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ABSTRACT OF DISSERTATION

UPPER BOUNDS ON THE SPLITTING OF THE EIGENVALUES

We establish the upper bounds for the difference between the first two eigenvalues of
the relative and absolute eigenvalue problems. Relative and absolute boundary condi-
tions are generalization of Dirichlet and Neumann boundary conditions on functions
to differential forms respectively. The domains are taken to be a family of symmetric
regions in R” consisting of two cavities joined by a straight thin tube. Our operators
are Hodge Laplacian operators acting on k-forms given by the formula A® = d§+dd,
where d and § are the exterior derivatives and the codifferentials respectively. A re-
sult has been established on Dirichlet case (0-forms) by Brown, Hislop, and Martinez
[2]. We use the same techniques to generalize the results on exponential decay of
eigenforms, singular perturbation on domains [I], and matrix representation of the
Hodge Laplacian restricted to a suitable subspace [2]. From matrix representation,
we are able to find exponentially small upper bounds for the difference between the
first two eigenvalues.
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Chapter 1 Introduction

The topic of this dissertation originated with the problem of estimating the difference
between the first two eigenvalues of an elliptic operator on a bounded domain with
Dirichlet boundary conditions. This difference is called the splitting of the first two
eigenvalues. To be more specific, one can take the self-adjoint Schodinger operator
L = —A+V on some smooth domain €2 C R™ and search for lower and upper bounds
of the splitting of the first two eigenvalues. For our work, we are only interested in the
upper bounds. One can impose more conditions on the potential V' and the domain
Q). For instant, let V be the double-well potential on 2 = R™. Then the splitting is
roughly less than ce *(e®) where p is the geodesic distance in the Agmon metric
between the two nondegenerate minima located at x, and z;, [I1, Theorem 12.3]. The
exponential factor in the upper bound of this splitting is the tunneling phenomenon
originated from V' [2]. There is another type of tunneling phenomenon that due to
the geometry of . That is, we set V = 0 and take 2 C R"™ to be a symmetric region
consisting of two cavities connected by a straight thin tube of radius € and length L.
Then the splitting is less than ce"2e™E)L for ¢ sufficiently small. Here v(¢) ~ a/e,
a? is the first Dirichlet eigenvalue on the unit ball in R"~! [2]. Generally speaking,

the straight thin tube plays the role of the potential V.

In this dissertation, we will generalize the latter result to the Hodge Laplacian
operator acting on differential forms with relative boundary conditions. That is, we
obtain similar upper bounds for the splitting of the first two relative eigenvalues. By
duality of the Hodge star operator, we also obtain upper bounds for the splitting
of the first two absolute eigenvalues. Relative and absolute boundary conditions are
generalization of Dirichlet and Neumann conditions respectively. More specifically,

let M C R™ be a compact symmetric region consisting of two cavities connected by a



straight thin tube of radius € and length L. Let AS\? be the Hodge Laplacian acting on
k-forms given by the formula Ag\]}) = dd+0d, where d and ¢ are the exterior derivative
and the codifferential respectively. For w in the space of differential k-forms, define

the relative eigenvalue problem [4]

Ag\’fl)w = \w on M

jfw = 7w =0 on M
where j* is the pullback induced by the inclusion map 7 : M — M. When w is a
0-form, the Hodge Laplacian reduced to the usual Laplacian —A on functions. The
relative boundary conditions j*w = j*0w = 0 reduced to the Dirichlet boundary
condition. Similarly, the absolute boundary conditions j*i,w = j*i,dw = 0 reduced
to Neumann boundary condition. Here v is the inward unit normal field on OM, and
1, is the interior multiplication. Our main objective is to prove the upper bounds of
the splitting of relative eigenvalues, from which the Hodge duality gives the upper
bounds on the splitting of absolute eigenvalues. These upper bounds constitute the

main result of this dissertation.

We give a brief outline of the dissertation’s content. In chapter 2| we give the
necessary background material on tangent spaces, differential forms, and operators
acting on differential forms. The domains will always be compact connected subsets
in R™. Chapter [3| presents the Sobolev theory of differential forms. We will define
Sobolev spaces of differential k-forms. The Sobolev spaces of O-forms coincide with
the Sobolev spaces of functions on M. We also state several important theorems
that are necessary for our work such as Stokes’ theorem, trace theorem, and Sobolev
embedding theorem. Chapter [4] 5 and [0 are the main work of this dissertation. We
first prove that eigenforms decay exponentially inside the tube. Using the stability
of eigenvalues in Section [6.2] we calculate the matrix representation for the Hodge
Laplacian restricted to a suitable two dimensional subspace. From there we estimate

the upper bounds of the splitting of the first two relative eigenvalues. In Chapter[7], we



give brief discussions on the boundary of the cavity, the generic cavities with simple
multiplicity, and the first relative eigenvalue having multiplicity m > 1. Finally, the

Appendix gives calculations and formulas that are needed in the main work.

Copyright© Phuoc L. Ho, 2010.



Chapter 2 Background

In this chapter, we give a brief survey of differential forms on compact connected sets
M C R™. The space of all differential forms of order k on M is denoted by C=QF(M).
We will provide the definitions of operators on C*QF(M) that are necessary for our
work in the later chapters. We use Morita [6] for our main reference. For a detail

presentation of of differential forms on a manifold with boundary, see Schwarz [7].

2.1 Tangent vectors and vector fields

Let M be a compact connected set in R™. We define the tangent space at a point
p € M. A function f : M — R is smooth if there exists a smooth function f :R* - R
such that f = f|u;. Let C°°(M) denote the space of all smooth function on M. A

linear map v : C*°(M) — R is called a tangent vector to M at p if

v(fg) = f(p)v(g) +v(f)g(p)

for all f,g € C*°(M). The tangent space T,M of M at p is the vector space of all
tangent vectors at p. The tangent space T,M at p € M is an n-dimensional vector
space [0, Theorem 1.33]. Let {0,,}7-; be the standard basis for 7,,M. Hence, an
arbitrary vector X, € T,M can be written uniquely as X, = @10, + -+ + a,0,,,
where X, : C°°(M) — R is a map defined by X,(f) = a10., f(p) + -+ + an0s, f(p).

The tangent bundle T'M of M is defined as the union UpE v IpM of all tangent spaces.

Define a smooth vector field X on M to be a map X : M — T'M such that
X(p) .= X, € T,M is smooth with respect to p. That is, we required the functions
a;(p) to be smooth, where X, = >°" | a;(p)d,,. Let I'(T'M) denote the space of all
smooth vector fields on M. A smooth vector field X acts on f € C*°(M) by putting

(X f)(p) = X, (f) for p e M. So we get a function X f € C°°(M). Define the bracket



vector field [X, Y] to be [X,Y]f = X(Y f) — Y(X ) for any two smooth vector fields
X and Y. We use these definitions in Section 2.3

2.2 Differential forms

Let (Af,+,A) denote the algebra generated by dxy, ..., dz, over R with unity 1 that
satisfies dx; A dx; = —dx; A dx; for all 7, 7. Here A is the product of this algebra, and
dw; is the dual of 9,, for each i = 1,...,n. Let A¥ be the linear vector space generated
by the bases dz;, A --- Adx;, of degree kin A}, 1 <14 <--- < i <n. A k-form on
M is a linear combination

W = Z lezkdl’“ VAR dlL‘,k s

i <<t

where f;,..;.’s are functions on M. We denote the space of all k-forms on M by
QF(M). A k-form w € Q%(M) is called smooth (differentiable) if f;,..;,, € C°°(M) for

all indexes i; - - - i. Let CQF(M) denote the space of all smooth k-forms on M.

Each k-form w is a multilinear alternating map T,M x --- x T,M — R on the
k-fold product of tangent spaces for p € M. The map is defined on the basis elements
by

dry A - Ndagp( Xy, ..., Xg) = %det(dmi(Xj)) ,

where X1, ..., Xy € T,M and dz;(0,,) = 6;;. If w is smooth, then putting all p together

induces a multilinear alternating map I'(TM) x - - - x I'(T'M) — C*°(M) on the k-fold

product of tangent bundles.

Now, let w € Q%(M) and n € Q'(M). For simplicity, we write w = >, frdz; and
n =, gsdx; for some multi-index sets I and J with |I| = k and |J| = [. The wedge
product w A n € Q¥ (M) is defined by

w/\n:ZfIngxl/\de. (2.1)

1,J

Observe that wAn=01if k+1 > n.



2.3 Operators and maps on Q*(M)

Let w = Zi1<~--<ik firigdxiy N+ Ndxy, =Y ; frdx; be a k-form on M. The exterior
derivative d : C®QF(M) — C®QOF (M) is defined as

dw = Z Z 8_asl-dxi Ndxy . (2.2)
I oi=1 """

The Hodge star operator * : Q¥(M) — Q"=*(M), 0 < k < n, is defined by
kW = Z sgn(1,J) frdxj, A --- Ndxj,_, (2.3)
J1<<Jn—k
where J = {j1, ..., jn_k} is the complement of I in {1, ...,n} and sgn(/, J) is the sign of
the permutation (iy, ..., %, j1, .., jn_k). We define the codifferential § : C*°QF (M) —
C>QF1(M) by the formula § = (—1)" "+ x dx. With some calculation, one obtains

an explicit formula for ¢:

8f —
&u—zz 81:1[ Ao Ndxg, N Nd, (2.4)

where d/x7 indicates that the factor dz;, is deleted from the basis. We show d? = 0

and 62 = 0. Computing d?w,

ddw_; Zaa Ji dz; A dz; A day .

o x;0z;

Since dx; A\ dx; = —dx; A dx;, we have dz; A dz; = 0. Hence

i) Gl
ZZ 01,02 —=—dz; N\dx; /\dm1+zz axﬁazzd% Adx; Ndxg .

1<J 7<t

The two sums on the right hand side are identical (since f; is smooth) except dz; Adx;
in the first and dx; A dx; in the second. So they cancel out. Next, using the definition
§ = (—1)"+*+1 x dx and the fact that *x = (—1)*™F) we get 62 = (—1)"F+F+1 5 @2,

Thus 62 = 0.

The interior product iy : Q¥(M) — QF1(M) is defined by ixw(X1,..., Xp_1) =
w(X, Xy, ..., Xg_1), where X, X1, ..., Xj_1 are vector fields on M.



A tangent vector X, € T,(0M) is a linear map X, : C*°(0M) — R satisfying
Xp(fg9) = f()Xp(9) + Xp(f)g(p) for all f,g € C*(OM). Let j : OM — M be the

inclusion map. Define the differential map j, : T,(0M) — T,M by

3+ Xp(f) = Xp(fo7)

where X, € T,(OM) and f € C~(M). Define the pullback map j* : C®QF(M) —
CQk(OM) by
j*w(Xl, 7Xk) = w(j*Xl, 7j*Xk)

for all k-forms w € C*Q*(M), k > 0, and X1, ..., X}, € T,(OM). Define j*w = wo j
for w € C*Q(M).

For example, let T(1) = D x [—L, L] be a tube in R3, where D is a unit disk.
In cylindrical coordinates, let w = fdt be a smooth 1-form on 7T'(1). Then j*w =
(fog)d(toyj) and j*ow = j*(—0.f) = —0.f o j, where j : 9T (1) — T(1) is the
inclusion map. If w satisfies the relative boundary conditions j*w = 7*0w = 0, then

we have f|opxi—r,rj =0 and 0, f|ora) = 0.

Finally, we would like to define the covariant derivative Vx on k-forms for X €
[(TM). A connection on M is a map Vx : I'(T'M) — I'(T'M) satisfying:

(i) Vx(aY1 +bYs) = aVxY; + bV Y; for a,b € R,

(i) Vixi4gx,Y = fVx,Y +gVy,Y for f,g € C(M),

(i) Vx(fY) = fVxY + (X )Y for f € C*(M).
Moreover, we define Vyx f = X f for f € C°(M). We assume our connection satisfies
VxY = VyX =[X,Y] and Vxd(Y,Z) = d(VxY,Z) + d(Y,VxZ), where d is some
metric on M. For X; = 0;, we define the Christoffel symbols Ffj associate with
this connection by Vx,X; = >, TFX,. Observe that I}, = 0 for the Euclidean
metric ds? = dz? + -+ + dz?. We want to transfer Vy, := V,; to k-forms. We
define V,dz; = =), ngdxk for 1-form dz;. We extend this definition to k-forms by

requiring V;(w A n) = Viw An+w A V;n. For example, let w = fdz; A--- Adz;, be



a k-form. Then we have

k
Viw:&fda:ilA~~/\dxik+2fdmil/\"-/\Vida:is/\---/\dxl-k .

s=1
By linearity, we have defined Vy : C®°QF(M) — C>°QF(M) for any arbitrary smooth
k-form. The operator Vx is called the covariant derivative of differential forms on

M. We use the covariant derivative to define Sobolev spaces in the next chapter.

2.4 Integration of n-forms

Let M be a compact connected subset in R". Let w € Q"(M) be an n-form. Then w
can be written as w = fdxy A--- Adx, = fu; here u is called the volume element on

M. We define the integral of w on M to be

o

where dV = dx; - - - dx,, is the standard Lebesgue measure. Note that the integral on

the right hand side may not exist. For w,n € QF(M), we define the L2-inner product

(w,n)r2 = /Mw A 1) (2.5)

l|wl|22 Z/Mw/\*w.

We show that the above L2-inner product is is symmetric. Since the wedge product

so that the norm is

is linear, we may assume w = fdx;, A--- Adz;, = fdr;. Then n must have the same
basis as w, otherwise w A *n = 0 because the basis of *7 contains some factor dx;

belong to the basis of w. That is, n = gdx;. Hence
w A *n=sgu(l,J)w A gdr; = fgu ,
where sgn(/, J) is defined in Section Similarly,

nA*w=sgn(l,J)nA fdx; = fgu .



Therefore, (w,n) 2 = (n,w)r2. It also follows that ||wl|3. = [, f*u.

We comment that this is a real inner product. One can define the complex inner
product by integrating wAxi over M, see Chapter[6] A k-form is said to be measurable
if all its coefficients are measurable functions on M. We say a k-form w is square
integrable if it is measurable, and ||w]| 2 exists and finite. Denote L2Q*(M) the real

Hilbert space of all square integrable k-forms on M.

With this definition, we can define the pointwise inner product of k-forms on M.
For w,n € L*QF(M), define their pointwise inner product {(w,n) to be the function

on M so that

(Wymp :=wA*n . (2.6)

The pointwise inner product (w,n) can be defined explicitly for two k-forms w and 7.
However, it is enough for us to draw conclusions from this implicit definition. Since
as computed above, (fdzy, gdrr) = f(x)g(x) for x € M, and (fdx;,gdx;) = 0 for
I # J, where I and J are written in an increasing order of indexes and |I| = |J|. We

can extend by linearity to get the pointwise inner product on arbitrary k-forms.

For example, let w = adxy A dxy + bdxy A dxs and 1 = cdxs A dxs + edry A dxs be
two forms on a compact set M in R®. Then (w,n) = be. Furthermore, the following
properties hold for pointwise inner product:

(i) {aw + bw', n) = alw, n) + b{w’, ),

(ii) {w,n) = (n,w).

Property (ii) follows from the symmetry of the L*-inner product.

Copyright© Phuoc L. Ho, 2010.



Chapter 3 Sobolev Theory

In this chapter, we give the definition of Sobolev spaces of k-forms on a compact
connected subset in R™. We also give Stokes” and Green’s Theorems for k-forms. We

use Taylor [12] as our main reference.

3.1 Sobolev Spaces

Let M be a compact connected subset of R". Recall that L*QF(M) is the space of
square integrable k-forms on M. In general, we define the LP-norm on Q*(M) for
p € [1,00) by
oy = [ folPi
M
where w € QF(M) and |w| = (w,w)'/? is the pointwise inner product defined in
Section 2.4 Let LPQF(M) denote the space of all measurable k-forms w such that

|lwl| e exists and is finite.

Let us define the weak derivative. We say that a function f € LP(M) has a weak

derivative with respect to x; if there exists g € LP(M) such that

/Mfg—id‘/:—/ngSdV,

where ¢ is any C'* function with compact support in the interior of M. Here g is
called the weak LP-derivative of f with respect to x;, written d,, f = g. Similarly, we

can define higher order of weak LP-derivatives.

Now, let X = 0,, +---+ 0., be a smooth vector field. For a nonnegative integer
m, define the Sobolev space W™PQF(M) to be the space of all w € LPQF(M) such
that Viw € LPQF(M) for all [ = 0,...,m. Here the derivatives are the covariant

derivative defined in Section and are taken in the sense of weak derivatives. The

10



Sobolev W™P_norm is defined as
wlByms =D IV, (3.1)
1=0

for all w € W™PQF(M). We write H™QF(M) for W™2QF(M).

Remark. One can replace the covariant derivative V by all differential operators P
acting on forms of orders < m with coefficients in C*°(M). Also, one can replace the
Wm™P_norm by any equivalent norms. For instant, one can show that the H!-norm

|wl2,: is equivalent to ||dw| 2 + [|6w||r2 + ||w| Lz

We want to extend the operators in Section[2.3]to Sobolev spaces. Let w = fdx; €
LPQF(M). Recall that dw = Y | 0,, fdx; A dxy. The exterior derivative d can be
extended to Sobolev spaces by taking 0,,f to be the weak derivatives on M. The
extension of d is also denoted by d : W™PQF(M) — Wm=LPQFFL(M). Hence, we
have the codifferential operator § : W™PQF(M) — Wm=LPQF=1(M).

Next, we state a few basic results in the theory of differential forms. A point
p € OM is called a corner if there is a neighborhood U of p in M and a diffeomorphism
of U onto a neighborhood V of 0 in K = {z € R* : z; > 0, j = 1,...,d} for some
d € {1,...,n}. For example, a closed rectangular box in R? has boundary with corners.

The generalized Stokes formula [12, Proposition 13.4], [7, Proposition 2.1.1]

Theorem 3.1.1 (Stokes’ Theorem) Let M be a compact connected subset in R™

with boundary OM (possibly with corners). Then

/dw:/ Jw
M oM

for all w € WHIQ=Y(M) and j* is defined in Section [2.5,

This theorem is a generalization of the classical Stokes’ theorem to Sobolev spaces.

We next state Holder Inequality and Green’s formula.

11



Theorem 3.1.2 (Holder inequality) Let w € LPQ*(M) and n € LIQY(M). Then
wAn € LYQ*(M), and

lw Anllze < flwllze (9]l Lo

where%—i—%:l, and p > 1.

Theorem 3.1.3 (Green’s Formula) Let M C R" be a compact connected set. Let

w € WHQEY(M) and n € WHQH(M) be differential forms on M with ; + ¢ = 1.

Then
(o) = (w.6m)+ [ A o)
oM
Proof. Let x := w A *n be an (n — 1)-form, where w,n are as described in the

theorem. Since n € W4QF (M), we have xn € Wh4Q=*(M). By Holder inequality,
x € WHQY(M). Further, dy = dw A xn+ (—1)*"'w A d(xn) = dw A xn — w A 0.

Applying Stokes’ theorem, we have

/dw/\*n—/w/\&):/ 5 (w A xn) .
M M oM

Thus, the theorem follows. O

3.2 The Hodge Laplacian

We give a brief discussion on self-adjointness of the Hodge Laplacian. We define the
Hodge Laplacian Ag\? D OO (M) — C®QF(M) by Aj’;) = do + dd. Extend Ag\’fl)
by weak derivatives to AE\? c WmPQR (M) — Wm=2PQk(M). Let D(Ag\lf[)) ={w €
H2*QF(M) : j*w = j*6w = 0} be the natural domain of AE\?. Since C§eQF(M\OM) is
dense in L2QF(M) and CeQF(M\OM) C D(AS\?), D(Ag\?) is dense in L?QF(M).

We show that Ag\l}) with domain D(AS\I})) is a closed operator. Let w, € D(Ag\’?)
such that w, converges in L?>-norm to w € L*Q*(M) and Ag\’fl)wn converges in L?-norm

to n € L*QF(M). Since H'QF(M) is complete for all 0 < k < n, it follows that w,

12



and dw, converges in H'-norm to w and dw respectively, where dw € H'QF1(M).

Moreover for a € CPQF(M\OM), it follows that

(w,Ag\]f[)a)Lz = lim (w,, Ag{})a)Lz = lim (Ag\]f[)

n—o00 n—o0 W a)L2 = (n7 a)L2 .

Hence, w € H?QF(M) with weak derivative Ag\z)w = 7. Next, observe that j* maps

HQF(M) continuously to L*Q¥(OM), see discussion on the trace theorem [Proposi-
tion |3.3.1]. So
7% wll L2aronry = 177 (wWn — W) 20k 0ar) < Cllwn — Wl grgran — 0
as n — oo. Thus, j*w = 0. Similarly, the map j*§ : H2Q¥(M) — L*Q*Y(OM) is
continuous. We have
7% 6wl 2ar—1anry = 11770 (wn — W) || L205-1001) < C]0(wn — W) || gror-1a0) = 0 .

Therefore, j*0w = 0 and w belongs to D(Ag\z)). We have shown that Ag\? is a closed

densely defined operator on D(Ag\?).

Now, let A be a closed densely defined operator. The spectrum o(A) of A is the
set of all points z € C such that z— A does not have a bounded inverse. The resolvent
set p(A) of A is the set of all points z € C such that z — A is invertible. For z € p(A),
the inverse of z — A is called the resolvent of A at z; the resolvent of A is written as
Ra(z) = (2 — AL

We return to our discussion on the Hodge Laplacian. Let us define a bilinear form
D: H'QF(M) x H'QFM) — R,

D(w,n) = (dw,dn) + (dw, én).

Here D is called the Dirichlet integral.

Corollary 3.2.1 (Corollary to Green’s formula) For allw € H*QF(M) andn €
HQH(M),

Dlw,n) = (AP, ) + / A (ed) — / 6w A (k1) -
oM oM
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Theorem 3.2.2 (Gaffney’s inequality) Let M C R™ be a compact connected set,
and let w € HYQF(M) with j*w = 0. Then

lwllFn < C(D(w,w) + [lwlz2)

for some finite constant C' > 0.

By corollary to Green'’s formula, Ag\lf[) is symmetric on D(Ag\lf[)); that is (Aw,n) =

(w,An) for all w,n € D(AE\Z)). We state the basic criterion for self-adjointness [19,
Theorem VIIL.3]

Theorem 3.2.3 (Reed and Simon) Let A be a symmetric operator with domain
D(A) on a Hilbert space H. The following statements are equivalent

(a) A is self-adjoint on D(A).

(b) A is closed and ker(A* + i) = {0}.

(c) The range of A+ i on D(A) is equal to H.

We want to show that the range of Ag\lf[) + 4 is equal to the complex Hilbert space
L2Q%(M). Observe that (A¥w w) = [|dw|2, + [|6w|% > 0 for all w € D(AW).
Hence Ag’;) is a positive operator, and +4 cannot be an eigenvalue of AS\?. Otherwise
we have w € L*QF(M) so that (A%?w,w) = (iw,w) = %i|lw||72, which contradicts
the positivity of AS\?. So =+ is in the resolvent set of AE\]Z) and Ag\? + ¢ has bounded
inverse. This implies the range of Ag\lf[) +4 is equal to L2Q*(M). Therefore the Hodge

Laplacian Ag\? with domain D(AE\Z)) is self-adjoint.

3.3 Fractional Sobolev Spaces

We need complex interpolation to define the fractional Sobolev spaces. Fractional
Sobolev spaces are needed for the trace theorem and Sobolev embedding theorem.
First, we recall the complex interpolation method. Let E and F' be Banach spaces.

Suppose they both continuously inject into V', a locally convex topological vector
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space. Let G ={e+ f:e€ E,f € Fand E,F C V}. The set G is a Banach space

with norm
lgllc = inf{llellz +[|fllr:g=e+feV, ec E, feF}

Let S = {z € C:0 < R(z) < 1} be a vertical strip in the complex plane. Define
Hpr(S) the set of all bounded continuous functions v in S with values in G' and
holomorphic in S such that ||u(ib)||g and ||u(1 + ib)||r are bounded for each b € R.

For 6 € [0, 1], define the interpolation space [E, Fly by

[E,Flg={u(0) : u € Hpr(S)}.

We now show how to use this technique to define fractional order Sobolev spaces
of functions. Let M be a compact connected set in R™ with smooth boundary 0M.

We recall the definition of the O-form Sobolev spaces for nonnegative integers m is
H"™(M) = {u € L*(M): D*u € L*(M)} ,

for all |a| < m. Here the covariant derivative V; reduces to the gradient D;. For any

real number s > 0 , define

H*(M) = [L*(M), H™(M)]y
where m > s and s = #m. The definition is independent of the choice of m satisfying
this condition [I2 Chapter 4].

If s = m is an integer, then we see that H*(M) = [L*(M), H™(M)];. Let u(1) €
H?*(M), then by definition, ||u(1)||gm is bounded. Thus u(1) € H™(M). Now let f €
H™(M). We define u(z) = af, where z = a +ib € S. It follows that u € Hz gm(9),
and hence u(l) = f € H*(M). Therefore, we have H*(M) = H™(M) when s is a

nonnegative integer.

Example. Let [ = [0,1] be an closed interval in R. We show that H'[0, 1] is a proper
subspace of H'/2[0,1] = [L?[0,1], H'[0,1]]1 5. Define u : S — L?[0,1], u(z) = 2 for

15



z=a+1ib € S. We see that u is bounded continuous on S and holomorphic on S.
Further, [|u(ib)||z: = f01 dr =1, and [ju(1 4 b)|| g = fol(a:2 + 1)dx = 4/3. Hence
u € Hre g (S), and u(1/2) € HY?[0,1]. However u(1/2) = /2 does not belong to

H'[0,1].

Proposition 3.3.1 (Trace theorem for functions) Let T be the trace map, that
is, Tu = ul|gps. Then for s > 1/2, T extends uniquely to a continuous map T :

H*(M) — H*Y2(0M).

We define the fractional Sobolev spaces of k-forms by

HQF(M) = [L*QF (M), H™QF(M)]g (3.2)
for any real s > 0, where m > s and s = fm. It is not hard to show that (3.2)) is
equivalent to the definition H*QF(M) = {w =Y, frdx; € L*Q*(M) : fr € H*(M)}.

From the equivalent definition, the results on H*(M) can be translated to H*QF(M).
We define the trace operator T' on H*QF(M) for s > 1/2 as follows. Suppose
w= fdxy N Ndx;, € H*QF(M). Then

Tw = wlom = flomdws |ons A -+ A dx, |anr -

We extend the definition to an arbitrary k-form w by linearity. The space of all
w|aas is denoted by H*~Y/20%(M)|sp;. Hence, the trace theorem on functions can be

generalized to forms.

Next, let 7 : OM — M be the inclusion map. Consider the pullback j* :
CoQF(M) — C*QF(OM). Extend j* to be another version of the trace operator

acting on H*QF(M) by
J*w = flomd(ziy 0 G) A Ad(wy, 0 7)

It follows that j*w € H*"Y2QF(OM) for s > 1/2. Note that dz;|sy is a covector

field on M taking values on the boundary OM, whereas d(z; o j) is a covector field
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on the boundary M. Similarly, we can extend the Sobolev embedding theorem on

functions [I3, Proposition 6.4] to differential forms.

Theorem 3.3.2 (Sobolev embedding) Let M be a compact connected subset in

R™ (possibly with non-empty smooth boundary). The embedding
HSQk(M) N LQn/(n—Qs)Qk’(M)
is continuous for all real s € [0,n/2).

Combining the Sobolev embedding and trace theorems, we obtain the boundary trace
embedding theorem by replacing the trace T by j*. See [I8, Theorem 1.5.1.3] for the

definition of fractional Sobolev spaces and the trace theorem on Lipschitz domains.

Theorem 3.3.3 (Boundary trace) Let M C R"™ be a compact region with piece-
wise smooth boundary OM. Then there is a continuous embedding HYQF(M) —
L= QR (aM).

(n

More generally, we have a continuous embedding W'PQF(M) < L =5 QF(OM)

for p € [1,n) [I7, Theorem 7.43]. However, we only need the trace embedding on
HQF(M).

Finally, we want to define Sobolev spaces of negative orders. For m a positive
integer, let H'QF(M) = {w € H'QF(M) : w|opr = 0}. We define H-™Q*(M) to
be the dual of H'QF(M). That is, H=™QF(M) is the space of all continuous linear

functionals on HJ*QF(M).

3.4 Regularity of eigenforms

In this section, we give a brief discussion on the regularity of eigenforms. We use
Taylor [12] for our main reference. Let M C R"™ be a compact set with smooth

boundary dM. We have the following proposition [I2, Proposition 9.7
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Proposition 3.4.1 Let n € HIQ*(M) for some j > 1. If w € HITIQF(M) satisfies

Ag\?w =n on M and j*w = j*6w = 0 on OM, then w belongs to HIT2QF(M).
We state a corollary that is needed for Section in the next chapter.

Corollary 3.4.2 The eigenforms of Ag\]}) belong to CQk(M).

Remark. If the boundary of M is not smooth, the eigenforms may have singular
behavior near the irregular points of 0M. However when M is a tube, we can separate

variables [Chapter [4] to see that the eigenforms belong to C*°QF(M).

Relative harmonic spaces

We define the relative harmonic space H% (M) by
HE(M) = {we H'QF(M) : dw = 6w =0 and j*w = 0} . (3.3)

Since M is compact, the space H% (M) is a finite dimensional subspace of C*QF(M)
[T, Theorem 2.2.2].

We want to compute the relative harmonic spaces for some class of domains in R™.
Let B € R™ be an n-dimensional closed unit ball centered at the origin. In order to
compute H%(B), we relate it to cohomology spaces. Define the relative cohomology
space H*(B,0B) of B to be the quotient of {w € C®Q*(B) : dw = 0, j*w = 0} over
d{w € C®QF1(B) : j*w = 0}, where C®Q*(B) is the space of smooth k-forms on B.
It follows that H%(B) is isomorphic to H*(B,dB) [12, Proposition 9.9]. We state a

proposition (see Taylor [12], Exer 4]).
Proposition 3.4.3 Let B C R" be an n-dimensional closed unit ball. Then

0 0<k<n-1
Hy(B) =
R k=n
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Since HY(B) = H*(B,0B), the proof of the proposition will follows if we know
H*(B,0B). To compute H*(B,dB), one can use the proof of the Poincaré lemma to
show directly that the deRham cohomology H*(B) is zero for 1 < k < n. Here the

deRham cohomology is defined as

ke Kerld s CQF (M) — CQF (M)
HB) = 4 (d - c=0m1(M) = C=ar (M)

Furthermore, observe that the zero dimensional cohomology H°(B) = R because M is

connected. Hence, the proposition follows from the fact that H*(B) =~ H"*(B,dB).

Note that H’;(B) can be compute directly. We give an example for a 2-dimensional
ball B? of radius 1. Let w = frdf A dr be a two form in H'Q?*(B?). Then dw = 0
and j*w = f(1,0)d(0 o j) Ad(r o j). Since the boundary is given by r = 1, we have
d(roj)=0. From definition we need dw = 0. It follows form the definition of §
that dw(—1)" "+ x dxw = (1) % df = 0, so we must have df = 0. It follows
that d,,f = 0 for all i = 1,...,n. Hence, f is a constant function on B?. Since B? is

connected, we have H%(B?) = R.

Now, let M be a compact set in R™ which has the same homotopy type as B.
Then by homotopy invariance [6, Corollary 3.16], we have H*(M) = H*(B). This
implies H% (M) is isomorphic to H%(B). In Chapter , we choose the cavity C to be
a compact set in R™ that has the same homotopy type as B. So there are no relative
harmonic k-forms on C for all k < n. Thus, the first eigenvalue /\gk) (C) of the relative

eigenvalue problem A(Ck)w = wonC, j*w = j*éw = 0 on OC is positive for k < n.

Finally, we can pass all the results from relative harmonic space H%(M) to the

absolute harmonic space H¥(M). That is, define H% (M) by
HE(M) = {w e H'Q¥(M) : dw = 6w = 0 and j*i,w =0} . (3.4)

By duality of the Hodge star operator and the fact that AE\?* = *Ag\z_k), we have

[12, Proposition 9.12]
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Proposition 3.4.4 If M C R" is a compact set with nonempty interior and smooth
boundary, then

% H’f{(M) — Hz_k(M)

s an isomorphism.

Copyright© Phuoc L. Ho, 2010.
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Chapter 4 Poincaré Inequality and Exponential Decay of Eigenforms

4.1 Introduction

We give the basic definitions and state our main results. Let M be a compact con-
nected subset in R”, n > 3. Recall that the Hodge Laplacian on M is defined by
AE\? = (dd+dd), k=0,1,..n. Here d and § are the exterior derivative and the cod-
ifferential respectively. We refer the readers to Sections and for the definition

of operators acting on k-forms. Consider the relative eigenvalue problem for k-forms

Ag\’f[)w = \w

Jfw = 70w =0

where j : OM < M is the inclusion map, and j* is the pullback induced by j. When
k = 0, the relative boundary conditions become w|gy = 0, w a function on M. Thus
for £ = 0, the above relative eigenvalue problem reduced to a Dirichlet boundary
problem. Similarly, the absolute eigenvalue problem of k-forms defined as follows.

Let v be the inward unit normal vector at each point on the boundary 0M. Define

Ag\?w = pw

Jriw = j%,dw =0
where 4, is the interior product acting on k-forms. When k& = 0, the absolute eigen-
value problem reduced to a Neumann boundary problem. Henceforth, relative and
absolute eigenvalue problems are generalization of Dirichlet and Neumann boundary
problems respectively.

To state our main theorem, we need to define a family of domains. First, let C be

a compact region in R™ with nonempty interior and smooth boundary 0C. We call
such region C a cavity. We make the following assumptions on the cavity C:

Assumption 1. C is homotopy equivalent to a closed ball.
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Assumption 2. The relative eigenvalue )\gk) (C) is nondegenerate.
Assumption 1 gives the following implications. As mentioned in Section [3.4] the first
relative eigenvalue )\gk) (C) on C is positive for k < n (by homotopy invariance and
Proposition . Next, C is simply-connected. Topologically, the cavity C has no
‘hole’ in it. Hence, we may assume C to be a compact simply-connected region in R"

with nonempty interior.

Assumption 2 is needed in order to obtain a 2 X 2 matrix representation of the
Hodge Laplacian restricted to a suitable 2-dimensional basis in Section [5.2] To gain
some insight of such a cavity, we take C to be a cube (non-smooth boundary) in R3.
Then the first relative eigenvalue has multiplicity 3. If C is a rectangular box with
square base in R3, then the first relative eigenvalue has multiplicity 2. If C is box
with all sides not equal, then the first relative eigenvalue has multiplicity 1; in this
case, the eigenvalue is said to be simple or nondegenerate. This can be generalize
to n-dimensional rectangular box. Similarly, if we take C to be a ball in R3, we will
see that the multiplicity of the first eigenvalue is at least 2. We observed that the
multiplicity of the first eigenvalue depends on the symmetry of C; and a cavity that
satisfies Assumption 2 (for £ > 0) cannot be ‘too’ symmetric. See Section for

calculation and further discussion.

Returning to our domains, let R : R" — R", R(x,t) = (z,—t) for all (x,t) €
R"! X R, be the reflection operator. We choose coordinates so (0, —L/2) € dC such
that C N (R"! x [0,00)) C JC. This can be done by rotating the cavity C. Define
T(e) :== B"0,¢) x [-L/2 — a, L/2] for some small a > 0, where a is chosen so
that the line segments {2’} x [—a, L] intersect 9C exactly once for all 2/ € B"~!. Let
T(e) = C°NT'(¢), and let M (¢) be the union CUT'(¢). Define M () := M;(e)URM,(¢).
By construction, M(e) is a region that consists of two cavities joined by a straight
thin tube centered on the t-axis with length L + 2a (L > 0) and cross sectional

diameter 2¢ satisfying RM () = M(e). See Figure
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Figure 4.1: 2D cross-section of M(e) along t-axis.

We now discuss the splitting of the relative eigenvalues. Let w be an eigenform
corresponding to the simple relative eigenvalue )\gk) (C). Then wo R is an eigenform on
RC with the same relative eigenvalue /\gk) (C). Furthermore, w and w o R are linearly
independent. Hence, the first relative eigenvalue on C U RC is doubly degenerate. If
we attach a thin tube between C and RC, the first eigenvalue may split. We state the
upper bounds of this splitting as our main theorem. Let )\gk)(M (¢)) and )\gk)(M ()
denote the first and second relative eigenvalues on M () respectively. For e sufficiently
small, Corollary implies /\gk)(M(e)) is positive for k < n. Similarly, M(lk)(M(é))

and /Lék) (M (e)) denote the first and second absolute eigenvalues on M (e) respectively.

Theorem 4.1.1 Let M(e) be a symmetric region as described above with the As-
sumptions 1 and 2. Then for k # n — 1,n, and for all ¢ sufficiently small and any

d € (0,1), there exists a constant ¢ > 0 depending only on d and n such that
0 < X7 (M(e) = A (M(e)) < el /e (mDb,

Hodge star duality gives an immediate corollary.
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Corollary 4.1.2 Let M(¢) be as described in Theorem|.1.1. Then for k # 0,1, and
for all € sufficiently small and any d € (0,1), there exists a constant ¢ > 0 depending

only on d and n such that

0 < g (M(2)) = i (M(e)) < sl (0,

We will restate these results in Section (see Theorem . In Section , we
sharpen these results with a prefactor of e”72. So we have the same upper bounds as
in Brown-Hislop-Martinez [2] for 0-forms.

We study some basic facts about the relative k-eigenvalues on a manifold M
with boundaries. Denote )\gk)(M ) the first positive eigenvalue of Ag\]f[) with relative

boundary conditions on M. We then have the min-max principle [3]

AR (M) = inf{R(w) : w # 0, j*w = 0,w € HE(M)*} (4.1)
where
dw|? + [dw|?
R@ﬁfM|M+jw
Jur ]

is the Rayleigh quotient, and H% (M) is the space of relative harmonic k-forms on M

[see definition (3.3))].

We state a couple useful results on the lower bound of )\(11@) (M). A subset M C R”
is convex if for all z,y € M, the line segment from x to y is contained in M. Let us
drop the ‘M’ in our notation and write /\gk) and ,ugk) for the first relative and absolute

eigenvalues on M respectively. A special case of Guerini-Savo result [4, Theorem 2.6]

Theorem 4.1.3 (Guerini-Savo [4]) For M a convex compact set homotopy equiv-
alent to a closed unit ball in R™, the sequence {,ugk)}zzl 1s nondecreasing with respect
to the degree k:

0<py =p <ul <o <pd

By Proposition , and homotopy invariance, we have ugk) >0 forall k >1
and ugo) = 0. The proof of Theorem m (without the homotopy assumption) can
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be found in [4, Theorem 2.6]. From this theorem, we see that a lower bound for ug))

will be a lower bound for p,gk), k> 1.

For a lower bound of ,ugo), we state a special case of the Payne-Weinberger in-
equality [14, Equation 4.12] on convex domains. Let R?™" be the coordinate plane
Ry x -+ X Ri_; x Riyy x -+ x R, where (21, ..., %1, Tiy1, ..., Tn) is a point in R?
and 1 <7 <n. A region M C R" is symmetric with respect to the coordinate plane
R if (24, ..., 24, ..., 7,) € M implies (2, ..., —24, ..., x,) € M. Since M is compact,
the intersection of M with lines parallel to the z;-axis is a set of line segments parallel

to the x;-axis. Let L,, be the maximum length of line segments in this set.

Theorem 4.1.4 (Payne-Weinberger [14]) Let M C R™ be a symmetric region

with respect to all n coordinate planes. Then
(0) > 2 2
:u2 =T /L )
where L = sup{L,, }.
Now, let B™ := B™(0,¢) be a ball in R" centered at the origin with radius e.
Observe that B" satisfies the assumptions in Theorem and Theorem4.1.4, Thus,
we have ) > 72/(2¢)2 and p{¥ (B") > #2/(2¢)? for k = 1, ...n. Furthermore, observe

that duality of the Hodge star operator implies ugk) = /\gn_k). Hence, the reverse

inequality holds for Agk), k=0,...,n—1. That is,
MO S <<

So AP (B") > 72/(2¢)? for k = 0,...,n — 1. We state this result as a corollary.

Corollary 4.1.5 Let B" be a ball in R™ with radius €, and let )\gk)(B") denote the

first relative eigenvalue on B™. Then
NI(B) 2 7/ (2¢)?
for all0 < k < n.
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The case of k = n is excluded due to Proposition [3.4.3|

4.2 Poincaré inequality on Straight Tubes

In this section, we use the results in Section to prove the following lemma. Let
B"1(0,e) € R™! be a closed ball centered at the origin with radius €, and let
T(e) = B"1(0,e) x [-L/2,L/2]. For simplicity, we drop the volume form g from the

integrals [see Section .

Lemma 4.2.1 Let T'(e) be as described above. Then

/ Wgﬁ/ dool? + |6
T(e) T(e)

for all w € H'QF(M) satisfying the conditions j*w =0, k <n — 1.

We observe that for k < n — 1, the relative harmonic space H%(B) is zero by
Proposition [3.4.3] So if a; is not identically zero, «; is a test form because j*w = 0
implies jpa; =0, i = 1,2. Hence, a; can be used in the Rayleigh quotient (4.1)). We

need some preliminary calculations before giving the proof of the lemma.

Consider an orthonormal coframe { fidf, ..., f,_2d0,_o,dr,dt} on T'(g). Let w =
a1 + as A dt be a k-form with j*w = 0, where j* is the pull-back induced by the
inclusion map j : 0T(e) — T'(¢). Define Z = 0B x [—L/2,L/2], and let j} be the
restriction of j* to Z. Let f be a O-form on T'(¢) with j*f = foj = flore) = 0. In

particular, j5 f = 0. It follows that j5(0,f) = 0. To see this, let p € Z, then

of . flp+he)— f(p)
5 () = lim

h—0 h

=0,

where e, is the unit vector in cylindrical coordinates parallel to the t-axis. Similarly,
we show that j5(0iaz) = 0. Since j*w = 0, we have j*a; = 0 and j*(a2 A dt) = 0.

Observe that j*(ag A dt) = j*ag Ad(toj) =0 and d(toj) # 0 on Z. So j*as =0
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on Z, or jyas = 0. Now, let as = fdzx; be a (k — 1)-form on B. If dr is part of the

wedge product dxy, then j(0;as) = 0. Otherwise we have f|z = 0 and as above

Jz (%) = (g—{ ojz> d(zj0jz)=0.
By linearity, we conclude that
J7(Oraz) = 0 (4.2)
for any arbitrary (k — 1)-form as.

Next, let dg and dp be the exterior derivative and the codifferential on B =

B"1(0, €) respectively. We have

dw = dpay + dpay A dt + (—1)’9W Adt (4.3)
ow = 530&1 + 530[2 Adt + (—1) W . (44)

We show that the pointwise inner product
<Oél7 (65) N dt> =0. (45)

By definition, (ay, s A dt)p = aq A #(ag A dt). To begin with, let ay = fdx; and
ag = gdxy. There must be a factor ‘dx;” in dx; that does not belong to the basis
dxj, because ay and ay are k and (k — 1)-form on B respectively. Since dx; # dt, dx;
belongs to the basis x(dx; A dt). So, we have fdxy A *(gdx; A dt) = 0. By linearity,

we have oy A *(ag A dt) = 0 for arbitrary forms oy and as. More generally, we have
dry ANxdxy =0<= 1 # J, and dx; A xdx; = (4.6)

for all indexes I and J (written in an increasing order).

Next, we compute {|dw|* + |dw|?*}u. We drop the volume element p from our

notation in the following computations,

ldw? = |dpan|? + |dpas A dt)? + |% Adt)? + 2(-1)’@(% Adt,dgas Adt) , (4.7)
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since (dgay,dpas A dt) =0 and (dgay, Oya; A dt) =0 as in (4.5)), and the symmetry
of the pointwise inner product [Section [2.4]. Similarly, we get

8(1/2

oo
|5w|2:|5Ba1|2+\53a2mt|2+|8—t2|2+2( D*(6pay, at>‘

(4.8)

We want to show that the integrals of the cross derivative terms in (4.7)) and (4.8)
cancel out. From (4.4)), we see that da; = dpa;. Integrating the cross derivative term

on the right hand side of (4.8) without the constant 2(—1), we have

8(1/2 / 0&2 / 8052
dpa, dar, = a,d(——)) , 4.9
[ s = [ om G = [ e (4.9

where we have applied Green’s formula [Theorem to the second equality. Note
that the boundary term faT(E)j*(ﬁtOQ) A j*(*ay) is zero because j*(xa;) = 0 on
E = B x {—L/2,L/2} (since *a; contains dt) and j*(0;a2) = 0 on Z ([£.2). Now,
since d commutes with 9; [Appendix Equation [7.§],

Oay 0 0
e dGn = [ g = [ oG @0

The latter equality in (4.10)) holds because a1 has no factor dt in the basis and
day = dpag + (—1)*"10,a9 A dt. We like to evaluate 9;(dpas). Let w = dgay Adt and
substitute w into (4.4)), we get 9;(dpas) = (—1)**16(dpas A dt) + (—=1)k6pdpas A dt.

Hence, by Green’s formula

[ o gptamon = 0 [ atdpannin) = (-0 [ (€)<da1,d3a2?dt>),
4.11

where the boundary term f@T(s) g o Nj*(xdpag Adt) is zero (since j*ay = 0 on T'(¢)).
It follows from (4.3) applied to a; that

(—1)’““/ (day,dgag N dt) = —/ <% Adt,dpag A dt) . (4.12)
T(e) 1) Ot

Combining (£9), (10), (E1T), and ([EI2), we have

8&2 / 8041
dpay, — —— Adt,dgas N\ dt 4.13
[ tomen == [ (G A don ) (4.13)
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That is, the integrals of the cross derivative terms in (4.7 and (4.8 cancel out. Thus,

9
/ |dw|2+|5w|2:/ dpon|? + |dpan A di? + 222 A di]?
T(e) T(e) ot

8042 |2

= (4.14)

+/ |5BO{1|2+|5B(12/\dt|2+ |
T(e)
We now give the proof of Lemma {4.2.1]

Proof. Let w be a test k-form on T'(g), j*w = 0. Rewrite w as w = ay + ag A dt, then
oy and ay are forms on B, jyoq = jyas = 0. Let £ < n — 1. Then by Proposition
, a1 and ay are not Ag)-harmonic and Ag_l)-harmonic respectively. We show
that «; is a test form on B, i = 1,2. Since j5o; = 0, it follows that the ngx{t}ai =0
for any fixed ¢ € [-L/2, L/2]. Here jjp. ( is the restriction of j; to 9B x {t}. Since
there is no relative harmonic k-form on B for k < n — 1, «; is orthogonal to the
relative harmonic space. Hence, «; is a test form on B. By Corollary and the

min-max principle (4.1)), we have the Poincaré inequalities

0< / oy |> < 52/ |dgai]* + |dpaa|? (4.15)
B B

and
0< / |O./2|2 < 82/ |dBOZ2|2 + |(SBOé2|2 . (416)
B B

From (4.6)), we have df; A %df; = p and (df; A dt) A =(df; A dt) = p for all bases
dfy on B"~'. Hence, it follows that [} [as|* = [, laz A dt[*. So inequality (4.16)
extends to

0< / las A df? < 52/ (s A b2 + S A dt]? . (4.17)
B B
Integrating (4.15) and (4.17) over [—L/2, L/2] and using (4.14)),

0</ w]? SEZ/ (dpenl? + [pon|? + |dpas A dt + |Spas A de]
T(e) T(e)
<c [ ol 46l
T(e)
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Therefore, we have proved the Poincaré inequality on T'(¢) for k < n — 1.

For w an n-form or (n — 1)-form, we can construct w that does not verify the
Poincaré inequality on 7'(¢). The construction is similar to the example below. That
is, w = sin(27t/L)up for the case k =n — 1 and w = cos(2nt/L)up A dt for the case

k = n; here up is the volume (n — 1)-form on B. O

Next, observe that the lemma (for test forms) also follows from the min-max
principle (4.1) if we can show that the first relative eigenvalue )\gk) (T'(€)) on T'(e) is

greater or equal to 1/¢%. Before giving the proof, let us look at a concrete example.

Example. Let T(¢) = B?(0,e) x [-L/2,L/2] C R3 be a 3-dimensional tube. We
use cylindrical coordinates on T'(g). Suppose w € H?Q(T'(¢)) is an eigenform cor-

responding to the relative eigenvalue A\, and w is of the form fdt. We show that

A > 1/e% Applying (7.5)) to w, we get

o*f
1 0
Agp()g)w = {A%Q(O’E)f — W} dt = \fdt (4.18)

where A( ) ) is the Laplacian on B?(0,¢). Consider the relative boundary conditions
Jfw = j*5w = 0. The first condition j*w = 0 implies f|op2(0.)x[-r/2,0/2) = 0. The
second condition j*éw = j*(—=0,f) = 0 implies 0 f|ore) = 0. Let f = G(r,0)T(t).

Then (4.18) separates into two boundary problems:

Aggg 005G = NG, Glop0e =0, (4.19)
and
0*T oT
81;2 A”T — 0 8t |{t—fL/2 L/Q} — 0 (420)

where X'+ X\’ = A. We solve the former problem by separation of variables technique.

Recall that

v 100 1oc
or:2  ror r2o0%°
Let G = ©R. Substituting G into (4.21)) gives

A

B2(0,¢)

G=— (4.21)

1 1
OR" + ;@R’ + ﬁ@”R +\NOR=0.
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or
" / "

2°4v o )\/2:__:.
rR—l—rR—l— o c

Solving the equation ©” +¢O = 0, we get © = asin(y/cf) + bcos(y/ch). Since © must
be a periodic function of period 27 (otherwise © is not single-valued), it follows that
v/c must be a nonnegative integer n. Thus we obtain © = asin(nf) + bcos(nf). For

R, the differential equation reduces to
R +rR + (Nr?* —n*)R=0.
We observe that the solution regular at the origin is a Bessel function of integral order
R=J,(VN7) .

The boundary condition R(g) = 0 implies J,(v/Ne) = 0. Let xo be the first positive
zero of J,. Then the first positive X' is 3 /2. Tt follows that n = 0 gives the smallest

such positive eigenvalue with numerical approximation xo > 2. To solve for A", we
substitute 7" into (4.20)). It follows that \” = (2nw)?/L? for nonnegative integer n.

Thus, we have A > 23/e? + X\ > 1/&%

For k =2, let w = sin(2nt/L) rdf A dr. Then w is a test form on T'(¢). Further,

L/2 LIB2
/ w|? = ]BQ|/ sin?(27t/L)dt = L5 ,
T(e) —L)2 2

and
Ar?|B?| (12 272 B?
/ |dw|* + |dw|? = #/ cos?(2mt/L)dt = 2B :
T(e) L _L)2 L
where |B?| is the volume of B?(0,¢). Hence, Lemma does not hold. Similarly,

we let w = cos(2wt/L) rdf A dr A dt for the case k = 3. &

We give a second proof of Lemma that involves the relative boundary con-
ditions. This proof mimics the example given above. We first show that the relative
boundary conditions break into a set of boundary conditions. Then we use separation

of variables technique to give a lower bound for A\ (T'(e)).
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Proof. Let w = a1 + as A dt be an eigenform of the relative eigenvalue problem with
eigenvalue A\ and degree k < n—1; where oy, ay are k, (k—1) forms on B respectively.
Then the Hodge Laplaican Ag’f()g) can be written in term of the Hodge Laplacian on

B by the formula [Appendix equation ((7.5))]

8204 _ 8206
k k 1 k—1 2
AT( ()E)CU = A(B)Oél 92 + (A(B )O{Q 92 ) Adt .

We consider the boundary conditions j*w = j*dw = 0. Recall that £ = B x
{—=L/2,L/2}, Z = OB x [-L/2,L/2], and 0T(¢) = E U Z. Denote j} and j}
be the restriction of j* on E and Z respectively. Then as in the previous proof,
j*(a1 + ao A dt) = 0 implies j*oqy = 0 and jyas = 0. Applying j* to (£.4),
we get j*(daq + (—1)¥0ia) = 0 and j*(dpa A dt) = 0 since the forms are in-
dependent. Furthermore, this implies j50pas = 0. The former equation implies
Jydar + (=1)¥5%(0ian) = 0. Since j4 () = 0 as in the preliminary calculation

(4.2), we have j50ay = 0. Note that day = dpay by (4.4).

On E, we have j5(dpai+(—1)*0;a0) = 0. A similar argument as in the preliminary
calculation (4.2)) shows that jra; = 0 implies j;0pa; = 0. Hence, j5(0;a2) = 0. Thus
we have the following boundary conditions: j,a1 = jLopas =0, jLas = j50pas =0,

Jjiar =0, and ji(ds) = 0.

Since k-forms with dt and k-forms without dt are independent, the equation

Agg()s)w = A\w separates into two equations
0«
Aoy — 5t = Ao . (4.22)
(k—1) 82042
(AB Qg — atQ ) Adt = )\0[2 A dt s (423)

where ) is the eigenvalue corresponding to w. Equation (4.23]) reduces to

= /\CYQ s (424)



with relative boundary conditions jyas = jzopas = 0 and Oya|fi=—r1/2,0/2) = 0. We
solve (4.24) by separation of variables. Let ay =, G;T;dx;, where G; and T are

functions on B and [—L/2, L/2] respectively. Equation (4.24]) becomes

Z {TJA (k=1) (GJd ) — @azj GJdLEJ} = )\Z GJTJdIJ (425)
J

Since the bases dx;’s are independent, we have T JA (G jdxy) — T/G dry; =
AG Tydry;. Assume G; and T are nonzero almost everywhere. Then dividing the
latter equation by G;T;, we get Agil)(GJdl'J)/G] —T7/Tydx; = Adx;. Summing

over J,

ZAg_l)(GJd$J)/GJ_ZT;/Tde:J:)\dej . (426)
J J J

Equation separates into two equations ) _; Ag_l)(Gdej)/GJ = N> ,dxy
and >, 17 /Tydx; + X'y ,;dx; = 0, where X' + X" = X, Let oy, = > ;G dz; and
oy = Y ;Tydr;. Then the above two equations can be rewrite as A (k=1) 042 = Naj
and 9%al = N'alj. We show that the boundary condition j5as = 0 implies j5ab = 0
almost everywhere. Since the bases dx;’s are independent, we only need to show
J5(Gydxy) = 0. Assume dzr; does not contain dr, otherwise we're done. Then
(G Tydxy) = 0 implies (G;T)|z = T;(t)Gslop = 0 for all t € [—L/2, L/2]. Since
T;(t) # 0 almost everywhere, we have G ;|95 = 0 almost everywhere. Thus, jra5 = 0.
Similarly, the boundary conditions j}dgas = 0 implies j50pa), = 0, and the boundary
condition ji(0yae) = 0 implies Oy |qi=—1/2,0/2y = 0. By Corollary ??, we have
N> /\gk_l)(B) > 72 /(2¢)%. We can solve for \” explicitly, that is, \” = (nm)?/L?* for
n=0,1,... Thus, A = X + X" > 7?/(2¢)2

Similarly, we can break the into two equations A( o = Na) and 9%a” +
ol = 0, where o, = 3, Grdxy, o = 3, Trdxy, and N + N = . The boundary
conditions are jha) = jpopal = 0 and of |=—r/2,1/2) = 0. Hence, A > 72/(4e?) as
before. Since A > 72/(4¢2) for all eigenvalues A, we have A" > 72/(4¢2) > 1/e2. The

lemma follows from this fact together with min-max principle (4.1]) for all test forms.
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Next, from equation (4.14) we see that if w = ay + ag A dt is a relative harmonic
form on T'(g), then a;’s are relative harmonic forms on B"~1. Since Hi(B"!) =0
for all k < n — 1, we have H%(T(¢)) = 0. So the conditions w € H'QF(M), j*w = 0,

and k£ < n — 1 imply that w is a test form on 7T'(¢).

Finally for the case k > n — 1, we can construct k-forms that does not satisfy the

Lemma as in the previous proof. a

4.3 Exponential Decay of Eigenforms

In this section, we show that the relative eigenform on M;(e) decay exponentially
along the tube T'(¢) (defined in Section in the L?-sense. Then using the fact that
eigenform are regular (locally) on T'(¢), we obtain the pointwise exponential decay.
Let )\gk) (¢) be the first relative eigenvalue on M (g). For € small enough, Assumptions
1, 2, and Proposition imply )\gk) (¢) is simple and positive for k < n. Let w be
the corresponding unique eigenform on M (e) with ||wl| 2qrr () = 1. Now for a

fixed constant d € (0,1), let

0 t<—L/2+2¢
Y(t) =9 1—d)(t+L/2—2) —L/2+2e<t<L/2—2
(1 —d)(L — 4e) L/2—2e<t<L/2

Observe that ¢ is Lipschitz continuous on M; () and that [9,%]* < (1 —d)? < (1 —d)
almost everywhere. We smooth v to get a smooth function, also called v, with
the same property. That is, d;0(+L/2) = 0, and [9,¢|* < (1 — d) almost a.e., see
Appendix for smooth approximation. Let x be a cutoff function, x(t) = 1 for all
t €[—L/2+ 2¢,L/2] and x(t) = 0 for t < —L/2 + € with |9;x| < Ce™! on supp d;x.

Define f = ye¥/s. We have the following proposition.

Proposition 4.3.1 Let w € H'Q*(M,()) be an eigenform corresponding to the rel-

ative eigenvalue )\gk)(e) on My(e) such that ||w||pz2 = 1. For k < n—1 and any
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0 < d < 1, there exists eo(d) such that for all 0 < e < go(d),
frlwl® <e
T(e)

for some constant ¢ depending on d and x.

Proof. Observe that fw is localized on T'(g), i.e., supp fw C T'(g). We first show
that fw satisfies the hypothesis of Lemma So we write fw as faj; + fas Adt.
Let By = B x {—L/2}, E; = B x {L/2}, and as before, Z = 0B x [—L/2,L/2].
Then the relative boundary conditions on w imply j*w = 7%0w = 0 on Z U E,. Since
f(=L/2) = 0, we have j*(fw) = 0 on 0T (). Consequently, from Lemma we

have

/T@ ful <& { /T(E) d( )P + \5(fw)|2} (4.27)

Next, we show that j*§(fw) = 0 on 0T'(¢). Applying to fw, we get
§(fw) = 6p(far) + dp(faz) Adt + (—=1)F0,(fas) .
Since f depends only on ¢, we have
6(fw) = fépar + fopas Adt + (—=1)*(0,f)ag + (—1)* O,y . (4.28)
Replacing w = as A dt in and solving for dgas A dt gives
Spag Adt = §(ag Adt) + (—1)"0ay .
Substituting dgas A dt back into equation yields
0(fw) = fow + (=1)*(0.f)az (4.29)
where we have use the fact that 0oy = dgay. Hence by , we have

7*0(fw) = (f 04)j* 6w+ (—1)*(0uf 0 j)j e -

35



The term (f o j)j*0w is zero because j*0w = 0 on Z U Ey C OM;i(¢) and foj =0 on
Ey. The term (9, f o j)j* o is zero because j*as = 0 on Z (as in the proof of Lemma

4.2.1)) and 0, f o j = 0 on Ey U Ey. Together, j*6(fw) =0 on 9T (¢) as claimed.

As a consequence, fw satisfies the relative boundary conditions on T'(¢). So we

can apply Corollary to fw and by (4.27)) we obtain

/T s / REATERER (4.30)

where the two boundary terms vanished because j*(fw) = j*§(fw) = 0. We want to

evaluate the right hand side of (4.30]). Using ([7.6) and the fact that f is a function

of t,
Of dw  O°f
(k) — (k)
Brie(f) = FArer =250 5y ~
Hence
Of Ow 82 f
(k) ENCTRVETNCES B
<AT(5)(fw)afW> = A1 (e) f7|w| 2<8t ot w) (—(%2 w, fw) . (4.31)

The last term in (4.31)) can be written as

0? 0,0 of Ow
() = (o ) oy (2% gy (1.32)

We want to show that the integral of the right hand side of (4.31)) reduces to a
better form such that its integrand involves only the first derivative of f. Integrating

equation (4.32) by parts with respect to the t-variable gives

O*f B of o Of Ow
/T(a)ww,fw——/e)% at(fw)>—/ (G 30 )

of / af O
= - o, W -2 __afw 3

where the boundary term vanished because 0;f(+L/2) = 0. Substituting this into

(4.31]) we obtain

A®) _\® 2 of 2
[ @Ry =t [ el [ (G
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This equality together with (4.30]) give

0
[ oasepsa®e [ pepre [ Gep. (4:33)
T(e) T(e) T(e) ot

Recall that f = ye¥/¢, so we have 0, f = (Op) /) f + (0yx)e?/s. Since |0,x| < Ce™,
0.2 < 1021 f1? /€% + {c1|0i]e ™2 + coe™2}e™/% .
Since |9;1|* < (1 — d), equation (4.33]) becomes

[ P <@ a-ay [ e
T(e) )

T(e

+ {er(1 —d) + ¢} e2/e|w|?. (4.34)
Bx[—-L/24¢e,—L/242¢]

Since e2¥/¢ = 1 for t < —L/2 + 2¢, the last integral on the right hand side of (4.34))

is bounded above by 1. So we have
(@- 0@ [ el <at-d)+a.
T(e)

By Corollary , )\gk) () — /\gk) (C) as ¢ — 0. Taking ¢ sufficiently small so that

€2>\§k)(5) < d/2, we get

(d/2) /T( | fol < ei(1—d)+cs .

That is,
/ w2 < 2{ei(1—d)+ e} /d .
T(e)

This completes the proof. O

Corollary 4.3.2 Let w be as described in Proposition |4.3.1. Let xr( be the charac-

teristic function on T'(g). Then
XClwl® < ce™ X

for some constant ¢ depending on d; where 1) is a Lipschitz continuous function defined

previously.
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This fact follows from the regularity of w on T'(¢) [see Remark after Corollary (3.4.2]

and a proof similar to that in Section 3.5 of Hislop and Sigal [L1].

Copyright© Phuoc L. Ho, 2010.
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Chapter 5 Gap Estimate

We prove the main theorem [Theorem in this chapter using the exponential
decay results of Chapter [4f To begin with, we give two key L?-estimates. The first
one is an estimate of the eigenforms on M;(e) near the end of the tube. The second
one is an estimate of the commutators, also near the end of the tube [Section[5.1]. We
use these estimates to compute the matrix representation for the Hodge Laplacian
restricted to a suitable 2-dimensional subspace [Section . Consequently, we obtain

the gap estimate [Section . Finally, we sharpen this gap estimate in Section .

5.1 Preliminary Lemmas

We recall that M;(e) is the set C U T(e), and R(x,t) = (x,—t) is the reflection
operator [Section [L.1]. Define My(e) = RM;(e) and M(e) = M(e) U Ma(e). Let
w1 be the eigenform corresponding to the relative eigenvalue Agk) (e) on M(g) with
|wilar,e) = 1. Here || - ||as is the shorthand notation for the L*-norm || - || z2qx(ar)- Let
wy = wy o R, that is, wa(p) = wi(R(p)) for all p € My(e). Then wy is the eigenform
corresponding to the same relative eigenvalue )\gk) (e) on Ms(e) with ||w|aneE = 1.
Now for e > 0, let Uj(e) = B"' x [L/2 — 3¢, L/2] be a small portion of the tube
T'(e), and Uj(e) = RU{(¢). The purpose of U(e) will be clear later. First, we need a

preliminary result in order to estimate the L?-norm of the commutator [AS\’;)(E), Xi|wi

in Lemma [£.1.3
Lemma 5.1.1 Let U/(¢) and w; be described as above, i = 1,2. Then fork <n —1,
/ |Wi|2 < ane—Q(l—d)L/a
Ui(e)

for some constant C' depending on d and n but independent of ¢.
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Proof. By Corollary [4.3.2]

/ | ]? < c/ e /e
Ui(e) Ui(e)

Computing the right hand side (RHS) of the above inequality,

/
1

L2 L/2

e~ W/e < Jenl sup(e_2¢/€)/ dt
L/2—3¢

RHS = c’s"‘l/
L/2—3e

— 3C/€n672(17d)(L755)/5 < anef2(1fd)L/s )

By definition,

[t = [ a@®@eDE= [ P
Us(e) Us(e) Ui(e)

where p' = R(p) € Uj(e).

O

Next, let x1(t) be the cutoff function on M (e) satisfying x; = 1 for t < L/2 — 2¢,

x1=0fort>L/2—¢, |0;x1] < Ce™! and |0?x1| < C’'e™2 on supp dyx1. We extend

w; to M(e) by taking w; = 0 on M(e)\M;(e), i = 1,2. Let xo = x1 o R, and let

n; = Xiw;. Note that n; belongs to domain of the Hodge Laplacian Ag];)(e) on M(e).

Observe that y; is defined in such a way that supp d;x; C U/(¢). We use Lemma

(k)

5.1.1{to get an L2-estimate of the commutator [A Me) Xi|wi, which lives on the support

of 9y x;. In order to do so, we need the next lemma. Let U;(e) = B" ' x[L/2—2¢, L /2],

and Us(e) = RU, (). Note that supp dyx; C U;(e) C Ul(e).

Lemma 5.1.2 Let w; € H'QF(M,(g)) be an eigenform corresponding to the relative

eigenvalue Agk) (€) on My(e), k <n—1. Then

[ ldasP sl < 0P e [l
Ut(e) Ui(e)

and

/ d(as A dt)|? + |6(as A dt)]? < {IAP () + 272} | A dt[?
Ui(e)

Ui(e)

for some constant ¢, where wy; = ay+asAdt is localized on T'(g) := B"'x[—L/2, L/2].
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Remark. This lemma also holds for ws on the sets supp d;x2 C Us(e) C Us(e).

Proof. Let ((t) be a cutoff function on M (e) such that ((¢t) = 0 for t < L/2 — 3¢,
C(t)=1fort > L/2—2¢, |0,(| < Ce™, and |07¢| < C'e2. Taking the inner product

of (?ay and AY) ay on Uj(e),
k
(Car, AT o an)uye) = (d(Cen), dan)uge) + (5(CPn), o)y
+/ Jidan A gy (+¢Pan) — / g (Can) A iy (xdan)
U (e) U] (e)
where jf;, s the restriction of j* on Ui(e). As in the second proof of Lemma4.2.1} the
first boundary term is zero because j*6a; = 0 on ZUFy and ¢? = 0 on Bx {L/2—3¢}.

The second boundary term is zero because j*as = 0 on Z U Ey and (2 = 0 on

B x {L/2 — 3¢}. Thus,
(Czal,A(ﬂ'Z(e)al)U;@ = (d(CPay), don) ey + (6(Con), don)ur(e) - (5.1)
Applying (4.3) to w = %y, we have
d(Can) = dp(Car) + (=10, (CPan) A dt
= (dgay + (—1)*C200q Adt + (=1)%(0,¢%)ay A dt
= Cday + (-1)" (8P
Applying to w = (2, we have 6((%y) = 05(Cay) = (%6ay. Also,
(1) ((9¢?)an A dt, don )y (o) = (=D ((0:P)an A dt, (=1)F 0,1 A dt) e
= (3¢, dren)vre) -

Hence

2, A — (C*dan, d %Say, 6 oc
(C a1, Ay (S)O{l)U{(E) - (C aq, QI)U{(E) + (g aq, al)U{(E) + ai, .
(5.2)

41



Integrating the last term of (5.2]) by parts with respect to variable ¢ gives

(8C2a (9041) <82C2a N ) (8@ dan N )
1 = 1, &1 - s k1 .
ot ) BT e \ot ot M)

Here the boundary term vanishes because 9;(? = 2¢(¢’ = 0 for both t = L/2 — 3¢ and
t = L/2. Therefore,

1 82 2
(Cay, A Ml a)al)U’(s = (CPdoy, dan)yr o) + (CPoan, bon )y ) — = (—041,%) -
Ui(e)

So,

9°¢? k
(CPday, don )y o) + (¢P0an, 6oy o) = ( 52 0¢1,Oé1) Y )(5)||041||2U{(5)
Uie)

Since the derivative 97¢? is bounded by C’e ™2, we get the desired result
[l sl < 0@ e [l
Ui(e) Ui (e)
where we replaced the left hand side by Uj(e) because ¢ = 1 on Uj(e). Similar

argument holds for ay A dt. This completes the proof. O

With this lemma, we can estimate the L?-norm of the commutator [A( , Xi|wi

on w;, where [AEW)(E) Xi|wi AE\Z)@(XM) XzA(

Wi for i = 1,2. This estimate plays
a crucial role in our matrix representation for the Hodge Laplacian restricted to a

suitable 2-dimension subspace, where the gap of the eigenvalues follows.

Lemma 5.1.3 Let r; = [Agl;)(g),xi]wi fori=1,2. Then

) S Cg(nf4)/2€f(lfd)L/€

Hri U;(e

for some constant C'.

Proof. From the definition of r;, we see that suppr; = suppdyx;. So r; lives on
Ui(e) C T'(e). Applying equation ([7.6]),

Oxi Ow; 02X¢

(k) w; .
ot Ot o2 "

k
Ag“()g) (Xiwz) XZAT(E) i 2
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So

QaXi Ow; 82Xi

J— _ ;. 5.3
" ot ot o (5:3)
We estimate the L?-norm of r; on U;(g). By Minkowski’s inequality,
8)(1 (‘%}1 @2)(1
Irlngo < 2 | 20t o
! at at U1 (5) at2 U1 (E)

Since | x1| < Ce™ for j = 1,2, we have

Irillone) < cie™ 0o lloe) + coe ™ lwnllvn o) - (5.4)

To estimate [|Oyw:||v; (-), We replace w = a; into equations and to obtain:
doy = dgay + (—1)*0,a; and
da; = dpog.

So |day |* + [dan |* = |dpay]? + |dpas|* + |9y A dt|?, and hence
|0scy A dt]* < |daq]? + |day |2

Since |0ya; A dt|? = |0y %, integrating over Ui () gives

/ |8ta1|2§/ (o |? + |6 ]? . (5.5)
Ui(e) Ui(e)

The same argument hold for as A dt. That is,

/ Bran A dt]? < / d(cs A dE)[? + |6(cs A di)J? . (5.6)
Ui(e) Ui(e)

Equations (5.5)), (5.6)), and Lemma together give
/ B A dt]2 < DO (e) —1—05_2}/ a2
Ui(e) Ui(e)

and

/ 10,00 < AP (e) + c=72) |y A dt]?
vie) Ui e)

Thus combining together,

10w || ) < ese™Hlwrllure)
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for some constant c3. Hence, we have

Ir1llone) < ce lwrllure - (5.7)

Using Lemma [5.1.1} we get |||y, o) < Ce9/2e=(=dL/ " The same estimate hold

for ro on Us(e). O

5.2 Matrix Representation

In this section, we give a matrix representation for the Hodge Laplacian restricted
to a suitable 2-dimensional subspace of L2Q*(M(e)). Let F be a 2-dimensional sub-
space spanned by the eigenforms corresponding to the relative eigenvalues )\gk) (M(e))
and )\ék)(M (€)) on M(e). By Corollary , F is a 2-dimensional subspace of

L*Q%(M(e)). Furthermore, F is an invariant subspace for AE\’;)(E).

Next, let 7 : L?QF(M(e)) — F be the orthogonal projection. Then 7 has a
Riesz integral representation defined as follows [11]. Let I(e) = [a(e), B(e)] be an
interval centered on A" (C), where a(e) = Aﬁ’“) (C) — &¥/? and B(e) = /\gk)(C) + g1/2,
From Proposition and Corollary [6.2.4] we see that

o(Al)) Na(A) ) N I(e) = AP (M (), A (M(2)). AP (2)} -

Let a = {/\ék) (C) — /\gk) (C)}/8 be a fixed constant. Then for ¢ small so that /2 < q,

Corollary |6.2.3| and Corollary [6.2.5( imply AE\IZ)@ and AE\? © have no spectrum in the

intervals [a(g) — 2a, a(e)) and (B(e), B(¢) + 2a]. Define

T = (2mi) 7" / (z— AY.) tdz
Y

where v is a counter clockwise oriented boundary of [a(e) — a, f(¢) + a] X i[—R, R|
with R > 0 a positive number. We prove ||mpn;||a () converges to a finite constant

greater than zero as € — 0.

Lemma 5.2.1 Let wp be defined as above. Then there exists €9 > 0 such that

| Tenillae) = 1/2 for all e < .
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Proof. From the fact that r; = [AS\Z)@), Xi|w; as in Lemma |5.1.3] it follows that

(2 =AY i = (2 = AP (e)m =i

So for z ¢ I(e), we have
k) \— k - k) \— k _
(=AY == AP @) M+ (= Al = AP E)
Hence integrating over the contour v,

1
_ (k) -1 (B (=1,
TFEN = 1 + i /7(2 - AM(E)) (2 = A7 (g) ridz (5.8)

Let 7. be the integral on the right hand side of . We estimate ||7/||are). Let
Y =7+ 72 + 3+ 7a, Where

7= (BE)+a)+it, —-R<t<R

v2 = (a(e) + B(e) —t) +iR, a(e) —a <t < B(e) +a

73 = (a(e) —a) —it, - R<t <R
u=t—iR, ale) —a<t<pB(e)+a

On 7, and 4, we have |z — AP (e)|7! < R~1, and ||(z—A§\]f[)(a))_1H < |Im(z)|"' = R~L.

Hence for R — oo, the integrals on 7, and 4 approach zero since ||r;||y, () is small

[Lemma [5.1.3].

On v; and 73, we have |z — AY“) (e)|7' < 1/+/a? + t2. By the choice of a, we have

So

: / (k) y-1 (K) (yy—1 Irillo.e 7
— (z—=AV ) (2= A" () ridz < —= dt .
271 Ya+a M(e) ! M(e) TR? a(e)—a

|(z — AEDL|| < dist(z, U(Ag\l;)(e)»_l < 1/+va?+ t?. Thus using Lemma |5.1.3]

aires > 1 ||’f‘ U, _ —(1—
/ < |7 Ui(e) _ Willti(e) (n—4)/2,~(1-d)L/e .
”nzHM(E) = T it tzdt a < Ce e (5 9)

Since 1; = wpn; — 1., it follows that

7l aee) < Nlmemillaney + M5l aece) - (5.10)
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We give a lower bound for ||n;]|a (). Recall that n; = x;w; with [|ws|| ) = 1. Hence

17:llarey = llwi = (1 = xi)willarey 2 1 = 11 = xa)willarce)

= 1= (0 = xi)willve) -

Since [|(1 — xi)willvie) < willv,e) < Ce™2e~1=DL/E [Lemma5.1.3], we have
1nillarey > 1 — CePem =D > 3/4 (5.11)

for e small. So there exists ¢, > 0 such that ||n;| (o) > 3/4 for alle < &;. Hence, (5.9),
(5.10), and ((5.11)) imply that there exists g9 > 0 (g9 < €1) such that ||7pn;|[ar) > 1/2

for all € < gg. O

Next, we want to show that n; and 7, are linearly independent.

Lemma 5.2.2 Let n; = x;w; be as described previously, 1 = 1,2. Then n; and ny are

linearly independent.

Proof. Since 1, = n; o R, we have

(01, m2)are) = 201, M2) 1oe)

where Ty(¢) = B x [0, L/2]. On B x [0, L/2 — 2¢],

(10, 79) ot 22| < / n, wa)| < / 1] e
Bx[0,L/2—2€] Bx[0,L/2—2€]

L/2—2 L/2—2¢
< an—l/ e—zp/ae—l/)(—t)/a _ CEn_l/ e—(l—d)(L—4£)/a < CEn—le—(l—d)L/e )
0 0

On B x [L/2 — 2¢, L/2], Lemma [5.1.1] gives

(M, M2) Bx(L2—20.0/2) < w1l Bx(z/2—2e.0/2) < Wit @) < Ce™2emmDE/E

Therefore, we have

(1, ) (o) < CePeUmEE (5.12)
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To prove 77 and 7, are linearly independent, we assume the contrary. That is, assume
m = cny for some constant c¢. Then ||9:1|/a) = |c|l|n2llas(e). Since the norms of 7,

and 7, are equal, c = +1. Now,

||T]1||?\4(€) = (77170772)M(s) = c(n,m2) = 0

as ¢ — 0. This contradicts the fact that |[n||r() is bounded below by 3/4 (5.11)).

Therefore 7, and 7, are linearly independent. O

We now define a basis for F' and calculate the matrix representation of AE\IZ)@
restricted to F'. We show that {mpn;, mpny} is a basis of F'. Assume to the contrary

that mpn; = cmpn, for some constant c¢. By Lemma [5.2.1

L2 mendive = lellmenallae = 1/2

Since ||mpn2|| (e is also bounded below by 1/2, |c| is bounded below by 1/2. Recall
from the proof of Lemma that mpne = n2 + 0 with ||n5]| exponentially small as

in (5.9). Furthermore, |(11,72)| is exponentially small as in (5.12]). Consequently, we

have

1/2 < |meml3e = ¢, mem2) ) = (s, m2)me) + e, mh) ey —= 0

as € — 0. Thus, a contradiction. Therefore mpn; and mpny are linearly independent.
Let 81 = mpm/||mepm |l me) and Bo = mpne/||mrn2||ame). We determine the matrix

representation of AE\?@) restricted to F' with respect to the basis {1, f2}.

Proposition 5.2.3 The matrix representation for Ag\]f[)(g) restricted to F with the

basis {51, Pa} for F is

A® () 0

k 1

Ag\/[)(s)lF = *) + (wy;)
0 Ai(g)

where wyy = wyy = O(eD/2e= =LY "and wy = wyy = O(e" e 20-d1L/e),
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Proof. Note that n; and 7, belong to the domain of AE\?(E), and mrp commutes with

AE\’;)(E) [11l Proposition 6.9]. Hence,
k k k
Al 8 = A men/lmemillae = 7S m/ Tl

= 28(©)8s + weri/ | el -

So
k k
(Agw)(g)ﬁhﬁi)M(s) = Ag )(5) + (7TF7“¢, 7TF771')M(5)/||7TF77¢||?\4(5) .
Define w;; = (Wpri,ani)M(E)/HﬁpmH?W(s) for i = 1,2. Since ||7pn;||r(e) is bounded

below by 1/2 for e small, we have |w;;| < 4|(7pri, 7pni) me)| = 4|(ris Temi)me)|- Since

TEN; = 1 + 1,

|wii| < 4]|r;

vie) lwillvae) + 4llrillv. @ 1milloe) -

Lemma [5.1.1} Lemma and inequality (5.9) together imply

|w“| < c{_:n—2€—2(1—d)L/5 +Cl€n—4e—2(1—d)L/6 < Cfgn—4e—2(1—d)L/s ]
Next, for ¢ # j

k k
(Agw)(s)f@hﬁj)M(s) = M@ @ens, men) s/ Umem | e | menel me)
+ (i, men;) v/ Ulmeml s |7 en2l are)) -
Define w;; := (As‘]z,)(a)ﬁi, B;)me for i # j. Hence,
\wij| < e |(mpni, TEn;) me | + c2o (Trrs, Ten;) m(s)| (5.13)

for some constant ¢; and ¢p. By Lemma[5.1.3] the second term on the right hand side

of ET3

v < Ce(n=1)/2,~(1-d)L/e

(s, menj) v | = [(ri Ten) mee) | < cllrq
We estimate the first term on the right hand side of (5.13). Since 7mpn; = n; + 1,
(TEns, TNy M(e) = (M TEN5) (o) = (6 M) me) + (Mis 15) aace) -
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By inequality (5.9), |(n:nj) o) < clnjllue < Ce=2e-(0-DL/E By inequality
(.12), | (0, n) )| < Ce/2e=U=DE/E Hence, |(mpmi, men;) )| < Celn=H/2e=(1=dL/e,

Together, we have |w;;| < Celn=4/2e=(1=d)L/e, O

5.3 Estimation of the Gap of Eigenvalues

In this section, we prove the main theorem as stated in Section 4.1 We restate the
necessary hypothesis on the cavity C. Assumption 1: C C R" is a compact set (with
nonempty interior) that is homotopy equivalent to a closed ball. Assumption 2: the

relative eigenvalue Agk) (C) on C is nondegenerate.

Theorem 5.3.1 Let M(e) be a symmetric region with Assumption 1, 2 on the cavity
C. Then for k # n — 1,n, and for all € sufficiently small and any d € (0,1), there

exists a constant ¢ > 0 depending only on d and n such that

0 < AP (M (e)) = AP (M (e)) < el D2e=(-dL/e

Proof. The eigenvalues of the interaction matrix in Proposition [5.2.3| are given by
AM(e)) = A (€) + win £ wia -

So
A (M(2)) = M (M () = 2wna] < Celn e bre

Corollary 5.3.2 Let M(e) be as described in Theorem/[5.3.1, Then for k # 0,1, and
for all € sufficiently small and any d € (0,1), there exists a constant ¢ > 0 depends

only on d and n such that

k k n— —(1- e
0.< " (M(e)) — i (M(e)) < cet=D/2em (L2,
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Proof. From the definition of * and ¢, it follows that *Ag\?(e) = AE\Z(;I;)*. Hence if
Ag’;)(s)w = A\w, then Aﬁ\’;(_g];)(*w) = *AE\]?(E)W = A(*w). We show that *w satisfies the

absolute boundary conditions whenever w satisfies the relative boundary conditions.

Let v be an inward unit normal vector field defined almost everywhere on the
boundary OM (). Let U C M(e) be a small neighborhood of 0M(e). Extend v to
be a unit vector field 7 a.e. on U such that 7|sp ) = v, and let {dD,dZy,...,dZ,—1}
be an orthonormal coframe on U [see discussion after (6.1)]. We show that j*w =0

implies 5%, (xw) = 0.

First, assume w = fd&; with suppw C U and j*w = (f o j)dx; = 0, where
dz; = dTr|opm). Then xw = sgn(l, J') fdv A dZ 5, and hence iy (xw) = sgn(I, J') fdz,
for some indexes J, J'. So j*i,(xw) = sgn(Il,J")(f o j)dx; = 0. Next, assume

w = fdv N\ d¥; with suppw C U and (then) j*w = 0. We have
ip(xw) =sgn(Il', J)iz(fdz;) =0 .

Thus, j%i,(*w) = 0. By linearity of j* and compactness of 0M; (), j%i,(xw) = 0 for
any arbitrary k-form w on M;(eg). It follows that j*0w = 0 implies j*i,(xéw) = 0.
Since %6 = (—1)"d*, we have j*i,d(xw) = 0. Therefore, *w satisfies the absolute

boundary conditions. a

5.4 Another Estimate

We give a better estimate for the splitting of the eigenvalues, with the prefactor e" 2.

From the proof of Theorem [5.3.1, we need to have a better estimate for wis = woy.

Recall that w;; := (i, 1;) M) for i # j. We first prove a lemma.

Lemma 5.4.1 Let r; = [Ape), Xi|wi be the commutator on w;. Then for i # j,

wij = (dxiAwi, X;dw;) ey — (X jdws, dXiNw; ) (e) = (Ivy,Wi, Xj0W;j ) 1(e) + (X 0Wi, Ty, W) ) T(e) -
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Proof. We want to estimate (r;,n;)m) for i # j. Since suppr; = supp Dy;,
we have (7;,1;)me) = (7i,1;)1()- So all calculation will be localize on T'(¢). Let
{f1dby, ..., fn—2db,,_o,dr,dt} be the orthonormal coframe on T'(¢). Write wy = a; +
ag A dt and wy = 1 + o A dt on T'(¢). Hence using and , we get

Back to the estimation of w;;,
k
(ris )76y = (Ansemi m)rie) — A (€m0 m)ree) - (5.16)

Calculating the first term on the right hand side of (5.16]),

j*(577i/\*77j)_/ J (ninxdn;)

(Anini,m5)1(e) = (dniy dnj) 1oy +(0m3, 01;) 7o)+ / e
T (e

T (¢g)
where j* is the pullback induced by the inclusion j : 9T (¢) — T'(¢). The boundary
terms are zero because: j*n; = j*én; = 0 on Z (5.15)) for i = 1,2, and x3, x2 = 0 on

E,, E, respectively. So,
(Anteynis Mj)re) = (dniy dng)re) + (013, 015)7¢e) - (5.17)
Similarly, the second term on the right hand side of
() re) = (deon, dOxany)) ey + (B, 60xmy)) e

—l—/ 75 (8w; A *(xin;)) — / 75 (xiny A *dw;) .
T (¢) oT ()

= (0wi, 6(Xinj)) 1) + (dwi, d(xiny))1(e) - (5.18)

Together,

(Ti; T]j)M(a) = (d% dﬁj)T(a) + (57]7;7 577j)T(e) - (dwz’, d(ij))T(e) - (5%’, 5(Xﬂ7j))T(s) .
(5.19)
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Using (5.14]) and (5.15)), we calculate each term on the right hand side of (5.19)
separately. The first term,

(dni, dn;)rey = (Xadwi, xjdw;) ey + (dxs A wi, dX; A w;) e
+(Xidwi, dx; A w;j)re) + (dxs A wi, Xjdw;)ree) -
The second term,
(01, 05)7(e) = (XaOwi, X;0W;)1(e) + (19x,Wis vy, 0))7(e)
—(Xi0wi, twy; Wi)(e) = (3 Wis X50w5)1(e) -

The third term,

(dw;, d(ximj))(e) = (Xadws, X;jdw;)re) + (Xidwi, dX; A wj)re) + (Xidwi, dXi A wj)ree) -
The fourth term,

(6wi, 6(Xiny))1(e) = (Xidwi, Xj0w;)T(e) — (XiOWi, Twx; W) )T(e) — (Xj0Wis Ivy,W5)T(e) -

Since (dx; A wi, dx; Awj)re) = 0 and (ivy,wi, ivy,wj)re) = 0, putting all together we

have

(ris M) me) = (dxia A wi, X3dw;s)re) — (Xjdwi, dxi A wj)1e) — (vxWis X50W;) ()

+(X;0ws, vy, Wi)T(e) - (5.20)

This completes the proof. O
We see in the proof of Lemma that (Awaeyny, nj)re) = (dni, dnj)re) +
(01, 0nj)1(e) = (i, Ana(eyn;) for i # j; so w;; = wj;. We estimate wyy using equation
. Observe that in equation , all terms on the right hand side involve the

derivative of x5. Thus we can just integrate over half of the tube T'(¢). More precisely,

define Ti(¢) := B x [—L/2,0] and T5(¢) := B x [0,L/2]. That is, we will integrate

52



over T () because the support of Dy, is a subset of T;(g). Note also that x; = 1 on

Ti(g). Hence equation ([5.20]) gives

<T27771)M(€) = (dX2 N Wa, dw1)T1(e) - (dWQ, dxa N WI)T1(6) - (ivxzwm 5W1)T1(e)

+ (5w27iVx2w1>T1(s) . (5.21)
Using ((5.14)) and (5.15]), the first term on the right hand side of ([5.21))
(dX2 A wa, dwl)Tl(e) = (d<X2w2), dCUl)Tl(g) - (dewg, dwl)Tl(E)

= (Xawa, 0dw1) 1, (c) — (Xadwa, dw1) 7y (o) +/ 71 (Xow2 A *dwy) .
Bx{0}

where j; is the restriction of j* to Tj(¢). The third term on RHS of (5.21]),
—(ivxow2, w1 )Ty () = (0(X2wa2), 6w1)Ty(e) — (X20wa, 6w )Ty (e

= (xawa, dBuwr )y (o) — (X2, 6017, o) — / 72 (6wn A (xan))
Bx{0}

The second term on the right hand side of (5.21]),
—(dwa, dx2 A wi)ry(e) = —(dwz, d(Xaw1)) 1 (e) + (dwa, x2dwi) Ty ()

= —(ddws, Xow1) 1, () + (dwa, X2dwr )7, (e) — / 71 (Xaw1 A *dwy) .
Bx{0}

The fourth term on the right hand side of (5.21]),
(5012, ivx2w1)T1(a) = —(5002; 5(X2w1))T1(a) + (5w2, X25W1)T1(5)

= —(ddws, X2w1)1 () + (dw2, X20w1) 7, (¢) +/ J1 (0w A *(xaw1)) -
Bx{0}

Using the fact that w; = R o wy, adding all together
Wy = / Ji(wi A x(dwy — dws)) — 77 (0w — dwe) A *wy) . (5.22)
Bx{0}
Recall that wy = oy + ag A dt and wy = By + P2 Adt on T'(e). Now on B x {0},
dw1 — dWQ = (dBOél - dBﬁl) + (dBOéQ - d362) A dt + (—1)’“(@041 - (%61) A dt
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= 2(=1)* 0,0 A dt

and
dwi — 0wy = (Opay — 0pB) + (Opas — 05fBa) A dt + (—1)F(Byary — 0,35)
=2(=1)*0as .
So
Woy /2 = /BX{O} JHwr A*(=1DF00q Adt) — 1 ((=1)* 0,00 A *wy) . (5.23)

On B x {0}, we have
Jiwr = jroa,
GE(x(=1)*0y A dt) = jF(xdoy — xdpay) = j* (xday),
71 ((=1)*0n) = ji(0(az A dt) = dpaz A dt) = jid(az A dt),
Ji(xwr) = ji (x(ag A dt)).

Substituting into (5.23)), we get

W /2 = / Ji(aq A xday) — ji(0(ag A dt) A *(ae A dt))
Bx{0}

+/ Ji((ag A dt) A xd(ag A dt)) — 7 (6o A *aq) .
Bx{0}

Note that we have added the second integral to wse; /2, which is zero. Next, let j;
be the restriction of j* to Tx(e). As in the second proof of Lemma [4.2.1} we have

Jadaq = j5d(aa A dt) = 0 on E,. Hence,

/ Jalaq A sday) — j5(0(ag A dt) A *(ae Adt)) =0
OBx[0,L/2)UE>

and
/ Jo((ae A dt) A xd(ag A dt)) — 75 (0aq A*xag) =0 .
dBx[0,L/2]UE>
Thus,

wy /2 = / Jalon A xday) — j5(6(ag A dt) A *(ae A dt))
0T ()

54



+/ Ja((aa Adt) A xd(ag A dt)) — j5(0aq A *ay) . (5.24)
0T ()
Again, apply Green’s formula to (5.24]),

w21/2 = ||d0[1||%2(6) — (Oél, (5d0&1)T2(5) — (d(;(OéQ A dt), (0D)] A dt)Tg(a) —I— ||5(042 A dt)”%g(e)

+ Hd(OéQ A dt)”%ﬂz(g) - (052 A\ dt, 5d(0&2 A\ dt))T2(€) - (d(5a1, Oél)TQ(g) + Hdal”?l‘g(a) .

That is,
wa1 /2 = ||den[|7, o) + 160 |17, o) — (A, @)y e
+ ld(az A dt)|| 7, + 10(aa A dt)||7, ) — (Alag Adt), ag Adt)pye - (5.25)

From the proof of Lemma [5.1.2] we get the estimate
W /2 < 05_2”0‘)1”%2’(5) 3
where T3(¢) = B x [—¢,0]. Hence,
wy < denlemWE)E < Cen2em(mdL/E (5.26)

With this estimate, we can restate Theorem and Corollary [5.3.2]

Theorem 5.4.2 Let M(e) be a symmetric region as described in Section together
with Assumption 1. Then for k < n — 1, and for all € sufficiently small and any

d € (0,1), there exists a constant ¢ > 0 depending only on d and n such that
0 <MV (M(e)) = AP (M(e)) < e e (171,

Corollary 5.4.3 Let M(e) be as described in Theorem m Then for k # 0,1, and
for all € sufficiently small and any d € (0, 1), there ezists a constant ¢ > 0 depending

only on d and n such that

k k 2 (1 B
0 < 1 (M(e)) — uF (M(e)) < cen2e~(-DL/e,

Copyright© Phuoc L. Ho, 2010.

95



Chapter 6 Stability of Eigenvalues

In this chapter, we show that the effect of adding a thin tube T'(¢) to the cavity C
is to shift the relative eigenvalues of Aék) by a vanishing small order of e. We then
draw a couple necessary corollaries for our work. We use Hislop and Martinez [I] as

our main reference.

6.1 Preliminaries

In this section, we provide the preliminary tools to prove the convergence of eigenval-
ues. We pick up the material in Section [3.2] Let A be a linear operator on a Hilbert
space H with domain D(A) C H. Recall that the spectrum o(A) of A is the set of all
points z € C such that z — A is not invertible. The resolvent set p(A) is the set of all
points z € C such that z — A is invertible. Here z — A is said to be invertible if there
exists a bounded operator (z — A)™' : H — D(A) such that (z — A)(z — A)~! = 1y
and (z — A)7'(z — A) = 1pa). For z € p(A), the operator (z — A)~" is called the

resolvent of A at z. We state the second resolvent identity [11].

Theorem 6.1.1 (Second resolvent identity) Let A and B be two closed opera-
tors with z € p(A) N p(B). Then

Ru(z) — Rp(2) = Ra(2)(A— B)Rp(z) = Rp(2)(B — A)Ra(2)

where Ra(z2) := (z — A)™! for z € p(A).

Up until now, it has been sufficient to work on a real Hilbert space with real
valued forms. The use of the resolvent necessitates that we now work on a complex

Hilbert space so our forms may be complex valued. Let M be a compact connected
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set in R™ as before. We now define the L?-inner product for w,n € L*Q*(M) by

(w,n)M:/MwA*ﬁ:Lw,nm.

This inner product is linear in the first form and conjugate-linear in the second
form. Recall that D(AW)) = {w € H2QF(M) : ji,w = ji,6w = 0} is the domain
of AS\IZ), where ji, is induced by the inclusion map jy : OM — M. With this
domain, Ag\? is a self-adjoint operator (see the discussion of Theorem . Hence,
(Ag\’?w,n)M = (w, AS\]})U)M for all w,n € D(AS\IZ)).

Next, the pointwise inner product (-,-) induces a pointwise inner product on the
boundary M of M by restriction. Let w € L2Q*(M) and n € L*Q**1(M). We show
that

| qrengen = [ (TwiTnu (6)

oM oM

where T : H'QF(M) — L2QF(M)|aa is the trace operator defined in Section 3.3 and
fan is the volume element on M with orientation induced by p. Recall that v is
the inward unit normal field sitting on the boundary OM. Let U C M be a small
neighborhood of M. Extend v to a unit vector field 7 on U such that p|gy = v
[7]. Choose an orthonormal frame {7, E\, ..., E,,_1 } on U such that Ej|gn € T(OM),
and let {dv,dZ,...,d%,_1} be the corresponding dual orthonormal coframe. Then
the volume element on OM is pgy = dxy A - -+ A dx,—y, where dz; = dZ;|om-

We prove j*w A j*(x1) = (Tw,i,Tn)ps pointwise on M for w = fdz; and n =
gdv N dZy, where dZ; is some k-basis without the factor dv. Note that if w contains
a factor dv in the basis or n without a factor dv in the basis, both sides of the latter
equation equal zero. Thus is the reason why we choose such w and n above. We

compute the right hand side,

(Tw,i,Tn)p = wlon A *iyN|ons = foreGorrtt -
The left hand side,

w A *) = sgn(l’, J)w A gdxy = sgn(I', J)sgn(I, J) fgu = fau

o7



where sgn(I’,.J) = sgn(/,J) because the index for dv is fixed. Hence, both sides
agree on the boundary M. By linearity, j*w A j*(x1) = (Tw, i,Tn)poy on OM for
all arbitrary w and 7. Thus, equation (6.1]) holds.

6.2 Stability of eigenvalues

We prove the convergence )\gk)(g) — /\gk) (C) as € — 0 in this section. To begin,
let us recall that T'(¢) is a tube of length L [Section , T(e) is the extension of
T'(¢) into the interior of the cavity C, and T'() is the closure of T'()\C [Section .
Here T(c) € T(¢) € T(e) and T(¢), T(¢) are tubes. Moreover, Mj(e) = CUT(¢) and
CNT(¢) has measure zero. Define the operator Aék)@A;f()e) - L2QF(C) @ L2QF (T (e)) —
L2QF(C) @ L*Q*(T'(€)) by

k k k k
AP & A (w1 @ w) = Alwr & AL w, .

Here wy ® wy € D(Aék)) U D(A;f()a)), which is the domain of A(Ck) ® A;’f()g). Let R(z),

R(Z) be the resolvents of the operators Ag\]f[)l( ) and A(Ck) & A;f()e) respectively. Both

£

resolvent sets contain C\R and hence intersect. Let 2z € p(Ag\?l @) Np(Ac® Agf()s)).
We want to establish an identity for R(z) — J*R(z)J, where J : L2QF(M(e)) —

L2QF(C) @ L2Q¥(T'(¢)) is the identification operator defined by
Jw = wle B wls

and J* is the adjoint of J.

Let o, 8 € L*QF(M;(g)), and let z be in the intersection for the resolvent sets of

AS\’Z © and A(Ck) &) Agf()s). By the second resolvent identity [Theorem 6.1.1],

~

(o, (R(2) = J*R(2)J)B) my (o)

= (a R(2)AY) (T R()T Do) = (@, R(z) T AL @ AL R(2)T8)an o

= (A L R(2) o, T R(2)IB)ane) — (R(2)"a, AL & A;?E) R(2)JB) e - (6.2)

o8



We apply corollary to Green’s formula [Corollary [3.2.1] to the last two terms of (6.2)).

The first term,
(A o R(2) . T R(2)JB)ar, o) = D(R(2) v, J* R(2).J B)

+ / FOR(2) a A j*(xJ RJIB) — / F(J*RJIB) A j*(*dRev) |
8M1(5) 6M1(€)

where D is the Dirichlet integral [Section [3.1]. Since R(z)*a = R(Z)a and J*R(2).J

are both in the domain D(AE\IZ (E)), the two boundary terms vanish. Hence, we have
(A o R(2)"a, J'R(2)JB)any(e) = D(R(2) 0, J*R(2)JB) . (6.3)

From now on, we suppress the operators J and J*. We compute the second term on

the right hand side of (6.2)),

~

(R(=) . AL @ A R()8)a () = DIR() 0, R(2)B)eat
+ / JGOR()B A i (+R(2) ) — /8 RN R
oC
+ / I OR()B A G ($R(2) @) — / o REa A (xdR(2)B) .
0T (¢e) 0T (¢e)
Since f?(z)ﬂ € D(A((;k)) U D(Agc()a)), the two “plus” boundary terms vanish. So,

~

(R(z) o, AL @ AL R(2)8)u ) = D(R(2)"a, R(2)B)an o

A

- /8 ER(Y @ A G (dR()8) / Jo RV QA s (kARE)B) . (6.4)

GING)

Combining (6.2)), (6.3), and (6.4]) together, we get

(a, (R(2) = R(2))B)an (o) :/ JER(z)"a A Ja(xdR(2)B)

ocC

+ /8T(a) j,}(a)R(z)*oz A j,}(a)(*df{(z)ﬁ) ) (6.5)

We want to combine the boundary terms in (6.5]) into a single integral. Let N(g) C

M;(e) be a small neighborhood of D(¢) := C N T(¢). Choose an orthonormal frame

29



{D,E1, ..., En_1} on N(e) such that |scnn() = v, where v is the inward normal unit
vector field sitting on the boundary of C. Let {dv, dz, ..., dx,_1} be the corresponding
dual orthonormal coframe. Then we can use equation (6.1)) to rewrite (6.5). That is,

(00 (RE) = RN = [ TRE) o BRE (60
D(e
where T : H'Q"(M;(g)) = L*QF(M;(e))|p(e) is the trace operator defined for each k
and B : H2QF(C) @ H*Q*(T'(¢)) — L*Q¥*(D(¢)) is defined by

B(wl D (.Ug) = iVTd(wl + WQ) .
The right hand side of becomes

/ (TR0 BRE))ons = | BEyarBRE

Ml(E)

_ /M o R(=)T*BR(2)B)p .

where T* : L2Q*(D(¢')) — H'QF(M, (")) is the adjoint of T. Therefore,
R(z) — R(2) = R(2)T*BR(z) . (6.7)

From , we have R(Z) — R(2Z) = R(2)T*BR(z). Furthermore, TR(2)f = 0
because R(Z)3 belongs to D(A((jk)) U D(A(k) ). Thus, TR(z)* = TR(z)*T*BR(z)*.

T(e)
Take the adjoint of TR(z)* and substitute into (6.7) gives,
R(z) — R(z) = R(2)B*TR(2)T*BR(2) . (6.8)

We give the first lemma.

Lemma 6.2.1 Let )\gk)(C) € J(A(Ck)) with n >3 and k <n — 1. Let v. be a simple

closed contour about )\gk) (C) of radius €* with b > 0. Then there exists € such that

HBR(Z)HLmk(Ml(g)),Lzm(D(s)) = O(/*7) (6.9)

foralle < &' and z € ..
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Proof. We first consider the case on C. Let w € H'QF(C). Applying the boundary
trace [Theorem [3.3.3], we have

H'QF(C) — L™Q%(0C)

2(n—1

where r = n—2) and the trace operator is given by j5. So jiw € L"Q¥(AC), and

||jéw||Ler(8c) < C||(A)||H19k(c). Letp=n—1and g = (n—1)/(n—2), then %%—% =1.

Using Holder’s inequality, we have
) ) 1/p ) 1/q
[ v < ([ el) ([ i)
ac ac ac
Here xc¢ is the characteristic function on C. So

iy Tw|| 20k ey < XD 220 00) liéw | 2005 00y < ce™*|wllqe(ey (6.10)

where we approximate D(g) by a ball of radius € in R"~!. Also since d is bounded

on D(AZ),

k)\— — _
ld(z = A lzarey mare) < Cll(z = Ac) ™ lr2an(e) r2axie) < C

This together with (6.10]) imply ||B(z — A(Ck))*l||L29k(c)7LQQk(D(€)) = O(e'/?7Y).

Next, let w be an eigenform of degree k& < n — 1 corresponding to the first relative
eigenvalue on T'(g). Extend w to @ on T(¢) such that @ = 0 on T(¢)\T(¢). Then &

is a test form on T'(¢) and
e SR@) = Rlw) = A1),

; ; font (k) -1 X R 2
where R is the Rayleigh quotient in 1} So H(Z_AT(E)) | 20k (7)), 20k (7)) < CE™.
Hence, the lemma follows from a similar estimate as (/6.10)). a

We prove the stability of eigenvalues in the following proposition. For the general
case, let us assume that the first relative eigenvalue )\gk) (C) has multiplicity Ny. See

Section [7.3] for further discussion on higher multiplicity.
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Proposition 6.2.2 Let )\gk) (C) € U(A(Ck)) with multiplicity Ny. Then for n > 3 and
k <n—1, there exist ¢’ > 0, ¢ > 0 such that for all e < €', Ag;)l(g) has Ny eigenvalues

(counting multiplicity) Aﬁ’“) (€)y.ms )\5\]2 () satisfying
k k
M€ = AP ()] < 2

forall j=1,...; Ny.

Proof. Let )\gk) C) € O’(Aék)) with multiplicity Ny. Let 4. be a simple closed contour
about /\gk) (C) of radius €%, 0 < b < 1/2. Choose &’ such that holds for ¢ < ¢’

We prove that on 7.,

HR(Z)”H*lﬁk(Ml(a)LHle(Ml(a)) = O(€_b) . (6.11)

Let z be in the intersection of the resolvent sets of AE\IZ © and A(Ck) D Ag?()s). Equation

gives
R(z) = R(z) + (1 + AY) ))2R(2)(1+ AJ) ) V*T*BR(2) . (6.12)
Since T* and (1 + Ag\lf[)l(g))*l/z are bounded operators, there exists ¢ > 0 such that
(1 + AMl(E))_l/QT*‘|LQQkD(E),LQQkM1(E) <c. (6.13)

Let us consider the norm [|(1 + Apy ) R(2) || n20x (a1, (o)) 104wy (). We drop the

subscripts in our calculation,
(1+A)Y2R(2) = (14 A)"Y2{(1+2)R(z) — 1} .

Thus,
11+ A% )Y2R(2)]| < C{(1+ [2DIIR()] + 1} - (6.14)

It follows from (6.12)) and (|6.13)) that
IR()|| < 1R+ C'(2)IR(2)] + C(2) , (6.15)
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where C'(2),C(z) ~ ||BR(Z)||L2Qk(M1(E/))7L2QkD(5/) = O(£Y?7%) |by equation ]
Hence, we have

|R() 202 = O(e™) (6.16)

for z € 7. C p(Ag\IZ(e)). Now for w € H 1QF(M,(¢)), we can use Gaffney’s inequality
[Theorem [3.2.2] to show

[R(z)w|[m < C{1+ (1 + [2])[|[R(2)w][r2}
for some constant C > 0. It follows that

IR [ < C{L+ (L + |2DI[R(2) 22,02} - (6.17)

o ([6.11) follows from (6.16) and (6.17). By equation (6.8)),
‘ 1

o | (R(:) = R
Ve
So the spectrum of A  intersects the interior of 7.. It follows [L1] that the dimen-

< ce’| Rl g1, (sup | BR(2)|*)

ZEYe

271

< e21/270)

sion of Ran [(27i)~ f R(2)dz] is equal to the dimension of Ran [(277)~ f R(z
Hence, Ag\?l(g) has Ny eigenvalues A* (5), o )\5\’,“0 () satisfying Mﬁ’“ (C )— ; (6)\ <el/

O

We draw a few corollaries from Proposition [6.2.2]

Corollary 6.2.3 Let )\gk) (C) be the second relative eigenvalue on C with multiplicity
No, k <n—1. Then )\gj)(s) — )\gk)(C) ase — 0 for j=1,..., Ny.

Proof. Since the spectrum of the self-adjoint operator Hodge Laplacian on C is dis-
crete, we can choose a contour 7. of radius €” such that )\ék) () is the only relative
eigenvalue in the interior of v.. Also, since )\gk)(f(e) > ce72, the spectrum of of the
Hodge Laplacian on T'(¢) is away from )\ék) (C). Hence Lemma 1| holds for the
second relative eigenvalue on C. Replacing )\gk) (C) by )\ék) (C) in Proposition

proves the corollary. a
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Corollary 6.2.4 Let A= CURC be the union of the two cavities, and A" (A) be the
first relative eigenvalue on A with multiplicity 2Ny. Then forn >3 and k <n — 1,
there ezists eg > 0, ¢ > 0 such that for all e < €, A%l;)(a) has 2Ny eigenvalues (counting
multiplicity) )\gk)(M(e)), e )\gj\),o(M(s)) satisfying

NPA) = AP (e < 22

for g =1,...,2Nj.

Proof. Let o, 8 € L*Q¥M(e). Let R(z) and R(z) be the resolvents of Ag\’;)(s) and
Ayf) ® A;f()g) respectively, where T'(¢) = M(e)\(C U RC). For z in the intersection
of the resolvent sets of Ag\l})(g) and Aff) P A;f()s), apply the second resolvent identity
[Theorem [6.1.1] and corollary to Green’s formula [Corollary [3.2.1]

(o, (R(2) = R(2))B) = (o, R(z)(A,, — AY & AL YR(2)B)
= (Al R() @ R(2)8) = (R(=)"a, AY @ ALY ) R(2)8)
= / (TiR(2) o, BR(2)B)opo + / (T2R(2) 0, BR(2)B)po .
D1 (e) Ds(e)
where Dy (g) = CNT'(€), Dy(e) = RD; (), Ty and Ty are the trace operators into D (')

and D, (¢') respectively; and B : H'QF(A) @ H'QF(T'(e)) — L*Q%(Dy(e) U Dy(e)),
B(wy ® wsy) = (4,11 + ipT2)d(wy + wo)
with o =voR. Let T =17 +7T,. Then
(@ (RE) = RS = [ (TRE)a BRY G
D1(2)UDs (e)

So R(z) — R(2) = R(2)T*BR(z). With a minor change, repeating the proof of
Proposition yields the desired result. O

Corollary 6.2.5 Let /\;k) (C) be the second relative eigenvalue on C with multiplicity
No, k <n—1. Then )\gj)(M(e)) — )\gk)(C) ase — 0 for j=1,...,2Np.

Copyright© Phuoc L. Ho, 2010.
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Chapter 7 Further Discussion

7.1 On the Smoothness of the boundary of C

Throughout the dissertation, we have assumed the boundary dC of our cavity C to be
smooth. In this section, we like to replace a weaker assumption on the smoothness
of dC. That is, we let C be a compact region in R™ with nonempty interior and

non-smooth boundary 0C.

First of all, we need the boundary to be regular enough so that (smooth) solu-
tions of the relative eigenvalue problem exist. In this case, we just need a cavity C
with boundary such that both the Dirichlet and the Neumann eigenvalue problems
are solvable. Next, we want the boundary of C smooth enough for the homotopy
assumption. Finally, we need C such that the eigenvalues stable when we attach a

thin tube to it. Here the boundary trace theorem is needed.

Recall that in Section we stated the boundary trace theorem [Theorem |3.3.3]
for domains with piecewise smooth boundary. We restate another general version
of the boundary trace theorem here. This theorem is a generalization of the trace

embedding [17] theorem on function (0-forms).

Proposition 7.1.1 Let M C R"™ be a compact region with Lipschitz boundary OM .

(n

Then for p € [1,n), there is a continuous embedding W'PQF(M) — L =5 QF(OM).

Is it possible to replace to replace the smoothness of C by Lipschitz condition in our
domains? Here we only conjecture that the cavity C can be taken to have piecewise

smooth boundary.
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7.2 On the cavity C with simple relative eigenvalue

In this section, we give a brief discussion on generic cavities such that their first
relative eigenvalues are simple. We begin with some calculation and then give a

conjecture on such cavities.

First, we take C to be a rectangular box of dimension [ x I3 x [3. More precisely,
let Rec = {(z,y,2) :x € [0,1;],y € [0,15], 2 € [0,13]}. We calculation the first relative
eigenvalue )\gl) on Rec. Take {dz,dy,dz} be the orthonormal coframe. Let w be a
1-form such that Age)cw = M\, J*w = 7%0w = 0. Now suppose w = fdx + gdy + hdz

for some smooth functions f, g, h on Rec. Then
Ao = (ARl f)dz + (ARleg)dy + (AR h)dz .

where Aggc is the usual Laplacian —A on functions. Thus, the problem reduced to

solving a system of three equations
—Af=M\f; —Ag=MAg; —Ah = M\h

with the following boundary conditions: fliy=0:=001 = 0, 9l{z=041:2=0153 = 0,
hltz=0419=0103 = 0, and O, f + 0yg + 0.h = 0 on dRec. We use separation of variables
technique. Assume that f = X Y177, g = XoYo7Z5, h = X3Y375. The first equation

and the boundary conditions imply
X +a X, =0;X1(0) = Xi() =0,
Y/ 4 bYi = 0:Y4(0) = Yi(l) = 0,
ZV+aZy =0;Z1(0) = Z1(I3) =0,

where a; 4+b; +¢; = A. Hence f = cos(y/a1x) sin(v/b1y) sin(y/c1z) with a; = (nm/l;)?,
b = (nn/ly)?, ¢ = (nm/l3)% Similarly, g = sin(y/azz) cos(v/bay) sin(,/c22) and
h = sin(y/azz) sin(v/b3y) cos(y/c3z) with az = as = a1, by = by = by, 3 = ¢, = ¢1. For
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f, the minimum value of \ is achieved when a; = 0, b = (7/l3)? and ¢; = (7/13)%
i.e., A = (m/ly)*+ (7 /l3)%. For g, the smallest eigenvalue is A = (7/1})? + (7/l3)?; and
for h, the smallest eigenvalue is A = (7/11)* + (7/l3)?>. Hence we see that if Iy, 1y, I3
are all distinct, then the first relative eigenvalue )\(1) has multiplicity 1. If [; = [; for
some 4,5 € {1,2,3}, ¢ # j, then )\( ) has multiplicity 2; and if I} = Iy = I3, Al M) has
multiplicity 3. We remark that this calculation can be generalize to an n-dimensional

rectangular box.

We now take the domain to be Bg(0), a ball of radius R in R3. Let {rdf, r sin 0dyp, dr}

be an orthonormal coframe on Bg(0). Let w = frdf + grsinfdp + hdr. Then, with

)

some calculation

dw? = 1 d(gsind) 2 i
72 sin? 0 00 72

n 1 oh gr )
r2sin’ @ 8@ or
and
. 2 2
G = 1 J(fsinb) 1 @_i_i@(hr) "
rsinf 00 rsinfdp  r2 Or

For g = h =0 and f a function of r, we have

1 (0(fr)\* [ fcosf\”
i = s (U07) (B e

and for f = h =0 and g a function of r

2 2
5 2 gcosf 1 (0(gr)
duol” + Jowl” = {(rsin@) +r2 ( or a

Taking f = g, we see that the corresponding relative eigenvalue has multiplicity at

least 2.

In general, we would like to classify all cavities (smooth or non-smooth) that
satisfy Assumption 2, i.e., cavities with first relative eigenvalues simple. In analogous

to the rectangular box and the ball examples, we conjecture that a (solid) three
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dimensional ellipsoid with principal axes 0 < a1 < ay < ag will satisfy Assumption 27
More generally, all convex cavities with the John ellipsoids having distinct principal
axes will have simple first relative eigenvalues? All non-convex cavities without some

conditions on symmetry?

7.3 On the Multiplicity Assumption

We imposed Assumption 2, simple first relative eigenvalue, on C in order to have a
(2 x 2) matrix representation for the Hodge Laplacian restricted to the eigenspace
F [Section . In general, if the first relative eigenvalue on C has multiplicity m,
then we would expect to have a (2m x 2m) matrix representation. See Dimassi and

Sjostrand [9] for the treatment of arbitrary multiplicity via the interaction matrix.

More precisely, we let n,, be the approximate eigenforms on M(e) for s = 1,2
and i = 1,...,m. Here n,, = x,ws, lives on M (g)\M,(¢) [Section [5.1]. Then we have
a set of 2m approximate eigenforms on M (e). Let F' be the space spanned by the
eigenforms corresponding to the relative eigenvalues )\gk)(M (€))y ey /\g:,)L(M (¢)), where
)\Z(»k)(M(E)) — )\gk) (C) as e — 0 for all ¢ = 1,...,2m. Define mp the projection onto
F in a similar manner as in Section . We show that {mpm,, mpns, }7, forms a

basis for F'. First, observe that {ws, }I, is an orthogonal set of eigenforms on M;(¢),

s =1,2. It follows that

(nsi’nS]‘)M(E) = (wsiywsj-)M(s) _/ (]— - Xi)(wsiaw5j> = _/]\/[( )(1 - X§)<w5i7wsj> :
€

M(e)

Hence,

N5y, s (o) < O™ 220 DE/E (7.1)
We estimate (7pn1,, Trm, ) p) and (e, Teng;)m(e) for @ # j.
(TEn1, TEm M) = (M Tem )y = (M) ae) + (1, e

where the norm of nij is small as in . By and ,

(e, Tem, )| < Ce™ e U DEe) (7.2)
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Similarly, we have
(TFm,, 7TF772j)M(s) = (771¢,U2j)M(e) + (nli>77;j>M(e) )
and hence Lemma and imply
|(TEn, TEn2; ) Me)| < Cer=4/2e-(=d)L/e (7.3)

Inequalities ((7.2]) and (7.3)) imply {mwpny,, mpne, }i*, is linearly independent.

Normalizing to get a new basis {f,, B2, }i2, with By, = 70, /||7Trns || ame) for
s =1,2. From Chapter E , and , we deduce the following estimates:

(A Bers B = A () + O(en-2e20-00/%),

(A k) ﬁsp B )me) = O(e"™ 2e=(=dL/eY for s £ t,

(A k) 85 Bs;)m(e) = O(e"™ 2e20=d)L/2) for § £ j, and

(Ay k) 85 B ) me) = O(e=0/2e=(=dL/e) for 5 £t and 7 # j.
Hence, we get a (2m x 2m) matrix representation

(k)(s)’F =\er+w, (7.4)

where W, = O(en=1/2e=(1=dL/e),
Now, let «; be the eigenform corresponding to the relative eigenvalue )\g-k)(M (€))
on M(e) with [Joy||me) =1, 7 =1,...,2m. Then

k k k
MO (M (2)) = (AS) lrag, a)ane) = M7 () + (Way, a))are) -

Thus
Do) - AP ) < v,
and hence

AP (M () = AP (M ()| < Celm=D/2e-1-DL/e

for 1 < 7,1 < 2m.
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Finally, one may ask about a lower bound for the gap of the first two relative
eigenvalues. Is there exist a lower bound for this gap? If not, what are the counter

examples?

Copyright© Phuoc L. Ho, 2010.
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Appendix

Calculation on Laplacian

We first prove equation ([7.5)) and its implication which were used throughout the
dissertation. That is, let {f1d0s, ..., fn_2d0,_o,dr,dt} be an orthonormal coframe on
T(1) = B"1(0,1) x [-L/2,L/2]. Let w = a3 + az A dt be a k-form on T(1). We

show
020z1

ot?

820./2
AT(l)w = Apag — + [ Aoy — —=— )| Adt , (75)

ot?
where Ap is the Laplacian on B""!. Recall that d is exterior derivative and § =

(—1)"kFn+L « dx is the codifferential. We calculate ddw and ddw separately,

dw = dpay + dpag A dt + (—1)’“E Adt
0 P O
Odw = (SBdBOél + 5BdBOéQ A dt + (—1)k+1§(d3042) — 8722 (_1)k63(8_t1) Adt s
dw = dgaq + dgag A dt + (—1)k% ,
o Oavs

doéw = d353a1 + (—1)k_12(5BW) + d353a2 Adt — 2 Adt + (—1)kdB(

ot o2 W) '

Since dpg, g commute with J;, combining déw and ddw gives the above result.

Next we want to show the following formula, which was used in the proof of

Proposition and Lemma [5.1.3]:
Apoy(fw) = fArqyw — 25— — m5w , (7.6)

where f depends only on ¢. Apply (7.5), we get

2 2
Ara)(fw) = Ap(for) = ! 59];?1) * (AB(fOQ) -2 E)JZSQ)) h

. 82051 (9f 8061 82f
= fAsn =I5 =250 5 T A
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Pay  _Of day  O*f
" (fABaQ_f o7 ot ot at20‘2> ht
B Of dw  O%f
=BT = 25 5 T g

Thus, we have established equation ([7.6]).

Mollifier

We construct a family of smooth functions which converges to f, where f = ye?/s.
Recall that
0 t<—L/2+h
V() =9 (1—d)(t+L/2—h) —L/2+h<t<L/2—h ,
(1 —d)(L —2h) L/2—h<t<L/2
where h = 2. We extend the domain of e¥/¢ to [~L/2 — h, L/2 + h] by letting 1 to
be
0 —L/2—h<t<—-L/2+h
V(t) =4 (1—d)(t+L/2—h) —L/24+h<t<L/2—h
(1 —d)(L —2h) L/2—h<t<L/2+h
Let 7. be the standard mollifier defined as follows. Define n € C*(R™) by n(x) =

Cexp(w%l) for |z| < 1 and n(z) = 0 for |z| > 1. Here the constant C' is selected so

that [ n = 1. For € > 0, we set n.(z) = =n(%).

Next for € < h, define
L/2+h

Gult) = e () = / nelt — ) (y)dy

—L/2—h
fort € (=L/2 —h+¢,L/2+ h—¢€). With some calculation [16],
L/2+h €
= [ omtt =y = [ omdyyte— sy
~L/2-h —e

Let j be a positive integer such that 1/j < e. Define ¢, = 1 /(j1n), n = 1,2, ... Then

©n — 1 as n — oo (see [16]). Also, Oypn = M1/(jn) * Optp converges to 0y and

1/(G+n)

Dupn(£L/2) = / Doty (W) (L2 — y)dy
—1/(j+n)
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1/(G+n)

= (+L/2) / e /(+n) (Y)dy = 0 .

—1/(G+n)

That is, we have shown there exists a sequence {p,,}22 ; of smooth bounded functions
such that ¢, — ¥ and 0y, — 0y pointwise on [—L/2, L/2], and 0y, vanishes on
the boundary for each n. Now, let x(¢) be a cutoff function and let f,, = ye#"/¢. Then
fn — xe¥/® = f. Also, O,f, = x0,e¥"/® + (Oyx)e?™/® — xO0e?/® + (9,x)e¥/s = 0, f.
Next, let g € L?[—L/2,L/2]. We show that f,g — fg in L?. Let Z = {z €
[—L/2,L/2]: g(x) = co}. Then Z has measure zero. Let x € [-L/2,L/2] — Z. Then

g(x) < M, for some constant M,. Hence

|fg(@) = fg(z)] < M| fulz) — f(z)| =0

as n — oo. Thus f,g — fg a.e. on [—L/2,L/2]. Let ¢ = |g|||f|lz~ € L?. We see
that |f.g|> < |#|* a.e. for all n. By dominated convergence theorem, f,g — fg in

L?. Similar argument shows that (9;f,)g — (0;f)g in L.

Integration by parts

Let w = a1 + az Adt and n = 1 + B2 A dt be smooth k-forms on T'(1) satisfying
J*w = j*n = 0 and either 5By = 0 or j*as = 0. We prove the integration by parts

formula

| towm == [ (. (77)
(1) (1)

We show (8t041, Bl)T(l) = —(Oél, 8tﬁ1)T(1). By " 8t041/\dt = (—1)kd061+(—1)k+1d3041.
So,

(Ovarr, Br)r(1y = (Opar A dt, B1 A dt)rpy = (=1)*(day, By A dt)rq)

oT(1)
Since j*a; = 0 and §(By Adt) = dfy Adt+(—1)k+19, 5, 1D we have (Oyv1, B1)ra) =
—<041, 8t61)T(1). A similar calculation show that (at()ég/\dt, ﬁgAdt)T(l) = (OéQ /\dt, 81552/\

dt)r@y. Therefore, we have proved ([7.7)).
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Finally, we want to show d commutes with 9; on H'QF(M). By linearity, it is
sufficient to show d(Ow) = Jy(dw) for some w = fdx;. By the definition of d, it is
enough to show 0,(0,,f) = 0., (0, f) for all i = 1,...,n. Let ¢ be a smooth function

supported on the interior of M. Then 0,,(0:¢) = 0:(0,,¢). Integration by part,

/M@xif&gcbz —/Mf&ci(@@) — _/]wfat(axiqb) _ /Matfaxﬁ-

Hence,
[ a@.ne= [ auans.
M M

It follows that

d(w) = 0,(dw) (7.8)

for all arbitrary w € H'Q"(M).

Copyright© Phuoc L. Ho, 2010.
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