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ABSTRACT OF DISSERTATION

Compactness of Isoresonant Potentials

Brüning considered sets of isospectral Schrödinger operators with smooth real po-
tentials on a compact manifold of dimension three. He showed the set of potentials
associated to an isospectral set is compact in the topology of smooth functions by re-
lating the spectrum to the trace of the heat semi-group. Similarly, we can consider the
resonances of Schrodinger operators with real valued potentials on Euclidean space of
whose support lies inside a ball of fixed radius that generate the same resonances as
some fixed Schrödinger operator, an “isoresonant” set of potentials. This isoresonant
set of potentials is also compact in the topology of smooth functions for dimensions
one and three. The basis of the result stems from the relation of a regularized wave
trace to the resonances via the Poisson formula (also known as the Melrose trace for-
mula). The second link is the small-t asymptotic expansion of the regularized wave
trace whose coefficients are integrals of the potential function and its derivatives.
For an isoresonant set these coefficients are equal due to the Poisson formula. The
equivalence of coefficients allows us to uniformly bound the potential functions and
their derivatives with respect to the isoresonant set. Finally, taking a sequence of
functions in the isoresonant set we use the uniform bounds to construct a convergent
subsequence using the Arzelà-Ascoli theorem.
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operator
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Chapter 1 Introduction

Schrödinger operators are a topic of interest in both functional analysis and math-
ematical physics. We begin by considering the setting of a d-dimensional smooth
Riemannian manifold M with a fixed metric g. If we pair the Laplace-Beltrami op-
erator −∆g and a real-valued smooth potential function V ∈ C∞0 (M) then can look
at the Schrödinger operator HV = −∆g + V .

We can characterize the operator and thus the potential function with the spec-
trum of the operator, σ(HV ), which consists of all z ∈ C such that HV − z is not
invertible. If M is compact then σ(HV ) consists of only real eigenvalues with fi-
nite multiplicities and an accumulation point at infinity. Fixing a reference potential
V0 ∈ C∞(M) lets us define an isopectral set of potential functions, Iso(V0), as the set
of all potentials V such that σ(HV ) = σ(HV0) (including multiplicity).

This characterization allows for discussion about properties of these isopectral
sets. Brüning [2] showed that for low dimension that such an isopectral set is compact
with the following theorem.

Theorem 1.0.1. (Brüning [2]) Let M be a smooth compact manifold with d ≤ 3 and
fixed metric g. Fix V0 ∈ C∞(M) and consider the operator

HV0 = −∆g + V0.

The set
{V ∈ C∞(M) |σ(HV ) = σ(HV0)}

is compact in the C∞ topology.

Theorem 1.0.1 shows that for any isospectral sequence there will be a convergent
subsequence in a Fréchet metric generated by the Sobolev semi-norms. Brüning uses
the trace of the heat semi-group as the main tool in his proof to relate the eigenvalues
of HV to a small t expansion involving the Sobolev semi-norms of V .

A basic example of such a family is the rotations of any fixed potential on the
sphere, S2. Another notable family of such isospectral functions are the solutions to
the Korteweg-de Vries equation on S1 [2]. A smooth potential on V0 ∈ C∞(S1) can
be used as the initial data and flowed along KdV to yield a one parameter family of
smooth potential functions {Vt(x)}. The Lax pair property of the KdV then gives
that σ(HV0) = σ(HVt) for all t.

A natural attempt to extend this result is to move the setting from a compact
manifold M to Rd. There are several roadblocks that occur when trying to make
this transition. The first is that the spectrum, σ(HV ), no longer consist only of
eigenvalues but also contains essential spectrum from [0,∞). A second problem is
the heat invariants play a central role in the compactness argument, and the heat
semi-group is not longer trace class on Rd.

The first problem will be addressed chapter 4 by finding an analog for the eigenval-
ues in resonances, which are the poles of the meromorphic continuation of RHV (λ) =
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(HV − λ2)−1 in the lower half plane. Note that here we have set z = λ2 and thus
RHV (λ) is meromorphic in the upper half plane with the poles being the square roots
of eigenvalues lying on the positive imaginary axis. This will necessitate using the
trace of the wave group instead of the trace of the heat semi-group as there is a
relation between the trace of the wave group and resonances through the Poisson
formula.

This leads to addressing the issue of the trace class of the heat semi-group and wave
group. In both cases it can be shown that the regularized heat or wave operator are
both trace class on Rd. In chapter 3 we will derive a representation of the regularized
heat trace from using the work of Hitrik and Polterovich [13]. This will be useful as
we can relate the heat invariants to the wave invariants in odd dimension through
the use of the wave to heat transform.

In chapter 5 we’ll have enough tools available to implement the Brüning/Donnelly
mechanics and prove the central theorem.

Theorem 1.0.2. Let V ∈ C∞0 (Rd) with d = 1, 3, the operator

HV = −∆ + V,

and fix r > 0 and V0 ∈ C∞0 (Br(0)). Then the set

{V ∈ C∞0 (Br(0)) |HV is isoresonant to HV0 .}

is compact in the C∞ topology.
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Chapter 2 Background: An Overview of the Isospectral Case

We begin by reviewing compactness results for smooth real potentials of isospectral
Schrödinger operators on a smooth compact manifold without boundary. We will
first give a definition for an isospectral set of potentials followed by a short discussion
of the heat semi-group and its trace. We will then give a statement and proof of the
compactness result given by Theorem 1.0.1.

2.1 Isospectral Set

We define HV = −∆g + V to be the Schrödinger Operator with potential living on
the smooth compact d dimensional Riemannian manifold M with a fixed metric g.
The operator −∆g is the positive Laplace-Beltrami operator whose representation in
local coordinates is give by

−∆g = − 1√
det g

∂

∂xi
gij
√

det g
∂

∂xj

while the potential V is an element of C∞0 (M).
Since M is a compact d dimensional manifold, then σ(HV ) consists only of real,

countable eigenvalues of finite multiplicity with a single accumulation point at infinity.
For example, Let M = S2 then the eigenvalues of −∆ are given by the formula
λ = l(l + 1) for all l ∈ N0 with multiplicity 2l + 1.

We can now define what it means for two potentials to be isospectral.

Definition 2.1.1. Isospectral Set
Let M be a smooth compact d dimensional manifold without boundary with fixed

metric g and fix V0 ∈ C∞(M). We define the isospectral set of V0 to be

Iso(V0) = {V ∈ C∞(M)|σ(HV ) = σ(HV0)}.

2.2 Heat Semi-Group

If we consider the heat equation given by

∂tu+HV u = 0 (2.1)

with initial data u(x, 0) = u0(x). Then we can construct a solution using the one
parameter semi-group, e−HV t, that sends a solution to the heat equation at time t0
to a solution at time t0 + t. In particular,

u(x, t) = e−HV tu0(x) (2.2)

solves Equation 2.1. We call e−HV t the heat semi-group or the heat operator.
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2.3 Heat Trace

If we naively wanted to consider the trace of the operator HV we would quickly see
that for {λi} = σ(HV )

lim
k→∞

k∑
i=1

λi =∞.

However if we consider the trace of the heat semi-group the functional calculus
gives that the eigenvalues of e−HV t are given by e−λit where λi ∈ σ(HV )

We then get that the trace is given by

Tr(e−HV t) = lim
k→∞

k∑
i=1

e−λit (2.3)

which converges for every t > 0. We then consider what happens as t goes to zero.
Gilkey [1] gives that

Tr(e−HV t) ∼ (4πt)−
d
2

∞∑
j=0

ajt
j as t→ 0. (2.4)

The aj’s depend on the potential V , the metric g, and their derivatives. The
coefficents are given in Brüning [2] and Donnelly [3] as

a0 = V ol(M)

a1 =

∫
M

(
V +

K

3

)

a2 =

∫
M

(
V 2 + V f(Dαg) + h(Dαg)

)
aj = cj

∫
M

|∇j−2V |2 +

j∑
k=0

∑
α∈Nk0
|α|=l(k)

∫
M

P k
α1

(V )P k
α2

(V ) · · ·P k
αk

(V )

(2.5)

where K is the curvature and f and h are functions of the derivatives of the metric
g. The last formula being used for j ≥ 3. The terms P k

αi
are non-linear differential

operators acting on V with coefficients dependent on the derivatives of the the metric.
We can observe the non-linearity in the a0, a1, and a3 coefficients when we set V = 0.
The constraint l(k) ≤ 2(j − k). The P k

αi
’s also have the following constraints,

OrdP k
αi
≤ (j − k)

k∑
i=1

OrdP k
αi
≤ 2(j − k).

(2.6)
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These bounds on the OrdP k
αi

are an improvement by Donnelly [3] over Brüning’s
[2] bounds of j − 3 and 2(j − 3) respectively.

2.4 Uniform Boundedness of Isospectral Potential Semi-Norms.

In order to show compactness in the C∞ topology we will need uniform bounds in each
of the Sobolev semi-norms for all V in our isospectral set. We do this by assuming
we have uniform bounds on the j − 3 norm and then using the small t asymptotics
to show uniform bounds on the j − 2 norm.

Theorem 2.4.1. Let M be a smooth d-dimensional compact manifold and fix V0 ∈
C∞(M). Suppose ‖V ‖m,2 ≤ Cm for some m > d

2
− 2 and for all V ∈ Iso(V0). Then

‖V ‖m,2 ≤ Cm for all m and V ∈ Iso(V0). Furthermore, for d ≤ 3, ‖V ‖m,2 ≤ Cm for
all m.

The last line of the theorem is evident from the fact that 0 > d
2
− 2 for d ≤ 3,

so we only need a bound on the L2 norm of V . Applying Cauchy-Schwarz to the a2

term of Equation 2.5 gives

‖V ‖2
2 = a2 −

∫
M

(V f(Dαg) + h(Dαg)) ≤ C + ‖V ‖2‖f‖2 (2.7)

which implies ‖V ‖2 is bounded as it has the form x2−bx−c ≤ 0 with fixed b, c ≥ 0. For
the first piece of the theorem we will need to consider the remaining heat invariants
given again by the formula

aj = cj

∫
|∇j−2V |2 +

j∑
k=0

∑
α∈Nk0
|α|≤l(k)

∫
P k
α1

(V )P k
α2

(V ) · · ·P k
αk

(V ) (2.8)

where P k
αi

is a differential operator on V and the term l(k) ≤ 2(j− k). We also recall

the constraints OrdP k
αi
≤ min{j−3, j−k} and

k∑
i=1

OrdP k
αi
≤ min{2(j−3), 2(j−k)}.

If we assume an apriori bound on the j− 3 norm then a rearrangement gives that
for each j we have the bound F

‖V ‖2
j−2,2 ≤ C

1 +

j∑
k=0

∑
α∈Nk0
|α|≤l(k)

∫
|P k
α1

(V )P k
α2

(V ) · · ·P k
αk

(V )|


where C > 0 is independent of our choice of V from the isospectral set. The strategy
is to then show each term ∫

|P k
α1

(V )P k
α2

(V ) · · ·P k
αk

(V )|

5



is bounded by a constant independent of our choice of V (d = 1) or by a multiple of
1 + ‖V ‖βj−2,2 with β < 2 (d ≥ 3). Together these bounds yield a uniform bound on
‖V ‖j−2,2 for each j. Furthermore, the bounding of this integral over the product of
P k
αi

’s is what necessitates the condition m > d
2
− 2 in the theorem.

We begin with the case d = 1. Here we will use 2.4.1 in conjunction with Hölder’s
inequality to obtain our result.

Lemma 2.4.1. Let u ∈ C1
0(R) then

‖u‖∞ ≤ C‖u‖1,2

Proof. This follows from Theorem 6.0.3 with d = 1.

Proposition 2.4.1. Let d = 1 and ‖V ‖j−3,2 ≤M ,V ∈ IsoRes(V0) then∫
|P k
α1

(V )P k
α2

(V ) · · ·P k
αk

(V )| ≤ C

Where C depends only on M and j

Proof: We use the bounds on the order of the P k
αi

terms to conclude that there
are at most 2 terms with order greater than j − 4, and those terms have order j − 3.
Lemma 2.4.1 will then allow us to get the desired bounds.

Case 1: Assume 0 terms of order j − 3

Then using the Lemma for each i

|P k
αi

(V )| ≤ C‖P k
αi

(V )‖1,2 ≤ C‖V ‖j−3,2

This gives ∫
|P k
α1

(V )P k
α2

(V ) · · ·P k
αk

(V )| ≤ CkMk ≤ CjM j

(WLOG we may assume C,M ≥ max(1,m(Br))

Case 2: Assume 1 term is of order j − 3

Using the results from Case 1 with the Hölder inequality we have

∫
|P k
α1

(V )P k
α2

(V ) · · ·P k
αk

(V )| ≤ Ck−1Mk−1

∫
|P k
α1

(V )|

≤ Ck−1Mk−1m(Br)‖V ‖j−3,2 (2.9)

≤ CjM j

Case 3: Assume 2 terms of order j − 3

Again using the results of Case 1 and the Hölder inequality gives

6



∫
|P k
α1

(V )P k
α2

(V ) · · ·P k
αk

(V )| ≤ Ck−2Mk−2

∫
|P k
α1

(V )P k
α2

(V )|

≤ Ck−2Mk−2‖V ‖2
j−3,2 (2.10)

≤ CjM j

Next we consider the case d = 3 and use a proof given by Donnelly [3] which
requires reordering the P k

αi
(V ) terms. Fix k and use the truncated notation Pi =

P k
αi

(V ). Then reorder the terms based on the ordPi and define T in the following
way

T = P1P2 · · ·PlPl+1 · · ·Pk
where the ordering and l are chosen s.t.

i ≤ l⇒ d > 2(j − 3− ordPi)
i > l⇒ d ≤ 2(j − 3− ordPi)

(2.11)

We will separate
∫
|T | using the generalized Hölder’s inequality and apply the

Sobolev embedding theorem to get an estimate. Note that the conditions imposed by
this reordering determines which case of the Sobolev embedding theorem for p = 2
and k = (j − ordPi − 3) is appropriate.

Proposition 2.4.2. (Lemma 4.6, Donnelly [3]) If d ≥ 3, j > d
2

+ 1, and ‖V ‖j−3,2 ≤
C1, then ∫

|T | ≤ C2‖V ‖βj−2,2

where β < 2 and C2 depends on C1

Proof. We will look at the possible values of l and for each case the general strategy
will be to use the generalized Hölder’s inequality to show∫

|T | ≤ C
k∏
i=1

‖Pi‖ri

with
k∑
i=1

1
ri

= 1.

For i > l we use two Sobolev inequalities. When d < 2(j− 3− ordPi) we will use
embedding for L∞ [Theorem 6.0.3],

‖Pi‖∞ ≤ C1(1 + max
|α≤ordPi

‖DαV ‖∞) ≤ C2‖V ‖j−3,2.

and when when d = 2(j − 3− ordPi) we will use

7



‖Pi‖ri ≤ C1‖V ‖ordPi,ri ≤ C2‖V ‖j−3,2

where 2 ≤ ri <∞ [Theorem 6.0.4]. These two inequalities give the bound∫
|T | ≤ C

k∏
i=1

‖Pi‖ri ≤ C̃‖V ‖k−lj−3,2

l∏
i=1

‖Pi‖ri

The remainder of the proof is to show that for 1 ≤ i ≤ l we can choose ri to apply
the appropriate Sobolev inequality.

Case 0: When l = 0 the estimate holds for β = 0 using the above method.

Case 1: Letting l = 1 implies d > 2(j − ordP1 − 3), so setting

r1 =
2d

d− 2(j − ordP1 − 3)

yields
‖P1‖r1 ≤ C‖P1‖j−ordP1−3,2 ≤ C‖V ‖j−3,2

by the generalized Sobolev inequality. The only condition on j is 2 ≤ 2d
d−2(j−ordP1−3)

or j − 3 ≥ ordP1 which is true for every Pi and j.

Since 1
r1
≤ 1

2
, we can choose the remaining ri’s to meet the condition

k∑
i=1

1
ri

= 1.

So for l = 1 we have the bound with β = 0.

Case 2: Assume l = 2.

If k = l = 2 then we know for i = 1, 2 that ordPi ≤ j − 3, so Hölder’s inequality
gives ∫

|P1P2| ≤ ‖P1‖2‖P2‖2 ≤ C‖V ‖2
j−3,2

Assuming k > 2, if ordP1 and ordP2 are such that r1 and r2 (as chosen in case
l = 1) satisfy

1

r1

+
1

r2

< 1

then we proceed as in the case l = 1 and apply the generalized Hölder’s inequality to
get the result with β = 0.

Now assume 1
r1

+ 1
r2

= 1. Since ordPi ≤ j−3, this implies ordP1 = ordP2 = j−3
and thus r1 = r2 = 2. We may then apply the generalized Hölder’s inequality to get.∫

|T | ≤ C‖P1‖r1+ε

k∏
i=2

‖Pi‖ri

Where ε > 0 and ri for i > 3 are chosen to satisfy the Hölder condition. Further-
more if we choose ε such that r1 + ε < 2d

d−2
then the general Sobolev inequality gives

that

8



‖P1‖r1+εi ≤ C1‖P1‖1,2 ≤ C2‖V ‖j−2,2

So we get the result with β = 1.

Case 3: Assume l ≥ 3 and d > 2(j − ordPi − 2) for i = 1, 2

Let ri be as in case 1 and 2 and set

si =
2d

d− 2(j − ordPi − 2)

Lp interpolation gives that for 0 < εi < 1 there exists a 0 < βi < 1 s.t.

‖Pi‖ri+εi ≤ ‖Pi‖βiri ‖Pi‖
1−βi
si

Thus using the generalized Hölder’s inequality we have

∫
|T | ≤ C‖P1‖r1+ε1‖P2‖r2+ε2

k∏
i=3

‖Pi‖ri

≤ ‖P1‖β1r1 ‖P1‖1−β1
s1
‖P2‖β2r2 ‖P2‖1−β2

s2

k∏
i=3

‖Pi‖j−ordPi−3,2

≤ C‖V ‖β1j−3,2‖P1‖1−β1
s1
‖V ‖β1j−3‖P2‖1−β2

s2

k∏
i=3

‖V ‖j−3,2

≤ C‖P1‖1−β1
s1
‖P2‖1−β2

s2

≤ C‖V ‖βj−2,2

(2.12)

Where β < 2. ri may be chosen arbitrarily for i > l and as in case 1 for i ≤ l, so in
order to satisfy the Hölder condition we require.

1

r1 + ε1

+
1

r2 + ε2

+
l∑

i=3

1

ri
< 1

Which, for sufficiently large ε1, ε2 < 1 is implied by

1

s1

+
1

s2

+
l∑

i=3

1

ri
< 1

Substituting for si and ri gives
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2∑
i=1

d− 2(j − ordPi − 2)

2d
+

l∑
i=3

d− 2(j − ordPi − 3)

2d
< 1

which may be rewritten as

(d− 2j − 6)l + 2
l∑

i=1

ordPi < 2d+ 4

Because
l∑

i=1

ordPi ≤ 2(j − k) it is sufficient to show

(d− 2j − 6)l + 4(j − k) < 2d+ 4

Using assumption l ≥ 3 lets us rewrite the inequality as

d

2
+ 3− 2k − 4

l − 2
< j

Then k ≥ l ≥ 3 gives 2k−4
l−2
≥ 2k−4

k−2
= 2 so it suffices for

d

2
+ 1 < j

Case 4: l ≥ 3 and d ≤ 2(j − ordPi − 2) for P1 and P2.

For 2 ≤ s <∞ we have the embedding

‖Pi‖s ≤ C‖Pi‖j−ordPi−2,2 ≤ C‖V ‖j−2,2.

Then Lp interpolation gives for 2 < t < s

‖Pi‖t ≤ ‖Pi‖βis ‖Pi‖
1−βi
2 .

We may take t to be arbitrarily large reducing the Hölder condition to

l∑
i=3

1

ri
< 1.

If l = 3 the condition is met as r3 ≥ 2, so we assume l ≥ 4. Substituting for ri
and rewriting the inequality we get

(l − 2)(d− 2j + 6) + 2
l∑

i=3

ordPi < 2d.

Using the inequality
l∑

i=3

ordPi ≤
k∑
i=1

ordPi ≤ 2(j − k) gives the sufficient condition

(l − 2)(d− 2j + 6) + 4(j − k) < 2d
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which can be recast as

(l − 4)d+ 6(l − 2)− 4k < (2l − 8)j.

If l = 4 then the inequality reduces to 12−4k < 0 which always holds as 4 = l ≤ k.
For l ≥ 5 we rewrite the inequality as

d

2
+ 3

l − 4

l − 4
+ 3

2

l − 4
− 2k

l − 4
< j

which reduces to

d

2
+ 3− (2k − 6)

l − 4
< j.

Since k ≥ l it is sufficient for the following series of inequalities to hold:

d

2
+ 3− (2k − 6)

k − 4
< j

d

2
+ 1− (2)

k − 4
< j

d

2
+ 1 < j.

(2.13)

This gives the condition on j.

2.5 Compactness of Isospectral Sets

In order to prove the compactness result we still need to show that an arbitrary
sequence {Vi} ⊂ Iso(V0) has a convergent subsequence.

Definition 2.5.1. Let Vr,d be the set

Vr,d = {V ∈ C∞0 (Rd)| supp V ⊂ Br(0), ‖V ‖Wj,2
< Cj , ∀j}

Theorem 2.4.1 gives that Iso(V0) ⊂ Vr,d for suitable choice of r and d. It will be
shown in section 5.2 that Vr,d is compact. It then only remains to be shown that the
limit potential is still in the isospectral set.

Proposition 2.5.1. Let M a smooth compact manifold, and fix V0 ∈ C∞0 (M). Let
{Vi} ⊂ Iso(V0) s.t. Vi → V in C∞0 (M). Then V ∈ Iso(V0).

Proof:

Let A be a self-adjoint operator then λ ∈ σ(A) iff there exists a sequence ui ⊂
D(A) s.t. ‖ui‖ = 1 and ‖(A − λ)ui‖ → 0 [9]. So we only need come up with such a
sequence.

11



Let λ0 ∈ σ(HV0) then for each i there is a ui ∈ ker(HVi − λ0) s.t. ui 6= 0 with
‖ui‖2 = 1

However,

(−∆ + V − λ0)ui = (−∆ + V − Vi + Vi − λ0)ui = [V − Vi]ui
which implies

‖(−∆ + V − λ0)ui‖2 ≤ ‖V − Vi‖∞‖u‖2

so ‖(−∆ + V − λ0)ui‖2 → 0 as i→∞. Thus λ0 ∈ σ(Hv)

Now suppose λ0 ∈ σ(HV ). If for ε > 0 there is a u ∈ D(A) such that ‖(A−λ)u‖ ≤
ε‖u‖ then A has spectrum inside the interval [λ−ε, λ+ε] [9]. Choose u ∈ ker(HV−λ0)
and let ε > 0 be given. Then ∃N s.t. i > N implies ‖V − Vi‖∞ ≤ ε. Thus,

‖(HVi − λ0)u‖2 = ‖(HV − λ0 + V − Vi)u‖2

= ‖(V − Vi)u‖2

≤ ‖V − Vi‖∞‖u‖2

≤ ε‖u‖2

(2.14)

So σ(HV0) ∩ [λ0 − ε, λ0 + ε] 6= ∅. This is true for each ε > 0 which implies
λ0 ∈ σ(HV0). Therefore we get that σ(HV ) = σ(HV0), which gives the final result of
Theorem 1.0.1 restated below.

Theorem 2.5.1. (Brüning [2]/Donnelly [3]) Let M be a smooth compact manifold
with d ≤ 3 and fixed metric g. Fix V0 ∈ C∞(M) and consider the operator

HV0 = −∆g + V0.

The set
{V ∈ C∞(M) |σ(HV ) = σ(HV0)}

is compact in the C∞ topology.

12



Chapter 3 Heat Trace Expansions in Rd

In this chapter we will show that the regularized heat operator is trace class, define a
regularized heat trace, and give an explicit form to the terms in the heat invariants.
This new form for the heat invariants will be useful in determining the form of the
wave invariants presented in chapter 4 as the they are related through the wave to
heat transform.

3.1 Heat Trace Expansions in Rd

The Gilkey [1] [3] formula give the heat invariants on a compact manifold as

aj = cj

∫
|∇j−2V |2 +

j∑
k=0

∑
α∈Nk0
|α|≤l(k)

∫
P k
α1

(V )P k
α2

(V ) · · ·P k
αk

(V )

Where the terms P k
αi

are differential operators acting on the potential V and
derivatives of the metric, g, of the manifold. Similarly, the constraint l(k) is affected
by the derivatives of the metric. If we consider the regularized heat trace in Rd we
explicitly determine the terms P k

αi
and l(k).

We then ask the question if similar asymptotics can be derived for Rd. Unfortu-
nately the heat semi-group e−HV t is not trace class on Rd. Instead we must regularize
the heat operator in order to take a trace and obtain small t asymptotics.

Proposition 3.1.1. The operator e−tHV − e−tH0 is trace class on Rd for d ≤ 3.

Proof. Using Duhamel’s formula we write the operator e−tHV − e−tH0 as

e−tHV − e−tH0 =
(
e−tHV etH0 − I

)
e−tH0

=

t∫
0

d

ds

[
e−sHV esH0

]
dse−tH0

=

t∫
0

−Hve
−sHV esH0 + e−sHVH0e

sH0dse−tH0

=

t∫
0

e−sHV [H0 −HV ]esH0dse−tH0

= −
t∫

0

e−sHV V e−(t−s)H0ds

(3.1)
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We now use Duhamel’s formula to analyze the operator in the trace norm, ‖ · ‖Tr.
Note that the trace norm is more typically written as ‖·‖1, however this notation will
be reserved for the Lp norms. The same will be true for the Hilbert-Schmidt norm.

‖e−tHV − e−tH0‖Tr = ‖
t∫

0

e−sHV V e−(t−s)H0ds‖Tr

≤
t∫

0

‖e−sHV χsupp V V e−(t−s)H0‖1 ds

(3.2)

The integrand then has the following estimates where ‖·‖HS is the Hilbert-Schmidt
norm:

‖e−sHV χsupp V V e−(t−s)H0‖Tr ≤ ‖e−sHV χsupp V ‖HS‖V e−(t−s)H0‖HS (3.3)

The integral kernel for V e−(t−s)H0 is 1

(4π(t−s))
d
2
e
−|x−y|2
4(t−s) V (y).So,

V e−(t−s)H0f(x) =
1

(4π(t− s)) d2

∫
Rd

V (y)e
−|x−y|2
4(t−s) f(y) dy (3.4)

Simon [?] gives that

‖V e−(t−s)H0‖2
HS = ‖ 1

(4π(t− s)) d2
e
−|x−y|2
4(t−s) V (y)‖2

L2(Rd×Rd)

=

∫
1

(4π(t− s))d
e
−|x−y|2
2(t−s) V 2(y) dxdy

=
‖V ‖2

2

(4π(t− s))d

∫
e
−|x|2
2(t−s) dx

=
2
d
2‖V ‖2

2

(4π)d(t− s) d2

∫
e−|z|

2

dz

=
‖V ‖2

2

2
3d
2 (π(t− s)) d2

(3.5)

Using the change of coordinates z = x

(2(t−s))
1
2

. Thus we get:

‖V e−(t−s)H0‖HS =
‖V ‖2

2
3d
4 (π(t− s)) d4

. (3.6)

Let KV,s(x, y) be the integral kernel of e−sHV then applying the result by Simon
gives:

‖e−sHV χsupp V ‖2
HS = ‖KV,s(x, y)χsupp V ‖2

2 (3.7)
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We then use the upper bound on elliptic operators for L2(Rd) given by Davies[4]
as

KV,s(x, y) ≤ c

s
d
2

e
−b|x−y|2

s (3.8)

Where c and b < 1 are positive constants. This gives for E = m(supp V ):

‖e−sHV χsupp V ‖2
HS ≤

c2

sd

∫
e
−2b|x−y|2

s χsupp V (y) dxdy

=
E2c2

sd

∫
e
−2b|x|2

s dx

=
E2c2

(2bs)
d
2

∫
e−|z|

2

dz

=
E2c2π

d
2

(2bs)
d
2

.

(3.9)

This yields

‖e−sHV χsupp V ‖2
HS ≤

Ecπ
d
4

(2bs)
d
4

. (3.10)

We then combine our two estimates to get

‖e−tHV − e−tH0‖Tr ≤
t∫

0

‖V ‖2

2
3d
4 (π(t− s)) d4

Ecπ
d
4

(2bs)
d
4

ds

=
Ec‖V ‖2

2db
d
4

t∫
0

1

(t− s) d4 (s)
d
4

ds

=
Ec‖V ‖2

2db
d
4

t

t
d
2

1∫
0

1

(1− λ)
d
4 (λ)

d
4

dλ

(3.11)

Since d < 3 the integral in λ is finite and we have the bound:

‖e−tHV − e−tH0‖Tr < CE‖V ‖2
t

t
d
2

(3.12)

Definition 3.1.1. Regularized Heat Trace
Let HV = −∆ + V with H0 = −∆. Given the heat semi-group e−tHV we define

the Regularized Heat Trace as

Tr(e−tHV − e−tH0)
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Lemma 3.1.1. (Hitrik-Poltorovich) for V ∈ C∞0 (Rd,R) the regularized heat trace on
Rd is given by the formula

Tr(e−tHV − e−tH0) ∼ 1

(4πt)
d
2

∞∑
j=1

ajt
j, t→ 0+

where

aj =

∫
Rd

aj(x)dx

aj(x) = (−1)j
j−1∑
m=0

(
j − 1 + d

2

m+ d
2

)
(−∆y + V (y))m+j(|x− y|2m)|y=x

4mm!(m+ j)!

In the next proposition we will be using k-tuples of multi-indices with specific
constraints. For this purpose we define the following set

Aj,k =

α = (α1, · · · , αk)

∣∣∣∣∣∣∣∣
αi∈Nd0 for 1≤i≤k

|αi|≤j−k,∑k
i=1 |αi|=2(j−k)∑k

i=1 α
i
l is even for each l.


Proposition 3.1.2. Let V ∈ C∞0 (Rd,R) then the jthcoefficient of the regularized heat
trace expansion, aj, is given by

a1 = −
∫
V

a2 = c2

∫
V 2

a3 = c3

∫
|∇V |2 + c̃3

∫
V 3.

(3.13)

For j > 3 we have the general formula:

aj = cj

∫
|∇j−2V |2 +

j∑
k=3

∑
α∈Aj,k

cα

∫
Dα1

(V )Dα2

(V ) · · ·Dαk(V ). (3.14)

Proof. We will use the Hitrik-Polterovich expansion for to get a formula for aj’s.
Looking at the formula for aj(x) from 3.1.1 the first term a1 is an immediate conse-
quence of setting j = 0. For the terms a2 and a3 it will suffice to show the aj general
formula. We begin by considering the following pieced of the Hitrik-Polterovich for-
mula:

(−∆y + V (y))m+j(|x− y|2m)|y=x.
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Fix 0 ≤ k ≤ m+ j and define the function F k
i as

F k
i =

{
V (y) i ≤ k

−∆y i > k

then

(−∆y + V (y))m+j =

j+m∑
k=0

∑
σ∈Sj+m

1

k!(j +m− k)!
F k
σ(1)F

k
σ(2) · · ·F k

σ(j+m)

where Sj+m is the symmetric group and the combinatorial term k!(j +m− k)! is
used to account that the potentials (and Laplacians) maybe reordered among them-
selves. We then want pass the Laplacians to the right using the Leibniz rule.

−∆V = (−∆V )− 2(∇V ) · ∇ − V∆

We will then be left with a sum of terms with a model term being

Dα1

V Dα2

V · · ·DαlV Dβ

where
|α1|+ |α2|+ · · ·+ |αl|+ |β| = 2(j +m− k)

We then look for a formula for (Dβ|x− y|2m)|y=x. In particular we want to know
for which β is (Dβ|x− y|2m)|y=x 6= 0. First we observe that

∂

∂yi
|x− y|2m = 2m|x− y|2m−2(yi − xi)

so we conclude that if βi is odd then (Dβ|x− y|2m)|y=x = 0 due to the remaining
(yi − xi) term. Next we observe that

∂

∂yj

∂

∂yi
|x− y|2m = 2m(2m− 2)|x− y|2m−4(yi − xi)(yj − xi) + 2m|x− y|2m−2δij.

Setting i = j gives

∂2

∂y2
i

|x− y|2m = 2m(2m− 2)|x− y|2m−2 + 2m|x− y|2m−2

= (2m)(2m− 1)|x− y|2m−2.

(3.15)

Induction on m then provides the following formula

(Dβ
y |x− y|2m)|y=x

{
(2m)! |β| = 2m,βi even ∀i
0 otherwise

So the expansion is a sum of terms of the form

CDα1

V Dα2

V · · ·DαkV
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where
k∑
i=1

|αi| = 2(j − k) and
∑
i

αij is even for each j. Turning back to the aj terms

we see that they are a sum of integrals of the form∫
Dα1

V Dα2

V · · ·DαkV

where integration by parts provides that we may assume |αi| ≤ (j−k). We then may
look at the various cases of k

Case k = 0: this implies|β| = j +m > 2m so the associated term is zero.

Case k = 1: The integral ∫
DαV = 0

as V is smooth and compactly supported.

Case k = 2: Here we may assume then integration by parts and the fact that∑
i

αij is even gives us α1 = α2∫
Dα1

V Dα2

V =

∫
|Dα1

V |2

Case k ≥ 3 Again using integration by parts we have∫
Dα1

V Dα2

V · · ·DαkV

with the added constraint that |αi| ≤ j − k for each i. Thus the jth coefficient in the
regularized heat trace expansion has the form

aj = cj

∫
|∇j−2V |2 +

j∑
k=3

∑
α∈Aj,k

cα

∫
Dα1

(V )Dα2

(V ) · · ·Dαk(V ). (3.16)
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Chapter 4 Resonances and the Wave Trace

This chapter will provide most of the tools and objects from which we will construct
our compactness result in chapter 5. We will first discuss the resonances of HV which
are the analogs to the eigenvalues from the isospectral case. Next we will discuss the
wave operator and a regularized wave trace and extract the wave invariants which
are essentially the heat invariants. The well known Poisson formula will be used to
relate the wave trace to the resonances.

4.1 Resonances

Fix a real valued V ∈ C∞0 (Rd) , then for λ ∈ C with Imλ > 0 and λ2 6∈ σ(HV ) we
define the resolvent operator

RV (λ) = (−∆ + V − λ2)−1 : L2(Rd)→ H2(Rd). (4.1)

The function RV is operator valued and meromorphic on the upper half plane of
C. We can then extend RV to all of C with the meromorphic continuation R̃V where
R̃V |Imλ>0(λ) = RV (λ) and for Imλ ≤ 0 R̃V takes L2

comp → H2
loc. The poles of R̃V

are called the resonances with multiplicity mRV (λ) given by:

mλi(V ) = Rank

−1

2πi

∫
γ

RHV (λ)2λdλ

 . (4.2)

where γ is a closed curve about λi containing no other resonances.

Definition 4.1.1. Let V ∈ C∞0 (Rd) and define res(V ) = {(λi,mRV (λi))} where the
ordered pair (λi,mRV (λi)) is a resonance associated with the Schrödinger operator
−∆ + V and its multiplicity, mRV (λi) .

4.2 Isoresonant Criteria

We now define a set of isoresonant potentials using 4.1.1.

Definition 4.2.1.

IsoRes(V0, r, d) = {V ∈ C∞0 (Rd,R)|supp V ⊂ Br(0), res(V ) = res(V0)}

Fixing r > 0 is necessary so that we may avoid translations of potentials (which
will give not compact isoresonant sets) and maintain control over the size of the
support of the potentials.
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4.3 Compactness of the Isoresonant Set

The central theorem will be an analog of Theorem 1.0.1, which we will state here.

Theorem 4.3.1. Let r > 0 be fixed, d = 1, 3 and Br(0) ⊂ Rd. Fix V0 ∈ C∞0 (Br(0),R).
Then the set IsoRes(V0, r, d) is compact with respect to the C∞ topology.

In order to prove the theorem we will need to show that a sequence {Vn} ⊂
IsoRes(V0, r, d) has a convergent subsequence in the C∞ topology. We will do this
by building a Frechet metric from the L2 semi-norms of the derivatives, showing
that IsoRes(V0, r, d) is equicontinuous in every derivative, and then applying Arzaela-
Ascoli to extract a convergent subsequence in the Frechet metric.

To show equicontinuity we will need uniform bounds on the L∞ norms of each
derivative, which we will acquire from uniform bounds on the L2 norms of each
derivative using an embedding theorem. These uniform L2 bounds are a result of
the invariance of the wave traces with respect to IsoRes(V0, r, d) through the Poisson
formula for resonances and the relation of the wave invariants to the heat invariants
of the the operators −∆ + Vn. The heat invariants are used to provide the bounds.

4.4 Strongly Continuous Wave Group

We begin the discussion of the wave trace with a short review of the wave group.
Consider the equation

∂ttu+ (−∆ + V )u = 0 (*)

with initial data u(0) = u0 and ∂tu(0) = u1

Then WV (t) is the strongly continuous one parameter unitary group that takes
the solution at time 0 to the solution at time t.

WV (t)(u0(x), u1(x))T = (u(x, t), ∂tu(x, t))T

The infinitesimal generator of WV (t) given by LV .

d

dt
WV (t)(u0(x), u1(x))T =

d

dt
(u(t, x), ∂tu(t, x))T

LV (u(t, x), ∂tu(t, x)) = (∂tu(t, x)), [∆− V (x)]u(t, x))

LV =

 0 1

∆− V 0


(4.3)

We denote the case V = 0 as L0. Then the operator LV − L0 is given by

LV − L0 =

[
0 0
−V 0

]
. (4.4)
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The wave group, WV (t), is not a trace class operator, however once regularized
WV (t)−W0(t) is trace class in a sense of distribution. For any ρ(t) ∈ C∞0 (R) and a
sufficiently large s (independent of ρ(t))∫

ρ(t)Tr (WV (t)−W0(t)) dt < C‖ρ‖s,2.

The regularized wave trace also has a small-t asymptotic expansion. The coef-
ficents in this expansion, labelled wj, are the wave invariants. The following well
known theorem is due to Melrose [7].

Theorem 4.4.1. Let d be odd and V ∈ C∞0 (Rd,R). Then the operator WV (t)−W0(t)
is trace class and has the small-t expansions:

for d = 1

Tr(Wv(t)−W0(t)) ∼
∞∑
j=1

wj|t|2j−d (4.5)

for d ≥ 3 odd

Tr(Wv(t)−W0(t)) ∼
d−1
2∑
j=1

wjδ
(d−1−2j)(t) +

∞∑
j= d+1

2

wj|t|2j−d. (4.6)

In Proposition 4.5.3 the wave invariants, wj, will be shown to be a constant
multiple of the heat invariants using the wave to heat transform.

4.4.1 Duhamel’s principle

The integral kernel of WV (t) is not known, however we may use Duhamel’s principle
to expand the difference WV (t) −W0(t) as a sum of integrals over W0(t), LV − L0

and a remainder term.
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WV (t)−W0(t) = [WV (t)W0(−t)− 1]W0(t)

=

∫
ds

d

ds
[WV (s)W0(t− s)]

=

∫
ds

d

ds
[WV (s)]W0(t− s) +WV (s)

d

ds
[W0(t− s)]

=

∫
dsLVWV (s)W0(t− s)−WV (s)L0W0(t− s)

=

∫
dsWV (s)LVW0(t− s)−WV (s)L0W0(t− s)

=

∫
dsWV (s) [LV − L0]W0(t− s)

(4.7)

Recursion of the formula m times yields

WV (t)−W0(t) =
m∑
i=1

∫
dsi · · · ds1W0(s1) [LV − L0]

i−1∏
j=1

(W0(sj+1 − sj) [LV − L0])W0(t− si)

+

∫
dsi+1 · · · ds1WV (s1) [LV − L0]

i∏
j=1

(W0(sj+1 − sj) [LV − L0])W0(t− si+1)

(4.8)

4.4.2 Integral Kernel for the Wave Equation with Potential

Given initial data u0(x) and u1(x) there exists an integral kernel KV (x, y, t) satisfying
,

KV (x, y, 0) = 0

∂tKV (x, y, t)|t=0 = δ(x− y) (4.9)

[∂2
t + (−∆x + Vx)](KV (x, y, t) = 0

such that.

u(x, t) =

∫
∂tKV (x, y, t)u0(y)dy +

∫
KV (x, y, t)u1(y)dy
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solves (∗).
Taking the Fourier transform of (∗) gives

∂ttû(ε) + |ε|2û(ε) = −V̂ u(ε) (∗̂)

which gives the integral kernels K̂V (x, y, t), ∂tK̂V (x, y, t). For V = 0 we have

K̂0(ε, η, t) = δ(ε+ η)
sin |ε|t
|ε|

∂tK̂0(ε, η, t) = δ(ε+ η) cos |ε|t

(4.10)

This allows us to recover K0(x, y, t) and ∂tK0(x, y, t) by taking the inverse trans-
form.

4.4.3 Integral Kernel of the Wave Group

Given a the wave group WV (t) we consider the integral kernel K(x, y, t) such that

WV (t)(u0(x), u1(x))T =

∫
Rd
KV (x, y, t)(u0(y), u1(y))Tdy = (u(x, t), ∂tu(x, t))T

We denote the fundamental solution as KV (x, y, t), ∂tKV (x, y, t) such that

u(x, t) =

∫
Rd
∂tKV (x, y, t)u0(y) +KV (x, y, t)u1(y)dy

Thus

∂tu(x, t) =

∫
Rd
∂ttKV (x, y, t)u0(y) + ∂tKV (x, y, t)u1(y)dy

which gives

KV (x, y, t) =

 ∂tKV (x, y, t) KV (x, y, t)

(∆− V )KV (x, y, t) ∂tKV (x, y, t)


4.5 Wave Trace

4.5.1 Wave Trace Expansion

In order to write down a formula for the regularized wave trace we will need a new
operation ? which is similar to, but not a convolution.

Definition 4.5.1. We define the operation ? as

B1 ? B2(x, y) =

∫
B1(x, z)B2(z, y)dz
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Proposition 4.5.1. The operation ? is associative.

((B1 ? B2) ? B3)(x, y) =

∫
(B1 ? B2)(x, z1)B3(z1, y) dz1

=

∫ ∫
B1(x, z2)B2(z2, z1)B3(z1, y) dz2dz1

=

∫
B1(x, z2)

∫
B2(z2, z1)B3(z1, y) dz1dz2

=

∫
B1(x, z2)(B2 ? B3)(z2, y)dz2

= (B1 ? (B2 ? B3))(x, y)

(4.11)

Given the associativity of ? we will use the notation
?m∏
i=1

Bi to mean

?m∏
i=1

Bi = B1 ? B2 ? · · · ? Bm−1 ? Bm

We now consider the wave trace

Tr(WV (t)−W0(t)) = Tr

 t∫
0

dsWV (s) [LV − L0]W0(t− s)



=

t∫
0

ds Tr (WV (s) [LV − L0]W0(t− s))

(4.12)

The mth term from the recursion of Duhamel’s forumula (Equation 4.8) is

t∫
0

sm−1∫
0

ds1 · · · dsm Tr

(
W0(s1) [Lv − L0]

m−1∏
i=1

[W0(si+1 − si) [Lv − L0]]W0(t− sm)

)

=

t∫
0

sm−1∫
0

ds1 · · · dsm
∫
Rd

dx tr (Km(x, x, si))

z

(4.13)

where Km is the relevant integral kernel. We know the formula for K0 from subsec-
tion 4.4.3. Now define Ki

0 = K0(si+1 − si) and assume
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Km = (−1)m


K0

0 ?

(
?(m−1)∏

i=1

(V Ki
0)

)
? (V ∂tK

m
0 ) K0

0 ?

(
?(m−1)∏

i=1

(V Ki
0)

)
? (V Km

0 )

∂tK
0
0 ?

(
?(m−1)∏

i=1

(V Ki
0)

)
? (V ∂tK

m
0 ) ∂tK

0
0 ?

(
?(m−1)∏

i=1

(V Ki
0)

)
? (V Km

0 )


Then

Km+1 =

[
∂tK

−1
0 K−1

0

∆K−1
0 ∂K−1

0

]
?

[
0 0
−V 0

]
Km

= (−1)m
[
∂tK

−1
0 K−1

0

∆K−1
0 ∂K−1

0

]
?

[
0 0
−V 0

]


K0
0 ?

(
?(m−1)∏

i=1

(V Ki
0)

)
? (V ∂tK

m
0 ) K0

0 ?

(
?(m−1)∏

i=1

(V Ki
0)

)
? (V Km

0 )

∂tK
0
0 ?

(
?(m−1)∏

i=1

(V Ki
0)

)
? (V ∂tK

m
0 ) ∂tK

0
0 ?

(
?(m−1)∏

i=1

(V Ki
0)

)
? (V Km

0 )



= (−1)m+1

[
∂tK

−1
0 K−1

0

∆K−1
0 ∂K−1

0

]

?

 0 0

V K0
0 ?

?(m−1)∏
i=1

(V Ki
0) ? (V ∂tK

m
0 ) V K0

0 ?
?(m−1)∏

i=1

(V Ki
0) ? (V Km

0 )



= (−1)m+1


K−1

0 ?

(
?(m−1)∏

i=1

(V Ki
0)

)
? (V ∂tK

m
0 ) K−1

0 ?

(
?(m−1)∏

i=1

(V Ki
0)

)
? (V Km

0 )

∂tK
−1
0 ?

(
?(m−1)∏

i=1

(V Ki
0)

)
? (V ∂tK

m
0 ) ∂tK

−1
0 ?

(
?(m−1)∏

i=1

(V Ki
0)

)
? (V Km

0 )


(4.14)

Renumbering the superscript i gives

Km+1 = (−1)m+1

 K0
0 ?

(
?m∏
i=1

(V Ki
0)

)
? (V ∂tK

m
0 ) K0

0 ?

(
?m∏
i=1

(V Ki
0)

)
? (V Km

0 )

∂tK
0
0 ?

(
?m∏
i=1

(V Ki
0)

)
? (V ∂tK

m
0 ) ∂tK

0
0 ?

(
?m∏
i=1

(V Ki
0)

)
? (V Km

0 )


Then the integrand of the mth term is

tr(Km) = (−1)m

K0
0 ?

?(m−1)∏
i=1

(V Ki
0) ? (V ∂tK

m
0 ) + ∂tK

0
0 ?

?(m−1)∏
i=1

(V Ki
0) ? (V Km

0 )
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Yielding

Tr(WV (t)−W0(t)) =

∞∑
m=1

(−1)m
∫
Rd

t∫
0

sm−1∫
0

ds1 · · · dsm

K0
0 ?

?(m−1)∏
i=1

(V Ki
0) ? (V ∂tK

m
0 )

+∂tK
0
0 ?

?(m−1)∏
i=1

(V Ki
0) ? (V Km

0 )

 (x, x)dx

(4.15)

4.5.2 Fourier Transform Formulas

The next section will require some results of how the Fourier transform interacts with
the ? operation. We will consider the Fourier transform with V ∈ C∞0 (Rd,R)

(B0 ? V B1 ? · · · ? V Bm)̂

Lemma 4.5.1.

B̂1 ? B2(ε, η) =

∫
Rd
B̂1(ε,−φ)B̂2(φ, η)dφ

Proof.

B̂1 ? B2(ε, η) =

∫
R2n

e−iε·xe−iη·yB1 ? B2(x, y) dxdy

=

∫
R3n

e−iε·xe−iη·yB1(x, z)B2(z, y)dxdydz

=

∫
R7n

e−iε·xe−iη·yeiµ·xeiγ·yeiφ1·zeiφ2·zB̂1(µ, φ1)

B̂2(φ2, γ)dxdydzdγdµdφ1dφ2

=

∫
R7n

e−i(ε−µ)·xe−i(η−γ)·yei(φ1−φ2)·zB̂1(µ, φ1)

B̂2(φ2, γ)dxdydzdγdµdφ1dφ2

=

∫
R4n

δ(ε− µ)δ(η − γ)δ(φ1 − φ2)B̂1(µ, φ1)

B̂2(φ2, γ)dγdµdφ1dφ2

=

∫
Rd
B̂1(ε,−φ2)B̂2(φ2, η)dφ2

(4.16)
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Lemma 4.5.2.

(B0 ? V B1 ? · · · ? V Bm)̂ =

∫
Rn−1

B̂0(ε,−γ1)B̂1(γ1 − θ1,−γ2) · · ·

B̂m(γm − θm, η)
m∏
i=1

V (θi)dγidθi

Proof. Proceeding by induction we assume

(B0?V B1?· · ·?V Bm−1)̂ =

∫
R(m−1)n

B̂0(ε,−γ1)V̂ B1(γ1,−γ2) · · · V̂ Bm−1(γm−1, η)
m−1∏
i=1

dγi

Then recursion of the formula given by Proposition 1 yields

(B0 ? V B1 ? · · · ? V Bm)̂ =

∫
R(m−1)n

B̂0(ε,−γ1)V̂ B1(γ1,−γ2) · · ·

(V B−1 ? V Bm)̂ (γm−1, η)
m−1∏
i=1

dγi

=

∫
Rnm

B̂0(ε,−γ1)V̂ B1(γ1,−γ2) · · ·

V̂ Bm−1(γm−1,−γm)V̂ Bm(γm, η)
m∏
i=1

dγi

(4.17)

Using the Fourier transform identity

f̂ g(ε) =

∫
Rd
f(ε− θ)g(θ)dθ

we get

(B0 ? V B1 ? · · · ? V Bm)̂ =

∫
R2n

B̂0(ε,−γ1)B̂1(γ1 − θ1,−γ2) · · ·

B̂m(γm − θn, η)
m∏
i=1

V (θi)dγidθi
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Proposition 4.5.2. The mth term in the recursion formula for Tr(WV (t) −W0(t))
is given by

m∏
k=1

∫ sk+1

0

dsk

∫
Rd
dε

sin(|ε|(t− sm + s1))

|ε|

(∫
Rd(m−1)

V̂ (−
m−1∑
j=1

θj)

m−1∏
i=1

sin(|ε−
i∑

j=1

θj|(si+1 − si))

|ε−
i∑

j=1

θj|
V̂ (θi)dθi


with sm+1 = t.

Proof. Along with the formula from Proposition 2 we use the substitutions

B̂0(α, β) = ∂tK̂0(α, β, s1) = δ(α + β) cos(|α|s1)

B̂i(α, β) = K̂0(α, β, si − si+1) =
1

|α|
δ(α + β) sin(|α|(si+1 − si))

B̂m(α, β) = K̂0(α, β, (t− s1)) =
1

|α|
δ(α + β) sin(|α|(t− sm))

(4.18)

which gives

∫
R2dm

δ(ε−γ1) cos(|ε|s1)
m∏
i=1

1

|γi − θi|
δ(γi−θi−γi+1) sin(|γi−θi|(si+1−si))V̂ (θi)dγidθi

with γd+1 = η and sm+1 = t. Next we integrate over the γ′is and θn to get the string
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of equalities.

γ1 = ε

γ2 = γ1 − θ1 = ε− θ1

...

γi = γi−1 − θi = ε−
i∑

j=1

θj

...

η = ε−
m∑
j=1

θj

(4.19)

Setting ε = η and integrating over ε

∫
Rmd

cos(|ε|s1)
sin(|ε|(t− sm))

|ε|
V̂ (−

m−1∑
j=1

θj)
m−1∏
i=1

sin(|ε−
i∑

j=1

θj|(si+1 − si))

|ε−
i∑

j=1

θj|
V̂ (θi)dθidε

We then integrate over the si’s.

m∏
k=1

∫ sk+1

0

dsk

∫
Rd

cos(|ε|s1)
sin(|ε|(t− sn))

|ε|
V̂ (−

m−1∑
j=1

θj)

m−1∏
i=1

sin(|ε−
i∑

j=1

θj|(si+1 − si))

|ε−
i∑

j=1

θj|
V̂ (θi)dθidε
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Similarly if we take

B̂0(α, β) = K̂0(α, β, (t− s1)) =
1

|α|
δ(α + β) sin(|α|s1)

B̂i(α, β) = K̂0(α, β, si − si+1) =
1

|α|
δ(α + β) sin(|α|(si+1 − si))

B̂n(α, β) = ∂tK̂0(α, β, t− sn) = δ(α + β) cos(|α|sn)

(4.20)

We get

m∏
k=1

∫ sk+1

0

dsk

∫
Rmd

cos(|ε|(t− sm))
sin(|ε|s1)

|ε|
V̂ (−

m−1∑
j=1

θj)

m−1∏
i=1

sin(|ε−
i∑

j=1

θj|(si+1 − si))

|ε−
i∑

j=1

θj|
V̂ (θi)dθidε

The full formula for the mth term is then
m∏

k=1

∫ sk+1

0

dsk

∫
Rd

∫
Rd(m−1)

cos(|ε|s1)
sin(|ε|(t− sm))

|ε|
V̂ (−

m−1∑
j=1

θj)

m−1∏
i=1

sin(|ε−
i∑

j=1

θj |(si+1 − si))

|ε−
i∑

j=1

θj |
V̂ (θi)dθi

+

∫
Rd(m−1)

cos(|ε|(t− sm))
sin(|ε|s1)

|ε|
V̂ (−

m−1∑
j=1

θj)

m−1∏
i=1

sin(|ε−
i∑

j=1

θj |(si+1 − si))

|ε−
i∑

j=1

θj |
V̂ (θi)dθi

 dε

(4.21)

Factoring we get

m∏
k=1

∫ sk+1

0

dsk

∫
Rd

dε

(
cos(|ε|s1)

sin(|ε|(t− sm))

|ε|
+ cos(|ε|(t− sm))

sin(|ε|s1)

|ε|

)


∫
Rd(m−1)

V̂ (−
m−1∑
j=1

θj)

m−1∏
i=1

sin(|ε−
i∑

j=1

θj |(si+1 − si))

|ε−
i∑

j=1

θj |
V̂ (θi)dθi


(4.22)
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which gives

m∏
k=1

∫ sk+1

0

dsk

∫
Rd

dε
sin(|ε|(t− sm + s1))

|ε|

∫
Rd(m−1)

V̂ (−
m−1∑
j=1

θj)

m−1∏
i=1

sin(|ε−
i∑

j=1

θj |(si+1 − si))

|ε−
i∑

j=1

θj |
V̂ (θi)dθi



4.5.3 Terms in the expansion for odd dimension

We want to show that the terms given by the formula in 4.5.2 correspond with the
terms of the small t asymptotics of the wave trace. Ultimately we will do this with
the wave to heat transform for odd dimension, but here we will calculate the first
term for odd dimension, and show that the second term in the case of d = 3 contains
only higher order t terms.

Let m = 1 and d be odd the the first term is given as

∫ t

0

ds

∫
Rd

dε
sin(|ε|t)
|ε|

V̂ (0) = tV̂ (0)

∫
Rd

dε
sin(|ε|t)
|ε|

= ωd−1tV̂ (0)

∞∫
0

dr rd−2 sin(rt)

= i2ωd−1tV̂ (0)

∞∫
0

dr rd−2(eirt − e−irt)

= i2ωd−1tV̂ (0)

∞∫
−∞

dr rd−2eirt

= (−1)
d−3
2 2ωd−1V̂ (0)t

∞∫
−∞

dr
dd−2

dtd−2
(eirt)

(4.23)

The above integral doesn’t converge, so we must consider it as a tempered distri-
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bution. Take φ(t) ∈ S(R) and consider the inner product.

〈t
∞∫

−∞

dr
dd−2

dtd−2
(eirt), φ(t)〉 = 〈δ(d−2)(t), tφ(t)〉

= (tφ(t))(d−2)|t=0

= φ(d−3)(0)

(4.24)

So we get (in the sense of distribution)

(−1)
d−3
2 2ωd−1V̂ (0)t

∞∫
−∞

dr
dd−2

dtd−2
(eirt) = (−1)

d−3
2 2ωd−1V̂ (0)δ(d−3)(t)

= (−1)
d−3
2 2ωd−1

∫
Rd

V (x) dx

 δ(d−3)(t)

(4.25)

which is the first term in the small t asymptotics of the wave trace.

Next we will compute the second term in the d = 3 case so we may see it is of order
|t| and show the general strategy for computing the higher order terms. Let m = 2
and d = 3 the formula gives

t∫
0

ds2

s2∫
0

ds1

∫
R3

∫
R3

dεdθ
sin(|ε|(t− (s2 − s1)))

|ε|
sin(|ε− θ|(s2 − s1))

|ε− θ|
V̂ (θ)V̂ (−θ) (4.26)

We first observe that for ψ(x) = −x)

V̂ (θ)V̂ (−θ) =

∫
R3

∫
R3

e−iθ(x−y)V (x)V (y) dxdy = (V ∗ V ◦ ψ)̂(θ). (4.27)

Using this formula and a change of variables we can rewrite the integral as

t∫
0

ds2

∫ s2

0

ds1

∫
R3

dε

∫
R3

dθ(t− (s2 − s1))(s2 − s1)
sin(|ε|(t− (s2 − s1))

|ε|(t− (s2 − s1))

sin(|θ|(s2 − s1))

|θ|(s2 − s1)
(V ∗ V ◦ ψ)̂(ε+ θ)

(4.28)
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s̃2 = s1 − s2

s̃1 = s1 + s2

t∫
0

ds̃2

2t−s̃2∫
s̃2

ds̃1

∫
R3

dε

∫
R3

dθ(t− s̃2)(s̃2)
sin(|ε|(t− s̃2)

|ε|(t− s̃2)

sin(|θ|s̃2)

|θ|s̃2

(V ∗V ◦ψ)̂(ε+θ) (4.29)

Integrate w.r.t to s̃1

t∫
0

ds̃2

∫
R3

dε

∫
R3

dθ 2(t− s̃2)2(s̃2)
sin(|ε|(t− s̃2)

|ε|(t− s̃2)

sin(|θ|s̃2)

|θ|s̃2

(V ∗ V ◦ ψ)̂(ε+ θ) (4.30)

Now we represent the sinc function using the following formula with a > 0 and
ρ = |x|.

1

4π

∫
S2

e−iax·ydσ(y) =
1

4π

2π∫
0

π∫
0

e−iaρ cos θ sin θdθdφ

=
1

2

π∫
0

e−iaρ cos θ sin θdθ

=
1

2

1∫
−1

e−iaρudu

=
1

−i2aρ
e−iaρu

∣∣1
−1

=
sin aρ

aρ

(4.31)

(4π)2

t∫
0

ds̃2

∫
R3

∫
R3

2(t− s̃2)2(s̃2)

∫
S2

e−i(t−s̃2)ε·γ1 dσ(γ1)

∫
S2

e−i(s̃2)θ·γ2 dσ(γ2)(V ∗ V ◦ ψ)̂(ε+ θ)dεdθ

(4.32)
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expand the Fourier transform of V ∗ V and combine terms.

(4π)2

t∫
0

ds̃2

∫
R3

∫
R3

∫
R3

2(t− s̃2)2(s̃2)

∫
S2

e−iε·(x+(t−s̃2)γ1) dσ(γ1)

∫
S2

e−iθ·(x+s̃2γ2) dσ(γ2)(V ∗ V )(−x)dεdθdx

(4.33)

integrate over θ and ε

(4π)2

t∫
0

ds̃2

∫
R3

dx 2(t−s̃2)2s̃2

∫
S2

δ(x+(t−s̃2)γ1) dσ(γ1)

∫
S2

δ(x+s̃2γ2) dσ(γ2)(V ∗V )(−x)

(4.34)
integrate over x setting x = −s̃2γ2

(4π)2

∫
S2

t∫
0

ds̃2

∫
S2

2(t−s̃2)2(s̃2)δ(−s̃2γ2+(t−s̃2)γ1)(V ∗V )(s̃2γ2) dσ(γ2)dσ(γ1) (4.35)

(4π)2

∫
S2

∞∫
0

ds̃2

∫
S2

χ[0,t](s̃2)2(t− s̃2)2(s̃2)δ(−s̃2γ2 + (t− s̃2)γ1)

(V ∗ V )(s̃2γ2) dσ(γ2)dσ(γ1)

(4.36)

Integrate against a smooth function φ(t).

(4π)2

∫
R

φ(t)

∫
S2

∞∫
0

ds̃2

∫
S2

χ[0,|t|](s̃2)2(|t| − s̃2)2(s̃2)δ(−s̃2γ2 + (|t| − s̃2)γ1)

(V ∗ V )(s̃2γ2) dσ(γ2)dσ(γ1)dt

(4.37)

We split the integral into to two pieces, t > 0 and t < 0.

I+ = (4π)2

∞∫
0

φ(t)

∫
S2

∞∫
0

ds̃2

∫
S2

χ[0,t](s̃2)2(|t| − s̃2)2(s̃2)δ(−s̃2γ2 + (t− s̃2)γ1)

(V ∗ V )(s̃2γ2) dσ(γ2)dσ(γ1)dt

(4.38)
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I− = (4π)2

∞∫
0

φ(−t)
∫
S2

∞∫
0

ds̃2

∫
S2

χ[0,t](s̃2)2(t− s̃2)2(s̃2)δ(−s̃2γ2 + (t− s̃2)γ1)

(V ∗ V )(s̃2γ2) dσ(γ2)dσ(γ1)dt

(4.39)

Consider I+ and translate t̃ = t− s̃2

I+ = (4π)2

∫
S2

∞∫
0

ds̃2

∞∫
−s̃2

dt̃

∫
S2

φ(t̃+ s̃2)χ[0,t̃+s̃2](s̃2)2t̃2 s̃2 δ(−s̃2γ2 + t̃γ1)

(V ∗ V )(s̃2γ2) dσ(γ2)dσ(γ1)

(4.40)

Note that for s̃2 ≥ 0, χ[0,t̃+s̃2](s̃2) = 1 exactly when t ≥ 0.

I+ = (4π)2

∫
S2

∞∫
0

ds̃2

∞∫
0

dt̃

∫
S2

φ(t̃+ s̃2)2t̃2 s̃2 δ(−s̃2γ2 + t̃γ1)

(V ∗ V )(s̃2γ2) dσ(γ2)dσ(γ1)

(4.41)

integrate over t̃2dσ(γ1)dt̃ which sets s̃2γ2 = t̃γ1

I+ = (4π)2

∞∫
0

ds̃2 2 s̃2φ(2s̃2)

∫
S2

(V ∗ V )(s̃2γ2) dσ(γ2) (4.42)

We now consider the negative portion of the integral, I−

I− = (4π)2

∞∫
0

φ(−t)
∫
S2

∞∫
0

ds̃2

∫
S2

χ[0,t](s̃2)2(t− s̃2)2(s̃2)δ(−s̃2γ2 + (t− s̃2)γ1)

(V ∗ V )(s̃2γ2) dσ(γ2)dσ(γ1)dt

(4.43)

We again translate and set t̃ = t− s̃2

I− = (4π)2

∫
S2

∞∫
0

ds̃2

∫ ∞
−s̃2

dt̃

∫
S2

φ(−(t̃+ s̃2))χ[0,t̃+s̃2]2t̃
2 s̃2 δ(−s̃2γ2 − t̃γ1)

(V ∗ V )(s̃2γ2) dσ(γ2)dσ(γ1)

(4.44)
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The characteristic functions behaves as in the I+ case giving

I− = (4π)2

∫
S2

∞∫
0

ds̃2

∞∫
0

dt̃

∫
S2

φ(−(t̃+ s̃2))2t̃2 s̃2 δ(−s̃2γ2 − t̃γ1)

(V ∗ V )(s̃2γ2) dσ(γ2)dσ(γ1)

(4.45)

integrate over t̃2dσ(γ1)dt̃ which sets s̃2γ2 = t̃γ1

I− = (4π)2

∞∫
0

ds̃2 φ(−2s̃2)2 s̃2

∫
S2

(V ∗ V )(s̃2γ2) dσ(γ2) (4.46)

Adding the positive and negative pieces we have

I+ + I− = (4π)2

∫ ∞
−∞

ds̃2 φ(2s̃2)2 |s̃2|
∫
S2

(V ∗ V )(s̃2γ2) dσ(γ2) (4.47)

rescaling gives

(4π)3

∫ ∞
−∞

ds̃2 φ(s̃2)|s̃2|−
∫
S2

(V ∗ V )(
s̃2

2
γ2) dσ(γ2) (4.48)

So in the sense of distribution we have

(4π)3|s̃2|−
∫
S2

(V ∗ V )(
s̃2

2
γ2) dσ(γ2) ∼ 4(4π)3|s̃2|(V ∗ V )(0) = (4π)3|s̃2| ‖V ‖2

L2 (4.49)

as s̃2 → 0. Thus our second term is given by (4π)3|t|‖V ‖2
2.

4.5.4 Wave to Heat Transform

We have that for odd dimension Tr(WV (t) −W0(t)) ∼
d−1
2∑
j=1

wj +
∞∑

j= d+1
2

wj|t|2j−d. The

next step is to show that the wj’s are multiples of the heat invaraints (as described
in Proposition 3.1.2) associated to −∆ + V . This will be shown using the wave to
heat transform, which gives the heat invariants in terms of the wave invariants.

Proposition 4.5.3. Let aj be the heat invariants as described in Lemma 3.1.1, and
wj be the wave invariants. Then the following formula holds for odd dimensions.

wj =

{
22(j−d)+1

Mj
aj 1 ≤ j ≤ d−1

2
22(j−d)+1

Nj
aj j ≥ d+1

2

(4.50)
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Where Mj and Nj are non-zero constants given by the formulas

Mj =
(−1)

d−1−2j
2

(2π)
1
2

∫
εd−1−2je−ε

2

dε

Nj =

∫
e−θ

2|θ|2j−ddθ

(4.51)

We begin by considering the formula

e−tx
2

=
1

(4πt)
1
2

∫
R

e
−s2
4t cos(sx) ds (4.52)

and applying it to the regularized heat trace. We then observe that this is an integral
of the kernel against the wave trace.

Tr(e−tHV − e−tH0) = Tr

[
(4πt)−

1
2

∫
e−

s2

4t

[
cos(s

√
(−∆ + V ))

− cos(s
√

(−∆))
]
ds
]

= (4πt)−
1
2

∫
e−

s2

4t Tr
[
cos(s

√
(−∆ + V ))

− cos(s
√

(−∆))
]
ds

=
1

2
(4πt)−

1
2

∫
e−

s2

4t Tr(W (s)−W0(s))ds

=
1

2
(4πt)−

1
2

∫
e−

s2

4t

 d−1
2∑
j=1

wjδ
d−1−2j(s)

+
∑
j≥ d+1

2

wj|s|2j−d
 ds.

(4.53)
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We now have two model integral to solve. We will begin by fixing j with 1 ≤ j ≤ d−1
2
.

Ij =
1

2

1√
4t
wj

∫
e−

s2

4t δd−1−2j(s)ds

=
1

2

1√
4t
wj (−1)d−1−2j

∫
δ(s)

(
d

ds

)d−1−2j

e−
s2

4t ds

=
1

2

1√
4t
wj

∫
δ(
√

4tθ)

(
1√
4t

)d−1−2j (
d

dθ

)d−1−2j

e−θ
2√

4tdθ

=
1

2

(
1√
4t

)d−2j

wj

∫
δ(θ)

(
d

dθ

)d−1−2j

e−θ
2

dθ

=
1

2
(4t)−

d
2 wj (4t)j

[(
d

dθ

)d−1−2j

e−θ
2

]
θ=0

.

(4.54)

using the substitution θ = s√
4t

and note that d
ds

= 1√
4t

d
dθ

For j ≥ d+1
2

we have the following integral.

Jj =
1

2

1√
4t
wj

∫
e−

s2

4t |s|2j−dds

=
1

2

1√
4t
wj

∫
e−θ

2|
√

4tθ|2j−d
√

4tdθ

=
1

2
(
√

4t)2j−dwj

∫
e−θ

2|θ|2j−ddθ

=
1

2
(4t)−

d
2wj(4t)

j

∫
e−θ

2|θ|2j−ddθ

(4.55)

Comparing coefficients of the powers of t we get a formula for the wave trace
coefficients in terms of the heat trace coefficients. Fixing d and defining Mj and Nj
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as

Mj =

[(
d

dθ

)d−1−2j

e−θ
2

]
θ=0

Nj =

∫
e−θ

2|θ|2j−ddθ

(4.56)

Nj is clearly always positive. We can see that for odd dimension Mj is positive
and non-zero by looking at the Fourier transform of e−θ

2

[(
d

dθ

)d−1−2j

e−θ
2

]
θ=0

=

[(
d

dθ

)d−1−2j
1

(2π)
1
2

∫
e−ε

2

eiεθ dε

]
θ=0

=

[
(−1)

d−1−2j
2

(2π)
1
2

∫
εd−1−2je−ε

2

eiεθ dε

]
θ=0

=
(−1)

d−1−2j
2

(2π)
1
2

∫
εd−1−2je−ε

2

dε

(4.57)

For odd dimension we get that Mj 6= 0. This then gives the following formula for
the wave coefficients, wj.

wj =

{
2(4)j−d

Mj
aj 1 ≤ j ≤ d−1

2
2(4)j−d

Nj
aj j ≥ d+1

2

(4.58)
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4.6 The Poisson Formula

The relation of the resonances to the trace of the wave group is the connection that will
allow us use the iso-resonant condition to prove compactness. The Poisson Formula
is what provides this connection.

Proposition 4.6.1. (Poisson Formula) [6]
Let V ∈ C∞0 (Rd,R) with d odd. Then

Tr(WV (t)−W0(t)) =
∑

λ∈Res(V )

mλe
iλ|t|, t 6= 0 (4.59)

where mλ is the multiplicity of the resonance and k ≥ d in the sense of distribution.

The proposition follows from using along with the Birman-Krĕin formula and
Hadamard factorization. An outline of the proof will be given here, for a full proof
see Dyatlov-Zworksi [8].

Lemma 4.6.1. [8] Suppose V ∈ C∞0 (Rd,R) is real valued with d odd.
Then for f ∈ S(R) the operator f(HV )− f(H0) is trace class and

Tr(f(HV )− f(H0)) =
1

2πi

∞∫
0

f(λ2)tr(S(λ)−1∂λS(λ))dλ+
K∑
k=1

f(Ek) +
1

2
m̃(0)f(0),

(4.60)
where S(λ) is the scattering matrix and Ek < 0 are eigenvalues of HV .

Using the representation

Tr (WV (t)−W0(t)) = 2Tr
[
cos
(
t
√
HV

)
− cos

(
t
√
H0

)]
(4.61)

we note that cos(λ) is not in S(R). However, if we consider the formula cos(λ) =
eiλ+e−iλ

2
for ρ(t) ∈ C∞0 (R) the Fourier transform ρ̂(s) then we see that

ρ̂(
√
HV ) =

∫
ρ(t)e−it

√
HV dt. (4.62)

The function ρ̂(s) ∈ S(R) so we can take f(λ) = ρ̂(
√
λ) + ρ̂(−

√
λ) in the Birman-

Krein formula. Then in a sense of distribution we get that the trace of WV (t)−W0(t)
exists and has the expansion given in the lemma. Dyatlov and Zworski then use the
relation tr(S(λ)−1∂λS(λ)) = ∂λ(log detS(λ)) and a factorization of ∂λ(log detS(λ))
to obtain the result.
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Chapter 5

To establish the compactness result of Theorem 1.0.2 we will adapt the tools from
Brüning and Donnelly presented in chapter 2. The uniform bounds on the Sobolev
semi-norms of the potentials in IsoRes(V0) will allow us to show convergence of an
isoresonant sequence {Vi} ⊂ IsoRes(V0) in a Fréchet metric induced by the semi-
norms. Finally, we will show that limiting funcition is in the isoresonant set.

5.1 Uniform bounds on Wk,2 norms (Brüning/Donnelly Mechanics)

We can write down a formula for the wave invariants using the formula for the heat
invariants given in Rd from 3.1.2 along with the relation between the heat and wave
invariants from 4.5.3. We begin by restating the definition of the set, Aj,k, from
chapter 3 of k-tuples of multi-indicies that we will use in the formula for the wave
invariants.

Aj,k =

α = (α1, · · · , αk)

∣∣∣∣∣∣∣∣
αi∈Nd0 for 1≤i≤k

|αi|≤j−k,∑k
i=1 |αi|=2(j−k)∑k

i=1 α
i
l is even for each l.


The jth coefficient,wj, of the small t asymptotics is independent of our choice of

V ∈ IsoRes(V0) and is given by the following formula:

wj = dj

∫
|∇j−2V |2 +

j∑
k=3

∑
α∈Aj,k

dα

∫
Dα1

(V )Dα2

(V ) · · ·Dαk(V ). (5.1)

A rearrangement gives that for each j we have the bound

‖V ‖2
j−2,2 ≤ C

1 +

j∑
k=3

∑
α∈Aj,k

∫
|Dα1

(V )Dα2

(V ) · · ·Dαk(V )|

 (5.2)

where C > 0 is independent of our choice of V from the isoresonant set. The strategy
is to then show each term ∫

|Dα1

(V )Dα2

(V ) · · ·Dαk(V )|

is bounded by a constant independent of our choice of V (d = 1) or by a multiple of
1 + ‖V ‖βj−2,2 with β < 2 (d ≥ 3). Together these bounds yield a uniform bound on
‖V ‖j−2,2 for each j.

Lemma 5.1.1. Let u ∈ C1
0(R) then

‖u‖∞ ≤ C‖u‖1,2
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Proof. This follows from Theorem 6.0.3 with d = 1.

Proposition 5.1.1. Let d = 1 and ‖V ‖j−3,2 ≤M ,V ∈ IsoRes(V0) then for j ≥ 3∫
|Dα1

(V )Dα2

(V ) · · ·Dαk(V )| ≤ C

where C depends only on M and j.

Proof: We use the bounds on the order of the DαiV terms to conclude that each
term has order less that j − 3 as |αi| ≤ j − k ≤ j − 3 and there are at most 2 terms

with order j − 3 as
k∑
i=1

|αi| ≤ 2(j − k) ≤ 2(j − 3). Lemma 5.1.1 will then allow us to

get the desired bounds.

Case 1: Assume 0 terms of order j − 3

Then using the Lemma for each i

|Dαi(V )| ≤ C‖Dαi(V )‖1,2 ≤ C‖V ‖j−3,2

This gives ∫
|Dα1

(V )Dα2

(V ) · · ·Dαk(V )| ≤ CkMk ≤ CjM j

(WLOG we may assume C,M ≥ max(1,m(Br))

Case 2: Assume 1 term is of order j − 3

Using the results from Case 1 with the Hölder inequality we have∫
|Dα1

(V )Dα2

(V ) · · ·Dαk(V )| ≤ Ck−1Mk−1

∫
|Dα1

(V )|

≤ Ck−1Mk−1m(Br)‖V ‖j−3,2 (5.3)

≤ CjM j

Case 3: Assume 2 terms of order j − 3

Again using the results of Case 1 and the Hölder inequality gives∫
|Dα1

(V )Dα2

(V ) · · ·Dαk(V )| ≤ Ck−2Mk−2

∫
|Dα1

(V )Dα2

(V )|

≤ Ck−2Mk−2‖V ‖2
j−3,2 (5.4)

≤ CjM j

For d ≥ 3 we use a proof given by Donnelly which requires reordering the Dαi(V )
terms. Fixing k, we reorder the terms according to |αi| and define T in the following
way
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T = Dα1

(V )Dα2

(V ) · · ·Dαl(V )Dαl+1

(V ) · · ·Dαk(V )

where the ordering is chosen s.t.

i ≤ l⇒ d > 2(j − |αi| − 3)

i > l⇒ d ≤ 2(j − |αi| − 3)
(5.5)

We will separate
∫
|T | using the generalized Hölder’s inequality and apply the

Sobolev embedding theorem to get an estimate. Note that the conditions determine
which case of the Sobolev embedding theorem for p = 2 and k = (j − |αi| − 3) is
appropriate.

Proposition 5.1.2. (Lemma 4.6, Donnelly) If d ≥ 3, j > n
2

+ 1, and ‖V ‖j−3,2 ≤ C1,
then ∫

|T | ≤ C2

(
1 + ‖V ‖βj−2,2

)
where β < 2 and C2 depends on C1

Proof. We will look at the possible values of l and for each case the general strategy
will be to use the generalized Hölder’s inequality to show∫

|T | ≤ C
k∏
i=1

‖Dαi(V )‖ri

with
k∑
i=1

1
ri

= 1.

For i > l we use two Sobolev inequalities

‖Dαi(V )‖∞ ≤ C‖V ‖j−3,2

when d < 2(j − |αi| − 3) and

‖Dαi(V )‖ri ≤ C‖V ‖j−3,2

where 2 ≤ ri <∞ when d = 2(j − |αi| − 3). These two inequalities give the bound∫
|T | ≤ C

k∏
i=1

‖Dαi(V )‖ri ≤ C̃‖V ‖k−lj−3,2

l∏
i=1

‖Dαi(V )‖ri

The remainder of the proof is to show that for 1 ≤ i ≤ l we can choose ri to apply
the appropriate Sobolev inequality.

Case 0: When l = 0 the estimate holds for β = 0 using the above method.
Case 1: Letting l = 1 implies d > 2(j − |α1| − 3), so setting

r1 =
2d

d− 2(j − |α1| − 3)
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yields
‖Dα1

(V )‖r1 ≤ C‖Dαi(V )‖j−|α1|−3,2 ≤ C‖V ‖j−3,2

by the generalized Sobolev inequality. The only condition on j is 2 ≤ 2d
d−2(j−|α1|−3)

or

j − 3 ≥ |α1| which is true for every Dαi(V ) and j.

Since 1
r1
≤ 1

2
, we can choose the remaining ri’s to meet the condition

k∑
i=1

1
ri

= 1.

So for l = 1 we have the bound with β = 0.

Case 2: Assume l = 2.

If |α1| and |α2| are such that r1 and r2 (as chosen in case l = 1) satisfy

1

r1

+
1

r2

< 1

then we proceed as in the case l = 1 and apply the generalized Hölder’s inequality to
get the result with β = 0.

Now assume 1
r1

+ 1
r2

= 1. Since |αi| ≤ j − 3, this implies |α1| = |α2| = j − 3 and
thus r1 = r2 = 2. We may then apply the generalized Hölder’s inequality to get.∫

|T | ≤ C‖Dα1

(V )‖r1+ε

k∏
i=2

‖Dαi(V )‖ri

Where ε > 0 and ri for i > 3 are chosen to satisfy the Hölder condition. Further-
more if we choose ε such that r1 + ε < 2d

d−2
then the general Sobolev inequality gives

that

‖Dα1

(V )‖r1+εi ≤ C1‖Dα1

(V )‖1,2 ≤ C2‖V ‖j−2,2

So we get the result with β = 1.

Case 3: Assume l ≥ 3 and d > 2(j − |αi| − 2) for i = 1, 2

Let ri be as in case 1 and 2 and set

si =
2d

d− 2(j − |αi| − 2)

Lp interpolation gives that for 0 < εi < 1 there exists a 0 < βi < 1 s.t.

‖Dαi(V )‖ri+εi ≤ ‖Dαi(V )‖βiri ‖D
αi(V )‖1−βi

si
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Thus using the generalized Hölder’s inequality we have

∫
|T | ≤ C‖Dα1

(V )‖r1+ε1‖Dα2

(V )‖r2+ε2

k∏
i=3

‖Dαi(V )‖ri

≤ ‖Dα1

(V )‖β1r1 ‖D
α1

(V )‖1−β1
s1
‖Dα2

(V )‖β2r2 ‖D
α2

(V )‖1−β2
s2

k∏
i=3

‖Dαi(V )‖j−|αi|−3,2

≤ C‖V ‖β1j−3,2‖Dα1

(V )‖1−β1
s1
‖V ‖β1j−3‖Dα2

(V )‖1−β2
s2

k∏
i=3

‖V ‖j−3,2

≤ C‖Dα1

(V )‖1−β1
s1
‖Dα2

(V )‖1−β2
s2

≤ C‖V ‖βj−2,2

(5.6)

Where β < 2. ri may be chosen arbitrarily for i > l and as in case 1 for i ≤ l, so in
order to satisfy the Hölder condition we require.

1

r1 + ε1

+
1

r2 + ε2

+
l∑

i=3

1

ri
< 1

Which, for sufficiently large ε1, ε2 < 1 is implied by

1

s1

+
1

s2

+
l∑

i=3

1

ri
< 1

Substituting for si and ri gives

2∑
i=1

d− 2(j − |αi| − 2)

2d
+

l∑
i=3

d− 2(j − |αi| − 3)

2d
< 1

which may be rewritten as

(d− 2j − 6)l + 2
l∑

i=1

|αi| < 2d+ 4

Because
l∑

i=1

|αi| ≤ 2(j − k) it is sufficient to show

(d− 2j − 6)l + 4(j − k) < 2d+ 4

Using assumption l ≥ 3 lets us rewrite the inequality as
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d

2
+ 3− 2k − 4

l − 2
< j

Then k ≥ l ≥ 3 gives 2k−4
l−2
≥ 2k−4

k−2
= 2 so it suffices for

d

2
+ 1 < j

Case 4: l ≥ 3 and d ≤ 2(j − |αi| − 2) for Dα1
(V ) and Dα2

(V ).

For 2 ≤ s <∞ we have the embedding

‖Dαi(V )‖s ≤ C‖Dαi(V )‖j−|αi|−2,2 ≤ C‖V ‖j−2,2.

Then Lp interpolation gives for 2 < t < s

‖Dαi(V )‖t ≤ ‖Dαi(V )‖βis ‖Dαi(V )‖1−βi
2 .

We may take t to be arbitrarily large reducing the Hölder condition to

l∑
i=3

1

ri
< 1.

If l = 3 the condition is met as r3 ≥ 2, so we assume l ≥ 4. Substituting for ri
and rewriting the inequality we get

(l − 2)(d− 2j + 6) + 2
l∑

i=3

|αi| < 2d.

Using the inequality
l∑

i=3

|αi| ≤
k∑
i=1

|αi| ≤ 2(j − k) gives the sufficient condition

(l − 2)(d− 2j + 6) + 4(j − k) < 2d

which can be recast as

(l − 4)d+ 6(l − 2)− 4k < (2l − 8)j.

If l = 4 then the inequality reduces to 12−4k < 0 which always holds as 4 = l ≤ k.
For l ≥ 5 we rewrite the inequality as

d

2
+ 3

l − 4

l − 4
+ 3

2

l − 4
− 2k

l − 4
< j

which reduces to

d

2
+ 3− (2k − 6)

l − 4
< j.
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Since k ≥ l it is sufficient for the following series of inequalities to hold:

d

2
+ 3− (2k − 6)

k − 4
< j

d

2
+ 1− (2)

k − 4
< j

d

2
+ 1 < j.

(5.7)

This gives the condition on j.

Definition 5.1.1. Let Vs,r,d be the set of potentials isoresonant to a fixed potential
V0 whose support is containted in a ball of raidus r and with uniform bounds on the
W s,2 norms.

Vs,r,d = {V ∈ IsoRes(V0) ⊂ C∞0 (Rd,R)| supp V ⊂ Br(0), ‖V ‖s,2 < C}

with V0 fixed and C, s, r, d > 0. Furthermore let Vr,d be

Vr,d = {V ∈ C∞0 (Rd,R)| supp V ⊂ Br(0), ‖DαV ‖L2 < Cα ∀α}

Theorem 5.1.1. (Donnelly 4.1) If s > d
2
− 2 then Vs,r,d ⊂ Vr,d.

Suppose s > d
2
− 2. Then there is a uniform bound on j − 3 Sobolev norm when

s = j − 3. Furthermore, this implies j − 3 > d
2
− 2 or j > d

2
+ 1, so by proposition

5.1.2 there is a uniform bound on the j − 2 = s + 1 Sobolev norm. Induction then
gives that for each t <∞ there is a uniform bound on ‖V ‖t,2 for V ∈ Vs,r,d.

Theorem 5.1.2. For d ≤ 3, IsoRes(V0, r, d) ⊂ Vr,d

By Theorem 5.1.1, for d ≤ 3 we only need an apriori bound on ‖V ‖L2 , which we
get from the second term in the expansion of the wave trace.

5.2 Compactness in the Fréchet Space

To show that our isoresonant set is compact we will need to define the Fréchet metric
for which the compactness applies. Next we will show that the isoresonant set lies
inside a compact set and is closed.
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Definition 5.2.1. Let V,W ∈ C∞0 (Rd,R) and let {αi} enumerate the set {α} of all
d-length multi-indexes. Then for this enumeration we define a Fréchet metric

ρF (V,W ) =
∑
i

2−i
‖Dαi(V −W )‖L2

1 + ‖Dαi(V −W )‖L2

Definition 5.2.2. Let Vr,d be the set

Vr,d = {V ∈ C∞0 (Rd,R)| supp V ⊂ Br(0), ‖V ‖Wj,2
< Cj ,∀j}

Lemma 5.2.1. Vr,d is equicontinuous in every derivative.

Proof. Let x, y ∈ Br(0), α be a d length multi-index, and V ∈ Vr,d. To show Vr,d is
equicontinuous in each derivative it is enough to show

|DαV (x)−DαV (y)| ≤ Cα|x− y|

where Cα depends only on α.

From the Appendix we have Lemma Theorem 6.0.3 which gives

‖V ‖L∞ ≤ ‖V ‖Wd0,2
for d0 >

d

2

Thus

‖DαV ‖L∞ ≤ ‖V ‖W|α|+d0,2 for d0 >
d

2

Since for all V ∈ Vr,d the Wj,2 norms have a uniform bound with respect to j,
then we get a uniform bound on the L∞ norms of DαV Which depends only on |α|.

Now fix α and consider x, y ∈ Br(0). Then by the mean value theorem 6.0.2

|DαV (x)−DαV (y)| ≤ ‖∇(DαV )‖L∞|x− y| ≤ C|α|+1+d0|x− y|

Where C is uniform with respect to Vr,d, thus Vr,d is equicontinuous in the αth

derivative for each α.

Proposition 5.2.1. Vr,d is compact with respect to the Fréchet metric.

Proof. Let {Vn} ⊂ Vr,d
Lemma 5.2.1 gives {Vn} is equicontinuous , so there exists a uniformly convergent

subsequence {Vnk}. This new sequences is equicontinuous in each derivative so we
take a sequence of convergent sub sequences {V αi

nki
} for each i.

Diagonalizing the sequence of sequences {Vnki} yields the subsequence {Vnj} such
that

Vnj → V uniformly in each derivative pointwise.
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The support of each Vn is contained in Br(0), so

Vnj → V in each semi-norm

as we can choose J (for a fixed i) such that j > J implies

‖DαiVnj −DαiV ‖L2 < εV ol(Br(0)).

We claim the Vnj → V in the C∞ metric. Consider

‖Vnj − V ‖F =
∑
i

2−i
‖DαiVnj −DαiV ‖L2

1 + ‖DαiVnj −DαiV ‖L2

.

Choose l such that
∞∑

i=l+1

2−i
‖DαiVnj −DαiV ‖L2

1 + ‖DαiVnj −DαiV ‖L2

<
ε

2
.

We then choose J such that j > J and i ≤ l implies

‖DαiVnj −DαiV ‖L2 <
ε2i−1

l + 1− ε2i−1
.

Then for j > J

l∑
i=0

2−i
‖DαiVnj −DαiV ‖L2

1 + ‖DαiVnj −DαiV ‖L2

<
ε

2
.

Thus Vnj → V in the C∞ norm.

We then note that V ∈ C∞0 (Rd,R), that supp V ⊂
⋃
j

supp Vnj ⊂ Br(0), and

‖DαV ‖L2 < Cα ∀α. So, V ∈ Vr,d thus {Vn} has a convergent sub-sequence and Vr,d is
compact.

The previous proposition gives that Vr,d is compact and we know that IsoRes (V0) ⊂
Vr,d, however we still need to show that IsoRes (V0) is closed. To do this we will relate
a function,mVi(λ), that counts the order of the poles of the resolvent to mDVi

(λ) which
counts the zeroes of the p determinant of the resolvent. We can then use Hurwitz’s
theorem to show that the zeroes and thus poles are the same.

Definition 5.2.3. We define the regularized p-determinant of an operator A ∈ Lp
using the following operator

Rp(A) = (I + A) exp

(
−

p−1∑
i=1

(−A)i

i!

)
− I.

The p-determinant is then defined to be

det
p

(I + A) := det(I +Rp(A)).
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Proposition 5.2.2. If d ≤ 3, IsoRes(V0, r, d) is closed under the Fréchet metric.

Proof. Let {Vi} ⊂ IsoRes(V0, r, 3) be a convergent sequence in C∞ such that Vi →
V ∈ Vr,3. Define

DVi(λ) = det
p

(I + ViR0(λ)ρ)

where p = d+1
2

= 2, ρ ∈ C∞0 and ρ|Br = χBr .

Let mVi(λ) be the order of the pole of RVi at λ and mDVi
(λ) be the order of zeroes

for DVi then Zworski and Dyatlov [8] give

mVi(λ) = mDVi
(λ).

So it remains to show that mDVi
(λ) → mDV∞

(λ) or DVi → DV∞ due to Hurwitz’s
Theorem 6.0.3. An important detail to note in regards to Hurwitz’s theorem is
the requirement that DV (λ) 6≡ 0. However we know the limiting function V∞ ∈
C∞0 (Br(0)) and thus by Zworski-Sá Baretto [10]RV∞(λ) has at most countable number
of poles which implies DV (λ) has at most a countable number of zeroes. Thus,
DV (λ) 6≡ 0 and we may apply Hurowitz’s theorem once we show DVi → DV∞ . As a
remark we say at most coutable because if V = 0 then D0(λ) = det

p
(I) = det(I) = 1.

Let

Ki = ViR0ρ

and
R2(Vi) = (I +Ki)e

−Ki − I

then

|DVi −DV∞| = |det(I +R2(Vi))− det(I +R2(V∞))|

≤ ‖R2(Vi)−R2(V∞)‖1e
1+‖R2(Vi)‖1+‖R2(V∞)‖1

≤ CV0,λ‖(I +Ki)e
−Ki − (I +K∞)e−K∞‖1.

(5.8)

Expanding we have

(I +Ki)e
−Ki =

∞∑
m=0

(−Ki)
m

m!
+
∞∑
m=0

(−1)mKm+1
i

m!
=

∞∑
m=0

(1−m)(−Ki)
m

m!

(I +Ki)e
−Ki − (I +K∞)e−K∞ =

∞∑
m=2

(1−m)

m!
[(−Ki)

m − (−K∞)m].

We then consider the terms (−Ki)
m − (−K∞)m and factor the difference as
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Km
i −Km

∞ =
m∑
l=1

K l−1
i (K∞ −Ki)K

m−l
∞ .

Case 1: n ≥ 3, l ≥ 2:

‖K l−1
i (K∞ −Ki)K

n−l
∞ ‖1 ≤ ‖K l−1

i ‖1‖(K∞ −Ki)K
m−l
∞ ‖

≤ C‖Ki‖l−1(
∑
j

j−
2l
3 )‖δV ‖‖V∞‖m−l‖R0(λ)‖m−l+1

≤ C‖Vi‖l−1‖R0(λ)‖l−1 3

2l − 3
‖δV ‖‖V∞‖m−l‖R0(λ)‖m−l+1

≤ C
3

2l − 3
‖δV ‖‖Vi‖l−1‖V∞‖m−l‖R0(λ)‖m

≤ CRC
m−1
V0
‖δV ‖∞‖R0(λ)‖m

≤ CRC
m−1
V0
‖δV ‖∞〈λ〉meC(Imλ)m

≤ CR‖δV ‖∞〈CV0λ〉meC(Imλ)m.

(5.9)

Case 2: Assuming d > 3, l < 2 gives a similar estimate due to symmetry.

Case 3: Assume d = 2, l = 0, 2. This case follows from the previous cases.

Case 4: Assume d = 2, l = 1
Define J = ρR0(λ)ρ which gives

Ki(K∞ −Ki) = KiδV J.

Then
µ2j(KiδV J) ≤ µj(Ki)µ0(δV )µj(J)

and
µ2j+1(KiδV J) ≤ µj(Ki)µ0(δV )µj+1(J) ≤ µj(Ki)µ0(δV )µj(J).

Using the previous trace/singular value estimates gives

‖Ki(K∞ −Ki)‖1 ≤ CR0(λ),V0‖δV ‖∞.
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Thus,

‖Km
i −Km

∞‖1 ≤
m∑
l=1

‖K l−1
i (K∞ −Ki)K

m−l
∞ ‖1

≤ m‖δV ‖∞〈Cλ〉meC(Imλ)m.

(5.10)

Summing gives

‖(I +Ki)e
−Ki − (I +K∞)e−K∞‖1 ≤

∞∑
m=2

(1−m)

m!
‖(Ki)

m − (K∞)m‖1

≤ ‖δV ‖∞
∞∑
m=2

(1−m)meC(Imλ)m

m!

(5.11)

The ratio test show that the sum converges for all λ, and taking ‖δV ‖∞ → 0 gives
convergence of the trace norm and so DVi → D∞.

We now have everything we need to proof the following compactness result.

Theorem 5.2.1. Let V ∈ C∞0 (Rd,R) with d = 1, 3, the operator

HV = −∆ + V,

and fix r > 0 and V0 ∈ C∞0 (Br(0),R). Then the set

IsoRes(V0) = {V ∈ C∞0 (Br(0),R) |V ∈ IsoRes(V0)}

is compact in the C∞ topology.

Proof. Theorem 5.1.2 gives that IsoRes(V0) ⊂ Vr,d, 5.2.1 gives that Vr,d is compact,
and 5.2.2 gives that IsoRes(V0) is closed under the Fréchet metric. Closed subsets of
compact sets are compact, thus IsoRes(V0) is compact.

Copyright c© Robert Wolf, 2017.
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Chapter 6 Appendix A

Sobolev Inequalites

Theorem 6.0.2. General Sobolev Inequality
Let U be a bounded open subset of Rd with C1 boundary. Assume u ∈ Wk,p. Then

if k < d
p

then u ∈ Lq(U) where 1
q

= 1
p
− k

d
.

Theorem 6.0.3. If u ∈ W k,2(Rd) for k > d
2

then u ∈ L∞(Rd) with

‖u‖∞ ≤ C‖u‖Wk,2

Proof. WLOG we identify u with its continuous representative in W k,2. Then we
rewrite u using the Fourier transform and apply Cauchy-Schwarz.

|u(x)| = | 1

(2π)
d
2

∫
eixyû(y) dy|

≤ | 1

(2π)
d
2

∫
eixy

1 + |y|k
(1 + |y|k)û(y) dy|

≤ 1

(2π)
d
2

(∫
1

(1 + |y|k)2
dy

) 1
2

‖(1 + |y|k)û‖2

(6.1)

The Fourier characterization of W k,2(Rd) then gives that

‖(1 + |y|k)û‖2 ≤ C‖u‖Wk,2 (6.2)

so we only need to show bounds on the first integral. Changing to polar coordi-
nates we see that∫

1

(1 + |y|k)2
dy =

∫ ∞∫
0

rd−1

(1 + rk)2
drdσ

= σ(Sd−1)

1 +

∞∫
1

rd−1

(1 + rk)2
dr


≤ σ(Sd−1)

1 +

∞∫
1

rd−1

r2k
dr


= σ(Sd−1)

1 +

∞∫
1

rd−2k−1 dr

 .

(6.3)

Since k > d
2

we can see the integral converges and the bound is proven.
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Theorem 6.0.4. Let Ω ⊂ Rd, u ∈ W j+m,2(Ω)and m = d
2

then there exists a constant
C such that

‖‖u‖W j,q(Ω) ≤ C‖u‖W j+m,2(Ω) (6.4)

for 2 ≤ q ≤ ∞.

This special case of the Sobolev Imbedding theorem comes from Adams and Fournier
[5].

Lemma 6.0.2. Mean Value Theorem
Let Ω ⊂ Rd be open and simply connected. Then for u ∈ C1(Ω), there exists an α

such that w = αx+ (1− α)y

|u(x)− u(y)| ≤ |∇u(w) · (x− y)|

Lemma 6.0.3. Hurwitz’s Theorem [11]
Let G ⊂ C be open and {fn} be a sequence of analytic functions on G such that

fn → f . If f 6≡ 0, B̄R(a) ⊂ G, and f(z) 6= 0 for |z − a| = R then there is an N such
that n ≥ N implies f and fn have the same number of zeros in BR(a).
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[2] Brüning, J., 1984: On the Compactness of Iso-Spectral Potentials, Comm. in
Partial Differential Equations, 9 (7), 687-698.

[3] Donnelly, H., 2004: Compactness of Isospectral Potentials, Transactions of the
American Mathematical Society, 357 (5), 1717-1730.

[4] Davies, E.B., 1989: Heat kernels and spectral theory, Cambridge University Press,
197 pp.

[5] Adams, R., Fournier, J., 2003: Sobolev Spaces, Academic Press, 305 pp.

[6] Zworski, M., 1997: Poisson formulæ for resonances, Séminaire Équations aux
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[26] Trubowit, J. 1987: Inverse Spectral Theory, Academic Press, 192 pp.

[27] Arfken, G. 2012: Mathematical Methods for Physicists, Oxford, 1182 pp.

56



Vita

Robert Gilham Wolf

Education

University of Kentucky, Lexington, KY(2010-2017)

M.A. Mathematics (2014)

Purdue University, West Lafayette, IN

B.S. Mathematics (2010)

B.S. Materials Science and Engineering (2005)

Honors and Awards
University of Kentucky , Lexington, KY

Daniel R. Reedy Quality Achievement (2010-2012)

Max Steckler Fellowship(2010-2011)

57


	Compactness of Isoresonant Potentials
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Table of Contents
	1 Introduction
	2 Background: An Overview of the Isospectral Case
	2.1 Isospectral Set
	2.2 Heat Semi-Group
	2.3 Heat Trace
	2.4 Uniform Boundedness of Isospectral Potential Semi-Norms.
	2.5 Compactness of Isospectral Sets

	3 Heat Trace Expansions in Rd
	3.1 Heat Trace Expansions in Rd

	4 Resonances and the Wave Trace
	4.1 Resonances
	4.2 Isoresonant Criteria
	4.3 Compactness of the Isoresonant Set
	4.4 Strongly Continuous Wave Group
	4.4.1 Duhamel's principle
	4.4.2 Integral Kernel for the Wave Equation with Potential
	4.4.3 Integral Kernel of the Wave Group

	4.5 Wave Trace 
	4.5.1 Wave Trace Expansion
	4.5.2 Fourier Transform Formulas
	4.5.3 Terms in the expansion for odd dimension
	4.5.4 Wave to Heat Transform

	4.6 The Poisson Formula

	5 
	5.1 Uniform bounds on Wk,2 norms (Brüning/Donnelly Mechanics)
	5.2 Compactness in the Fréchet Space

	6 Appendix A
	Bibliography
	Vita

