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ABSTRACT OF DISSERTATION

REGULARITY AND UNIQUENESS OF SOME GEOMETRIC HEAT FLOWS
AND IT’S APPLICATIONS

This manuscript demonstrates the regularity and uniqueness of some geometric heat
flows with critical nonlinearity. First, under the assumption of smallness of renormal-
ized energy, several issues of the regularity and uniqueness of heat flow of harmonic
maps into a unit sphere or a compact Riemannian homogeneous manifold without
boundary are established. For a class of heat flow of harmonic maps to any com-
pact Riemannian manifold without boundary, satisfying the Serrin’s condition, the
regularity and uniqueness is also established. As an application, the hydrodynamic
flow of nematic liquid crystals in Serrin’s class is proved to be regular and unique.
The natural extension of all the results to the heat flow of biharmonic maps is also
presented in this manuscript.
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Chapter 1 Introduction

It is well known that for geometric nonlinear evolution equations with critical non-
linearity the uniqueness and regularity of weak solutions is often a very challenging
question. One of the most important examples is harmonic maps and its heat flows.
It is a very important object in the study of topology and geometry and provide a
rich of phenomena in both fields (see e.g. [63] and the references therein). In this
thesis, the issues of uniqueness for heat flow of harmonic maps in higher dimensions
and its applications will be investigated.

1.1 Overview of previous studies

Heat flow of harmonic maps

Let (M, g) be a n-dimensional compact Riemannian manifold possibly with ∂M �=
∅ or complete Riemannian manifold with ∂M = ∅, and let (N, h) ⊂ R

k be a compact
Riemannian manifold without boundary. For m ≥ 1, p ≥ 1, the Sobolev space
Wm,p(M,N) is defined by

Wm,p(M,N) =
{
v ∈ Wm,p(M,RL+1) : v(x) ∈ N for a.e. x ∈ M

}
.

For any u : M → N , the Dirichlet energy is given by

E1(u) =
1

2

ˆ
M

|∇u|2 dx.

Definition 1.1.1. A map u ∈ W 1,2(M,N) is called a weakly harmonic map if it
is a critical point of the Dirichlet energy functional E1(u) and the Euler-Lagrange
equation of the weakly harmonic maps is

−Δgu = A(u)(∇u,∇u), (1.1)

where Δg is the Laplacian operator on (M, g) and A(u)(∇u,∇u) is the second fun-
damental form of N at u, which satisfies the following estimate

|A(u)(∇u,∇u)| ≤ C|∇u|2. (1.2)

Harmonic maps are nonlinear extension of harmonic functions and are important
objects in the study of topology and calculus of variations. They provide a rich
phenomena in both differential geometry and analysis and play a very important role
in the study of geometric analysis. It is easy to see from (1.2) that the nonlinearity
of (1.1) is critical, which makes the regularity and uniqueness of weak solutions in
higher dimensions a very challenge question. The regularity of weakly harmonic maps
has been studied in dimension two by Hélein’s famous works [33, 34, 35]. The partial
regularity of weak solutions in higher dimensions has been established by Evans [23],
Bethuel [2], Chang-Wang-Yang [9] and Riviere-Struwe [73].
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The uniqueness of weakly harmonic maps is not true in general for higher dimen-
sions as pointed out in Struwe [85]. In fact, in Struwe [85] (for n = 3) and Moser
[70] (for n ≥ 4), the uniqueness of weak solutions to (1.1) has been proved under the
following smallness assumption

sup
x∈M,r>0

1

r

ˆ
Br(x)∩M

|∇u|2 dx < ε0,

for some ε0 > 0, where Br(x) = {y ∈ M : dg(y, x) ≤ r} for x ∈ M and dg denotes
the distance function on M induced by g.

The study of heat flow of harmonic maps began with the ground breaking work
of Eells-Sampson [20]. For 0 < T ≤ +∞, the heat flow of harmonic maps u :
M × [0, T ) → N is defined by:{

∂tu−Δgu = A(u)(∇u,∇u) in M × (0, T )

u = u0 on ∂p(M × [0, T ])
(1.3)

where ∂p(M × [0, T ]) = (M × {0}) ∪ (∂M × (0, T )) denotes the parabolic boundary
of M × [0, T ], and u0 : M → N is a given map. Denote

H1
(
M × [0, T ], N

)
=

{
v ∈ W 1,2(M × [0, T ],Rk)

∣∣∣ v(x, t) ∈ N,

a.e. (x, t) ∈ M × [0, T ]
}
.

Definition 1.1.2. For u0 ∈ W 1,2(M,N) and 0 < T ≤ +∞, u ∈ H1(M × [0, T ], N)
is a weak solution of (1.3) if u satisfies (1.3)1 in the sense of distribution and (1.3)2
in the sense of trace.

Here we denote (·)i for the i-th equation of the system (·).
For the Cauchy problem of (1.3) (∂M = ∅), Eells-Sampson [20] have proved that

any homotopy class of maps from M to N contains a smooth harmonic mas whenever
N is nonpositively curved. More precisely, they proved the following theorem:

Theorem 1.1.3. If M is a compact Riemannian manifold without boundary and
the sectional curvature KN of N is nonpositive. Then for any u0 ∈ C∞(M,N), the
Cauchy problem (1.3) has a unique smooth solution u ∈ C∞(M × [0,+∞), N). As
t → +∞, u(x, t) converges to a harmonic map u∞ ∈ C∞(M,N) in C2(M,N).

Later on, the same conclusion was proved for the case of compact Riemannian
manifolds with boundary by Hamilton [31]. In [36], Hildebrandt-Kaul-Widman proved
the similar conclusion under the assumption u0(M) belongs to a convex geodesic ball
of N .

For general Reimannian manifold N , the existence of a unique, global weak so-
lution to (1.3) with finitely many singularities has been obtained by Struwe [82] and
Chang [5] for n = 2, i.e.,
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Theorem 1.1.4. For any u0 ∈ W 1,2(M,N), there exists a unique weak solution
u ∈ H1(M × [0, T ], N) satisfying the following energy inequality

sup
0<t<T

ˆ
M

|∇u|2(t) dx+ 2

ˆ T

0

|ut|2 dxdt ≤
ˆ
M

|∇u0|2 dx,

and u ∈ C∞(M × (0,∞) \ S,N), where S := {(xi, Ti)}Ki=1 is the collection of finite
singularity points. Any (xi, Ti) is characterized by

lim
t↑Ti

ˆ
Br(xi)∩M

|∇u|2(t) dx ≥ ε0

for any r > 0 and some ε0 > 0.

The examples of finite and infinite time blow up have been established by Coron-
Ghidaglia [16] and Chen-Ding [7] for n ≥ 3 and Chang-Ding-Ye [8] for n = 2, so that
finite time blow-ups of weak solutions to (1.3) do exist.

For higher dimensions (n ≥ 3), Chen-Struwe [13] and Chen-Lin [11] have estab-
lished the existence of global weak solutions u ∈ H1(M × [0, T ], N) to (1.3) for any
u0 ∈ W 1,2(M,N). Also u is smooth away from a closed set V ⊂ M × (0,∞) with
Pm(V ) < +∞, where Pm denotes m-dimensional Hausdorff measure with respect to
the parabolic metric δ((x, t), (y, s)) = max{|x− y|,√|t− s|}.

One of the important tools in their construction is the following energy mono-
tonicity inequality which was first discovered by Struwe [83] for smooth solutions to
(1.3), i.e.,

Φ(x̄,t̄)(ρ) ≤ Φ(x̄,t̄)(r), ∀x̄ ∈ R
n, t̄ > 0, 0 < ρ ≤ r ≤

√
t̄ (1.4)

where

Φ(x̄,t̄)(ρ) = ρ2
ˆ
Rn×{t̄−ρ2}

|∇u|2(x, t)G(x− x̄, t− t̄) dx

and

G(y, s) =
1

(4π|s|)n
2

exp
(
− |y|2

4|s|
)
, y ∈ R

n, s < 0

is the fundamental solution to the backward heat equation on R
n.

Concerning the uniqueness for weak solutions to (1.3), Freire [26] first proved that
in dimension n = 2, uniqueness holds for the weak solutions whose Dirichlet energy
is monotone decreasing with respect to t (see L.Wang [96] and L. Z. Lin [64] for a
new simple proof). For n ≥ 3, there are non-uniqueness for weak solutions to (1.3)
constructed by Coron [15] and Bethuel-Coron-Ghidaglia-Soyeur [3]. In fact, Coron
[15] proved that for n = 3 and u0 = φ( x

|x|) : R
3 → S2, where φ : S2 → S2 is a

harmonic map satisfying ˆ
S2

x|∇φ(x)|2 dS(x) �= 0,

there are infinitely many weak solutions to the Cauchy problem of (1.3) with ini-
tial data u0. Since u0 (as a stationary weak solution to (1.3)) does not satisfy the
monotonicity formula (1.4), it is different from those constructed by Chen-Struwe.

3



Partially motivated by [15], Struwe [81] has raised the following question:

Struwe’s Question: For M = R
n, exhibit a class of functions within which (1.3)

posses a unique solution. A potential candinate is the class of functions satisfying the
strong monotonicity formula (1.4).

To the best of my knowledge, this question is largely open. In this thesis, some
uniqueness results for the heat flow of harmonic maps (1.3) will be presented, that
may shed light on the validity of Struwe’s conjecture as above.

Hydrodynamic flow of nematic liquid crystals

As a very important application of heat flow of harmonic maps, the hydrodynamic
flow of nematic liquid crystals in R

n × [0, T ], for any n ≥ 3 and some 0 < T < +∞,
is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut + u · ∇u−Δu+∇P = −∇ · (∇d⊗∇d− 1
2
|∇d|2In) in R

n × (0, T )

∇ · u = 0 in R
n × (0, T )

dt + u · ∇d = Δd+ |∇d|2d in R
n × (0, T )

(u, d) = (u0, d0) on R
n × {0}

(1.5)

where u : Rn × [0, T ] → R
n is the velocity field of underlying incompressible fluid,

d : Rn × [0, T ] → S2 is the director field of nematic liquid crystal molecules, P :
R

n × [0, T ] → R is the pressure function, ∇· denotes the divergence operator on R
n,

∇d⊗∇d =
(

∂d
∂xi

· ∂d
∂xj

)
1≤i,j≤n

is the stress tensor induced by the director field d, In is

the identity matrix of order n, u0 : R
n → R

n is the initial velocity field with∇·u0 = 0,
and d0 : R

n → S2 is the initial director field.

Definition 1.1.5. (u, d) ∈ H1(Rn × [0, T ],Rn × S2) is a weak solution to (1.5) if
(u, d) satisfies (1.5)1-(1.5)3 in the sense of distributions and (1.5)4 in the sense of
trace.

The system (1.5) was studied by Lin [59] and Lin-Liu [61] around the 1990’s, which
is a simplified version of the Ericksen-Leslie system modeling the hydrodynamics of
liquid crystal materials proposed by Ericksen [21] and Leslie [57] in the 1960’s. It is
a macroscopic continuum description of the time evolution of the material under the
influence of both the flow field and the macroscopic description of the microscopic
orientation configurations of rod-like liquid crystals. (see [21], [57], [59], and [61] for
more details). Mathematically, the system (1.5) is a strong coupling of the Navier-
Stokes equations and the (transported) heat flow of harmonic maps into S2.

For n = 2, Lin-Lin-Wang [60] have proved the existence of global Leray-Hopf
type weak solutions to (1.5) with initial and boundary conditions, which are smooth
away from finitely many possible singular times (see Hong [39] and Xu-Zhang [97]
for related works). Here Leray-Hopf type refers to a suitable version of the following
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energy inequality:

ˆ
Ω

(|u|2 + |∇d|2) (T ) dx+ 2

ˆ T

0

ˆ
Ω

(
μ|∇u|2 + |Δd+ |∇d|2d|2) dxdt

≤
ˆ
Ω

(|u0|2 + |∇d0|2
)
dx,

where Ω ⊂ R
n is a bounded smooth domain. Lin-Wang [62] have proved the unique-

ness for such weak solutions. It remains a very challenging open problem to prove
the global existence of Leray-Hopf type weak solutions and partial regularity of suit-
able weak solutions to (1.5) in higher dimensions. A blow-up criterion was obtained
for the local strong solution to (1.5) for n = 3 in [46], i.e., if 0 < T∗ < +∞ is the
maximum time interval of the strong solution to (1.5), then

ˆ T∗

0

(‖∇ × u‖L∞ + ‖∇d‖2L∞
)
dt = +∞.

Recently, the local well-posedness of (1.5) was obtained for initial data (u0, d0) with
(u0,∇d0) ∈ L3

uloc(R
3), the space of uniformly locally L3-integrable functions, of

small norm for n = 3 in [38]. While the global well-posedness of (1.5) was obtained
by [95] for (u0, d0) ∈ BMO× BMO−1 of small norm for n ≥ 3. Here for any open
set U ⊂ R

n+1, BMO(U) denotes the space of functions of bounded mean oscillations:
f ∈ BMO(U) if

[f ]BMO(U)
:= sup

{
−
ˆ
Pr(z)

|f − fPr(z)| : Pr(z) ⊂ U
}
< +∞,

where −
ˆ
Pr(z)

=
1

|Pr(z)|
ˆ
Pr(z)

and fPr(z) = −
ˆ
Pr(z)

f denotes the average of f over Pr(z).

And f ∈ BMO−1(U) if

[f ]BMO−1
(U)

:= inf
{ n∑

i=1

[fi]BMO(U)
| fi ∈ BMO(U) and f =

n∑
i=1

∂fi
∂xi

}
< +∞,

The existence of global Leray-Hopf weak solutions to the Navier-Stokes equations
has long been established by Leray [56] and Hopf [42]. However the uniqueness
(regularity) of Leray-Hopf solutions in dimension three remains largely open. In [78],
Serrin proved the so called ‘weak-strong’ uniqueness, i.e., the uniqueness holds for
Leray-Hopf solutions u, v with the same initial data, if u ∈ Lp

tL
q
x(R

n × [0, T ]), where
the Lq

tL
p
x-space is defined by

Lq
tL

p
x

(
M × [0, T ],Rk

)
:=

{
f : M × [0, T ] → R

k
∣∣∣ f ∈ Lq([0, T ], Lp(M))

}
,

and p ≥ 2 and q ≥ n satisfy
2

p
+

n

q
= 1. (1.6)
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The smoothness of such solutions was established by Ladyzhenskaya in [51] for p > 2
and q > n. In the fundamental work [22], Escauriaza-Seregin-Šverák have proved the
smoothness of Serrin’s solutions for the endpoint case (p, q) = (+∞, n) when n = 3
(see also [17] for n ≥ 4). Wang [90] proved smoothness of weak solutions u to the
heat flow of harmonic maps such that ∇u ∈ Lp

tL
q
x(R

n × [0, T ]) with 2
p
+ n

q
= 1 for

n ≥ 4 (or q ≥ 4 for 2 ≤ n < 4, see [46] for the case 2 < q < 4 when 2 ≤ n < 4).
In [46], the uniqueness of Serrin’s solutions to the heat flow of harmonic maps is also
established when p > 2 and q > n. Motivated by these results, the regularity and
uniqueness of Serrin’s (p, q)-solutions to the system (1.5) of nematic liquid crystal
flows will be investigated in this dissertation.

Heat flow of biharmonic maps

For n ≥ 4 and L ≥ k ≥ 1, let Ω ⊂ R
n be a bounded smooth domain and

N ⊂ R
L+1 be a k-dimensional compact Riemannian manifold without boundary. For

m ≥ 1, p ≥ 1, the Sobolev space Wm,p(Ω, N) is defined by

Wm,p(Ω, N) =
{
v ∈ Wm,p(Ω,RL+1) : v(x) ∈ N for a.e. x ∈ Ω

}
.

On W 2,2(Ω, N), there are two second order energy functionals:

E2(u) =

ˆ
Ω

|Δu|2 and F2(u) =

ˆ
Ω

|(Δu)T |2,

where (Δu)T is the tangential component of Δu to TuN at u, which is also called
the tension field of u (see [19]). A map u ∈ W 2,2(Ω, N) is called an extrinsic (or
intrinsic) biharmonic map, if u is a critical point of E2(·) (or F2(·) respectively). It
is well known that biharmonic maps are higher-order extensions of harmonic maps,
which are critical points of the Dirichlet energy E1(u) =

´
Ω
|∇u|2 over W 1,2(Ω, N).

Recall that the Euler-Lagrange equation of (extrinsic) biharmonic maps is (see [89]
Lemma 2.1):

Δ2u = Nbh[u] := [Δ(A(u)(∇u,∇u)) + 2∇ · 〈Δu,∇(P (u))〉 − 〈Δ(P (u)),Δu〉] ⊥ TuN,
(1.7)

where P (y) : RL+1 → TyN is the orthogonal projection for y ∈ N , and A(y)(·, ·) =
∇P (y)(·, ·) is the second fundamental form of N at y ∈ N . Throughout this thesis,
denote Nbh[u] to be the nonlinearity in the right hand side of the biharmonic map
equation (1.7). If N = S

L := {y ∈ R
L+1 : |y| = 1}, then direct calculations yield

Nbh[u] = −(|Δu|2 +Δ(|∇u|2) + 2〈∇u,∇Δu〉)u.
Motivated by the regularity theory of harmonic maps by Schoen-Uhlenbeck [86],

Hélein [34], Evans [23], Bethuel [2], Lin [58], Rivière [72], and many others, the
study of biharmonic maps has attracted considerable interest and prompted a large
number of interesting works by analysts during the last several years. The regularity
of biharmonic maps to N = S

L – the unit sphere in R
L+1 – was first studied by

Chang-Wang-Yang [10]. Wang [89, 91, 92] extended the main theorems of [10] to
any compact Riemannian manifold N without boundary. He proves smoothness of
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biharmonic maps when the dimension n = 4, and the partial regularity of stationary
biharmonic maps when n ≥ 5. Here we mention in passing the interesting works on
biharmonic maps by Angelsberg [1], Strzelecki [80], Hong-Wang [40], Lamm-Rivière
[54], Struwe [84], Ku [49], Gastel-Scheven [28], Scheven [75, 76], Lamm-Wang [55],
Moser [68, 69], Gastel-Zorn [29], Hong-Yin [41], and Gong-Lamm-Wang [30].

The initial and boundary value problem for the heat flow of biharmonic maps is
described as follows: For 0 < T ≤ +∞, and u0 ∈ W 2,2(Ω, N), a map u ∈ W 1,2

2 (Ω ×
[0, T ], N), i.e. ∂tu,∇2u ∈ L2(Ω× [0, T ]), is called a weak solution of the heat flow of
biharmonic maps, if u satisfies in the sense of distributions⎧⎪⎪⎨⎪⎪⎩

∂tu+Δ2u =Nbh[u] in Ω× (0, T )

u =u0 on ∂p(Ω× [0, T ])

∂u

∂ν
=
∂u0

∂ν
on ∂Ω× [0, T ),

(1.8)

where ν denotes the outward unit normal of ∂Ω. Denote the parabolic boundary of
Ω× [0, T ] by ∂p(Ω× [0, T ]) = (Ω×{0})∪ (∂Ω× (0, T )). So when N = S

L, (1.8)1 can
be written as

∂tu+Δ2u = −(|Δu|2 +Δ(|∇u|2) + 2〈∇u,∇Δu〉)u. (1.9)

The formulation of heat flow of biharmonic maps (1.8) remains unchanged, if Ω is
replaced by a n-dimensional compact Riemannian manifold M with boundary ∂M .
On the other hand, if Ω is replaced by a n-dimensional compact Riemannian manifold
without boundary or a complete, non-compact Riemannian manifold without bound-
ary M , then the Cauchy problem of heat flow of biharmonic maps is considered. More
precisely, if ∂M = ∅, then (1.8) becomes{

∂tu+Δ2u =Nbh[u] in M × (0, T )

u =u0 on M × {0}. (1.10)

The Cauchy problem (1.10) was first studied by Lamm [52], [53] for u0 ∈ C∞(M,N)
in dimension n = 4, where the existence of a unique, global smooth solution is es-
tablished under the condition that ‖u0‖W 2,2(M) is sufficiently small. For any u0 ∈
W 2,2(M,N), the existence of a unique, global weak solution of (1.10), that is smooth
away from finitely many times, has been independently proved by Gastel [27] and
Wang [93]. With suitable modifications of their proofs, the existence theorem in [27]
and [93] can be extended to (1.8) for any compact 4-dimensional Rimannian manifold
M with boundary ∂M , if, in addition, the trace of u0 on ∂M for u0 ∈ W 2,2(M,N)

satisfies u0|∂M ∈ W
7
2
,2(∂M,N) (see [43]). Namely, there is a unique, global weak so-

lution u ∈ W 1,2
2 (M× [0,∞), N) of (1.8) such that (i) E2(u(t)) is monotone decreasing

for t ≥ 0; and (ii) there exist T0 = 0 < T1 < . . . < Tk < Tk+1 = +∞ such that

u ∈
k⋂

i=0

C∞(M × (Ti, Ti+1), N) and ∇u ∈
k⋂

i=0

Cα(M × (Ti, Ti+1), N), ∀ α ∈ (0, 1).
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For dimensions n ≥ 4, Wang [94] established the well-posedness of (1.10) on R
n for

any u0 : Rn → N that has sufficiently small BMO norm. Moser [71] showed the
existence of global weak solutions u ∈ W 1,2

2 (Ω × [0,∞), N) to (1.8) on any bounded
smooth domain Ω ⊂ R

n for n ≤ 8 and u0 ∈ W 2,2(Ω, N).

1.2 Main results and structure of the thesis

Heat flow of harmonic maps

The main result of the uniqueness of weak solutions to (1.3) is the following
theorem .

Theorem 1.2.1. For n ≥ 2 and 1 < p ≤ 2, there exist ε0 = ε0(p, n) > 0 and
R0 = R0(M, g, ε0) > 0 such that if
(i) (M, g) is a n-dimensional Riemannian manifold that is either complete noncom-
pact without boundary or compact with or without boundary;
(ii) (N, h) ⊂ R

k is either the unit sphere Sk−1 or a compact Riemannian homoge-
neous manifold without boundary; and
(iii) u1, u2 ∈ H1(M × [0, T ], N) are two weak solutions of (1.3), with u1 = u2 = u0

on ∂p(M × [0, T ]) for some u0 ∈ W 1,2(M,N), that satisfy

max
i=1,2

[
‖∇ui‖Mp,p

R0
(M×(0,T )) + ‖∂tui‖Mp,2p

R0
(M×(0,T ))

]
≤ ε0, (1.11)

then u1 ≡ u2 on M × [0, T ].

Here Mp,λ
R denote the parabolic Morrey space . For any 1 ≤ p < +∞, 0 ≤ λ ≤

n+ 2, 0 < R ≤ +∞, and any open set U = U1 × U2 ⊂ M × R,

Mp,λ
R (U) =

{
f ∈ Lp

loc
(U) :

∥∥∥f∥∥∥
Mp,λ

R (U)
< +∞

}
,

where ∥∥∥f∥∥∥
Mp,λ

R (U)
=

(
sup

(x,t)∈U
sup

0<r<min{R,dg(x,∂U1),
√
t}

rλ−n−2

ˆ
Pr(x,t)∩U

|f |p
) 1

p
.

Here

Pr(x, t) = Br(x)× (t− r2, t], with Br(x) = {y ∈ M : dg(y, x) ≤ r}

for (x, t) ∈ U .
Recall that N is a Riemannian homogeneous manifold if there exists a finite

dimensional Lie group G (dim G = s < +∞) that acts transitively on N by isometries.
There are two main ideas in the proof of Theorem 1.2.1:

(i) an ε0-regularity theorem for the heat flow of harmonic maps that satisfy the small-
ness condition (2.22), which is new and improves the regularity theorem previously
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obtained by Chen-Li-Lin [12], Feldman [25], and Chen-Wang [14]. In particular, for
i = 1, 2 ui ∈ C∞(M × (0, T ]) and satisfies the gradient estimate:

max
i=1,2

|∇ui|(x, t) ≤ Cε0

( 1

R0

+
1

dg(x, ∂M)
+

1√
t

)
, ∀(x, t) ∈ M × (0, T ], (1.12)

(ii) applications of (1.12), the Hardy inequality, and a generalized Gronwall inequality
type argument.

Now a few remarks are in order.

Remark 1.2.2. i) Note that by the Hölder inequality, the Morrey norm E(p) :=
(‖∇u‖Mp,p(·)+‖∂tu‖Mp,2p(·)) is monotone increasing for 1 < p ≤ 2. The bound of E(2)
for solutions u to (1.3) holds if u satisfies
(a) a local energy inequality (assume M = R

n for simplicity):

ˆ
Pr(x,t)

|∂tu|2 ≤ C

(R− r)2

ˆ
PR(x,t)

|∇u|2, ∀(x, t) ∈ R
n+1
+ , 0 < r ≤ R

2
, R ≤ √

t,

(1.13)
(b) a local energy monotonicity inequality:

r−n

ˆ
Pr(x,t)

|∇u|2 ≤ CR−n

ˆ
PR(x,t)

|∇u|2, ∀(x, t) ∈ R
n+1
+ , 0 < r ≤ R

2
, R ≤ √

t.

(1.14)
Both properties hold if u is either a smooth solution (see [82] and [13]) or a stationary
solution of (1.3) (see [12], [25], and [14]). Therefore, under (1.13) and (1.14), the
condition (1.11) is satisfied, provided that there exists R0 > 0 such that there holds

sup
{
R−n

1

ˆ
PR1

(x,t)

|∇u|2
∣∣∣ x ∈ R

n, R1 = min{R0,
√
t}

}
≤ ε20. (1.15)

Hence Theorem 1.2.1 implies that uniqueness does hold for the class of solutions
that satisfy, in addition to (1.13) and (1.14), the smallness condition (1.15), which
partially answers the Struwe’s question.
ii) For any compact or complete noncompact (M, g) without boundary, there exists
ε0 > 0 such that if the initial data u0 : M → N satisfies for some R0 > 0,

sup
{
r2−n

ˆ
Br(x)

|∇u0|2
∣∣∣x ∈ M, r ≤ R0

}
≤ ε20,

then as a consequence of the local well-posedness theorem by Wang [95], there exists
0 < T0(≈ R2

0) and a solution u ∈ C∞(M × (0, T0), N) of (1.3) that satisfies condition
(1.11).

Motivated by the proof of Theorem 1.2.1, the following convexity property of the
Dirichlet energy E1(u) holds.

Theorem 1.2.3. For n ≥ 2, 1 < p ≤ 2, and 1 ≤ T ≤ ∞, there exist ε0 = ε0(p, n) > 0,
R0 = R0(M, g, ε0) > 0, and 0 < T0 = T0(ε0) < T such that if
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(i) (M, g) is a n-dimensional Riemannian manifold that is either complete noncom-
pact without boundary or compact with or without boundary;
(ii) (N, h) ⊂ R

k is either the unit sphere Sk−1 or a compact Riemannian homoge-
neous manifold without boundary; and
(iii) u ∈ H1(M × [0, T ], N) is a weak solution of (1.3), with u = u0 on ∂p(M × [0, T ])
for some u0 ∈ W 1,2(M,N), that satisfies

‖∇u‖Mp,p
R0

(M×(0,T )) + ‖∂tu‖Mp,2p
R0

(M×(0,T )) ≤ ε0, (1.16)

then
(i) the Dirichlet energy E(u(t)) := 1

2

´
M
|∇u|2 is monotone decreasing for t ≥ T0; and

(ii) for any t2 ≥ t1 ≥ T0,

ˆ
M

|∇(u(t1)− u(t2))|2 ≤ C
[ ˆ

M

|∇u(t1)|2 −
ˆ
M

|∇u(t2)|2
]
.

The convexity property was first observed by Schoen [77] for the Dirichlet energy
of harmonic maps into manifolds N with nonpositive sectional curvatures. In Chapter
2, it will be shown that the convexity property is also true for harmonic maps with
small renormalized energy, which yields a new proof of the uniqueness theorem by
Struwe [85] and Moser [70].

A direct consequence of Theorem 1.2.3 is the following uniqueness of limit at
t = ∞ for (1.3).

Corollary 1.2.4. For n ≥ 2 and 1 < p ≤ 2, there exist ε0 = ε0(p, n) > 0, and
R0 = R0(M, g, ε0) > 0 such that if
(i) (M, g) is a n-dimensional Riemannian manifold that is either complete noncom-
pact without boundary or compact with or without boundary;
(ii) (N, h) ⊂ R

k is either the unit sphere Sk−1 or a compact Riemannian homoge-
neous manifold without boundary; and
(iii) u ∈ H1(M×[0,∞), N) is a weak solution of (1.3), with u = u0 on ∂p(M×[0,∞])
for some u0 ∈ W 1,2(M,N), that satisfies the condition (1.16).
Then there exists a harmonic map u∞ ∈ C∞(M,N) ∩W 1,2(M,N), with u∞ = u0 on
∂M , such that

lim
t↑∞

‖u(t)− u∞‖W 1,2(M) = 0,

and, for any compact subset K ⊂⊂ M and m ≥ 1,

lim
t↑∞

‖u(t)− u∞‖Cm(K) = 0.

The uniqueness of limit at t = ∞ has been proved by Hartman [32] for the
smooth solutions to (1.3) when N has nonpositive sectional curvatures. L. Simon in
his celebrated work [79] has shown the unique limit at t = ∞ for smooth solutions to
(1.3) into a target manifold (N, h) that is real analytic. Note that the solution u in
our theorem is allowed to be singular near the parabolic boundary ∂p(M × (0,∞)),
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as the initial-boundary data u0 may be in W 1,2(M,N). Also, the proof of Theorem
1.2.3 depends only on the smallness condition (1.16) and the small energy regularity
theorem. There are two very interesting articles by L.Wang [96] and L.Z. Lin [64],
in which Theorems 1.2.1, 1.2.3, and Corollary 1.2.4 were proven for Struwe’s almost
regular solution u to (1.3) in dimension n = 2 when the Dirichlet energy of u0 is
sufficiently small. Since Struwe’s solution u to (1.3) satisfies the energy inequality,
the condition in [64] yields the global smallness:

sup
t≥0

E(u(t)) +

ˆ
M×[0,t]

|∂tu|2 ≤ E(u0) ≤ ε20, ∀t > 0,

which is stronger than (1.16) in dimension n = 2. There is also an interesting paper
by Topping [88] that addressed the rigidity at t = ∞ of the heat flow of harmonic
maps from S2 to S2.

A class of weak solutions that satisfy the smallness condition (1.16) are the so-
called Serrin (l, q)-solutions.

Definition 1.2.5. A weak solution u ∈ H1

loc(M × [0, T ], N) of (1.3) is called a

Serrin (l, q)-solution if, in addition, ∇u ∈ Lq
tL

l
x(M × [0, T ]) for some l ≥ n and

q ≥ 2 satisfying
n

l
+

2

q
= 1. (1.17)

In Chapter 2, it will be verified that if u is a Serrin (l, q)-solution to (1.3) with
l > n, and u|∂p(M×[0,T ]) = u0 for a given u0 : M → N with ∇u0 ∈ Lr(M) for some
n < r < ∞, then u satisfies (1.16) for some p0 > 1. (For such initial and boundary
data u0, the local existence of Serrin’s (l, q)-solutions of (1.3) can be shown by the
standard fixed point theory. In fact, it can be verified by the argument in Fabes-Jones-
Riviere [24] §4). The following is the uniqueness result for Serrin’s (l, q)-solutions of
the heat flow of harmonic maps into a general Riemannian manifold.

Theorem 1.2.6. For n ≥ 2, 0 < T ≤ +∞, let (M, g) be either a compact or
complete Riemannian manifold without boundary or a compact Riemannian manifold
with boundary, and N be a compact Riemannian manifold without boundary. Let
u1, u2 ∈ H1(M × [0, T ], N) be two weak solutions of (1.3), with u1 = u2 = u0 on
∂p(M × [0, T ]) for some u0 ∈ W 1,2(M,N), such that ∇u1,∇u2 ∈ Lq

tL
l
x(M × [0, T ])

for some (l, q) satisfying (1.17) with l > n, q > 2. Then u1, u2 ∈ C∞(M × (0, T )),
and u1 ≡ u2 on M × [0, T ].

Theorem 1.2.6 remains open for the end point case l = n, q = +∞. Lin-Wang [62]
have proved that uniqueness holds for two weak solutions u1, u2 to (1.3) with the same
initial data, provided that ∇u1,∇u2 ∈ C([0, T ], Ln(M)). Wang [90] has proved that
for any n ≥ 4, any weak solution u ∈ H1(M× [0, T ], N) with ∇u ∈ L∞

t Ln
x(M× [0, T ])

belongs to C∞(M × (0, T ]). However, since ‖∇u(t)‖Ln(M) may lack continuity at
t = 0, the issue of uniqueness for the end point case remains unsolved.

Hydrodynamic flow of nematic liquid crystals
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Motivated by the study of heat flow of harmonic maps, the following regularity
and uniqueness of the weak solutions to the hydrodynamic flow of nematic liquid
crystals holds for the Serrin’s solutions, which is defined as follows:

Definition 1.2.7. A weak solution (u, d) ∈ H1(Rn× [0, T ],Rn×S2) of (1.5) is called
a Serrin (p, q)-solution, if (u,∇d) ∈ Lp

tL
q
x(R

n×[0, T ]) for some (p, q) satisfying (1.6).

The main result on the regularity and uniqueness of Serrin’s (p, q)-solutions to
(1.5) is the following.

Theorem 1.2.8. For n ≥ 2, 0 < T < +∞, and i = 1, 2, let (ui, di) : R
n × [0, T ] →

R
n × S2 be two weak solutions to (1.5) with the same initial data (u0, d0) : Rn →

R
n × S2. Suppose, in addition, there exists p > 2 and q > n satisfying (1.6) such

that (u1,∇d1), (u2,∇d2) ∈ Lp
tL

q
x(R

n × [0, T ]). Then (ui,∇di) ∈ C∞(Rn × (0, T ]) and
(u1, d1) ≡ (u2, d2) on R

n × [0, T ].

For n = 2, Lin-Wang [62] have proved the uniqueness of (1.5) for p = q = 4. More
precisely, if, for i = 1, 2,{

ui ∈ L∞([0, T ], L2(R2,R2)) ∩ L2([0, T ], H1(R2,R2));

∇di ∈ L∞([0, T ], L2(R2)) ∩ L2([0, T ], H1(R2))

are weak solutions to (1.5) under the same initial condition, then (u1, d1) ≡ (u2, d2)
on R

2 × [0, T ]. For n ≥ 3, Lin-Wang [62] proved the uniqueness, provided that
ui ∈ C([0, T ], Ln(Rn)) and ∇di ∈ C([0, T ], Ln(Rn)) for i = 1, 2.

Heat flow of biharmonic maps

Because of the critical nonlinearity in the equation (1.8)1, the question of regu-
larity and uniqueness for weak solutions of (1.8) is very challenging for dimensions
n ≥ 4. There has been very few works in this direction. This is one of my motiva-
tions to study these issues for the equation (1.8) in this thesis. Another motivation
comes from the study of the heat flow of harmonic maps. Similar to heat flow of har-
monic maps, several interesting results concerning regularity, uniqueness, convexity,
and unique limit at time infinity of the equation (1.8), under a smallness condition
of renormalized total energy, will be established.

The first result concerns the regularity of (1.9).

Theorem 1.2.9. For 3
2
< p ≤ 2 and 0 < T < +∞, there exists εp > 0 such that if

u ∈ W 1,2
2 (Ω × [0, T ], SL) is a weak solution of (1.9) and satisfies for z0 = (x0, t0) ∈

Ω× (0, T ] and 0 < R0 ≤ 1
2
min{d(x0, ∂Ω),

√
t0},

‖∇2u‖Mp,2p
R0

(PR0
(z0))

+ ‖∂tu‖Mp,4p
R0

(PR0
(z0))

≤ εp, (1.18)

then u ∈ C∞
(
PR0

16
(z0), S

L
)
, and∣∣∣∇mu(z0)

∣∣∣ ≤ Cεp
Rm

0

, ∀ m ≥ 1.
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To avoid conflicts, we will let Mp,λ
R denotes the Morrey space for 0 ≤ λ ≤ n + 4,

0 < R ≤ ∞, and U = U1 × U2 ⊂ R
n × R:

Mp,λ
R (U) =

{
f ∈ Lp

loc
(U) :

∥∥∥f∥∥∥
Mp,λ

R (U)
< +∞

}
,

where ∥∥∥f∥∥∥
Mp,λ

R (U)
=

(
sup

(x,t)∈U
sup

0<r<min{R,d(x,∂U1),
√
t}

rλ−n−4

ˆ
Pr(x,t)

|f |p
) 1

p
,

and

Br(x) = {y ∈ R
n : |y−x| ≤ r}, Pr(x, t) = Br(x)× [t−r4, t], d(x, ∂U1) = inf

y∈∂U1

|x−y|.

Denote Br (or Pr) for Br(0) (or Pr(0) respectively), and Mp,λ(U) = Mp,λ
∞ (U) for

R = ∞.

Remark 1.2.10. It is an open question whether Theorem 1.2.9 holds for any compact
Riemannian manifold N without boundary (with p = 2).

Utilizing Theorem 1.2.9, one can obtain the following uniqueness theorem.

Theorem 1.2.11. For n ≥ 4 and 3
2
< p ≤ 2, there exist ε0 = ε0(p, n) > 0 and

R0 = R0(Ω, ε0) > 0 such that if u1, u2 ∈ W 1,2
2 (Ω × [0, T ], SL) are weak solutions of

(1.8), with the same initial and boundary value u0 ∈ W 2,2(Ω, SL), that satisfy

max
i=1,2

[
‖∇2ui‖Mp,2p

R0
(Ω×(0,T )) + ‖∂tui‖Mp,4p

R0
(Ω×(0,T ))

]
≤ ε0, (1.19)

then u1 ≡ u2 on Ω× [0, T ].

There are two main ingredients in the proof of Theorem 1.2.11:
(i) The interior regularity of ui (i = 1, 2): ui ∈ C∞(Ω× (0, T ), SL) and

max
i=1,2

|∇mui|(x, t) � ε0

(
1

Rm
0

+
1

dm(x, ∂Ω)
+

1

t
m
4

)
for any (x, t) ∈ Ω× (0, T ) and m ≥ 1.
(ii) The energy method, with suitable applications of the Poincaré inequality and the
second order Hardy inequality in Lemma 4.2.2 below.

Remark 1.2.12. (i) A novel feature of Theorem 1.2.11 is that solutions may have
singularities at the parabolic boundary ∂p(Ω × [0, T ]) so that the standard argument
to prove uniqueness for classical solutions is not applicable.
(ii) For Ω = R

n, if the initial data u0 : R
n → N satisfies for some R0 > 0,

sup
{
r4−n

ˆ
Br(x)

|∇2u0|2 : x ∈ R
n, r ≤ R0

}
≤ ε20,

then by the local well-posedness theorem of Wang [94] there exists 0 < T0(≈ R4
0) and

a solution u ∈ C∞(Rn × (0, T0), N) of (1.10) that satisfies the condition (1.18).
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Prompted by the ideas in the proof of Theorem 1.2.11, the convexity property of
the E2-energy along the heat flow of biharmonic maps to S

L can be obtained.

Theorem 1.2.13. For n ≥ 4, 3
2
< p ≤ 2, and 1 ≤ T ≤ ∞, there exist ε0 = ε0(p, n) >

0, R0 = R0(Ω, ε0) > 0, and 0 < T0 = T0(ε0) < T such that if u ∈ W 1,2
2 (Ω× [0, T ], SL)

is a weak solution of (1.8), with the initial and boundary value u0 ∈ W 2,2(Ω, SL),
satisfying

‖∇2u‖Mp,2p
R0

(Ω×(0,T )) + ‖∂tu‖Mp,4p
R0

(Ω×(0,T )) ≤ ε0,

then
(i) E2(u(t)) is monotone decreasing for t ≥ T0; and
(ii) for any t2 ≥ t1 ≥ T0,

ˆ
Ω

|∇2(u(t1)− u(t2))|2 ≤ C
[ ˆ

Ω

|Δu(t1)|2 −
ˆ
Ω

|Δu(t2)|2
]

for some C = C(n, ε0) > 0.

Schoen [77] proved the convexity of Dirichlet energy for harmonic maps into N
with nonpositive sectional curvature. The convexity for harmonic maps into any
compact manifold N with small renormalized energy was proved in [46]. In this
dissertation, the convexity for biharmonic maps with small renormalized E2-energy
will be proved which seems to be the first convexity result for the biharmonic maps.

A direct consequence of the convexity property of E2-energy is the unique limit
at t = ∞ of (1.8).

Corollary 1.2.14. For n ≥ 4 and 3
2
< p ≤ 2, there exist ε0 = ε0(p, n) > 0, and R0 =

R0(Ω, ε0) > 0 such that if u ∈ W 1,2
2 (Ω × [0,∞), SL) is a weak solution of (1.8), with

the initial and boundary value u0 ∈ W 2,2(Ω, SL), satisfying the condition (1.18), then

there exists a biharmonic map u∞ ∈ C∞ ∩W 2,2(Ω, SL), with (u∞,
∂u∞
∂ν

) = (u0,
∂u0

∂ν
)

on ∂Ω, such that

lim
t↑∞

‖u(t)− u∞‖W 2,2(Ω) = 0,

and, for any compact subset K ⊂⊂ Ω and m ≥ 1,

lim
t↑∞

‖u(t)− u∞‖Cm(K) = 0.

Remark 1.2.15. (i) If Theorem 1.2.9 has been proved for any compact Riemannian
manifold N without boundary, then Theorem 1.2.11, Theorem 1.2.13, and Corollary
1.2.14 would be true for any compact Riemannian manifold N without boundary.
(ii) With slight modifications of the proofs, Theorem 1.2.9, Theorem 1.2.11, Theorem
1.2.13, and Corollary 1.2.14 remain true, if Ω is replaced by a compact Riemannian
manifold M with boundary ∂M .
(iii) If Ω is replaced by a compact or complete, non-compact Riemannian manifold M
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with ∂M = ∅ then Theorem 1.2.9, Theorem 1.2.11, Theorem 1.2.13, and Corollary
1.2.14 remain true for the Cauchy problem (1.10). In fact, the proof is slightly simpler
than the one here, since the Hardy inequalities are not necessary.
(iv) In general, it is a difficult question to ask whether the unique limit at t = ∞
holds for geometric evolution equations. Simon in his celebrated work [79] showed the
unique limit at t = ∞ for smooth solutions to the heat flow of harmonic maps into a
real analytic manifold (N, h). Corollary 1.2.14 seems to be first result on the unique
limit at time infinity for the heat flow of biharmonic maps.

A natural class of weak solutions of (1.8) that satisfy the smallness condition
(1.18) is:

Definition 1.2.16. A weak solutions u ∈ W 1,2
2 (Ω × [0, T ], N) of (1.8) is called a

Serrin’s (p, q)-solution, if ∇2u ∈ Lq
tL

p
x(Ω × [0, T ]) for some p ≥ n

2
and q ≤ ∞

satisfying
n

p
+

4

q
= 2. (1.20)

In chapter 4, it will be proved that if u is a weak solution of (1.8) such that
∇2u ∈ Lq

tL
p
x(Ω × [0, T ]) for some p > n

2
and q > 3 satisfying (1.20) and u0 ∈

W 2,r(Ω, N) for some r > n
2
, then u satisfies (1.18) for some p0 > 3

2
. Thus, for

N = S
L, the regularity and uniqueness for such solutions of (1.8) follow from Theorem

1.2.9 and Theorem 1.2.11. However, for a compact Riemannian manifold N without
boundary, the regularity and uniqueness for such a class of weak solutions of (1.8)
require different arguments. More precisely,

Theorem 1.2.17. For n ≥ 4 and 0 < T ≤ ∞, let u1, u2 ∈ W 1,2
2 (Ω × [0, T ], N) be

weak solutions of (1.8), with the same initial and boundary value u0 ∈ W 2,2(Ω, N).
If, in addition, ∇2u1,∇2u2 ∈ Lq

tL
p
x(Ω× [0, T ]) for some p > n

2
and q < ∞ satisfying

(1.20), then u1, u2 ∈ C∞(Ω× (0, T ), N), and u1 ≡ u2 in Ω× [0, T ].

Remark 1.2.18. (i) It is a very interesting question to ask whether Theorem 1.2.17
holds for the end-point case p = n

2
and q = ∞.

(ii) If u0 ∈ W 2,r(Ω, N) for some r > n
2
, then the local existence of solutions u of (1.8)

such that ∇2u ∈ Lq
tL

p
x(Ω× [0, T ]) for some p > n

2
and q < ∞ satisfying (1.20) can be

shown by the fixed point argument similar to [24] §4.
The remainder of the thesis is written as follows:

• Chapter 2 is devoted to prove the regularity and uniqueness of heat flow of
harmonic maps.

• Chapter 3 is devoted to prove the regularity and uniqueness of Serrin’s (p, q)-
solutions to nematic liquid crystal flows.

• Chapter 4 is devoted to prove the regularity and uniqueness of heat flow of
biharmonic maps.
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Chapter 2 Regularity and uniqueness of heat flow of harmonic maps

In this chapter, the regularity and uniqueness of heat flow of harmonic maps (1.3) will
be considered by some new and elementary argument based on the Riesz potential
estimates between Morrey spaces, the Hardy inequality and the general Gronwall
argument. As applications, the uniqueness of weakly harmonic maps, uniqueness of
limit at t = +∞ of heat flow of harmonic maps and uniqueness of Serrin’s-(p, q)
solutions will also be considered.

2.1 ε-regularity Theorem

This section will be devoted to establish an ε-regularity theorem for the heat flow of
harmonic maps (1.3), which plays a crucial role in the proof of our main theorems.
This regularity theorem seems to be new, whose proof is rather elementary and mainly
motivated by [9]. It improves the regularity theorem previously obtained by Chen-
Li-Lin [12], Feldman [25], Chen-Wang [14] (see also Moser [67, 66] for more general
results).

Theorem 2.1.1. Assume that N is either a unit sphere Sk−1 or a compact Rieman-
nian homogeneous manifold without boundary. For 1 < p ≤ 2 and 0 < T < +∞,
there exists εp > 0 such that if u ∈ H1(Ω× [0, T ], N) is a weak solution of (1.3)1 and
satisfies that, for z0 = (x0, t0) ∈ Ω× (0, T ] and 0 < R0 ≤ 1

2
min{d(x0, ∂Ω),

√
t0},

‖∇u‖Mp,p
R0

(PR0
(z0)) + ‖∂tu‖Mp,2p

R0
(PR0

(z0))
≤ εp. (2.1)

Then u ∈ C∞(PR0
4
(z0), N), and

|∇mu|(z0) ≤ Cεp
Rm

0

, ∀m ≥ 1. (2.2)

Remark 2.1.2. It remains an open question whether Theorem 2.1.1 holds for any
compact Riemannian manifold N without boundary, under the condition (2.1) for
p = 2 (see Moser [65] and Moser [66] for related works.).

The proof of Theorem 2.1.1 is based on the following lemma.

Lemma 2.1.3. For any 1 < p ≤ 2, there exists εp > 0 such that if N = Sk−1 or a
compact Riemannian homogeneous manifold without boundary, and u ∈ H1(P4, N) is
a weak solution of (1.3) satisfying

sup
(x,t)∈P2,0<r≤2

rp−(n+2)

ˆ
Pr(x,t)

(|∇u|p + rp|∂tu|p) ≤ εp. (2.3)

Then u ∈ C∞(P 1
2
, Sk−1) and satisfies

‖∇mu‖C0(P 1
2
) ≤ C(n, p, ε,m), ∀m ≥ 1. (2.4)

17



Proof. The crucial step to establish (2.4) is the following decay estimate:
Claim: There exists q > max{ p

p−1
, n+2} such that for any θ ∈ (0, 1

2
), z0 = (x0, t0) ∈

P1, and 0 < r ≤ 1, it holds

1

(θr)n+2

ˆ
Pθr(z0)

|u− uz0,θr| ≤ C
(
θ−(n+2)εp + θ

)( 1

rn+2

ˆ
Pr(z0)

|u− uz0,r|q
) 1

q
, (2.5)

where fz0,r =
1

|Pr(z0)|
´
Pr(z0)

f is the average of f over Pr(z0).

For z0 = (x0, t0) ∈ P1 and 0 < r ≤ 1, since v(y, s) = u(z0 + (ry, r2s)) : P2 → N
satisfies (1.3), and the condition (2.3) yields that v satisfies

sup
(x,t)∈P1,0<r≤1

rp−(n+2)

ˆ
Pr(x,t)

|∇v|p + rp|∂tv|p ≤ εp. (2.6)

Thus it suffices to show (2.5) for z0 = (0, 0) and r = 2.
The proof of the Claim can be divided into two cases:

Case 1: N = Sk−1 is the unit sphere.
Step 1. Rewriting of (1.3). Since |u| = 1, we have uiui

α = 0. Also, it follows (1.3)
that

(uiuj
α − ujui

α)α = uiΔuj − ujΔui = ui∂tu
j − uj∂tu

i.

Hence we have

∂tu
i −Δui = Ai(u)(∇u,∇u) = |∇u|2ui

= uj
αu

j
αu

i − uj
αu

jui
α = uj

α(u
iuj

α − ujui
α)

=
[
(uj − cj)(uiuj

α − ujui
α)

]
α
− (uj − cj)(ui∂tu

j − uj∂tu
i), (2.7)

where cj ∈ R is an arbitrary constant. For the convenience, set

W ij = ui∂tu
j − uj∂tu

i, V ij
α = uiuj

α − ujui
α, 1 ≤ i, j ≤ k, 1 ≤ α ≤ n.

Step 2. Construction of auxiliary functions. Let η ∈ C∞
0 (P2) such that

0 ≤ η ≤ 1, η = 1 on P1, and |∇η| ≤ C.

Define v, w : Rn × R+ → R
k by

∂tv
i −Δvi =

[
η2(uj − cj)V ij

α

]
α
; vi

∣∣∣
t=0

= 0, (2.8)

and
∂tw

i −Δwi = −η2(uj − cj)W ij; wi
∣∣∣
t=0

= 0. (2.9)

Set h = u− (v + w) : P1 → R
k. Then

∂th−Δh = 0 in P1. (2.10)
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Step 3. Estimation of v, w, and u. By the Duhamel formula, we have that

vi(x, t) =

ˆ t

0

ˆ
Rn

H(x− y, t− s)
[
η2(uj − cj)V ij

α

]
α
(y, s)

=

ˆ t

0

ˆ
Rn

∇xH(x− y, t− s)(η2(uj − cj)V ij
α )(y, s),

where H denotes the heat kernel on R
n. Then, as in [45], we have

|∇xH|(x− y, t− s) � δ((x, t), (y, s))−(n+1), (x, t), (y, s) ∈ R
n+1,

where δ((x, t), (y, s)) is the parabolic distance on R
n+1. Hence

|vi|(x, t) � I1(η
2|uj − cj||V ij

α |)(x, t),
where

I1(f)(x, t) :=

ˆ
Rn+1

f(y, s)

δ((x, t), (y, s))n+1
, ∀f ∈ L1

loc(R
n+1),

is the parabolic Riesz potential of order 1. By the Riesz potential estimate (see [45]),
we have

‖v‖L1(P2) � ‖v‖Lp(P2) ≤ ‖v‖Lp(Rn+1)

�
∑
i,j

‖η2|uj − cj||V ij
α |‖

L
(n+2)p
n+2+p (Rn+1)

�
∑
i,j

‖V ij
α ‖Lp(P2)‖uj − cj‖Ln+2(P2).(2.11)

For w, since

wi(x, t) =
∑
j

ˆ t

0

ˆ
Rn

H(x− y, t− s)(η2(uj − cj)W ij)(y, s),

applying the Young inequality we obtain

‖w‖L1(P2) ≤ ‖w‖Lq̃1 (P2)
≤ ‖w‖Lq̃1 (Rn×[0,1])

�
∑
i,j

∥∥∥η2(uj − cj)W ij
∥∥∥
Lq̃1 (Rn×[0,1])

�
∑
i,j

∥∥∥|uj − cj||W ij|
∥∥∥
Lq̃1 (P2)

�
∑
i,j

∥∥∥uj − cj
∥∥∥
Lq1 (P2)

∥∥∥W ij
∥∥∥
Lp(P2)

, (2.12)

where 1 < q̃1 < p and q1 >
p

p−1
satisfy

1

q̃1
=

1

p
+

1

q1
.

For h, by the standard theory on the heat equation we have that for any 0 < θ < 1,

1

θn+2

ˆ
Pθ

|h− hθ| � θ

ˆ
P1

|h− h1| � θ
[
‖v‖L1(P2) + ‖w‖L1(P2) + ‖u− u2‖L1(P2)

]
, (2.13)

where fr =
1

|Pr|
´
Pr

f is the average of a function f over Pr.
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Now we let cj = uj
2, the average of uj over P2 and set q = max{q1, n + 2}.

Combining the estimates (2.11), (2.12), and (2.13) and applying Hölder’s inequality
together yields

1

θn+2

ˆ
Pθ

|u− uθ| ≤ 1

θn+2

ˆ
Pθ

(|v|+ |w|) + 1

θn+2

ˆ
Pθ

|h− hθ|

� θ−(n+2)
[
‖v‖L1(P2) + ‖w‖L1(P2)

]
+ θ

[
‖v‖L1(P2) + ‖w‖L1(P2) + ‖u− u2‖L1(P2)

]
�

[
θ + θ−(n+2)(‖V ij

α ‖Lp(P2) + ‖W ij‖Lp(P2))
]( 1

2n+2

ˆ
P2

|u− u2|q
) 1

q

≤ C
[
θ + θ−(n+2)εp

]( 1

2n+2

ˆ
P2

|u− u2|q
) 1

q
, (2.14)

where we have used in the last step the condition (2.3) so that

‖V ij
α ‖Lp(P2) + ‖W ij‖Lp(P2) ≤ Cεp.

This yields (2.5). It follows from (2.3) and the Poincaré inequality that u ∈ BMO(P2),
and [

u
]
BMO(P2)

:= sup
Pr(z)⊂P2

{ 1

rn+2

ˆ
Pr(z)

|u− uz,r|
}
≤ Cεp. (2.15)

By the celebrated John-Nirenberg’s inequality [47], (2.15) implies that for any q > 1,
it holds

sup
Pr(z)⊂P2

{( 1

θn+2

ˆ
Pr(z)

|u− uz,r|q
) 1

q
}
≤ C(q)

[
u
]
BMO(P2)

. (2.16)

By (2.16), we see that (2.5) implies that

1

(θr)n+2

ˆ
Pθr(z0)

|u− uz0,θr| ≤ C
(
θ−(n+2)εp + θ

) [
u
]
BMO(P2)

(2.17)

holds for any θ ∈ (0, 1
2
), z0 ∈ P1, 0 < r ≤ 1. Taking supremum of (2.17) over all

z0 ∈ Pθ and 0 < r ≤ 1, we obtain[
u
]
BMO(Pθ)

≤ C
(
θ−(n+2)εp + θ

) [
u
]
BMO(P2)

. (2.18)

If we choose θ = θ0 ∈ (0, 1
2
) and εp > 0 so small that

C
(
θ
−(n+2)
0 εp + θ0

)
≤ 1

2
,

then (2.18) implies [
u
]
BMO(Pθ0

)
≤ 1

2

[
u
]
BMO(P2)

. (2.19)

It is standard that by iterations and the Campanato theory [4], (2.19) implies that
there exists α ∈ (0, 1) such that u ∈ Cα(P 3

4
) and[

u
]
Cα(P 3

4
)
≤ C(p, εp).
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The higher regularity and the estimate (2.4) then follow from the parabolic hole filling
type argument and the bootstrap argument (see also [45]).

Case 2: N is a compact Riemannian homogeneous manifold without boundary. We
will indicate that (1.3) can be written into the same form as (2.7). In fact, according
to Hélein [35], there exist s smooth tangential vector fields Y1, · · · , Ys and s smooth
tangential killing vector fieldsX1, · · · , Xs onN such that for any y ∈ N and V ∈ TyN ,
it holds

V =
s∑

i=1

〈V,Xi(y)〉Yi(y).

Thus, as in [14] Lemma 4.2, (1.3) is equivalent to

∂tu−Δu = −
s∑

i=1

〈∇u,Xi(u)〉∇(Yi(u))

= −
s∑

i=1

div(〈∇u,Xi(u)〉(Yi(u)− ci))−
s∑

i=1

〈∂tu,Xi(u)〉(Yi(u)− ci), (2.20)

where ci ∈ R
k is an arbitrary constant. Here we have used the killing property of Xi

that yields 〈∇u,∇(Xi(u))〉 = 0 in the derivation of (2.20). It is clear that the rest of
proof follows exactly as in Case 1. This completes the proof. �

Proof of Theorem 2.1.1. It is easy to see that (2.1) implies

rp−(n+2)

ˆ
Pr(z)

(|∇u|p+rp|∂tu|p) ≤ εpp, ∀z = (x, t) ∈ PR0
2
(z0) and 0 < r ≤ R0

2
. (2.21)

Hence Lemma 2.1.3 implies that u ∈ C∞(PR0
4
(z0)), and (2.2) holds. �

2.2 Uniqueness of heat flow of harmonic maps

Now it is ready to prove the main theorem on the uniqueness of weak solutions to
(1.3).

Theorem 2.2.1. For n ≥ 2 and 1 < p ≤ 2, there exist ε0 = ε0(p, n) > 0 and
R0 = R0(M, g, ε0) > 0 such that if
(i) (M, g) is a n-dimensional Riemannian manifold that is either complete noncom-
pact without boundary or compact with or without boundary;
(ii) (N, h) ⊂ R

k is either the unit sphere Sk−1 or a compact Riemannian homoge-
neous manifold without boundary; and
(iii) u1, u2 ∈ H1(M × [0, T ], N) are two weak solutions of (1.3), with u1 = u2 = u0

on ∂p(M × [0, T ]) for some u0 ∈ W 1,2(M,N), that satisfy

max
i=1,2

[
‖∇ui‖Mp,p

R0
(M×(0,T )) + ‖∂tui‖Mp,2p

R0
(M×(0,T ))

]
≤ ε0, (2.22)

then u1 ≡ u2 on M × [0, T ].
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Remark 2.2.2. i) Due to technical difficulties, it is unknown whether the ε-regularity
Theorem 2.1.1 (with p = 2) holds for a general Riemannian manifold N . Hence it
is an open question that Theorem 2.2.1, Theorem 2.4.1, and Corollary 2.4.2 in the
following remain to hold for a general manifold N .
(ii) The proof of Theorem 2.2.1 is based on Theorem 2.1.1, and application of both
the Hardy inequality and a generalized Gronwall inequality.

Proof of Theorem 2.2.1. For simplicity, we will focus on the case that (M, g) is a
compact Riemannian manifold with boundary and remark on the other two cases at
the end of the proof.

Assume (M, g) = (Ω, g0), with Ω ⊂ R
n and g0 the standard metric. By Theorem

2.1.1, we have that ui ∈ C∞(Ω× (0, T ]) for i = 1, 2, and

max
{
|∇u1|(x, t), |∇u2|(x, t)

}
≤ Cε0

( 1

R0

+
1

d(x, ∂Ω)
+

1√
t

)
, ∀(x, t) ∈ Ω× (0, T ].

(2.23)
Set w = u− v. Then w satisfies{

wt −Δw = A(u)(∇u,∇u)− A(v)(∇v,∇v) in Ω× (0, T ]

w = 0 on ∂p(Ω× [0, T ]).
(2.24)

Multiplying (2.24) by w and integrating over Ω yields

d

dt

ˆ
Ω

|w|2 + 2

ˆ
Ω

|∇w|2 ≤ C

ˆ
Ω

(|∇u1|2 + |∇u2|2)|w|2 +
ˆ
Ω

(|∇u1|+ |∇u2|)|∇w||w|

≤
ˆ
Ω

|∇w|2 + C

ˆ
Ω

(|∇u1|2 + |∇u2|2)|w|2.

By (2.23), the Poincaré inequality, and the Hardy inequality:ˆ
Ω

|f(x)|2
d2(x, ∂Ω)

�
ˆ
Ω

|∇f |2, ∀f ∈ H1
0 (Ω),

we have

d

dt

ˆ
Ω

|w|2 +
ˆ
Ω

|∇w|2 ≤ Cε20
R2

0

ˆ
Ω

|w|2 + Cε20

ˆ
Ω

|w(x)|2
d2(x, ∂Ω)

+
Cε20
t

ˆ
Ω

|w|2

≤ C
( ε20
R2

0

+ ε20

) ˆ
Ω

|∇w|2 + Cε20
t

ˆ
Ω

|w|2.

If we choose ε0 ≤ (2C)−
1
2 and R0 ≥

√
2Cε0, then we have C

(
ε20
R2

0
+ ε20

)
≤ 1 so that

d

dt

ˆ
Ω

|w|2 ≤ Cε20
t

ˆ
Ω

|w|2. (2.25)

This yields

d

dt

(
t−

1
2

ˆ
Ω

|w|2
)

= t−
1
2
d

dt

ˆ
Ω

|w|2 − 1

2
t−

3
2

ˆ
Ω

|w|2

≤
(
Cε20 −

1

2

)
t−

3
2

ˆ
Ω

|w|2 ≤ 0. (2.26)
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Thus we obtain that for any 0 < t ≤ T ,

t−
1
2

ˆ
Ω

|w(x, t)|2 ≤ lim
s↓0+

s−
1
2

ˆ
Ω

|w(x, s)|2. (2.27)

Since w(·, 0) = 0, we have

w(x, s) =

ˆ s

0

wτ (x, τ) dτ, a.e. x ∈ Ω

so that by the Hölder inequality,

s−
1
2

ˆ
Ω

|w(x, s)|2 ≤ s
1
2

ˆ s

0

ˆ
Ω

|wτ |2(x, τ) dxdτ ≤ Cs
1
2 → 0, as s ↓ 0+.

Thus we conclude that w ≡ 0 in Ω× [0, T ].
When (M, g) is either compact or complete non-compact with ∂M = ∅, observe

that we can substitute d(x, ∂M) = ∞ into the above proof and obtain the same result
without applying the Hardy inequality. This completes the proof. �

2.3 Convexity and uniqueness of weak harmonic maps

A byproduct of the proof of Theorem 2.2.1, is the convexity property on certain weak
harmonic maps that yields an alternative, simple proof of the uniqueness theorem on
the Dirichlet problem of weak harmonic maps, due to Struwe [85] for n = 3 and Moser
[70] for n ≥ 4. Furthermore, the statement of the uniqueness theorem for N either
a unit sphere or a compact Riemannian homogeneous manifold without boundary is
an improvement of that by [85] and [70].

To do it, first recall that the Morrey spaces M l,λ
R (U) in R

n is defined for 1 ≤ l <
+∞, 0 < λ ≤ n, 0 < R ≤ +∞, and U ⊂ R

n, f ∈ M l,λ
R (U) iff f ∈ Ll

loc(U) satisfies

‖f‖l
M l,λ

R (U)
:= sup

x∈U
sup

0<r≤min{R,d(x,∂U)}

{
rλ−n

ˆ
Br(x)

|f |l
}
< +∞.

Denote Mp,λ(U) = Mp,λ
∞ (U).

For any bounded smooth domain Ω ⊂ R
n, the following convexity property of

Dirichlet energy holds

Theorem 2.3.1. For n ≥ 2, δ ∈ (0, 1), and 1 < p ≤ 2, there exist εp = ε(p, δ) > 0
and Rp = R(p, δ) > 0 such that if u ∈ H1(Ω, N) is a weak harmonic map satisfying
either
(i) ‖∇u‖M2,2

R2
(Ω) ≤ ε2, when N is a compact Riemannian manifold without boundary,

or
(ii) ‖∇u‖Mp,p

Rp
(Ω) ≤ εp, when N = Sk−1 or a compact Riemannian homogeneous man-

ifold without boundary. Thenˆ
Ω

|∇v|2 ≥
ˆ
Ω

|∇u|2 + (1− δ)

ˆ
Ω

|∇(v − u)|2 (2.28)

holds for any v ∈ H1(Ω, N) with v = u on ∂Ω.
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Proof. First, as observed by [85] and [70], for an arbitrary manifold N under the
condition (i), the small energy regularity theorem on stationary harmonic maps by
Bethuel [2] holds. While, for N = Sk−1 under the condition (ii), the small energy
regularity theorem on weak harmonic maps by Moser [65] or Lemma 2.3 is applicable.
Thus we have u ∈ C∞(Ω, N) and, for any x ∈ Ω, it holds

|∇u|(x) ≤ Cεp(
1

d(x, ∂Ω)
+

1

Rp

). (2.29)

Here p = 2 for an arbitrary N .
Now multiplying the equation of u by (u− v) and integrating over Ω, we obtainˆ

Ω

∇u · ∇(u− v) =

ˆ
Ω

〈A(u)(∇u,∇u), u− v〉. (2.30)

This, combined with (2.29), the Poincaré inequality, and the Hardy inequality, implies∣∣∣ ˆ
Ω

〈A(u)(∇u,∇u), u− v〉
∣∣∣ ≤ C

ˆ
Ω

|∇u|2|u− v|2

≤ Cε2p

ˆ
Ω

|u− v|2
R2

p

+
|u− v|2
d(x, ∂Ω)2

≤ Cε2p(1 +
1

R2
p

)

ˆ
Ω

|∇(u− v)|2

≤ δ

2

ˆ
Ω

|∇(u− v)|2 (2.31)

provided that we have chosen εp ≤ (
δ

4C
)
1
2 and Rp such

Cε2p
R2

p

≤ δ

4
. Thus, by (2.30)

and (2.31) we obtainˆ
Ω

|∇v|2 −
ˆ
Ω

|∇u|2 −
ˆ
Ω

|∇(v − u)|2

= 2

ˆ
Ω

∇u · ∇(v − u) = −2

ˆ
Ω

〈A(u)(∇u,∇u), u− v〉

≥ −δ

ˆ
Ω

|∇(v − u)|2.

This clearly implies (2.28), provided that ε > 0 is sufficiently small. This proof is
complete. �

Corollary 2.3.2. For n ≥ 2 and 1 < p ≤ 2, there exist εp > 0 and Rp > 0 such that
if u1, u2 ∈ H1(Ω, N) are two weak harmonic maps satisfying either

(i)
2

max
i=1

‖∇ui‖M2,2
R2

(Ω) ≤ ε2, when N is a compact Riemannian manifold without bound-
ary, or

(ii)
2

max
i=1

‖∇ui‖Mp,p
Rp

(Ω) ≤ εp, when N = Sk−1 or a compact Riemannian homogeneous

manifold without boundary.
Then u1 ≡ u2 in Ω, provided that u1 − u2 ∈ W 1,2

0 (Ω,Rk).
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Proof. Choosing δ = 1
2
, we can apply Theorem 2.3.1 to u1 and u2 by choosing

sufficiently small εp > 0 and Rp > 0. Thus Theorem 2.3.1 implies

ˆ
Ω

|∇u2|2 ≥
ˆ
Ω

|∇u1|2 + 1

2

ˆ
Ω

|∇(u2 − u1)|2,

and ˆ
Ω

|∇u1|2 ≥
ˆ
Ω

|∇u2|2 + 1

2

ˆ
Ω

|∇(u1 − u2)|2.

Adding these two inequalities together yields

ˆ
Ω

|∇(u1 − u2)|2 = 0.

Therefore, u1 ≡ u2 in Ω. �

2.4 Convexity and uniqueness of limit at t = +∞ of heat flow of harmonic
maps

Motivated by the proof of Theorem 2.2.1 and 2.3.1, the following convexity property
on (1.3) holds.

Theorem 2.4.1. For n ≥ 2, 1 < p ≤ 2, and 1 ≤ T ≤ ∞, there exist ε0 = ε0(p, n) > 0,
R0 = R0(M, g, ε0) > 0, and 0 < T0 = T0(ε0) < T such that if
(i) (M, g) is a n-dimensional Riemannian manifold that is either complete noncom-
pact without boundary or compact with or without boundary;
(ii) (N, h) ⊂ R

k is either the unit sphere Sk−1 or a compact Riemannian homoge-
neous manifold without boundary; and
(iii) u ∈ H1(M × [0, T ], N) is a weak solution of (1.3), with u = u0 on ∂p(M × [0, T ])
for some u0 ∈ W 1,2(M,N), that satisfies

‖∇u‖Mp,p
R0

(M×(0,T )) + ‖∂tu‖Mp,2p
R0

(M×(0,T )) ≤ ε0, (2.32)

then
(i) the Dirichlet energy E(u(t)) := 1

2

´
M
|∇u|2 is monotone decreasing for t ≥ T0; and

(ii) for any t2 ≥ t1 ≥ T0,

ˆ
M

|∇(u(t1)− u(t2))|2 ≤ C
[ ˆ

M

|∇u(t1)|2 −
ˆ
M

|∇u(t2)|2
]
. (2.33)

A direct consequence of Theorem 2.4.1 is the following uniqueness of limit at
t = ∞ for (1.3).

Corollary 2.4.2. For n ≥ 2 and 1 < p ≤ 2, there exist ε0 = ε0(p, n) > 0, and
R0 = R0(M, g, ε0) > 0 such that if
(i) (M, g) is a n-dimensional Riemannian manifold that is either complete noncom-
pact without boundary or compact with or without boundary;

25



(ii) (N, h) ⊂ R
k is either the unit sphere Sk−1 or a compact Riemannian homoge-

neous manifold without boundary; and
(iii) u ∈ H1(M×[0,∞), N) is a weak solution of (1.3), with u = u0 on ∂p(M×[0,∞])
for some u0 ∈ W 1,2(M,N), that satisfies the condition (2.32).
Then there exists a harmonic map u∞ ∈ C∞(M,N) ∩W 1,2(M,N), with u∞ = u0 on
∂M , such that

lim
t↑∞

‖u(t)− u∞‖W 1,2(M) = 0, (2.34)

and, for any compact subset K ⊂⊂ M and m ≥ 1,

lim
t↑∞

‖u(t)− u∞‖Cm(K) = 0. (2.35)

Proof of Theorem 2.4.1. For simplicity, we only consider the difficult case that
(M, g) is compact with boundary. First by Theorem 2.1.1, we have that u ∈ C∞(M×
(0, T )) and

|∇u|(x, t) ≤ Cε0

( 1

R0

+
1

d(x, ∂M)
+

1√
t

)
, ∀(x, t) ∈ M × (0, T ). (2.36)

First we need two claims.

Claim 1. There exists T0 > 0 such that

ˆ
M

|∂tu(t)|2 is monotone decreasing for

t ≥ T0:ˆ
M

|∂tu|2(t2) + C

ˆ
M×[t1,t2]

|∇∂tu|2 ≤
ˆ
M

|∂tu|2(t1), T0 ≤ t1 ≤ t2 < T. (2.37)

To show it, we introduce the finite quotient for u in the t-variable. For sufficiently
small h > 0, set

uh(x, t) =
u(x, t+ h)− u(x, t)

h
, (x, t) ∈ M × (0, T − h).

Since uh = 0 on ∂M , we see that uh ∈ L2([0, T − h], H1
0 (M)), ∂tu

h ∈ L2([0, T −
h], L2(M)), and

lim
h↓0+

∥∥∥uh − ut

∥∥∥
L2(M×[0,T−h])

= 0.

Since u satisfies (1.3), we have

uh
t −Δuh =

1

h
[A(u(t+ h))(∇u(t+ h),∇u(t+ h))− A(u(t))(∇u(t),∇u(t))]. (2.38)
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Multiplying (2.38) by uh, integrating over M , and applying the Hölder inequality and
(2.36), we obtain

1

2

d

dt

ˆ
M

|uh|2 +
ˆ
M

|∇uh|2

≤ C

ˆ
M

|uh|2(|∇u(t+ h)|2 + |∇u(t)|2) + |uh|(|∇u(t+ h)|+ |∇u(t)|)|∇uh|

≤ 1

2

ˆ
M

|∇uh|2 + C

ˆ
M

|uh|2(|∇u(t+ h)|2 + |∇u(t)|2)

≤ 1

2

ˆ
M

|∇uh|2 + Cε20

ˆ
M

( |uh|2
R2

0

+
|uh|2

d2(x, ∂M)
+

|uh|2
t

)
≤ 1

2

ˆ
M

|∇uh|2 + Cε20

ˆ
M

( |uh|2
R2

0

+
|uh|2

d2(x, ∂M)
+

|uh|2
T0

)
≤ 1

2

ˆ
M

|∇uh|2 + Cε0

ˆ
M

|∇uh|2 ≤ 3

4

ˆ
M

|∇uh|2,

where we have used both the Poincaré inequality and the Hardy inequality in the last
step, and chosen R0 ≥ √

ε0, T0 ≥ ε0, and Cε0 ≤ 1
4
. Integrating this inequality from

T0 ≤ t1 ≤ t2 yieldsˆ
M

|uh|2(t2) + C

ˆ
M×[t1,t2]

|∇uh|2 ≤
ˆ
M

|uh|2(t1). (2.39)

Sending h to zero in (2.39) yields (2.37).
Next we have

Claim 2. There exists T0 > 0 such that E(u(t)) is monotone decreasing for t ≥ T0:ˆ
M×[t1,t2]

|∂tu|2 + E(u(t2)) ≤ E(u(t1)), T0 ≤ t1 ≤ t2 < T. (2.40)

For δ > 0, let φδ ∈ C∞
0 (M) be a test function such that

0 ≤ φδ ≤ 1, φδ(x) = 1 for d(x, ∂M) ≥ δ, |∇φδ| ≤ Cδ−1.

Since u ∈ C∞(M×(0, T )), multiplying (1.3) by ∂tuφ
2
δ and integrating over M× [t1, t2]

, we obtain the following local energy inequality:ˆ
M×[t1,t2]

|∂tu|2φ2
δ +

1

2

ˆ
M

|∇u(t2)|2φ2
δ ≤

1

2

ˆ
M

|∇u(t1)|2φ2
δ +2

ˆ
M×[t1,t2]

∇u · ∂tuφδ∇φδ.

(2.41)
It is clear that (2.40) follows from (2.41), if we can show

lim
δ→0

ˆ
M×[t1,t2]

∇u · ∂tuφδ∇φδ = 0. (2.42)

To see (2.42), observe that (2.37) implies ∂tu(t) ∈ H1
0 (M) for t ∈ [t1, t2] so thatˆ

M×[t1,t2]

|∂tu|2|∇φδ|2 � δ−2

ˆ t2

t1

ˆ
{x∈M :d(x,∂M)≤δ}

|∂tu|2

�
ˆ t2

t1

ˆ
{x∈M :d(x,∂M)≤δ}

|∇∂tu|2 → 0, as δ → 0.
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It is clear that by the Hölder inequality, (2.42) follows from this. Thus (2.40) holds.
Choose T0 > 0 such that both claims hold. Then by (1.3) we can estimate

ˆ
M

|∇u(t1)|2 −
ˆ
M

|∇u(t2)|2 −
ˆ
M

|∇(u(t1)− u(t2))|2

= 2

ˆ
M

∇u(t2) · ∇(u(t1)− u(t2))

= 2

ˆ
M

A(u(t2))(∇u(t2), u(t2)) · (u(t1)− u(t2)) + 2

ˆ
M

ut(t2) · (u(t2)− u(t1))

= I + II. (2.43)

We first estimate I. Recall that for y ∈ N , let P⊥(y) : Rk → (TyN)⊥ denote the
orthogonal projection from R

k to the normal space of N at y. Since N is compact,
a simple geometric argument implies that there exists C > 0 depending on N such
that ∣∣∣P⊥(y)(z − y)

∣∣∣ ≤ C|z − y|2, ∀z ∈ N. (2.44)

Thus

|I| �
ˆ
M

|∇u(t2)|2|u(t1)− u(t2)|2

≤ Cε20

ˆ
M

( 1

R2
0

+
1

T0

+
1

d2(x, ∂M)

)
|u(t1)− u(t2)|2

� Cε0

ˆ
M

|∇(u(t1)− u(t2))|2,

where we have used both the Poincaré inequality and the Hardy inequality in the last
step.

By (2.37), we have

ˆ
M

|∂tu(t2)|2 ≤ 1

t2 − t1

ˆ
M×[t1,t2]

|∂tu|2.

This, combined with the Hölder inequality and (2.40), implies

|II| ≤ ‖∂tu(t2)‖L2(M)‖u(t1)− u(t2)‖L2(M)

≤ √
t2 − t1‖∂tu(t2)‖L2(M)‖∂tu‖L2(M×[t1,t2])

≤
ˆ
M×[t1,t2]

|∂tu|2

≤ 1

2

[ ˆ
M

|∇u(t1)|2 −
ˆ
M

|∇u(t2)|2
]
.

Putting the estimates of I, II into (2.43) yields (2.33) so that the conclusions of The-
orem 2.4.1 hold. The proof is now complete. �
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Proof of Corollary 2.4.2. It follows from Theorem 2.4.1 that E(u(t)) is monotone
decreasing for T0 ≤ t < +∞. Hence

lim
t→∞

E(u(t)) = c < +∞.

Let {ti} be any monotone increasing sequence such that lim
i→∞

ti = +∞. Then (2.33)

implies that for any j ≥ 1,

ˆ
M

|∇(u(ti+j)− u(ti))|2 ≤ C
[ ˆ

M

|∇u(ti)|2 −
ˆ
M

|∇u(ti+j)|2
]
→ 0

as i → ∞. This implies that there exists a map u∞ ∈ H1(M,N), with u∞ = u0 on
∂M , such that

lim
t→∞

ˆ
M

|∇(u(t)− u∞)|2 = 0.

Since (2.40) implies there exists ti ↑ ∞ such that

lim
i→∞

‖∂tu(ti)‖L2(M) = 0,

we see that u∞ is a weak harmonic map. Moreover, by the gradient estimate (2.36),
we have that for any compact set K ⊂⊂ M and m ≥ 1, one has that for t sufficiently
large,

‖∇mu(t)‖C0(K) ≤ C(ε0,m,K),

which clearly implies that u(t) → u∞ in Cm(K), as t → ∞. This completes the proof.
�

2.5 Uniqueness of Serrin’s (p, q)-solutions to general Riemannian mani-
fold

The following is the uniqueness result for Serrin’s (p, q)-solutions of the heat flow of
harmonic maps into a general Riemannian manifold.

Theorem 2.5.1. For n ≥ 2, 0 < T ≤ +∞, let (M, g) be either a compact or
complete Riemannian manifold without boundary or a compact Riemannian manifold
with boundary, and N be a compact Riemannian manifold without boundary. Let
u1, u2 ∈ H1(M × [0, T ], N) be two weak solutions of (1.3), with u1 = u2 = u0 on
∂p(M × [0, T ]) for some u0 ∈ W 1,2(M,N), such that ∇u1,∇u2 ∈ Lq

tL
l
x(M × [0, T ])

for some (l, q) satisfying (1.17) with l > n, q > 2. Then u1, u2 ∈ C∞(M × (0, T )),
and u1 ≡ u2 on M × [0, T ].

The following proposition indicate that any Serrin’s (l, q)-solution to (1.3), under
a suitable initial-boundary data u0, satisfies the condition (2.1) for some p > 1 in
Theorem 2.1.1.
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Proposition 2.5.2. For n ≥ 2, 0 < T < +∞, and a compact Riemannian manifold
N ⊂ R

k without boundary, suppose u ∈ H1(M× [0, T ], N) is a weak solution of (1.3),
with the initial and boundary value u0 : M → N satisfying ∇u0 ∈ Lr(M) for some
n < r < +∞, such that ∇u ∈ Lq

tL
l
x(M × [0, T ]) for some (l, q) satisfying (1.17) with

l > n, q > 2. Then

(i) ∂tu ∈ L
q
2
t L

l
2
x (M × [0, T ]); and

(ii) for any ε > 0, there exists R = R(u, ε) > 0 such that for any 1 < s < min{ l
2
, q

2
},

sup
{
rs−(n+2)

ˆ
Pr(x,t)∩(M×[0,T ])

(|∇u|s+rs|∂tu|s) | (x, t) ∈ M× [0, T ], 0 < r ≤ R
}
≤ εs.

(2.45)

Proof. We consider the case that (M, g) is complete and noncompact, and leave the
discussion of the other cases to interested readers. For simplicity, assume (M, g) =
(Rn, g0).

Let H be the heat kernel in R
n. Then by the Duhamel formula, we have

u(x, t) =

ˆ
Rn

H(x− y, t)u0(y)

+

ˆ t

0

ˆ
Rn

H(x− y, t− s)A(u)(∇u,∇u)(y, s) (2.46)

= u1(x, , t) + u2(x, t).

It is easy to see that

∇2u1(x, t) =

ˆ
Rn

∇xH(x− y, t)∇yu0(y).

Hence by the standard integral estimates (see [24] page 234), we have∥∥∥∇2u1

∥∥∥
L

q
2
t L

l
2
x (Rn×[0,T ])

≤ CT
1
2
− n

2r

∥∥∥∇u0

∥∥∥
Lr(Rn)

. (2.47)

For u2, since

∇2u2(x, t) =

ˆ t

0

ˆ
Rn

∇2
xH(x− y, t− s)A(u)(∇u,∇u)(y, s),

we can apply the Calderon-Zgymund’s Ls
tL

s′
x -theorey to obtain∥∥∥∇2u2

∥∥∥
L

q
2
t L

l
2
x (Rn×[0,T ])

≤ C
∥∥∥|∇u|2

∥∥∥
L

q
2
t L

l
2
x (Rn×[0,T ])

≤ C
∥∥∥∇u

∥∥∥2

Lq
tL

l
x(R

n×[0,T ])
. (2.48)

Substituting (2.47) and (2.48) into (2.46) yields ∇2u ∈ L
q
2
t L

l
2
x (Rn × [0, T ]). This,

combined with the equation (1.3), then implies (i).
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To see (ii), observe that by the Hölder inequality, we have that for any 1 < s <
min{ l

2
, q
2
}, (

rs−(n+2)

ˆ
Pr(x,t)∩(M×[0,T ])

|∇u|s
) 1

s ≤
∥∥∥∇u

∥∥∥
Lq
tL

l
x(Pr(x,t)∩(M×[0,T ]))

,

and (
r2s−(n+2)

ˆ
Pr(x,t)∩(M×[0,T ])

|∂tu|s
) 1

s ≤
∥∥∥∂tu∥∥∥

L
q
2
t L

l
2
x (Pr(x,t)∩(M×[0,T ]))

.

These two inequalities clearly imply (2.45). �

Now the following is the proof of ε-regularity of Serrin’s solutions to (1.3) for
any Riemannian manifold N . This need totally different argument from the cases in
former sections.

Lemma 2.5.3. There is an ε0 > 0 such that if u ∈ H1(P1, N), with ∇u ∈ Lq
tL

l
x(P1)

for some l ≥ n and q ≥ 2 satisfying (1.17), is a weak solution to (1.3) and

‖∇u‖Lq
tL

l
x(P1)) ≤ ε0, (2.49)

then u ∈ C∞(P 1
2
, N) and

‖u‖Cm(P 1
2
) ≤ C(m,n, p, q)‖∇u‖L2(P1) (2.50)

for any positive integer m.

The following inequality, due to Serrin ([78] Lemma 1) plays an very important
role in the proof.

Lemma 2.5.4. For any open set U ⊂ R
n and any open interval I ⊂ R, let f , g,

h ∈ L2
tH

1
x(U × I) and f ∈ Lq

tL
l
x(U × I) with l ≥ n and q ≥ 2 satisfying (1.17). Then

we have

ˆ
U×I

|f ||g||∇h| ≤ C‖∇h‖L2(U×I)‖g‖
n
l

L2
tH

1
x(U×I)

{ˆ
I

‖f‖q
Ll(U)

‖g‖2L2(U) dt

} 1
q

, (2.51)

where C > 0 depends only on n.

Proof of Lemma 2.5.3. For any (x, t) ∈ P 1
2
and 0 < r ≤ 1

2
, by (2.49) we have

‖∇u‖Lq
tL

l
x(Pr(x,t))) ≤ ε0. (2.52)

Let v : Pr(x, t) → R
k solve{

vt −Δv = 0, in Pr(x, t)

v = u, on ∂pPr(x, t).
(2.53)
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Denote w = u − v. Multiplying (1.3) and (2.53) by w, subtracting the resulting
equations and integrating over Pr(x, t), we obtain

sup
t−r2≤s≤t

ˆ
Br(x)

|w|2(·, s) + 2

ˆ
Pr(x,t)

|∇w|2 �
ˆ
Pr(x,t)

|∇u|2|w|

�

⎧⎨⎩‖∇u‖L2(Pr(x,t))‖∇w‖
n
l

L2(Pr(x,t))

{´ t
t−r2

‖∇u‖q
Ll(Br(x))

‖w‖2L2(Br(x))

} 1
q
, q < ∞

‖∇u‖L2(Pr(x,t))‖∇w‖L2(Pr(x,t))‖∇u‖L∞Ln(Br(x)), q = ∞
(2.54)

where we have used (2.51) and the Poincaré inequality in last step. Since
‖∇u‖Lq

tL
l
x(Pr(z0)) ≤ ε0, we obtain, by the Young inequality,

sup
t−r2≤s≤t

ˆ
Br(x)

|w|2(·, s) + 2

ˆ
Pr(x,t)

|∇w|2

≤
{
‖∇w‖2L2(Pr(x,t))

+ ε0‖∇u‖2L2(Pr(x,t))
+ Cε

q
2
0 ‖w‖2L∞

t L2
x(Br(x))

, q < ∞
‖∇w‖2L2(Pr(x,t)

+ Cε20‖∇u‖2L2(Pr(x,t))
, q = ∞.

(2.55)

Choosing ε0 > 0 so that {
Cε

q
2
0 ≤ 1, q < +∞,

Cε0 ≤ 1, q = ∞,

we obtain ˆ
Pr(x,t)

|∇w|2 ≤ ε0‖∇u‖2L2(Pr(x,t))
. (2.56)

On the other hand, by the standard estimate on the heat equation, we obtain that
for any 0 < θ < 1,

(θr)−n

ˆ
Pθr(x,t)

|∇v|2 ≤ Cθ2r−n

ˆ
Pr(x,t)

|∇u|2. (2.57)

(2.56) and (2.57) imply that

(θr)−n

ˆ
Pθr(x,t)

|∇u|2 ≤ C
(
θ2 + θ−nε0

)
r−n

ˆ
Pr(x,t)

|∇u|2. (2.58)

For any 0 < α < 1, choose first θ0 > 0 such that Cθ20 ≤ 1
2
θ2α0 and then

ε0 ≤ min

{
θ2α+n
0

2C
,

(
1

2C

) 2
q

}
,

we obtain that for any (x, t) ∈ P 1
2
and 0 < r ≤ 1

2
, it holds

(θ0r)
−n

ˆ
Pθ0r

(x,t)

|∇u|2 ≤ θ2α0 r−n

ˆ
Pr0 (x,t)

|∇u|2. (2.59)

32



Iterating (2.59), we obtain for any positive integer l,

(θl0r)
−n

ˆ
P
θl0r

(x,t)

|∇u|2 ≤ θ2lα0 r−n

ˆ
Pr(x,t)

|∇u|2. (2.60)

It is standard that (2.60) implies

r−n

ˆ
Pr(x,t)

|∇u|2 ≤ Cr2α
ˆ
P1

|∇u|2, ∀(x, t) ∈ P 1
2
, 0 < r ≤ 1

2
. (2.61)

By (2.61), we have that ∇u ∈ M2,2−2α(P1) for any 0 < α < 1. Now we can apply the
regularity theorem by Huang-Wang [45] Theorem 1.5 to conclude that u ∈ C∞(P 1

2
)

and the estimate (2.50) holds. This completes the proof. �

By suitable scaling, the possible blow-up rate of ‖∇u(t)‖L∞ as t tends to zero can
be estimated as below.

Lemma 2.5.5. For T > 0 and a compact or complete manifold (M, g) without
boundary, suppose that u ∈ H1(M × [0, T ], N) is a weak solution to (1.3), with
∇u ∈ Lq

tL
l
x(M × [0, T ]) for some l > n and q > 2 satisfying (1.17), then u ∈

C∞(M × (0, T ], N) and there exists t0 > 0 such that

sup
0<t≤t0

√
t
∥∥∥∇u(t)

∥∥∥
L∞(M)

≤ C
∥∥∥∇u

∥∥∥
Lq
tL

l
x(M×[0,t0])

. (2.62)

In particular,

lim
t↓0+

√
t
∥∥∥∇u(t)

∥∥∥
L∞(M)

= 0. (2.63)

Proof. For simplicity, we assume that (M, g) = (Rn, g0). Since ∇u ∈ Lq
tL

l
x(R

n ×
[0, T ]) for some l > n and q > 2 satisfying (1.17), we have that for ε0 > 0 given by
Lemma 2.5.3, there exists δ0 > 0 such that

sup
(x0,t0)∈Rn×[0,T ]

∥∥∥∇u
∥∥∥
Lq
tL

l
x(Pδ0

(x0,t0)∩Rn+1
+ )

≤ ε0,

In particular, for any 0 < τ ≤ δ0 and any x0 ∈ R
n, we have∥∥∥∇u

∥∥∥
Lq
tL

l
x(Bτ (x0)×[0,τ2])

≤ ε0. (2.64)

Define v(y, s) = u(x0 + τy, τ 2 + τ 2s) for (y, s) ∈ P1(0, 0). Then v solves (1.3) on
P1(0, 0), and satisfies ∥∥∥∇v

∥∥∥
Lq
tL

l
x(P1(0,0))

≤ ε0.

Hence Lemma 2.5.3 implies

‖∇v‖L∞(P 1
2
(0,0)) ≤ C‖∇v‖L2(P1(0,0)). (2.65)
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After rescalings, (2.65) implies that u ∈ C∞(P τ
2
(x0, τ

2)) and

τ
∥∥∥∇u

∥∥∥
L∞(P τ

2
(x,τ2))

≤ Cτ−
n
2

∥∥∥∇u
∥∥∥
L2(Pτ (x,τ2))

. (2.66)

By Hölder’s inequality and (1.17), we have

τ−
n
2

∥∥∥∇u
∥∥∥
L2(Pτ (x0,τ2))

≤
∥∥∥∇u

∥∥∥
Lq
tL

l
x(Pτ (x0,τ2))

. (2.67)

Putting (2.67) together with (2.66), we obtain

τ
∥∥∥∇u(τ 2)

∥∥∥
L∞(Rn)

≤ C
∥∥∥∇u

∥∥∥
Lq
tL

l
x(R

n×[0,τ2])
. (2.68)

After sending τ → 0, (2.68) clearly implies (2.63). It is not hard to see that (2.62)
also follows. This completes the proof. �

The next lemma handles the case that (M, g) is a compact Riemannian manifold
with boundary.

Lemma 2.5.6. For T > 0 and a compact manifold (M, g) with boundary, suppose
that u ∈ H1(M × [0, T ], N) is a weak solution of (1.3), with ∇u ∈ Lq

tL
l
x(M × [0, T ])

for some l > n and q > 2 satisfying (1.17), then u ∈ C∞(M × (0, T ], N). Moreover,
for any sufficiently small ε0 > 0, there exists T0 > 0 depending only on ε0 and u such
that

|∇u(x0, t0)| ≤ Cε0

( 1

d(x0, ∂M)
+

1√
t0

)
, ∀(x0, t0) ∈ M × (0, T0]. (2.69)

Proof. Let ε0 > 0 be given by Lemma 2.5.3. Since ∇u ∈ Lq
tL

l
x(M × [0, T ]) with

l > n, q > 2, there exists T0 > 0 such that∥∥∥∇u
∥∥∥
Lq
tL

l
x(M×[0,T0])

≤ ε0.

For any x0 ∈ M and 0 < t0 ≤ T0, we divide the proof into two cases:
(i) d(x0, ∂M) >

√
t0; and

(ii) d(x0, ∂M) ≤ √
t0.

For (i), since P√
t0(z0) ⊂ M × (0, T0], we have ‖∇u‖Lq

tL
l
x(P

√
t0
(z0)) ≤ ε0. As in Lemma

2.5.5, we conclude that u ∈ C∞(P√
t0
2

(z0)) and

|∇u|(z0) ≤ Cε0√
t0
.

For (ii), set r0 = min{d(x0, ∂M),
√
t0}. Then Pr0(z0) ⊂ M × (0, T0] and

‖∇u‖Lq
tL

l
x(Pr0 (z0))

≤ ε0. Hence we can conclude that u ∈ C∞(P r0
2
(z0)) and

|∇u|(z0) ≤ Cε0
r0

≤ Cε0

( 1

d(x0, ∂M)
+

1√
t0

)
.
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Thus (2.69) holds. This completes the proof. �

Proof of Theorem 2.5.1. It follows from Lemma 2.5.5 and Lemma 2.5.6 that
there exists T0 > 0 such that both the condition (2.22) of Theorem 2.2.1 and the
estimate (2.2) of Theorem 2.1.1 hold on M × [0, T0]. Thus we can apply the same
proof of Theorem 2.2.1 to obtain that u = v on M × [0, T0]. One can repeat the same
argument to show that u = v on M × [T0, T ]. �

Copyright c© Tao Huang 2013
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Chapter 3 Regularity and uniqueness for a class of solutions to the
hydrodynamic flow of nematic liquid crystals

In this chapter, the Serrin’s (p, q)-solution to hydrodynamic flow of nematic liquid
crystals will be studied by similar argument as the study of heat flow of harmonic
maps.

3.1 Regularity

Recall the definition of Serrin’s (p, q)-solution is as follows:

Definition 3.1.1. A weak solution (u, d) ∈ H1(Rn× [0, T ],Rn×S2) of (1.5) if called
a Serrin’s (p, q)-solution, if (u,∇d) ∈ Lp

tL
q
x(R

n × [0, T ]) for some (p, q) satisfying
(1.6).

The result concerns an ε0-regularity criterion for Serrin’s (p, q)-solutions to (1.5).

Theorem 3.1.2. There exists ε0 > 0 such that if a weak solution
(u, d) ∈ H1(Pr(x0, t0),R

n × S2) to (1.5) satisfies

‖u‖Lp
tL

q
x(Pr(x0,t0)) + ‖∇d‖Lp

tL
q
x(Pr(x0,t0)) ≤ ε0, (3.1)

where p ≥ 2 and q ≥ n satisfy (1.6), then (u, d) ∈ C∞(P r
16
(x0, t0)), and

r‖u‖L∞(P r
16

(x0,t0)) + r‖∇d‖L∞(P r
16

(x0,t0)) ≤ C
(‖u‖Lp

tL
q
x(Pr(x0,t0)) + ‖∇d‖Lp

tL
q
x(Pr(x0,t0))

)
.

(3.2)

A direct corollary of Theorem 3.1.2 is the following regularity theorem for Serrin’s
(p, q)-solutions to (1.5).

Corollary 3.1.3. For some 0 < T < +∞, suppose that (u, d) ∈ H1(Rn× [0, T ],Rn×
S2) is a weak solution to (1.5) with (u,∇d) ∈ Lp

tL
q
x(R

n × [0, T ]), for some p > 2 and
q > n satisfying (1.6). Then (u, d) ∈ C∞(Rn × (0, T ],Rn × S2).

Remark 3.1.4. (i) For the heat flow of harmonic maps and the Navier-Stokes
equations, Corollary 3.1.3 is valid for the end point case (p, q) = (+∞, n). It is
an interesting open question to investigate the regularity of Serrin’s solutions to (1.5)
in this end point case.
(ii) If (u0,∇d0) ∈ Lγ(Rn) for some γ > n, then the local existence of Serrin’s solutions
in Lp

tL
q
x for some p > 2 and q > n can be obtained by the fixed point argument (see

e.g., [24] §4).
To prove Theorem 3.1.2 and Corollary 3.1.3 for nematic liquid crystal flows (1.5),

the crucial step is to establish an ε0-regularity criterion.
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Lemma 3.1.5. There exists ε0 > 0 such that if (u,∇d) ∈ Lp
tL

q
x(P1(0, 1)), for some

p ≥ 2 and q ≥ n satisfying (1.6), is a weak solution to (1.5) that satisfies

‖u‖Lp
tL

q
x(P1(0,1)) + ‖∇d‖Lp

tL
q
x(P1(0,1))) ≤ ε0, (3.3)

then (u, d) ∈ C∞(P 1
16
(0, 1)), and

‖u‖L∞(P 1
16

(0,1)) + ‖∇d‖L∞(P 1
16

(0,1)) ≤ Cε0. (3.4)

In the proof of this lemma, the following inequality, due to Serrin [78], plays an
important role.

Lemma 3.1.6. For any open set U ⊂ R
n and any open interval I ⊂ R, let f , g,

h ∈ L2
tH

1
x(U × I) and f ∈ Lp

tL
q
x(U × I) with 3 ≤ n ≤ q ≤ +∞ and 2 ≤ p ≤ +∞

satisfying (1.6). Then

ˆ
U×I

|f ||g||∇h| ≤ C‖∇h‖L2(U×I)‖g‖
n
q

L2
tH

1
x(U×I)

{ˆ
I

‖f‖pLq(Rn)‖g‖2L2(Rn) dt

} 1
p

, (3.5)

where C > 0 depends only on n.

Proof of Lemma 3.1.5. For any (x, t) ∈ P 1
2
(0, 1) and 0 < r < 1

2
, we have, by (3.3),

‖u‖Lp
tL

q
x(Pr(x,t)) + ‖∇d‖Lp

tL
q
x(Pr(x,t)) ≤ ε0. (3.6)

The proof will be divided into two claims.
Claim 1. ∇d ∈ Lγ(P 1

2
(0, 1)) for any 1 < γ < ∞, and

‖∇d‖Lγ(P 1
4
(0,1)) ≤ C(γ)‖∇d‖Lp

tL
q
x(P1(0,1)). (3.7)

To show it, let d1 : Pr(x, t) → R
3 solve{

∂td1 −Δd1 = 0, in Pr(x, t)

d1 = d, on ∂pPr(x, t).
(3.8)

Set d2 = d−d1. Multiplying (1.5)3 and (3.8) by d2, subtracting the resulting equations
and integrating over Pr(x, t), we obtain

sup
t−r2≤τ≤t

ˆ
Br(x)

|d2|2(·, τ) + 2

ˆ
Pr(x,t)

|∇d2|2

≤C

ˆ
Pr(x,t)

(|u||d2||∇d|+ |∇d||d2||∇d|) = J1 + J2.

(3.9)

By (3.5), the Poincaré inequality and the Young inequality, we have

|J1| �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖∇d‖L2(Pr(x,t))‖∇d2‖

n
q

L2(Pr(x,t))

·
{´ t

t−r2
‖u‖pLq(Br(x))

‖d2‖2L2(Br(x))
dτ

} 1
p
, p < +∞

‖∇d‖L2(Pr(x,t))‖∇d2‖L2(Pr(x,t))‖u‖L∞
t Ln

x(Pr(x,t)), p = +∞,

≤
{

1
2
‖∇d2‖2L2(Pr(x,t))

+ Cε0‖∇d‖2L2(Pr(x,t))
+ Cε

p
2
0 ‖d2‖2L∞

t L2
x(Pr(x,t))

, p < +∞
1
2
‖∇d2‖2L2(Pr(x,t))

+ Cε0‖∇d‖2L2(Pr(x,t))
, p = +∞.
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Similarly, for J2, we have

|J2| ≤
{

1
2
‖∇d2‖2L2(Pr(x,t))

+ Cε0‖∇d‖2L2(Pr(x,t))
+ Cε

p
2
0 ‖d2‖2L∞

t L2
x(Pr(x,t))

, p < +∞
1
2
‖∇d2‖2L2(Pr(x,t))

+ Cε0‖∇d‖2L2(Pr(x,t))
, p = +∞.

Putting these estimates into (3.9), applying (3.6), and choosing sufficiently small ε0,
we have ˆ

Pr(x,t)

|∇d2|2 ≤ Cε0‖∇d‖2L2(Pr(x,t))
. (3.10)

This, combined with the standard estimate on d1, implies that for any θ ∈ (0, 1),

(θr)−n

ˆ
Pθr(x,t)

|∇d|2 ≤ C
(
θ2 + θ−nε0

)
r−n

ˆ
Pr(x,t)

|∇d|2. (3.11)

By iterations, we obtain for any (x, t) ∈ P 1
2
(0, 1), 0 < r ≤ 1

2
and 0 < α < 1,

r−n

ˆ
Pr(x,t)

|∇d|2 ≤ Cr2α
ˆ
P1(0,1)

|∇d|2. (3.12)

Hence ∇d ∈ M2,2−2α(P 1
2
(0, 1)) and

‖∇d‖M2,2−2α(P 1
2
(0,1)) ≤ C‖∇d‖Lp

tL
q
x(P1(0,1)). (3.13)

Now Claim 1 follows by the same estimate of Riesz potentials between parabolic
Morrey spaces as in [46] (Theorem 1.5) and [62] (Lemma 2.1).

Claim 2. u ∈ Lγ(P 1
4
(0, 1)) for any 1 < γ < ∞, and

‖u‖Lγ(P 1
4
(0,1)) ≤ C(γ)‖u‖Lp

tL
q
x(P1(0,1)). (3.14)

Let Eγ be the closure in Lγ(Rn,Rn) of all divergence-free vector fields with com-
pact supports. Let P : L2(Rn,Rn) → E

2 be the Leray projection operator. It is
well-known that P can be extended to a bounded linear operator from Lγ(Rn,Rn) to
E
γ for all 1 < γ < +∞. Let A = PΔ denote the Stokes operator.
For any (x, t) ∈ P 1

4
(0, 1) and 0 < r ≤ 1

4
, let η ∈ C∞

0 (P2r(x, t)) be such that

0 ≤ η ≤ 1, η ≡ 1 on Pr(x, t), |∇η| ≤ 4r−1, and |∂tη| ≤ 16r−2. Let (v, P 1) :
R

n × (0, 1) → R
n × R solve⎧⎪⎪⎨⎪⎪⎩

∂tv −Δv +∇P 1 = −∇ ·
(
η2(u⊗ u+∇d⊗∇d− 1

2
|∇d|2In)

)
in R

n × (0, 1)

∇ · v = 0 in R
n × (0, 1)

v = 0 on R
n × {0}.

(3.15)
Define w : Pr(x, t) → R

n by w = u−v. Then w solves the Stokes equation in Pr(x, t):{
∂tw −Δw +∇Q1 = 0 in Pr(x, t)

∇ · w = 0 in Pr(x, t).
(3.16)
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By the standard theory of linear Stokes’ equations, we have that w ∈ C∞(Pr(x, t))
and, for any θ ∈ (0, 1),

‖w‖Lp
tL

q
x(Pθr(x,t)) ≤ Cθ ‖w‖Lp

tL
q
x(Pr(x,t)). (3.17)

To estimate v, we apply P to both sides of the equation (3.15)1 to obtain

∂tv−Av = −P∇·
(
η2(u⊗u+∇d⊗∇d− 1

2
|∇d|2In)

)
in R

n×(0, 1); v = 0 on R
n×{0}.

By the Duhamel formula, we have

v(t) = −
ˆ t

0

e−(t−τ)A
P∇ ·

(
η2(u⊗ u+∇d⊗∇d− 1

2
|∇d|2In)

)
dτ, 0 < t ≤ 1. (3.18)

Now we can apply Fabes-Jones-Riviere [24] Theorem 3.1 (see also Kato [48] page 474,
(2.3′)) to conclude that v ∈ Lp

tL
q
x(R

n × [0, 1]) and

‖v‖Lp
tL

q
x(Rn×[0,1]) ≤ C(‖ηu‖2Lp

tL
q
x(Rn×[0,1]) + ‖η∇d‖2Lp

tL
q
x(Rn×[0,1]))

≤ Cε0(‖u‖Lp
tL

q
x(P2r(x,t))) + ‖∇d‖Lp

tL
q
x(P2r(x,t))). (3.19)

Putting (3.17) and (3.19) together, we have that for any θ ∈ (0, 1),

‖u‖Lp
tL

q
x(Pθr(x,t)) ≤ C(θ + ε0)‖u‖Lp

tL
q
x(P2r(x,t)) + Cε0‖∇d‖Lp

tL
q
x(P2r(x,t)). (3.20)

By Claim 1, we have that for any α ∈ (0, 1), there exists ε0 > 0 depending on α such
that

‖∇d‖Lp
tL

q
x(P2r(x,t)) ≤ Crα‖∇d‖Lp

tL
q
x(P1(0,1)). (3.21)

Substituting (3.21) into (3.20) yields

‖u‖Lp
tL

q
x(Pθr(x,t)) ≤ C(θ + ε0)‖u‖Lp

tL
q
x(P2r(x,t)) + Crα‖∇d‖Lp

tL
q
x(P1(0,1)). (3.22)

It is standard that by choosing θ = θ0(α) > 0 and iterating (3.22) finitely many
times, we conclude that for any (x, t) ∈ P 1

4
, 0 < r ≤ 1

4
and 0 < α < 1,

‖u‖Lp
tL

q
x(Pr(x,t)) ≤ C

(
‖u‖Lp

tL
q
x(P1(0,1)) + ‖∇d‖Lp

tL
q
x(P1(0,1))

)
rα. (3.23)

By Hölder’s inequality, (3.23) implies that u ∈ M2,2−2α(P 3
8
(0, 1)), and

‖u‖M2,2−2α(P 3
8
(0,1)) ≤ C

[
‖u‖Lp

tL
q
x(P1(0,1)) + ‖∇d‖Lp

tL
q
x(P1(0,1))

]
. (3.24)

The higher integrability estimate of u on P 1
4
(0, 1) can be done by the parabolic

Riesz potential estimate in parabolic Morrey spaces. Here we will sketch it. Let
φ ∈ C∞

0 (P 3
8
(0, 1)) such that 0 ≤ φ ≤ 1, φ ≡ 1 on P 5

16
(0, 1), and

|∂tφ|+ |∇φ|+ |∇2φ| ≤ C.
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Define ũ : Rn × [0, 1] → R
n by

ũ(t) = −
ˆ t

0

e−(t−τ)A
P∇ ·

(
φ2(u⊗ u+∇d⊗∇d− 1

2
|∇d|2In)

)
dτ, 0 < t ≤ 1. (3.25)

Then, as in the proof of Theorem 3.1 (i) of [24], we have that for any (x, t) ∈ R
n×(0, 1],

|ũ(x, t)| ≤ C

ˆ t

0

ˆ
Rn

1

δn+1((x, t), (y, s))
(|φu|2 + |φ∇d|2)(y, s) dyds. (3.26)

Recall the parabolic Riesz potential of order 1, I1(·), is defined by

I1(f)(z) :=

ˆ
Rn+1

|f(w)|
δn+1(z, w)

dw, f ∈ L1(Rn+1).

Then we have
|ũ(x, t)| ≤ CI1(F )(x, t), (x, t) ∈ R

n × (0, 1], (3.27)

where
F = φ2(|u|2 + |∇d|2).

By Hölder’s inequality, (3.13), and (3.24), we have that F ∈ M1,2−2α(Rn+1) and

‖F‖M1,2−2α(Rn+1) ≤ C
(
‖∇d‖2Lp

tL
q
x(P1(0,1))

+ ‖u‖2Lp
tL

q
x(P1(0,1))

)
. (3.28)

Hence, by [46] Theorem 3.1 (ii), we conclude that ũ ∈ M
2−2α
1−2α

,2−2α
∗ (Rn × [0, 1]), and

‖ũ‖
M

2−2α
1−2α ,2−2α

∗ (Rn×[0,1])
≤ C‖F‖M1,2−2α(Rn+1)

≤ C
(
‖∇d‖2Lp

tL
q
x(P1(0,1))

+ ‖u‖2Lp
tL

q
x(P1(0,1))

)
. (3.29)

As lim
α↑ 1

2

2−2α
1−2α

= +∞, we have that ũ ∈ Lγ(P 5
16
(0, 1)) for any 1 < γ < +∞, and

‖ũ‖Lγ(P 5
16

) ≤ C(γ)
(
‖∇d‖2Lp

tL
q
x(P1(0,1))

+ ‖u‖2Lp
tL

q
x(P1(0,1))

)
. (3.30)

Set w̃ = u− ũ on P 5
16
(0.1). Then it follows from (1.5) and (3.25) that

∂tw̃ −Δw̃ +∇Q̃ = 0; ∇ · w̃ = 0 in P 5
16
(0, 1).

By the standard theory of linear Stokes’ equations, we have that w̃ ∈ L∞(P 1
4
(0, 1)),

and

‖w̃‖L∞(P 1
4
(0,1)) ≤ C‖w̃‖L1(P 5

16
(0,1)) ≤ C

(
‖u‖L1(P 5

16
(0,1)) + ‖ũ‖L1(P 5

16
(0,1))

)
≤ C

(
‖∇d‖Lp

tL
q
x(P1(0,1)) + ‖u‖Lp

tL
q
x(P1(0,1))

)
. (3.31)

It is clear that (3.14) follows from (3.30) and (3.31). This completes the proof of
Claim 2.
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Finally, it is not hard to see that by the W 2,1
γ -theory for the heat equation and the

linear Stokes equation, and the Sobolev embedding theorem, we have that (u,∇d) ∈
L∞(P 1

8
(0, 1)). Then the Schauder’s theory and the bootstrap argument can imply

that (u, d) ∈ C∞(P 1
16
(0, 1)). Furthermore, the estimate (3.4) holds. This completes

the proof. �
Proof of Corollary 3.1.3: It is easy to see that when p > 2, q > n, for any

(x, t) ∈ R
n × (0, T ], we can find R0 > 0 such that

‖u‖Lp
tL

q
x(PR0

(x,t)) + ‖∇d‖Lp
tL

q
x(PR0

(x,t)) ≤ ε0, (3.32)

where ε0 is given in Lemma 3.1.5. By Theorem 3.1.2, we conclude that (u, d) ∈
C∞(PR0

16
(x, t)). This completes the proof of Corollary 3.1.3 �

3.2 Uniqueness

As a corollary of Theorem 3.1.2 and Corollary 3.1.3, the following uniqueness of
Serrin’s (p, q)-solutions to (1.5) holds.

Theorem 3.2.1. For n ≥ 2, 0 < T < +∞, and i = 1, 2, if (ui, di) : R
n × [0, T ] →

R
n × S2 are two weak solutions to (1.5) with the same initial data (u0, d0) : Rn →

R
n × S2. Suppose, in additions, there exists p > 2 and q > n satisfying (1.6) such

that (u1,∇d1), (u2,∇d2) ∈ Lp
tL

q
x(R

n × [0, T ]). Then (u1, d1) ≡ (u2, d2) on R
n × [0, T ].

To prove Theorem 3.2.1, one need the following estimate.

Lemma 3.2.2. For T > 0, suppose that (u, d) is a weak solution to (1.5) in R
n ×

(0, T ], which satisfies the assumption of Theorem 3.2.1. Then (u, d) ∈ C∞(Rn ×
(0, T ],Rn × S2), and there exists t0 > 0 such that for 0 < t ≤ t0, it holds

sup
0<τ≤t

√
τ
(
‖u(τ)‖L∞(Rn)+‖∇d(τ)‖L∞(Rn)

)
≤ C

(
‖u‖Lp

tL
q
x(Rn×[0,t])+‖∇d‖Lp

tL
q
x(Rn×[0,t])

)
.

(3.33)
In particular, we have

lim
t↓0+

√
t
(
‖u‖L∞(Rn) + ‖∇d‖L∞(Rn)

)
= 0. (3.34)

Proof. Let ε0 be given by Lemma 3.1.5. Since p > 2 and q > n satisfy (1.6), for
any 0 < ε ≤ ε0 we can find t0 > 0 such that for any 0 < τ ≤ √

t0

‖u‖Lp
tL

q
x(Rn×[0,τ2]) + ‖∇d‖Lp

tL
q
x(Rn×[0,τ2]) ≤ ε. (3.35)

For any x0 ∈ R
n, define

ū(y, s) = τu(x0 + yτ, sτ 2)

P̄ (y, s) = τ 2P (x0 + yτ, sτ 2)

d̄(y, s) = d(x0 + yτ, sτ 2).
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Then (ū, P̄ , d̄) is a weak solution to (1.5) on P1(0, 1), and by (3.35),

‖ū‖Lp
tL

q
x(P1(0,1)) + ‖∇d̄‖Lp

tL
q
x(P1(0,1)) ≤ ε. (3.36)

By Lemma 3.1.5, we conclude that

|ū(0, 1)|+ |∇d̄(0, 1)| ≤ C
(‖ū‖Lp

tL
q
x(P1(0,1)) + ‖∇d̄‖Lp

tL
q
x(P1(0,1))

)
. (3.37)

By rescaling, this implies

τ
(|u(x0, τ

2)|+ |∇d(x0, τ
2)|) ≤ C

(‖u‖Lp
tL

q
x(Rn×[0,τ2]) + ‖∇d‖Lp

tL
q
x(Rn×[0,τ2])

) ≤ Cε.
(3.38)

Taking supremum over all x0 ∈ R
n completes the proof. �

Proof of Theorem 3.2.1: By (3.34), we have that for any ε > 0, there exists
t0 = t0(ε) > 0 such that

A(t0) =
2∑

i=1

[
sup

0≤t≤t0

√
t(‖ui(t)‖L∞(Rn) + ‖∇di(t)‖L∞(Rn))

+(‖ui‖Lp
tL

q
x(Rn×[0,t0])) + ‖∇di‖Lp

tL
q
x(Rn×[0,t0])))

]
≤ ε. (3.39)

It suffices to show (u1, d1) = (u2, d2) on R
n × [0, t0]. To do so, let u = u1 − u2 and

d = d1 − d2. Applying P to both (1.5)1 for u1 and u2 and taking the difference of
resulting equations, we have that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ut − Au

= −P∇ · (u⊗ u1 + u2 ⊗ u+∇d⊗∇d1 +∇d2 ⊗∇d+ (|∇d1|+ |∇d2|)|∇d|In) ,
∇ · u = 0,

dt −Δd = [(∇d1 +∇d2) · ∇d d2 + |∇d1|2d]− [u · ∇d1 + u2 · ∇d],

(u, d)
∣∣∣
t=0

= (0, 0).

(3.40)
By the Duhamel formula, we have that for any 0 < t ≤ t0,

u(t) = −
ˆ t

0

e−(t−τ)A
P∇ ·

(
u⊗ u1 + u2 ⊗ u

+∇d⊗∇d1 +∇d2 ⊗∇d+ (|∇d1|+ |∇d2|)|∇d|In
)
dτ,

d(t) =

ˆ t

0

e−(t−τ)Δ
(
(∇d1 +∇d2) · ∇d d2 + |∇d1|2d− u · ∇d1 − u2 · ∇d

)
dτ. (3.41)

For 0 < t ≤ t0, set

Φ(t) = ‖u‖Lp
tL

q
x(Rn×[0,t])) + ‖∇d‖Lp

tL
q
x(Rn×[0,t])) + sup

0≤τ≤t
‖d(·, τ)‖L∞(Rn).
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By (3.41) and the standard estimate on the heat kernel, we obtain that

∥∥∥∇d(t)
∥∥∥
Lq(Rn)

≤C
[ 2∑

i=1

ˆ t

0

(t− τ)
1
p
−1‖∇di‖Lq(Rn)‖∇d‖Lq(Rn) dτ

+ ‖d‖L∞(Rn)

ˆ t

0

(t− τ)
1
p
−1‖∇d1‖2Lq(Rn) dτ

+

ˆ t

0

(t− τ)
1
p
−1‖∇d1‖Lq(Rn)‖u‖Lq(Rn) dτ

+

ˆ t

0

(t− τ)
1
p
−1‖u2‖Lq(Rn)‖∇d‖Lq(Rn) dτ

]
.

(3.42)

By the standard Riesz potential estimate in Lp-spaces (see [24] Theorem 3.0), we see
that ∇d ∈ Lp

tL
q
x(R

n × [0, t0]), and∥∥∥∇d
∥∥∥
Lp
tL

q
x(Rn×[0,t0])

≤C
[ 2∑

i=1

‖∇di‖Lp
tL

q
x(Rn×[0,t0]))‖∇d‖Lp

tL
q
x(Rn×[0,t0])

+ ‖d‖L∞(Rn×[0,t0])‖∇d1‖2Lp
tL

q
x(Rn×[0,t0])

+ ‖∇d1‖Lp
tL

q
x(Rn×[0,t0])‖u‖Lp

tL
q
x(Rn×[0,t0])

+ ‖u2‖Lp
tL

q
x(Rn×[0,t0])‖∇d‖Lp

tL
q
x(Rn×[0,t0])

]
≤CA(t0)Φ(t0).

(3.43)

Similarly, by using the estimate of Theorem 3.1 (i) of [24], we have that u ∈ Lp
tL

q
x(R

n×
[0, t0]), and

‖u‖Lp
tL

q
x(Rn×[0,t0]) ≤CA(t0)Φ(t0). (3.44)

Now we need to estimate sup
0≤τ≤t0

‖d(·, τ)‖L∞(Rn). We claim

‖d‖L∞(Rn×[0,t0]) ≤ CA(t0)Φ(t0). (3.45)

To show (3.45), let H(x, t) be the heat kernel of Rn. By (3.41), we have

|d(x, t)| =
∣∣∣ ˆ t

0

ˆ
Rn

H(x− y, t− τ)
(
(∇d1 +∇d2) · ∇d d2 + |∇d1|2d

)
(y, τ) dydτ

−
ˆ t

0

ˆ
Rn

H(x− y, t− τ) (u · ∇d1 + u2 · ∇d) (y, τ) dydτ
∣∣∣

≤C
[ ˆ t

0

ˆ
Rn

H(x− y, t− τ)K(y, τ) dydτ

+

ˆ t

0

ˆ
Rn

H(x− y, t− τ)|∇d1|2(y, τ) dydτ · sup
0≤τ≤t

‖d(·, τ)‖L∞(Rn)

]
,

(3.46)
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where

K(y, τ) :=
2∑

i=1

(|ui|+ |∇di|)(|u|+ |∇d|)(y, τ).

By (3.39), we have that for any 0 < t ≤ t0,

ˆ t

0

ˆ
Rn

H(x− y, t− τ)K(y, τ) dydτ

≤A(t0)

ˆ t

0

(t− τ)−
n
2 τ−

1
2

ˆ
Rn

(|u|+ |∇d|) exp
(
− |x− y|2

4(t− τ)

)
dydτ

≤A(t0)
∥∥∥(t− τ)−

n
2q τ−

1
2

∥∥∥
L

p
p−1 ([0,t])

∥∥∥|u|+ |∇d|
∥∥∥
Lp
tL

q
x(Rn×[0,t])

≤CA(t0)Φ(t0),

(3.47)

where we have used Hölder inequality and∥∥∥(t− τ)−
n
2q τ−

1
2

∥∥∥ p
p−1

L
p

p−1 ([0,t])
= t(

1
2
−( n

2q
+ 1

p
)) p

p−1

ˆ 1

0

(1− τ)−
np

2(p−1)q τ−
p

2(p−1) dτ

=

ˆ 1

0

(1− τ)−
p−2

2(p−1) τ−
p

2(p−1) dτ < +∞,

as (i) n
2q

+ 1
p
= 1

2
, and (ii) 2 < p < +∞ yields p

2(p−1)
< 1 and p−2

2(p−1)
< 1.

Similarly, we can obtain that for 0 ≤ t ≤ t0,

ˆ t

0

ˆ
Rn

H(x− y, t− τ)|∇d1|2(y, τ) dydτ ≤ CA2(t0). (3.48)

Putting (3.47) and (3.48) into (3.46) and taking supremum over (x, t) ∈ R
n × [0, t0],

we have

sup
0≤t≤t0

‖d‖L∞(Rn) ≤ CA(t0)Φ(t0) + CA2(t0) sup
0≤t≤t0

‖d‖L∞(Rn). (3.49)

Therefore, if we choose ε ≤
√

1
2C

so that CA2(t0) ≤ Cε2 ≤ 1
2
, then we obtain (3.45).

Putting (3.43), (3.44) and (3.45) together, and choosing ε ≤ 1
2C

, we obtain

Φ(t0) ≤ CA(t0)Φ(t0) ≤ 1

2
Φ(t0).

This implies that Φ(t0) = 0 and hence (u1, d1) ≡ (u2, d2) on R
n×[0, t0]. If t0 < T , then

we can repeat the argument for t ∈ [t0, T ] and eventually show that (u1, d1) ≡ (u2, d2)
on R

n × [0, T ]. This completes the proof. �

Copyright c© Tao Huang 2013
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Chapter 4 Regularity and uniqueness of the heat flow of biharmonic maps

Motivated by the study of uniqueness of heat flow of harmonic maps in Chapter 2,
in this chapter, the regularity and uniqueness of heat flow of biharmonic maps (1.9)
will be discussed by similar argument based on the Riesz potential estimates between
Morrey spaces, the higher order Hardy inequality and the general Gronwall argument.
As applications, the uniqueness of weakly biharmonic maps, uniqueness of limit at
t = +∞ of heat flow of biharmonic maps and uniqueness of Serrin’s-(p, q) solution
will also be considered.

4.1 ε-regularity

This section is devoted to the proof of Theorem 4.1.1, i.e., the regularity of heat flow
of biharmonic maps to S

L under the smallness condition (4.1). The idea is motivated
by [10] on the regularity of stationary biharmonic maps to S

L.
The first theorem concerns the regularity of (1.9).

Theorem 4.1.1. For 3
2
< p ≤ 2 and 0 < T < +∞, there exists εp > 0 such

that if u ∈ W 1,2
2 (Ω × [0, T ], SL) is a weak solution of (1.9) and satisfies that, for

z0 = (x0, t0) ∈ Ω× (0, T ] and 0 < R0 ≤ 1
2
min{d(x0, ∂Ω),

√
t0},

‖∇2u‖Mp,2p
R0

(PR0
(z0))

+ ‖∂tu‖Mp,4p
R0

(PR0
(z0))

≤ εp, (4.1)

then u ∈ C∞
(
PR0

16
(z0), S

L
)
, and∣∣∣∇mu(z0)

∣∣∣ ≤ Cεp
Rm

0

, ∀ m ≥ 1. (4.2)

Remark 4.1.2. It is an open question whether Theorem 4.1.1 holds for any compact
Riemannian manifold N without boundary (with p = 2).

The first step is to rewrite (1.9) into the form where nonlinear terms are of di-
vergence structures, analogous to [10] on the equation of biharmonic maps to S

L.
As in [10], the nonlinearities in (1.9) can be divided into four different types: for
1 ≤ α ≤ L+ 1,

T α
11 =

(
uα
j Δuβ(uβ − cβ)

)
j
or

(
uβ
jΔuα(uβ − cβ)

)
j
, T α

12 =
(
(uα − cα)uβ

i u
β
ij

)
j
,

T α
21 = Δ

(
(uα − cα)|∇u|2) , T22 = Δ

(
(uβ − cβ)Δuβ

)
,

T α
23 = Δ

(
uα(uβ − cβ)Δuβ

)
or Δ

(
uβ(uβ − cβ)Δuα

)
,

T33 =
(
(uβ − cβ)uβ

j

)
jii

, T α
41 =

(
uα∂tu

β − uβ∂tu
α
) (

uβ − cβ
)
,

(4.3)

where the upper index α, β denotes the component of a vector, the lower index i, j
denotes the differentiation in the direction xi, xj, c

α ∈ R
L+1 is a constant, and the

Einstein convention of summation is used.
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Lemma 4.1.3. The equation (1.9) is equivalent to

∂tu
α +Δ2uα = Fα(T

α
11, T α

12, T α
21, T22, T α

23, T33, T α
41), 1 ≤ α ≤ L+ 1, (4.4)

where Fα denotes a linear function of its arguments such that the coefficients can be
bounded independent of u.

Proof. We follow [10] Proposition 1.2 closely. First, by Lemma 1.3 of [10], for every
fixed α,

cαΔ
(|∇u|2) and

(
uα
j |∇u|2)

j
are linear functions of T α

11, T
α
12, T

α
21, T22, T

α
23, T33,

(4.5)
whose coefficients can be bounded independent of u. For 1 ≤ α ≤ L+ 1, set

Sα
1 = uα|Δu|2, Sα

2 = 2uαuβ
j

(
Δuβ

)
j
, Sα

3 = uαΔ
(|∇u|2) . (4.6)

Differentiation of |u| = 1 gives

uγuγ
j = 0, uγΔuγ + |∇u|2 = 0. (4.7)

By the equation (1.8), we have

uαΔ2uβ + uα∂tu
β = uβΔ2uα + uβ∂tu

α, 1 ≤ α, β ≤ L+ 1. (4.8)

It follows from (4.7) and (4.8) that

Sα
2

2
=uαuβ

j (Δuβ)j = uβ
j

(
uα(Δuβ)j − uβ (Δuα)j

)
=uβ

j

(
uα(Δuβ)j − uβ (Δuα)j − uα

j Δuβ + uβ
jΔuα

)
+ uβ

j

(
uα
j Δuβ − uβ

jΔuα
)

=
{(

uβ − cβ
) (

uα(Δuβ)j − uβ (Δuα)j − uα
j Δuβ + uβ

jΔuα
)}

j

+
(
uβ − cβ

) (
uα∂tu

β − uβ∂tu
α
)
+ uβ

j

(
uα
j Δuβ − uβ

jΔuα
)

=
{(

uβ − cβ
) (

uαΔuβ − uβΔuα
)}

jj
−

{
uβ
j

(
uαΔuβ − uβΔuα

)}
j

− 2
{(

uβ − cβ
) (

uα
j Δuβ − uβ

jΔuα
)}

j
+ uβ

j

(
uα
j Δuβ − uβ

jΔuα
)
+ T α

41

=−
{
uβ
j

(
uαΔuβ − uβΔuα

)}
j
+ uβ

j

(
uα
j Δuβ − uβ

jΔuα
)
+Gα(T

α
11, T

α
21, T

α
23, T

α
41),

(4.9)

where Gα is a linear function of its arguments whose coefficients can be bounded
independent of u. By (4.5) and (4.7), we have

Sα
3 =(uα − cα)Δ

(|∇u|2)+ cαΔ
(|∇u|2)

=Δ
(
(uα − cα) |∇u|2)− 2

(
uα
j (|∇u|2)

j
−ΔuαuβΔuβ + cαΔ

(|∇u|2)
=−ΔuαuβΔuβ +Hα(T

α
11, T

α
12, T

α
21, T22, T

α
23, T33),

(4.10)
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where Hα is a linear function of its arguments whose coefficients can be bounded
independent of u. By (4.10), the definition of Sα

1 , and (4.9), we have

Sα
1 + Sα

3 =
(
uαΔuβ − uβΔuα

)
Δuβ +Hα(T

α
11, T

α
12, T

α
21, T22, T

α
23, T31),

=
{(

uαΔuβ − uβΔuα
)
uβ
j

}
j
−

(
uα
j Δuβ − uβ

jΔuα
)
uβ
j

−
(
uαΔuβ

j − uβΔuα
j

)
uβ
j +Hα(T

α
11, T

α
12, T

α
21, T22, T

α
23, T31),

=− Sα
2

2
− Sα

2

2
+ Lα(T

α
11, T

α
12, T

α
21, T22, T

α
23, T33, T

α
41),

(4.11)

where Lα is a linear function of its arguments whose coefficients can be bounded
independent of u. Therefore we obtain

Sα
1 + Sα

2 + Sα
3 = Lα(T

α
11, T

α
12, T

α
21, T22, T

α
23, T33, T

α
41).

This completes the proof. �
Next we recall some basic properties of the heat kernel for Δ2 in R

n, and the
definition of Riesz potentials on R

n+1, and the definition of BMO space and John-
Nirenberg’s inequality (see [47]). Let b(x, t) be the fundamental solution of

(∂t +Δ2)v = 0 in R
n+1
+ .

Then we have (see [50] §2.2):

b(x, t) = t−
n
4 g

(
x

t
1
4

)
, with g(ξ) = (2π)−

n
2

ˆ
Rn

eiξη−|η|4 , ξ ∈ R
n,

and the estimate∣∣∣∇mb(x, t)
∣∣∣ ≤ C

(
|t| 14 + |x|

)−n−m

, ∀ (x, t) ∈ R
n+1
+ , ∀ m ≥ 1. (4.12)

We equip R
n+1 with the parabolic distance δ:

δ((x, t), (y, s)) = |t− s| 14 + |x− y|, (x, t), (y, s) ∈ R
n+1.

For 0 ≤ α ≤ n+ 4, define the Riesz potential of order α on (Rn+1, δ) by

Iα(f)(x, t) =

ˆ
Rn+1

(
|t− s| 14 + |x− y|

)α−n−4

|f |(y, s), (x, t) ∈ R
n+1. (4.13)

For any open set U ⊂ R
n+1, let BMO(U) denote the space of functions of bounded

mean oscillations: f ∈ BMO(U) if

[f ]BMO(U)
:= sup

{
−
ˆ
Pr(z)

|f − fPr(z)| : Pr(z) ⊂ U
}
< +∞, (4.14)
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where −
ˆ
Pr(z)

=
1

|Pr(z)|
ˆ
Pr(z)

and fPr(z) = −
ˆ
Pr(z)

f denotes the average of f over Pr(z).

By the celebrated John-Nirenberg inequality (see [47]), we have that if f ∈ BMO(U),
then for any 1 < q < +∞ it holds

sup
{(

−
ˆ
Pr(z)

|f − fPr(z)|q
) 1

q

: Pr(z) ⊂ U
}
≤ C(q)

[
f
]
BMO(U)

. (4.15)

Now it is ready to prove the ε-regularity for the heat flow of biharmonic maps to
S
L.

Proposition 4.1.4. For any 3
2
< p ≤ 2, there exists εp > 0 such that if u : P4 → S

L

is a weak solution of (1.9) and satisfies

sup
(x,t)∈P3,0<r≤1

r2p−n−4

ˆ
Pr(x,t)

(|∇2u|p + r2p|∂tu|p
) ≤ εpp, (4.16)

then u ∈ C∞(P 1
2
, SL), and∥∥∥∇mu

∥∥∥
C0(P 1

2
)
≤ C(p, n,m), ∀ m ≥ 1. (4.17)

Proof. We first establish Hölder continuity of u in P 3
4
. It is based on the decay

estimate.
Claim. There exist εp > 0 and θ0 ∈ (0, 1

2
) such that[

u
]
BMO(Pθ0

)
≤ 1

2

[
u
]
BMO(P2)

. (4.18)

In order to establish (4.18), we first want to prove that there exists q > 1 such that

−
ˆ
Pθr(z0)

|u− uPθr(z0)| ≤ C
(
θ−(n+4)εp + θ

)(
−
ˆ
Pr(z0)

|u− uPr(z0)|q
) 1

q

(4.19)

holds for any 0 < θ ≤ 1
2
, z0 ∈ P1, and 0 < r ≤ 2.

By translation and scaling, it suffices to show (4.19) for z0 = (0, 0) and r = 2.
First, we need to extend u from P1 to R

n+1. Let the extension, still denoted by u, be
such that

|u| ≤ 2 in R
n+1, u = 0 outisde P2,

and ˆ
Rn+1

|∇2u|p + |∂tu|p �
ˆ
P2

|∇2u|p + |∂tu|p.

For 1 ≤ α ≤ L+ 1, let wα
ij : R

n+1
+ → R be solutions of

∂tw
α
ij +Δ2wα

ij = T α
ij in R

n+1
+ ; wα

ij = 0 on R
n × {0} (4.20)
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for ij ∈ {11, 12, 21, 23, 41}, and and wkk : R
n+1
+ → R be solutions of

∂twkk +Δ2wkk = Tkk in R
n+1
+ ; wkk = 0 on R

n × {0} (4.21)

for k ∈ {2, 3}. Define v : P1 → R
L+1 by letting

vα = uα −Fα(w
α
11, w

α
12, w

α
21, w22, w

α
23, w33, w

α
41), 1 ≤ α ≤ L+ 1.

Here Fα is the linear function given by Lemma 4.1.3. By (4.4), we have

∂tv +Δ2v = 0 in P1. (4.22)

It follows from (4.21) and the Duhamel formula that for 1 ≤ α ≤ L+ 1,{
wα

ij(x, t) =
´
Rn×[0,t]

b(x− y, t− s)T α
ij(y, s), ij ∈ {11, 12, 21, 23, 41},

wkk(x, t) =
´
Rn×[0,t]

b(x− y, t− s)Tkk(y, s), k ∈ {2, 3}. (4.23)

Set cα = uα
P2

in (4.3). Then it is easy to see |cα| ≤ 1. Now we can estimate wα
12 by

(wα
11 can be estimated similarly):

|wα
12(x, t)| =

∣∣∣∣ˆ
Rn×[0,t]

∇jb(x− y, t− s)(uα − uα
P2
)uβ

i u
β
ij(y, s)

∣∣∣∣
�
ˆ
Rn+1

(
|t− s| 14 + |x− y|

)−n−1

|u− uP2 ||∇u||∇2u|(y, s)
�I3

(
χP2 |u− uP2 ||∇u||∇2u|) (x, t),

(4.24)

where χP2 is the characteristic function of P2.
By the estimate of Riesz potentials in Lq-spaces (see also Proposition 4.5.5 below),

we have that for any f ∈ Lq, 1 < q < +∞, Iα(f) ∈ Lq̃, where 1
q̃
= 1

q
− α

n+4
. As p > 3

2
,

we can check that for sufficiently large q1 > 1, there exists q̃1 > 1 such that

1

q̃1
=

1

p
+

1

2p
+

1

q1
− 3

n+ 4
.

Hence we obtain∥∥∥wα
12

∥∥∥
Lq̃1 (P2)

≤ C
∥∥∥u− uP2

∥∥∥
Lq1 (P2)

∥∥∥∇u
∥∥∥
L2p(P2)

∥∥∥∇2u
∥∥∥
Lp(P2)

≤ Cεp

∥∥∥u− uP2

∥∥∥
Lq1 (P2)

.

(4.25)

Next we can estimate wα
21 by (w22 and wα

23 can be estimated similarly):

|wα
21(x, t)| =

∣∣∣∣ˆ
Rn×[0,t]

Δb(x− y, t− s)(uα − uα
P2
)|∇u|2(y, s)

∣∣∣∣
�
ˆ
Rn+1

(
|t− s| 14 + |x− y|

)−n−2

|u− uP2 ||∇u|2(y, s)
�I2

(
χP2 |u− uP2 ||∇u|2) (x, t).

(4.26)
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For q2 > 1 sufficiently large, there exists q̃2 > 1 be such that

1

q̃2
=

1

p
+

1

q2
− 2

n+ 4
.

Hence we obtain∥∥∥wα
21

∥∥∥
Lq̃2 (P2)

≤ C
∥∥∥u− uP2

∥∥∥
Lq2 (P2)

∥∥∥|∇u|2
∥∥∥
Lp(P2)

≤ Cεp

∥∥∥u− uP2

∥∥∥
Lq2 (P2)

. (4.27)

For w33, we have

|w33(x, t)| =
∣∣∣∣ˆ

Rn×[0,t]

Δbj(x− y, t− s)(uβ − uβ
P2
)uβ

j (y, s)

∣∣∣∣
�
ˆ
Rn+1

(
|t− s| 14 + |x− y|

)−n−3

|u− uP2 ||∇u|(y, s)
�I1 (χP2 |u− uP2 ||∇u|) .

(4.28)

For q3 > 1 sufficiently large, there exists q̃3 > 1 such that

1

q̃3
=

1

2p
+

1

q3
− 1

n+ 4
.

Hence we obtain∥∥∥w33

∥∥∥
Lq̃3 (P2)

≤ C
∥∥∥u− uP2

∥∥∥
Lq3 (P2)

∥∥∥∇u
∥∥∥
L2p(P2)

≤ Cεp

∥∥∥u− uP2

∥∥∥
Lq3 (P2)

. (4.29)

For wα
41, we have

∂tw
α
41 +Δ2wα

41 =
(
uα∂tu

β − uβ∂tu
α
) (

uβ − uβ
P2

)
. (4.30)

By the Duhamel formular, we have

wα
41(x, t) =

∑
β

ˆ t

0

ˆ
Rn

b(x− y, t− s)
(
uα∂tu

β − uβ∂tu
α
) (

uβ − uβ
P2

)
(y, s),

so that by applying the Young inequality we obtain

‖w41‖Lq̃4 (Rn×[0,2]) � ‖b‖L1(Rn×[0,2])

(∑
α,β

∥∥∥(uα∂tu
β − uβ∂tu

α)(uβ − uβ
P2
)
∥∥∥
Lq̃4 (Rn×[0,2])

)
� ‖∂tu‖Lp(P2)‖u− uP2‖Lq4 (P2), (4.31)

where q4 >
p

p−1
and 1 < q̃4 < p satisfy

1

q̃4
=

1

p
+

1

q4
.

Set
q = max {q1, q2, q3, q4} > 1 and q̃ = min {q̃1, q̃2, q̃3, q̃4} > 1.
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By (4.25), (4.27), (4.29) and (4.31), we have

1≤α≤L+1∑
ij=11,12,21,23,41

‖wα
ij‖Lq̃(P2) +

3∑
k=2

‖wkk‖Lq̃(P2) ≤ Cεp

∥∥∥u− uP2

∥∥∥
Lq(P2)

. (4.32)

On the other hand, by the standard estimate on v, we have that for any 0 < θ < 1,(
−
ˆ
Pθ

|v − vPθ
|q̃
) 1

q̃

≤ Cθ

(
−
ˆ
P1

|v − vP1 |q
) 1

q

≤ Cθ
∥∥∥u− uP2

∥∥∥
Lq(P2)

. (4.33)

Adding (4.32) and (4.33) together and applying the Hölder inequality, we obtain

−
ˆ
Pθ

|u− uPθ
| ≤

(
−
ˆ
Pθ

|u− uPθ
|q̃
) 1

q̃

≤ C
(
θ−(n+4)εp + θ

)(
−
ˆ
P2

|u− uP2 |q
) 1

q

. (4.34)

This implies (4.19).
Now we indicate how (4.18) follows from (4.19). It follows from the Poincaré

inequality and (4.16) that u ∈ BMO(P3), and hence by (4.15) we have

−
ˆ
Pθr(z0)

|u− uPθr(z0)| ≤ C
(
θ−(n+4)εp + θ

) [
u
]
BMO(P2)

(4.35)

holds for any 0 < θ ≤ 1
2
, z0 ∈ P1, and 0 < r ≤ 1. Taking supremum of (4.35) over all

z0 ∈ Pθ and 0 < r ≤ 1, we obtain[
u
]
BMO(Pθ)

≤ C
(
θ−(n+4)εp + θ

) [
u
]
BMO(P2)

. (4.36)

If we choose θ = θ0 ∈ (0, 1
2
) and εp small enough so that

C
(
θ
−(n+4)
0 εp + θ0

)
≤ 1

2
,

then (4.36) implies (4.18).
It is standard that iterating (4.18) yields the Hölder continuity of u by using the

Campanato theory [4]. To prove the higher-order regularity, we need the following
proposition

Proposition 4.1.5. For 0 < α < 1, if u ∈ W 1,2
2 ∩ Cα(P2, N) is a weak solution of

(1.8), then u ∈ C∞(P1, N), and∥∥∥∇mu
∥∥∥
C0(P1)

�
[
u
]
Cα(P2)

+
∥∥∥u∥∥∥

L2
tW

2,2
x (P2)

, ∀ m ≥ 1. (4.37)

Proof. By Claim 2 and Claim 3 in the proof of Theorem 4.5.3 below, it suffices
to establish that ∇2u ∈ M2,4−4α̃(P 3

2
) for some 2

3
< α̃ < 1, and∥∥∥∇2u

∥∥∥
M2,4−4α̃(P 3

2
)
�

[
u
]
Cα(P2)

+
∥∥∥∇2u

∥∥∥
L2(P2)

. (4.38)
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This will be achieved by the hole-filling type argument. For any fixed z0 = (x0, t0) ∈
P 3

2
and 0 < r ≤ 1

4
, let φ ∈ C∞

0 (Rn) be a cut-off function of Br(x0), i.e.,

0 ≤ φ ≤ 1, φ ≡ 1 in Br(x0), φ ≡ 0 outside B2r(x0), |∇mφ| ≤ Cr−m, ∀ m ≥ 1.

Set c := −
ˆ
Pr(z0)

u ∈ R
L+1. Multiplying (1.8) by (u− c)φ4 and integrating over Rn, we

obtain

d

dt

ˆ
Rn

|u− c|2φ4 + 2

ˆ
Rn

Δ(u− c) ·Δ((u− c)φ4) = 2

ˆ
Rn

Nbh[u] · (u− c)φ4

�
ˆ
Rn

|∇2u|2|u− c|φ4 +

ˆ
Rn

|∇u||∇2u||∇((u− c)φ4)|. (4.39)

For the second term in the left hand side of (4.39), we have

2

ˆ
Rn

Δ(u− c) ·Δ((u− c)φ4) = 2

ˆ
Rn

∇2(u− c) · ∇2((u− c)φ4)

≥ 2

ˆ
Br(z0)

|∇2u|2 − C

ˆ
Rn

|u− c|2(|∇2φ|2 + |∇φ|4) + φ2|∇φ|2|∇u|2. (4.40)

Substituting (4.40) into (4.39) and integrating over t ∈ [t0 − r4, t0], we obtainˆ
Pr(z0)

|∇2u|2 ≤
ˆ
B2r(x0)×{t0−r4}

|u− c|2 + (
2−(n+4) + CoscP2r(z0)u

) ˆ
P2r(z0)

|∇2u|2

+Crn
(
oscP2r(z0)u

)2
+ C

[
1 + (oscP2r(z0)u)

2
]
r−2

ˆ
P2r(z0)

φ2|∇u|2

+C

ˆ
P2r(z0)

|∇u|4φ4 (4.41)

By integration by parts and the Hölder inequality, we have

r−2

ˆ
P2r(z0)

φ2|∇u|2 ≤ Cr−2
(
oscP2r(z0)u

) ˆ
P2r(z0)

|∇2u|+ Crn
(
oscP2r(z0)u

)2
,

and ˆ
P2r(z0)

φ4|∇u|4

≤ 2−(n+4)

ˆ
P2r(z0)

|∇2u|2 + Crn
(
oscP2r(z0)u

)4
+ C

(
oscP2r(z0)u

)2 ˆ
P2r(z0)

|∇2u|2.

Putting these two inequalities into (4.41) and using oscP2r(z0)u ≤ Crα, we getˆ
Pr(z0)

|∇2u|2

≤ (
2−(n+3) + Crα

) ˆ
P2r(z0)

|∇2u|2 + Crn+2α + C(1 + r2α)rα−2

ˆ
P2r(z0)

|∇2u|

≤ (
2−(n+2) + Crα

) ˆ
P2r(z0)

|∇2u|2 + Crn+2α, (4.42)
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where we have used the following inequality in the last step:

C(1 + r2α)rα−2

ˆ
P2r(z0)

|∇2u| ≤ 2−(n+3)

ˆ
P2r(z0)

|∇2u|2 + Crn+2α.

Choosing r > 0 so small that Crα ≤ 2−(n+3), we see that (4.42) implies

r−n

ˆ
Pr(z0)

|∇2u|2 ≤ 1

2
(2r)−n

ˆ
P2r(z0)

|∇2u|2 + Cr2α. (4.43)

It is clear that iterating (4.43) implies that there is α0 ∈ (0, 1) such that ∇2u ∈
M2,4−2α0(P 3

2
) and ∥∥∥∇2u

∥∥∥
M2,4−2α0 (P 3

2
)
�

[
u
]
Cα(P2)

+
∥∥∥∇2u

∥∥∥
L2(P2)

. (4.44)

We can apply the estimate (4.44) and repeat the above argument to show that ∇2u ∈
M2,4−4α0(P 3

2
) and the estimate (4.44) holds with α0 replaced by 2α0. Repeating these

argument again and again until there exists α̃ ∈ (2
3
, 1) such that ∇2u ∈ M2,4−4α̃(P 3

2
)

and the estimate (4.38) holds. The remaining parts of the proof can be done by
following the same arguments as in Claim 2 and Claim 3 of the proof of Theorem
4.5.3 below. This completes the proof. �
Continued proof of Proposition 4.1.4. The higher-order regularity now follows
from the Proposition 4.1.5. After this, we have that u ∈ C∞(P 1

2
, SL) and the estimate

(4.17) holds. �
Proof of Theorem 4.1.1. By the definition of Morrey spaces, for z0 = (x0, t0) ∈
Ω× (0, T ) and R0 ≤ 1

2
min{d(x0, ∂Ω),

√
t0}, we have

sup
z∈PR0

2

(z0), r≤R0
2

r2p−(n+4)

ˆ
Pr(z)

(|∇2u|p + r2p|∂tu|p) ≤ εpp. (4.45)

Consider v(x, t) = u(x0 +
R0

8
x, t0 + (R0

8
)4t) : P4 → S

L. It is easy to check that v
is a weak solution of (1.9) and satisfies (4.16). Hence Proposition 4.1.4 implies that
v ∈ C∞(P 1

2
, SL) and satisfies (4.17). After rescaling, we see that u ∈ C∞(PR0

16
(z0), S

L)

and the estimate (4.2) holds.

Since biharmonic maps are steady solutions of the heat flow of biharmonic maps,
as a direct consequence of Theorem 4.1.1 we have the following ε-regularity for bi-
harmonic maps to S

L.

Corollary 4.1.6. For 3
2
< p ≤ 2, there exist εp > 0 and r0 > 0 such that if

u ∈ W 2,p(Ω, SL) is a weak solution of (1.7) and satisfies

sup
x∈Ω

sup
0<r≤min{r0,d(x,∂Ω)}

r2p−n

ˆ
Br(x)

|∇2u|p ≤ εpp, (4.46)
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then u ∈ C∞(Ω, SL), and

|∇mu(x)| ≤ Cεp

( 1

rm0
+

1

dm(x, ∂Ω)

)
, ∀ m ≥ 1. (4.47)

Remark 4.1.7. For p = 2, Corollary 4.1.6 was first proved by Chang-Wang-Yang
[10]. For biharmonic maps into any compact Riemannian manifold N without bound-
ary, Corollary 4.1.6 was proved by [89, 92] for p = 2.

4.2 Uniqueness and convexity of heat flow of biharmonic maps

Utilizing Theorem 4.1.1, the following uniqueness theorem is easy to be proved similar
to the case in heat flow of harmonic maps.

Theorem 4.2.1. For n ≥ 4 and 3
2
< p ≤ 2, there exist ε0 = ε0(p, n) > 0 and

R0 = R0(Ω, ε0) > 0 such that if u1, u2 ∈ W 1,2
2 (Ω × [0, T ], SL) are weak solutions of

(1.8), with the same initial and boundary value u0 ∈ W 2,2(Ω, SL), that satisfy

max
i=1,2

[
‖∇2ui‖Mp,2p

R0
(Ω×(0,T )) + ‖∂tui‖Mp,4p

R0
(Ω×(0,T ))

]
≤ ε0, (4.48)

then u1 ≡ u2 on Ω× [0, T ].

To prove the theorem, we first recall the second order Hardy inequality.

Lemma 4.2.2. There is C > 0 depending only on n and Ω such that if f ∈ W 2,2
0 (Ω),

then ˆ
Ω

|f(x)|2
d4(x, ∂Ω)

≤ C

ˆ
Ω

|∇2f(x)|2. (4.49)

Proof. For simplicity, we only indicate a proof for the case Ω = B1 – the unit ball in
R

n. The readers can refer to [18] for a proof of general domains. By approximation, we
may assume f ∈ C∞

0 (B1). Writing the left hand side of (4.49) in spherical coordinates,
integrating over B1, and using the Hölder inequality, we obtain
ˆ
B1

|f(x)|2
(1− |x|)4 =

ˆ 1

0

ˆ
Sn−1

|f |2(r, θ)
(1− r)4

rn−1 dHn−1(θ)dr

=−
ˆ 1

0

ˆ
Sn−1

1

3(1− r)3
(
2ffrr

n−1 + |f |2(n− 1)rn−2
)
dHn−1(θ)dr

≤−
ˆ 1

0

ˆ
Sn−1

2

3(1− r)3
ffrr

n−1 dHn−1(θ)dr

≤C

ˆ 1

0

ˆ
Sn−1

|f ||fr|rn−1

(1− r)3
dHn−1(θ)dr

≤C

ˆ
B1

|f(x)||∇f(x)|
(1− |x|)3

≤C

(ˆ
B1

|f(x)|2
(1− |x|)4

) 1
2
(ˆ

B1

|∇f(x)|2
(1− |x|)2

) 1
2

.

(4.50)
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Thus, by using the first-order Hardy inequality, we obtain

ˆ
B1

|f(x)|2
(1− |x|)4 ≤ C

ˆ
B1

|∇f(x)|2
(1− |x|)2 ≤ C

ˆ
B1

|∇2f(x)|2. (4.51)

This yields (4.49). �
Proof of Theorem 4.2.1. First, by Theorem 4.1.1, we have that for i = 1, 2,
ui ∈ C∞(Ω× (0, T ), SL), and∣∣∣∇mui(x, t)

∣∣∣ ≤ Cεp

(
1

Rm
p

+
1

dm(x, ∂Ω)
+

1

t
m
4

)
, ∀(x, t) ∈ Ω×(0, T ), ∀m ≥ 1. (4.52)

Set w = u1 − u2. Then w satisfies⎧⎪⎨⎪⎩
∂tw +Δ2w = Nbh[u1]−Nbh[u2] in Ω× (0, T )

w = 0 on ∂p(Ω× (0, T ))
∂w
∂ν

= 0 on ∂Ω× (0, T ).

(4.53)

Multiplying (4.53) by w and integrating over Ω, by (4.60), (4.52), the Poincaré in-
equality and the Hardy inequality (4.49), we obtain that

d

dt

ˆ
Ω

|w|2 + 2

ˆ
Ω

|∇2w|2 = 2

ˆ
Ω

(Nbh[u1]−Nbh[u2]) · w

�
2∑

i=1

ˆ
Ω

(|∇ui|2|∇2ui|+ |∇2ui|2 + |∇ui||∇3ui|)|w|2

� ε4p

ˆ
Ω

|w(x, t)|2
R4

p

+
|w(x, t)|2
d4(x, ∂Ω)

+
|w(x, t)|2

t

� εp

ˆ
Ω

|∇2w|2 + εp
t

ˆ
Ω

|w|2.

If we choose εp > 0 sufficiently small and Rp ≥ εp, then it holds

d

dt

ˆ
Ω

|w|2 ≤ Cεp
t

ˆ
Ω

|w|2. (4.54)

It follows from (4.54) that

d

dt

(
t−

1
2

ˆ
Ω

|w|2
)

= t−
1
2
d

dt

ˆ
Ω

|w|2 − 1

2
t−

3
2

ˆ
Ω

|w|2

≤ (Cε− 1

2
)t−

3
2

ˆ
Ω

|w|2 ≤ 0. (4.55)

Integrating this inequality from 0 to t yields

t−
1
2

ˆ
Ω

|w|2 ≤ lim
t↓0+

t−
1
2

ˆ
Ω

|w|2. (4.56)
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Since w(·, 0) = 0, we have

w(x, t) =

ˆ t

0

wt(x, τ) dτ, a.e. x ∈ Ω,

so that, by the Hölder inequality,

t−
1
2

ˆ
Ω

|w(x, t)|2 ≤ t
1
2

ˆ t

0

ˆ
Ω

|wt|2(x, τ) dxdτ ≤ Ct
1
2 → 0, as t ↓ 0+.

This, combined with (4.56), implies w ≡ 0 in Ω× [0, T ]. The proof is complete. �

4.3 Convexity and uniqueness of biharmonic maps

In this section, it will be shown that the convexity and uniqueness properties for
biharmonic maps with small energy holds, which are the second-order extensions of
the theorems on harmonic maps with small energy by Struwe [85], Moser [70], and in
Chapter 2.

Recall that the Dirichlet problem for a biharmonic map u ∈ W 2,2(Ω, N) is defined
by: ⎧⎨⎩

Δ2u =Nbh[u] in Ω(
u,

∂u

∂ν

)
=
(
u0,

∂u0

∂ν

)
on ∂Ω.

(4.57)

where u0 ∈ W 2,2(Ω, N) is given.

Now we introduce the Morrey spaces in R
n. For 1 ≤ l < +∞, 0 < λ ≤ n, and

0 < R ≤ +∞, f ∈ M l,λ
R (Ω) if f ∈ Ll

loc(Ω) satisfies

‖f‖l
M l,λ

R (Ω)
:= sup

x∈Ω
sup

0<r≤min{R,d(x,∂Ω)}

{
rλ−n

ˆ
Br(x)

|f |l
}
< +∞.

The following convexity property of biharmonic maps with small energy can be
proved.

Theorem 4.3.1. For n ≥ 4, δ ∈ (0, 1), and 3
2
< p ≤ 2, there exist εp = ε(p, δ) > 0

and Rp = R(p, δ) > 0 such that if u ∈ W 2,2(Ω, N) is a biharmonic map satisfying
either
(i) ‖∇2u‖M2,4

R2
(Ω) ≤ ε2, when N is a compact Riemannian manifold without boundary,

or
(ii) ‖∇2u‖Mp,2p

Rp
(Ω) ≤ εp, when N = S

L,

then ˆ
Ω

|Δv|2 ≥
ˆ
Ω

|Δu|2 + (1− δ)

ˆ
Ω

|∇2(v − u)|2 (4.58)

holds for any v ∈ W 2,2(Ω, N) with

(
v,

∂v

∂ν

)
=

(
u,

∂u

∂ν

)
on ∂Ω.

56



Proof. First, it follows from Corollary 4.1.6 for N = S
L or Wang [92] that if εp > 0

is sufficiently small then u ∈ C∞(Ω, N), and

|∇mu(x)| ≤ Cεp

(
1

Rm
p

+
1

dm(x, ∂Ω)

)
, ∀ x ∈ Ω, ∀ m ≥ 1. (4.59)

For y ∈ N , let P⊥(y) : RL+1 → (TyN)⊥ denote the orthogonal projection from R
L+1

to the normal space of N at y. Since N is compact, a simple geometric argument
implies that there exists C > 0 depending on N such that∣∣∣P⊥(y)(z − y)

∣∣∣ ≤ C|z − y|2, ∀z ∈ N. (4.60)

Since
Nbh[u] ⊥ TuN,

it follows from (4.60) that multiplying (1.7) by (u− v) and integrating over Ω yields

ˆ
Ω

Δu ·Δ(u− v) =

ˆ
Ω

Nbh[u] · (u− v)

�
ˆ
Ω

[|∇u|2|∇2u|+ |∇2u|2 + |∇u||∇3u|]|u− v|2

� ε4p

ˆ
Ω

|u− v|2
R4

p

+
|u− v|2
d4(x, ∂Ω)

� εp

ˆ
Ω

|∇2(u− v)|2, (4.61)

where we choose Rp ≥ εp, apply (4.59) and the Poincaré inequality and the Hardy
inequality (4.49) during the last two steps.

It follows from (4.61) that

ˆ
Ω

|Δv|2 −
ˆ
Ω

|Δu|2 −
ˆ
Ω

|Δu−Δv|2 = 2

ˆ
Ω

Δu ·Δ(v − u) ≥ −Cεp

ˆ
Ω

|∇2(u− v)|2.
(4.62)

Since (u− v) ∈ W 2,2
0 (Ω), we have that

ˆ
Ω

|Δu−Δv|2 =
ˆ
Ω

|∇2(u− v)|2,

so that ˆ
Ω

|Δv|2 −
ˆ
Ω

|Δu|2 ≥ (1− Cεp)

ˆ
Ω

|∇2(u− v)|2.

This yields (4.58), if εp > 0 is chosen so that Cεp ≤ δ. �

Corollary 4.3.2. For n ≥ 2 and 3
2
< p ≤ 2, there exist εp > 0 and Rp > 0 such that

if u1, u2 ∈ W 2,2(Ω, N) are biharmonic maps, with u1−u2 ∈ W 2,2
0 (Ω,RL+1), satisfying

either
(i) max

i=1,2
‖∇2ui‖M2,4

R2
(Ω) ≤ ε2, when N is a compact Riemannian manifold without
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boundary, or
(ii) max

i=1,2
‖∇2ui‖Mp,2p

Rp
(Ω) ≤ εp, when N = S

L,

then u1 ≡ u2 in Ω.

Proof. Choose δ = 1
2
, apply Theorem 4.3.1 to u1 and u2 by choosing sufficiently

small εp > 0 and Rp > 0. We have
ˆ
Ω

|Δu2|2 ≥
ˆ
Ω

|Δu1|2 + 1

2

ˆ
Ω

|∇2(u2 − u1)|2,

and ˆ
Ω

|Δu1|2 ≥
ˆ
Ω

|Δu2|2 + 1

2

ˆ
Ω

|∇2(u1 − u2)|2.

Adding these two inequalities together yields

ˆ
Ω

|∇2(u1 − u2)|2 = 0. This, combined

with u1 − u2 ∈ W 2,2
0 (Ω), implies u1 ≡ u2 in Ω.

4.4 Convexity and uniqueness of limit at t = +∞ of heat flow of bihar-
monic maps

Prompted by the ideas of proof of Theorem 4.2.1, the convexity property of the
E2-energy along the heat flow of biharmonic maps to S

L can be obtained.

Theorem 4.4.1. For n ≥ 4, 3
2
< p ≤ 2, and 1 ≤ T ≤ ∞, there exist ε0 = ε0(p, n) >

0, R0 = R0(Ω, ε0) > 0, and 0 < T0 = T0(ε0) < T such that if u ∈ W 1,2
2 (Ω× [0, T ], SL)

is a weak solution of (1.8), with the initial and boundary value u0 ∈ W 2,2(Ω, SL),
satisfying

‖∇2u‖Mp,2p
R0

(Ω×(0,T )) + ‖∂tu‖Mp,4p
R0

(Ω×(0,T )) ≤ ε0, (4.63)

then
(i) E2(u(t)) is monotone decreasing for t ≥ T0; and
(ii) for any t2 ≥ t1 ≥ T0,ˆ

Ω

|∇2(u(t1)− u(t2))|2 ≤ C
[ ˆ

Ω

|Δu(t1)|2 −
ˆ
Ω

|Δu(t2)|2
]

(4.64)

for some C = C(n, ε0) > 0.

A direct consequence of the convexity property of E2-energy is the unique limit
at t = ∞ of (1.8).

Corollary 4.4.2. For n ≥ 4 and 3
2
< p ≤ 2, there exist ε0 = ε0(p, n) > 0, and R0 =

R0(Ω, ε0) > 0 such that if u ∈ W 1,2
2 (Ω × [0,∞), SL) is a weak solution of (1.8), with

the initial and boundary value u0 ∈ W 2,2(Ω, SL), satisfying the condition (4.63), then

there exists a biharmonic map u∞ ∈ C∞ ∩W 2,2(Ω, SL), with (u∞,
∂u∞
∂ν

) = (u0,
∂u0

∂ν
)

on ∂Ω, such that
lim
t↑∞

‖u(t)− u∞‖W 2,2(Ω) = 0, (4.65)
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and, for any compact subset K ⊂⊂ Ω and m ≥ 1,

lim
t↑∞

‖u(t)− u∞‖Cm(K) = 0. (4.66)

To prove Theorem 4.4.1 and Corollary 4.4.2, we need the following two lemmas.

Lemma 4.4.3. Under the same assumptions as in Theorem 4.4.1, there exists T0 > 0
such that

´
Ω
|∂tu(t)|2 is monotone decreasing for t ≥ T0:ˆ

Ω

|∂tu|2(t2) + C

ˆ
Ω×[t1,t2]

|∇2∂tu|2 ≤
ˆ
Ω

|∂tu|2(t1), T0 ≤ t1 ≤ t2 ≤ T. (4.67)

Proof. For any sufficiently small h > 0, set

uh(x, t) =
u(x, t+ h)− u(x, t)

h
, (x, t) ∈ Ω× (0, T − h).

Then uh ∈ L2([0, T−h],W 2,2
0 (Ω)), ∂tu ∈ L2(Ω×[0, T−h]), and lim

h↓0+
‖uh−∂tu‖L2(Ω×[0,T−h]) =

0. Since u satisfies (1.8), we obtain

∂tu
h +Δ2uh =

1

h

(
Nbh[u(t+ h)]−Nbh[u(t)]

)
. (4.68)

Multiplying (4.68) by uh, integrating over Ω, and applying (4.60) and (4.52), we have

d

dt

ˆ
Ω

|uh|2 + 2

ˆ
Ω

|Δuh|2 �
ˆ
Ω

(|Nbh[u(t+ h)]|+ |Nbh[u(t)]|
) |uh|2

�
ˆ
Ω

(|∇2u|2 + |∇u||∇3u|+ |∇u|2|∇2u||) (t+ h)|uh|2

+

ˆ
Ω

(|∇2u|2 + |∇u||∇3u|+ |∇u|2|∇2u||) (t)|uh|2

� ε4p

ˆ
Ω

|uh|2
R4

p

+
|uh|2

d4(x, ∂Ω)
+

|uh|2
T0

� εp

ˆ
Ω

|∇2uh|2

provided that we choose Rp ≥ εp and T0 ≥ εp. Sinceˆ
Ω

|∇2uh|2 =
ˆ
Ω

|Δuh|2,

this implies

d

dt

ˆ
Ω

|uh|2 + 2

ˆ
Ω

|∇2uh|2 ≤
(
1

2
+ Cεp

)ˆ
Ω

|∇2uh|2. (4.69)

Choosing εp > 0 so that Cεp ≤ 1
2
, integrating over T0 ≤ t1 ≤ t2 ≤ T , we have

ˆ
Ω

|uh|2(t2) + C

ˆ t2

t1

ˆ
Ω

|∇2uh|2 ≤
ˆ
Ω

|uh|2(t1). (4.70)
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Sending h → 0, (4.70) yields (4.67).

Now we can show the monotonicity of E2-energy for heat flow of biharmonic maps
for t ≥ T0.

Lemma 4.4.4. Under the same assumptions as in Theorem 4.4.1, there is T0 > 0

such that

ˆ
Ω

|Δu(t)|2 is monotone decreasing for t ≥ T0:

ˆ
Ω

|Δu|2(t2) + 2

ˆ
Ω×[t1,t2]

|∂tu|2 ≤
ˆ
Ω

|Δu|2(t1), T0 ≤ t1 ≤ t2 ≤ T. (4.71)

Proof. For δ > 0, let ηδ ∈ C∞
0 (Ω) be such that

0 ≤ ηδ ≤ 1, ηδ ≡ 1 for x ∈ Ω \ Ωδ, and |∇mηδ| ≤ Cδ−m,

where Ωδ = {x ∈ Ω : d(x, ∂Ω) ≤ δ}. Multiplying (1.8) by ∂tuη
2
δ and integrating over

Ω× [t1, t2], we obtain

ˆ
Ω

|Δu(t2)|2η2δ −
ˆ
Ω

|Δu(t1)|2η2δ + 2

ˆ t2

t1

ˆ
Ω

|∂tu|2η2δ

=− 4

ˆ t2

t1

ˆ
Ω

Δu · ∂tu
(|∇ηδ|2 + ηδΔηδ

)− 8

ˆ t2

t1

ˆ
Ω

Δu · ∇∂tuηδ∇ηδ.

(4.72)

It suffices to show the right hand side of the above identity tends to 0 as δ → 0+. By
Lemma 4.4.3, we have that ∂tu ∈ L2([T0, T ],W

2,2
0 (Ω)) so that

ˆ t2

t1

ˆ
Ω

|∇∂tu|2|∇ηδ|2 + |∂tu|2
(|∇ηδ|4 + |Δηδ|2

)
�δ−2

ˆ t2

t1

ˆ
Ωδ

|∇∂tu|2 + δ−2|∂tu|2

�
ˆ t2

t1

ˆ
Ωδ

|∇2∂tu|2 → 0, as δ → 0.

(4.73)

This, combined with the Hölder inequality, implies that for t2 ≥ t1 ≥ T0,

−4

ˆ t2

t1

ˆ
Ω

Δu · ∂tu
(|∇ηδ|2 + ηδΔηδ

)− 8

ˆ t2

t1

ˆ
Ω

Δu · ∇∂tuηδ∇ηδ → 0, as δ → 0+.

Thus (4.71) follows.

Proof of Theorem 4.4.1. First, by Theorem 4.1.1, we have that u ∈ C∞(Ω ×
(0, T ], SL), and∣∣∣∇mu(x, t)

∣∣∣ ≤ Cεp

(
1

Rm
p

+
1

dm(x, ∂Ω)
+

1

t
m
4

)
, ∀ (x, t) ∈ Ω×(0, T ), ∀m ≥ 1. (4.74)
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For t2 > t1 ≥ T0, we have

ˆ
Ω

|Δu(t1)|2 −
ˆ
Ω

|Δu(t2)|2 −
ˆ
Ω

|Δu(t1)−Δu(t2)|2

=2

ˆ
Ω

(Δu(t1)−Δu(t2))Δu(t2)

=− 2

ˆ
Ω

(u(t1)− u(t2)) ut(t2)

+

ˆ
Ω

Nbh[u(t2)] · (u(t1)− u(t2))

=I + II.

(4.75)

For II, applying (4.60), we obtain

|Nbh[u(t2)] · (u(t1)− u(t2))| � |Nbh[u(t2)]||u(t1)− u(t2)|2.

Hence, by (4.74), the Hardy inequality and the Poincaré inequality, we have

|II| �ε4p

ˆ
Ω

(
1

R4
p

+
1

d4(x, ∂Ω)
+

1

T0

)
|u(t1)− u(t2)|2

≤Cεp

ˆ
Ω

|∇2(u(t1)− u(t2))|2.
(4.76)

For I, by Lemma 4.4.3, we have∥∥∥∂tu(t2)∥∥∥2

L2(Ω)
≤ 1

t2 − t1

ˆ t2

t1

ˆ
Ω

|∂tu|2. (4.77)

By the Hölder inequality and (4.71), this implies

|I| �
ˆ
Ω

|∂tu(t2)||u(t1)− u(t2)|
� ‖∂tu(t2)‖L2(Ω) ‖u(t1)− u(t2)‖L2(Ω)

≤√
t2 − t1 ‖∂tu(t2)‖L2(Ω)

(ˆ
Ω×[t1,t2]

|∂tu|2
) 1

2

≤
ˆ
Ω×[t1,t2]

|∂tu|2 ≤ 1

2

[ˆ
Ω

|Δu(t1)|2 −
ˆ
Ω

|Δu(t2)|2
]
.

(4.78)

Putting (4.78) and (4.76) into (4.75) implies (4.64). This completes the proof. �

Proof of Corollary 4.4.2. It follows from Lemma 4.4.4 that

ˆ
Ω

|Δu(t)|2 is mono-

tone decreasing for t ≥ T0. Hence

c = lim
t→∞

ˆ
Ω

|Δu(t)|2
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exists and is finite. Let {ti} be any increasing sequence such that lim
i→∞

ti = +∞. Then

(4.64) implies that

ˆ
Ω

∣∣∣∇2(u(ti+j)− u(ti))
∣∣∣2 ≤ C

[ ˆ
Ω

|Δu(ti+j)|2 −
ˆ
Ω

|Δu(ti)|2
]
→ 0, as i → ∞,

for all j ≥ 1. Thus there exists u∞ ∈ W 2,2(Ω, SL), with (u∞,
∂u∞
∂ν

) = (u0,
∂u0

∂ν
) on

∂Ω, such that

lim
t→∞

∥∥∥u(t)− u∞
∥∥∥
W 2,2(Ω)

= 0.

Since (4.71) implies that there exists a sequence ti → ∞, such that

lim
i→∞

∥∥∥∂tu(ti)∥∥∥
W 2,2(Ω)

= 0.

Thus u∞ ∈ W 2,2(Ω, SL) is a biharmonic map. For any m ≥ 1, and any compact
subset K ⊂⊂ Ω, since ∥∥∥u(t)∥∥∥

Cm(K)
≤ C(n,m,K), ∀t ≥ 1,

we conclude that
lim
t→∞

∥∥∥u(t)− u∞
∥∥∥
Cm(K)

= 0,

and u∞ ∈ C∞(Ω, SL). This completes the proof. �

4.5 Uniqueness of Serrin’s (p, q)-solution to general Riemannian manifold

This section will be devoted to prove the uniqueness of Serrin’s (p, q)-solution to heat
flow of biharmonic maps (1.8).

For N = S
L, the regularity and uniqueness for such solutions of (1.8) follow from

Theorem 4.1.1 and Theorem 4.2.1. However, for a compact Riemannian manifold N
without boundary, the regularity and uniqueness for such a class of weak solutions of
(1.8) require different arguments. More precisely, we have

Theorem 4.5.1. For n ≥ 4 and 0 < T ≤ ∞, let u1, u2 ∈ W 1,2
2 (Ω × [0, T ], N) be

weak solutions of (1.8), with the same initial and boundary value u0 ∈ W 2,2(Ω, N).
If, in additions, ∇2u1,∇2u2 ∈ Lq

tL
p
x(Ω× [0, T ]) for some p > n

2
and q < ∞ satisfying

(1.20), then u1, u2 ∈ C∞(Ω× (0, T ), N), and u1 ≡ u2 in Ω× [0, T ].

First, one can verify that

Proposition 4.5.2. For n ≥ 4, 0 < T < +∞, suppose u ∈ W 1,2
2 (Ω × [0, T ], N) is

a weak solution of (1.8), with the initial and boundary value u0 ∈ W 2,r(Ω, N) for
some n

2
< r < +∞, such that ∇2u ∈ Lq

tL
p
x(M × [0, T ]) for some p > n

2
and q < ∞

satisfying (1.20). Then
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(i) ∂tu ∈ L
q
2
t L

p
2
x (Ω× [0, T ]); and

(ii) for any ε > 0, there exists R = R(u, ε) > 0 such that for any 1 < s < min{p
2
, q

2
},

r2s−(n+4)

ˆ
Pr(x,t)∩(Ω×[0,T ])

(|∇2u|s + r2s|∂tu|s) ≤ εs, (4.79)

for any (x, t) ∈ Ω× [0, T ], and 0 < r ≤ R.

Proof. For simplicity, we will sketch the proof for Ω = R
n. By the Duhamel

formula, we have that u(x, t) = u1(x, t) + u2(x, t), where

u1(x, t) =

ˆ
Rn

b(x− y, t)u0(y), (4.80)

u2(x, t) =

ˆ t

0

ˆ
Rn

b(x− y, t− s)Nbh[u](y, s). (4.81)

We proceed with two claims.

Claim 1. ∇3u ∈ L
2q
3
t L

2p
3
x (Rn × [0, T ]). For u1, we have

∇3u1(x, t) =

ˆ
Rn

∇xb(x− y, t)∇2u0(y). (4.82)

Direct calculations, using the property of the kernel function b, yield∥∥∥∇3u
∥∥∥
L

2q
3

t L
2p
3

x (Rn×[0,T ])
� T

1
4
(2−n

r
)
∥∥∥∇2u0

∥∥∥
Lr(Rn)

. (4.83)

For u2, we have

∇3u2(x, t) =

ˆ t

0

ˆ
Rn

∇4
xb(x− y, t− s)

[
∇(A(u)(∇u,∇u)) + 2Δu · ∇(P (u))

]
−
ˆ t

0

ˆ
Rn

∇3
xb(x− y, t− s)Δu ·Δ(P (u))(y, s)

= M1 +M2. (4.84)

By the Nirenberg interpolation inequality, we have ∇u ∈ L2q
t L2p

x (Rn × [0, T ]). By the

Hölder inequality, we then have ∇(A(u)(∇u,∇u)) + 2Δu · ∇(P (u))) ∈ L
3q
2
t L

3p
2
x (Rn ×

[0, T ]). Hence, by the Calderon-Zygmund Lq̃
tL

p̃
x-theory, we have∥∥∥M1

∥∥∥
L

2p
3

t L
2q
3

x (Rn×[0,T ])
�
∥∥∥∇(A(u)(∇u,∇u)) + 2Δu · ∇(P (u))

∥∥∥
L

2p
3

t L
2q
3

x (Rn×[0,T ])

�
∥∥∥∇u

∥∥∥
L2p
t L2q

x (Rn×[0,T ])

∥∥∥∇2u
∥∥∥
Lp
tL

q
x(Rn×[0,T ])

�1 +
∥∥∥∇2u

∥∥∥2

Lp
tL

q
x(Rn×[0,T ])

.

(4.85)
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For M2, we have

|M2|(x, t) � I1

(
|∇2u|2 + |∇u|4

)
(x, t), (x, t) ∈ R

n × [0, T ].

Recall the following estimate of I1(·) (see, for example, [24] §4):∥∥∥I1(f)∥∥∥
L
s2
t L

r2
x (Rn×[0,T ])

�
∥∥∥f∥∥∥

L
s1
t L

r1
x (Rn×[0,T ])

, (4.86)

where s2 ≥ s1 and r2 ≥ r1 satisfy

n

r1
+

4

s1
≤ n

r2
+

4

s2
+ 1. (4.87)

Applying (4.86) to M2, we see that M2 ∈ L
2p
3
t L

2q
3
x (Rn × [0, T ]), and∥∥∥M2

∥∥∥
L

2p
3

t L
2q
3

x (Rn×[0,T ])
� 1 +

∥∥∥∇2u
∥∥∥2

Lp
tL

q
x(Rn×[0,T ])

. (4.88)

Combining these estimates of ∇3u1,M1, and M2 yields Claim 1.

Claim 2. ∇4u ∈ L
q
2
t L

p
2
x (Rn × [0, T ]). It follows from Claim 1 that

Nbh[u] = [Δ(A(u)(∇u,∇u))+ 2Δu ·∇(P (u)))−Δu ·Δ(P (u))] ∈ L
q
2
t L

p
2
x (R

n× [0, T ]).

Since

∇4u2(x, t) =

ˆ t

0

ˆ
Rn

∇4
xb(x− y, t− s)Nbh[u](y, s),

we can apply the Calderon-Zygmund Lq̃
tL

p̃
x-theory again to conclude that ∇4u2 ∈

L
q
2
t L

p
2
x (Rn × [0, T ]). For u1, we have

∇4u1(x, t) =

ˆ
Rn

∇2
xb(x− y, t)∇2u0(y).

Hence, by direct calculations, we have∥∥∥∇4u1

∥∥∥
L

q
2
t L

p
2
x (Rn×[0,T ])

� T
1
4
(2−n

r
)
∥∥∥∇2u0

∥∥∥
Lr(Rn)

.

Combining these two estimates yields Claim 2.

By (1.8), it is easy to see that ∂tu ∈ L
q
2
t L

p
2
x (Rn × [0, T ]). In fact, we have∥∥∥∂tu∥∥∥

L
p
2
t L

q
2
x (Rn×[0,T ])

�
∥∥∥Nbh[u]−Δ2u

∥∥∥
L

p
2
t L

q
2
x (Rn×[0,T ])

�1 +
∥∥∥∇2u

∥∥∥2

Lp
tL

q
x(Rn×[0,T ])

+ T
1
4
(2−n

r
)
∥∥∥∇2u0

∥∥∥
Lr(Rn)

.
(4.89)

This implies (i).
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(ii) follows from (i) and the Hölder inequality. In fact, for any 1 < s < min{p
2
, q
2
},

it holds (
r2s−(n+4)

ˆ
Pr(x,t)∩(Ω×[0,T ])

|∇2u|s
) 1

s ≤
∥∥∥∇2u

∥∥∥
Lq
tL

p
x(Pr(x,t)∩(Ω×[0,T ]))

,

and (
r4s−(n+4)

ˆ
Pr(x,t)∩(M×[0,T ])

|∂tu|s
) 1

s ≤
∥∥∥∂tu∥∥∥

L
q
2
t L

p
2
x (Pr(x,t)∩(Ω×[0,T ]))

.

These two inequalities clearly imply (4.79), provided that R = R(u, ε) > 0 is chosen
sufficiently small.

Now we proceed to prove an ε-regularity property for certain solutions of (1.8).

Theorem 4.5.3. There exists ε0 > 0 such that if u ∈ W 1,2
2 (P1, N), with ∇2u ∈

Lq
tL

p
x(P1) for some q ≥ n

2
and p ≤ ∞ satisfying (1.20), is a weak solution of (1.8)

and satisfies ∥∥∥∇2u
∥∥∥
Lq
tL

p
x(P1)

≤ ε0, (4.90)

then u ∈ C∞(P 1
2
, N) and

‖∇mu‖C0(P 1
2
) ≤ C(m, p, q, n)‖∇2u‖Lq

tL
p
x(P1), ∀ m ≥ 1. (4.91)

Before proving this theorem, we recall the Serrin type inequalities (see [78]) and
Adams’ estimates of Riesz potential between Morrey spaces in (Rn+1, δ).

Lemma 4.5.4. Assume p ≥ n
2
and q ≤ ∞ satisfy (1.20). For any f ∈ Lq

tL
p
x(Ω ×

[0, T ]), g ∈ L2
tW

2,2
x (Ω× [0, T ]), and h ∈ L2

tW
1,2
x (Ω× [0, T ]), we have

ˆ
Ω×[0,T ]

|f ||g||h| � ‖h‖L2(Ω×[0,T ])‖g‖
n
2p

L2
tW

2,2
x (Ω×[0,T ])

(ˆ T

0

‖f‖qLp(Ω)‖g‖2L2(Ω)

) 1
q

, (4.92)

and

ˆ
Ω×[0,T ]

|f ||∇g||h| � ‖h‖L2
tW

1,2
x (Ω×[0,T ])‖g‖

n
2p

L2
tW

2,2
x (Ω×[0,T ])

(ˆ T

0

‖f‖qLp(Ω)‖g‖2L2(Ω)

) 1
q

.

(4.93)

Proof. For convenience, we sketch the proof here. By the Hölder inequality, we
have ˆ

Ω

|f ||g||h| ≤ ‖f‖Lp(Ω)‖g‖Lr(Ω)‖h‖L2(Ω), (4.94)

where
1

p
+

1

r
=

1

2
. It follows from (1.20) that 2 ≤ r ≤ 2n

n−4
. Hence by the Sobolev

inequality we have

‖g‖Lr(Ω) ≤ ‖g‖
2
q

L2(Ω)‖g‖
2n
p

L
2n
n−4 (Ω)

� ‖g‖
2
q

L2(Ω)‖g‖
n
2p

W 2,2(Ω). (4.95)

65



Putting (4.95) into (4.94) yieldsˆ
Ω

|f ||g||h| � ‖f‖Lp(Ω)‖g‖
2
q

L2(Ω)‖g‖
n
2p

W 2,2(Ω)‖h‖L2(Ω). (4.96)

Since
1

q
+

n

4p
+
1

2
= 1, (4.92) follows by integrating over [0, T ] and the Hölder inequality.

To see (4.93), note that the Hölder inequality impliesˆ
Ω

|f ||∇g||h| ≤ ‖f‖Lp(Ω)‖∇g‖Ls(Ω)‖h‖
L

2n
n−2 (Ω)

(4.97)

where
1

p
+

1

s
+

n− 2

2n
= 1. Since

1

s
=

1

n
+

n

2p

(
1

2
− 2

n

)
+

(
1− n

2p

)
1

2
,

the Nirenberg interpolation inequality implies

‖∇g‖Ls(Ω) � ‖g‖
2
q

L2(Ω)‖g‖
n
2p

W 2,2(Ω). (4.98)

Putting (4.98) into (4.97) and using the Sobolev inequality, we obtainˆ
Ω

|f ||∇g||h| � ‖f‖Lp(Ω)‖g‖
2
q

L2(Ω)‖g‖
n
2p

W 2,2(Ω)‖h‖W 1,2(Ω). (4.99)

Since
1

q
+

n

4p
+
1

2
= 1, (4.93) follows by integration on [0, T ] and the Hölder inequality.

�

Now we state Adams’ estimate for the Riesz potentials on (Rn+1, δ). Since its
proof is exactly the same argument as in Huang-Wang ([45] Theorem 3.1), we skip it
here.

Proposition 4.5.5. (i) For any β > 0, 0 < λ ≤ n+4, 1 < p < λ
β
, if f ∈ Lp(Rn+1)∩

Mp,λ(Rn+1), then Iβ(f) ∈ Lp̃(Rn+1) ∩M p̃,λ(Rn+1), where p̃ = pλ
λ−pβ

. Moreover,

‖Iβ(f)‖Lp̃(Rn+1) ≤ C‖f‖
βp
λ

Mp,λ(Rn+1)
‖f‖1−

βp
λ

Lp(Rn+1) (4.100)

‖Iβ(f)‖M p̃,λ(Rn+1) ≤ C‖f‖Mp,λ(Rn+1). (4.101)

(ii) For any 0 < β < λ ≤ n+4, if f ∈ L1(Rn+1)∩M1,λ(Rn+1), then f ∈ L
λ

λ−β
,∗(Rn+1)∩

M
λ

λ−β
,λ

∗ (Rn+1). Moreover,

‖Iβ(f)‖
L

λ
λ−β

,∗
(Rn+1)

≤ C‖f‖
β
λ

M1,λ(Rn+1)
‖f‖1−

β
λ

L1(Rn+1) (4.102)

‖Iβ(f)‖
M

λ
λ−β

,λ

∗ (Rn+1)
≤ C‖f‖M1,λ(Rn+1). (4.103)
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Proof of Theorem 4.5.3. The proof is based on three claims.

Claim 1. For any 0 < α < 1, we have that ∇2u ∈ M2,4−4α(P 3
4
), and∥∥∥∇2u

∥∥∥
M2,4−4α(P 3

4
)
≤ C

∥∥∥∇2u
∥∥∥
Lq
tL

p
x(P1)

. (4.104)

For any 0 < r ≤ 1
4
and z0 = (x0, t0) ∈ P 3

4
, by (4.90) we have

‖∇2u‖Lq
tL

p
x(Pr(z0)) ≤ ε. (4.105)

Let v : Pr(z0) → R
L+1 solve⎧⎪⎪⎨⎪⎪⎩

∂tv +Δ2v =0 in Pr(z0)

v =u on ∂pPr(z0)

∂v

∂ν
=
∂u

∂ν
on ∂Br(x0)× (t0 − r4, t0].

(4.106)

Set w = u−v. Multiplying (4.106) and (1.8) by w, subtracting the resulting equations
and integrating over Pr(z0), we obtain

sup
t0−r4≤t≤t0

ˆ
Br(x0)

|w|2(t) + 2

ˆ
Pr(z0)

|∇2w|2

=|
ˆ
Pr(z0)

Nbh[u] · w|

=|
ˆ
Pr(z0)

−∇(A(u)(∇u,∇u))∇w − 〈Δu,Δ(P (u))〉w − 2 〈Δu,∇(P (u))〉∇w|

�
ˆ
Pr(z0)

|∇2u|2|w|+
ˆ
Pr(z0)

|∇u||∇2u||∇w|

=I + II.

(4.107)

For I, we can apply (4.92) to get

|I| � ‖∇2u‖L2(Pr(z0))‖w‖
n
2p

L2
tW

2,2
x (Pr(z0))

(ˆ t0

t0−r4
‖∇2u‖qLp(Br(x0))

‖w‖2L2(Br(x0))

) 1
q

.

(4.108)

For II, by (4.93), we have

|II| � ‖∇u‖L2
tW

1,2
x (Pr(z0)

‖w‖
n
2p

L2
tW

2,2
x (Pr(z0))

(ˆ t0

t0−r4
‖∇2u‖qLp(Br(x))

‖w‖2L2(Br(x0))

) 1
q

.

(4.109)
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Putting (4.108) and (4.109) into (4.107) and applying the Poincaré inequality, we
obtain

sup
t0−r4≤t≤t0

ˆ
Br(x0)

|w|2(t) + 2

ˆ
Pr(z0)

|∇2w|2

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖∇u‖L2

tW
1,2
x (Pr(z0))

‖∇2w‖
n
2p

L2(Pr(z0))

·
(´ t0

t0−r4
‖∇2u‖qLp(Br(x0))

‖w‖2L2(Br(x0))

) 1
q
, q < ∞,

‖∇u‖L2
tW

1,2
x (Pr(z0))

‖∇2w‖L2(Pr(z0))‖∇2u‖
L∞
t L

n
2
x (Br(x0))

, q = ∞.

(4.110)

Since ‖∇2u‖Lq
tL

p
x(Pr(z0)) ≤ ε, we obtain, by the Young inequality,

sup
t0−r4≤t≤t0

ˆ
Br(x0)

|w|2(t) + 2

ˆ
Pr(z0)

|∇2w|2

≤
⎧⎨⎩
‖∇2w‖2L2(Pr(z0))

+ ε‖∇u‖2
L2
tW

1,2
x (Pr(z0))

+ Cε
p
2 sup
t0−r4≤t≤t0

‖w‖2L2(Br(x0))
, q < ∞,

‖∇2w‖2L2(Pr(z0))
+ C‖∇2u‖2

L∞
t L

n
2
x (Br(x0))

‖∇u‖2
L2
tW

1,2
x (Pr(z0))

, q = ∞.

By choosing ε > 0 sufficiently small, this impliesˆ
Pr(z0)

|∇2w|2 � ε

ˆ
Pr(z0)

|∇u|2 + |∇2u|2. (4.111)

Since N is compact and u maps into N , |u| ≤ CN . Hence, by the Nirenberg interpo-
lation inequality, we haveˆ

Pr(z0)

|∇u|2 �
ˆ
Pr(z0)

|∇2u|2 + rn+4. (4.112)

Combining (4.112) with (4.111), we have
ˆ
Pr(z0)

|∇2w|2 � ε

ˆ
Pr(z0)

|∇2u|2 + εrn+4. (4.113)

By the standard estimate on v, we have

(θr)−n

ˆ
Pθr(z0)

|∇2v|2 � θ4r−n

ˆ
Pr(z0)

|∇2v|2, ∀ θ ∈ (0, 1). (4.114)

Combining (4.113) with (4.114), we obtain

(θr)−n

ˆ
Pθr(z0)

|∇2u|2 ≤ C
(
θ4 + θ−nε

)
r−n

ˆ
Pr(z0

|∇2u|2 + Cεθ−nr4, ∀ θ ∈ (0, 1).

(4.115)
For any 0 < α < 1, choose 0 < θ < 1 and ε such that

Cθ4 ≤ 1

2
θ4α and ε ≤ min

{(
1

2C

) 2
p

,
θ4α+n

2C

}
.
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Therefore, for any (z0) ∈ P 3
4
and 0 < r ≤ 1

4
, it holds

(θr)−n

ˆ
Pθr(x,t)

|∇2u|2 ≤ θ4αr−n

ˆ
Pr(x,t)

|∇2u|2 + θ4αr4. (4.116)

It is standard that iterating (4.116) implies

r−n

ˆ
Pr(z0)

|∇2u|2 ≤ Cr4α
(ˆ

P1

|∇2u|2 + 1

)
(4.117)

for any z0 ∈ P 3
4
and 0 < r ≤ 1

4
. (4.117) implies that ∇2u ∈ M2,4−4α(P 3

4
), and the

estimate (4.104) holds. This proves Claim 1.

Claim 2. For any 1 < β < +∞, ∇2u ∈ Lβ(P 9
16
), and∥∥∥∇2u

∥∥∥
Lβ(P 9

16
)
�

∥∥∥∇2u
∥∥∥2

Lq
tL

p
x(P1)

. (4.118)

This can be proven by estimates of Riesz potentials between Morrey spaces. To do
so, let η ∈ C∞

0 (P1) be such that

0 ≤ η ≤ 1, η ≡ 1 in P 5
8
, |ηt|+

4∑
m=1

|∇mη| ≤ C.

Let Q : Rn × [−1,∞] → R
L+1 solve

∂tQ+Δ2Q = ∇ ·
(
η2∇(A(u)(∇u,∇u)) + 2η2〈Δu,∇(P (u))〉

)
− η2〈Δu,Δ(P (u))〉

Q
∣∣∣
t=−1

= 0.

Set

J1 = ∇ ·
(
η2∇(A(u)(∇u,∇u)) + 2η2〈Δu,∇(P (u))〉

)
and J2 = −η2〈Δu,Δ(P (u))〉.

By the Duhamel formula, we have, for (x, t) ∈ R
n × (−1,∞),

∇2Q(x, t) =

ˆ
Rn×[−1,t]

∇2
xb(x− y, t− s) (J1 + J2) (y, s)

=

ˆ
Rn×[−1,t]

∇3
xb(x− y, t− s)

(
η2∇(A(u)(∇u,∇u)) + 2η2〈Δu,∇(P (u))〉

)
(y, s)

−
ˆ
Rn×[−1,t]

∇2
xb(x− y, t− s)η2〈Δu,Δ(P (u))〉(y, s)

=K1(x, t) +K2(x, t).

(4.119)

It is clear that for (x, t) ∈ R
n × (−1,∞),

|K1|(x, t) � I1

(
η2(|∇u|3+|∇u||∇2u|)

)
(x, t), |K2|(x, t) ≤ I2

(
η2(|∇2u|2+|∇u|4)

)
(x, t).
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It follows from (4.104) and the Nirenberg interpolation inequality that
∇u ∈ M4,4−4α(P 3

4
) and ∥∥∥∇u

∥∥∥
M4,4−4α(P 3

4
)
�

∥∥∥∇2u
∥∥∥
Lq
tL

p
x(P1)

. (4.120)

Hence, by the Hölder inequality, we have that for any 0 < α1, α2 < 1,

η2(|∇u|3 + |∇u||∇2u|) ∈ M
4
3
,4−4α1(Rn+1) and η2(|∇2u|2 + |∇u|4) ∈ M1,4−4α2(Rn+1),

and∥∥∥η2(|∇u|3 + |∇u||∇2u|)
∥∥∥
M

4
3 ,4−4α1 (Rn+1)

�
∥∥∥∇u

∥∥∥
M4,4−4α1 (P 3

4
)

∥∥∥∇2u
∥∥∥
M2,4−4α1 (P 3

4
)

�
∥∥∥∇2u

∥∥∥2

Lq
tL

p
x(P1)

, (4.121)

∥∥∥η2(|∇2u|2 + |∇u|4)
∥∥∥
M1,4−4α2 (Rn+1)

�
∥∥∥∇u

∥∥∥
M4,4−4α2 (P 3

4
)
+

∥∥∥∇2u
∥∥∥
M2,4−4α2 (P 3

4
)

�
∥∥∥∇2u

∥∥∥2

Lq
tL

p
x(P1)

. (4.122)

Now applying Proposition 4.5.5, we conclude that

K1 ∈ M
4−4α1
2−3α1

,4−4α1 ∩ L
4−4α1
2−3α1 (Rn+1), K2 ∈ M

2−2α2
1−2α2

,4−4α2

∗ ∩ L
2−2α2
1−2α2

,∗
(Rn+1),

and ∥∥∥K1

∥∥∥
M

4−4α1
2−3α1

,4−4α1 (Rn+1)
+

∥∥∥K2

∥∥∥
M

2−2α2
1−2α2

,4−4α2
∗ (Rn+1)

�
∥∥∥∇2u

∥∥∥2

Lq
tL

p
x(P1)

. (4.123)

Sending α1 ↑ 2
3
and α2 ↑ 1

2
, we obtain that for any 1 < β < +∞, K1, K2 ∈ Lβ(Rn+1),

and

‖K1‖Lβ(Rn+1) + ‖K2‖Lβ(Rn+1) �
∥∥∥∇2u

∥∥∥2

Lq
tL

p
x(P1)

. (4.124)

This implies that for any 1 < β < +∞, ∇2Q ∈ Lβ(Rn+1), and∥∥∥∇2Q
∥∥∥
Lβ(Rn+1)

�
∥∥∥∇2u

∥∥∥2

Lq
tL

p
x(P1)

. (4.125)

Since (u−Q) solves (
∂t +Δ2

)
(u−Q) = 0 in P 5

8
,

it follows that for any 1 < β < +∞, ∇2u ∈ Lβ(P 9
16
), and∥∥∥∇2u

∥∥∥
Lβ(P 9

16
)
�

∥∥∥∇2u
∥∥∥2

Lq
tL

p
x(P1)

. (4.126)
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This implies (4.125). Hence Claim 2 is proven.

Claim 3. u ∈ C∞(P 1
2
, N) and (4.91) holds. It follows from (4.125) that for any

1 < β < +∞, there exist f, g ∈ Lβ(P 9
16
) such that (1.8) can be written as

(∂t +Δ2)u = ∇ · f + g.

Thus, by the Lp-theory of higher-order parabolic equations, we conclude that ∇3u ∈
Lβ(P 17

32
). Applying the Lp-theory again, we would obtain that ∂tu,∇4u ∈ Lβ(P 33

64
).

Taking derivatives of the equation (1.8) and repeating this argument, we can conclude
that u ∈ C∞(P 1

2
, N), and the estimate (4.91) holds. Putting together these three

claims completes the proof. �
Proof of Theorem 4.5.1. Let ε0 > 0 be given by Theorem 4.5.3. Since p > n

2
and

q < ∞, there exists T0 > 0 such that

max
i=1,2

‖∇2ui‖Lq
tL

p
x(Ω×[0,T0]) ≤ ε0. (4.127)

This implies that for any x0 ∈ Ω and 0 < t0 ≤ T0, if R0 = min{d(x0, ∂Ω), t
1
4
0 } > 0,

then
max
i=1,2

‖∇2ui‖Lq
tL

p
x(PR0

(z0)) ≤ ε0. (4.128)

Hence by suitable scalings of the estimate of Theorem 4.5.3, we have that for i = 1, 2,
ui ∈ C∞(PR0

2
(z0), N) and

∣∣∣∇mui

∣∣∣(x0, t0) � ε0

(
1

dm(x0, ∂Ω)
+

1

t
m
4
0

)
. (4.129)

Using (4.129), the same proof of Theorem 4.2.1 implies that u1 ≡ u2 in Ω × [0, T0].
Repeating this argument on the interval [T0, T ] yields u1 ≡ u2 in Ω× [0, T ].

4.6 Uniqueness of biharmonic maps in dimension four

For dimension n = 4, by applying Theorem 4.5.3 (with p = 2 (= n
2
) and q = ∞) and

the second half of the proof of Theorem 4.2.1, the following uniqueness result holds.

Corollary 4.6.1. For n = 4 and 0 < T ≤ ∞, there exists ε1 > 0 such that if
u1 and u2 ∈ W 1,2

2 (Ω × [0, T ], N) are weak solutions of (1.8), under the same initial
and boundary value u0 ∈ W 2,2(Ω, N), satisfying

lim sup
t↓t+0

E2(ui(t)) ≤ E2(ui(t0)) + ε1, ∀ t0 ∈ [0, T ), (4.130)

for i = 1, 2. Then u1 ≡ u2 in Ω × [0, T ). In particular, the uniqueness holds among
weak solutions of (1.8), whose E2-energy is monotone decreasing for t ≥ 0.
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For the Cauchy problem (1.10) of heat flow of biharmonic maps on a compact
4-dimensional Riemannian manifold M without boundary, Corollary 4.6.1 has been
recently proven by Rupflin [74] through a different argument.

Proof of Corollary 4.6.1. Let ε0 > 0 be given by Theorem 4.5.3. Since u0 ∈
W 2,2(Ω, N), by the absolute continuity of

ˆ
|∇2u0|2 there exists r0 > 0 such that

max
x∈Ω

ˆ
Br0 (x)∩Ω

|∇2u0|2 ≤ ε20
2
. (4.131)

Choosing ε1 ≤ ε20
2
and applying (4.130), we conclude that there exists 0 < t0 ≤ r40

such that

max
x∈Ω,0≤t≤t0

ˆ
Br0 (x)∩Ω

|∇2ui(t)|2 ≤ ε20, for i = 1, 2. (4.132)

Set R0 = min{r0, t
1
4
0 } = t

1
4
0 > 0. Then (4.132) implies

max
z=(x,t)∈Ω×[0,t0]

∥∥∥∇2ui

∥∥∥
L∞
t L2

x(PR0
(z)∩(Ω×[0,t0]))

≤ ε0, for i = 1, 2. (4.133)

Hence u1 and u2 satisfy (4.90) of Theorem 4.5.3 (with p = 2 and q = ∞) on Pr(z),

for any z ∈ Ω× [0, t0] and r = min{R0, d(x, ∂Ω), t
1
4} > 0. Hence by suitable scalings

of the estimate of Theorem 4.5.3, we have

max
i,2

∣∣∣∇mui(x, t)
∣∣∣ � ε0

(
1

Rm
0

+
1

dm(x, ∂Ω)
+

1

t
m
4

)
� ε0

(
1

dm(x, ∂Ω)
+

1

t
m
4

)
, ∀ m ≥ 1,

(4.134)

for any (x, t) ∈ Ω× [0, t0]. Here we have used R0 ≥ t
1
4 in the last inequality. Applying

(4.134) and the proof of Theorem 4.2.1, we can conclude that u1 ≡ u2 in Ω× [0, t0].
Continuing this argument on the interval [t0, T ] shows u1 ≡ u2 in Ω× [0, T ].

Concerning the convexity and unique limit of (1.8) at t = ∞ in dimension n = 4,
it holds

Corollary 4.6.2. For n = 4, there exist ε2 > 0 and T1 > 0 such that if u ∈
W 1,2

2 (Ω × (0,+∞), N) is a weak solution of (1.8), with the initial-boundary value
u0 ∈ W 2,2(Ω, N), satisfying

E2(u(t)) ≤ ε22, ∀ t ≥ 0, (4.135)

then (i) E2(u(t)) is monotone decreasing for t ≥ T1;
(ii) for t2 ≥ t1 ≥ T2, it holdsˆ

Ω

|∇2(u(t1)− u(t2))|2 ≤ C (E2(u(t1))− E2(u(t2)))

for some C = C(ε2) > 0; and

(iii) there exists a biharmonic map u∞ ∈ C∞ ∩ W 2,2(Ω, N), with (u∞,
∂u∞
∂ν

) =

(u0,
∂u0

∂ν
) on ∂Ω, such that lim

t→∞
‖u(t)−u∞‖W 2,2(Ω) = 0, and for any m ≥ 1, K ⊂⊂ Ω,

lim
t→∞

‖u(t)− u∞‖Cm(K) = 0.
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It is easy to see that the condition (4.135) holds for any solution u ∈ W 1,2
2 (Ω ×

[0,∞), N) of (1.8) that satisfies E2(u(t)) ≤ E2(u0) for t ≥ 0 (e.g., the solution by [27]
and [93]) and E2(u0) ≤ ε22.

Proof of Corollary 4.6.2. Let ε2 > 0 be given by Theorem 4.5.3. Then (4.135)
yields ∥∥∥∇2u

∥∥∥
L∞
t L2

x(Ω×[0,∞))
≤ ε2. (4.136)

Hence by suitable scalings of the estimate of Theorem 4.5.3, we have u ∈ C∞(Ω ×
(0,∞), N) and there exists T1 > 0 such that∣∣∣∇mu(x, t)

∣∣∣ � ε2

(
1

dm(x, ∂Ω)
+

1

t
m
4

)
, ∀ m ≥ 1, (4.137)

holds for all x ∈ Ω and t ≥ T1. Now we can apply the same arguments as in the proof
of Theorem 4.4.1 and Corollary 4.4.2 to prove the conclusions of Corollary 4.6.2. �

Copyright c© Tao Huang 2013

73



Bibliography

[1] G. Angelsberg, A monotonicity formula for stationary biharmonic maps. Math.
Z. 252, 287-293 (2006).

[2] F. Bethuel, On the singular set of stationary harmonic maps.Manuscripta Math.
78 (4), 417-443 (1993).

[3] F. Bethuel, J. Coron, J. Ghidaglia, A. Soyeur, Heat flows and relaxed energies
for harmonic maps. Nonlinear diffusion equations and their equilibrium states,
3 (Gregynog, 1989), 99-109, Progr. Nonlinear Differential Equations Appl., 7,
Birkhuser Boston, Boston, MA, 1992.

[4] S. Campanato, Equazioni ellittiche del II0 ordine espazi L(2,λ). Ann. Mat. Pura
Appl., (4) 69 (1965) 321-381.

[5] K. Chang, Heat flow and boundary value problem for harmonic maps. Ann. Inst.
H. Poincaré Anal. Non Linéaire, 6 (5) (1989), 363-395.

[6] S. Y. A. Chang, L. H. Wang, P. C. Yang. A regularity theory of biharmonic maps,
Comm. Pure Appl. Math., 52 (9), 1113-1137 (1999).

[7] Y. Chen, W. Ding, Blow-up and global existence for heat flows of harmonic maps.
Invent. Math., 99 (3) (1990), 567-578.

[8] K. Chang, W. Ding, R. Ye, Finite-time blow-up of the heat flow of harmonic
maps from surfaces. J. Diff. Geom., 36 (1992), 507-515.

[9] A. Chang, L. Wang, P. Yang, Regularity of harmonic maps. Comm. Pure Appl.
Math., 52 (1999), no. 9, 1099-1111.

[10] S. Y. A. Chang, L. H. Wang, P. C. Yang. A regularity theory of biharmonic maps,
Comm. Pure Appl. Math., 52 (9), 1113-1137 (1999).

[11] Y. Chen, F. Lin, Evolution of harmonic maps with Dirichlet boundary conditions.
Comm. Anal. Geom., 1(3-4) (1993), 327-346.

[12] Y. Chen, J. Li, F. Lin, Partial regularity for weak heat flows into spheres. Comm.
Pure Appl. Math., 48 (1995), no. 4, 429-448.

[13] Y. Chen, M. Struwe, Existence and partial regularity results for the heat flow for
harmonic maps. Math. Z., 201 (1) (1989), 83-103.

[14] Y. Chen, C. Wang, Partial regularity for weak heat flows into Riemannian ho-
mogeneous spaces. Comm. Partial Differential Equations, 21 (1996), no. 5-6,
735-761.

74



[15] J. Coron, Nonuniqueness for the heat flow of harmonic maps. Ann. Inst. H.
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[73] T. Rivierè, M. Struwe, Partial regularity for harmonic maps and related problems.
Comm. Pure Appl. Math., 61 (2008), no. 4, 451-463.

[74] M. Rupflin, Uniqueness for the heat flow for extrinsic polyharmonic maps in the
critical dimension. Comm. Partial Differential Equations 36, no. 7, 1118-1144
(2011).

[75] C. Scheven, Dimension reduction for the singular set of biharmonic maps. Adv.
Calc. Var. 1 no. 1, 53-91 (2008).

[76] C. Scheven, An optimal partial regularity result for minimizers of an intrinsically
defined second-order functional. Ann. Inst. H. Poincaré Anal. Non Linéaire 26,
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