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Chapter 1 Introduction

Experiment has always been at the heart of mathematics. Gauss, widely regarded as

the greatest mathematician of all time, has been quoted as saying that his technique of

arriving at mathematical truth was “through systematic experimentation”1. The im-

portance of mathematical proof cannot be overstated; however, the elegance of a proof

may conceal the necessary experimental nature of the mathematics. Computer-based

and aided experimentation has long been involved in the areas of applied mathematics

and numerical analysis. Relatively recently, more and more attention has been paid

to computer/experimental techniques applied to aspects of pure mathematics; more-

over, any constructive mathematical proof can be turned into an algorithm. The need

for algorithms in pure mathematics arises, for example, when the objects of study are

too complicated to construct or compute “by hand”. On the other hand, powerful

conjectures can be checked or even posed as a result of computations. The results in

this dissertation can be considered experimental mathematics in this sense.

This dissertation falls under the research umbrella of algebraic topology, albeit

broadly construed. Fundamentally, algebraic topology assigns algebraic invariants to

topological spaces. A primary family of invariants for a topological space X is the

(integral) homology groups, Hn(X), for n = 0, 1, 2, . . . . In each dimension n, one can

think of the homology group of a space as a measure for the connectedness of that

space, and the rank of the homology group as counting the number of “holes” of that

dimension in the space. For example, the homology of a torus in dimension n = 0 is

one copy of the integers Z, meaning that the space is path-connected; in dimension

n = 1 the homology is Z ⊕ Z meaning that the torus is a closed surface with two

“holes”, one bounded by a meridian and one by a latitude. With this framework,

one can focus on studying topology via algebra or algebra via topology; the results

in this work fall into the latter category.

As an example of an algebraic problem treated topologically, consider a group G

and its algebraically defined group homology Hn(G). One can construct a topological

space BG, called the classifying space of G, by taking the infinite join of G with itself

modulo the diagonal G-action. In the case that G has the discrete topology, BG

coincides with the Eilenberg-MacLane space K(G, 1). The (singular) homology of

1See the Statement of Philosophy of the journal Experimental Mathematics: http://www.

expmath.org/expmath/philosophy.html

1
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BG is exactly the group homology of G, meaning that there is a natural isomorphism

Hn(BG) ∼= Hn(G), (1.1)

which we review in Section 2.1. Moreover, the field of algebraic K-theory was revolu-

tionized by Quillen when he gave a description, for which we was awarded the Fields

Medal, of the K-functors in terms of the homotopy groups of a certain classifying

space; we describe this construction in Section 2.2. By virtue of a Hurewicz homo-

morphism from homotopy groups to homology groups, one can relate the algebraic

K-theory groups to group homology.

While the homology of a group is relatively straightforward to define, calculations

are another matter. Currently there are several algorithms and computer programs

to calculate the homology of finite groups or the homology of certain classes of infinite

groups, but there is no general algorithm to calculate the homology of an arbitrary

group.

1.0.1 A Conjecture of Quillen

A motivational problem for low dimensional group homology, which is related to

algebraic K-theory, is the study of homology for groups of the form GLj(A), where

GLj is a finite rank general linear group scheme and A is the ring of integers in

a number field. An approach to this problem is to consider the diagonal matrices

inside GLj; let Dj denote the subgroup formed by these matrices. Then the canonical

inclusions Dj ⊂ GLj for j = 0, 1, ... induce homomorphisms on group homology with

k-coefficients

ρA,pi,j : Hi(Dj(A); k)→ Hi(GLj(A); k), (1.2)

where k is the field of prime order p, i is called the homological dimension and j the

rank. In this context, there is the following celebrated conjecture of Quillen:

Conjecture 1.0.1. [Qui71] The homomorphism ρA,pi,j , as given above, is an epimor-

phism for A = Z[1/p, ζp], p a regular odd prime, ζp a primitive pth root of unity and

any values of i and j.

Conjecture 1.0.1 has been proved in a few cases and disproved in infinitely many

other cases. For A = Z[1/2] it was proved by Mitchel in [Mit92] for j = 2 and by

Henn in [Hen99] for j = 3. Anton gave a proof for A = Z[1/3, ζ3] and j = 2 in

[Ant99].
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Dwyer gave a disproof for the conjecture for A = Z[1/2] and j = 32 in [Dwy98]

which Henn and Lannes improved to j = 14 in [HLS95]; this is an improvement in

light of Henn’s result in [Hen96] that states that if Conjecture 1.0.1 is false for j0

then it is false for all j ≥ j0. Anton disproved the conjecture for A = Z[1/3, ζ3] and

j ≥ 27 also in [Ant99].

This conjecture was reformulated and, in a sense, corrected by Anton, and he also

conjectured the following:

Conjecture 1.0.2. [Ant03] Given p, k and A as above,

H2(GL2(A)) ∼= H2(D1(A)). (1.3)

Anton’s conjecture led to a proof of Conjecture 1.0.1 for Z[1/5, ζ5] and i = j = 2.

For a survey on the current status of conjectures 1.0.1 and 1.0.2 we cite [Ant09].

By a spectral sequence argument applied to the group extension

1→ SLj(A)→ GLj(A)→ D1(A)→ 1 (1.4)

given by the determinant map, we can reformulate Quillen’s conjecture in terms

of Hi(SLj(A); k). In the particular case j = 2, this homology has been studied

extensively by using the theory of buildings. However, based on this theory we can

calculate this homology only for i sufficiently large [BS76]. The problem of calculating

Hi(SL2(A); k) in low dimensions turns out to be highly nontrivial even when i = 2.

1.0.2 Algorithmic Group Homology

Exploiting a classical theorem due to Hopf, we present a series of algorithms in Section

3.1 that give upper bounds on group homology in homological dimensions one and

two, provided coefficients are taken in a finite field. In particular, examples in Section

3.1.10 confirm the results in [Ant09], as well as give a new finding:

Theorem. The dimension of H2(SL2(Z[1/7, ζ7]);F7) as a vector space over F7 is at

most six.

Since the algorithms in Section 3.1 depend only upon Hopf’s formula for H2, the

usefulness of these algorithms extends to groups beyond the scope of Quillen’s Con-

jecture. Moreover, the algorithms are distinct from existing methods of calculating

low dimensional group homology in that they find bounds on the homology of any

finitely-presented group.

3



As a byproduct of the calculations related to Quillen’s Conjecture we are involved

in a long term project preparing a database for low dimensional group homology

of linear groups over number fields and their rings of integers. This work will be

extended to other classes of finitely-presented groups of interest to computational

group theory and algebraic topology, and the first set of these calculations is found

in Section 3.2.

The various algorithms in this dissertation are given in pseudocode and were

carried out with the computational algebra system GAP (Groups, Algorithms, and

Programming) [GAP07]. The GAP code used to implement the algorithms is given

in Appendix 4.1, as well the GAP code to input a selection of linear groups. The

calculations were carried out on a refurbished Dell SC1435 server with two Dual-Core

Opteron 2220 SE processors running at 2.8GHz with 1MB cache and 16GB of DDR2

RAM, however the memory limit of GAP was set to 2GB.

Finally, we have included Appendix 4.2 which lists some known results on the

(co)homology of linear groups, and Appendix 4.3 which explains (1) a technique of

finding the abelianization of a finitely-presented group in the context of reductions

of integer matrices to Smith Normal Form, and (2) a short description of spectral

sequences.

Copyright c© Joshua D. Roberts, 2010.
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Chapter 2 Background

In this chapter we recall some facts and terminology which will be used throughout

this dissertation about group homology and algebraic K-theory. For a more thor-

ough treatment of these topics, we refer the interested reader to the books by Brown

[Bro94] and Rosenberg [Ros94]. We also assume familiarity with basic ideas from ho-

mological algebra and category theory and give Lang’s excellent algebra text [Lan02]

as a reference.

2.1 Group Homology and Cohomology

Let G be a group, given multiplicatively, equipped with the discrete topology unless

otherwise stated. Our goal in this section is to define two sequences of functors from

the category of groups to the category of abelian groups called the homology and

cohomology groups of G.

Define ZG to be the free Z-module on the elements of G. That is, an element of

ZG is a finite sum
∑

g ngg, where g ∈ G and ng ∈ Z. Multiplication in G induces

multiplication in ZG in the obvious way which turns ZG into a ring, called the

integral group ring of G. A ZG-module is an abelian group A equipped with

a G-action. For right G-module M , the co-invariants of M , denoted MG, is the

quotient

MG :=
M

〈mg −m〉
, (2.1)

where 〈mg−m〉 denotes the subgroup generated by all elements of the form mg−m
for m ∈M and g ∈ G. We say M is a trivial G-module if mg = g for all m ∈M and

g ∈ G.

Lemma 2.1.1. Given right G-module M , we have that MG
∼= M ⊗G Z. Here Z is a

trivial left G-module.

If M is a left G-module then we can build a free resolution of M by G-modules

by letting F0 be the free module on a set of generators of M and ε : F0 → M the

canonical surjection. In a similar manner choose a surjection F1 → ker(ε) with F1

free. Then we have the exact sequence

F1 → F0 →M → 0. (2.2)

5



Continuing inductively we obtain the infinite exact sequence

· · · → F2 → F1 → F0 →M → 0 (2.3)

and so have the following proposition.

Proposition 2.1.2. Given a G-module, M such a resolution exists.

Definition 2.1.3. Let M be a G-module and P →M a resolution of M by projective

G-modules. We define the homology and cohomology of the group G with

coefficients in M by:

Hn(G;M) := Hn(P ⊗G Z) = TorGn (Z,M)

Hn(G;M) := Hn(HomG(P,M)) = ExtnG(Z,M).
(2.4)

In this work, the focus will be upon Hn(G;Z) or Hn(G; k) for a finite field k,

where Z and k are regarded as trivial G-modules. We adopt the convention that

Hn(G) denotes Hn(G;Z).

Note 2.1.4. Suppose ∂ : Pn → Pn−1. Then the induced differential δ : HomG(Pn−1,Z)→
HomG(Pn,Z) is defined by δ(g(x)) = (g ◦ ∂)(x) for g ∈ HomG(Pn−1,Z) and x ∈ Pn.

Also, ∂ ⊗G 1 : Pn ⊗G Z→ Pn−1 ⊗G Z is the induced differential on P ⊗G Z.

The following proposition is standard.

Proposition 2.1.5. Given a ring R, let P and P ′ be projective resolutions of M and

M ′ respectively, and let α : M →M ′ be an R-linear map.

(i) There exists an R-linear chain map P → P ′ which extends α. Moreover, two

such maps are chain homotopic.

(ii) The induced maps on homology and cohomology are canonical isomorphisms.

Proposition 2.1.5 implies that the homology of a group is independent of the

resolution chosen.

Example 2.1.6. If G = Zk = 〈t | tk〉 then

Hn(G) =


Z, n = 0

0, n even

Zk, n > 0 and n odd.

(2.5)

6



Since Z is a trivial G-module, a free G-resolution of Z is:

F = · · · 1−t // ZG K // ZG 1−t // ZG ε // Z // 0 (2.6)

where ε : ZG→ Z is the “augmentation map” t 7→ 1 and “K” denotes multiplication

by 1 + t+ · · ·+ tk−1. Tensoring with Z over G gives the complex

F ⊗G Z = · · · // Z 0 // Z k // Z 0 // Z // 0 . (2.7)

which implies the result.

2.1.1 The Standard Resolution

The standard resolution of a group G consists of free abelian groups Fn, with basis

the (n+1)-tuples (g0, g1, . . . , gn), and diagonal G action g(g0, . . . , gn) = (gg0, . . . , ggn)

for g ∈ G. The boundary map is given by

∂(g0, . . . , gn) =
n∑
i=0

(−1)i(g0, . . . , ĝi, . . . , gn). (2.8)

As a G-module, Fn has as a basis the (n + 1)-tuples whose first element is 1. We

introduce the bar notation

[g1|g2| · · · |gn] = (1, g1, g1g2, . . . , g1g2 . . . gn) (2.9)

and note that for n = 0, there is only one such element which is denoted [ ]. For this

basis, the boundary map is given by ∂ =
∑n

i=0(−1)idi, where

di[g1| · · · |gn] =


g1[g2| · · · |gn], i = 0

[g1| · · · |gi−1|gigi+1|gi+2| · · · |gn], 0 < i < n

[g1| · · · |gi−1], i = n.

(2.10)

Example 2.1.7. For a group G, applying − ⊗G Z to the standard resolution and

looking at low dimensions gives ⊕
[g|h]

Z ∂→
⊕
[g]

Z 0→ Z (2.11)

7



where

∂([g|h]) = g[h]− [gh] + [g] (2.12)

= [h]− [gh] + [g], since Z is a trivial G-module. (2.13)

It follows that H0(G) = Z and H1(G) = Gab, where Gab := G/[G,G] (see Appendix

4.3), the abelianization of G.

The following theorem due to Hopf gives a useful characterization of H2(G).

Theorem 2.1.8. [Bro94, p. 42] Let G be a group with presentation R → F → G.

Then there is an isomorphism

H2(G) ∼=
R ∩ [F, F ]

[F,R]
(2.14)

where, for groups A,B ⊂ F , [A,B] is the subgroup generated by commutator elements

[a, b] = a−1b−1ab for a ∈ A and b ∈ B.

2.1.2 Classifying Spaces

In this section, we explain a topological definition of group homology and show the

equivalence of the two approaches. Unless otherwise stated, spaces are connected

CW-complexes and G is a group with the discrete topology. Also, since the spaces

are connected we suppress the notation of a basepoint when discussing homotopy

groups.

Given a group G, a G-bundle is a fiber bundle P → X with fiber G. A principle

G-bundle is a locally trivial fibration p : E → B, with fiber G, and a right G-

action E × G → B. Two bundles are isomorphic if there exists a homeomorphism

f : E1 → E2 such that

E1
f //

p1

��

E2

p2

��
B

idX // B

(2.15)

commutes.

Given a G-bundle p : E → B and a map f : A→ B the fiber product

f ∗E := E ×f B = {(a, e) ∈ E ×B|f(a) = p(e)} (2.16)

8



is the pullback

E ×f B //___

���
�
� E

��
A // B

(2.17)

in the category of G-bundles.

Definition 2.1.9. A classifying space for a group G is a topological space BG with

a principle G-bundle p : EG→ BG where EG is contractible so that BG = EG/G.

A classifying space is universal in the sense that if q : E → B is a principle G-bundle

then there is a continuous map f : B → BG, unique up to homotopy, such that E is

the fiber product f ∗EG:

E //___

��

EG

��
B //___ BG

(2.18)

Note 2.1.10. The universal property of classifying spaces implies that for a space

X, there is a 1-1 correspondence between isomorphism classes of G-bundles and

homotopy classes of maps X → BG. That is

(G-bundles on X/ ∼=)↔ [X,BG]. (2.19)

Construction of Classifying Spaces

The most general construction of a classifying space is the so-called “join-construction”

given by Eilenberg and MacLane [EML86, p. 369] and generalized by Milnor [Mil56].

Note 2.1.11. If G is discrete then the homotopy exact sequence of a fibration applied

to G→ EG→ BG gives

· · · → πn(G)→ πn(EG)→ πn(BG)→ πn−1(G)→ · · · (2.20)

Therefore a classifying space is the familiar Eilenberg-MacLane space K(G, 1).

Theorem 2.1.12. If G has a presentation 〈F |R〉 then there is an inductive construc-

tion of BG by attaching cells.

Proof. Take {xα} to be a set of generators for F and {rβ} to be a set of generators

up to conjugacy for R. Let B0 be a one-point space and B1 be the space obtained

from B0 by attaching a 1-cell eα for each xα. Then the fundamental group of B1 is

9



isomorphic to F . Now construct B2 from B1 by attaching a 2-cell eβ for each rβ such

that the attaching map is the word rβ in F . Note that the fundamental group of B2

is naturally isomorphic to G by the van Kampen theorem.

For n > 2, inductively construct Bn from Bn−1 by attaching n-cells via attaching

maps fγ : Sn−1 → Bn−1 where each fγ is a generator for πn−1Bn−1. Applying the

van Kampen theorem again shows that π1Bn = G and by construction πkBn = 0 for

k > 1. Now define B =
⋃
n

Bn. For a map f : Sk → B, the image of f is contained

in some Bn since Sk is compact. So f is nullhomotopic for k ≥ 2. Therefore B is a

K(G, 1) space and, by Note 2.1.11, is a classifying space for G.

Example 2.1.13. If G = Z2 = 〈t|t2〉 then BG = RP∞

Let F = 〈t〉 and R be the normal closure of 〈t2〉 in F . Following Theorem 2.1.12,

we construct a sequence of spaces: B0 is a one-point space and B1 = S1 since F has

only one generator. Next, B2 = B1 ∪ e2 with the single 2-cell attached according

to the word t2 in B1, i.e., ∂(e2) = S1 → B1 = S1 is the double cover. Therefore

B2 = RP 2.

For B3 = B2 ∪ {2-cells}, with one 2-cell for each generator of π2(B2) = π2(RP 2)

attached along that generator, the long exact homotopy sequence applied to the

covering Z2 → S2 → RP 2 gives

· · · → π2(Z2)→ π2(S2)→ π2(RP 2)→ π1(Z2)→ · · · . (2.21)

Thus π2(RP 2) ∼= π2(S2) ∼= Z.

Let f : S2 → RP 2 be the generator of Z; that is, π2(RP 2) = 〈[f ]〉. Since f is also

the double cover S2 → RP 2 (see [Knu01, p. 154]) we obtain B3 = RP 3; similarly

Bn = RP n for n > 2. Therefore BZ2 =
⋃
n

Bn = RP∞ is a classifying space for

Z2. We note that the reduced integral homology of RP∞ is zero in even dimensions

and Z2 in odd dimensions; this agrees with the purely algebraic calculation of the

homology of Z2 in Example 2.1.6 for the case k = 2.

Theorem 2.1.14. The group homology (cohomology) of G is isomorphic to the cel-

lular homology (cohomology) of BG. That is,

Hn(G) ∼= Hn(BG), and

Hn(G) ∼= Hn(BG).
(2.22)
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Proof. Let C∗(EG) be the cellular chain complex of EG; so each Ci(EG) is a free

Z-module with a basis element for each i-cell of EG. Note that G acts on EG by deck

transformations, i.e., by permuting cells, and therefore there is a G-action that turns

each Ci(EG) into a G-module. Note that EG, being contractible, has the homology

of a point and so C∗(EG)→ Z→ 0 is a free resolution of Z by G-modules.

The map C∗(EG) → C∗(BG) gives a quotient map φ : C∗(EG)G → C∗(BG).

Note that C∗(EG)G has a Z-basis with one basis element for each G-orbit of cells in

X. But C∗(BG) also has a Z-basis with one element for each G-orbit of cells in X.

Then since φ sends basis elements in C∗(EG)G to corresponding basis elements in

C∗(BG) φ is an isomorphism.

Finally, by Lemma 2.1.1 C∗(BG) = C∗(EG)G = C∗(EG) ⊗G Z. Then since

homology is independent of the resolution chosen by Proposition 2.1.5, H∗(BG) ∼=
H∗(G). The isomorphism on cohomology follows from duality.

2.1.3 Plus Construction

Here we illustrate a method given by Quillen whereby we kill the homotopy of a

subgroup of the fundamental group of a space while preserving the homology. The

primary application of this construction will be given in Section 2.2 where it will be

used to construct the algebraic K-theory functors.

Theorem 2.1.15. [Qui75] Let X be a connected CW-complex and let π be a perfect

normal subgroup of π1 = π1(X). Then there exists a CW-complex X+, obtained from

X by attaching only 2-cells and 3-cells, such that

(i) π1(X)→ π1(X+) is the quotient map π1 → π1/π.

(ii) For a π1/π-module M , we have H∗(X
+, X;M) = 0, where M is viewed as a

local coefficient system on X+.

Moreover, X+ is unique up to homotopy equivalence.

The proof uses methods similar to those used in the proof of Theorem 2.1.12 to

kill the generators of π, and uses the fact that [π, π] = 0 to restore the homology by

attaching cells of dimension three. It is a consequence of the van Kampen theorem

that attaching these 3-cells does not affect π1 or π.

Theorem 2.1.16. The plus construction is functorial in the following sense: Let

f : X → Y , πX be a perfect subgroup of π1(X), and πY a perfect subgroup of π1(Y ).
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Then f induces a map f+ : X+ → Y +, where X+ is constructed from πX and Y + is

constructed from πY , such that

(i) idX : X → X induces idX+, the identity on X+.

(ii) If X
f // Y

g // Z then (f ◦ g)+ = f+ ◦ g+.

Example 2.1.17. Let Σ5 be the symmetric group on five letters and A5 ⊂ Σ5 the

alternating subgroup. We use that fact that A5 is a perfect group to construct

BΣ+
5 . Noting that {+1,−1} is the group Z2 written multiplicatively, there is a group

homomorphism sgn : Σ5 → {+1,−1} sending even/odd permutations onto +1/ − 1

respectively. Since A5 is the group of even permutations, it is the kernel of sgn.

Therefore Σ5/A5
∼= Z2.

This gives that π1(BΣ+
5 ) = Z2. Since BA+

5 is simply connected it is the universal

cover of BΣ+
5 , and we have the Z2-bundle

Z2 → BA+
5 → BΣ+

5 (2.23)

where Z2 discrete implies that BA+
5 is a covering space. And therefore the long exact

sequence

· · · → πn(Z2)→ πn(BA+
5 )→ πn(BΣ+

5 )→ πn−1(Z2)→ · · · (2.24)

implies that for n ≥ 2

πn(BΣ+
5 ) ∼= πn(BA+

5 ) (2.25)

In particular, π2(BΣ+
5 ) ∼= π2(BA+

5 ). But since π1(BA+
5 ) is trivial, the Hurewicz map

π2(BA+
5 )→ H2(BA+

5 ) is an isomorphism; moreover

H2(BA+
5 ) = H2(BA5) = H2(A5). (2.26)

So we have that π2(BΣ+
5 ) = H2(A5) and H2(A5) = Z2.

2.2 Algebraic K-Theory

Algebraic K-theory gives a sequence of functors from the category of associative,

unitary rings to the category of abelian groups. While the definitions of K0 and K1

are straightforward, several definitions of K2 were proposed and the groups Kn for

n ≥ 3 were not defined until Quillen provided a generalization of the K-groups as

homotopy groups of certain topological spaces.
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2.2.1 Classical K-Theory

The lower dimensional K-groups are classically defined in the following way. The iso-

morphism classes of finitely generated projective modules over an associative, unitary

ring A form an abelian monoid with addition given by

[P ] + [Q] := [P ⊕Q]. (2.27)

Then K0(A) is defined as the Grothendieck group of this monoid.

For K1(A), recall that we can regard the group of n × n non-singular matrices,

GLn(A), as a subgroup of GLn+1(A): if M ∈ GLn(A) then(
M 0

0 1

)
∈ GLn+1(A). (2.28)

We define the infinite general linear group as the direct limit GL(A) := lim−−→GLn(A).

A classic result due to Whitehead [Mil71, p. 25] is that the subgroup of infinite

elementary matrices E(A) is the derived group [GL(A), GL(A)] of GL(A). Then

K1(A) := GL(A)/E(A) ∼= GL(A)/[GL(A), GL(A)] := GL(A)ab. (2.29)

In [Mil71] Milnor eventually defined K2(A) following the work of Steinberg on the

structure of the group E(A). The so-called Steinberg group over A, denoted St(A),

maps canonically onto E(A) and then K2(A) is defined as the kernel of this canonical

map St(A)→ E(A).

2.2.2 Higher K-Theory

Given a ring A as above, let us define a topological space K(A) := K0(A)×BGL(A)+,

whereK0(A) has the discrete topology. Quillen in [Qui75] defined the K-theory groups

as the homotopy groups of this topological space.

Kn(A) := πn(K(A)). (2.30)

In dimensions 0 and 1 it is clear the Quillen’s definition agrees with the classical one.

For n = 2 we examine the long exact homotopy sequence of the pair of topologi-

cal spaces (BGL(A)+, BGL(A)). Since πn(BGL(A)) is nonzero only for n = 1 the
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sequence then becomes

0 // π2(BGL+) // π2(BGL+, BGL) // π1(BGL)

uukkkkkkkkkkkkkkk

π1(BGL+) // π1(BGL+, BGL) // 0

and it is easy to see that π1(BGL+, BGL) = 0. Therefore we have the commutative

diagram with exact rows

0 // π2(BGL+) // π2(BGL+, BGL) // π1(BGL) //

∼=
��

π1(BGL+) // 0

0 // K2
// π2(BGL+, BGL) //

'' ''OOOOOOOOOOOO GL // K1
∼= GL/E // 0

E
, �

::uuuuuuuuuu

But by definition

0 // K2(A) // St(A) // GL(A) // K1(A) ∼= GL(A)/E(A) // 0

is exact. Thus π2(BGL(A)+, BGL(A)) ∼= St(A) and Quillen’s definition for K2 agrees

with the classical one.

Summarizing the above discussion in Figure 2.1 we have the following diagram

where the arrows are functors:

G

��
BG

��
BG+

�� ��
Hn(BG+) πn(BG+)

Hurewiczoo

Figure 2.1: The relationship among topology, group homology, and algebraic K-theory
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If G = GL(R), for some R, then the last row becomes

Hn(GL(R))← Kn(R) (2.31)

by the definition of Kn(R) and since Hn(BGL(R)+) = Hn(BGL(R)) = Hn(GL(R)).

Copyright c© Joshua D. Roberts, 2010.
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Chapter 3 Main Results

3.0.3 A Spectral Sequence Reduction

Given a group extension 1→ N → G→ Q→ 1 there is the Hochschild-Serre Spectral

Sequence [McC01, p. 341] with

E2
p,q
∼= Hp(Q,Hq(N ; k)) =⇒ Hp+q(G; k), (3.1)

where we take coefficients in a field k regarded as a trivial G-module.

By letting R be a Euclidean ring we have that SL2(R) is a perfect group [Coh66].

Thus, applying the spectral sequence 3.1 to the extension

1→ SL2(R)→ GL2(R)→ GL1(R)→ 1, (3.2)

we see that the entries E2
p,1 are all 0. Thus for q < 3 the E3 page is equal to the E2

page. We also note that

GL1(R) = D1(R) = R×, (3.3)

where R× is the group of units of R.

Figure 3.1 displays the E2 page of this spectral sequence, and we have included

the transgression τ : E3
3,0 → E3

0,2 for reference. Note that since E2
p,q = E3

p,q for all

p and for all q < 3 then E2
p,1 = E∞p,1. Then since E4

p,q = E∞p,q for p, q + 1 < 4 and

E4
0,2 = H2(SL2(R))GL1(R)/Im(τ) we have that

H2(GL2(R)) = E4
2,0 ⊕ E4

1,1 ⊕ E4
0,2 (3.4)

= H2(SL2(R))GL1(R)/Im(τ)⊕H2(GL1(R)). (3.5)

Since we have chosen field coefficients, the homology groups displayed above are

vector spaces over the field k. Then Equation 3.5 implies that

dim H2(GL2) ≥ dim H2(GL1(R)). (3.6)

Recall from Section 1.0.1 that the Quillen Conjecture implies that the map induced

by inclusion

H2(D2(R)) � H2(GL2(R)) (3.7)
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Figure 3.1: E2 page with τ : E3
3,0 → E3

0,2 displayed

is surjective. Anton’s reformulation of Quillen’s conjecture in [Ant09] and results in

[Ant03] imply that the map 3.7 factorizes thusly:

H2(D2) // //

%%KKKKKKKKKK
H2(GL2)

H2(D1)

88 88rrrrrrrrrr

. (3.8)

Then H2(D1) � H2(GL2) is surjective and

dim H2(D1) ≥ dim H2(GL2). (3.9)

Then equations 3.6, 3.9, and 3.3 imply Conjecture 1.0.2

H2(GL2) ∼= H2(GL1), (3.10)
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which, by Equation 3.5, is equivalent to

H2(SL2(R))GL1(R)
∼= Im(τ), (3.11)

which is true if and only if τ is surjective. Moreover, for Conjecture 1.0.2 to be true,

it is sufficient for the finitely-presented group SL2(Z[1/p, ζp]) to have trivial second

dimensional Fp-homology.

Note 3.0.1. The fact that dim H2(GL2) ≥ dim H2(GL1(R)) follows by the spectral

sequence argument above and is independent of conjectures 1.0.1 and 1.0.2.

In this context, the purpose of the following section is to give a series of algorithms

that allow us to estimate the second homology group of any finitely-presented group.

More precisely, given a finitely-presented group G and a finite field k, the second

homology group H2(G; k) with coefficients in k is a finite dimensional vector space

over k. Our algorithm gives an upper bound for the dimension of H2(G; k) and, in

particular cases, the algorithm calculates precisely this dimension. This algorithm is

an improvement of existing algorithms to computeH2(G); for example, the algorithms

included in the GAP packages “cohomolo” [Hol08] and “HAP” [Ell08] are effective

on finite groups and certain classes of infinite groups. The algorithms presented here

effectively find a bound for the homology of any finitely-presented group.

3.1 Algorithms for Low Dimensional Group Homology

3.1.1 First Homology Group

We consider a group given by a finite set of generators and a finite set of relators. If

we denote this group by G then there is a short exact sequence

1→ R→ F → G→ 1. (3.12)

Here F is a finitely generated free group and R is a normal subgroup of F such

that the conjugation action of F on R gives R the structure of a finitely generated

F -module. Here if F and R are two groups not necessarily commutative then an

F -module structure on R is an assignment r 7→ rf for r ∈ R and f ∈ F such that

r1 = r (3.13)

(r1r2)f = rf1r
f
2 (3.14)

rf1f2 = (rf1)f2 (3.15)
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where, if not otherwise stated, all groups are given multiplicatively. As discussed in

Example 2.1.7, it is well known that the first homology of a group is just another

name for its abelianization. In particular, if we denote by H1(G) this abelian group

then there is a short exact sequence

1→ R[F, F ]→ F → H1(G)→ 1 (3.16)

where [F, F ] again denotes the subgroup of F generated by the commutators in F and

the juxtaposition R[F, F ] denotes the operation of taking the subgroup generated by

the product of R and [F, F ]. Letting F act on R[F, F ] by conjugation, we recognize

that R[F, F ] is a finitely generated F -module. Indeed, the commutator formula

[xy, z] = (xy)−1z−1xyz = y−1x−1z−1xzyy−1z−1yz = [x, z]y[y, z] (3.17)

proves that since F is a finitely generated group then [F, F ] is a finitely generated

F -module under conjugation and the same is assumed about R. This argument leads

to a deterministic algorithm that gives the structure of H1(G). The input is a finite

list of generators for F , say S, and a finite list of generators for the F -module R, say

T . The output is a list of integers describing the structure of the finitely generated

abelian group H1(G).

3.1.2 The First Homology Algorithm

Algorithm 3.1.1. FirstHomology(F,R)

Input: Free Group F , Relators R

Output: List of abelian invariants of the finitely-presented group F/R

1 M := Relation matrix of F/R

2 N := Smith normal form of M

3 return Diagonal entries of N

Note 3.1.2. The GAP command AbelianInvariants() carries out (roughly) the

above algorithm. A description of the Smith Normal Form of a matrix, and a discus-

sion of some of the applications is given in Appendix 4.3.

Theorem 3.1.3. For a finitely-presented group G, FirstHomology returns the

structure of H1(G) as a finitely generated abelian group.

Proof. Recall that given a finite presentation for F/R that consists of n generators S

and m relators T , there is the associated n×m relation matrix M whose (i, j) entry
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is the sum of the exponents of all occurrences of the jth generator in the ith relator.

Let G be a group with finite presentation F/R and A the associated relation matrix.

By Theorem 4.0.3, A can be brought to Smith Normal Form in a finite number of

steps.

The discussion immediately following Definition 4.0.4 and, in particular, Equation

4.11, imply that the diagonal entries of the Smith Normal Form of A, which are a

sequence of non-negative integers, are the abelian invariants of G/[G,G]. Then the

isomorphism

G/[G,G] ∼= H1(G), (3.18)

as is discussed in Example 2.1.7, gives the invariants of H1(G). The number of zeros

is the rank of H1(G) and each positive integer n corresponds to a copy of Zn in the

torsion part of H1(G).

This result can be extended to the case when the homology of G is taken with

trivial coefficients in a finite field say k. In this case, the first homology group of G is

denoted by H1(G; k) and is a finite dimensional vector space over k. The algorithm

takes as input the finite lists S and T from the previous algorithm together with the

order p of the finite field k. The output is an integer representing the dimension of

the vector space H1(G; k).

3.1.3 The First Homology with Coefficients Algorithm

Algorithm 3.1.4. FirstHomologyCoefficients(F,R, p)

Input: Free Group F , Relators R, Prime p = char(k)

Output: Dimension of the vector space k ⊗H1(G; k) over k

1 A :=FirstHomology(F,R)

2 X := [ ]

3 for x ∈ A do

4 if x ≡ 0 mod p then

5 append x to X

6 end if

7 end for

8 return Size(X) {number of elements in the list X}

Theorem 3.1.5. Let G be a finitely-presented group and k a finite field. Then

FirstHomologyCoefficients returns the dimension of H1(G; k) as a vector space

over k.

20



Proof. Recall the universal coefficients [Bro94, p. 36] short exact sequence

1→ k ⊗H1(G)→ H1(G; k)→ Tor(H0(G), k)→ 1 (3.19)

where H0(G) is the free cyclic group (see Example 2.1.7) and Tor(−, k) is a functor

vanishing on free abelian groups. Then Equation 3.19 reduces to

1→ k ⊗H1(G)
∼=−→ H1(G; k)→ 1 (3.20)

Let A be the list of abelian invariants obtained from FirstHomology(F,R),

where F/R is a presentation for G. Since G is finitely-presented, this list A will be

finite. For x ∈ A, x⊗ k = 0 if and only if x ≡ 0 mod p, where p is the order of k. If

we form a new list X of elements in A that do not vanish modulo p, the cardinality

of this list will be the dimension of k ⊗H1(G) ∼= H1(G; k).

3.1.4 Second Homology Group

Our investigation can be extended to the second homology group of G which is an

abelian group that we denote H2(G). By Hopf’s formula given in Theorem 2.1.8 this

group fits into the following exact sequence:

1→ [F,R]→ R ∩ [F, F ]→ H2(G)→ 1 (3.21)

where [F,R] is the subgroup of F generated by the commutators [f, r] with f ∈ F
and r ∈ R. The commutator formula

[x, yz] = x−1(y−1)zxyz = x−1z−1y−1zx(yy−1)z−1yz = [zx, y][y, z] (3.22)

proves that [F,R] is a finitely generated F -module under conjugation. However the

intersection R ∩ [F, F ] is infinitely generated and so is not determined by any al-

gorithm, and we can only estimate the group H2(G) as a subgroup of the factor

group R/[F,R]. This factor group is abelian since [F,R] contains [R,R] and if we

let F act on it by conjugation then this action is trivial. In particular, since R is

a finitely generated F -module it follows that the factor group R/[F,R] is a finitely

generated abelian group. Consequently, H2(G) is a finitely generated abelian group

whose structure we would like to determine.
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We start with the following exact sequence

1→ H2(G)→ R

[F,R]
→ F

[F, F ]
→ F

R[F, F ]
→ 1 (3.23)

in which the last two terms are deterministically determined as explained above.

Moreover, starting with a finite list of generators T for the F -module R, we can

design a deterministic algorithm to find a set of generators for H2(G).

To simplify the discussion, let k denote the finite field of prime order p and start

our investigation with the homology with trivial coefficients in k. By the universal

coefficients theorem we have a short exact sequence

1→ k ⊗H2(G)→ H2(G; k)→ Tor(H1(G), k)→ 1 (3.24)

whose last term can be determined as follows. For input we start with the abelian

invariants of H1(G) found by Algorithm 3.1.1 together with the order p of the field k.

The output is an integer representing the dimension of the vector space Tor(H1(G), k)

over k. The algorithm is deterministic.

3.1.5 The Tor Algorithm

Algorithm 3.1.6. Tor(F,R, p)

Input: Free Group F , Relators R, Prime p = char(k)

Output: Dimension of Tor(H1(G), k) over k

1 A :=FirstHomology(F,R)

2 X := [ ]

3 for x ∈ A do

4 if x 6= 0 and x ≡ 0 mod p then

5 append x to X

6 end if

7 end for

8 return Size(X)

The proof of the following theorem follows immediately from the properties of the

Tor(−, k) functor.

Theorem 3.1.7. Let G be a finitely-presented group and k a finite field. Then the

Tor algorithm returns the dimension of Tor(H1(G), k) as a vector space over k.
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The first term k⊗H2(G) of the exact sequence 3.24 is a finite dimensional vector

space over k whose dimension we only know how to estimate from above by an

algorithm that we will describe next. From the exact sequence (3.23) we extract the

short exact sequence

1→ H2(G)→ R

[F,R]
→ R[F, F ]

[F, F ]
→ 1 (3.25)

whose last term is a subgroup of the free abelian group F/[F, F ]. It is a standard

fact that any subgroup of a finitely generated free abelian group is free abelian and

consequently the above sequence splits. In particular, by tensoring with k we obtain

a short exact sequence of vector spaces over k:

1→ k ⊗H2(G)→ k ⊗ R

[F,R]
→ k ⊗ R[F, F ]

[F, F ]
→ 1 (3.26)

where the last term can be rewritten as R[F, F ]/Rp[F, F ]. Here Rp denotes the

subgroup of F generated by the p-powers of elements of R. In particular, there is a

short exact sequence of finitely generated abelian groups

1→ k ⊗ R[F, F ]

[F, F ]
→ F

Rp[F, F ]
→ F

R[F, F ]
→ 1 (3.27)

whose last two terms are computable by the FirstHomology and FirstHomol-

ogyCoefficients algorithms.

Definition 3.1.8. [Fai99, p. 6] For an abelian group A, define the p-primary sub-

group of A to be

p∞(A) = {a ∈ A | api = 1 for some i > 0}. (3.28)

The order of this subgroup is of the form pe. Call e the p∞-rank of A.

The p∞ rank of a finitely generated abelian group A can be calculated by taking as

input the abelian invariants of A and the prime p.

By passing to p-primary subgroups, sequence 3.27 gives another short exact se-

quence

1→ k ⊗ R[F, F ]

[F, F ]
→p∞

(
F

Rp[F, F ]

)
→p∞

(
F

R[F, F ]

)
→ 1 (3.29)

since the first term is p-torsion. We observe that while F/R[F, F ] can be given in

terms of S and T , the factor group F/Rp[F, F ] can be given in the same way but

23



replacing T by T p, the finite list of p-powers of elements in T .

3.1.6 The Rank Algorithm

Algorithm 3.1.9. PrimePrimaryRank(F,R, p)

Input: Free Group F , Relators R, Prime p

Output: p∞-rank of F/R

1 A :=FirstHomology(F,R)

2 Y := [ ]

3 for a ∈ A do

4 if a 6= 0 and a ≡ 0 mod p then

5 y := p-adic valuation of a

6 append y to Y

7 end if

8 end for

9 s :=Sum(Y ) {s is the sum of the elements of Y }
10 return s

Once again, the following theorem is clear.

Theorem 3.1.10. Let G be a finitely-presented group. The algorithm PrimePri-

maryRank returns the p∞-rank of G/[G,G].

Note 3.1.11. The GAP command PadicValuation(n,p) gives the p-adic valuation

of an integer n.

We next describe an algorithm that reduces an element of a group via a rewriting

system.

3.1.7 Reduce Word Algorithm

Algorithm 3.1.12. ReduceWord(F,R, Z,R′, p)

Input: Free Group F , Relators R, Test Word z, Sublist R′ of R, Prime p

Output: Reduced word of z in F/[F,R]RpR′

1 G := F/[F,R]RpR′

2 RG :=Rewriting system for G

3 x :=Reduced word of (z) in the rewriting system RG

4 return x
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We use the rewriting system given by the Knuth-Bendix completion algorithm

[KB70] implemented on GAP via the KBMAG package [Hol09].

3.1.8 The Find Basis Algorithm

Algorithm 3.1.13. FindBasis(F,R, p,R′)

Input: Free Group F , Relators R, Prime p, Sublist R′ of R

Output: Size of a generating set for [F,R]RpR′/[F,R]Rp

1 X := R′

2 for x ∈ X do

3 x′ :=ReduceWord(F,R, x,Difference(X, [x]), p) {Difference(A,B) is the com-

plement of B in A}
4 if x′ = identity then

5 X :=Difference(X, [x])

6 end if

7 end for

8 return Size(X)

The algorithm attempts to check for linear independence of each element x of

R′ with respect to R′ − {x} in [F,R]RpR′/[F,R]Rp. Whenever x is found by the

rewriting system to be dependent of R′ − {x}, it is removed from R′. The end result

will be a list of potentially linearly independent generators.

We conclude this discussion with the grand scheme algorithm which takes as input

a finite list of generators S and a finite list of relators T for a group G together with

a prime p and gives as output an integer d representing an upper bound for the

dimension of H2(G; k), where k is a field of order p.

3.1.9 The Second Homology with Coefficients Algorithm

Algorithm 3.1.14. SecondHomologyCoefficients(F,R, p,R′)

Input: Free Group F , Relators R, Prime p, Sublist R′ of R generating R/[F,R]Rp

Output: An integer d such that dim (H2(G; k)) ≤ d

1 a := Tor(F,R, p)

2 b := PrimePrimaryRank(F,R[F, F ], p)

3 c := PrimePrimaryRank(F,Rp[F, F ], p)

4 e := FindBasis(F,R, p,R′)

5 d := a+ b− c+ e

6 return d
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Theorem 3.1.15. Let G be a finitely-presented group. The algorithm SecondHo-

mologyCoefficients returns a non-negative integer which is an upper bound for

the dimension of H2(G; k) as a vector space over k.

Proof. The exact sequence of vector spaces 3.24 implies that

dim (k ⊗H2(G)) = dim H2(G; k)− dim Tor(H1(G), k). (3.30)

Similarly, the exact sequence 3.26 gives

dim (k ⊗H2(G)) = dim

(
k ⊗ R

[F,R]

)
− dim

(
k ⊗ R[F, F ]

[F, F ]

)
. (3.31)

Thus equations 3.30 and 3.31 together show that

dim H2(G; k)− dim Tor(H1(G), k) = dim

(
k ⊗ R

[F,R]

)
− dim

(
k ⊗ R[F, F ]

[F, F ]

)
.

(3.32)

Finally, exact sequence 3.29 implies that

dim

(
k ⊗ R[F, F ]

[F, F ]

)
= rkp∞

(
F

Rp[F, F ]

)
− rkp∞

(
F

R[F, F ]

)
. (3.33)

Thus we can express the dimension of H2(G;K) as

dim Tor(H1(G), k)+rkp∞

(
F

R[F, F ]

)
−rkp∞

(
F

Rp[F, F ]

)
+dim

(
k ⊗ R

[F,R]

)
(3.34)

To summarize, let

a = dimension of Tor(H1(G), k)

b = p∞-rank of
F

R[F, F ]

c = p∞-rank of
F

Rp[F, F ]

d = dimension of H2(G; k)

e = dimension of k ⊗ R

[F,R]

where a is determined by the Tor Algorithm, b and c by PrimePrimaryRank

algorithm, and e is yet to be studied. By the equations above, the following reduction
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formula holds:

d = a+ b− c+ e. (3.35)

The integer e is estimated from above by an integer e′ obtained via the algorithm

FindBasis(F,R, p,R). Thus

d ≤ a+ b− c+ e′. (3.36)

Note 3.1.16. It is important to note that the reduction of test words in the algo-

rithm ReduceWord is the word problem (for a description of the word problem

see [Bri58]). As such, a result of a word not being the identity is an indeterminate

result. However, if G is finite, or, more generally, if the rewriting is confluent, then

the reduction in the rewriting system is deterministic and a basis is achieved (the

confluence for finite groups is guaranteed in theory only; in practice it may take a

long time or require more space than is available [KB70]). At any rate, this is not

typically the case since the word problem is undecidable in general; thus the result of

FindBasis is, in general, the cardinality of a generating set that is not necessarily

a basis. Therefore in these cases we do not find the dimension of H2(G; k), only an

upper bound.

3.1.10 Examples

In this section, we apply the grand scheme algorithm above to some select groups.

The first example is to illustrate the effect the algorithm has on groups with smallish

presentations with confluent rewriting systems. The other three examples are the

groups of primary interest since they are relevant to the conjectures discussed in

Section 1. In Section 3.1.11 we will discuss these calculations.

Example 3.1.17. The symmetric groups Σ5 on 5 letters:

G = Σ5

S = {a, b}

T = {a5, b2, (a−1b)4, (a2ba−2b)2}

p = 2

d = 2
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Next we consider three linear groups over Z[1/p, ζp], where ζp is a primitive pth-

root of unity. Presentations for groups of this from can be found in [Ant09, p. 447,

453].

Example 3.1.18.

G = SL2(Z[1/3, ζ3])

S = {z, u1, a, b, b0, b1, b2, w}

T = {b−1
t z3tbz3ta, w−1z4u1u2u3, z

3, [z, u1], [u1, u1], a4, [a2, z], [a2, u1],

a−1zaz, a−1u1au1, [bs, bt] , b
−3a2, b−3b0b1b2,

(b0b
−1
1 a−1u1)3, a−2b−1u1bz

−3b−1b−1
0 z3bz−1u1}

p = 3

d = 0

where s, t ∈ {1, 2}.

Example 3.1.19.

G = SL2(Z[1/5, ζ5])

S = {z, u1, u2, a, b, b0, b1, b2, b3, b4, w}

T = {b−1
t z3tbz3ta, w−1z4u1u2u3, z

5, [z, ui], [ui, uj], a
4, [a2, z], [a2, ui],

a−1zaz, a−1uiaui, [bs, bt] , b
−3a2, b−3b0b1b2b3b4,

(b0b
−1
1 a−1u1)3, (b0b

−1
2 a−1u2)3, (b0b

−1
3 a−1u3)3,

(b0b
−1
1 b−1

2 b3a
−1u1u2)3, (b0b

−1
1 b−1

3 b4a
−1u1u3)3,

(b0b
−1
2 b−1

3 b5a
−1u2u3)3, a−2b−1uibz

−3ib−1b−1
0 z3ibz−iui}

p = 5

d = 0

where i, j ∈ {1, 2} and s, t ∈ {1, 2, 3, 4}.
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Example 3.1.20.

G = SL2(Z[1/7, ζ7])

S = {z, u1, u2, u3, a, b, b0, b1, b2, b3, b4, b5, b6, w}

T = {b−1
t z3tbz3ta, w−1z4u1u2u3, z

7, [z, ui], [ui, uj], a
4, [a2, z], [a2, ui],

a−1zaz, a−1uiaui, [bs, bt] , b
−3a2, b−3b0b1b2b3b4b5b6, b

−7
t w−1b−1

t w,

(b0b
−1
1 a−1u1)3, (b0b

−1
2 a−1u2)3, (b0b

−1
3 a−1u3)3,

(b0b
−1
1 b−1

2 b3a
−1u1u2)3, (b0b

−1
1 b−1

3 b4a
−1u1u3)3, (b0b

−1
2 b−1

3 b5a
−1u2u3)3,

(b0b
−1
1 b−1

2 b3b4b5b
−1
6 a−1u1u2u3)3, a−2b−1uibz

−3ib−1b−1
0 z3ibz−iui}

p = 7

d = 6

where i, j ∈ {1, 2, 3} and s, t ∈ {1, 2, 3, 4, 5, 6}.

3.1.11 Discussion

Details on the above examples are as follows:

• Example 3.1.17: The rewriting system given by the KBMAG package for Σ5

is confluent; therefore

dim H2(Σ5;F2) = 2. (3.37)

The algorithm took about 50 milliseconds to run, reflecting the relatively simple

presentation.

• Example 3.1.18: The rewriting system given by the KBMAG package for

SL2(Z[1/3, ζ3]) is not confluent; the algorithm took about six hours to finish.

In this case, the non-confluence of the system did not affect the results as the

rewriting system was able to show that all elements of R reduced to identity

modulo [F,R]R3, so

dim H2(SL2(Z[1/3, ζ3];F3) = 0. (3.38)

• Example 3.1.19: The rewriting system given by the KBMAG package for

SL2(Z[1/5, ζ5]) is not confluent. As in Example 2 the non-confluence of the

system did not affect the results and

dim H2(SL2(Z[1/5, ζ5]) = 0. (3.39)
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The algorithm took about two days to finish.

• Example 3.1.20: The rewriting system given by the KBMAG package for

SL2(Z[1/7, ζ7]) is not confluent. In this case, the algorithm took a total of about

five days to finish. Also, in this case the non-confluence actually mattered. Since

the algorithms were not able to show that the dimension of R/[F,R]R7 is 0, we

only have the upper bound

dim H2(SL2(Z[1/7, ζ7]);F7) ≤ 6. (3.40)

In implementing these algorithms to find a bound on H2(G) it is useful to first

perform Tietze transforms on the presentations involved to attempt to simplify the

presentations. A description of Tietze transformations can be found in [LS01, pp

89-99]. In many cases, the number of generators and relators can be reduced, thus

simplifying the calculations. In Example 3.1.20 SL2(Z[1/7, ζ7]) is given via a pre-

sentation consisting of 14 generators and 64 relators. A series of Tietze transforms,

implemented via GAP, simplifies to a presentation with six generators and 34 rela-

tors, and the GAP output of performing this operations is given in Example 4.0.2.

This significantly impacts the results of the algorithm.

Finally, we note that for Examples 3.1.19 and 3.1.20, it was necessary to run

the algorithm several times to obtain the results above since the parameters of the

KBMAG package allow a limited number of equations to be generated in the rewriting

system. Each iteration eliminated elements of R from the generating list until the

results stabilized. For instance, in Example 3.1.20, the initial iteration gave a result

of e ≤ 16 and d ≤ 10, the second iteration gave that e ≤ 13 and d ≤ 7. The third

and fourth iterations each gave a result of e ≤ 12 and so the upper bound on d is 6.

We illustrate this process of iterating Algorithm 3.1.14 in Appendix 4.

3.2 Calculations

In this section we present some additional sample calculations using the algorithms

given above. Appendix 4.2 lists the homology of these groups from various sources.

We invite the reader to compare the results of our calculations with the calculations

found by other means.
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3.2.1 Presentations of Groups

The groups below are organized by the references where the presentations can be

found, and the GAP code to input the groups may be found in Appendix 4.1.

1. [Alp80]

a) SL2 (Z[ω]) = 〈a, b|a3 = b2 = (ab)2 = c3 = (c−1ab)3 = c−3 = (cb−1a)3〉,
where ω = 3

√
−1

2. [Ant09]

a) SL2

(
Z[1/p, p

√
1]
)

for any odd prime p

3. [Bro94]

a) SL2(Z) = Z4 ∗Z2 Z6 = 〈a, b|a4, b6, a2 = b3〉

b) SL2(F2) = Z3 o Z2 = 〈a, b|a3, b2, ab−1a = b〉

c) SL2(F3) (binary tetrahedral group) = 〈a, b|(ab)2 = a3 = b3〉

d) SL2(F5) (binary icosahedral group) = 〈a, b|(ab)2 = a3 = b〉

4. [Joh90]

a) GL2(Z) = 〈a, b, c|aba = bab, (aba)4, c2, (ca)2, (cb)2〉

b) PSL2(Z) = Z2 ∗ Z3 = 〈a, b|a2, b3〉

5. [Swa71]

a) SL2 (Z[i]) = 〈a, b, c, d, e, |bc = cb, a2, a central , d3 = a, (bd)2 = a,

(cd)2 = a, (ed)2 = a, (be)3 = a, (ced)3 = a〉

b) SL2

(
Z[
√
−5]
)

= 〈a, b, c, d, e, f |a2, a central , bc = cb, d2 = a, e2 = a,

(bd)3 = a, (de)2 = a, (dcec−1) = a, dfd = abfb−1, cec−1fe = abfb−1〉
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3.2.2 Homology Calculations

The next two tables give the results of the algorithms in Section 3.1 applied to the

groups listed above. For the second table, a “less than” symbols indicates that the

rewriting system involved in the calculation was not confluent, so only an upper

bound was found. Otherwise, the rewriting was confluent and the exact dimension

was found.

H1(−;F2) H1(−;F3) H1(−;F5) H1(−;F7)
GL2(Z) 2 0 0 0
SL2(Z) 1 1 0 0
SL2(Z2) 1 0 0 0
SL2(Z3) 0 1 0 0
SL2(Z5) 0 0 1 0
SL2(Z[i]) 1 0 0 0
SL2(Z[ω]) 0 1 0 0

SL2(Z[
√
−5]) 3 2 1 1

PSL2(Z) 1 1 0 0

Table 3.1: Dimensions of First Homology Groups

H2(−;F2) H2(−;F3) H2(−;F5) H2(−;F7)
GL2(Z) ≤ 4 ≤ 2 ≤ 2 ≤ 2
SL2(Z) ≤ 2 ≤ 2 ≤ 1 ≤ 1
SL2(Z2) 1 0 0 0
SL2(Z3) 0 1 0 0
SL2(Z5) 0 0 1 0
SL2(Z[i]) 1 0 0 0
SL2(Z[ω]) ≤ 1 ≤ 2 ≤ 1 ≤ 1

SL2(Z[
√
−5]) ≤ 3 ≤ 3 0 0

PSL2(Z) ≤ 1 ≤ 1 0 0

Table 3.2: Dimensions of Second Homology Groups

Copyright c© Joshua D. Roberts, 2010.
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Chapter 4 Conclusion

In the context of Conjecture 1.0.2 the algorithms in Chapter 3 were able to show

that the second homology of SL2(Z[1/p, ζp]), with coefficients in the finite field Fp,
is trivial for the cases that p = 3 and 5. If we set R = Z[1/p, ζp] then Equation 3.5,

which gives that

H2(GL2(R);Fp) = H2(SL2(R);Fp)GL1(R)/Im(τ)⊕H2(GL1(R);Fp),

where τ is a transgression map, implies that

dim H2(GL2(R);Fp) = dim H2(GL1(R);Fp);

thus the conjecture is true in the cases that p = 3 and 5. This confirms results found

(by other methods) in [Ant99] and [Ant09].

For p = 7, the algorithms were unable to show that SL2(Z[1/7, ζ7]) has trivial

second dimensional F7-homology. But the following new result was obtained.

Theorem. The dimension of H2(SL2(Z[1/7, ζ7]);F7) as a vector space over F7 is at

most six.

Our future work will involve refining and improving the algorithms above. Initially

we were concerned only with writing algorithms that gave results-the efficiency of

these algorithms was not a concern. To this end we will analyze, in a rigorous manner,

the complexity of the algorithms. For the linear groups above as p increases the

number of relators grows exponentially. Going from p = 3 to p = 7, the time required

increased from several hours to several days. For p = 11 the algorithm dramatically

fails to produce significant results since the number of relators overwhelms the possible

bounds allowed by the rewriting systems utilized by the KBMAG package.

We are also developing methods for finding generators of H2(G) and H2(G; k)

independent from those above. In particular, we attempt to find lower bounds on

the dimension of H2(G; k). The strategies for both problems will be based on linear

algebra involving rewriting systems and will appear in a future work.

In particular, recall the general form of the decomposition above:

H2(GL2(R); k) ∼= H2(SL2(R); k)/Im(τ)⊕H2(GL1(R); k),
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where k is a finite field of coefficients and τ : H3(GL1(R); k)→ H2(SL2(R); k) is the

transgression map. Recall that τ is an epimorphism is equivalent to the conjecture

of Anton. In light of these facts, we are developing methods to calculate τ .

Moreover, the algorithms in this dissertation relied heavily on Hopf’s formula for

a group G given as F/R;

H2(G) ∼=
R ∩ [F, F ]

[F,R]
.

In this context, we plan to investigate generalized Hopf’s formulae [Stö89] to attempt

to extend the algorithms to higher homology groups. In sufficiently high dimensions

the homology of SL2(Z[ p
√

1]) is computable by various spectral sequences, but in

low dimensions our calculations are new and highly nontrivial. To this end, we will

show how to obtain a finite presentation for SL2(Z[ζp]) from a finite presentation of

SL2([Z[1/p, ζp]) and extend, using our algorithms, the (short) list of known homology

groups.

Copyright c© Joshua D. Roberts, 2010.
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Appendices

Appendix 1

In this appendix we give the code used in GAP to input and implement the finitely-

presented groups and algorithms described in Chapter 3.

Library of Groups

Here we list the code used to input the various finitely-presented groups discussed

in this dissertation into GAP. They are given as a list of generators for a free group

followed by a list of relators. The group itself is given as a quotient. The first three

groups listed are the ones relevant to the conjectures of Quillen and Anton.

##############################################

#Case p=3

F3:=FreeGroup(8);

z_3:=F3.1;

u1_3:=F3.2;

a_3:=F3.3;

b_3:=F3.4;

b0_3:=F3.5;

b1_3:=F3.6;

b2_3:=F3.7;

w_3:=F3.8;

k3:=[b0_3^-1*b_3*a_3,

b1_3^-1*z_3*b_3*z_3*a_3,

b2_3^-1*z_3^2*b_3*z_3^2*a_3,

w_3^-1*z_3*u1_3,

z_3^3,

z_3*u1_3*z_3^-1*u1_3^-1,

a_3^4,

a_3^2*z_3*a_3^-2*z_3^-1,

a_3^2*u1_3*a_3^-2*u1_3^-1,

z_3*a_3*z_3*a_3^-1,
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u1_3*a_3*u1_3*a_3^-1,

Comm(b0_3,b1_3),

Comm(b0_3,b2_3),

Comm(b1_3,b2_3),

b_3^3*a_3^-2,

b0_3*b1_3*b2_3*a_3^-2,

b0_3^-3*w_3^-1*b0_3^-1*w_3,

b1_3^-3*w_3^-1*b1_3^-1*w_3,

b2_3^-3*w_3^-1*b2_3^-1*w_3,

(b0_3*b1_3^-1*a_3^-1*u1_3)^3,

a_3^2*b_3^-1*u1_3*b_3*z_3^2*b_3^-1*b0_3^-1*z_3*b_3*z_3^2*u1_3];

G3:=F3/k3;

##############################################

#Case p=5

F5:=FreeGroup(11);

z_5:=F5.1;

u1_5:=F5.2;

u2_5:=F5.3;

a_5:=F5.4;

b_5:=F5.5;

b0_5:=F5.6;

b1_5:=F5.7;

b2_5:=F5.8;

b3_5:=F5.9;

b4_5:=F5.10;

w_5:=F5.11;

k5:=[b0_5^-1*b_5*a_5,

b1_5^-1*z_5^2*b_5*z_5^2*a_5,

b2_5^-1*z_5^4*b_5*z_5^4*a_5,

b3_5^-1*z_5*b_5*z_5*a_5,

b4_5^-1*z_5^3*b_5*z_5^3*a_5,

w_5^-1*z_5*u1_5*u2_5,

z_5^5, z_5*u1_5*z_5^-1*u1_5^-1,
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z_5*u2_5*z_5^-1*u2_5^-1,

u1_5*u2_5*u1_5^-1*u2_5^-1,

a_5^4,

a_5^2*z_5*a_5^-2*z_5^-1,

a_5^2*u1_5*a_5^-2*u1_5^-1,

a_5^2*u2_5*a_5^-2*u2_5^-1,

z_5*a_5*z_5*a_5^-1,

u1_5*a_5*u1_5*a_5^-1,

u2_5*a_5*u2_5*a_5^-1,

b0_5*b1_5*b0_5^-1*b1_5^-1,

b0_5*b2_5*b0_5^-1*b2_5^-1,

b0_5*b3_5*b0_5^-1*b3_5^-1,

b0_5*b4_5*b0_5^-1*b4_5^-1,

b1_5*b2_5*b1_5^-1*b2_5^-1,

b1_5*b3_5*b1_5^-1*b3_5^-1,

b1_5*b4_5*b1_5^-1*b4_5^-1,

b2_5*b3_5*b2_5^-1*b3_5^-1,

b2_5*b4_5*b2_5^-1*b4_5^-1,

b3_5*b4_5*b3_5^-1*b4_5^-1,

b_5^3*a_5^-2,

b0_5*b1_5*b2_5*b3_5*b4_5*a_5^-2,

b0_5^-5*w_5^-1*b0_5*w_5,

b1_5^-5*w_5^-1*b1_5*w_5,

b2_5^-5*w_5^-1*b2_5*w_5,

b3_5^-5*w_5^-1*b3_5*w_5,

b4_5^-5*w_5^-1*b4_5*w_5,

(b0_5*b1_5^-1*a_5^-1*u1_5)^3,

(b0_5*b2_5^-1*a_5^-1*u2_5)^3,

(b0_5*b1_5^-1*b2_5^-1*b3_5*a_5^-1*u1_5*u2_5)^3,

a_5^2*b_5^-1*u1_5*b_5*z_5^3*b_5^-1*b0_5^-1*z_5^2*b_5*z_5^4*u1_5,

a_5^2*b_5^-1*u2_5*b_5*z_5*b_5^-1*b0_5^-1*z_5^4*b_5*z_5^3*u2_5];

G5:=F5/k5;

##############################################

#Case p=7
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F7:=FreeGroup(14);

z_7:=F7.1;

u1_7:=F7.2;

u2_7:=F7.3;

u3_7:=F7.4;

a_7:=F7.5;

b_7:=F7.6;

b0_7:=F7.7;

b1_7:=F7.8;

b2_7:=F7.9;

b3_7:=F7.10;

b4_7:=F7.11;

b5_7:=F7.12;

b6_7:=F7.13;

w_7:=F7.14;

k7:=[b0_7^-1*b_7*a_7,

b1_7^-1*z_7^3*b_7*z_7^3*a_7,

b2_7^-1*z_7^6*b_7*z_7^6*a_7,

b3_7^-1*z_7^2*b_7*z_7^2*a_7,

b4_7^-1*z_7^5*b_7*z_7^5*a_7,

b5_7^-1*z_7*b_7*z_7*a_7,

b6_7^-1*z_7^4*b_7*z_7^4*a_7,

w_7^-1*z_7^4*u1_7*u2_7*u3_7,

z_7^7,

z_7*u1_7*z_7^-1*u1_7^-1,

z_7*u2_7*z_7^-1*u2_7^-1,

z_7*u3_7*z_7^-1*u3_7^-1,

u1_7*u2_7*u1_7^-1*u2_7^-1,

u1_7*u3_7*u1_7^-1*u3_7^-1,

u2_7*u3_7*u2_7^-1*u3_7^-1,

a_7^4,

a_7^2*z_7*a_7^-2*z_7^-1,

a_7^2*u1_7*a_7^-2*u1_7^-1,

a_7^2*u2_7*a_7^-2*u2_7^-1,

a_7^2*u3_7*a_7^-2*u3_7^-1,
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z_7*a_7*z_7*a_7^-1,

u1_7*a_7*u1_7*a_7^-1,

u2_7*a_7*u2_7*a_7^-1,

u3_7*a_7*u3_7*a_7^-1,

b0_7*b1_7*b0_7^-1*b1_7^-1,

b0_7*b2_7*b0_7^-1*b2_7^-1,

b0_7*b3_7*b0_7^-1*b3_7^-1,

b0_7*b4_7*b0_7^-1*b4_7^-1,

b0_7*b5_7*b0_7^-1*b5_7^-1,

b0_7*b6_7*b0_7^-1*b6_7^-1,

b1_7*b2_7*b1_7^-1*b2_7^-1,

b1_7*b3_7*b1_7^-1*b3_7^-1,

b1_7*b4_7*b1_7^-1*b4_7^-1,

b1_7*b5_7*b1_7^-1*b5_7^-1,

b1_7*b6_7*b1_7^-1*b6_7^-1,

b2_7*b3_7*b2_7^-1*b3_7^-1,

b2_7*b4_7*b2_7^-1*b4_7^-1,

b2_7*b5_7*b2_7^-1*b5_7^-1,

b2_7*b6_7*b2_7^-1*b6_7^-1,

b3_7*b4_7*b3_7^-1*b4_7^-1,

b3_7*b5_7*b3_7^-1*b5_7^-1,

b3_7*b6_7*b3_7^-1*b6_7^-1,

b4_7*b5_7*b4_7^-1*b5_7^-1,

b4_7*b6_7*b4_7^-1*b6_7^-1,

b5_7*b6_7*b5_7^-1*b6_7^-1,

b_7^3*a_7^-2,

b0_7*b1_7*b2_7*b3_7*b4_7*b5_7*b6_7*a_7^-2,

b0_7^-7*w_7^-1*b0_7^-1*w_7,

b1_7^-7*w_7^-1*b1_7^-1*w_7,

b2_7^-7*w_7^-1*b2_7^-1*w_7,

b3_7^-7*w_7^-1*b3_7^-1*w_7,

b4_7^-7*w_7^-1*b4_7^-1*w_7,

b5_7^-7*w_7^-1*b5_7^-1*w_7,

b6_7^-7*w_7^-1*b6_7^-1*w_7,

(b0_7*b1_7^-1*a_7^-1*u1_7)^3,

(b0_7*b2_7^-1*a_7^-1*u2_7)^3,

39



(b0_7*b3_7^-1*a_7^-1*u3_7)^3,

(b0_7*b1_7^-1*b2_7^-1*b3_7*a_7^-1*u1_7*u2_7)^3,

(b0_7*b1_7^-1*b3_7^-1*b4_7*a_7^-1*u1_7*u3_7)^3,

(b0_7*b2_7^-1*b3_7^-1*b5_7*a_7^-1*u2_7*u3_7)^3,

(b0_7*b1_7^-1*b2_7^-1*b4_7*b5_7*b6_7^-1*a_7^-1*u1_7*u2_7*u3_7)^3,

a_7^2*b_7^-1*u1_7*b_7*z_7^-3*b_7^-1*b0_7^-1*z_7^3*b_7*z_7^-1*u1_7,

a_7^2*b_7^-1*u2_7*b_7*z_7*b_7^-1*b0_7^-1*z_7^-1*b_7*z_7^-2*u2_7,

a_7^2*b_7^-1*u3_7*b_7*z_7^-2*b_7^-1*b0_7^-1*z_7^2*b_7*z_7^-3*u3_7];

G7:=F7/k7;

##############################################

#GL_2(Z)

Free6:=FreeGroup(3);

a6:=Free6.1;

b6:=Free6.2;

c6:=Free6.3;

R6:=[a6*b6*a6*b6^-1*a6^-1*b6^-1,

(a6*b6*a6)^4,

c6^2,

(c6*a6)^2,

(c6*b6)^2];

GL_2Z:=Free6/R6;

##############################################

#SL_2(Z)

S:=FreeGroup(2);

a:=S.1;

b:=S.2;

rels:=[a^4,

b^6,

a^2*b^-3];
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SL2:=S/rels;

##############################################

#SL_2(Z_2)

Free0:=FreeGroup(2);

a0:=Free0.1;

b0:=Free0.2;

R0:=[a0^3,

b0^2,

a0*b0^-1*a0*b0^-1];

SL_2Z_2:=Free0/R0;

##############################################

#SL_2(Z_3)

Free3:=FreeGroup(2);

a3:=Free3.1;

b3:=Free3.2;

R3:=[(a3*b3)^2*a3^-3,

a3^3*b3^-3];

SL_2Z_3:=Free3/R3;

##############################################

#SL_2(Z_5)

Free5:=FreeGroup(2);

a5:=Free5.1;

b5:=Free5.2;

R5:=[(a5*b5)^2*a5^-3,

a5^3*b5^-1];

SL_2Z_5:=Free5/R5;
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##############################################

#SL_2Zi

Free8:=FreeGroup(5);

a8:=Free8.1;

b8:=Free8.2;

c8:=Free8.3;

d8:=Free8.4;

e8:=Free8.5;

R8:=[b8*c8*b8^-1*c8^-1,

a8^2,

d8^3*a8^-1,

(b8*d8)^2*a8^-1,

(c8*d8)^2*a8^-1,

(e8*d8)^2*a8^-1,

(b8*e8)*a8^-1,

(c8*e8*d8)^3*a8^-1,

Comm(a8,b8),

Comm(a8,c8),

Comm(a8,d8),

Comm(a8,e8)];

SL_2Zi:=Free8/R8;

##############################################

#SL_2(w), w^3=-1

Free1:=FreeGroup(3);

a1:=Free1.1;

b1:=Free1.2;

c1:=Free1.3;

R1:=[a1^3*b1^-2,

(a1*b1)^2*c1^-3,

(c1^-1*a1*b1)^3*c1^3,

(c1*b1^-1*a1)^3*c1^3];

42



SL_2w:=Free1/R1;

##############################################

#SL_2(Z[sqrt(-5)]

Free9:=FreeGroup(6);

a9:=Free9.1;

b9:=Free9.2;

c9:=Free9.3;

d9:=Free9.4;

e9:=Free9.5;

f9:=Free9.6;

R9:=[a9^2,

b9*c9*b9^-1*c9^-1,

d9^2*a9^-1,

e9^2*a9^-1,

(b9*d9)^3*a9^-1,

(d9*e9)^2*a9^-1,

d9*c9*e9*c9^-1*a9^-1,

d9*f9*d9*b9*f9^-1*b9^-1*a9^-1,

c9*e9*c9^-1*e9^-1*f9^-1*b9*f9^-1*b9^-1*a9^-1,

Comm(a9,b9),

Comm(a9,c9),

Comm(a9,d9),

Comm(a9,e9),

Comm(a9,f9)];

SL_2Zneg5:=Free9/R9;

##############################################

#PSL_2(Z)

Free7:=FreeGroup(2);

a7:=Free7.1;

b7:=Free7.2;

R7:=[a7^2,
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b7^3];

PSL_2Z:=Free7/R7;

##############################################

The Algorithms

The first set of algorithms outlined below are those discussed in Section 3.1. Following

these are two algorithms that have been useful to (i) find presentations for finite

groups and (ii) simplify presentations when one is already given.

##############################################

#Input: Free group, relators, prime p

#Output: Dimension of H_1(G;F_p)

FirstHomologyCoefficients:=function(Freegroup,Relators,Prime)

local AbelInv, list, x;

AbleInv:=AbelianInvariants(Freegroup/Relators);

list:=[];

for x in AbelInv do

if x mod Prime = 0 then Add(list,x);

fi;

od;

return Size(list);

end;;

##############################################

#Input: Free group, relators, prime p

#Output: Dimension of Tor(H_1(G),F_p)

Tor:=function(Freegroup,Relators,Prime)

local AbelInv, list1, list2, x;

AbelInv:=AbelianInvariants(Freegroup/Relators);

list1:=[];

list2:=[];

for x in AbelInv do
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if x<>0 then Add(list1,x);

fi;

od;

for x in list1 do

if x mod Prime = 0 then Add(list2,1);

fi;

od;

return Sum(list2);

end;;

##############################################

#P-Primary Rank

#Output: P-Primary Rank of Fp Group

PrimePrimaryRank:=function(Freegroup,Relators,Prime)

local AbelInv, list1, list2, x;

AbelInv:=AbelianInvariants(Freegroup/Relators);

list1:=[];

list2:=[];

for x in AbelInv do

if x <> 0 then Add(list1,x);

fi;

od;

for x in list1 do

if x mod Prime = 0 then Add(list2,PadicValuation(x,Prime));

fi;

od;

return Sum(list2);

end;;

##############################################

#The (special) Word Problem

#Output: Reduced word

Reduce_Word:=function(Freegroup,Relators,TestWord,Sublist,Prime)

local Rel_P, GroupGen, comm, G, RG, OR;

45



Rel_P:=List(Relators,x->x^Prime);

GroupGen:=GeneratorsOfGroup(Freegroup);

comm:=ListX(GroupGen,Relators,Comm);

G:=Freegroup/Concatenation(comm,Rel_P,Sublist);

RG:=KBMAGRewritingSystem(G);

OR:=OptionsRecordOfKBMAGRewritingSystem(RG);

OR.maxeqns:=500000;

OR.tindyint:=100;

MakeConfluent(RG);

return ReducedWord(RG,TestWord);

end;;

##############################################

#Attempts to reduce a generating set

#Output: List of generators

FindBasis:=function(Freegroup,Relators,Prime,Sublist)

local Gen,TestWord,x,list;

list:=[];

Gen:=Sublist;

for x in Sublist do

TestWord:=Reduce_Word(Freegroup,Relators,x,

Difference(Gen,[x]),Prime);

Add(list,TestWord);

if IsOne(TestWord)=true then Gen:=Difference(Gen,[x]);

fi;

od;

return [Gen, Size(Gen), list];

end;;

##############################################

#Gives the estimate for H_2

#Output: Upper bound on dimension of H_2
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SecondHomologyCoefficients:=function(Freegroup, Relators, Prime,

Sublist)

local a,b,c,d,e,f,ff,RPrime;

f:=GeneratorsOfGroup(Freegroup);

ff:=ListX(f,f,Comm);

RPrime:=List(Relators,x->x^Prime);

a:=Tor(Freegroup,Relators,Prime);

b:=PrimePrimaryRank(Freegroup,Concatenation(Relators,ff),Prime);

c:=PrimePrimaryRank(Freegroup,Concatenation(RPrime,ff),Prime);

e:=FindBasis(Freegroup,Relators,Prime,Sublist);

d:=a+b-c+e[2];

return [e[1],d,e[3]];

end;;

##############################################

The next two algorithms are useful in finding an isomorphic finitely-presented

group from a finite group and for reducing the number of generators and relators

via Tietze transformations of a given finitely-presented group. The first algorithm,

PresentationOfFiniteGroup, receives as input a finite group G and outputs a

list {G′, F, R} where G′ is a finitely-presented group isomorphic to G, and

R→ F → G′ (4.1)

is a presentation of G′.

The second algorithm PresentationOfFpGroup takes as input a finitely-

presented group G and outputs a list {φ,G′, F, R} where φ is an isomorphism G→ G′

and

R→ F → G′ (4.2)

is a presentation of G′.

##############################################

#Presentation of a finite group

#Output: [Isomorphic Fp Group, Free Group, Relators]
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PresentationOfFiniteGroup:=function(FiniteGroup)

local Pres, Group, Freegroup, Relators, group;

Pres:=PresentationViaCosetTable(FiniteGroup);

TzGoGo(Pres);

Group:=FpGroupPresentation(Pres);

Freegroup:=FreeGroupOfFpGroup(Group);

Relators:=RelatorsOfFpGroup(Group);

group:=Freegroup/Relators;

return[group,Freegroup,Relators];

end;;

##############################################

#Simplified Presenation of a Fp Group

#Output: [("smaller") Isomorphic Fp group, Free Group, Relators]

PresentationOfFpGroup:=function(FpGroup)

local iso, range, Group, Freegroup, Relators;

iso:=IsomorphismSimplifiedFpGroup(FpGroup);

range:=Range(iso);

Group:=range;

Freegroup:=FreeGroupOfFpGroup(range);

Relators:=RelatorsOfFpGroup(range);

return[iso,Group,Freegroup,Relators];

end;;

##############################################

Example 4.0.1. A presentation for the symmetric group on five letters, which we

have denoted by Σ5, can be found using the following procedure on GAP.

gap> S5:=SymmetricGroup(5);

Sym( [ 1 .. 5 ] )
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gap> P:=PresentationOfFiniteGroup(S5);

#I there are 2 generators and 4 relators of total length 27

[ <fp group on the generators [ f1, f2 ]>,

<free group on the generators [ f1, f2 ]>,

[ f2^2, f1^5, f1^-1*f2*f1^-1*f2*f1^-1*f2*f1^-1*f2,

f1^2*f2*f1^-2*f2*f1^2*f2*f1^-2*f2 ] ]

Therefore Σ5 has a presentation 〈F |R〉 where F is the free group on {x, y} and

R = {y2, x5, (x−1y)4, (x2yx−2y)2} (4.3)

Example 4.0.2. As noted in Section 3.1.10, a presentation for SL2 (Z[1/7, ζ7]), where

ζ7 is primitive 7th root of unity is given in [Ant09]. As given above, this presentation

has 14 generators and 64 relators. We can find an isomorphic presentation with fewer

generators and relators using the following procedure on GAP.

First, we input a presentation for SL2 (Z[1/7, ζ7]) by letting F7 and k7 be given

as above to obtain:

gap> F7/k7;

<fp group on the generators [ f1, f2, f3, f4, f5, f6, f7, f8, f9,

f10, f11, f12, f13, f14 ]>

By using the PresentationOfFpGroup algorithm we can find an isomorphic pre-

sentation with fewer generators and relators.

gap> P:=PresentationOfFpGroup(F7/k7);

[ [ f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14 ] ->

[ f1, f2, f3, f4, f5, f1^-3*f8*f1^3*f5^-1, f1^-3*f8*f1^3, f8,

f1^3*f8*f1^-3, f1^-1*f8*f1, f1^2*f8*f1^-2, f1^-2*f8*f1^2,

f1*f8*f1^-1, f1^-2*f2*f1^-1*f3*f4 ],

<fp group on the generators [ f1, f2, f3, f4, f5, f8 ]>,

<free group on the generators [ f1, f2, f3, f4, f5, f8 ]>,

[ f1*f4*f1^-1*f4^-1, f3*f4*f3^-1*f4^-1, f2*f3*f2^-1*f3^-1,

f4*f5*f4*f5^-1,

f2*f5*f2*f5^-1, f1*f3*f1^-1*f3^-1, f5^4, f2*f4*f2^-1*f4^-1,

f1*f5*f1*f5^-1, f1*f2*f1^-1*f2^-1, f3*f5*f3*f5^-1, f1^7,

f8*f1^-1*f8*f1*f8^-1*f1^-1*f8^-1*f1,

f8*f1^-2*f8*f1^2*f8^-1*f1^-2*f8^-1*f1^2,
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f1^-3*f8*f1^-1*f5^-1*f8*f1^-1*f5^-1*f8*f1^3*f5,

f8*f1^-3*f8*f1^-2*f8^-2*f1^-1*f5^-1*f4*f5^-1*f1^-1*f8^-1*f4,

f8*f1^-1*f8^-2*f1^-1*f8*f5^-1*f1^3*f3*f5^-1*f1^-2*f8^-1*f3,

f8*f1^-1*f8*f1^-3*f8^-2*f1^-1*f2^-1*f5^-2*f1^-2*f8^-1*f2,

f8*f1^-3*f8*f1^3*f8^-1*f1^-3*f8^-1*f1^3,

f1^-1*f8^-7*f1*f3^-1*f1*f4^-1*f2^-1*f1*f8^-1*f1^-1*f2*f1^-1

*f3*f4,

f8^-7*f3^-1*f1*f4^-1*f2^-1*f1^2*f8^-1*f1^-3*f2*f3*f4,

f1^-3*f8^-7*f1^-1*f3^-1*f1^-2*f4^-1*f2^-1*f1^-1*f8^-1*f2*

f3*f4,

f1*f8^-7*f3^-1*f4^-1*f2^-1*f1^3*f8^-1*f1^-3*f2*f1^-1*f3*f4,

f1^3*f8^-7*f3^-1*f1^-2*f4^-1*f2^-1*f1^-2*f8^-1*f1*f2*f3*f4,

f1^2*f8*f1^-3*f8*f1^-3*f8*f1*f8*f1*f8*f1^3*f8*f1^-1*f8*f5^-2,

f1^-3*f8*f1^-1*f8^-1*f3^-1*f5^-1*f8*f1^-1*f8^-1*f1^-3*f3^-1*

f5^-1*f1^-3*f8*f1^-1*f8^-1*f1^-3*f3^-1*f5^-1,

f1^-1*f8^-1*f1^-2*f8*f1^3*f4^-1*f5^-1*f1^-1*f8^-1*f1^-2*f8*

f1^3*f4^-1*f5^-1*f1^-1*f8^-1*f1^-2*f8*f1^3*f4^-1*f5^-1,

f8^-1*f1^-3*f8*f1*f5^-1*f1^-2*f2*f8^-1*f1^-3*f8*f1^3*f2^-1*

f5^-1*f8^-1*f1^-3*f8*f1^3*f2^-1*f5^-1,

f8^-1*f1^-1*f8*f1^-2*f8*f1^-1*f8^-1*f5^-1*f1^3*f2*f3*f1^3*

f8^-1*f1*f8*f1^2*f8*f1*f8^-1*f2^-1*f5^-1*f3*f1^3*

f8^-1*f1*f8*f1^2*f8*f1*f8^-1*f2^-1*f5^-1*f3,

f8^-1*f1^-1*f8^-1*f1^-2*f8*f1^-2*f8*f1^-1*f2^-1*f1^-1*f5^-1*

f4*f1^-3*f8*f1^2*f8^-1*f1*f8^-1*f1^2*f8*f2^-1*f1^-2*

f5^-1*f4*f1^-1*f8^-1*f1^-2*f8*f1^3*f8^-1*f1^2*f8*f2^-1*

f1^-2*f5^-1*f4,

f8^-1*f1^3*f8^-1*f1^-1*f8*f1^-1*f8*f1*f5^-1*f1^-2*f4*f3*

f1^-3*f8*f1^-1*f8^-1*f1^2*f8*f1*f8^-1*f1*f4^-1*f5^-1*

f3*f1^-3*f8*f1^-1*f8^-1*f1^2*f8*f1*f8^-1*f1*f4^-1*

f5^-1*f3*f1^3,

f1*f8*f1^-3*f8^-1*f1^-3*f8*f1*f2^-1*f1*f5^-1*f3*f4*f1^-3*f8*

f1^-1*f8^-1*f1^-1*f8*f1^3*f8*f1^2*f8^-1*f1*f8^-1*f1^-1*

f2^-1*f5^-1*f3*f4*f1^-3*f8*f1^-1*f8^-1*f1^-1*f8*f1^3*

f8*f1^2*f8^-1*f1*f8^-1*f1^-1*f2^-1*f5^-1*f3*f4*f8^-1*

f1^2*f8*f1*f8^-1]]

This new presentation has a set of 6 generators with 32 relators,
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gap> GeneratorsOfGroup(P[2]);

[ f1, f2, f3, f4, f5, f8 ]

gap> Size(P[4]);

32

and the isomorphism between the presentations is given by

gap> P[1];

[ f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14 ] ->

[f1, f2, f3, f4, f5, f1^-3*f8*f1^3*f5^-1, f1^-3*f8*f1^3, f8,

f1^3*f8*f1^-3, f1^-1*f8*f1, f1^2*f8*f1^-2, f1^-2*f8*f1^2,

f1*f8*f1^-1, f1^-2*f2*f1^-1*f3*f4 ]

Iterating Algorithm 3.1.14

Here we illustrate the process of iterating Algorithm 3.1.14 and give the GAP output

for the group SL2(Z[1/5, ζ5]) at the prime p = 5 using the presentation given in

Example 3.1.19. We have denoted SL2(Z[1/5, ζ5]) by F/R.

gap> A:=SecondHomologyCoefficients(F,R,5,R);

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.
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#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

[ [ f1*f6^-5*f2^-1*f1^-1*f3^-1*f6*f3*f2,

f6*f1*f6*f1*f6*f1*f6*f1*f6*f1*f4^-2,

f4^-1*f6^-1*f3*f6*f1^-1*f6^-1*f1^-1*f6*f1*f6^-1*f4^-1*f1^-1*f3,

f2*f6*f1^2*f6^-2*f1^2*f6*f4^-1*f1^-1*f2*f4^-1*f6^-1,

f6*f1^-1*f6^-1*f3^-1*f1*f4^-1*f6*f1^-1*f6^-1*f4^-1*f1^-1*f3*f6*

f1^-1*f6^-1*f4^-1*f1^-1*f3,

f6*f1^2*f6^-1*f1^-1*f2^-1*f1^-1*f4^-1*f6*f1^2*f6^-1*f2^-1*

f1^-2*f4^-1*f6*f1^2*f6^-1*f2^-1*f1^-2*f4^-1 ], 1,

[ <identity ...>, <identity ...>, <identity ...>, <identity ...>,

<identity ...>, <identity ...>, <identity ...>,

<identity ...>, <identity ...>, <identity ...>,

<identity ...>, f1*f2^-1*f4*f1*f2^-1*f4^-1,

f1*f3*f6^-5*f3^-1*f2^-1*f1^-1*f6*f2, <identity ...>,

f1*f4^-1*f1^-1*f3*f4^-1*f6^-1*f3*f6*f1^-1*f6^-2*f1^-1*f6,

f1^2*f6*f4^-1*f1^-1*f2*f4^-1*f6^-1*f2*f6*f1^2*f6^-2,

f1*f3^-1*f4^-1*f6*f1^-1*f6^-1*f4^-1*f1^-1*f3*f6*f1^-1*
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f6^-1*f4^-1*f3*f1^-1*f6*f1^-1*f6^-1,

f1^2*f6*f1^2*f6^-1*f1*f2^-1*f4^-1*f6^-1*f1^-2*f6*f2^-1*f4^-1*

f6*f1*f3*f1*f3^-1*f6^-1*f2^-1*f4^-1, <identity ...> ] ]

gap> B:=SecondHomologyCoefficients(F,R,5,A[1]);

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

#WARNING: system is not confluent, so reductions may not be to

normal form.

[ [ f1*f6^-5*f2^-1*f1^-1*f3^-1*f6*f3*f2,

f6*f1*f6*f1*f6*f1*f6*f1*f6*f1*f4^-2,

f4^-1*f6^-1*f3*f6*f1^-1*f6^-1*f1^-1*f6*f1*f6^-1*f4^-1*f1^-1*f3,

f2*f6*f1^2*f6^-2*f1^2*f6*f4^-1*f1^-1*f2*f4^-1*f6^-1,

f6*f1^-1*f6^-1*f3^-1*f1*f4^-1*f6*f1^-1*f6^-1*f4^-1*f1^-1*f3*

f6*f1^-1*f6^-1*f4^-1*f1^-1*f3 ], 0,

[ f1^-1*f2*f4^-1*f1^-1*f2*f4^-3, f1*f4^-2*f6*f1*f6*f1*f6*f1

*f6*f1*f6, f1^-1*f3*f4*f1^-1*f3*f4^-1,

f1^-1*f2*f4*f1^-1*f2*f4^-1,

f1*f3^-1*f4^-1*f6*f1^-1*f6^-1*f4^-1*f1^-1*f3*f6*f1^-1*f6^-1*

f4^-1*f3*f1^-1*f6*f1^-1*f6^-1, <identity ...> ] ]

The first application of SecondHomologyCoefficients found the upper bound

dim H2(SL2(Z[1/5, ζ5]);F5) ≤ 5.

Running the algorithm a second time gave the result that H2(SL2(Z[1/5, ζ5]);F5) is

trivial.
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Appendix 2

In this appendix we collect from various sources the (co)homology of various linear

groups.

1. [Alp80]

a) Hi (Z[ω]) is annihilated by 24, i > 0, and

Hn (SL2(Z[ω]) =



Z n = 0

Z3 n = 1(4)

Z4 n = 2(4)

Z24 ⊕ Z6 n = 3(4)

0 n = 0(4)

2. [Ant99] (k = F3, A = Z[1/3, 3
√

1],Γ = congruence subgroup)

a) H∗(GL2(A)) = P (c2, c4)⊗ Λ(e1, e3)⊗ Λ(e′1, e
′
3)

b) H∗(GLn(A)) has torsion for n ≥ 27

c) H1(Γ) = Z3 ⊕ Z3 ⊕ (0 or Z2)

d) H2(Γ) = k⊕3 = F⊕3
3

e) H1(SL2(Z[ 3
√

1])) = Z3

f) H1(SL2(A)) = 0

g) H1(SL2(A); k) = 0

h) H2(SL2(Z[ 3
√

1])) = Z4

i) H2(SL2(A), k) = 0

j) H2(SL2(Z[ 3
√

1]); k) = k

k) H3(SL2(Z[ 3
√

1]); k) = H4(SL2(Z[ 3
√

1]); k) = k2

l) H2(Γ; k) = 0

m) H2(SL2(A); k) = 0

n) H3(Γ; k) = H4(Γ; k) = k3

o) H4(SL2(A); k) = k

p) H5(SL2(A); k) = 0
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q) H3(SL2(A); k) = k2

3. [Ant09]

a) H2

(
SL2(Z[1/5, 5

√
1]);F5

)
= 0

b) H2

(
GL2(Z[1/5, 5

√
1]);F5

)
= (F5)⊕4

4. [Bro94]

a) SL2(Fp) has periodic cohomology

5. [Knu96] (F a number field with characteristic not zero, r is the number of real

embeddings of F , and s is the number of conjugate pairs of complex embed-

dings)

a) Hk(SL2(F [t, t−1]);Q) ∼= Hk−1(F×;Q) where k ≥ 2r + 3s+ 2

b) H1(SL2(F [t, t−1])) = 0

c) SL2(F ) ↪→ SL2(F [t]) induces H∗(SL2(F )) ∼= H∗(SL2(F [t]))

d) H∗(Γ) ∼= H∗(F
×)

e) Hk(SL2(F [t, t−1]);Q) = Hk−1(Γ;Q) for k ≥ 2r + 3s+ 2

6. [Knu01]

a) Hi(SL2(Z)) = Hi(Z12) =


Z i = 0

Z12 i odd

0 i even

b) (p ≥ 5) H1(Z[1/p]) = 0

H2(SL2(Z[1/p])) =


Z(p−7)/6 ⊕ Z12 p = 1(12)

Z(p+1)/6 ⊕ Z12 p = 5(12)

Z(p−1)/6 ⊕ Z12 p = 7(12)

Z(p+7)/6 ⊕ Z12 p = 11(12)
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c) (i ≥ 2)

H2i(SL2(Z[1/p])) =


Z6 p = 1(12)

Z2 p = 5(12)

Z3 p = 7(12)

0 p = 11(12)

d) H i(SL2(Z[1/3])) =


0 i odd

Z⊕ Z4 i = 2

Z12 ⊕ Z4 i = 2j, j > 1

e) H i(SL2(Z[1/2])) =


0 i odd

Z⊕ Z3 i = 1

Z24 ⊕ Z3 i = 2j, j > 1

f) (k an infinite field) SL2(k) ↪→ SL2(k[t]) induces an isomorphism

H∗(SL2(k)) ∼= H∗(SL2(k[t]))

g) Hi(SL2(Q);Q) = 0, i > 2r + 3s + 1 where r is the number of real embed-

dings of k and s is the number conjugate pairs of complex embeddings of

k

h) H3(SL2(Q[t, t−1]);Q) = H2(Q×;Q)

i)

n Hn(SL3(Z))

12m+ 1 (Z2)6m

12m+ 2 (Z2)6m

12m+ 3 (Z2)6m+2

12m+ 4 (Z3)2 ⊕ (Z4)2 ⊕ (Z2)6m

12m+ 5 (Z2)6m+1

12m+ 6 (Z2)6m+4

12m+ 7 (Z2)6m+3

12m+ 8 (Z2)2 ⊕ (Z4)2 ⊕ (Z2)6m+1

12m+ 9 (Z2)6m+5

12m+ 10 (Z2)6m+5

12m+ 11 (Z2)6m+4

12m+ 12 (Z3)2 ⊕ (Z4)2 ⊕ (Z2)6m+5

j) (n ≥ 3) H2(SLn(k[t, t−1]) = H2(SLn(k))⊕ k×

k) (i = 2, 3) E2(R) ↪→ E2(R[t]) induces H∗(E2(R)) ∼= H∗(E2(R[t]))
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l) (i ≥ 1) Hi(SL2(Z[t])) is not finitely generated

7. [Knu08]

a) H2(SL2(Z[t, t−1])) is not finitely-presented

b) H2(SL2(F2[t])) = Λ2tF2[t]⊕ F2 ⊕ tF2[t]

c) Conjecture: For all i ≥ 2, Hi(SL2(Z[t, t−1])) is not finitely-presented.
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Appendix 3

Abelianization

Given a group G, the commutator subgroup of G, denoted [G,G], is the group gen-

erated by all elements of the form [g1, g2] = g−1
1 g−1

2 g1g2. The abelianization of G

(also described as G made abelian) is the quotient group Gab := G/[G,G] and is

the largest quotient of G which is abelian. That is, if N is a normal subgroup of G

and G/N is abelian then [G,G] ⊂ N .

In category-theoretic terms, the abelianization satisfies the following universal

property. Let φ : G → Gab be the quotient map and f : G → H be a group

homomorphism with H abelian. Then there exists a unique group homomorphism

g : Gab → H such that

G
φ //

f !!CCCCCCCC Gab

g

��
H

(4.4)

commutes.

As stated in Example 2.1.7, H1(G) ∼= Gab, which is the main application of the

abelianization of G with which we are concerned in this work. Let G have a finite

presentation

〈F |R〉 = 〈x1, x2, . . . xn | r1, r2, . . . , rk〉. (4.5)

We describe a technique that uses 〈F |R〉 to calculate Gab.

Theorem 4.0.3. Let A be an m × n matrix with entries in Z. There exists an Z-

invertible m×m matrix S and an Z-invertible n× n matrix T such that the product

SAT is the m× n matrix

a1 0 0 · · · 0

0 a2 0 · · · 0

0 0
. . . 0

... ar
...

0
. . .

0 · · · 0


, (4.6)

where ai divides ai+1 for 1 ≤ i < r.
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The matrix SAT is called the Smith Normal Form of A and the diagonal entries

ai are the invariant factors. The proof utilizes three types of operations similar to

Gaussian elimination. Let us denote the rows of A by ri and the columns by cj for

1 ≤ i ≤ n and 1 ≤ j ≤ m.

• Interchange rows rk and rl or interchange columns ck and cl

• Multiply rk or ck by −1

• Replace rk by rk + qrl or ck by ck + qcl for q ∈ Z and k 6= l

As is the case for Gaussian elimination over a field, performing one of these oper-

ations on A corresponds to multiplying by an appropriate elementary matrix; row

operations correspond to multiplying on the left and column operations correspond

to multiplying on the right. A proof of the theorem, presented as an algorithm for

reducing a matrix to Smith Normal Form, can be found in [HEO05, p 343].

To relate the Smith Normal Form of an integer matrix to the abelianization of a

group G, we recall the following definitions and facts.

Definition 4.0.4. Let G have finite presentation 〈F |R〉, where F is a rank s free

group and R is a set of t relators. We define the abelianized presentation of G,

denoted Ab〈F |R〉, to be the quotient of F by the relators in R made abelian. That

is, if r ∈ R is the word r = fn1
1 fn2

2 · · · fns
s in F , where each fi ∈ F and ni ∈ Z, then

the corresponding relator in Ab〈F |R〉 is

Ab(r) = n1f1 + n2f2 + · · ·+ nsfs (4.7)

It is relatively straightforward to show that G/[G,G] is isomorphic to Ab〈F |R〉.
The task now is to deduce the abelian invariants of G/[G,G] as guaranteed by the

Fundamental Theorem of Finitely Generated Abelian Groups [DF04, p 158]. Since

G/[G,G] ∼= Ab〈F |R〉 it follows that G/[G,G] can be expressed as the quotient of

Zs by the subgroup K generated by the coefficients of the sums in Ab(R). More

explicitly, there is the exact sequence

Zs → G/[G,G]→ 0 (4.8)

which we extend in the following way. Regard R as a set of generators of Zt. Define

a homomorphism from ϕ : Zt → Zs that sends

r 7→ Ab(r) = n1f1 + n2f2 + · · ·+ nsfs. (4.9)
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The matrix corresponding to ϕ is the relation matrix associated to 〈F |R〉. The

column and row operations to put this matrix into Smith Normal Form are equivalent

to linear automorphisms of Zs and Zt respectively.

Thus there is the commutative diagram with exact rows

Zs
ϕ //

∼=
��

Zt //

∼=
��

G/[G,G]

∼=
��

// 0

Zs
ϕ̄ // Zt // Zt/Imϕ̄ // 0,

(4.10)

where ϕ̄ is ϕ composed on the left and right with the appropriate linear automorphism

applied to Zs and Zt. We deduce the structure of G/[G,G] from the invariant factors

of the matrix associated to ϕ̄, which is the Smith Normal Form matrix associated to

ϕ. That is,

G/[G,G] ∼= Zt/ (〈a1〉 ⊕ · · · ⊕ 〈as〉) , (4.11)

where each ai is a non-negative integer which is an invariant factor of the matrix

associated to ϕ̄.

Note 4.0.5. A similar theorem holds for finitely generated modules over any principal

ideal domain. This is due to the Structure Theorem for PIDs [DF04, p 462]; the

Fundamental Theorem of Finitely Generated Abelian Groups is a special case of this

theorem

Example 4.0.6. Suppose a group G has presentation

〈F |R〉 = 〈x, y, z | (xy)2, (xz)−1x3, (xy2z−1)2〉. (4.12)

Then

Ab〈F |R〉 = 〈x, y, z | 2x+ 2y, 2x− z, 2x+ 4x− 2z〉 (4.13)

Therefore G/[G,G] is the quotient of Z3 by the subgroup generated by

{(2, 2, 0), (2, 0,−1), (2, 4,−2)}. (4.14)

Putting the matrix 2 2 0

2 0 −1

2 4 −2

 (4.15)
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into Smith Normal Form gives 1 0 0

0 2 0

0 0 6

 , (4.16)

and we conclude that G/[G,G] ∼= Z2 ⊕ Z6.

Spectral Sequences

Here we give the basic notions of a spectral sequence as used in this dissertation. We

do not explain the various ways that a spectral sequence can arise (filtrations or exact

couples) nor give examples, instead we cite [McC01] where proofs, examples, and a

large number of spectral sequences are analyzed in detail.

Definition 4.0.7. A spectral sequence {Er, d} is a sequence of bimodules Er
p,q,

for r = 0, 1, 2, . . . and p, q ∈ Z, each of which is equipped with a differential dr of

bidegree (−r, r − 1) such that Er+1 ∼= H(Er, dr) for each r.

In the definition above, the spectral sequence is of homological type. A co-

homological type spectral sequence is similar, though, as expected, the differential

has bidegree (r, 1− r). If we impose a further assumption that Er
p,q = 0 for p, q < 0

then it is clear that for fixed p and q that Er
p,q becomes fixed for r large. We denote

this limiting group by E∞p,q.

Definition 4.0.8. A spectral sequence is said to converge to a graded, filtered

object Hn if when

1. 0 ⊂ F 0
n ⊂ · · · ⊂ F n

n = Hn is the filtration of Hn,

2. the stable terms E∞p,n−p are isomorphic to the successive quotients F p
n/F

p−1
n in

the filtration above.

Note 4.0.9. If the ground ring is taken to be a field then the modules discussed

above are actually vector spaces. Therefore the extension problems associated with

finding the convergent object Hn become trivial. In this case,

Hn
∼=
⊕
p+q=n

E∞p,q. (4.17)

The following spectral sequence is used in this work.
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Theorem 4.0.10. [Bro94, p 171] Let 1 → H → G → Q → 1 be an exact sequence

groups and let M be a G-module. Then there is a spectral sequence of the form

E2
p,q
∼= Hp (Q,Hq(H,M))→ Hp+q(G,M). (4.18)

Copyright c© Joshua D. Roberts, 2010.
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