.15)

Since (ui, pi,di) satisfy (4.8) one has that

sup
(− 3

4)
2
≤t≤0

ˆ

B3/4(0)

(|ui|
2 + |∇di|

2) +

ˆ

P3/4(0,0)

(|∇ui|
2 + |∆di + |∇di|

2di|
2)

≤ C

ˆ

P1(0,0)

(|ui|
2 + |∇di|

2) + (|pi|+ |ui|
2 + |∇di|

2)|ui|.

(4.16)

Rescaling (4.16) and using Hölder’s inequality with (4.14) and (4.11) one has that

sup
( 3
4)

2
≤t≤0

ˆ

B3/4(0)

(|vi|
2 + |∇ei|

2) +

ˆ

P3/4(0,0)

(|∇vi|
2 +

∣∣∆ei + ǫi|∇di|
2di
∣∣2)

≤ C

ˆ

P1(0,0)

(|vi|
2 + |∇ei|

2) + (|qi|+ ǫi|ui|
2 + ǫi|∇ei|

2)|vi| ≤ C.

(4.17)

On the other hand,
ˆ

B1/2(0)

|∇2ei|
2 ≤ C

ˆ

B3/4(0)

|∇ei|
2 + C

ˆ

B3/4(0)

|∆ei|
2.
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Integrating the previous inequality in t yields that
ˆ

P1/2(0,0)

|∇2ei|
2 .

ˆ

P3/4(0,0)

|∇ei|
2 + |∆ei|

2

Applying the point-wise inequality, |∆ei|2 . |∆ei + |∇ei|2di|2 + |∇ei|4, one has that
ˆ

P1/2(0,0)

|∇2ei|
2 .

ˆ

P3/4(0,0)

|∇ei|
2 + |∆ei + |∇ei|

2di|
2 +

ˆ

P3/4(0,0)

|∇ei|
4. (4.18)

By Hölder’s inequality and the Sobolev embedding W 1,2(B1) →֒ L6(B1) with optimal
embedding constant C(3) one has that

‖∇ei‖L4(B1) ≤ C(3)‖∇ei‖
1/2

L3(B1)
‖∇2ei‖

1/2

L2(B1)
.

Integrating this over t yields that
ˆ 0

−1

ˆ

B1

|∇ei|
4 ≤ C(3)4 sup

−1≤t≤0
‖∇ei‖

2
L3(B1)

(t)

ˆ 0

−1

ˆ

B1

|∇2ei|
2. (4.19)

Inserting the estimate (4.19) into (4.18) one has that
[
1−

(
C(3)4 sup

−1≤t≤0
‖∇ei‖

2
L3(B1)

(t)

)]
ˆ

P1/2(0,0)

|∇2ei|
2

.

ˆ

P3/4(0,0)

|∇ei|
2 + |∆ei + |∇ei|

2di|
2.

(4.20)

So applying (4.17) to (4.20) one finds that
ˆ

P1/2(0,0)

|∇2ei|
2 ≤ C. (4.21)

Combining relevant estimates from (4.17) and (4.21) one has that
ˆ

P1/2(0,0)

|qi|
3
2 +

ˆ

P1/2(0,0)

(|vi|
2 + |∇vi|

2) +

ˆ

P1/2(0,0)

(|∇ei|
2 + |∇2ei|

2) ≤ C. (4.22)

From weak compactness and (4.22) one has that

qi ⇀ q in L
3
2 (P 1

2
(0, 0))

vi ⇀ v, ∇vi ⇀ ∇v in L2(P 1
2
(0, 0))

ei ⇀ e, ∇ei ⇀ ∇e, ∇2ei → ∇2e in L2(P 1
2
(0, 0)).

where symbol ⇀ denotes weak convergence (likewise, the symbol → denotes strong
convergence). Sending i to ∞ in (4.13) yields that

∂tv −∆v +∇q = 0

∇ · v = 0

∂te−∆e = 0.
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Using the Sobolev embedding W 1,2 →֒ L6 and interpolations, (4.22) implies

ˆ

P1/2(0,0)

|v|3 + |q|
3
2 + |∇e|3 ≤ C.

Furthermore, using a Cacciopoli-type estimate one has for θ ∈ (0, 1/2) that

θ−2

ˆ

Pθ(0,0)

(|v|3 + |q|3/2) + θ−2

ˆ

Pθ(0,0)

|∇e|3

≤ Cθ3
[
ˆ

P1(0,0)

(|v|3 + |q|3/2) +

ˆ

P1(0,0)

|∇e|3
]

≤ Cθ3

(4.23)

Recall the following lemma:

Lemma 4.2.2 (Aubin–Lions). Let X0 ⊂ X ⊂ X1 be Banach spaces such that X0

is compactly embedded in X, X is continuously embedded in X1, and X0, X1 are
reflexive. Then for 1 < α0, α1 <∞

{u ∈ Lα0(0, T ;X0) : ∂tu ∈ Lα1(0, T ;X1)} is compactly embedded in Lα0(0, T ;X).
(4.24)

Claim: vi → v in L2(P2/5(0, 0)). From (4.22) one has that

‖vi‖L2
tH

1
x(P1/2)

≤ C

‖∇ei‖L2
tH

1
x(P1/2)

≤ C

‖vi‖L10/3
t L

10/3
x (P1/2)

≤ C

‖∇ei‖L10/3
t L

10/3
x (P1/2)

≤ C.

(4.25)

So by Hölder’s inequality

ˆ

P1/2

|vi · ∇vi|
5/4 ≤

{
ˆ

P1/2

|vi|
10/3

}3/8{
ˆ

P1/2

|∇vi|
2

}5/8

≤ C

and

ˆ

P1/2

|∇ · (∇ei ⊙∇ei)|
5/4 ≤

{
ˆ

P1/2

|∇2ei|
2

}5/8{
ˆ

P1/2

|∇ei|
10/3

}3/8

≤ C.

The last inequalities imply that

‖ǫi [vi · ∇vi +∇ · (∇ei ⊙∇ei)]‖L5/4
t L

5/4
x (P1/2)

≤ C. (4.26)

From (4.26), the W 2,1
α estimate of the Stokes’ equation implies that

‖∂tvi‖L5/4(P2/5)
≤ C. (4.27)
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By (4.25) and (4.27) the sequence {vi} is bounded in

Y1 =
{
u ∈ L2

tH
1
x(P2/5) : ∂tu ∈ L

5/4
t L5/4

x (P2/5)
}
.

Then since Y1 is compactly embedded in L2
tL

2
x(P2/5) by the Aubin–Lions Lemma,

one has that
vi → v in L2

tL
2
x(P2/5). (4.28)

Claim: ∇ei → ∇e in L2(P2/5(0, 0)). Using (4.25) and Hölder’s inequality one
has that

ˆ

P1/2

∣∣|∇ei|
2di

∣∣2 =
ˆ

P1/2

|∇ei|
4 ≤ C

‖vi · ∇ei‖L20/11(P1/2)
≤ ‖vi‖L10/3(P1/2)

‖∇ei‖L4(P1/2) ≤ C.

Using interpolation the last inequalities imply that

∥∥|∇ei|
2di + vi · ∇ei

∥∥
L
20/11
t L

20/11
x (P1/2)

≤ C. (4.29)

With (4.29) the W 2,1
α estimate for the heat equation implies that

‖∂tei‖L20/11
t L

20/11
x (P2/5)

≤ C.

Since ∇(L
20/11
x ) = W

−1,20/9
x one has from the last inequality that

‖∂tei‖L20/11
t W

−1,20/9
x (P2/5)

≤ C. (4.30)

By (4.25) and (4.30) the sequence {∇ei} is bounded in

Y2 =
{
u ∈ L2

tH
1
x(P2/5) : ∂tu ∈ L

20/11
t W−1,20/9

x (P2/5)
}
,

and so by the Aubin–Lions lemma, one has that

∇ei → ∇e in L2
tL

2
x(P2/5). (4.31)

Additionally, by interpolation one can show that

vi → v,∇ei → ∇e in L3
tL

3
x(P2/5). (4.32)

That is, for vi one has by (4.28) that

‖vi − v‖L3
tL

3
x(P2/5)

≤ ‖vi − v‖1/6
L2
tL

2
x(P2/5)

‖vi − v‖5/6
L
10/3
t L

10/3
x (P2/5)

≤ C‖vi − v‖1/6
L2
tL

2
x(P2/5)

→ 0

as i→ ∞. A similar result holds for ∇ei via (4.31).
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From (4.32), for any θ ∈ (0, 1/4) and i sufficiently large, one has by (4.23) that

θ−2

ˆ

Pθ(0,0)

|vi|
3 + θ−2

ˆ

Pθ(0,0)

|∇ei|
3

≤ θ−2

ˆ

Pθ(0,0)

|v|3 + θ−2θ−2

ˆ

Pθ(0,0)

|∇e|3 + o(1) ≤ Cθ3.

(4.33)

Finally using the pressure estimate (4.35) below with τ = θ2, r = θ one has that

(θ2)−2

ˆ

Pθ2 (0,0)

|qi|
3/2 ≤ C

[
θ−4

ˆ

Pθ(0,0)

(|vi|
3 + |∇ei|

3) + θ

ˆ

Pθ(0,0)

|qi|
3/2

]

for θ ∈ (0, 1/4). Using (4.32) and (4.22) the last inequality implies that

(θ2)−2

ˆ

Pθ2 (0,0)

|qi|
3/2 ≤ C

[
θ−2θ3 +

θ3

θ2

]
≤ Cθ. (4.34)

Combining (4.33) and (4.34) with sufficiently large i = i(θ) yields that

(θ−2)−2

ˆ

Pθ2(0,0)

|vi|
3 + |∇ei|

3 + |qi|
3/2 ≤ Cθ.

This last inequality contradicts (4.15).

Lemma 4.2.3. Suppose that (u, p,d) is a suitable weak solution of the liquid crystal
flow problem on Pr(x0, t0). Then for any τ ∈ (0, r

2
), it holds that

1

τ 2

ˆ

Pτ (x0,t0)

|p|3/2

≤ C

[( r
τ

)2 1

r2

ˆ

Pr(x0,t0)

(|u− ux0,r(t)|
3 + |∇d|3) +

(τ
r

)3 1

r2

ˆ

Pr(x0,t0)

|p|3/2
] (4.35)

where ux0,r(t) =
1

|Br(x0)|

´

Br(x0)
u(x, t)dx for t0 − r2 ≤ t ≤ t0. In particular, it holds

that

1

τ 2

ˆ

Pτ (x0,t0)

|p|3/2 ≤ C
( r
τ

)2
(

sup
t0−r2≤t≤t0

1

r

ˆ

Br(x0)

|u|2

)3/4(
1

r

ˆ

Pr(x0,t0)

|∇u|2
)3/4

+ C

[( r
τ

)2 1

r2

ˆ

Pr(x0,t0)

|∇d|3 +
(τ
r

)3 1

r2

ˆ

Pr(x0,t0)

|p|3/2
]

(4.36)
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Proof. By rescaling it is assumed without loss of generality that r = 1 and (x0, t0) =
(0, 0). Using the divergence-free condition on u

div div {(u− u0,1(t))⊗ (u− u0,1(t))}

= ∇j∇i

{
(u− u0,1(t))

i(u− u0,1(t))
j
}

= ∇j

{
(u− u0,1(t))

i∇i(u− u0,1(t))
j
}

= ∇j

{
(u− u0,1(t))

i(∇iu
j)
}

=
{
∇j(u− u0,1(t))

i(∇iu
j)
}
+
{
(u− u0,1(t))

i(∇j∇iu
j)
}

=
{
(∇ju

i)(∇iu
j)
}

= ∇j∇i(u
iuj)

= div div(u⊗ u).

Taking the divergence of (1.7) yields the pressure Poisson equation:

∆p = − div div {(u− u0,1(t))⊗ (u− u0,1(t)) +∇d⊙∇d} .

Let η ∈ C∞
0 (R3) be a cut-off function of B1/2(0). That is, 0 ≤ η ≤ 1, η ≡ 1 on

B1/2(0), η ≡ 0 outside B1(0) and |∇η| ≤ C. Define p̃ by

p̃(x, t) =

−

ˆ

R3

∇2
y
G(x− y) : η2(y) {(u− u0,1(t))⊗ (u− u0,1(t)) +∇d⊙∇d} (y, t)dy

where G is a fundamental solution of Laplace’s equation on R3. Thus, integration by
parts twice yields that

∆p̃

= −

ˆ

R3

∆G(x− y) div div η2(y) {(u− u0,1(t))⊗ (u− u0,1(t)) +∇d⊙∇d} (y, t)dy

= −

ˆ

R3

δ(x− y) div div η2(y) {(u− u0,1(t))⊗ (u− u0,1(t)) +∇d⊙∇d} (y, t)dy

= div div {(u− u0,1(t))⊗ (u− u0,1(t)) +∇d⊙∇d} .

Using the Lp Calderon-Zygmund inequality one has that
ˆ

Bτ (0)

|p̃(t)|3/2 ≤

ˆ

R3

|p̃(t)|3/2

≤ C

ˆ

R3

η3 |(u− u0,1(t))⊗ (u− u0,1(t)) +∇d⊙∇d|3/2

≤ C

ˆ

B1(0)

(
|u− u0,1(t)|

3 + |∇d|3
)
.

By integrating the last inequality over t ∈ (−τ 2, 0) one has that

1

τ 2

ˆ

Pτ (0,0)

|p̃|3/2 ≤
C

τ 2

ˆ

P1(0,0)

(|u− u0,1(t)|
3 + |∇d|3). (4.37)
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The function q := p− p̃ ∈ L3/2(P1(0, 0)) satisfies

∆q(t) = 0 in B1/2(0)

for t ∈ [−1/4, 0]. Now, by the Harnack inequality,

1

τ 2

ˆ

Bτ

|q|3/2 ≤ Cτ 3
ˆ

B1/2

|q|3/2

≤ Cτ 3
[
ˆ

B1

|p|3/2 +

ˆ

B1

|p̃|3/2
]

≤ Cτ 3
[
ˆ

B1

|p|3/2 +

ˆ

B1

|u− u0,1(t)|
3 + |∇d|3

]
.

Integrating this inequality over t ∈ [−τ 2, 0] implies that

1

τ 2

ˆ

Pτ (0,0)

|q|3/2 ≤ Cτ 3
[
ˆ

P1(0,0)

|p|3/2 +

ˆ

P1(0,0)

|u− u0,1(t)|
3 + |∇d|3

]
. (4.38)

The inequality (4.35) follows from adding the inequalities (4.37) and (4.38) and ob-
serving that τ ∈ (0, 1/2). That is, from (4.37) and (4.38) one has that

1

τ 2

ˆ

Pτ (0,0)

|p|3/2 .
1

τ 2

ˆ

Pτ (0,0)

|q|3/2 + |p̃|3/2

≤ Cτ−2

ˆ

P1(0,0)

|p|3/2 + Cτ 3
ˆ

P1(0,0)

|u− u0,1(t)|
3 + |∇d|3.

(4.39)

Using interpolation and the Sobolev inequality one has that

ˆ

B1

|u− u0,1|
3 ≤

(
ˆ

B1

|u− u0,1|
2

) 3
4
(
ˆ

B1

|u− u0,1|
6

) 3
4

≤ C

(
ˆ

B1

|u|2
) 3

4
(
ˆ

B1

|∇u|2
) 3

4

.

(4.40)

Inserting, (4.40) into (4.39) yields the estimate (4.36).

Corollary 4.2.4. Under the same assumptions as Lemma 4.2.1, there exists α ∈
(0, 1) such that for any 0 < τ < r, it holds that

(
1

τ 2

ˆ

Pτ (x0,t0)

|u|3
)1/3

+

(
1

τ 2

ˆ

Pτ (x0,t0)

|p|3/2
)2/3

+

(
1

τ 2

ˆ

Pτ (x0,t0)

|∇d|3
)1/3

≤ C
(τ
r

)α

×

[(
1

r2

ˆ

Pr(x0,t0)

|u|3
)1/3

+

(
1

r2

ˆ

Pr(x0,t0)

|p|3/2
)2/3

+

(
1

r2

ˆ

Pr(x0,t0)

|∇d|3
)1/3

]
.

(4.41)
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Proof. Let Pρ = Pρ(x0, t0) and define Φ by

Φ(ρ) :=

(
1

ρ2

ˆ

Pρ

|u|3

)1/3

+

(
1

ρ2

ˆ

Pρ

|p|3/2

)2/3

+

(
1

ρ2

ˆ

Pρ

|∇d|3

)1/3

Let ǫ0 be given by Lemma 4.2.1. Then Lemma 4.2.1 implies that there exists θ0 ∈
(0, 1/2) so that

Φ(θ0r) ≤
1

2
Φ(r) ≤

1

2
ǫ0 (4.42)

for θ ∈ (0, 1/2). Iterating (4.42) k-times yields:

Φ(θk0r) ≤ 2−kΦ(r). (4.43)

Now setting τ = θk0r one has that

2−k =
(
2log2(τ/r)

) 1
log2(1/θ) =

(τ
r

) 1
log2(1/θ)

where α = 1
log2(1/θ)

∈ (0, 1). Thus, from (4.43) one has the desired result.

The last step in proving the smoothness of solutions to (1.7)-(1.9) will use esti-
mates of Riesz potential between Morrey spaces. Here, the framework of Huang and
Wang [14] is used. For other applications of Morrey spaces see the survey by Adams
and Xiao [1], the book by Morrey [21], or the book of Giaquinta [12].

Definition 4.2.5 (Morrey Spaces). For U ⊂ R3+1, 1 ≤ p < +∞, 0 ≤ λ ≤ 5, define
the Morrey Space Mp,λ(U) by

Mp,λ(U) :=

{
f ∈ Lp

loc(U) : ‖f‖
p
Mp,λ(U)

≡ sup
z∈U,r>0

rλ−5

ˆ

Pr(z)∩U

|f |p <∞

}
. (4.44)

Theorem 4.2.6. Suppose that (u, p, d) is a suitable weak solution to (1.7)-(1.9).
There exists ǫ0 > 0 such that if

(
r−2
0

ˆ

Pr0(x0,t0)

|u|3

) 1
3

+

(
r−2
0

ˆ

Pr0 (x0,t0)

|p|
3
2

) 2
3

+

(
r−2
0

ˆ

Pr0(x0,t0)

|∇d|3

) 1
3

≤ ǫ0

and

sup
t0−r20≤t≤t0

(
ˆ

Br0

|∇d|3(t)

)1/3

< C(3),

then (u, d) ∈ C∞(Pr0/2(x0, t0)). Moreover one has the estimate:

‖(u, d)‖Ck(Pr0/2
(x0,t0)) ≤ C(k, ǫ0, r0). (4.45)
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Proof. By Corollary 4.2.4

u,∇d ∈M3,3(1−α)
(
Pr/2(x0, t0)

)
, for some 0 < α < 1. (4.46)

Writing the equation for the director d as

∂td−∆d = f , f := (|∇d|2d− u · ∇d)

it is seen from (4.46) that

f ∈M3/2,3(1−α)
(
Pr/2(x0, t0)

)
, for some 0 < α < 1.

Now as in [14] let η ∈ C∞
0 (R3+1) be a cutoff function of Pr/2(x0, t0) and set w = η2d.

Then one has that

∂tw−∆w = η2f + [∂tη
2 −∆η2]d− 2∇η2 · ∇d =: F (4.47)

One immediately has the that F ∈M3/2,3(1−α)(R3+1) with the estimate:

‖F‖M3/2,3(1−α)(Rn+1) ≤ C
[
1 + ‖f‖M3/2,3(1−α)(Pr/2(x0,t0))

]
.

Following [14] define the parabolic metric δ : R3+1 × R3+1 → R by

δ((x, t), (y, s)) = max
{
|x− y|,

√
|t− s|

}
. (4.48)

Immediately from Lemma 3.1 [14] one has that

|∇Γ(x, t)| ≤
C

δ((x, t), (0, 0))3+1
for all (x, t) ∈ R

3+1 (4.49)

where Γ is the heat kernel in R3. By Duhamel’s formula, and (4.49),

|∇w(x, t)| ≤

ˆ t

0

ˆ

R3

|∇Γ(x− y, t− s)||F(y, s)|

≤ C

ˆ t

0

ˆ

R4

|F(y, s)|

δ((x, t), (y, s))3+1

= CĨ1(|F|)(x, t)

(4.50)

where Ĩβ is the Riesz potential of order β ∈ [0, 5] on R3+1 defined by

Ĩβ(g) =

ˆ

R3+1

|g(y, s)|

δ((x, t), (y, s))5−β
, g ∈ Lp(R3+1). (4.51)

Now by Theorem 3.1 of [14] one concludes that ∇w ∈M
3(1−α)
1−2α (R3+1) and that

‖∇w‖
M

3(1−α)
1−2α (R3+1)

≤ C‖F‖M3/2,3(1−α)(Rn+1). (4.52)
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Observing that limα↑ 1
2

3(1−α)
1−2α

= +∞, one sees that

∇d ∈ Lm
(
Pr/2(x0, t0)

)
for all 1 < m <∞. (4.53)

For equation (1.7), consider the auxiliary Stokes equation in R3+1, that is,

∂tv −∆v +∇q = −∇ · [η2(∇d⊙∇d+ u⊗ u)] in R
3 × (0,∞),

∇ · v = 0 in R
3 × (0,∞),

v(·, t) = 0 in R
3.

(4.54)

A similar estimate to (4.50) is obtained for the Oseen kernel [16], namely,

|v(x, t)| ≤

ˆ t

0

ˆ

R3+1

|X(y, s)|

δ((x, t), (y, s))3+1
= Ĩ1(|X|)(x, t), (4.55)

where X = η2(∇d⊙∇d+ u⊗ u). As above, X ∈M3/2,3(1−α)(R3+1) and

‖X‖M3/2,3(1−α)(R3+1) ≤ C
[
‖∇d‖M3,3(1−α)(Pr/2(x0,t0)) + ‖u‖M3,3(1−α)(Pr/2(x0,t0))

]
.

Again by Theorem 3.1 of [14], v ∈M
3(1−α)
1−2α (R3+1) and,

‖v‖
M

3(1−α)
1−2α (R3+1)

≤ C‖X‖M3/2,3(1−α)(Rn+1). (4.56)

In particular, v ∈ Lm (R3+1) for 1 < m < ∞. Note that w = u − v satisfies the
homogeneous Stokes equation in Pr/2(x0, t0), that is,

∂tw −∆w +∇(p− q) = 0, ∇ ·w = 0 in Pr/2(x0, t0)

It is well-known that w ∈ L∞(Pr/4(x0, t0)). Therefore we conclude that

u ∈ Lm
(
Pr/4(x0, t0)

)
for 1 < m <∞. (4.57)

The higher order regularity of (u,d) follows from linear theory, namely, the W 2,1
p -

theory.
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Chapter 5 Well-posedness

In this final chapter, the proof of the main result of this manuscript is completed.
The proof relies upon the short time existence and uniqueness theorem for smooth
initial data of Lin, Lin, and Wang [19].

Theorem 5.0.7 (Lin–Lin–Wang, [19]). For any α > 0, if u0 ∈ C2,α
0 (R3,R3) with

∇ · u = 0 and d0 ∈ C2,α(R3,R3), then there exists T > 0 depending on ‖u0‖C2,α(R3),
‖d0‖C2,α(R3) such that there is a unique smooth solution (u, d) ∈ C2,1

α (R3× [0, T ),R3×
S2) to the initial value problem (1.7)-(1.9).

The existence and uniqueness claimed in Theorem 1.3.2 is proven by a weak-
strong type argument. Such an argument exploits the relationship between weak and
strong solutions. This line of reasoning was first employed by Leray in [16] for the
Navier–Stokes equations and was also employed in the recent work of Lin, Lin, and
Wang [19]. In the case at hand, Theorem 5.0.7 guarantees the existence of unique
strong solutions to (1.7)-(1.9) for smooth data. One may then construct a sequence of
smooth solutions arising from smooth data that converge to solutions of (1.7)-(1.10).

To start the weak-strong argument, let (u0,d0) satisfy

‖u0‖L3
U
(R3) + ‖∇d0‖L3

U
(R3) ≤ ǫ0.

Let η be a standard mollifier and define the sequences

uk
0 := η1/k ∗ u0 and dk

0 := η1/k ∗ d0. (5.1)

It follows from Young’s inequality that

(uk
0,d

k
0) → (u0,d0) in L

3
loc(R

3)×W 1,3
loc (R

3)

and
‖uk

0‖L3
U
(R3) + ‖∇dk

0‖L3
U
(R3) ≤ ‖u0‖L3

U
(R3) + ‖∇d0‖L3

U
(R3) ≤ ǫ0.

For all x ∈ R3 one has that

dist(dk
0(x), S

2) ≤ |η1/k ∗ d0(x)− d0(y)| for all y ∈ B1(x).

Then by integrating over B1(x) and applying the modified Poincaré inequality one
has that

dist(dk
0(x), S

2) ≤

 

B1(x)

|η1/k ∗ d0(x)− d0(y)|dy

.

 

B1(x)

|∇d0(y)|dy

. ‖∇d0‖L3(B1(x))

≤ ‖∇d0‖L3
U
(R3)

≤ ǫ0.
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Since dk
0 remains close to S2 it may be projected onto S2. Define d̃k

0 by d̃k
0 = π(dk

0)
where π : R3 → S

2 by π(x) = x

|x|
. One has that

|∇d̃k
0| = |∇π(dk

0)∇dk
0| ≤ C|∇dk

0| (5.2)

and so by the dominated convergence theorem

∇d̃k
0 → ∇d0 in L3

loc(R
3).

Next, characterize the lifespan of smoothed initial data, that is:

Lemma 5.0.8 (Lifespan characterization). Let (u0,d0) be smooth initial data of
(1.7)-(1.9) satisfying

‖u0‖
3
L3
U
(R3) + ‖∇d0‖

3
L3
U
(R3) = sup

x∈R3

ˆ

B2(x)

|u0|
3 + |∇d0|

3 ≤ ǫ30.

There exists T > 0 depending only on ǫ0 and a unique solution (u,d) to (1.7)-(1.9)
such that

sup
0≤t≤T

sup
x∈R3

ˆ

B1(x)

|u|3 + |∇d|3 ≤ 2ǫ30.

Proof. By Theorem 5.0.7 there is T > 0 and a smooth solution to (1.7)-(1.9) with
initial data (u0,d0). Let 0 < t∗ ≤ T be the maximal time such that

sup
0≤t≤t∗

sup
x∈R3

ˆ

B1(x)

(|u|3 + |∇d|3)(·, t) ≤ 2ǫ30. (5.3)

Since t∗ is the maximal time

sup
x∈R3

ˆ

B1(x)

(|u|3 + |∇d|3)(·, t∗) = 2ǫ30. (5.4)

For x ∈ R
3, let φ ∈ C1

0(B2(x)) be a cut-off function such that

0 ≤ φ ≤ 1, φ ≡ 1 on B1(x), φ ≡ 0 outside B2(x), and |∇φ| ≤ 4 (5.5)

Define

Ex

2 (t) :=

ˆ

B2(x)

[
(|u|3 + |∇d|3)φ

]
(·, t), (5.6)

then the local energy inequality (3.32) implies that

d

dt
Ex

2 (t) + (1− Cǫ20)

ˆ

R3

[|∇(|u|3/2φ)|2 + |∇(|∇d|3/2φ)|2]

≤ C

ˆ

R3

(|u|3 + |∇d|3)|∇φ|2 + C

ˆ

R3

|u||P − c|2φ2

≤ Cǫ30 + C‖u‖L3(B2(x))‖P − c‖2L3(B2(x))

(5.7)
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for 0 ≤ t ≤ t∗. While Lemma 3.2.2 implies

‖P − c‖2L3(B2(x))
≤ C‖|u|+ |∇d|‖4L6(B4(x))

+ Cǫ40. (5.8)

Using norm interpolation and the Sobolev inequality one has that

‖|u|+ |∇d|‖4L6(B4(x))

≤ ‖|u|+ |∇d|‖L3(B4(x))‖|u|+ |∇d|‖3L9(B4(x))

. ‖|u|+ |∇d|‖L3(B4(x))‖|∇(|u|3/2)|+ |∇(|∇d|3/2)|‖2L2(B4(x))
.

(5.9)

From (5.8) and (5.9) one has in (5.7) that

d

dt
Ex

2 (t) + (1− Cǫ20)

ˆ

B1(x)

[|∇(|u|3/2)|2 + |∇(|∇d|3/2)|2]

≤ Cǫ30 + C‖|u|+ |∇d|‖2L3
U (R3)‖|∇(|u|3/2)|+ |∇(|∇d|3/2)|‖2L2(B4(x))

.

(5.10)

Integrating with respect to t ∈ [0, t∗] yields that

Ex

2 (t
∗) + (1− Cǫ20)

ˆ t∗

0

ˆ

B1(x)

[|∇(|u|3/2φ)|2 + |∇(|∇d|3/2φ)|2]

≤ Cǫ30t
∗ + Cǫ20

ˆ t∗

0

ˆ

B4(x)

[|∇(|u|3/2)|2 + |∇(|∇d|3/2)|2] + Ex

2 (0).

(5.11)

Taking the supremum over x ∈ R
3 in the last inequality,

‖|u(t∗)|+ |∇d(t∗)|‖3L3
U
(R3)

+ (1− Cǫ20) sup
x∈R3

ˆ t∗

0

ˆ

B1(x)

[|∇(|u|3/2φ)|2 + |∇(|∇d|3/2φ)|2]

≤ Cǫ30t
∗ + Cǫ20 sup

x∈R3

ˆ t∗

0

ˆ

B4(x)

[|∇(|u|3/2)|2 + |∇(|∇d|3/2)|2] + ǫ30.

(5.12)

Since B4(x) can be covered by finite number of balls of radius one,

sup
x∈R3

ˆ t∗

0

ˆ

B4(x)

[|∇(|u|3/2φ)|2 + |∇(|∇d|3/2φ)|2]

≤ 44 sup
x∈R3

ˆ t∗

0

ˆ

B1(x)

[|∇(|u|3/2φ)|2 + |∇(|∇d|3/2φ)|2].

(5.13)

With ǫ0 > 0 small enough, (5.12) yields that

‖|u(t∗)|+ |∇d(t∗)|‖3L3
U
(R3) ≤ Cǫ30t

∗ + ǫ30. (5.14)

By the choice of t∗ the last inequality provides a lower bound for t∗, that is,

ǫ30 ≤ Cǫ30t
∗ ⇔

1

C
≤ t∗. (5.15)
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Finally, all the pieces are in place to prove:

Theorem 5.0.9 (Well-posedness). There exist ǫ0 > 0 and T0 > 0 such that if u0 :
R

3 → R
3 and d0 : R

3 → S2 satisfy

‖u0‖L3
U
(R3) + ‖∇d0‖L3

U
(R3) ≤ ǫ0,

then there exists a unique solution (u,d) : R3 × [0, T0) → R
3 × S2 of (1.7)-(1.9) with

the following properties:

• (u,∇d) ∈ C([0, T0), L
3
U
(R3));

• (u,d) ∈ C∞(R3 × (0, T0)).

Furthermore, if T0 < +∞ is the maximum time interval, then

lim
t↑T0

‖u(t)‖L3
U
(R3) + ‖∇d(t)‖L3

U
(R3) > ǫ0.

Proof. One may apply the Lemma 5.0.8 to mollified initial data described earlier in
the section. The lemma implies that there exists a sequence of smooth solutions
(uk,dk) corresponding to the initial data (uk

0,d
k
0) existing on [0, T0] (T0 independent

of k) and such that

sup
0≤t≤T0

sup
x∈R3

ˆ

B1(x)

|uk|3 + |∇dk|3 ≤ 2ǫ30.

Theorem 4.2.6 implies that for all R > 0 and 0 < δ < T0

‖(uk,dk)‖C2(BR×(δ,T0)) ≤ C(R, δ).

The Arzela-Ascoli Theorem implies, after taking possible subsequences, that

(uk,dk) → (u,d) ∈ C2
loc(R

3 × (0, T0)).

Since (u,d) must also satisfy the hypotheses of Theorem 4.2.6 one has that

(u,d) ∈ C∞(R3 × (0, T0)).
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Chapter 6 Conclusions

It is worthwhile to reiterate the main result and discuss possible future directions re-
lated to systems discussed in the dissertation–namely the system (1.7)-(1.9) and the
Ericksen–Leslie system. There are many other future directions in the mathematical
analysis of liquid crystals that are not taken up here. For example, the mathematical
analysis of model equations more tightly coupled with the molecular structure (mi-
croscopic structure) such as: Ericksen’s variable degree of orientation theory [7], de
Gennes’ order-parameter (Q-tensor) theory [5], and the micropolar continuum theory
of Eringen [8].

It has be proven in previous chapters that the system

ut + u · ∇u−∆u+∇p = −∇ · (∇d⊙∇d) in R
3 × [0, T ), (6.1)

∇ · u = 0 in R
3 × [0, T ), (6.2)

dt + u · ∇d−∆d = |∇d|2d in R
3 × [0, T ), (6.3)

(u,d)|t=0 = (u0,d0) in R
3 × {0}. (6.4)

is well-posed for u : R3 × [0, T ) → R3 and d : R3 × [0, T ) → S2 and moreover that
one has the following theorem

Theorem 6.0.10 (Well-Posedness). There exists ǫ0 > 0 and T0 > 0 such that if
u0 : R

3 → R3 and d0 : R
3 → S2 satisfy

‖u0‖L3
U
(R3) + ‖∇d0‖L3

U
(R3) ≤ ǫ0, (6.5)

then there exists a unique solution (u,d) : R3 × [0, T0) → R3 × S2 of (6.1)-(6.4) with
the following properties:

• (u,∇d) ∈ C([0, T0), L
3
U
(R3));

• (u,d) ∈ C∞(R3 × (0, T0)).

Furthermore, if T0 < +∞ is the maximum time interval, then

lim
t↑T0

‖u(t)‖L3
U
(R3) + ‖∇d(t)‖L3

U
(R3) > ǫ0.

The Cauchy problem (6.1)-(6.4) was chosen for a number of both physical and
mathematical reasons. Furthermore, many compromises have been made between
physical accuracy and mathematical tractability.

Physically, the most general fluid motions occur in three-dimension, hence the
formulation in R3–however, for tractability, this work has been completed in all of
R3 so to allow access to tools like the Riesz transform. Similarly, as has been already
noted in many places throughout this manuscript, the system (6.1)-(6.3) is a drastic
simplification of the Ericksen–Leslie equations. It does however, retain enough struc-
ture to suggest the plausibility of a similar treatment for Ericksen–Leslie equations.
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Finally, this analysis was done with the equation (6.3) and not the penalized system
of Lin and Liu [20], because though it is an extremely interesting problem to pursue
the limits of their approximation, this problem seems much more difficult.

As for future directions the first is to tie up loose ends. Most glaringly is that
the decay lemma (Lemma 4.2.1) required an assumption about the optimal Sobolev
embedding constant. This was technical and for reason of controlling certain powers of
the gradient of the of the rescaled director in the blow-up argument. This assumption
should be able to be removed. After this, an obvious line of research would be to
reintroduce enough terms to get the Ericksen–Leslie equations. This extension could
be two-fold since strong simplifying assumptions have been made about both Frank’s
constants and the Leslie viscosities. In another direction, it would be very useful to
revamp these solutions for bounded domains (here boundary conditions would have
to be determined).

Copyright c© Jay Lawrence Hineman 2012

66



Bibliography

[1] D.R. Adams and J. Xiao. Morrey spaces in harmonic analysis. Arkiv för Matem-
atik, pages 1–30, 2011.

[2] L. Caffarelli, R. Kohn, and L. Nirenberg. Partial regularity of suitable weak
solutions of the navier-stokes equations. Communications on pure and applied
mathematics, 35(6):771–831, 1982.

[3] Y. Chen and M. Struwe. Existence and partial regularity results for the heat
flow for harmonic maps. Mathematische Zeitschrift, 201(1):83–103, 1989.

[4] YM Chen and FH Lin. Evolution of harmonic maps with dirichlet boundary
conditions. Comm. Anal. Geom, 1(3-4):327–346, 1993.

[5] Pierre-Gilles de Gennes and J. Prost. The Physics of Liquid Crystals. Interna-
tional Series of Monographs on Physics. Clarendon Press, 1995.

[6] J. L. Ericksen. Conservation laws for liquid crystals. Trans. Soc. Rheology,
5:23–34, 1961.

[7] J.L. Ericksen. Liquid crystals with variable degree of orientation. Archive for
Rational Mechanics and Analysis, 113(2):97–120, 1991.

[8] AC Eringen. A unified continuum theory of liquid crystals. ARI-An International
Journal for Physical and Engineering Sciences, 50(2):73–84, 1997.

[9] L. Escauriaza, G.A. Seregin, and V. Sverak. l3,∞-solutions of the navier-stokes
equations and backward uniqueness. Russian Mathematical Surveys, 58:211,
2003.

[10] L.C. Evans. Partial differential equations. Providence, Rhode Land: American
Mathematical Society, 1998.

[11] F.C. Frank. I. liquid crystals. on the theory of liquid crystals. Discuss. Faraday
Soc., 25(0):19–28, 1958.

[12] M. Giaquinta. Multiple integrals in the calculus of variations and nonlinear
elliptic systems. Princeton Univ Pr, 1983.

[13] R. Hardt, D. Kinderlehrer, and F.H. Lin. Existence and partial regularity of
static liquid crystal configurations. Communications in mathematical physics,
105(4):547–570, 1986.

[14] Tao Huang and Changyou Wang. Notes on the regularity of harmonic map
systems. Proc. Amer. Math. Soc., 138(6):2015–2023, 2010.

67
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