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Enochs, Dr. Kert Viele (statistics), and Dr. Jun Zhang (computer science). Each of

the above has contributed insight and improvements to the finished dissertation. In

addition to the academic advising received from those above, I received emotional

support and encouragement from my friends and family. In particular, my mother

and father, who taught me to be determined and to work hard to achieve my goals in

life, and who have provided me with endless support in all aspects of my life. Also,

my friend Julie Miker, for all of the talks on the “thinking bench” that helped me to

survive my graduate career. I would further like to acknowledge the encouragement I

received from Dr. John Thompson to pursue my graduate education in mathematics.

Without all of the above mentioned encouragement and support, I would certainly

not be writing this thesis. Thank you.

iii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Basic Tools and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Simple Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Monomial Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Edge Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Minimal Free Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Edge Ideals of Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Specific Classes of Edge Ideals of Trees . . . . . . . . . . . . . . . . . . . . 32
4.1 Minimal Free Resolutions of the Edge Ideals of Paths . . . . . . . . . 32
4.2 Minimal Primary Decompositions of the Edge Ideals of Paths . . . . 42
4.3 Minimal Free Resolutions of the Edge Ideals of 3-Spiders . . . . . . . 46

5 Edge Ideals of Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Ferrers Graphs and Ferrers Tableaux . . . . . . . . . . . . . . . . . . . . . 54
6.1 Ferrers Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Toric Rings Associated to Ferrers Graphs . . . . . . . . . . . . . . . . 55

7 Initial Ideals Associated to Ferrers Graphs . . . . . . . . . . . . . . . . . . 59
7.1 The Reverse Lexicographic Term Order . . . . . . . . . . . . . . . . . 62
7.2 The Diagonal Term Order . . . . . . . . . . . . . . . . . . . . . . . . 70

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

iv



LIST OF FIGURES

2.1 A graph on 5 vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 A simple graph on 5 vertices . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 A simple graph on 6 vertices . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The complete bipartite graph K1,3 . . . . . . . . . . . . . . . . . . . . . . 9
2.5 The graph of C5, the 5-cycle . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 A graphical representation of IG\{x8,x11} : (x8x11) . . . . . . . . . . . . . . 23
3.2 The complete bipartite graph K1,n . . . . . . . . . . . . . . . . . . . . . 24
3.3 The path of length 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 The path of length 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 A tree on the vertex set {x0, . . . , x9}. . . . . . . . . . . . . . . . . . . . . 28
3.6 The subforest of T defined by (0, 1, 1, 1, 0, 1, 0, 1, 0, 1) . . . . . . . . . . . 28

4.1 The path of length n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 The path of length 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 The path of length 7 with leaf added to the third vertex . . . . . . . . . 34
4.4 The path of length 7 with leaf added to the fourth vertex . . . . . . . . . 35
4.5 A tree on 12 vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 The subforest F1 of T defined by T : (x5x9) . . . . . . . . . . . . . . . . 39
4.7 The subforest F2 of F1 defined by F1 : (x3x6) . . . . . . . . . . . . . . . . 39
4.8 The subforest of T defined by T : (x8x10) . . . . . . . . . . . . . . . . . . 40
4.9 A minimal vertex cover of P5 . . . . . . . . . . . . . . . . . . . . . . . . 44
4.10 A non-minimal vertex cover of P5 . . . . . . . . . . . . . . . . . . . . . . 44
4.11 A spider with 3 legs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.12 A 3-spider as a natural extension of a path . . . . . . . . . . . . . . . . . 47
4.13 The decomposition of a 3-spider . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 The cycle of length n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 The decomposition ICn

= IPn−1 + (xn−1x0) . . . . . . . . . . . . . . . . . 51

6.1 The Ferrers graph with partition λ = (3, 2, 2, 1) . . . . . . . . . . . . . . 54
6.2 The Ferrers tableau with partition λ = (3, 2, 2, 1) . . . . . . . . . . . . . 55
6.3 The Ferrers tableau with partition λ = (5, 4, 4, 2, 1, 1) . . . . . . . . . . . 56
6.4 The subtableau T′ of T(5,4,4,2,1,1) . . . . . . . . . . . . . . . . . . . . . . . 56
6.5 The Ferrers tableau with partition λ = (4, 3, 2, 1) . . . . . . . . . . . . . 58

7.1 The Ferrers tableau with partition λ = (n, n) . . . . . . . . . . . . . . . . 63
7.2 The subtableaux components occurring in the basic double link . . . . . 65
7.3 The Ferrers tableau with partition λ = (3, 3, 2) . . . . . . . . . . . . . . . 70
7.4 The main diagonal of a Ferrers tableau . . . . . . . . . . . . . . . . . . . 71
7.5 The Ferrers tableau T(3,3,2) with the main diagonal highlighted . . . . . . 72
7.6 The Ferrers tableau T(5,5,5,4) in the diagonal term order . . . . . . . . . . 77

v



7.7 The Ferrers tableau T(3,3,2) in the diagonal term order . . . . . . . . . . 77
7.8 The Ferrers tableau T(m,m) in the diagonal term order . . . . . . . . . . 78

7.9 The Ferrers tableau
∼

T . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vi



1 Introduction

In this thesis we will examine specific classes of planar graphs and monomial ideals

that are associated to these graphs. The goal of studying this relationship is to gain

information about the algebraic objects by using both graph-theoretical and combi-

natorial properties of the planar graphs. This area of mathematics, which lies at the

intersection of many different areas including commutative algebra, combinatorics

and topology, is a source of many interesting open problems. For a thorough intro-

duction to this branch of mathematics, we refer the reader to the book of Miller and

Sturmfels (see [13]). In the chapters that follow, we will study properties of the min-

imal free resolutions of the quotient rings corresponding to the edge ideals of certain

classes of simple graphs.

In Chapter 2, we will begin by providing definitions of the objects that will be

studied, namely edge ideals, and descriptions of the simple graphs that we wish to

study in later chapters. In this chapter we will also introduce some of the techniques

that will be used throughout this thesis, including the mapping cone construction of

free resolutions from a short exact sequence.

In Chapter 3, we will consider the edge ideals of trees. In particular, we are

interested in studying the minimal free resolution associated to this class of edge ide-

als. When considering trees as a subclass of simple graphs, we notice their relatively

simplistic structure. Transferring to the study of the edge ideals of trees, we would

expect that the corresponding minimal free resolutions would be relatively simple.

However, in [14], Nagel and Reiner show that for the class of edge ideals associated

to trees, the Betti numbers corresponding to these edge ideals can be as complicated

as desired. For certain classes of ideals associated to simple graphs, Hà and Van Tuyl

introduced in [9] an inductive procedure to compute the minimal free resolution of

such ideals. In Theorem (3.0.16) we will restrict to the class of trees and show a

simplified development of this inductive procedure for this case. We should note that

this inductive procedure also illustrates the complexity of computing a minimal free

resolution for the edge ideals of trees. However, for the edge ideals of trees we are

able to answer the question of when a particular multi-graded Betti number occurs

in the minimal free resolution of the corresponding quotient ring. More precisely, we

will prove in Theorem (3.0.25) the following comprehensive description of the Betti

numbers for the edge ideal of a given tree.
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Theorem. Given a tree T on the vertex set {x0, . . . , xn} and a vector a ∈ Nn+1, the

following are equivalent.

(i) βi,a(S/IT ) = 1

(ii) The subforest of T defined by a is maximal.

In the above theorem, the property of maximality is an algebraic property of the

corresponding edge ideal IT that will be introduced in Definition (3.0.21). The proof of

this theorem leads to an implementation of this result in the open-source mathematics’

software SAGE [15]. The code for this implementation is written in Python and

provided at the end of Chapter 3.

Due to the complexity of the minimal free resolutions of the edge ideals of trees,

we consider classes of edge ideals that occur as subclasses of trees. In particular, in

Chapter 4, we will consider the edge ideals of paths and a class of graphs that occur

as a natural extension of the class of paths. For these special cases we will generate

more specific results concerning the minimal free resolutions of the corresponding

quotient rings to the edge ideals. Specifically, for the edge ideals of paths we will show

the following result in Proposition (4.1.2) concerning the corresponding minimal free

resolutions.

Proposition. Let Pn denote an n-length path. Then

(i) the length of the minimal free resolution for S/IPn
is
⌈

2n
3

⌉

.

(ii) the Castelnuovo-Mumford regularity of S/IPn
is
⌈

n
3

⌉

.

In particular, this proposition shows that even in the case of the extremely simplistic

graphical structure of paths, the minimal free resolutions of the corresponding edge

ideals are relatively complicated. Roughly speaking, they have two-thirds of the

maximum length of a minimal free resolution of an ideal in the same polynomial ring.

Furthermore, we will show in Corollary (4.1.4) the following result concerning the

rank of the last module in the minimal free resolution of an edge ideal for a path.

Corollary. For a path of length n,

β⌈ 2n
3 ⌉(S/IPn

) =







1 if 3 ∤ n

n
3

+ 1 if 3 | n

2



Both the above corollary and the result concerning the projective dimension and the

Castelnuovo-Mumford regularity of a path clearly demonstrate the integral role that

divisibility of a path’s length by 3 plays in the algebraic structure of the edge ideal

as it relates to its minimal free resolution. Since trees can be inductively constructed

from paths, we see that divisibility by 3 also plays an important role in the algebraic

structure of the edge ideals of trees.

We will also examine the minimal primary decomposition of the edge ideal of an

arbitrary simple graph as it relates to the set of all minimal vertex covers of the planar

graph. In particular, we will show in Theorem (4.2.6) that there is the following one-

to-one correspondence between the set of minimal vertex covers of a simple graph

and the set of associated prime ideals of the corresponding edge ideal.











Minimal vertex

covers of a

simple graph G











1:1←→
{

Associated prime

ideals of IG

}

This one-to-one correspondence will allow us to easily determine whether a given

prime ideal is indeed an associated prime ideal of the corresponding edge ideal.

The results that we obtain for the edge ideals of trees will be used in Chapter

5 to generate information concerning the minimal free resolution of cycles and more

general graphs. In Proposition (5.0.2), we will provide an explicit formula for the

length of the minimal free resolution corresponding to the edge ideal of a cycle. In

particular, we will see that it is very closely related to the length of the minimal free

resolution corresponding to a path. We should note that the results introduced by

Hà and Van Tuyl in [9] and proved again in a more simplified manner in Theorem

(3.0.16) to inductively construct the minimal free resolution for the corresponding

edge ideal of a given tree do not apply to the class of edge ideals of cycles. The

inductive construction used to obtain the minimal free resolution for the edge ideal

of a given tree was based upon the addition (or removal) of a leaf of the tree.

In Chapter 6, we will consider monomial ideals associated to another class of

simple graphs known as Ferrers graphs. In this chapter, we will provide the basic

definitions and tools that we will use to study a class of monomial ideals related

to the defining ideal of the toric ring that was studied by Corso and Nagel in [3],

where they showed that the toric ring is intimately related to the (2 × 2)-minors of

the associated Ferrers tableau. The monomial ideals that we will study in Chapter 7

will occur as initial ideals of the toric ideal generated by the (2× 2)-minors of these

Ferrers tableaux.
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Specifically, in Chapter 7, we will examine two particular term orders and the

resulting initial ideals of the defining ideal of the toric ring. One of our goals of

considering initial ideals of these toric ideals is to generate information about the

original toric ring. In particular, we would like to show that the toric ring of a Ferrers

graph is level. The first term order that we will consider is the reverse lexicographic

term order. We will see in Example (7.1.6) that the toric generators of the defining

ideal of the toric ring constitute a Gröbner basis. However, the resulting initial

ideal in the reverse lexicographic term order is not, in general, level. For this reason

we will consider another term order which occurs as a modification of the reverse

lexicographic term order and was used by Conca, Hoşten, and Thomas in [2] when

they considered ideals that occur as ((n− 1)× (n− 1))-minors of matrices of size

n × n. As we will see in this case, the initial ideals show much greater promise. In

particular, we show in Proposition (7.2.8) that the initial ideals of the toric ideals in

this term order are level for specific Ferrers graphs. Consequently, this shows that

the original toric rings are also level for these particular Ferrers graphs.

It should be noted that in Chapter 7 the initial ideals studied are generated by

square-free quadrics. Relating this back to Chapter 2, we see that these initial ideals

correspond to simple graphs with vertex sets corresponding to the variables that

divide the minimal generators of the initial ideal. Furthermore, the results that we

show concerning the initial ideals of the defining ideals of the toric rings of Ferrers

tableaux are also statements about the edge ideals of the simple graphs defined by

the minimal generating sets of the initial ideals.

Copyright c© Rachelle R. Bouchat 2008.
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2 Basic Tools and Concepts

The goal of this chapter is to provide definitions of both the graphical structures and

the algebraic objects that will be used in the first three chapters and also to introduce

some of the basic tools that will be used in the development of the results concerning

the algebraic structure of the ideals that will be studied. We begin by providing a

brief introduction to the planar graphs that we will be working with.

2.1 Simple Graphs

The following definitions are adaptations of those given in the book of Diestel [5],

which provides a thorough introduction to graph theory.

2.1.1 Definition. A graph consists of a vertex set VG = {x0, . . . , xn} and a set of

edges EG ⊂ VG × VG. Moreover, if {xi, xj} ∈ EG we will say xi and xj are connected

by an edge.

2.1.2 Example. Let G denote the following graph.

4x

3x

1

x

x

0

2

x

Figure 2.1: A graph on 5 vertices

Then VG = {x0, x1, x2, x3, x4} and EG = {{x0, x2}, {x1, x1}, {x1, x4}, {x1, x3}, {x3, x4}}.

In order to redevelop the inductive procedure for the minimal free resolutions of a

particular class of ideals we will need the following definitions concerning the vertices

and edges of a graph.

2.1.3 Definition. Let G be a graph.

(i) Two vertices xi and xj are called neighbors if and only if {xi, xj} ∈ EG.

(ii) The degree of a vertex, xi ∈ VG, is the number of neighbors of the vertex xi.

5



(iii) A subgraph G′ of G is a graph for which both VG′ ⊂ VG and EG′ ⊂ EG.

(iv) A path from vertex x0 to vertex xn is a sequence of edges

{x0, x1}, {x1, x2}, . . . , {xn−1, xn}

that starts at x0 and ends at xn. We will require that the xi are all distinct for

i = 0, . . . , n.

(v) A cycle is a sequence of edges

{x0, x1}, {x1, x2}, . . . , {xn−1, xn}, {xn, x0}

where the xi are all distinct for i = 0, . . . , n.

(vi) G is said to be connected if any two vertices of G are joined by a path of edges,

and a connected component is a maximal connected subgraph of G.

(vii) A loop of a graph G is an edge of the form {xi, xi} for some vertex xi ∈ VG.

We would like to define an algebraic object associated to a graph, but to provide a

well-defined construction we must restrict to a specific class of graphs.

2.1.4 Definition. G is a simple graph if it contains no loops, i.e. no vertex is con-

nected to itself via an edge.

2.1.5 Example. If we remove edge {x1, x1} from the graph in Example (2.1.2), we

obtain the following simple graph.

x

x

3x

1

2x

x

0

4

Figure 2.2: A simple graph on 5 vertices

This restriction to the class of simple graphs will enable a one-to-one correspondence

between the edges of the graphs and a specific class of ideals known as square-free

quadratic monomial ideals.

6



2.2 Monomial Ideals

In this section, we want to define the algebraic objects that will be related to the

simple graphs. We begin by defining the following ideals as in the textbook of Miller

and Sturmfels [13].

2.2.1 Definition. Let S = k[x0, x1, . . . , xn] be the polynomial ring over the field k.

Then

(i) a monomial in S is a product xa = xa00 x
a1
1 · · ·xan

n for any vector

a = (a0, a1, . . . , an) ∈ Nn+1 of nonnegative integers.

(ii) an ideal I ⊂ S is called a monomial ideal if it can be generated by monomials.

(iii) a monomial xa is square-free if every coordinate of a is either 0 or 1.

(iv) an ideal is square-free if it can be generated by square-free monomials.

2.2.2 Example. Consider the polynomial ring S = k[x0, x1, x2, x3]. Then

(i) I = (x0x
2
3, x

3
1x2) is a monomial ideal in S.

(ii) J = (x0x1, x2x3−x0x1) is also a monomial ideal in S, because J can be generated

by monomials as J = (x0x1, x2x3). We can further see that J is actually a

square-free monomial ideal.

The study of monomial ideals is an active area of research because of its connections

to combinatorics, simplicial topology, and geometry. Specifically, monomial ideals

occur as Gröbner degenerations of more general ideals generated by polynomials, and

Gröbner basis theory reduces questions regarding systems of polynomial equations

down to the combinatorial study of monomial ideals. More generally, monomial

ideals form a very important bridge between the areas of commutative algebra and

combinatorics. Furthermore, square-free monomial ideals are often referred to as

Stanley-Reisner ideals, and the connections of these objects to combinatorics arises

from their connections to the study of simplicial topology.

In the following section we will examine how to relate simple graphs to square-free

monomial ideals.

2.3 Edge Ideals

Given a graph G on the vertex set {x0, . . . , xn}, we would like to study the algebraic

invariants of the ideal whose generators are formed by the edges of the graph. This

7



ideal will reside in the polynomial ring S := k[x0, . . . xn] where k is an arbitrary field

and the variables of S correspond to the vertex set of G. However, for this to be a

well-defined conversion we must restrict to the class of simple graphs.

From this point forward, we will assume that G is a simple graph. This restriction

to simple graphs permits the following definition.

2.3.1 Definition. For a graph G with vertex set {x0, . . . , xn}, the edge ideal of G is

the ideal

IG := (xixj | {xi, xj} ∈ EG) ⊂ S := k[x0, . . . , xn].

2.3.2 Example. Consider the following graph G.

43

2

1

0

5

x

x

x

x x x

Figure 2.3: A simple graph on 6 vertices

Then the edge ideal corresponding to G is

IG = (x0x1, x0x2, x1x3, x2x4, x2x5, x4x5) ⊂ k[x0, x1, x2, x3, x4, x5].

It should be noted that edge ideals were first introduced by Villarreal in [17] and are

a current topic of study in algebraic combinatorics. Connections between the alge-

braic properties of the edge ideal, IG, and the combinatorial data associated to the

planar graph, G, are an area of active research. The textbook of Miller and Sturmfels

(see [13]) provides a thorough introduction to this subject. Furthermore, the fol-

lowing natural one-to-one correspondence illustrates that every square-free quadratic

monomial ideal in S arises as an edge ideal of a simple graph on n + 1 vertices.

{

Square-free quadratic monomial

ideals I ⊂ S = k[x0, . . . , xn]

}

1:1←→
{

Simple graphs G on n + 1 vertices
}

We would like to study the algebraic invariants of the quotient ring S/IG. In par-

ticular, we would like to study properties of the minimal free resolution of S/IG. In

the next section we provide a brief introduction to minimal free resolutions, but for
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a more thorough introduction to the theory of minimal free resolutions we refer the

reader to the textbook of Eisenbud (see [6]).

2.4 Minimal Free Resolutions

2.4.1 Definition. A free resolution of the finitely generated S-module M is an exact

sequence, i.e. im(φi) = ker(φi−1), of S-modules

· · ·Fi
φi−→ Fi−1

φi−1−→ · · · φ2−→ F1
φ1−→ F0

φ0−→ M −→ 0

where all Fi are finitely generated free S-modules.

It should be noted that in an arbitrary ring R, the free resolution of a finitely gen-

erated R-module M does not have to be finite in length. However, if the finitely

generated module M is considered in the polynomial ring S = k[x0, . . . , xn], Hilbert

proved in [10] that there is a free resolution of M with finite length, but a much more

modern proof of this theorem is provided in [6].

2.4.2 Theorem (Hilbert’s Syzygy Theorem). If S = k[x0, . . . , xn], then every finitely

generated S-module has a free resolution of length at most n+ 1.

2.4.3 Example. Consider the graph G below.

x

x 2 3xx

0

1

Figure 2.4: The complete bipartite graph K1,3

Then IG = (x0x1, x0x2, x0x3) ⊂ S := k[x0, x1, x2, x3], and a free resolution for S/IG

is given by

0→ S 













x3

−x2

x1















// S3














−x2 −x3 0

x1 0 −x3

0 x1 x2















// S3
[

x0x1 x0x2 x0x3

]

// S

// S/IG // 0.
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It is often useful to record more detailed information in a module’s free resolution by

considering graded modules and graded resolutions. In preparation for these defini-

tions, we must first let A = (A,+) denote an abelian group with operation +.

2.4.4 Definition.

(i) An A-graded ring is a ring R with a decomposition

R =
⊕

a∈A

[R]a

as a direct sum of graded components such that

[R]a[R]b ⊂ [R]a+b

for all a, b ∈ A. The elements in [R]a are called homogeneous elements of degree

a.

(ii) Let R be an A-graded ring. Then an R-module M is an A-graded module if it

has a decomposition

M =
⊕

a∈A

[M ]a

as a direct sum of graded components such that

[R]a[M ]b ⊂ [M ]a+b

for all a, b ∈ A

2.4.5 Remark. We will often use the suspension notation, M(a), to denote the

A-graded translate of a free R-module M that satisfies

[M(a)]b = [M ]a+b

for all a, b ∈ A.

2.4.6 Example. Let us consider the polynomial ring S = k[x0, . . . , xn].

(i) Consider the abelian group (Z,+). Then the standard grading (or coarse grad-

ing) of S is defined by deg(xa) = a0+a1+. . .+an for each a = (a0, a1, . . . , an) ∈
Zn+1. If we let S = k[x0, x1, x2, x3], then deg(x2

0x2x
3
3) = 2+0+1+3 = 6 in the

standard grading.
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(ii) Consider the abelian group (Zn+1,+). Then the fine grading of S is defined by

deg(xa) = a for each a = (a0, a1, . . . , an) ∈ Zn+1. Thus for S = k[x0, x1, x2, x3],

deg(x2
0x2x

3
3) = (2, 0, 1, 3) in the fine grading.

From the previous example, we see that the fine grading carries the information of the

standard grading along with a detailed description of the variables contributing to

the overall degree of the monomial. In general, we would like to consider monomials

in the fine grading, but it often takes considerably more work to keep track of all

the degree shifts. For this reason, in the cases where we do not need all of this extra

information we will use the standard grading.

We would also like to talk about maps between graded modules; and, in particular,

graded free resolutions of graded modules. To do this we must first make the following

definition.

2.4.7 Definition. Let M , N be A-graded modules with a ∈ A. Then an A-graded

homomorphism of degree a is a homomorphism φ : M −→ N such that for all homo-

geneous m ∈M
deg(φ(m)) = deg(m) + a.

If a = 0, then φ is called degree-preserving.

2.4.8 Example. Let S = k[x0, x1, x2] considered in the standard grading. Then

Φ1 : S
x0−→ S

is a homomorphism of degree 1. However,

Φ2 : S(−1)
x0−→ S

is a degree-preserving homomorphism.

In the above example, even though the maps perform the same operation to an

arbitrary element of S, the definition of Φ2 is more favorable. This is because Φ2

encodes the degree transformation that occurs during the mapping in the free module

rather than the homomorphism.

Now we may talk of a graded free resolution for a finitely generated graded module

M ⊂ S. By this, we mean a free resolution of M

0 −→ Fr
φr−→ Fr−1

φr−1−→ · · · φ2−→ F1
φ1−→ F0

φ0−→M −→ 0
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in which each map, φi, is degree preserving.

2.4.9 Example. Consider I = (x0x1, x0x2, x0x3) from Example (2.4.3).

(i) The free resolution

0→ S(−4)














x3

−x2

x1















// S3(−3)














−x2 −x3 0

x1 0 −x3

0 x1 x2















// S3(−2)

[

x0x1 x0x2 x0x3

]

// S // S/IG → 0

is a Z-graded (or coarsely graded) free resolution of S/IG.

(ii) The free resolution

0→ S(−1,−1,−1,−1)














x3

−x2

x1















//

S(−1,−1,−1, 0)
⊕

S(−1,−1, 0,−1)
⊕

S(−1, 0,−1,−1)















−x2 −x3 0

x1 0 −x3

0 x1 x2















//

S(−1,−1, 0, 0)
⊕

S(−1, 0,−1, 0)
⊕

S(−1, 0, 0,−1)

[

x0x1 x0x2 x0x3

]

// S // S/IG −→ 0

is a Z4-graded (or finely graded) free resolution of S/IG.

At this point we should note that, in general, free resolutions (and even graded free

resolutions) of modules are not unique as illustrated by the following example.

2.4.10 Example. Let S = k[x0, x1], and let M = S/(x0x1). Then

0 // S(−2)
x0x1 // S // M // 0

s � // (x0x1)s
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and

0 // S(−2)
⊕

S // S2 // M // 0

(s, t) � // ((x0x1)s, t)

are both Z-graded free resolutions of M .

For uniqueness (up to isomorphism), we must restrict to a graded minimal free reso-

lution, which is a graded free resolution of M with an added restriction on the image

of each map.

2.4.11 Definition. Let M be a finitely generated graded S-module.

(i) A (graded) minimal free resolution of M is an exact sequence of graded S-

modules

0 −→ Fr
φr−→ Fr−1 −→ · · · −→ F1

φ1−→ F0
φ0−→M −→ 0

where all Fi are finitely generated free S-modules, all φi are degree preserving

homomorphisms, and φi(Fi) ⊂ (x0, x1, . . . , xn)Fi−1.

(ii) The length of a minimal free resolution of M , r, is called the projective dimen-

sion of M and is denoted by pd(M).

(iii) We can write Fi =
⊕

b∈A

Sβi,b(−b). Then the ith -Betti number of M in degree b is

denoted by βi,b(M) and is the number of copies of S(−b) occurring in the free

S-module Fi.

(iv) The Castelnuovo-Mumford regularity (or regularity) of M

reg(M) = max{b− i | βi,b(M) 6= 0}.

Since each map, φi, is a map between finitely generated free S-modules, we may

represent the maps by their actions on the standard basis elements for each free S-

module. In this way, we can represent each map, φi, by a matrix with the rank of Fi

equal to the number of columns of the matrix and the rank of Fi−1 equal to the number

of rows of the matrix. Moreover, if we represent each map in the free resolution by

a matrix, we can immediately tell whether or not the free resolution is minimal by

looking at the individual entries of the matrices. If none of the matrices’ entries are

units, then the free resolution is actually a minimal free resolution. Another way

of looking at this is to say that a given free resolution is minimal if the matrices
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representing the maps of the free resolution contain only entries of zeroes or products

of the xi’s.

In Example (2.4.10), the first free resolution is actually a minimal free resolution of

the module M , whereas the second free resolution of M demonstrates a free resolution

of M which is not minimal. In comparing the two resolutions in Example (2.4.10),

we can see that the first free resolution of M can be obtained from the second free

resolution of M by removing the identity map from the second component of the

leftmost map.

The projective dimension is a measure of the length of a minimal free resolution

for M , but we can think of the regularity of M as a measure of the “width” of M .

Actually, the Castelnuovo-Mumford regularity of M is a measure of how hard it will

be to compute a minimal free resolution for M , and it also puts a bound on the

largest degree of a matrix entry representing a map in a minimal free resolution for

M .

2.4.12 Example. Recall the coarsely graded free resolution of S/IG where G is the

complete bipartite graph K1,3 seen in Example (2.4.3).

0→ S(−4)














x3

−x2

x1















// S3(−3)














−x2 −x3 0

x1 0 −x3

0 x1 x2















// S3(−2)

[

x0x1 x0x2 x0x3

]

// S // S/IG // 0

Then we can see that all of the entries of the matrices that represent the maps of the

resolutions are either 0 or products of the variables xi. Hence, this free resolution of

S/IG is actually a minimal free resolution of S/IG. Also, we see that β2,3(S/IG) = 3

but β1,3(S/IG) = 0. Furthermore, it is easily seen that reg(S/IG) = 1.

We want to recover the inductive procedure for obtaining the minimal free resolutions

corresponding to edge ideals of simple graphs shown in the paper of Hà and Van Tuyl

(see [9]) for a specific class of simple graphs known as trees. This inductive procedure

uses the mapping cone procedure for short exact sequences as its primary tool.

Given a short exact sequence

0 −→ M1 −→M2 −→M3 −→ 0
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of graded S-modules Mi, the mapping cone construction will enable us to obtain a

free resolution for M3 knowing free resolutions of M1 and M2. Knowing the free

resolutions of M1 and M2 we obtain the following diagram.

0 // M1
// M2

// M3
// 0

F0

ρ0

OO

G0

ψ0

OO

F1

ρ1

OO

G1

ψ1

OO

...

ρ2

OO

...

ψ2

OO

where the vertical sequences are free resolutions of M1 and M2, respectively. Then

there are maps δi : Fi → Gi such that the squares become commutative and we obtain

the following diagram.

0 // M1
// M2

// M3
// 0

F0

ρ0

OO

δ0 //______ G0

ψ0

OO

F1

ρ1

OO

δ1 //______ G1

ψ1

OO

...

ρ2

OO

...

ψ2

OO

Furthermore, the maps ρi, δi, and ψi can be used to construct maps that form a free

resolution of the module M3 as follows.
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0 // M1
// M2

// M3
// 0

F0

ρ0

OO

δ0 // G0

ψ0

OO

G0

OO�
�

�

�

�

F1

ρ1

OO

δ1 // G1

ψ1

OO

G1 ⊕ F0

[

ψ1 −δ0
]

OO�
�

�

�

�

...

ρ2

OO

...

ψ2

OO

...

OO�
�

�

�

�

...
...

...

Fi−1

ρi−1

OO

δi−1 // Gi−1

ψi−1

OO

Gi−1 ⊕ Fi−2

OO�
�

�

�

�

Fi

ρi

OO

δi // Gi

ψi

OO

Gi ⊕ Fi−1







ψi (−1)iδi−1

0 ρi−1







OO�
�

�

�

�

...

OO

...

OO

...

OO�
�

�

�

�

(2.1)

In general, even if we start with minimal free resolutions for M1 and M2, after per-

forming the mapping cone procedure, we do not necessarily generate a minimal free

resolution for M3.

2.4.13 Example. Consider the edge ideal of the cycle of length 5 depicted below.
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4

0x

x x1

x

Figure 2.5: The graph of C5, the 5-cycle

Then

IC5 = (x0x1, x1x2, x2x3, x3x4, x0x4) ⊂ S = k[x0, . . . , x4].

Set J = (x0x1, x1x2, x2x3, x3x4), and consider the following short exact sequence.

0 −→ S/J : (x0x4)(−2)
x0x4−→ S/J −→ S/I −→ 0

Then the mapping cone procedure using Z-graded minimal free resolutions of

S/J : (x0x4) and S/J provides the following free resolution of S/IC5 .

0 // S/J : (x0x4)(−2) // S/J // S/IC5
// 0

S(−2)

OO

S

OO

S

OO�
�

�

S2(−3)

OO

S4(−2)

OO

S5(−2)

OO�
�

�

S(−4)

OO

S3(−3)⊕ S(−4)

OO

S5(−3)⊕ S(−4)

OO�
�

�

0

OO

S(−5)

OO

S(−4)⊕ S(−5)

OO�
�

�

0

OO

0

OO�
�

�

However, the above resolution of S/IC5 is not minimal. The minimal free resolution

for S/IC5 is given by

0 −→ S(−5) −→ S5(−3) −→ S5(−2) −→ S −→ S/IC5 −→ 0.

In the previous example, we can see that in the mapping cone construction of a free

resolution for S/IC5 a copy of S(−4) must be canceled from the bottom-most map to
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obtain a minimal free resolution for S/IC5 . This copy of S(−4) is often referred to as

a ghost term.

We are interested in finding cases where there is no cancellation in the mapping

cone procedure, i.e. where no ghost terms arise. More precisely, we are interested in

cases where the mapping cone procedure applied to minimal free resolutions of M1

and M2 and the exact sequence

0 −→ M1 −→M2 −→M3 −→ 0

provides a minimal free resolution of M3.

Copyright c© Rachelle R. Bouchat 2008.
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3 Edge Ideals of Trees

In the case of specific square-free quadratic monomial ideals (or the edge ideals cor-

responding to certain simple graphs), there is an inductive method to produce the

minimal free resolutions of the corresponding quotient rings. Hà and Van Tuyl de-

scribe in [9] a method to decompose edge ideals of particular simple graphs to generate

information on the algebraic invariants of the corresponding quotient rings S/IG. The

decomposition that is used is based upon the concept of splittable monomial ideals

which were originally defined by Eliahou and Kervaire in [7].

3.0.14 Definition. Let I be a monomial ideal in S = k[x0, . . . , xn], and let G(I)
denote the minimal set of monomial generators of I. Then I is splittable if I is the

sum of two nonzero monomial ideals J and K, i.e. I = J +K, such that

(i) G(I) is the disjoint union of G(J) and G(K); and

(ii) there is a splitting function

G(J ∩K) // G(J)× G(K)

w � // (φ(w), ψ(w))

satisfying

(a) for all w ∈ G(J ∩K), w = lcm(φ(w), ψ(w)); and

(b) for every subset S ⊂ G(J ∩ K), both lcm(φ(S)) and lcm(ψ(S)) strictly

divide lcm(S).

If J and K satisfy the above conditions, then we say that I = J +K is a splitting of

I.

This definition, however, is quite cumbersome to use because it says that to determine

if an ideal is splittable we must first be able to decompose the ideal into the sum of

two ideals with disjoint sets of minimal generators, and then we must satisfy an

additional nontrivial restriction on the minimal generators of the ideals involved in

the decomposition. However, given an edge of the simple graph G, Hà and Van Tuyl
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considered in [9] when this edge defines a splitting of the edge ideal IG, i.e. when

(

Edge ideal of

the graph G

)

=
(

Edge
)

+







Edge ideal of subgraph

obtained from G

by removing the edge







defines a splitting of IG. Written more formally, we have the following definition.

3.0.15 Definition. An edge {xi, xj} of G is a splitting edge if

IG = (xixj) + IG\{xi,xj}

defines a splitting of IG.

In [9], Hà and Van Tuyl remarked that if the simple graph G has a vertex of degree 1,

say xk, then the edge formed by xk and its neighbor is a splitting edge of IG. In this

case, we can also recover the inductive result concerning the minimal free resolutions

of the corresponding quotient rings as proved by Hà and Van Tuyl (see [9]).

3.0.16 Theorem. Let G be a simple graph with vertex set VG = {x0, . . . , xn} and

the added restriction that G has a vertex of degree 1, say xn. Furthermore, let xn−1

be the neighbor of xn. Then the mapping cone procedure applied to the sequence

0→ (S/IG\{xn−1,xn} : (xn−1xn))(0, . . . , 0,−1,−1)
xn−1xn−→ S/IG\{xn−1,xn} −→ S/IG → 0

provides a minimal free resolution of S/IG where

IG\{xn−1,xn} := (xixj | xixj is a generator of IG and xixj 6= xn−1xn)

i.e.

βi,a(S/IG) = βi,a(S/IG\{xn−1,xn}) + βi−1,a(S/IG\{xn−1,xn} : (xn−1xn)(0, . . . , 0,−1,−1))

for all a ∈ Nn+1.

Proof. We first note that since xn does not divide a minimal generator of IG\{xn−1,xn}

IG\{xn−1,xn} : (xn−1xn) = IG\{xn−1,xn} : (xn−1).
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However, this implies that the exact sequence

0 −→ (S/IG\{xn−1,xn} : (xn−1xn))(0, . . . , 0,−1,−1) −→ S/IG\{xn−1,xn} −→ S/IG −→ 0

factors as

0 // (S/IG\{xn−1,xn} : (xn−1xn))(0, . . . , 0,−1,−1)
xn−1xn//

xn

��

S/IG\{xn−1,xn}
// S/IG // 0.

(S/IG\{xn−1,xn} : xn−1)(0, . . . ,−1, 0)

xn−1

55kkkkkkkkkkkkkkkkkkkkkkkkkk

Furthermore, let

F : 0 −→ Fr −→ Fr−1 −→ · · · −→ F1 −→ S −→ S/IG\{xn−1,xn} : (xn−1xn) −→ 0

be a minimal free resolution of S/IG\{xn−1,xn} : (xn−1xn) = S/IG\{xn−1,xn} : (xn−1),

and let

G : 0 −→ Gt −→ Gt−1 −→ · · · −→ G1 −→ S −→ S/IG\{xn−1,xn} −→ 0

be a minimal free resolution of IG\{xn−1,xn}. Set

(-2) = (0, . . . , 0,−1,−1)

and

(-1) = (0, . . . , 0,−1, 0).
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Then we get the following diagram.

(S/IG\{xn−1,xn} : (xn−1xn))(-2)
xn // (S/IG\{xn−1,xn} : (xn−1))(-1) // S/IG\{xn−1,xn}

S(-2)

OO

xn // S(-1)

OO

δ′1 //____________ S

OO

F1(-2)

OO

xn // F1(-1)

OO

δ′2 //___________ G1

OO

...

OO

...

OO

...

OO

Fr(-2)

OO

xn // Fr(-1)

OO

δ′r //___________ Gr

OO

0

OO

0

OO

...

OO

Gt

OO

0

OO

From the mapping cone construction illustrated in (2.1), if the mapping cone did

not produce a minimal free resolution of S/IG, then one of the maps in the free

resolution would contain a unit. Looking at the factoring of the resolution, we see

that this is impossible. If some δ′i contained a unit, it would be multiplied by xn upon

composition. Hence the induced maps cannot contain a unit and consequently there

is no cancelation in the mapping cone, i.e. the mapping cone provides a minimal free

resolution of S/IG. Therefore,

βi,a(S/IG) = βi,a(S/IG\{xn−1,xn}) + βi−1,a(S/IG\{xn−1,xn} : (xn−1xn)(0, . . . , 0,−1,−1))

for all a ∈ Nn+1.

If we take a closer look at S/IG\{xn−1,xn} : (xn−1xn) we can see that

IG\{xn−1,xn} : (xn−1xn) = a + (x0, . . . , xs)

where {xn, x0, . . . , xs} are the neighbors of xn−1 and the generators of a are square-

free quadrics in k[xs+1, . . . , xn−2]. This shows that IG\{xn−1,xn} : (xn−1xn) can be

realized as a subgraph of G.
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If we further restrict ourselves to a subclass of simple graphs where each graph

in the class has at least one vertex of degree 1, then we will obtain an inductive

construction for the minimal free resolution of the corresponding quotient rings. Let

us consider the subclass of simple graphs known as trees.

3.0.17 Definition. Let G be a connected simple graph. Then

(i) G is a tree if it does not contain a cycle;

(ii) a vertex of degree 1 in a tree is called a leaf ; and

(iii) a forest is a disjoint union of trees.

By definition, every tree has a leaf. Hence, in the case of the edge ideals of trees,

Theorem (3.0.16) provides a comprehensive description of the corresponding minimal

free resolutions, because the quotient ideal IG\{xn−1,xn} : (xn−1xn) can be realized

graphically as a subforest of IG. The following picture illustrates the relationship

between IG, IG\{xn−1,xn}, and IG\{xn−1,xn} : (xn−1xn).

x

n−1G\{x     , x  }I

nn−1:(x    x  )
nn−1G\{x     , x  }I

4x

1110

9

8

76

x

x

x n

x

x x

x x
x

x

0

1

2

3

5

Figure 3.1: A graphical representation of IG\{x8,x11} : (x8x11)

Let us now consider the complete bipartite graph K1,n depicted below.
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nx x2 n−1

x0

x1 x

Figure 3.2: The complete bipartite graph K1,n

Then IK1,n
= (x0x1, x0x2, . . . , x0xn) = x0(x1, x2, . . . , xn), and we can see that S/IK1,n

is resolved by the Koszul complex. Therefore, pd(S/IK1,n
) = n. Combining this

information with Theorem (3.0.16) we get the following rough estimate on the length

of a minimal free resolution corresponding to a simple graph.

3.0.18 Corollary. Let G be a simple graph with vertex set VG = {x0, . . . , xn}. Then

pd(S/IG) ≥ max{deg(xi) | 0 ≤ i ≤ n}

Proof. Consider the vertex set VG = {x0, . . . , xn} of the graph G, and let xk be the

vertex of highest degree. Now consider the subgraph of G consisting of vertex xk

and its neighbors. Then this subgraph is K1,deg(xk). Adding vertices one at a time to

K1,deg(xk), we can reconstruct the graph G; and hence Theorem (3.0.16) provides

pd(S/IG) ≥ pd(S/IK1,deg(xk)
) = deg(xk) = max{deg(xi) | 0 ≤ i ≤ n}.

We would also like to take a closer look at the finely graded Betti numbers associated

to the edge ideal of a tree. Hochster proved the following result concerning the

possible degree shifts for Betti numbers in a minimal free resolution corresponding

to a monomial ideal. A proof of this result can be found in the book of Miller and

Sturmfels (see [13]).

3.0.19 Proposition (Hochster’s Formula (Dual Version)). The nonzero Betti num-

bers of a monomial ideal I ⊂ S lie only in square-free degrees, i.e.

βi,a(S/I) = 0 if ai ≥ 2 for some i ∈ {1, . . . , n+ 1}

where a = (a1, . . . , an+1) ∈ Nn+1.
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Using Theorem (3.0.16) and Hochster’s formula we can specify further limits on the

Betti numbers corresponding to the quotient rings of edge ideals of trees.

3.0.20 Theorem. Let Tn denote a tree with n edges, then the finely graded Betti

numbers

βi,a(S/ITn
) ∈ {0, 1}

for all a ∈ Nn+1.

Proof. Proceed by induction on the number of edges n. If n = 1, then IT1 = (x0x1).

A minimal free resolution for S/IT1 is

0 // S(−1,−1)
x0x1 // S/IT1

// 0

and the claim is true. Assume true for all possible trees with n− 1 edges. Consider a

tree Tn with n edges, then by removing a leaf, say xn, the remaining subtree is a tree

with only n− 1 edges. Denote it by Tn−1. Without loss of generality assume xn−1 is

the neighbor of xn. Set (-2) = (0, . . . , 0,−1,−1). Then we have the exact sequence

0 −→ S/(ITn−1 : (xn−1xn))(-2) −→ S/ITn−1 −→ S/ITn
−→ 0.

Moreover,

ITn−1 : (xn−1xn) = (x0, . . . , xs) + ITn0
+ · · ·+ ITnk

where {x0, . . . , xs} is the set of neighbors of xn−1 and {Tn0 + · · ·+ Tnk
} is the set of

subtrees of Tn occurring in the graphical representation of the quotient ideal ITn−1 :

(xn−1xn) as a subforest of Tn. By the induction hypothesis

βi,a(S/ITnj
) ∈ {0, 1} for j = 0, . . . , k.

Since S/(x0, . . . , xs) is resolved by the Koszul complex, βi,a(S/(x0, . . . , xs)) ∈ {0, 1}.
Moreover, since the generators of (x0, . . . , xs) and ITnj

are disjoint for j = 0, . . . , k, the

minimal free resolution of S/((x0, . . . , xs)+ ITn0
+ · · ·+ ITnk

) is resolved by the tensor

product of the minimal free resolutions of S/(x0, . . . , xs) and S/ITnj
for j = 0, . . . , k.

Hence,

βi,a
(

S/((x0, . . . , xs) + ITn0
+ · · ·+ ITnk

)
)

∈ {0, 1}.

Thus the mapping cone provides

βi,a(S/ITn
) = Bi,a(S/ITn−1) + βi−1,a(S/((x0, . . . , xs) + ITn0

+ · · ·+ ITnk
)(-2)).
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Assume to the contrary that βi,a(S/ITn
) = 2, i.e.

βi,a(S/ITn−1) = βi−1,a(S/((x0, . . . , xs) + ITn0
+ · · ·+ ITnk

)(-2)) = 1.

Then Hochster’s Formula (3.0.19) implies that a = (a1, . . . , an+1) ∈ {0, 1}n+1. Thus

we obtain the following two cases based upon the value of an+1.

Case (i): Let a = (. . . , 1). Then βi,a(S/ITn−1) = 0, because xn does not divide any

generator of ITn−1 .

Case (ii): Let a = (. . . , 0). Then βi−1,a(S/((x0, . . . , xs) + ITn0
+ · · ·+ ITnk

)(-2)) = 0,

because the shift of (-2) says that any contribution from the minimal free

resolution of
(

S/((x0, . . . , xs) + ITn0
+ · · ·+ ITnk

)
)

(-2) will be in a shift

with last two entries (. . . , 1, 1).

Therefore βi,a(S/ITn
) ∈ {0, 1}.

Our goal is to give a comprehensive description of the Betti numbers that occur in

the minimal free resolution corresponding to the quotient ring of an edge ideal of a

tree. In order to present this description we must first define what it means for a tree

to be maximal.

3.0.21 Definition. Let T be a tree. Then T is called maximal if

βpd(S/IT ),d(S/IT ) = 1 where d = (1, 1, . . . , 1),

i.e. if the minimal free resolution of S/IT has the maximal shift.

From the definition we see that the property of maximality is purely an algebraic

property dealing with the leftmost Betti number of the minimal free resolution for

S/IT .

3.0.22 Example. Consider P2, the path of length 2, depicted below.

x x10x 2

Figure 3.3: The path of length 2
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Then a finely graded minimal free resolution for S/IP2 is given by

0 −→ S(−1,−1,−1) −→
S(−1,−1, 0)

⊕

S(0,−1,−1)

−→ S −→ S/IP2 −→ 0

From this minimal free resolution, we see that P2 is a maximal graph. Now, let us

consider P3, a path of length 3, depicted below.

x x2xx 30 1

Figure 3.4: The path of length 3

Then a minimal free resolution for S/IP3 is given by

0 −→
S(−1,−1,−1, 0)

⊕

S(0,−1,−1,−1)

−→

S(−1,−1, 0, 0)
⊕

S(0,−1,−1, 0)
⊕

S(0, 0,−1,−1)

−→ S −→ S/IP3 −→ 0.

In this case, we see from the above minimal free resolution that P3 is not maximal.

When considering the above example, we start to see that the length of a path affects

its maximality. In particular, we will see in Chapter 4 that a path is maximal if

its length is not divisible by 3. Additionally in Chapter 4, we will describe how to

determine maximality by decomposing the planar graph T into smaller subgraphs.

3.0.23 Remark. The above definition of maximality also applies to a forest F ,

which is a disjoint union of trees. The reasoning is that the corresponding minimal

free resolution of a forest is formed by taking the tensor product of minimal free

resolutions for each of the disjoint component trees. Therefore, a forest is maximal

when all of its component trees are maximal.

Additionally, for a given tree T on the vertex set {x0, . . . , xn} we can talk about the

subforest of T defined by a vector a ∈ Nn+1. This subforest is obtained from T by

removing all vertices xi that have a 0 in the ith -entry of a.

3.0.24 Example. Consider the tree T depicted below.
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1

876 xxxx

0x

9

x5x4

x x2

x 3

Figure 3.5: A tree on the vertex set {x0, . . . , x9}.

Then the subforest of T defined by (0, 1, 1, 1, 0, 1, 0, 1, 0, 1) is given by the following

graph.

x

7 xx

3x

1

9

5

x x2

Figure 3.6: The subforest of T defined by (0, 1, 1, 1, 0, 1, 0, 1, 0, 1)

Using this idea of a subforest of a tree defined by a vector, we can determine when

a particular Betti number will occur in the minimal free resolution corresponding to

the quotient ring of the edge ideal of the tree.

3.0.25 Theorem. Given a tree T on the vertex set {x0, . . . , xn} and a vector a ∈
Nn+1, the following are equivalent.

(i) βi,a(S/IT ) = 1

(ii) The subforest of T defined by a is maximal.

Proof. Induct on n, the number of edges in the tree. For n = 1, the minimal free

resolution of S/IT1 = S/(x0x1) is given by

0 −→ S(−1,−1) −→ S −→ S/IT1 −→ 0
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and the claim clearly holds. Assume true for any tree of length n− 1. Let Tn denote

a tree with n edges. Without loss of generality, we will assume that xn is a leaf of

the tree Tn with neighbor xn−1.

Assume βi,a(S/IT ) = 1. Consider the subforest of T defined by a, denote it by Fa.

Notice that starting from Fa we can add vertices one at a time as leaves to reconstruct

the original tree T . Then Theorem (3.0.16) provides that

βi,a(S/IT ) = 1 ⇐⇒ βpd(S/IFa
),da

(S/IFa
) = 1 (3.1)

where da = (1, 1, . . . , 1) and has entries corresponding to a. Furthermore, (3.1)

implies that Fa is maximal. Hence, a defines a maximal subforest of T .

Conversely, let us assume that a defines a maximal subforest F of Tn. Theorem

(3.0.16) provides that a 6= (. . . , 0, 1).

Case (i): If a = (. . . , 1, 0), then a defines a maximal subforest of the subtree of T

corresponding to T \ {xn−1, xn}. It follows from the induction hypothesis

that βi,a(S/IT\{xn−1,xn}) = 1. Furthermore, the mapping cone procedure

illustrated in (2.1) and Theorem (3.0.16) imply that βi,a(S/IT ) = 1.

Case (ii): If a = (. . . , 1, 1), then from the definition of maximality, we see that a tree

T is maximal if and only if the subforest of T defined by T \ {xn−1, xn} :

(xn−1xn) is maximal. Hence if a = (. . . , 1, 1) defines a maximal subforest

of T , then a′|F = [a − (0, . . . , 0, 1, 1)]F defines a maximal subforest of F

where

IT\{xn−1,xn} : (xn−1xn) = (x0, . . . , xs) + F.

Furthermore, the induction hypothesis implies that for some j,

βj,a′|F (S/IF ) = 1.

Hence,

βi,a′(S/IT\{xn−1,xn} : (xn−1xn)) = 1

which implies that

βi,a(S/IT\{xn−1,xn} : (xn−1xn)(0, . . . , 0,−1,−1)) = 1.

The mapping cone procedure (2.1) and Theorem (3.0.16) then imply that

βi+1,a(S/IT ) = 1.
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The above proof leads to an algorithm for determining when a given Betti number

occurs in the minimal free resolution of the associated quotient ring, and this algo-

rithm can be implemented in Python for use in the open-source math software SAGE

(see [15]) via the following code.

def MaxTest2(T,depth):

if depth<0:

raise ValueError

for l in T:

if len(T[l])==1: #Find the first leaf of the tree

n=T[l][0] #Let n be the neighbor of the leaf

break

try:

T.pop(l) #Remove the leaf

except NameError: #Return error if no leaf is found,

#i.e. if the graph was not a tree

raise TypeError , "Graph contains a cycle--Not a tree"

e=T[n] #Neighbors of n

print ’Leaf=’,l

print ’Neighbor=’,n

T.pop(n)

e.remove(l) #Remove the leaf from the list of neighbors of n

for v in e:

temp1=T[v]

temp1.remove(n) #Remove the neighbor from the lists of

#its neighbors

T.pop(v) #Remove the neighbors’ neighbor from the list

for w in temp1:

temp2=T[w]

temp2.remove(v)

if len(temp2)>0: #Remove the vertex v from w’s list

T[w]=temp2

else:

print ’Path of length 0 (floating vertex)

--Corresponding Betti number is 0’
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return False #Removing the neighbor, n, left a

#floating vertex (path of length 0)

print ’Tree=’, T

print ’======================================================’

if len(T)==4: #Forest is either a 3-path, K_{1,3}, or two

#disjoint 1-paths

for x in T:

if len(T[x])==3: #K_{1,3}

print ’Maximal--Corresponding Betti number is 1!!!’

return True

if len(T[x])==2: #3-Path

print ’Path of length 3--Corresponding Betti number

is 0.’

return False

print ’Maximal--Corresponding Betti number is 1!!!’

#Two disjoint 1-paths

return True

if len(T)<4:

print ’Maximal--Corresponding Betti number is 1!!!’

return True

return MaxTest2(T,depth-1)

It should be noted that the combinations of Theorems (3.0.20) and (3.0.25) provide a

comprehensive description of the Betti numbers occurring in a minimal free resolution

of the corresponding quotient ring to an edge ideal of a tree. In particular, Theorem

(3.0.25) tells us when a particular shift occurs in the minimal free resolution, and

Theorem (3.0.20) tells us that if the shift occurs the corresponding Betti number

must have multiplicity 1.

Copyright c© Rachelle R. Bouchat 2008.
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4 Specific Classes of Edge Ideals of Trees

In this section we will look at two subclasses of trees. For these two subclasses we

will generate more explicit results concerning the associated minimal free resolutions

studied in the previous chapter. In particular, we will deduce explicit formulas for

the projective dimension of their corresponding quotient rings. We begin by recalling

the definition of one of the simplest trees, a path.

4.1 Minimal Free Resolutions of the Edge Ideals of Paths

4.1.1 Definition. A path of length n on the vertex set VG = {x0, . . . , xn} is a graph

with edge set EG = {{x0, x1}, {x1, x2}, . . . , {xn−1, xn}}.

Graphically, an n-length path is given by

xn−1x2 nx0 x1 x

Figure 4.1: The path of length n

and the corresponding edge ideal is given by

IPn
= (x0x1, x1x2, . . . , xn−1xn).

By restricting to the class of paths, we are able to explicitly write down the projective

dimension and regularity of the corresponding quotient ring in terms of the path’s

length, n.

4.1.2 Proposition. Let Pn denote an n-length path. Then

(i) pd(S/IPn
) =

⌈

2n

3

⌉

(ii) reg(S/IPn
) =

⌈n

3

⌉

Proof. Proceed by induction on length of the path, n. For n = 1 the associated edge

ideal is IP1 = (x0x1). Moreover,

0 −→ S(−2)
x0x1−→ S −→ S/IP1 −→ 0
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is a minimal free resolution for S/IP1 , and it is clear that pd(S/IP1) = 1 =
⌈

2(1)
3

⌉

and reg(S/IP1) = 1 =
⌈

1
3

⌉

. Assume the claim holds true for paths of length at most

n− 1. Consider IPn
and the following short exact sequence

0 −→
(

S/IPn−1 : (xn−1xn)
)

(−2) −→ S/IPn−1 −→ S/IPn
−→ 0.

From the mapping cone construction (see (2.1)) and Theorem (3.0.16) we obtain

pd(S/IPn
) = max

{

pd(S/IPn−1) , pd(S/IPn−1 : (xn−1xn)) + 1
}

(4.1)

and

reg(S/IPn
) = max

{

reg(S/IPn−1) , reg(S/IPn−1 : (xn−1xn)(−2))− 1
}

. (4.2)

Furthermore, we notice that IPn−1 : (xn−1xn) = (xn−1) + IPn−3 . Then the induction

hypothesis provides the following information

pd(S/IPn−1) =

⌈

2(n− 1)

3

⌉

reg(S/IPn−1) =

⌈

n− 1

3

⌉

pd(S/IPn−1 : (xn−1xn)) =

⌈

2(n− 3)

3

⌉

+ 1 =

⌈

2n

3

⌉

− 1

reg
(

(S/IPn−1 : (xn−1xn)(−2))
)

=

⌈

n− 3

3

⌉

+ 2.

Therefore from (4.1) we conclude that

pdS/IPn
= max

{⌈

2(n− 1)

3

⌉

,

⌈

2n

3

⌉}

=

⌈

2n

3

⌉

and from (4.2) we conclude that

reg(S/IPn
) = max

{⌈

n− 3

3

⌉

+ 2− 1 ,

⌈

n− 1

3

⌉}

= max

{

⌈n

3

⌉

,

⌈

n− 1

3

⌉}

=
⌈n

3

⌉

.
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Hilbert’s Syzygy Theorem (see Theorem (2.4.2)) says that the longest a minimal free

resolution for S/IPn
could be is n+1. However, we see that even though a path appears

to be rather simple, the projective dimension is already
⌈

2n
3

⌉

. Examining the previous

theorem more closely, we see that divisibility of the path’s length by 3 has an effect on

both the projective dimension and the regularity of S/IPn
. Furthermore, since trees

can be constructed inductively from paths by the addition of the appropriate leaves,

we see that divisibility by 3 also plays an important role in the algebraic properties

of the edge ideal of a tree as it relates to its minimal free resolution.

4.1.3 Example. Consider the path of length 7 depicted below.

3210 764xx x x 5x x x x

Figure 4.2: The path of length 7

Now let us consider the addition of one leaf to P7. First let us add the leaf to the

third vertex of P7.

8

1 3 765

x

0 2x x x x x x x x4

Figure 4.3: The path of length 7 with leaf added to the third vertex

Then the corresponding edge ideal is

I = (x0x1x1x2, x2x3, x3x4, x4x5, x5x6, x6x7, x2x8)

and the minimal free resolution for S/I is given by

0→ S3 → S15 → S26 → S21 → S8 → S → S/I → 0

Now let us consider the addition of a leaf to the fourth vertex of P7.
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8

1 3 765

x

0 2x x x x x x x x4

Figure 4.4: The path of length 7 with leaf added to the fourth vertex

Then the corresponding edge ideal is

J = (x0x1x1x2, x2x3, x3x4, x4x5, x5x6, x6x7, x3x8)

and the minimal free resolution for S/J is given by

0→ S → S6 → S18 → S27 → S21 → S8 → S → S/J → 0

We notice that not only are the Betti numbers of S/I and S/J different, but

pd(S/J) = pd(S/I) + 1.

If we take a closer look at the minimal free resolution of S/IPn
we can give more

detailed information about the last module in the minimal free resolution courtesy of

Theorem (3.0.16). In particular, we have the following result about the overall rank

of the left-most free module.

4.1.4 Corollary. For a path of length n,

β⌈ 2n
3 ⌉(S/IPn

) =







1 if 3 ∤ n
n

3
+ 1 if 3 | n

Proof. Induct on the length of the path n. For n = 1, IP1 = (x0x1) and a minimal

free resolution for S/IP1 is given by

0 −→ S(−2)
x0x1−→ S −→ S/IP1 −→ 0.

We can see that for P1, the left-most module of the minimal free resolution for S/IP1

has rank equal to β1(S/IP1) = 1. Assume true for Pn−1, and consider the coarsely

graded short exact sequence

0 −→
(

S/IPn−1 : (xn−1xn)
)

(−2) −→ S/IPn−1 −→ S/IPn
−→ 0. (4.3)
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However, IPn−1 : (xn−1xn) = IPn−3 + (xn−2), and hence (4.3) becomes

0 −→
(

S/(IPn−3 + (xn−2))
)

(−2) −→ S/IPn−1 −→ S/IPn
−→ 0. (4.4)

Since the generators of IPn−3 and (xn−2) are disjoint, a minimal free resolution for

S/(IPn−3 + (xn−2)) is formed by the tensor product of minimal free resolutions for

S/IPn−3 and S/(xn−2). Then by considering the mapping cone construction (see

(2.1)) and applying Theorem (3.0.16) to (4.4) we obtain

β⌈ 2n
3 ⌉(S/IPn

) = B⌈ 2n
3 ⌉(S/IPn−1) +B⌈ 2n

3 ⌉−1(S/IPn−3) +B⌈ 2n
3 ⌉−2(S/IPn−3). (4.5)

Moreover, the induction hypothesis provides

β⌈ 2n
3 ⌉(S/IPn−1) =







0 if 3 ∤ n

β⌈ 2(n−1)
3 ⌉(S/IPn−1) if 3 | n

=







0 if 3 ∤ n

1 if 3 | n

Furthermore, the induction hypothesis also provides that

β⌈ 2n
3 ⌉−1(S/IPn−3) = β⌈ 2(n−3)

3 ⌉+1
(S/IPn−3) = 0

and

β⌈ 2n
3 ⌉−2(S/IPn−3) = β⌈ 2(n−3)

3 ⌉(S/IPn−3) =







1 if 3 ∤ n
n− 3

3
+ 1 if 3 | n

Then if follows from (4.5) that

β⌈ 2n
3 ⌉(S/IPn

) =







0 + 0 + 1 if 3 ∤ n

1 + 0 +
n− 3

3
+ 1 if 3 | n

=







1 if 3 ∤ n
n

3
+ 1 if 3 | n

Furthermore, if we would like to consider when an n-length path is maximal, we
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can consider the finely graded Betti numbers. Then Theorem (3.0.16) provides the

following result.

4.1.5 Corollary. For a path of length n,

β⌈ 2n
3 ⌉,d(S/IPn

) =







0 if 3 | n
1 if 3 ∤ n

where d = (1, 1, . . . , 1).

Proof. We will proceed by induction on the length of the path, n. For n = 1,

IP1 = (x0x1), and a finely graded minimal free resolution for S/IP1 is given by

0 −→ S(−1,−1)
x0x1−→ S −→ S/IP1 −→ 0.

In this case, we can clearly see that β1,(1,1)(S/IP1) = 1. Assume true for a path of

length n− 1. Set (-2) = (0, . . . , 0,−1,−1) and consider the exact sequence

0 −→ (S/IPn−1 : (xn−1xn))(-2) −→ S/IPn−1 −→ S/IPn
−→ 0. (4.6)

However, IPn−1 : (xn−1xn) = IPn−3 + (xn−2), and hence (4.6) becomes

0 −→
(

S/IPn−3 + (xn−2)
)

(-2) −→ S/IPn−1 −→ S/IPn
−→ 0. (4.7)

Considering the left-most module in the minimal free resolution for S/IPn
and the

degree shift (d) = (1, . . . , 1), the mapping cone construction (see (2.1)) and Theorem

(3.0.16) applied to the short exact sequence (4.7) provide the following relationship

among Betti numbers.

β⌈ 2n
3 ⌉,d(S/IPn

) = β⌈ 2n
3 ⌉,d(S/IPn−1) + β⌈ 2n

3 ⌉,d
(

S/IPn−3 + (xn−2)
)

(-2) (4.8)

Furthermore, since no minimal generator of IPn−1 is divisible by xn

β⌈ 2n
3 ⌉,d(S/IPn−1) = 0

and (4.8) becomes

β⌈ 2n
3 ⌉,d(S/IPn

) = β⌈ 2n
3 ⌉,d

(

S/IPn−3 + (xn−2)
)

(-2). (4.9)
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At this point we break into two distinct cases based upon the divisibility of the paths

length, n, by 3.

Case (i): If n | 3, then (n − 3) | 3. Applying the induction hypothesis to (4.9)

provides

β⌈ 2n
3 ⌉,d(S/IPn

) = 0.

Case (ii): If n ∤ 3, then (n − 3) ∤ 3. Applying the induction hypothesis to (4.9)

provides

β⌈ 2n
3 ⌉,d(S/IPn

) = 1.

In particular, the previous theorem states that paths are maximal precisely when

their length is not divisible by 3. Even though we have not previously considered a

path of length 0, i.e. the graph consisting of a single vertex. We will say that such a

graph is not maximal by requiring that the polynomial ring S have at least 2 variables.

The algorithm presented at the end of Chapter 3 is based upon the decomposition of

the original graph into smaller known graphs, in particular into paths and complete

bipartite graphs K1,m. Then using that K1,m is maximal for all m ≥ 1 and paths

are maximal when 3 ∤ n, we are able to deduce when an arbitrary tree is maximal.

This idea was used in the development of the algorithm shown at the end of Chapter

3. The following example will illustrate the decomposition of a tree to determine its

maximality.

4.1.6 Example. We want to determine whether the following tree, T , is maximal.

x

x

1110

9

8

76

5

3

2

1

0x

4

x

x
x

x x

x x
x

x

Figure 4.5: A tree on 12 vertices
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We first select a leaf of T , say x9. Then we recall that T is maximal precisely when

the subforest defined by T : (x5x9) is maximal. Let us call this subforest F1 and

consider its maximality.

x

x

1110

8

76

3

1

0x

4x

x x

x x

x

Figure 4.6: The subforest F1 of T defined by T : (x5x9)

Now let us select a leaf of F1, say x6. We note that for F1 to be maximal, F1 : (x3x6)

must be maximal. Then let us consider the subforest of F1 defined by F1 : (x3x6),

and denote it by F2.

x

x

1110

8

7

0

4

x

x x

x

Figure 4.7: The subforest F2 of F1 defined by F1 : (x3x6)

We recall that for a forest to be maximal, each component tree of the forest must

be maximal. However, we notice that the vertex x0 forms a component tree of F2.

Furthermore, x0 forms a path of length 0, and hence is not maximal. Therefore, we

have determined that the original tree T was not maximal. To verify this, we consider

the following Betti diagram for S/IT obtained from Macaulay 2 (see [8]).
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Total : 1 11 38 68 70 42 14 2

0 : 1 − − − − − − −
1 : − 11 15 6 1 − − −
2 : − − 23 50 37 11 1 −
3 : − − − 12 32 31 13 2

From this Betti diagram we see that the leftmost module in a minimal free resolution

for S/IT is of rank 2 and has both copies of S in the coarsely graded shift 3+7 = 10.

However, for T to be maximal, this leftmost module must have a shift of 11. Therefore

IT is not maximal.

The above procedure for determining if a given tree (or forest) is maximal is based

upon the idea that a tree, T , is maximal if and only if the subforest defined by

T : (xn−1xn) is maximal where xn is a leaf of the tree with neighbor xn−1. We also

notice that there can be a great advantage in this algorithm by choosing to remove

the leaf whose neighbor has the highest degree. However, this is not always the best

choice. For instance, in the previous example x0 would be the leaf whose neighbor

has the highest degree, namely 4, but removing x0 would still result in more than one

step to determine whether or not T is maximal. However, if we were to first remove

vertex x10, the subforest of T defined by T : (x8x10) is depicted below.

x

x

11

9

76

5

3

2

1

0x

4

x

x
x

x x

x
x

Figure 4.8: The subforest of T defined by T : (x8x10)

After this one step, we can already see that the original tree T is not maximal, because

x11 constitutes a path of length 0, and hence is not maximal.

We would next like to consider when a path is level, i.e. when the last module in

the minimal free resolution for S/IPn
has only one degree shift.
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4.1.7 Proposition. Let Pn be a path of length n. Then the corresponding edge ideal,

IPn
, is level with level shift given by

{

n+ 1 if 3 ∤ n

n if 3 | n

Proof. We will proceed by induction on the path’s length, n. For n = 1 and n = 2, the

claim follows from Corollaries (4.1.5) and (4.1.4). For n = 3, IP3 = (x0x1, x1x2, x2x3)

is level with level shift 3. Assume the claim holds true for a path of length n − 1.

Then for n ≥ 4, we have the following exact sequence as in Theorem (3.0.16).

0 −→ S/(IPn−3 + (xn−2))(−2) −→ S/IPn−1 −→ S/IPn
−→ 0

Moreover, Proposition (4.1.2) provides that

pd(S/(IPn−3 + (xn−2))) =

⌈

2n

3

⌉

− 1

pd(S/IPn−1) =

⌈

2n− 2

3

⌉

.

Then we have the following two cases based upon the divisibility of the path’s length

by 3.

Case (i): If 3 ∤ n, then pd(S/(IPn−3 + (xn−2))) = pd(S/IPn−1). Furthermore, by the

induction hypothesis IPn−3 +(xn−2) is level. Hence S/IPn
is also level with

level shift (n− 3) + 1 + 1 + 2 = n + 1.

Case (ii): If 3 | n, then pd(S/IPn−1) = pd(S/(IPn−3 + (xn−2))) + 1. Moreover, the

induction hypothesis provides that both IPn−3 + (xn−2) and IPn−1 are level

with

level shift of S/(IPn−3 + (xn−2))(−2) = (n− 3) + 1 + 2 = n

level shift of S/IPn−1 = (n− 1) + 1 = n.

Therefore, S/IPn
is also level with level shift n.
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4.2 Minimal Primary Decompositions of the Edge Ideals of Paths

We would next like to study the decomposition of IPn
into an intersection of prime

ideals. More formally, this decomposition is referred to as the minimal primary

decomposition of the ideal IPn
and is defined as follows.

4.2.1 Definition. Let I ⊂ S be an ideal.

(i) The radical of I, denoted
√
I, is the ideal

√
I = (a ∈ S | am ∈ I for some m > 0).

(ii) I is a primary ideal if fg ∈ I implies either f ∈ I or gm ∈ I for some m > 0.

(iii) A primary decomposition of I is an expression of I as a finite intersection of

primary ideals, i.e.

I =

n
⋂

i=1

pi.

This decomposition is called a minimal primary decomposition if we also have

the added restrictions that

(a)
√

pi are all distinct; and

(b)
⋂

j 6=i

pj 6⊂ pi.

In the case of monomial ideals, there is an algorithm to determine a minimal primary

decomposition. It is based upon the following relationships.

4.2.2 Lemma. Let I, J,K ⊂ S be monomial ideals. Then

(i) (I + J) ∩K = (I ∩K) + (J ∩K)

(ii) (I ∩ J) +K = (I +K) ∩ (J +K)

It should be noted that in general, for arbitrary ideals I, J,K ⊂ S, we have the

following relationships

(i) (I ∩K) + (J ∩K) ⊂ (I + J) ∩K

(ii) (I ∩ J) +K ⊂ (I +K) ∩ (J +K)
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The decomposition of monomial ideals presented in Lemma (4.2.2) states that the

minimal primary decomposition of a monomial ideal I is actually a decomposition

of I into an intersection of prime ideals. For this reason, in the case of monomial

ideals, we will use the phrases minimal primary decomposition and minimal prime

decomposition interchangeably.

4.2.3 Example. Consider the monomial ideal

J = (x2
0x1, x1x2, x0x2) ⊂ S := k[x0, x1, x2].

Then using the decompositions given in Lemma (4.2.2) we obtain the following pri-

mary decomposition of J .

J = (x2
0x1, x1x2, x0x2) = [(x2

0) ∩ (x1)] + (x1x2, x0x2)

= [(x2
0) + (x1x2, x0x2)] ∩ [(x1) + (x1x2, x0x2)]

= (x2
0, x1x2, x0x2) ∩ (x1, x0x2)

= (x2
0, x1x2, x0x2) ∩ (x0, x1) ∩ (x1, x2)

= [(x2
0, x1x2) + (x0x2)] ∩ (x0, x1) ∩ (x1, x2)

= [(x2
0, x1x2) + [(x0) ∩ (x2)]] ∩ (x0, x1) ∩ (x1, x2)

= (x0, x1x2) ∩ (x2
0, x2) ∩ (x0, x1) ∩ (x1, x2)

= [(x0) + [(x1) ∩ (x2)]] ∩ (x2
0, x2) ∩ (x0, x1) ∩ (x1, x2)

= (x0, x1) ∩ (x0, x2) ∩ (x2
0, x2) ∩ (x0, x1) ∩ (x1, x2)

= (x0, x1) ∩ (x0, x2) ∩ (x2
0, x2) ∩ (x1, x2)

However, this primary decomposition is not minimal because (x2
0, x2) ⊂ (x0, x2).

Using this containment we obtain the minimal primary decomposition of J , namely

J = (x0, x1) ∩ (x0, x2) ∩ (x1, x2).

As the previous example illustrates, this algorithm can become quite tedious when

done by hand even for relatively simple monomial ideals. It should also be noted that,

in general, we can have many more prime ideals in the decomposition of a monomial

ideal I ⊂ S than there are minimal generators of I. If we specialize to the monomial

ideals that arise as edge ideals of simple graphs (i.e. square-free quadratic monomial

ideals), we can realize the prime ideals in the decomposition of IG as minimal vertex

covers of the planar graph G, which in turn allows us to quickly determine and verify

the prime ideals in the minimal primary decomposition of IG.
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4.2.4 Definition. Let G be a simple graph on the vertex set VG = {x0, . . . , xn}. We

will also assume that G possesses no isolated vertex, i.e. for each vertex xi there is

an edge e of G with xi ∈ e. A vertex cover of G is a subset C ⊂ VG such that, for

each edge {xi, xj} of G, one has either xi ∈ C or xj ∈ C. Such a vertex cover C is

called minimal if no subset C ′ ⊂ C with C ′ 6= C is a vertex cover of G.

4.2.5 Example. Consider the path of length 5. Then the following represents a

minimal vertex cover of P5.

x1 2 3 4 5xxxx0 x

Figure 4.9: A minimal vertex cover of P5

However, the following is a vertex cover of P5 that is not minimal.

x 1 2 3 4 5xxxx0 x

Figure 4.10: A non-minimal vertex cover of P5

In the next theorem, we examine the relationship between the prime ideals occurring

in the minimal prime decomposition of IG and the minimal vertex covers of the simple

graph G.

4.2.6 Theorem.











Minimal vertex

covers of a

simple graph G











1:1←→
{

Associated prime

ideals of IG

}

Proof. Let V be a minimal vertex cover of a simple graph G with vertex set VG. We

want to show that (V ), the ideal whose generators are the vertices contained in V

is an associated prime ideal of IG. Since V is a vertex cover of G, we have that for

each edge {xi, xj} of G either xi ∈ V or xj ∈ V . It follows that xixj ∈ (V ) for each

xi, xj ∈ VG. Hence IG ⊂ (V ).

Conversely, assume that p is an associated prime ideal of IG. Then IG ⊂ p which

implies that xixj ∈ p for each xi, xj ∈ VG. Hence

V = {xi | xi is a minimal generator of p}
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is a vertex cover for G. To show that V is minimal let us assume the contrary, i.e.

that there exists V ′ ⊂ V such that V ′ is a vertex cover of G. Then there would be a

prime ideal p′ = (V ′) with IG ⊂ p′ ⊂ p. However, this would imply that p was not

minimal, a contradiction. Therefore, V must be a minimal vertex cover.

If we restrict to the class of paths, the number of minimal vertex covers of Pn (and

correspondingly the number of associated prime ideals of IPn
) can be represented by

the following recursive formula.

4.2.7 Proposition. Let P (n) represent the number of minimal vertex covers of Pn.

Then

P (n) = P (n− 2) + P (n− 3)

Proof. Proceed by induction of the length of the path, n. The following table illus-

trates the base case.

n Minimal Vertex Covers P (n)

0 {x0} 1

1 {x0},{x1} 2

2 {x1}, {x0, x2} 2

3 {x0, x2}, {x1, x2}, {x1, x3} 3

Thus, P (3) = P (1)+P (0). Assume the claim is true for Pn−1. We make the following

definition.

q(n) := |{Minimal vertex covers of Pn that include the vertex xn}| .

Notice that the above definition for q(n) also means that xn−1 is not chosen. Fur-

thermore, we have the following equality.

P (n) = q(n) + P (n− 2) (4.10)

Moreover,

P (n) =

(

Choose xn−1

Can’t choose xn

)

+







Choose xn

Can’t choose xn−1

Have to choose xn−2

Don’t choose xn−3






+







Choose xn

Can’t choose xn−1

Have to choose xn−2

Choose xn−3







= P (n− 2) + q(n− 2) + q(n− 3)
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Using (4.10) we obtain

P (n) = P (n− 2) + [P (n− 2)− P (n− 4)] + [P (n− 3)− P (n− 5)].

Finally, applying the induction hypothesis to P (n − 2) provides the claim, namely

that

P (n) = P (n− 2) + P (n− 4) + P (n− 5)− P (n− 4) + P (n− 3)− P (n− 5)

= P (n− 2) + P (n− 3).

Using this recursive formula for the number of prime ideals in the minimal primary

decomposition for IPn
we obtain the following explicit formula.

4.2.8 Corollary. The number of associated prime ideals for IPn
is given by

P (n) =
3
∑

i=1

(ri + 1)2

rni (r
3
i + 2)

where r1, r2, and r3 represent the 3 distinct roots of x3 + x2 − 1.

Proof. The proof follows from Proposition (4.2.7) and uses standard techniques of

ordinary differential equations.

4.3 Minimal Free Resolutions of the Edge Ideals of 3-Spiders

It seems natural to extend from paths to the class of graphs resembling

a+2

a+b

a+b+1

a+b+2

a+1

x

x

x

x a+b+c

x0

1

x2

xa

x x

x

Figure 4.11: A spider with 3 legs

Since this graph resembles a spider with 3 legs, we will call it a 3-spider. This is a

natural extension from the class of paths, because if we delete the rightmost leg we

would be left with a path of length a + b as illustrated below.
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a+2

a+b

a+1

x

x

x

x

a+b+1

a+b+2

a+b+c

x0

1

x2

xa

x x

x

Figure 4.12: A 3-spider as a natural extension of a path

Using the formula for the length of a minimal free resolution corresponding to the

quotient ring of a path of length n presented in Proposition (4.1.2) and the mapping

cone construction presented in Theorem (3.0.16), we can write an explicit formula

for the length of a minimal free resolution corresponding to the quotient ring of a

3-spider.

4.3.1 Proposition. Let G be the graph of a 3-spider. Then for

c = 1 : pd(S/IG) =

⌈

2a− 1

3

⌉

+

⌈

2b− 1

3

⌉

+ 1

c = 2 : pd(S/IG) =



















⌈

2a− 1

3

⌉

+

⌈

2b− 1

3

⌉

+ 1 if a, b ≡ 1 mod 3

⌈

2(a− 1)

3

⌉

+

⌈

2(b− 1)

3

⌉

+ 2 else

c ≥ 3 : pd(S/IG) =

⌈

2(a+ b+ c)

3

⌉

+ (−1)rr

where r = min{a mod 3, b mod 3, c mod 3}

Proof. Consider the following short exact sequence

0 −→
(

S/IG\{xa+b+c−1,xa+b+c} : (xa+b+c−1xa+b+c)
)

(−2) −→ S/IG\{xa+b+c−1,xa+b+c}

−→ S/IG −→ 0.

Then the mapping cone construction (see (2.1)) and Theorem (3.0.16) imply that

pd(S/IG) = max{pd(S/IG\{xa+b+c−1,xa+b+c}),

pd(S/IG\{xa+b+c−1,xa+b+c} : (xa+b+c−1xa+b+c)) + 1}.
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However, we can consider IG\{xa+b+c−1,xa+b+c} : (xa+b+c−1xa+b+c) graphically as follows.

a+b+c

a+b+c−1

a+b+c−2

x

x

x

a+b+2

a+b+1

a+b

a+2

a+1

xa+b+c−3

x0

1

x2

xa

x x

x

x

x

x

Figure 4.13: The decomposition of a 3-spider

We will proceed by induction on the length of the third leg, c.

c = 1 : pd(S/IG) = max

{⌈

2(a+ b)

3

⌉

,

⌈

2(a− 2)

3

⌉

+

⌈

2(b− 2)

3

⌉

+ 3

}

= max

{⌈

2(a+ b)

3

⌉

,

⌈

2a− 1

3

⌉

+

⌈

2b− 1

3

⌉

+ 1

}

=

⌈

2a− 1

3

⌉

+

⌈

2b− 1

3

⌉

+ 1

c = 2 : pd(S/IG) = max



















⌈

2a− 1

3

⌉

+

⌈

2b− 1

3

⌉

+ 1,

⌈

2(a− 1)

3

⌉

+

⌈

2(b− 1)

3

⌉

+ 2



















=



















⌈

2a− 1

3

⌉

+

⌈

2b− 1

3

⌉

+ 1 if a, b ≡ 1 mod 3

⌈

2(a− 1)

3

⌉

+

⌈

2(b− 1)

3

⌉

+ 2 else
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c = 3 : pd(S/IG) =



















































max

{⌈

2a− 1

3

⌉

+

⌈

2b− 1

3

⌉

+ 1,

⌈

2(a + b)

3

⌉

+ 2

}

if a, b ≡ 1 mod 3

max

{⌈

2(a− 1)

3

⌉

+

⌈

2(b− 1)

3

⌉

+ 2,

⌈

2(a+ b)

3

⌉

+ 2

}

else

=

⌈

2(a+ b)

3

⌉

+ 2

=

⌈

2(a+ b+ c)

3

⌉

Assume the statement is true for the third length having length c− 1. Then

pd(S/IG) = max



















⌈

2(a+ b+ c− 1)

3

⌉

+ (−1)r
′

r′,

⌈

2(a+ b+ c− 3)

3

⌉

+ (−1)rr + 2



















= max

{⌈

2(a+ b+ c− 1)

3

⌉

+ (−1)r
′

r′,

⌈

2(a+ b+ c)

3

⌉

+ (−1)rr

}

where r′ = min{a mod 3, b mod 3, (c− 1) mod 3}.

Case (i): If c ≡ 0 mod 3, then (c− 1) ≡ 2 mod 3 and r′ = min{a mod 3, b mod 3}.
However, regardless of the value of r′, we see that

pd(S/IG) = max

{⌈

2(a+ b+ c− 1)

3

⌉

+ (−1)r
′

r′,

⌈

2(a+ b+ c)

3

⌉}

=

⌈

2(a+ b+ c)

3

⌉

.

Case (ii): If c ≡ 1 mod 3, then (c − 1) ≡ 0 mod 3 and r′ = 0. Furthermore, since

(c− 1) ≡ 0 mod 3 implies that
⌈

2(a+b+c−1)
3

⌉

=
⌈

2(a+b+c)
3

⌉

− 1, we obtain

pd(S/IG) = max

{⌈

2(a+ b+ c− 1)

3

⌉

,

⌈

2(a+ b+ c)

3

⌉

+ (−1)rr

}

=

⌈

2(a+ b+ c)

3

⌉

+ (−1)rr.
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Case (iii): If c ≡ 2 mod 3, then (c − 1) ≡ 1 mod 3 and r′ ∈ {0, 1}. However, for

either value of r′ we see that

pd(S/IG) = max



















⌈

2(a + b+ c− 1)

3

⌉

+ (−1)r
′

r′,

⌈

2(a + b+ c)

3

⌉

+ (−1)rr



















=

⌈

2(a+ b+ c)

3

⌉

+ (−1)rr.

Copyright c© Rachelle R. Bouchat 2008.
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5 Edge Ideals of Cycles

In the previous chapters, we looked at simple graphs that contained a vertex of degree

1. It is natural to ask when we can extend the previous results to generate information

about the edge ideals of simple graphs that do not contain a vertex of degree 1. The

simplest of these is a cycle of length n which can be depicted as follows.

xn−2

x

n−1x

3x0

x1 x2

Figure 5.1: The cycle of length n

If we compare an n-cycle, denoted Cn, to a path of length n− 1 we see the following

relationships among both the graphs and the corresponding edge ideals.

C

���� Pn−1

n

x3x0

x1 x2

xn−1

xn−2

Figure 5.2: The decomposition ICn
= IPn−1 + (xn−1x0)

Using this relationship we obtain the following explicit formula for the length of a

minimal free resolution corresponding to Cn.

5.0.2 Proposition. Let Cn denote a cycle of length n. Then
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pd(S/ICn
) =



















⌈

2n

3

⌉

if 3 | (n− 1)

⌈

2(n− 1)

3

⌉

if 3 ∤ (n− 1)

Proof. We want to mimic the procedure used for trees. However, in the case of trees,

we removed a leaf of the tree, i.e. a vertex of degree 1. In the case of an n-cycle

this is not an option, so we just remove an arbitrary edge, say {xn−1, x0}. Upon

removing edge {xn−1, x0}, we are left with Pn−1 as shown above in Figure (5.2). We

must be careful though, because Theorem (3.0.16) no longer applies. Consider the

exact sequence

0 −→
(

S/IPn−1 : (xn−1x0)
)

(−2) −→ S/IPn−1 −→ S/ICn
−→ 0. (5.1)

Moreover,

IPn−1 : (xn−1x0) = (x1, xn−2) + (x2x3, x3x4, . . . , xn−4xn−3) = (xn−1x0) + IPn−5.

Hence, (5.1) becomes

0 −→
(

S/((x1, xn−2) + IPn−5)
)

(−2) −→ S/IPn−1 −→ S/ICn
−→ 0. (5.2)

Furthermore, Theorem (4.1.2) provides that

pd
(

S/((x1, xn−2) + IPn−5)
)

= 2 +

⌈

2(n− 5)

3

⌉

=

⌈

2(n− 2)

3

⌉

and

pd
(

S/IPn−1

)

=

⌈

2(n− 1)

3

⌉

.

From the mapping cone construction presented in (2.1), we obtain that

pd (S/ICn
) ≤ max

{

pd
(

S/((x1, xn−2) + IPn−5)
)

+ 1, pd
(

S/IPn−1

)}

.

We will proceed by showing that the last module of the free resolution for S/ICn

obtained via the mapping cone construction cannot cancel, i.e. that

pd (S/ICn
) = max

{

pd
(

S/((x1, xn−2) + IPn−5)
)

+ 1, pd
(

S/IPn−1

)}

.
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Case (i): If 3 | (n− 1), or n ≡ 1 mod 3, then Pn−1 is not maximal. However, in this

case, Pn−5 is maximal. Additionally,

pd
(

S/((x1, xn−2) + IPn−5)
)

= pd
(

S/IPn−1

)

and hence there can be no cancellation in the last module of the free res-

olution for S/ICn
formed from the mapping cone construction. Therefore

pd (S/ICn
) =

⌈

2(n− 1)

3

⌉

+ 1 =

⌈

2n

3

⌉

.

Case (ii): If 3 ∤ (n− 1), or n ≡ 0, 2 mod 3, then Pn−1 is maximal. Also

pd
(

S/((x1, xn−2) + IPn−5)
)

= pd
(

S/IPn−1

)

− 1

Furthermore, the copy of S with the maximal shift in the last module of

the free resolution for S/ICn
obtained via the mapping cone construction

cannot cancel, and consequently

pd (S/ICn
) =

⌈

2(n− 1)

3

⌉

.

The above proposition says that the length of a minimal free resolution corresponding

to Cn agrees with the length of a minimal free resolution of Pn−1 as long as 3 ∤ (n−1).

However, in the alternate case, namely when 3 | (n − 1), we see that the length of

the minimal free resolution corresponding to Cn agrees with the length of a minimal

free resolution for Pn.

In general, we notice that simple graphs are compositions of trees and cycles. As

seen in the case of cycles, even though Theorem (3.0.16) does not apply to a general

simple graph G, we can still use the short exact sequence

0 −→
(

S/IG\{xn−1,xn} : (xn−1xn)
)

(−2)
xn−1xn−→ S/IG\{xn−1,xn} −→ S/IG −→ 0

where {xn−1, xn} is an arbitrary edge of the graph G. Since we can reconstruct the

simple graph G by the addition of edges to subgraphs of G that are paths and cycles,

we can generate estimates using the above results on the projective dimension of the

more general module S/IG for an arbitrary simple graph G.

Copyright c© Rachelle R. Bouchat 2008.
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6 Ferrers Graphs and Ferrers Tableaux

In the remaining chapters, we would like to study another class of simple graphs.

The graphs that we want to study are related to a class of bipartite graphs known

as Ferrers graphs. In preparation for this chapter, we need a few more tools and

algebraic properties for a given ideal I considered in a polynomial ring over a field.

6.1 Ferrers Graphs

6.1.1 Definition. A Ferrers graph is a bipartite graph, G, on two distinct vertex

sets X = {x1, . . . , xn} and Y = {y1, . . . , ym} such that if (xi, yj) is an edge of G,

then so is (xp, yq) for 1 ≤ p ≤ i and 1 ≤ q ≤ j. In addition, (x1, ym) and (xn, y1) are

required to be edges of G.

Given a Ferrers graph G, we can associate to G a sequence of integers

λ = (λ1, λ2, . . . , λn) ∈ Nn

where λi represents the degree of the vertex xi for 1 ≤ i ≤ n. The conditions for a

Ferrers graph imply that

λ1 = m ≥ λ2 ≥ · · · ≥ λn ≥ 1

and thus λ is a partition.

6.1.2 Example. The following is the Ferrers graph with partition λ = (3, 2, 2, 1).

y yy1

4x

3

3x2x1 x

2

Figure 6.1: The Ferrers graph with partition λ = (3, 2, 2, 1)
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This example illustrates that even with small examples, Ferrers graphs can be rela-

tively complicated to draw. This difficulty can greatly increase with an increase in

the cardinality of either of the sets X or Y. In the case of Ferrers graphs though,

we have a simpler way to display the graph’s structure while still being able to easily

identify the edges and the disjoint vertex sets X and Y. This method will arise from

the partition λ.

We can associate to a given Ferrers graph with partition λ a diagram Tλ, called

the Ferrers tableau, that consists of an array of n rows of cells with λi adjacent cells,

right justified, in the ith -row.

6.1.3 Example. The Ferrers tableau associated to the Ferrers graph with partition

λ = (3, 2, 2, 1) seen in the previous example is given by

2

x1

x

3

x3

x4

y y y1 2

Figure 6.2: The Ferrers tableau with partition λ = (3, 2, 2, 1)

Then each box in a Ferrers tableau, Tλ, represents an edge of the Ferrers graph with

partition λ.

As in the case of the graphs of trees and cycles, we are interested in studying

algebraic structures related to a given Ferrers graph. In particular, we would link to

consider the toric ring of a Ferrers graph as studied by Corso and Nagel in [3].

6.2 Toric Rings Associated to Ferrers Graphs

Given a Ferrers graph G, we can look at the edge ideal corresponding to G. This

ideal lies in the polynomial ring S = k[x1, . . . , xn, y1, . . . , ym] where the variables of

the polynomial ring S correspond to the vertex set of G. In [3], Corso and Nagel

studied the algebraic properties of the toric ring k[G] associated to a given Ferrers

graph G, where k[G] is the monomial subalgebra generated by the elements xiyj.

Consider the Ferrers tableau T := Tλ associated to a Ferrers graph G with

partition λ = (λ1, . . . , λs, 1, . . . , 1). Now let us consider the subtableau T′ of T
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formed by deleting all boxes in the first row beyond the λ2 one and all boxes in the

first column beyond the s one. Then the partition corresponding to T′ is given by

λ′ = (λ2, λ2, . . . , λs). By considering the subtableau T′ of T we have guaranteed that

the outer border of the tableau has a minimum thickness of 2. Since the thickness of

the outer border of the tableau is at least 2, we can treat the Ferrers tableau like a

matrix and consider the (2× 2)-minors of the tableau. In particular, we will later see

that these 2-minors of the tableau are intimately related to the structure of the toric

ring.

6.2.1 Example. Consider the Ferrers tableau T(5,4,4,2,1,1) shown below.

Figure 6.3: The Ferrers tableau with partition λ = (5, 4, 4, 2, 1, 1)

Then the subtableau T′ of T has partition λ′ = (4, 4, 4, 2) and is depicted as

Figure 6.4: The subtableau T′ of T(5,4,4,2,1,1)

In [3], Corso and Nagel studied the structure of the special fiber ring of the edge

ideal of a Ferrers graph. In particular, they demonstrated the relationship between

the special fiber ring of the edge ideal of a Ferrers graph, the toric ring of a Ferrers

graph, and the (2× 2)-minors of the associated Ferrers tableau. However, to prepare

for their result we will need the following definition.
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6.2.2 Definition. Let I ⊂ S = k[x1, . . . , xn] be an ideal. Then S/I is said to be

Cohen-Macaulay provided that

pd(S/I) = codim(S/I)

It should be noted that the traditional definition of the Cohen-Macaulay property

concerns the depth of an ideal (which is the maximal length of a regular sequence

contained in the module), and it states that S/I is Cohen-Macaulay provided that

depth(S/I) = dim(S/I).

However, in the case of the polynomial ring S, the following theorem justifies the use

of the previous definition.

6.2.3 Theorem (Auslander-Buchsbaum Formula). Let S = k[x1, . . . , xn]. Then for

an ideal I ⊂ S, we have the following relationship between the depth of S/I and S,

namely that

pd(S/I) + depth(S/I) = depth(S).

In the case where S/I is Cohen-Macaulay, the Auslander-Buchsbaum Formula reduces

to

pd(S/I) = dim(S)− dim(S/I) = codim(S/I)

and hence in a polynomial ring the Cohen-Macaulay property is equivalent to the

definition provided above.

The Cohen-Macaulay property is a very heavily studied property. Although the

definition of this property has its roots in homological algebra, Cohen-Macaulay rings

have many applications in other areas of mathematics such as algebraic combinatorics.

For a thorough introduction to the theory of Cohen-Macaulay rings, we refer the

reader to the book of Bruns and Herzog (see [1]).

Now that we have the definition of the Cohen-Macaulay property, we are able to

state the result of Corso and Nagel concerning the special fiber ring corresponding to

the edge ideal of a given Ferrers graph.

6.2.4 Proposition. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym} be distinct sets of

variables. Set S = k[X,Y], where k is an arbitrary field, and let Iλ be the edge ideal

corresponding to a Ferrers graph G with associated tableaux T and T
′ and partition

λ = (λ1, λ2, . . . , λs, 1, . . . , 1). Then the special fiber ring F(Iλ) of Iλ has the following

properties:
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(i) F(Iλ) is a Cohen-Macaulay normal domain of dimension n+m− 1; and

(ii) F(Iλ) is the ladder determinantal ring k[T]/I2(T
′).

It should be noted that since edge ideals are generated in one degree, the special fiber

ring is also isomorphic to the toric ring of the graph. In particular, this says that the

toric ring of the graph is isomorphic to the ladder determinantal ring k[T]/I2(T
′).

6.2.5 Example. Consider the Ferrers graph with partition λ = (4, 3, 2, 1) depicted

via the following tableau.

x

98 xx

7

2x x x x1

10

3 4

x x x5 6

Figure 6.5: The Ferrers tableau with partition λ = (4, 3, 2, 1)

Then the toric ring is described by k[x1, x2, . . . , x10]/I where

I = (x2x6 − x3x5, x2x7 − x4x5, x3x7 − x4x6, x3x9 − x4x8, x6x9 − x7x8).

In the next chapter we would like to consider square-free monomial ideals that are

related to the defining toric ideal of the toric ring corresponding to a given Ferrers

graph. The hope of studying these monomial ideals is to generate information back to

the original toric ideals, whose minimal generators correspond to the (2× 2)-minors

of the given Ferrers tableau. Additionally, we saw in Chapter 2 that square-free

quadratic monomial ideals occur as edge ideals of simple graphs, so the information

that we gather about these square-free quadratic monomial ideals will also generate

information concerning the edge ideals of the corresponding class of simple graphs.

Copyright c© Rachelle R. Bouchat 2008.
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7 Initial Ideals Associated to Ferrers Graphs

Given a Ferrers graph G with associated tableaux T and T′, we want to study a

monomial ideal that is related to I2(T
′), the defining ideal of the toric ring. Since we

will be looking at the (2× 2)-minors of a given tableau, we will require from now on

that the Ferrers tableau T have outer border with thickness greater than or equal to

2. This means that from now on we will require the defining partition of the Ferrers

graph T to resemble λ = (λ2, λ2, λ3, . . . , λn) where λn ≥ 2.

The monomial ideals that we wish to study occur as initial ideals of I2(T). To

proceed we will need the following definitions as in the book of Miller and Sturmfels

(see [13]).

7.0.6 Definition. Let S = k[x1, . . . , xn].

(i) A term order < is a total order on the monomials of S satisfying the following

two conditions.

(a) xb < xc if and only if xa+b < xa+c; and

(b) 1 < xa for all nonunit monomials xa ∈ S.

Unless otherwise noted, the chosen term order will satisfy x1 > x2 > · · · > xn.

(ii) Given a polynomial f =
∑

a∈Nn cax
a, the monomial xa that is largest under the

given term order < among those with nonzero coefficient determines the leading

term, i.e. lt<(f) = cax
a.

(iii) If I ⊂ S is an ideal, then the initial ideal of I is

in<(I) = (lt<(f) | f ∈ I).

The lexicographic term order, denoted by <lex, specifies that for two monomials xa

and xb of the same degree, xa >lex xb provided that the leftmost nonzero entry of

the vector a− b is positive.

On the other hand, the reverse lexicographic term order, denoted by <revlex, spec-

ifies that for two monomials xa and xb of the same degree, xa >revlex xb provided

that the rightmost nonzero entry of the vector a− b is negative.

7.0.7 Example. Let S = k[x1, x2, x3]. Then x2
1x

3
3 >lex x

4
2x3, but x4

2x3 >revlex x
2
1x

3
3.
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In general, we should note that for a given term order, <,

in<(f1, . . . , fn) 6= (lt<(f1), . . . , lt<(fn))

as illustrated by the following example.

7.0.8 Example. Consider I = (x2, xy + y2) ⊂ k[x, y] in the reverse lexicographic

term order. Set f = x2 and g = xy + y2. Then

yf − xg = −xy2 ∈ I.

Moreover, this implies that

−xy2 + yg = y3 ∈ I

and hence y3 ∈ inrevlex(I). However, y3 /∈ (ltrevlex(f), ltrlex(g)) = (x2, xy). Actually,

one can check that inrevlex(I) = (x2, xy, y3).

We are interested in the cases where in<(f1, . . . , fn) = (lt<(f1), . . . , lt<(fn)), and with

this in mind we have the following definition.

7.0.9 Definition. Let I = (f1, . . . , fr) ⊂ S. The set {f1, . . . , fr} of generators of I

constitutes a Gröbner basis with respect to the term order < if the leading terms of

f1, . . . , fr generate the initial ideal of I, i.e. if

in<(I) = (lt<(f1), . . . , lt<(fr)).

We would like to state a criterion for determining whether a given set of polynomials

is indeed a Gröbner basis. In order to introduce this criterion, which involves pairwise

examination of the generators, we must first introduce the division algorithm used in

the situation of more than one variable.

7.0.10 Theorem (Multivariable Division Algorithm). Let S = k[x1, . . . , xn]. Fix a

term order < on the monomials in S, and let F = (f1, . . . , fs) be an ordered s-tuple

of polynomials in S. Then every f ∈ S can be written as

f = a1f1 + · · ·+ asfs + r

where ai, r ∈ S for i ∈ {1, . . . , s}, and either r = 0 or r is a linear combination,

with coefficients in k, of monomials, none of which is divisible by any lt(fi) for i ∈
{1, . . . , s}.
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We now want to consider an example showing the implementation of the multivariate

division algorithm. Further examples of this division algorithm can be found in the

book of Cox, Little, and O’Shea (see [4]).

7.0.11 Example. Let us consider the polynomials f = xy2 + 1, g1 = xy + 1, and

g2 = y + 1 in the lexicographic term order. We would like to divide f by g1 and g2.

To begin, we notice that lt(f) = xy2, and lt(g1) = xy clearly divides this. Thus the

first step of the multivariate division algorithm produces

xy2 + 1 = y(xy + 1)− y + 1.

Now we consider the polynomial f1 = −y + 1. Then lt(f1) = −y, and lt(g2) = y

divides this. Then the second step of the division algorithm provides

xy2 + 1 = y(xy + 1)− (y + 1) + 2.

If we consider the polynomial f2 = 2, we see that lt(f2) = 2. However, neither

lt(g1) = xy nor lt(g2) = y divide 2. Hence we conclude that our remainder is 2.

This multivariate division algorithm leads to the following criterion for determining

whether a given set is indeed a Gröbner basis.

7.0.12 Theorem (Buchberger’s Criterion). Let I be a polynomial ideal in S =

k[x1, . . . , xn]. Then a basis G = {g1, . . . , gt} for I is a Gröbner basis for I if and

only if for all pairs i 6= j, the remainder on division of

S(gi, gj) =
lcm{lt(gi), lt(gj)}

lt(gi)
gi −

lcm{lt(gi), lt(gj)}
lt(gj)

gj

by G (listed in some order) is zero.

This algorithm and its underlying reliance on the multivariate division algorithm

illustrates the importance of the term order considered. We will see this explicitly in

the following example from the book of Cox, Little, and O’Shea (see [4]).

7.0.13 Example. Let I = (y − x2, z − x3) ⊂ k[x, y, z]. Consider the set of minimal

generators G = {y−x2, z−x3}. We wish to determine whether or not G is a Gröbner

basis by using Buchberger’s Criterion.
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(i) First let us consider the lexicographic term order with y > z > x. Then

s(y − x2, z − x3) =
yz

y
(y − x2)− yz

y
(z − x3)

= −zx2 + yx3.

Furthermore, the multivariate division algorithm provides

−zx2 + yx3 = x3(y − x2) + (−x2)(z − x3)

and hence by Buchberger’s criterion, G is a Gröbner basis for this term order.

(ii) Now let us consider the lexicographic term order with x > y > z. Then

s(y − x2, z − x3) =
x3

−x2
(y − x2)− x3

−x3
(z − x3)

= −xy + z.

However, neither lt(y − x2) = −x2 nor lt(z − x3) = −x3 divides lt(−xy + z) =

−xy. Hence, we conclude from Buchberger’s criterion that G is not a Gröbner

basis for this term order.

At this point we would like to consider the initial ideal of the defining ideal of the

toric ring introduced in Chapter 6 and studied by Corso and Nagel in [3] in the reverse

lexicographic term order.

7.1 The Reverse Lexicographic Term Order

In this section we will prove that the toric generators of I2(T) are a Gröbner basis

with respect to the reverse lexicographic term order. The main tool we will use in this

section is from liaison theory and is known as a basic double link. The following defi-

nition is from the book of Migliore (see [12]), where you will also find an introduction

to liaison theory.

7.1.1 Definition. Let 0 6= J ⊂ I ⊂ S be homogeneous ideals such that

codim I = codim J + 1

and S/J is Cohen-Macaulay. Let f ∈ S be a homogeneous element of degree d such

that J : f = J . Then the ideal
∼

I := fI + J (7.1)
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is called a basic double link of I.

Furthermore, if we are given that
∼

I is a basic double link of I as in (7.1), we get the

following relationship between the ideals
∼

I and I

codim
∼

I= codim I.

7.1.2 Proposition. Consider the Ferrers tableau T that resembles a 2 × n matrix,

i.e. the partition of the tableau is λ = (n, n), where n ≥ 3. The Ferrers tableau can

be depicted as

x x xx

xx x

1 2

n+1 n+2

n−1 n

x2n−1 2n

Figure 7.1: The Ferrers tableau with partition λ = (n, n)

Set

IT = (ltrevlex(ti) | ti is a minimal generator of I2(T))

and let Tr be the subtableau of T formed by removing the cell containing xn+1. Then

(i) IT = xn+1(x2, . . . , xn) + ITr
is a basic double link with codim IT = n− 1;

(ii) P (S/IT , t) =
1 + (n− 1)t

(1− t)n+1
; and

(iii) {ti | ti is a minimal generator of I2(T)} is a Gröbner basis in the reverse lex-

icographic term order.

Proof.

(i) We proceed by induction on n. For n = 3, we have

(x2x4, x3x4, x3x5) = x4(x2, x3) + (x3x5)

and it is clear that (x2x4, x3x4, x3x5) is a basic double link of (x2, x3). Con-

sequently, codim(x2x4, x3x4, x3x5) = 2. Assume true for a Ferrers graph with

partition λ = (n − 1, n − 1). By the induction hypothesis and basic double

linkage, S/ITr
is Cohen-Macaulay. Also

codim(x2, . . . , xn) = n− 1 and codim(ITr
) = codim(IT(n−1,n−1)

) = n− 2.
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Hence, IT = xn+1(x2, . . . , xn) + ITr
is a basic double link and consequently,

codim IT = codim(x2, . . . , xn) = n− 1.

(ii) From the basic double link shown in (i), we get the exact sequence

0 −→ S/ITr
(−1) −→ S/(x2, . . . , xn)(−1)

⊕

S/ITr
−→ S/IT −→ 0.

We proceed by induction on n. For n = 3, IT = (x2x4, x3x4, x3x5) and

P (S/(x2x4, x3x4, x3x5), t) =
1 + 2t

(1− t)3
.

Assume true for a Ferrers graph with partition λ = (n− 1, n− 1). Then since

the Hilbert function adds along exact sequences, we get

HS/IT (j) = HS/(x2,...,xn)(j − 1) +HS/ITr
(j)−HS/ITr

(j − 1)

which yields the following relationship among Hilbert Series.

P (S/IT , t) = tP (S/(x2, . . . , xn), t) + (1− t)P (S/ITr
, t)

However, S/(x2, . . . , xn) ∼= k[x1, xn+1, . . . , x2n] and hence

P (S/IT , t) = t

(

1

(1− t)n+1

)

+ (1− t)P (S/ITr
, t).

Furthermore,

P (S/IT , t) = t

(

1

(1− t)n+1

)

+ (1− t)
[

1

(1− t)2
P
(

k[Tn−1]/ITn−1 , t
)

]

because S/ITr
is isomorphic to a polynomial ring in 2 variables over

k[Tn−1]/ITn−1 . Hence,

P (S/IT , t) =
t

(1− t)n+1
+ (1− t)

[

1

(1− t)2

1 + (n− 2)t

(1− t)n
]

=
1 + (n− 1)t

(1− t)n+1
.

(iii) Corso and Nagel proved in [3] that in the case of the 2× n Ferrers tableau,

P (S/I2(T), t) =
1 + (n− 1)t

(1− t)n+1
.
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Furthermore, since IT ⊂ inrevlex(I2(T)) and dim(IT ) = dim(I2(T)) it follows

that IT = inrevlex(I2(T)).

Using the case of the Ferrers tableau with partition λ = (n, n) as our foundation, we

would like to extend this result to the Ferrers tableau with outer border thickness

at least two. In particular, we would like to show that the toric generators of the

defining ideal for the toric ring form a Gröbner basis.

7.1.3 Theorem. Let T be a Ferrers tableau with partition λ = (λ2, λ2, . . . , λn) with

n ≥ 3, and λn ≥ 2. Furthermore, let T
′ be the subtableau of T formed by deleting

the λn − 1 rightmost columns and the nth-row of T, and let N be the subtableau of

T formed by considering the top n − 1 rows of the rightmost λn − 1 columns. If we

additionally let xr be the leftmost entry in the nth-row of T and Tr be the subtableau

of T formed by deleting the box containing xr, then

IT = xr(IT ′ + I1(N)) + ITr

is a basic double link with

codim(IT ) =

(

n
∑

j=2

λj

)

− n + 1.

Before providing the proof of this theorem, let us first illustrate the components of

the tableau, namely T′ and N as they relate to the original tableau T.

T

N

rx

Figure 7.2: The subtableaux components occurring in the basic double link
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Proof. Proceed by induction on the addition of boxes to a Ferrers tableau with par-

tition λ = (λ2, λ2). Consider adding 2 boxes to the tableau. Then

IT = xr(IT2×(λ2−1)
+ (xλ2 , x2λ2)) + IT2×λ2

. (7.2)

However, Proposition (7.1.2) provides that S/IT2×λ2
is Cohen-Macaulay with

codim(IT2×(λ2−1)
+ (xλ2 , x2λ2)) = codim(IT2×(λ2−1)

) + codim((xλ2 , x2λ2))

= (λ2 − 2) + 2

= λ2

and

codim(IT2×λ2
) = λ2 − 1.

Hence, (7.2) is indeed a basic double link. Consequently,

codim(IT ) = codim(IT2×(λ2)
+ (xλ2 , x2λ2)) = λ2.

Assume true for the addition of m − 1 boxes to the tableau T(λ2,λ2). Consider the

equality

IT = xr(IT ′ + I1(N)) + ITr
. (7.3)

By the induction hypothesis and the consequences of basic double linkage, S/ITr
is

Cohen-Macaulay. We must check that codim(IT ′+I1(N)) = codim(ITr
)+1. However,

from the induction hypothesis we have

codim(ITr
) =

(

n−1
∑

j=2

λj

)

+ λn − 1− n + 1

=

(

n−1
∑

j=2

λj

)

+ λn − n

codim(IT ′) =

(

n−1
∑

j=2

λj − (λn − 1)

)

− (n− 1) + 1

=

(

n−1
∑

j=2

λj

)

− (n− 2)(λn − 1) + 2

codim(I1(N)) = (n− 1)(λn − 1)

= λnn− n− λn + 1

.
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Since the minimal generating sets of IT ′ and I1(N) are disjoint, it follows that

codim(IT ′ + I1(N)) = codim(IT ′) + codim(I1(N)) =

(

n−1
∑

j=2

λj

)

+ λn − n+ 1.

Hence, codim(IT ′ + I1(N)) = codim(ITr
) + 1, and thus (7.3) is a basic double link.

As a consequence,

codim(IT ) = codim(IT ′ + I1(N)) =

(

n
∑

j=2

λj

)

− n + 1.

7.1.4 Proposition. Let T be a Ferrers tableau with partition (λ2, λ2, . . . , λn) where

n ≥ 2 and λn ≥ 2. Since dim(S/IT) = λ1 +n−1, the Hilbert series can be written as

P (S/IT, t) =
pT(t)

(1− t)λ1+n−1

and

pT(T ) = pTr
(t) + tpT ′(t)

for n ≥ 3.

Proof. Since IT = xr(IT′ + I1(N)) + ITr
is a basic double link, we get the following

exact sequence

0 −→ S/ITr
(−1) −→ S/(IT′ + I1(N))(−1)⊕ S/ITr

−→ S/IT −→ 0.

Since Hilbert functions add along exact sequences, we get the following relationship

among Hilbert functions

HS/IT(j) = HS/(I
T′+I1(N))(j − 1) +HS/IT(j)−HS/ITr

(j − 1)

which provides the following relationship among Hilbert series

P (S/IT, t) = tP (S/(IT′ + I1(N)), t) + (1− t)P (S/ITr
, t). (7.4)

Since dim(S/IT) = λ1 + n− 1, we can write

P (S/IT, t) =
pT(t)

(1− t)λ1+n−1
.
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Then (7.4) can be written as

pT(t)

(1− t)λ1+n−1
= tP (S/(IT′ + I1(N)), t) + (1− t)P (S/ITr

, t). (7.5)

However,

P (S/ITr
, t) =

1

1− tP (k[Tr]/ITr
)

=

(

1

1− t

)(

pTr
(t)

(1− t)λ1+n−1

)

=
pTr

(1− t)λ1+n
.

Using this, (7.5) becomes

pT(t)

(1− t)λ1+n−1
= tP (S/(IT′ + I1(N)), t) +

pTr
(t)

(1− t)λ1+n−1
. (7.6)

Notice that S/(IT′ + I1(N)) is isomorphic to a polynomial ring in λn variables over

k[T′]/IT′. Furthermore,

dim(k[T′]/IT′) = (λ1 − λn + 1) + (n− 1)− 1 = λ1 + n− λn − 1

and

P (S/(IT′ + I1(N)), t) =
1

(1− t)λn
P (k[T′]/IT′ , t)

=

(

1

(1− t)λn

)(

pT′(t)

(1− t)λ1+n−λn−1

)

=
pT′(t)

(1− t)λ1+n−1
.

Substituting this into (7.6) provides

pT(t)

(1− t)λ1+n−1
= t

(

pT′(t)

(1− t)λ1+n−1

)

+
pTr

(t)

(1− t)λ1+n−1
.

Therefore,

pT(t) = tpT′(t) + pTr
(t).

7.1.5 Corollary. Let T be a Ferrers tableau with partition λ = (λ2, λ2, . . . , λn) where
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n ≥ 2. Then

IT = inrevlex(I2(T)).

In particular, the set of minimal generators of I2(T) forms a Gröbner basis in the

reverse lexicographic term order.

Proof. We begin by noting that IT ⊂ inrevlex(I2(T)) and dim(IT) = dim(inrevlex(I2(T)).

We wish to show that

pT(t) = pinrevlex(I2(T))(t).

We will induct on the addition of boxes to the Ferrers tableau T(λ2,λ2). We begin by

adding 2 boxes to T(λ2,λ2). Then Proposition (7.1.2) provides

pTr
(t) = pinrevlex(Tr)(t) and pT′(t) = pinrlex(T′)(t)

and hence pT(t) = pinrevlex(I2(T))(t). Assume the result is true for the addition of m−1

boxes to the Ferrers tableau T(λ2,λ2). Then by the induction hypothesis

pTr
(t) = pinrevlex(Tr)(t) and pT′(t) = pinrlex(T′)(t)

and therefore, IT = inrevlex(I2(T)).

One of the goals of studying initial ideals of I2(T) is to generate information about

the toric ring k[T]/I2(T). In particular, we would like to show that the toric ring is

level, i.e. that the last module in the minimal free resolution for k[T]/I2(T) has only

one degree shift. The method we will use is to find a level initial ideal of I2(T). For a

term order <, we have the following relationship among Betti numbers of k[T]/I2(T)

and k[T]/ in<(I2(T)),

βi,j (k[T]/I2(T)) ≤ βi,j (k[T]/ in<(I2(T))) .

Thus, if we show that an initial ideal of I2(T) is level, then we would also have

shown that the original toric ideal I2(T) is level. However, the following example

demonstrates that the reverse lexicographic term order will not be the right term

order to choose to show that I2(T) is level using this method.

7.1.6 Example. Consider the Ferrers tableau given by the partition λ = (3, 3, 2)

depicted as

69



x

1

xx

x

x x x

x

2 3

5 6

7 8

4

Figure 7.3: The Ferrers tableau with partition λ = (3, 3, 2)

Then inrevlex (I2(T)) = (x2x4, x3x4, x3x5, x3x7, x6x7), and the Betti diagram from

Macaulay 2 (see [8]) for inrevlex (I2(T)) is given by

Total : 1 5 6 2

0 : 1 − − −
1 : − 5 5 1

2 : − − 1 1

We see from this Betti diagram that inrevlex (I2(T)) is not level. In particular, the

last module in a minimal free resolution for S/ inrevlex (I2(T)) has shifts in coarsely

graded degrees 4 and 5.

In the following section we will examine a modification of the reverse lexicographic

term order in hopes that it will produce a level initial ideal.

7.2 The Diagonal Term Order

In [2] Conca, Hoşten, and Thomas posed the question of when a given term order

produces an initial ideal with the same Betti numbers as the original ideal, i.e. for

which classes of ideals is there a term order < such that

βi,j(S/I) = βi,j(S/ in<(I)). (7.7)

In particular, they looked at the class of ideals occurring as (n − 1)-minors of n ×
n matrices. They determined that when considering a modification of the reverse

lexicographic term order, called the diagonal order, the Betti numbers of the initial

ideal correspond with that of the original ideal generated by the (n − 1)-minors of

n × n matrices. Since Ferrers tableaux are portions of full matrices and we are

considering minors of these tableaux, we will also consider the initial ideal obtained

in the diagonal term order for I2(T).

It should be noted that for an arbitrary ideal I, there is not necessarily an initial

ideal satisfying equation (7.7) above. Actually, for a given ideal there are only a finite
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number of initial ideals, so this property can be checked manually with a computer.

7.2.1 Definition. Consider the Ferrers tableau given by the partition

λ = (λ2, λ2, . . . , λn) where n ≥ 2 and λn ≥ 2.

Just as in the case of a square matrix, we can distinguish the main diagonal of the

tableaux.

Figure 7.4: The main diagonal of a Ferrers tableau

Then the diagonal term order is defined as a modification of the reverse lexicographic

term order where the main diagonal entries are smallest.

Previously, in the reverse lexicographic term order, the leading term of each toric

generator corresponded to the anti-diagonal of the corresponding (2 × 2)-minor. In

the case of the diagonal term order, we modify this by requiring that no leading term

of a toric generator can hit the main diagonal of the Ferrers tableau. If the leading

term of the toric generator in the reverse lexicographic term order hits the main

diagonal of the Ferrers tableau, we will let the main diagonal of the corresponding

(2× 2)-minor be the leading term of the toric generator in the diagonal term order.

7.2.2 Example. Consider the Ferrers tableau with partition λ = (3, 3, 2) considered

in the reverse lexicographic order in Example (7.1.6). Then the Ferrers tableau is

pictured as
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Figure 7.5: The Ferrers tableau T(3,3,2) with the main diagonal highlighted

Then

I2(T) = (x1x5 − x2x4, x1x6 − x3x4, x2x6 − x3x5, x2x8 − x3x7, x5x8 − x6x7)

and
indiag(x1x5 − x2x4) = x2x4

indiag(x1x6 − x3x4) = x3x4

indiag(x2x6 − x3x5) = x2x6

indiag(x2x8 − x3x7) = x3x7

indiag(x5x8 − x6x7) = x6x7.

7.2.3 Proposition. Let T be a Ferrers tableau with partition λ = (λ2, λ2, . . . , λn),

n ≥ 2, and λn ≥ 2. Additionally, we assume that

λi ≤ λ1 − i+ 2 for i ∈ {2, . . . , n}.

Then the set {t1, t2, . . . , tp} of minimal toric generators of I2(T) is a Gröbner basis

in the diagonal term order, i.e.

(ltdiag(t1), ltdiag(t2), . . . , ltdiag(tp)) = indiag(I2(T)).

Proof. We will proceed using Buchberger’s Criterion (7.0.12). We will assume that

if i < j. Furthermore, if i < j, then ti is located relatively above tj ; or if they are

located on the same rows, ti is to the left of tj . Recall that the s-pair of ti and tj is

given by

s(ti, tj) =
lcm(ti, tj)

lt(ti)
ti −

lcm(ti, tj)

lt(tj)
tj .

We will let ti = mi − ai where mi denotes the main diagonal, and ai denotes the

anti-diagonal of the minor corresponding to the toric generator ti.

Case (i): Assume lt(ti) = mi and lt(tj) = mj . This corresponds to the situation

when the anti-diagonals of both ti and tj contain an entry of the tableau’s
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main diagonal.

Case (a): Assume lcm(ti, tj) = mimj . Then

s(tk, tj) = mjti −mitj

= miaj −mjai.

Since the anti-diagonals of both ti and tj hit the main diagonal and

aj <diag ai, it follows that

lt(miaj −mjai) = mjai.

Then since lt(tj) = mj , the multivariate division algorithm provides

s(ti, tj) = −ai(mj − aj)− aiaj +miaj

= −ai(mj − aj) + aj(mi − ai).

Case (b): Assume lcm(ti, tj) = xixxj where mi = xix and mj = xjx. Then

s(ti, tj) = xjti − xitj
= xiaj − xjai.

Case (1): Assume ai = yiy and aj = yjy. Then

s(ti, tj) = yjyxi − yiyxj = y(xiyj − xjyi).

However, there exists a k such that tk = xiyj − xjyi.
Case (2): Assume ai = yi1yi2 and aj = yj1yj2. Then since ai and aj both

contain an entry of the tableau’s main diagonal and aj <diag ai, it

follows that lt(ajxi − aixj) = ajxi = yj1yj2xi. Furthermore, there

exists a k such that tk = xiyj2 − yi1z and lt(tk) = xiyj2. Then

s(ti, tj) = yj1(xiyj2 − yi1z) + yi1yj1z − yi1yi2xj
= yj1(xiyj2 − yi1z)− yi1(yi2xj − yj1z).

Moreover, there exists an ℓ such that tℓ = yi2xj − yj1z.

Case (ii): Assume lt(ti) = ai and lt(tj) = aj. Then we have the following two

subcases.
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Case (a): Assume lcm(ti, tj) = aiaj . Then

s(ti, tj) = ajti − aitj = ajmi − aimj .

Furthermore, lt(ajmi − aimj) = ajmi and lt(tj) = aj . Hence, the

multivariate division algorithm provides

s(ti, tj) = −mi(mj − aj) +mimj − aimj

= −mi(mj − aj) +mj(mi − ai).

Case (b): Assume lcm(ti, tj) = yiyyj where ai = yiy and aj = yjy. Then

s(ti, tj) = yjti − yitj = yjmi − yimj .

Case (1): Assume mi = xix and mj = xjx. Then

s(ti, tj) = yjxix− yixjx = x(xiyj − xjyi)

and there exists a k such that tk = xiyj − xjyi.
Case (2): Assume mi = xi1xi2 and mj = xj1xj2 . Then

lt(yjmi − yimj) = yjmi = yjxi1xi2 .

Moreover, there exists a k such that tk = zxj2 − yjxi1 and lt(tk) =

yjxi1 . Then

s(ti, tj) = −xi−2(zxj2 − yjxi1) + xi2zxj2 − yixjixj2
= −xi−2(zxj2 − yjxi1) + xj2(zxi2 − yixj1).

Furthermore, there exists an ℓ such that tℓ = zxi2 − yixj1.

Case (iii): Assume lt(ti) = ai and lt(tj) = mj .

Case (a): Assume lcm(ti, tj) = aimj . Then

s(ti, tj) = mjti − aitj = mimj − 2aimj + aiaj .

Furthermore, lt(mimj − 2aimj + aiaj) = 2aimj and since lt(ti) = ai

74



we obtain

s(ti, tj) = mimj − 2aimj + aiaj

= 2mj(mi − ai)−mimj + aiaj.

Case (1): Assume lt(−mimj + aiaj) = mimj . Since lt(tj) = mj , the s-pair

becomes

s(ti, tj) = 2mj(mi − ai)−mimj + aiaj

= 2mj(mi − ai)−mi(mj − aj)− ajmi + aiaj

= 2mj(mi − ai)−mi(mj − aj)− aj(mi − ai).

Case (2): Assume lt(−mimj + aiaj) = aiaj. Since lt(ti) = ai, the multivari-

ate division algorithm provides

s(ti, tj) = 2mj(mi − ai)−mimj + aiaj

= 2mj(mi − ai)− aj(mi − ai) + ajmi −mimj

= 2mj(mi − ai)− aj(mi − ai)−mi(mj − aj).

Case (b): Assume lcm(ti, tj) = yizxj where ai = yiz and mj = xjz. Then

s(ti, tj) = xjti − yitj
= xjmi − 2xjyiz + ajyi.

Moreover, lt(xjmi − 2xjyiz + ajyi) = 2xjyiz. Since lt(ti) = ai = yiz,

the s-pair becomes

s(ti, tj) = xjmi − 2xjyiz + ajyi

= 2xj(mi − yiz)− xjmi + ajyi.

In this case, mi = xiw and aj = yjw and hence

s(ti, tj) = 2xj(mi − yiz)− xixjw + yiyjw

= 2xj(mi − yiz)− w(xixj − yiyj).

Furthermore, there exists a k such that tk = xixj − yiyj.
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The condition in the above proposition that

λi ≤ λ1 − i+ 2 for i ∈ {2, . . . , n}

means that in any row of the given Ferrers tableau we are not allowed to have more

than one entry to the left of the main diagonal entry. We will see shortly that if

we extend the possible entries of a Ferrers tableau too far to the left of the main

diagonal, the minimal toric generators of I2(T) will not form a Gröbner basis.

Since the minimal toric generators of I2(T) form a Gröbner basis in this case, it

follows that indiag(I2(T)) is square-free. In [16], Sturmfels has the following result

concerning a square-free Gröbner basis of a toric ideal.

7.2.4 Proposition. Let I be a prime ideal that has binomial minimal generators.

Suppose that for some term order < on k[x1, . . . , xn] the initial ideal, in<(I), is square-

free, then in<(I) is Cohen-Macaulay.

It should be mentioned that Sturmfels actually showed that I is normal. However,

in [11], Hochster showed that if I is normal, then I is necessarily Cohen-Macaulay.

The above proposition has the following consequence.

7.2.5 Corollary. Let T be a Ferrers tableau with partition λ = (λ2, λ2, . . . , λn),

n ≥ 2, and λn ≥ 2. Additionally, we assume that

λi ≤ λ1 − i+ 2 for i ∈ {2, . . . , n}.

Then indiag(I2(T)) is Cohen-Macaulay.

Proof. Apply Proposition (7.2.4) to Proposition (7.2.3).

The following example demonstrates the weakness of the diagonal order with respect

to the formation of a Gröbner basis from the minimal toric generators of I2(T).

7.2.6 Example. Consider the Ferrers tableau with partition λ = (5, 5, 5, 4) depicted

below.
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Figure 7.6: The Ferrers tableau T(5,5,5,4) in the diagonal term order

Set

IT := (ltdiag(ti) | ti is a minimal generator of I2(T)).

Then pd(S/IT ) = 11, but codim(S/IT ) = 10. This implies that S/IT is not Cohen-

Macaulay. Hence, Proposition (7.2.4) implies that the set of minimal toric generators

of I2(T) does not form a Gröbner basis in the diagonal term order.

We notice that in the above example, we allowed the cells in a given row of the Ferrers

tableau to venture to two cells past the main diagonal. It is for this reason that we

have the restriction on the number of entries in each row of the Ferrers tableau in

Proposition (7.2.3).

Let us revisit the Ferrers tableau examined in Example (7.1.6), but let us now

consider it in the diagonal term order.

7.2.7 Example. Consider the Ferrers tableau with partition λ = (3, 3, 2).

x

x x

1

x

x x x

x

2 3

5 6

7 8

4

Figure 7.7: The Ferrers tableau T(3,3,2) in the diagonal term order

Then

indiag(I2(T(3,3,2))) = (x2x4, x3x4, x2x6, x3x7, x6x7)

and the corresponding Betti diagram from Macaulay 2 (see [8]) is given by

Total : 1 5 5 1

0 : 1 − − −
1 : − 5 5 −
2 : − − − 1

77



In particular, we notice that indiag(I2(T(3,3,2))) is level.

When considering Ferrers tableaux in the diagonal order where there are only two

entries on the main diagonal, we get the following result concerning the corresponding

initial ideals.

7.2.8 Proposition. Let T be a Ferrers tableau with partition λ = (λ2, λ2, . . . , λn),

n ≥ 2, and λn ≥ 2. Additionally, we specify that for i ∈ {3, . . . , n}

λi ≤ λ1 − i.

Then indiag(I2(T)) is level with level shift given by

n
∑

j=2

λj .

Proof. We will prove this claim in two steps. First we will show that the claim is true

for a Ferrers tableau with partition λ = (λ2, λ2). Then, in the second step, we will

prove the claim for the remaining cases by inducting on the addition of boxes to the

Ferrers tableau with partition λ = (λ2, λ2). To simplify our notation, we will set

IT := indiag(I2(T)).

(i) Consider the Ferrers tableau with partition λ = (2, 2). Then

indiag(I2(T(2,2))) = (x2x3)

which is clearly level with level shift 2. Assume that the claim is true for Ferrers

tableaux with partition λ = (m− 1, m− 1). Consider the Ferrers tableau with

partition λ = (m,m) depicted below.

x x xx

xx x x

1 2 m−1 m

2m−1 2mm+2m+1

Figure 7.8: The Ferrers tableau T(m,m) in the diagonal term order

Then indiag(I2(T)) = inrevlex(I2(
∼

T)) where
∼

T is given by the Ferrers tableau

shown below.
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Figure 7.9: The Ferrers tableau
∼

T

Consequently, this demonstrates that it is equivalent to show the claim for the

reverse lexicographic term order. Recall from Theorem (7.1.3) that we have the

following relationship among subtableaux of T when considered in the reverse

lexicographic term order.

IT = xm+1(x2, . . . , xm) + ITr

Furthermore, since this is a basic double link, we get the following short exact

sequence.

0 −→ S/ITr
(−1) −→ S/(x2, . . . , xm)(−1)

⊕

S/ITr
−→ S/IT −→ 0

Moreover, from Theorem (7.1.3) and the Koszul resolution of S/(x2, . . . , xm) we

also obtain that

pd(S/(x2, . . . , xm)) = m− 1

pd(S/ITr
) = (m− 1)− 2 + 1 = m− 2.

Additionally, S/(x2, . . . , xm) is level with level shift m − 1, and the induction

hypothesis provides that ITr
is level with level shift m − 1. Therefore, we

conclude from the mapping cone construction that S/IT is also level with level

shift (m− 1) + 1 = m.

(ii) In this step, we will use the notation of Theorem (7.1.3) and proceed by induct-

ing on the number of boxes added to the tableau with partition λ = (λ2, λ2).

Consider the addition of two boxes to such a tableau. Then we have the follow-

ing relationship among Ferrers tableaux

IT = xr(IT(λ2−1,λ2−1)
+ (xλ2 , x2λ2)) + ITr

where Tr is the subtableau of T obtained by removing the cell containing xr.

Since ITr
⊂ (IT(λ2−1,λ2−1)

+(xλ2 , x2λ2)) and xr does not divide a minimal generator
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of ITr
we get the following exact sequence

0 −→ S/ITr
(−1) −→ S/(IT(λ2−1,λ2−1)

+(xλ2 , x2λ2))(−1)
⊕

S/ITr
−→ S/IT −→ 0

Additionally,

pd(S/(IT(λ2−1,λ2−1)
+ (xλ2 , x2λ2))) = (λ2 − 2) + 2 = λ2

pd(S/ITr
) = λ2 − 1

Furthermore, both S/(IT(λ2−1,λ2−1)
+ (xλ2 , x2λ2)) and S/ITr

are level by the in-

duction hypothesis. Moreover, the level shift of S/(IT(λ2−1,λ2−1)
+ (xλ2 , x2λ2)) is

(λ2− 1) + 2 = λ2 + 1, and the level shift of S/ITr
is λ2 + 1. Hence, S/IT is also

level with level shift (λ2 + 1) + 1 = λ2 + 2. Assume the claim holds true for

the addition of m− 1 boxes to the Ferrers tableau with partition λ = (λ2, λ2).

Then we get the following relationship among Ferrers tableaux.

IT = xr(IT ′ + I1(N)) + ITr

Moreover, since ITr
⊂ (IT ′ + I1(N)) and xr does not divide a minimal generator

of ITr
we get the following exact sequence

0 −→ S/ITr
(−1) −→ S/(IT ′ + I1(N))(−1)

⊕

S/ITr
−→ S/IT −→ 0

We further note that

pd(S/(IT ′ + I1(N))) =

[(

n−1
∑

j=2

λj

)

− (n− 2)λn

]

+ (n− 1)(λn − 1)

=

(

n
∑

j=2

λj

)

− n+ 1

pd(S/ITr
) =

(

n
∑

j=2

λj

)

− n

Then the induction hypothesis implies that the level shift of S/(IT ′ + I1(N)) is

given by

(

n−1
∑

j=2

λj − (λn − 1)

)

+ (λn − 1)(n− 1) =

(

n−1
∑

j=2

λj

)

+ λn − 1
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and the level shift of S/ITr
is also given by

(

n−1
∑

j=2

λj

)

+ λn − 1.

Therefore, from the mapping cone construction, we conclude that S/IT is also

level with level shift

[(

n−1
∑

j=2

λj

)

+ λn − 1

]

+ 1 =
n
∑

j=2

λj.

The added restriction of the number of boxes in each row of the Ferrers tableau in

the above proposition, namely that

λi ≤ λ1 − i for i ∈ {3, . . . , n},

means that our tableau will only have 2 main diagonal entries. The same method

used in the above proof cannot be used for the addition of a main diagonal entry. In

particular, we do not get the equality

IT = xr(IT ′ + I1(N)) + ITr

when xr is located on the main diagonal of the Ferrers tableau T.

The above proposition provides the following result concerning the original toric

ideal I2(T).

7.2.9 Corollary. Let T be a Ferrers tableau with partition λ = (λ2, λ2, . . . , λn),

n ≥ 2, and λn ≥ 2. Additionally, we specify that for i ∈ {3, . . . , n}

λi ≤ λ1 − i.

Then I2(T) is level.

Proof. We have the following relationship among the Betti numbers of I2(T) and

indiag(I2(T))

βi,j(S/I2(T)) ≤ βi,j(S/ indiag(I2(T))).

Thus Proposition (7.2.8) provides that I2(T) is level.
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In the above corollary we have shown that the toric ring of a Ferrers graph is level

when the Ferrers graph has only two main diagonal entries. We mentioned earlier

that the method we used in the above proof of Proposition (7.2.8) fails upon the

addition of a third main diagonal entry. However, from numerous examples, it seems

likely that the initial ideal in the diagonal term order is level in all of the cases for

which we have shown that the toric generators of I2(T) form a Gröbner basis, namely

when no row of the Ferrers graph goes more than one entry past the main diagonal.

7.2.10 Conjecture. Let T be a Ferrers tableau with partition λ = (λ2, λ2, . . . , λn),

n ≥ 2, and λn ≥ 2. Additionally, we assume that

λi ≤ λ1 − i+ 2 for i ∈ {2, . . . , n}.

Then both indiag(I2(T)) and I2(T) are level.

It should be be noted that, for the above conjecture, if one were able to show that

indiag(I2(T)) was level for the addition of a main diagonal entry to any row, then the

addition of an entry one past the main diagonal in any row is a consequence of the

relationship

IT = xr(IT ′ + I1(N)) + ITr

which holds true as long as xr is not an entry of the main diagonal and remains at

most one box to the left of the main diagonal of the given Ferrers tableau.

In [3], Corso and Nagel showed that I2(T) is Cohen-Macaulay. Furthermore, via

the results of Sturmfels and Hochster shown in Proposition (7.2.4), we have shown

that indiag(I2(T)) is also Cohen-Macaulay in certain cases. Then we make the follow-

ing conjecture concerning the Cohen-Macaulay types of both I2(T) and indiag(I2(T)).

7.2.11 Conjecture. Let T be a Ferrers tableau with partition λ = (λ2, λ2, . . . , λn),

n ≥ 2, and λn ≥ 2. Additionally, we assume that

λi ≤ λ1 − i+ 2 for i ∈ {2, . . . , n}.

Then indiag(I2(T)) and I2(T) share the same Cohen-Macaulay type.

In the above conjectures we have kept the restriction that

λi ≤ λ1 − i+ 2 for i ∈ {2, . . . , n}.
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The reason for this restriction is illustrated in Example (7.2.6). It was in this example

that we saw that if we ventured to expand to a Ferrers graph with two boxes to the

left of the main diagonal we may end up in the situation where the toric generators

of I2(T) do not form a Gröbner basis. However, it appears that as we approach the

full rectangular Ferrers tableau, the set of toric generators of I2(T) again becomes a

Gröbner basis, thus leading to the following conjecture.

7.2.12 Conjecture. Let T be a Ferrers tableau with partition λ = (λ2, λ2, . . . , λ2)

where the Ferrers graph has at least 3 rows. Then the set {t1, t2, . . . , tp} of minimal

toric generators of I2(T) is a Gröbner basis in the diagonal term order, i.e.

(ltdiag(t1), ltdiag(t2), . . . , ltdiag(tp)) = indiag(I2(T)).

In conclusion we would like to relate the study of the monomial ideals that we stud-

ied in this chapter to the study of edge ideals of simple graphs examined in earlier

chapters. In Propositions (7.1.3) and (7.2.3) we showed that the toric generators

of I2(T) form a Gröbner basis in both the reverse lexicographic order and the di-

agonal order for certain classes of Ferrers graphs. Additionally, we saw that both

inrevlex(I2(T)) and indiag(I2(T)) were generated by square-free quadratic monomials.

This implies that both inrevlex(I2(T)) and indiag(I2(T)) occur as edge ideals of simple

graphs. Therefore, Propositions (7.1.3) and (7.2.3) are also statements about the

edge ideals of the corresponding simple graphs, namely that the edge ideals of these

simple graphs are Cohen-Macaulay. Furthermore, Proposition (7.2.8) states that the

edge ideals of the simple graphs corresponding to the ideals indiag(I2(T)) associated

to certain Ferrers graphs are level.
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