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ABSTRACT OF DISSERTATION

Compactness of Isoresonant Potentials

Briining considered sets of isospectral Schrodinger operators with smooth real po-
tentials on a compact manifold of dimension three. He showed the set of potentials
associated to an isospectral set is compact in the topology of smooth functions by re-
lating the spectrum to the trace of the heat semi-group. Similarly, we can consider the
resonances of Schrodinger operators with real valued potentials on Euclidean space of
whose support lies inside a ball of fixed radius that generate the same resonances as
some fixed Schrodinger operator, an “isoresonant” set of potentials. This isoresonant
set of potentials is also compact in the topology of smooth functions for dimensions
one and three. The basis of the result stems from the relation of a regularized wave
trace to the resonances via the Poisson formula (also known as the Melrose trace for-
mula). The second link is the small-t asymptotic expansion of the regularized wave
trace whose coefficients are integrals of the potential function and its derivatives.
For an isoresonant set these coefficients are equal due to the Poisson formula. The
equivalence of coefficients allows us to uniformly bound the potential functions and
their derivatives with respect to the isoresonant set. Finally, taking a sequence of
functions in the isoresonant set we use the uniform bounds to construct a convergent
subsequence using the Arzela-Ascoli theorem.

KEYWORDS: compact, wave trace, heat trace, isospectral ,resonance, Schrédinger
operator
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Chapter 1 Introduction

Schrodinger operators are a topic of interest in both functional analysis and math-
ematical physics. We begin by considering the setting of a d-dimensional smooth
Riemannian manifold M with a fixed metric g. If we pair the Laplace-Beltrami op-
erator —A, and a real-valued smooth potential function V' € C§°(M) then can look
at the Schrodinger operator Hy = —A, + V.

We can characterize the operator and thus the potential function with the spec-
trum of the operator, o(Hy ), which consists of all z € C such that Hy — z is not
invertible. If M is compact then o(Hy) consists of only real eigenvalues with fi-
nite multiplicities and an accumulation point at infinity. Fixing a reference potential
Vo € C*°(M) lets us define an isopectral set of potential functions, Iso(Vp), as the set
of all potentials V' such that o(Hy) = o(Hy,) (including multiplicity).

This characterization allows for discussion about properties of these isopectral
sets. Briining [2] showed that for low dimension that such an isopectral set is compact
with the following theorem.

Theorem 1.0.1. (Briining [2]) Let M be a smooth compact manifold with d < 3 and
fized metric g. Fiz Vo € C*°(M) and consider the operator
Hy, = —A, + Vo

The set
{V e C™(M)|o(Hy) = o(Hy,)}

1s compact in the C'*° topology.

|Theorem 1.0.1| shows that for any isospectral sequence there will be a convergent
subsequence in a Fréchet metric generated by the Sobolev semi-norms. Briining uses
the trace of the heat semi-group as the main tool in his proof to relate the eigenvalues
of Hy to a small t expansion involving the Sobolev semi-norms of V.

A basic example of such a family is the rotations of any fixed potential on the
sphere, S?. Another notable family of such isospectral functions are the solutions to
the Korteweg-de Vries equation on S [2]. A smooth potential on Vi € C*°(S?!) can
be used as the initial data and flowed along KdV to yield a one parameter family of
smooth potential functions {Vi(z)}. The Lax pair property of the KdV then gives
that o(Hy,) = o(Hy,) for all t.

A natural attempt to extend this result is to move the setting from a compact
manifold M to R? There are several roadblocks that occur when trying to make
this transition. The first is that the spectrum, o(Hy ), no longer consist only of
eigenvalues but also contains essential spectrum from [0,00). A second problem is
the heat invariants play a central role in the compactness argument, and the heat
semi-group is not longer trace class on R

The first problem will be addressed by finding an analog for the eigenval-
ues in resonances, which are the poles of the meromorphic continuation of Ry, (\) =




(Hy — A*)71 in the lower half plane. Note that here we have set z = A\? and thus
Ry, (M) is meromorphic in the upper half plane with the poles being the square roots
of eigenvalues lying on the positive imaginary axis. This will necessitate using the
trace of the wave group instead of the trace of the heat semi-group as there is a
relation between the trace of the wave group and resonances through the Poisson
formula.

This leads to addressing the issue of the trace class of the heat semi-group and wave
group. In both cases it can be shown that the regularized heat or wave operator are
both trace class on R%. In chapter 3 we will derive a representation of the regularized
heat trace from using the work of Hitrik and Polterovich [13]. This will be useful as
we can relate the heat invariants to the wave invariants in odd dimension through
the use of the wave to heat transform.

In chapter 5 we’ll have enough tools available to implement the Briining/Donnelly
mechanics and prove the central theorem.

Theorem 1.0.2. Let V € C°(RY) with d = 1,3, the operator
Hy =-A+V,
and fir r > 0 and Vy € C°(B,(0)). Then the set

{V e C5°(B,.(0)) | Hy is isoresonant to Hy,.}
is compact in the C'*° topology.



Chapter 2 Background: An Overview of the Isospectral Case

We begin by reviewing compactness results for smooth real potentials of isospectral
Schrodinger operators on a smooth compact manifold without boundary. We will
first give a definition for an isospectral set of potentials followed by a short discussion
of the heat semi-group and its trace. We will then give a statement and proof of the
compactness result given by [['heorem 1.0.1]

2.1 Isospectral Set

We define Hy = —A, + V to be the Schrodinger Operator with potential living on
the smooth compact d dimensional Riemannian manifold M with a fixed metric g.
The operator —A is the positive Laplace-Beltrami operator whose representation in
local coordinates is give by

1 d
A, = —\/maxig det gﬁ_xj
while the potential V' is an element of C§°(M).

Since M is a compact d dimensional manifold, then o(Hy ) consists only of real,
countable eigenvalues of finite multiplicity with a single accumulation point at infinity.
For example, Let M = S? then the eigenvalues of —A are given by the formula
A=1(l+1) for all I € Ny with multiplicity 2[ + 1.

We can now define what it means for two potentials to be isospectral.

Definition 2.1.1. Isospectral Set
Let M be a smooth compact d dimensional manifold without boundary with fixed
metric g and fix Vo € C°(M). We define the isospectral set of Vi to be

Iso(Vo) = {V € C*(M)|o(Hy) = o(Hy,)}.

2.2 Heat Semi-Group

If we consider the heat equation given by

with initial data u(z,0) = ug(x). Then we can construct a solution using the one
parameter semi-group, e V! that sends a solution to the heat equation at time t,
to a solution at time ty + ¢. In particular,

u(z,t) = e Vg (x) (2.2)
solves [Equation 2.1l We call e~#v? the heat semi-group or the heat operator.



2.3 Heat Trace

If we naively wanted to consider the trace of the operator Hy we would quickly see
that for {\;} = o(Hy)

k—o0
i=1
However if we consider the trace of the heat semi-group the functional calculus
gives that the eigenvalues of e=#v? are given by e~*¢ where \; € o(Hy)

We then get that the trace is given by

k
Tr(e vt = lim e it (2.3)
k—o0 P
which converges for every ¢ > 0. We then consider what happens as ¢ goes to zero.
Gilkey [I] gives that

Tr(e ™Vt ~ (47t)~ Z ajt! ast— 0. (2.4)

The a;’s depend on the potential V/, the metric g, and their derivatives. The
coefficents are given in Briining [2] and Donnelly [3] as

ap = Vol(M)
[
a = / (V2 + VI(D) + h(D"g)) (2.5)

—cJ/WJ vy Y / (V) B, (V)

k=0 aeN
oo|= l( )

where K is the curvature and f and h are functions of the derivatives of the metric
g. The last formula being used for j > 3. The terms P(fi are non-linear differential
operators acting on V' with coefficients dependent on the derivatives of the the metric.
We can observe the non-linearity in the ag, a1, and a3 coefficients when we set V' = 0.
The constraint I(k) < 2(j — k). The P¥’s also have the following constraints,

Ord P¥ < (j —k)

Z Ord PE < 2(j — k). (2:6)

=1



These bounds on the Ord Pclfi are an improvement by Donnelly [3] over Briining’s
[2] bounds of j — 3 and 2(j — 3) respectively.

2.4 Uniform Boundedness of Isospectral Potential Semi-Norms.

In order to show compactness in the C* topology we will need uniform bounds in each
of the Sobolev semi-norms for all V' in our isospectral set. We do this by assuming
we have uniform bounds on the j — 3 norm and then using the small ¢ asymptotics
to show uniform bounds on the j — 2 norm.

Theorem 2.4.1. Let M be a smooth d-dimensional compact manifold and fix Vi €
C>=(M). Suppose ||V ||m2 < Cp, for some m > % —2 and for all V € Iso(Vy). Then
|Vm2 < Cp for allm and V € Iso(Vy). Furthermore, for d <3, [|[V||m2 < Cy, for
all m.

The last line of the theorem is evident from the fact that 0 > %l — 2 for d < 3,
so we only need a bound on the L? norm of V. Applying Cauchy-Schwarz to the ay

term of gives

VI = az — / (Vf(D%) + h(D%)) < C+[[V]]2ll fl2 (2.7)

which implies ||V]|5 is bounded as it has the form 2?—bx—c < 0 with fixed b, ¢ > 0. For
the first piece of the theorem we will need to consider the remaining heat invariants
given again by the formula

o= [IVVELY S [PEWPLW) R 29

k=0 aGNS
|| <U(k)

where PZ is a differential operator on V and the term I(k) < 2(j — k). We also recall
k
the constraints Ord P¥ < min{j—3,j—k} and Y- Ord P¥ < min{2(j—3),2(j —k)}.
i=1

If we assume an apriori bound on the j — 3 norm then a rearrangement gives that
for each 7 we have the bound F

J
VI <0 | 143 3 [IRLMIRE V) PA(YV)
k=0 aENS
lal<l(k)

where C' > 0 is independent of our choice of V' from the isospectral set. The strategy
is to then show each term

J IR 0)PE ) P (V)



is bounded by a constant independent of our choice of V' (d = 1) or by a multiple of
1+ ||V||572’2 with § < 2 (d > 3). Together these bounds yield a uniform bound on
|V ||j—2.2 for each j. Furthermore, the bounding of this integral over the product of
Polfi’s is what necessitates the condition m > %l — 2 in the theorem.

We begin with the case d = 1. Here we will use [2.4.1]in conjunction with Holder’s
inequality to obtain our result.

Lemma 2.4.1. Let u € C}(R) then

[ulloo < Cllull1z

Proof. This follows from [['heorem 6.0.3| with d = 1.

Proposition 2.4.1. Let d =1 and ||V||j_32 < M,V € IsoRes(Vy) then

[ 0npL vy Bs V) < €
Where C depends only on M and j

Proof: We use the bounds on the order of the P terms to conclude that there
are at most 2 terms with order greater than 5 — 4, and those terms have order 7 — 3.
Lemma [2.4.1) will then allow us to get the desired bounds.

Case 1: Assume 0 terms of order j — 3

Then using the Lemma for each ¢
|Pr, (V)] < CIPY, (V)12 < ClIV -3,

This gives

/ |PE (V)PL(V)--- Pk (V)| < C*M* < C7 MY

(WLOG we may assume C, M > maz(1,m(B,))
Case 2: Assume 1 term is of order j — 3

Using the results from Case 1 with the Holder inequality we have

[ 00RL W) B V)] < 0 [1R8 v)
<CMmB) Ve (29)
<C'M?

Case 3: Assume 2 terms of order j — 3

Again using the results of Case 1 and the Holder inequality gives



[R5 )PV B () < 02 [ ps ()R v)
<MV, 2.10)
<C'M?

[

Next we consider the case d = 3 and use a proof given by Donnelly [3] which
requires reordering the P (V) terms. Fix k and use the truncated notation P; =
P% (V). Then reorder the terms based on the ord P; and define T in the following
way

T=PP-PPu B
where the ordering and [ are chosen s.t.

i<l=d>2(j—3—ordP)

. ‘ (2.11)
i>l=d<2(j—3—ordP)

We will separate [ |T'] using the generalized Holder’s inequality and apply the
Sobolev embedding theorem to get an estimate. Note that the conditions imposed by
this reordering determines which case of the Sobolev embedding theorem for p = 2
and k = (j — ord P, — 3) is appropriate.

Proposition 2.4.2. (Lemma 4.6, Donnelly [3]) If d > 3,j > 2+ 1, and |V j_32 <
C1, then

[ <cviy.,
where < 2 and Cy depends on Cy

Proof. We will look at the possible values of [ and for each case the general strategy
will be to use the generalized Holder’s inequality to show

k
/msaﬂm
=1

Ti

k
with >+ =1.
i=1""

For ¢ > [ we use two Sobolev inequalities. When d < 2(j — 3 — ord P;) we will use
embedding for L> [Theorem 6.0.3],

1Pl < C(1 4 max DV ) < CallV]s-s

and when when d = 2(j — 3 — ord P;) we will use



||Pz ri < OlHVHordPiﬂ“i < CQ||V||j—3,2

where 2 < 7; < 0o [Theorem 6.0.4]. These two inequalities give the bound

k l
/ 7 < CTLIP I < CIVIEL TP
=1 =1

The remainder of the proof is to show that for 1 < ¢ < [ we can choose r; to apply
the appropriate Sobolev inequality.

T

Case 0: When [ = 0 the estimate holds for § = 0 using the above method.

Case 1: Letting [ = 1 implies d > 2(j — ord P; — 3), so setting

2d
d—2(j —ord P, —3)

r =
yields

IPillr, < ClP|j—orap—32 < ClIV||j-3.2

by the generalized Sobolev inequality. The only condition on j is 2 <
or j — 3 > ord P, which is true for every P; and j.

2d
d—2(j—ord P1—3)

k
Since Ti < %, we can choose the remaining r;’s to meet the condition L -1
! ="
So for [ = 1 we have the bound with g = 0.
Case 2: Assume [ = 2.

If kK =1= 2 then we know for ¢« = 1,2 that ord P; < j — 3, so Holder’s inequality
gives

/|P1P2| < | Prll2lPella < CIVIF 55

Assuming k > 2, if ord P, and ord P, are such that r; and 7o (as chosen in case
[ = 1) satisfy

then we proceed as in the case [ = 1 and apply the generalized Holder’s inequality to
get the result with 5 = 0.

Now assume % + % = 1. Since ord P; < j—3, this implies ord P, = ord P, = j—3
and thus ry = ry = 2. We may then apply the generalized Holder’s inequality to get.

k
JAEe Ty (1
=2

Where € > 0 and r; for ¢ > 3 are chosen to satisfy the Holder condition. Further-
more if we choose € such that ry + ¢ < d% then the general Sobolev inequality gives
that

Ti



| Pr]lry4e; < Chll P2
So we get the result with 5 = 1.
Case 3: Assume ! >3 and d > 2(j —ord P, — 2) for i = 1,2

< Col|V || j-2,2

Let r; be as in case 1 and 2 and set

2d
d—2(j —ord P, — 2)

S; —

L, interpolation gives that for 0 < g; < 1 there exists a 0 < 3; < 1 s.t.

17

rite; =

Thus using the generalized Holder’s inequality we have

k
[ 171 < ClIP s Palose
1=

< PP 2 P BZHIIPH; ord Pi—3,2

] 3

< ORI [Pl

< CIVIIF-a2

Where § < 2. r; may be chosen arbitrarily for ¢« > [ and as in case 1 for ¢ < [, so in
order to satisfy the Holder condition we require.

1 1 |

— <1

+
L+ &1 T9 + €9 izgri

Which, for sufficiently large €1,9 < 1 is implied by

11 -1
—+ =+ — <1
st S22 I

Substituting for s; and r; gives



2

!
Zd 2]—OTdP—2 +Zd 2]—0rdP—3)<1
=3

=1
which may be rewritten as
!
(d—2j—6)l+2> ordP, <2d+4

i=1
I
Because > ord P, < 2(j — k) it is sufficient to show
i=1
(d—2j—6)l+4(j — k) < 2d + 4

Using assumption [ > 3 lets us rewrite the inequality as

d+3_2k—4
2 [ -2

Then k > > 3 gives 2221 > 2524 — 9 50 it suffices for

<J

d+1<'
9 J

Case 4: [ >3 and d < 2(j — ord P, — 2) for P, and P>.

For 2 < s < 0o we have the embedding
1B]ls < CllPllj=orapi—22 < ClIV ] j-22-
Then L, interpolation gives for 2 <t < s
1-Bi
1Pl < I1PAS N Pill

We may take ¢ to be arbitrarily large reducing the Holder condition to

If | = 3 the condition is met as r3 > 2, so we assume [ > 4. Substituting for r;
and rewriting the inequality we get

l
(1—2)(d—2j+6)+2) ordP; < 2d.

=3

! k
Using the inequality > ord P, < > ord P; < 2(j — k) gives the sufficient condition
i=3 i=1

(1—2)(d—2j+6)+4(j — k) < 2d

10



which can be recast as
(I —4)d+6(l —2) — 4k < (21 — 8)j.
If I = 4 then the inequality reduces to 12—4k < 0 which always holds as 4 = [ < k.
For | > 5 we rewrite the inequality as

5l+3l_4+3 22 <
R R B R B

which reduces to

d (2k — 6)
SRR e
Since k > [ it is sufficient for the following series of inequalities to hold:

d (2k — 6)
SR T

<J.

<J

d (2) .
BT I 2.13
2+ k_4<j ( )

d
—+1<7.
5 T

This gives the condition on j.

2.5 Compactness of Isospectral Sets

In order to prove the compactness result we still need to show that an arbitrary
sequence {V;} C Iso(Vp) has a convergent subsequence.

Definition 2.5.1. Let V, 4 be the set

Vea =A{V € C(RY)] supp V' C B.(0), [[Vlw,, < Cj,Vs}

|Theorem 2.4.1| gives that Iso(Vy) C V.4 for suitable choice of r and d. It will be
shown in section 5.2 that V, 4 is compact. It then only remains to be shown that the
limit potential is still in the isospectral set.

Proposition 2.5.1. Let M a smooth compact manifold, and fix Vo € C°(M). Let
{Vi} C Iso(Vp) s.t. Vi =V in C°(M). Then V € Iso(Vp).

Proof:

Let A be a self-adjoint operator then A € o(A) iff there exists a sequence u; C
D(A) s.t. ||u]] =1 and [[(A — Nu;|| — 0 [9]. So we only need come up with such a
sequence.

11



Let Ao € o(Hy,) then for each i there is a u; € ker(Hy, — A) s.t. u; # 0 with
[uill2 = 1

However,

which implies

[(=A+V = Xo)uilla < IV = Villsollull2

so [[(=A 4V — Xo)uil|a = 0 as i — oo. Thus A\ € o(H,)
Now suppose \g € o(Hy). If for e > 0 there is a u € D(A) such that [[(A—N)ul| <

el|u|| then A has spectrum inside the interval [A—e, A+¢| [0]. Choose u € ker(Hy —\o)
and let € > 0 be given. Then 3N s.t. ¢ > N implies ||V — Vj||oc < e. Thus,

[(Hy, — Xo)ullz = |[(Hy — Ao +V — Vi)ull

— (V= Vul .-
<V = Villolul
< ellul

So o(Hy,) N [Ao — &, Ao + €] # 0. This is true for each e > 0 which implies
Ao € 0(Hy,). Therefore we get that o(Hy) = o(Hy,), which gives the final result of
[Lheorem 1.0.1restated below.

Theorem 2.5.1. (Brining [2]/Donnelly [3]) Let M be a smooth compact manifold
with d < 3 and fized metric g. Fiz Vo € C*°(M) and consider the operator
Hy, = =Ay+ W

The set
{V e C*(M)|o(Hv) =0o(Hy)}

s compact in the C'*° topology.

12



Chapter 3 Heat Trace Expansions in R?

In this chapter we will show that the regularized heat operator is trace class, define a
regularized heat trace, and give an explicit form to the terms in the heat invariants.
This new form for the heat invariants will be useful in determining the form of the
wave invariants presented in chapter 4 as the they are related through the wave to
heat transform.

3.1 Heat Trace Expansions in R?

The Gilkey [1] [3] formula give the heat invariants on a compact manifold as

a; :cj/vaVFJrZ > /Pgl(V)P;g(V)---ng(V)

k=0 oeNk
|| <l(k)

Where the terms P(f are differential operators acting on the potential V' and
derivatives of the metric, g, of the manifold. Similarly, the constraint [(k) is affected
by the derivatives of the metric. If we consider the regularized heat trace in R? we
explicitly determine the terms P% and I(k).

We then ask the question if similar asymptotics can be derived for R?. Unfortu-
nately the heat semi-group e V! is not trace class on R%. Instead we must regularize
the heat operator in order to take a trace and obtain small ¢ asymptotics.

Proposition 3.1.1. The operator e v — e=tHo s trace class on R? for d < 3.

Proof. Using Duhamel’s formula we write the operator etV — =t a5

—tHy

e o e*tHO — (eftHvetHO o ]’) e*tHO

|:€—SHV€SHO:| dse—tHo

I
S —
=l

t
/ —HUG_SH‘/eSHO + 6_SHV HoesHOdse—tHo
0 (3.1)
t

/eSHV [Hy — HV]eSHOdse’tHO
0

t

= —/e_SHVVe_(t_S)HOds
0

13



We now use Duhamel’s formula to analyze the operator in the trace norm, || - ||z,
Note that the trace norm is more typically written as || -||1, however this notation will
be reserved for the L” norms. The same will be true for the Hilbert-Schmidt norm.

HeftHV . eitHOHTr _ H /GSHVV(E(tS)HOdSHTT
(3.2)

< / 1Y X g Ve E)H0]|, dis

The integrand then has the following estimates where ||- || s is the Hilbert-Schmidt
norm:

e Xauppv Ve 0 7, < ||6_SHVXsuppv||HS||V€_(t_S)H°HHS (3.3)
—|z—y ‘2
The integral kernel for Ve~(==)Ho ig 4 )d e 4=V (y).So,
7r t s
—|z—
VG_(t_S)H0f<:E) 4 t g/v e At— i) f( ) (34)
7(t —s) J

Simon [?] gives that

C(—s 1 —|z—y|?
[Ve o fs = | 7¢ =V (Y)ll2axre

(47T(t— s))
N / (47r(t— S))de s Vz( ) dwdy

Vil
— 47T||tJS d/62(t s) dx (35>

_ 22|V||2 / 122 4
t—s%

||V||2
2% (n(t - 5))*

. Thus we get:

Using the change of coordinates z = (2(t 3

V|2
2% (m(t — )%
Let Ky (z,y) be the integral kernel of e=*v then applying the result by Simon
gives:

(Ve =l g = (3.6)

€=M Xoump v s = 11Kvis (2, ) Xoump v I3 (37)
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We then use the upper bound on elliptic operators for L?(R?) given by Davies|]
(3.8)

—blz—y|?
S

as
c
Kys(z,y) < —e
S2

Where ¢ and b < 1 are positive constants. This gives for E = m(suppV):

sHy ) A [ —2bley?
e XsuppV”HS < 5 e s XsuppV(y) dxdy

E2 2 —2 z2
= Sdc /e e dz
E2?c2 / —IZ\Qd (39)
= e 2z
(2bs)?
E2%r
(2bs)3
This yields
s Eeri
le™™ Xouppv s < e (3.10)
We then combine our two estimates to get
1% Eeri
||6_tHv _6_tHO||Tr S/ - || HQ _ CW‘; ds
) 2% (m(t —s))4 (2bs)1
(3.11)

t
E 1
_ Cmﬂz/' s
20ba (t—s)i(s)s

1
_ ECHVHZi/
24p1 t%O (1—X\)

sl
—~
>~
N~—
e,

(3.12)

Since d < 3 the integral in A is finite and we have the bound:
]

_ _ t
||e tHy e tHOHTr < C'E”VHQ_té
2

Definition 3.1.1. Regularized Heat Trace
Let Hy = —A +V with Hy = —/A. Given the heat semi-group e~V we define

the Regularized Heat Trace as
e—tH())

Tr(e_tHV

15



Lemma 3.1.1. (Hitrik-Poltorovich) for V € C§°(R%,R) the regularized heat trace on
R? is given by the formula

o0

1 .
Tr(e v — g7tHo) at!, t—0"
< )~
where
a; = /aj(x)d:p
Rd
1 .
1y JZ j—1 + (=Ay + V)™ (|2 — yI*™) |y=s

- 4mml(m + 7)!

In the next proposition we will be using k-tuples of multi-indices with specific
constraints. For this purpose we define the following set

a’eNg for 1<i<k
H<i—k
. . k lat|<j—k,
Aj,k* Oé—(Oé,"',Oé) k i|—o(i
21:1 | |=2(3—k)

25:1 ol is even for each [.

Proposition 3.1.2. Let V € C°(RY,R) then the j" coefficient of the reqularized heat

trace expansion, a;, 1s given by

alz—/V

ay = 02/V2 (3.13)

:03/\VV]2+63/V

For 7 > 3 we have the general formula:

_cj/|v9 2V|2+Z > ca/DO‘ VDY (V) --- D" (V). (3.14)

k=3 a€A;

Proof. We will use the Hitrik-Polterovich expansion for to get a formula for a;’s.

Looking at the formula for a;(x) from the first term a; is an immediate conse-
quence of setting j = 0. For the terms ay and a3 it will suffice to show the a; general

formula. We begin by considering the following pieced of the Hitrik-Polterovich for-

mula:

(=Ay + V)™ (lr = y*™)|y=-

16



Fix 0 < k < m + 7 and define the function sz as

ﬂ:{wwigk

)

A, 1>k
then
Jj+m 1
m-+j __ k k k
(_Ay+v(y)) 7= Z Z k|(j+m_k)'Fa(l)FU(2)FU(]"FW)
k=0 O'ESj+m

where Sj,, is the symmetric group and the combinatorial term k!(j +m — k)! is
used to account that the potentials (and Laplacians) maybe reordered among them-
selves. We then want pass the Laplacians to the right using the Leibniz rule.

AV = (=AV) = 2(VV) -V — VA

We will then be left with a sum of terms with a model term being

D*'VD*V...D*VDP
where
lod| 4[] + -+ || + 18] = 2( +m — k)

We then look for a formula for (D?|z — y|*™)|,=. In particular we want to know
for which 3 is (D°|z — y|[*™)|,=« # 0. First we observe that

|z — y[*™ = 2m|z — y|*" (y; — z;)

Oy

so we conclude that if 3; is odd then (D?|x — y|*™)|,— = 0 due to the remaining
(y; — ;) term. Next we observe that

90
dy; Oy;

|z — y|*™ = 2m(2m — 2)|z — y[*" (v — ) (y; — ;) + 2m|x — y|*" 736,

Setting ¢« = j gives
O ey = 2m(2m — D — g+ 2l — g
dy; (3.15)
= (2m)(2m — 1)z — y|*™ 2
Induction on m then provides the following formula
(2m)! || = 2m, 5; even Vi

0 otherwise

(Dyle = yI*™)|y=s {

So the expansion is a sum of terms of the form

CDYVDYV...D¥V

17



where Z || = 2(j — k) and Z o is even for each j. Turning back to the a; terms
=1
we see that they are a sum of 1ntegrals of the form

/DO‘1VD°‘2V---DO‘kV

where integration by parts provides that we may assume |o‘| < (j — k). We then may
look at the various cases of k

Case k = 0: this implies|3| = j +m > 2m so the associated term is zero.

/DO‘V:()

as V' is smooth and compactly supported.

Case k = 1: The integral

Case k = 2: Here we may assume then integration by parts and the fact that

>_al is even gives us o' = o?
i

/Da1v0a2v :/|D"1V|2

Case k > 3 Again using integration by parts we have

/Dalvmzv--ﬂa’“v

with the added constraint that |a?| < j — k for each i. Thus the j coefficient in the
regularized heat trace expansion has the form

—c]/|VJ 2V|2+Z > ca/DO‘ VYD (V) -+ D" (V). (3.16)

k=3 a€A; i

]
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Chapter 4 Resonances and the Wave Trace

This chapter will provide most of the tools and objects from which we will construct
our compactness result in chapter 5. We will first discuss the resonances of Hy which
are the analogs to the eigenvalues from the isospectral case. Next we will discuss the
wave operator and a regularized wave trace and extract the wave invariants which
are essentially the heat invariants. The well known Poisson formula will be used to
relate the wave trace to the resonances.

4.1 Resonances

Fix a real valued V € C5°(RY) , then for A € C with Im A > 0 and \* € o(Hy ) we
define the resolvent operator

Ry(\) = (=A+V =271 LH(RY) — H2(RY). (4.1)

The function Ry is operator valued and meromorphic on the upper half plane of
C. We can then extend Ry to all of C with the meromorphic continuation Ry where
Ry|imaso(A) = Ry ()\) and for Im A < 0 Ry takes L%, — HE.. The poles of Ry

comp
are called the resonances with multiplicity mpg, (\) given by:

1
my, (V) = Rank 2—Z,/RHV(>\)2)\CZ)\ : (4.2)
T

5

where 7y is a closed curve about A; containing no other resonances.

Definition 4.1.1. Let V € C°(RY) and define res(V) = {(\, mg, (\i))} where the
ordered pair (A, mp, (\;)) is a resonance associated with the Schridinger operator
—A +V and its multiplicity, mg,, (\;) .

4.2 Isoresonant Criteria

We now define a set of isoresonant potentials using [4.1.1}

Definition 4.2.1.
IsoRes(Vp, 7, d) = {V € C°(R%, R)|supp V C B,.(0),res(V) = res(Vp)}

Fixing r > 0 is necessary so that we may avoid translations of potentials (which
will give not compact isoresonant sets) and maintain control over the size of the
support of the potentials.
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4.3 Compactness of the Isoresonant Set

The central theorem will be an analog of [I'heorem 1.0.1} which we will state here.

Theorem 4.3.1. Letr > 0 be fized, d = 1,3 and B,(0) C R%. FizVy € C°(B,(0),R).
Then the set IsoRes(Vy,r, d) is compact with respect to the C™ topology.

In order to prove the theorem we will need to show that a sequence {V,} C
IsoRes(Vp, 7, d) has a convergent subsequence in the C* topology. We will do this
by building a Frechet metric from the L? semi-norms of the derivatives, showing
that IsoRes(Vy, r, d) is equicontinuous in every derivative, and then applying Arzaela-
Ascoli to extract a convergent subsequence in the Frechet metric.

To show equicontinuity we will need uniform bounds on the L* norms of each
derivative, which we will acquire from uniform bounds on the L? norms of each
derivative using an embedding theorem. These uniform L? bounds are a result of
the invariance of the wave traces with respect to IsoRes(Vjp, r, d) through the Poisson
formula for resonances and the relation of the wave invariants to the heat invariants
of the the operators —A + V,,. The heat invariants are used to provide the bounds.

4.4 Strongly Continuous Wave Group

We begin the discussion of the wave trace with a short review of the wave group.
Consider the equation

attu + (—A + V)u =0 (*)
with initial data u(0) = up and Oyu(0) = uy

Then Wy (t) is the strongly continuous one parameter unitary group that takes
the solution at time 0 to the solution at time t.

W (t) (uo(x), ur (2))" = (u(z,t), Opu(z, )"
The infinitesimal generator of Wy (t) given by Ly .

d d
_WV(t)(UO(x)’ U1 (x))T = —(U(t, ZE), 8tu(t7 m»T
dt dt
Ly (u(t, z), Owu(t, x)) = (Quu(t,x)), [A — V(x)] u(t, x)) (4.3)
0 1
Ly =
A=V 0
We denote the case V =0 as Ly. Then the operator Ly — Ly is given by
0 0
en=] 0], ”
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The wave group, Wy (t), is not a trace class operator, however once regularized
Wi (t) — Wy(t) is trace class in a sense of distribution. For any p(t) € C§°(R) and a
sufficiently large s (independent of p(t))

[ ot (Wte) = Wae) dt < Cllpl.a

The regularized wave trace also has a small-t asymptotic expansion. The coef-
ficents in this expansion, labelled w;, are the wave invariants. The following well
known theorem is due to Melrose [7].

Theorem 4.4.1. Let d be odd and V € C(R4,R). Then the operator Wy (t) — Wy (t)

1s trace class and has the small-t expansions:

ford=1
Tr(Wy(t) — Wo(t)) ~ > |t~ (4.5)
j=1
ford >3 odd
o .
Tr(W,(t) = Wo(t) ~ 3 wid 2(0)+ 3 wlei-e (4.6)
i=1 j=dtt

In Proposition the wave invariants, w;, will be shown to be a constant
multiple of the heat invariants using the wave to heat transform.
4.4.1 Duhamel’s principle

The integral kernel of Wy (¢) is not known, however we may use Duhamel’s principle
to expand the difference Wy (t) — Wy(t) as a sum of integrals over Wy(t), Ly — Ly
and a remainder term.
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Wy (t) = Wo(t) = [Wy (t)Wo(—t) — 1] Wy(t)

d
/%EMMN%WﬂH

d

d
= [ ds - W9 Wolt = ) + Wr(s) 5 Wat — 5)
(4.7)
= /ds Ly Wy (s)Wo(t — s) — Wy (s) LoWy(t — s)
= /ds Wy (s) Ly Wy(t — s) — Wy (s) LoWy(t — s)
_ / ds Wy (s) [Ly — Lo] Wo(t — s)
Recursion of the formula m times yields
Wy (t) — Wo(t) =
Z/ dSZ‘ tee d81WO(81) [LV - Lo] H (WO(Sj—i—l - Sj) [LV - Lo]) Wo(t - 3i)
+/ dsip1 - dsiWy(s1) [Lv — Lo] ﬁ (Wo(sjr1 — s5) [Lv — Lo]) Wo(t — sit1)
. (4.8)

4.4.2 Integral Kernel for the Wave Equation with Potential

Given initial data ug(x) and uy () there exists an integral kernel Ky (z,y, t) satisfying

)

Ky(z,y,0)=0
WKy (z,y,t)]—g = 0(z —y) (4.9)
07 + (= Az + V)l (Ky (z,y,t) = 0

such that.

u(z,t) :/ 8tKV(x,y,t)uo(y)dy+/Kv(x,y,t)ul(y)dy
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solves (x).

Taking the Fourier transform of (x) gives
Ouii(e) + |e*ile) = —Vule) )
which gives the integral kernels }A(V(x, y,t), (‘9JA(V($, y,t). For V =0 we have

~ sin |e|t
Role,n, 1) = 8(e + )2l

€]
(4.10)

O Ko(2,m,t) = 8(c + 1) cos et
This allows us to recover Ky(x,y,t) and 0,K(x,y,t) by taking the inverse trans-
form.
4.4.3 Integral Kernel of the Wave Group

Given a the wave group Wy (t) we consider the integral kernel IC(z,y,t) such that

Wy () (uo (@), ur (2))" = / Ky (@, y,t)(uo(y), wi(y))" dy = (u(x, ), Ou(w,t))"

Rd

We denote the fundamental solution as Ky (z,y,t), 0Ky (x,y,t) such that

U(ZL‘, t) = i aIf[(‘/(xv Y, t)UO(y) + Kv<l’, Y, t)”l(y>dy

Thus

8tu(:c, t) = /d attKV@j? Y, t)u()(y) + atKV<x7 Y, Zf)ul (y)dy
R
which gives

atKV(x7yvt) Kv(ZL',’y,t)
]CV(SC, Y, t) =
(A_V)KV<x>y7t) atKV(mayat)

4.5 Wave Trace

4.5.1 Wave Trace Expansion

In order to write down a formula for the regularized wave trace we will need a new
operation * which is similar to, but not a convolution.

Definition 4.5.1. We define the operation * as

By x By(z,y) = /Bl(x,z)Bg(z,y)dz
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Proposition 4.5.1. The operation x is associative.

((By * Bg) * Bs)(z,y) = /(Bl*Bg)(a:,zl)Bg(zl,y) dz;
://Bl(x,zg)Bg(zg,zl)Bg(zl,y) dzedzy
:/Bl(I,ZQ)/B2(22,21>Bg(21,y) ledZQ <411>

:/31(95722)(32*33)(22,y)d22
= (B1 % (B2 x B3))(7,y)

*m,
Given the associativity of x we will use the notation [[ B; to mean
i=1

*m

HBi:Bl*BQ*---*Bm_I*Bm
=1

We now consider the wave trace
¢
T’I"(Wv(t) — Wo(t)) = T’f‘ /dS Wv(S) [LV — L()] W()(t — 8)
0
(4.12)

t

= /ds Tr (Wy(s) [Lv — Lol Wo(t — s))

The m'™ term from the recursion of Duhamel’s forumula (Equation 4.8)) is

/ / ds, -~ dsy, Tr <W0(51> (Lo~ Lo] T Wosier — 5:) (Lo — Lo]] Wolt - sm)>

0 0 =1
z
t Smo1
:/ / dsy---dsp, /dxtr(lCm(x,x,si))
0 0 Rd
(4.13)

where /C,, is the relevant integral kernel. We know the formula for ICy from
tion 4.4.3l Now define K} = Ky(s;11 — s;) and assume
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*(m—1)
KQ *

) *(m—1) )
[ (VK§) | *(VoKg) EKgx| II (VK | *(VKG)
m i=1 i=1
K:m = (_1) *(m—1)
BtKg * ( H

) *(m—1)
(VK8)> * (VoK) atKg * (
i=1
Then

11 <VK3>> * (VER)

okt Kt 0 0
]Cm—H - l: AKO—I aKo—l * -V 0 ’Cm
—(_1\™m [ atK(;l KO O 0

AN DN I i Rl

[ *(m 1)

*(m—1)
KO % (VKD | « (VoK) 0

(I <VK3>> * (VEF)
0 KQ ( Tln_[ (VKO)> (VoK) 0,KJ * <*(ﬁ1)(VK8)> * (VK
— (_1)’m+1 |: 8tf(()_l K()_1

AK;'Y OK,! }

0 0
*(m—1) ) *(m—1) )
VK{x [I (VK= (VoK) VKIx I (VK (VK
i=1 i=1
. *(m—1)

) *(m—1)
s (T v ) < (vauks Kal*<
= (- o

11 <VK5>)*<VK5”>
*(m—1) ) *(m—1)
oKy b x [I (VKp) | x (VoK) 0Ky bk
=1

11 <VK3>> * (VER)

(4.14)
Renumbering the superscript ¢ gives

*m

KO » (mm@) . (VLKD) (H( a’>) « (VED)
ICerl —_ (_1)m+1 =1 . =m ‘
DK (H(VKé)) (VoK) 0K+ (H(VKS)) (VED)
i=1 e
Then the integrand of the m"* term is

*m

*(m—1)

*(m—1)
tr(Kp) = (=)™ [ K0 = [ (VE) = (VO.K]) + oK)~ [] (VK]
=1

* (VK

i=1
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Yielding

Tr(Wy(t) — Wo(t)) =

o t Sm—1 *(m—1)

Z(_l)m// / dsy---dsy | K9+ [] (VI * (VOED)

=1 Y i=1 (4.15)
*(m—1)

vok s [T (VED* (VED) | (e,2)da

i=1

4.5.2 Fourier Transform Formulas

The next section will require some results of how the Fourier transform interacts with
the x operation. We will consider the Fourier transform with V € C5°(R%, R)

(BQ*VBl *oe *VBm)A

Lemma 4.5.1.
Bl*BQ(E,T]) = / 23\1(5,—@@\2@, n)dCb

R4
Proof.

B?(\B2 (E’ 77) = / 6_Z“Elxe_in.yBl * B2 (l‘, y) dedy
R2n

/ e—ia-xe—in'yBl (.27, Z)BQ(Z, y)da:dydz
R3n

/ e IET T IT Y012 IO TR (1) )
R
By(¢a, v)dadydzdydudd,de,

| | | B (4.16)
= / B_Z(S—M)‘xe_l(n_v)'yel((ﬁl_¢2).ZBl(/% Cbl)
R

By (62, 7)dwdydzdydyd g

_ / 8(e = )3y = 7)0(61 — 62) B (1. 1)

13\2(6252, v)dydpdgydgs,

= / Bi(e, —¢2) Ba(h, n)dehs
R4

26



Lemma 4.5.2.

(BO*VBl*---*VBm)A:/ Bo(e, =) Bi(y1 — 61, —y2) - - -
Rn—1

m
—

Bun(ym = Omsm) [ [ V(0:)dridl6;

=1

Proof. Proceeding by induction we assume

(Bo*VBl*" '*VBm_l)A: /( ) BO(E _’Yl)VBl(’Yb ) VBm 1 ’Ym 1,M H d%

Then recursion of the formula given by Proposition 1 yields

(Byx VBy*---x VB ) = /( ) Bo(e, ~)VBi(y1,—72) -
R(m 1)n

(VB_1 % VB (Ym-1,7 Hd%

=/ E\0(57 —71)@1(71,—72)'“
VBmfl(mefla _7m>VBm<7m7 77) H dfyl
=1

Using the Fourier transform identity

Jo) = | fe=0)g(0)d0

we get

(BO * VBl Kok VBm)A: / Bo<€ —"}/1)81( 61, ) .
R2n

27
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Proposition 4.5.2. The m™ term in the recursion formula for Tr(Wy (t) — Wy(t))
s given by

1

m Sk+1 1 t— s, ~ i
H/ dsk/ dgsm(|€|( Sm + S1)) / V(- )
b1 0 R4 |5’ Rd(m~—1) -

Jj=1

m—18(Je = >0 0] (sit1 — 5:))

j=1

%
N
=1

V (0;)do;

with Spy1 = t.

Proof. Along with the formula from Proposition 2 we use the substitutions

Eo(a,ﬁ) = &J?o(a,ﬁ, s1) = 0(a+ ) cos(|alsy)

o)

i(0, B) = Kola, B, 5 — sis1) = I%A(S(a + B) sin(lo](si11 — 51)) (4.18)

~

B\m(a,ﬁ) = Ko(a, B, (t — 1)) = i(5(04 + B) sin(|a|(t — sim))

|

which gives

m

Sle —
/dem (e—m1) cos(|els1) H

-1 Z ’L

—0; = ip1) sin(|y; — 0] (81 — 8:))V (60;) dryacdf;

with 441 = 1 and s,,11 = t. Next we integrate over the v/s and 6,, to get the string
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of equalities.

Vi ="%Yi-1—0i=¢— Zej (4.19)
j=1
n=c¢c— Z 0,
j=1

Setting € = 1 and integrating over ¢

~

m—1  m-1Sin(le — ;%Kml - 5;))
= V(6;)db;de

[ costies =2y 5

g N
j=1
We then integrate over the s;’s.
m . m—1
k1 sin(|le|(t — s,)) ~
H/ dsk/ cos(|e|s1) ( ||( | >>V(— Z 6,)
k=170 Re < j=1
mo1 (e = 2 05|(siv1 — 54))
I1 = V(0;)d0;de
N
j=1
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Similarly if we take

Bo(e 8) = Kol B, (t = 1)) = —(ac+ ) sin(lals)

Bi(av, B) = Koo, B, 8; — 8i41) = ﬁa(a + B) sin(|o|(si1 — 55)) (4.20)

En(a,ﬁ) = 8t[?0(a,ﬁ,t — $p) = d(a+ ) cos(|alsy)
We get

T ek sin(|e]s1) -~ =
H dsy, cos(|el(t — spm))———=V (= > 6,)
o1 /0 R™d el

j
j=1
m—1 Sin(le — ;t%l(sm =)
1T = V (0;)d0;de
=l e —>_ 0]
j=1

The full formula for the m'" term is then

m Sk+1
11 / dsy /
k=10 R

sin(lel(t — sp)),, Mo sin(|e — Z:l Oil(si+1 —s1))
/d | cos(lelan) THEL=E - 3 g) =L V' (6:)d6:
e =L e~ 3 051
j=1

m—1  m—15in(le = Z 0;l(si41 — si))

sin(|els
+/ cos(|e|(t — sm)) (els1)
Rd(m—1)

9] = V(6:)d0; | de
el = .- E o
j=1
(4.21)
Factoring we get
m Skt . B .
H / dSk/ de <cos(|5|51)sm(|€|(t‘9m)) + cos(|e|(t — Sm))SIH(|581))
k=170 R lel €]
(4.22)

m—1 m—1 sin(|e — Z:l 0;](si41 — si))
/ V(=) 0)) — V (6:)do;
Rd(m—1) J=1 i1 |€7 Z 9j|
=1



which gives

1, e €] Rd(m—1) 4

—1
0;)

j=1

_y sin(le — 2 0jl(si41 — 5i))
= V (0;)d6;
=1 le — Z 0,1
j=1

4.5.3 Terms in the expansion for odd dimension

We want to show that the terms given by the formula in [£.5.2] correspond with the
terms of the small ¢ asymptotics of the wave trace. Ultimately we will do this with
the wave to heat transform for odd dimension, but here we will calculate the first
term for odd dimension, and show that the second term in the case of d = 3 contains
only higher order ¢ terms.

Let m = 1 and d be odd the the first term is given as

R4
= wd_ltV /drr sin(rt)
0

o

= i2wd_1ﬂ7(0) /dr rd_Z(eirt - e_m) (4.23)

0

= i2wy_1tV (0) /drrd_zem

—00

d—3 -~ a2 . "
= (—1)22wd_1V(0)t/dr dtd_z(e”)

—0o0

The above integral doesn’t converge, so we must consider it as a tempered distri-
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bution. Take ¢(t) € S(R) and consider the inner product.

T gd-2
(¢ [ dr S (e, 00) = (042 0), 1600

(4.24)
= (to())" 1=
= ¢(d—3)(0)
So we get (in the sense of distribution)
7 -2 » R )
(=1)F 200V (O)t / dr =5 (") = (=1)F 200 V(0059 (1)
(4.25)

— (1) F2we | [ V)| 5900

d

which is the first term in the small ¢ asymptotics of the wave trace.

Next we will compute the second term in the d = 3 case so we may see it is of order
|t| and show the general strategy for computing the higher order terms. Let m = 2
and d = 3 the formula gives

sin(|e](t — (s2 — s1))) sin(|e — O](s2 — $1)) =5, 1\ 55
/dsg/dsl//dade ] =0 V(O)V(—0) (4.26)

R3 R3

We first observe that for ¢(z) = —x)

V(-6) = //e_w(“_y)V(:p)V(y) dxdy = (V « V o hJ(0). (4.27)
R3 R3
Using this formula and a change of variables we can rewrite the integral as

/dSZ/ dsl/dg/de (t — (55— 51)) (59 _31)51T8(|\(€t|(i?828:1;))

]R3 Rd
sin(|6|(sg —
10(s2 — 1)

))(V*Vozﬁf(s—i-@)
(4.28)
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52281—82

§1:81+82

2t—3o

B sm(|5|(t — 59) sin(|0]352) .
/d52 / dsllR[dg/th S2)(S2) Ht—5) 05 (V+VoyJle+6) (4.29)

Integrate w.r.t to s;

sin(|e|(t — S2) sin(]6]32)
/dng/da/d92t—32 S2) =5 05 (VxVou)le+6) (4.30)

Now we represent the sinc function using the following formula with @ > 0 and
p=l|zl.

2
1 . 1 ;
i [eemot) = o [ [ ertsinodoas
T
0 0

I

N —

™
/ e 1050 sin §df
0

1
/e_i“p“du
21

1

; 1
—zapu}
€ -1

(4.31)

DN | —

—i2ap
sinap

ap

(4) /dSQ// t—sz (S2 / —i(t—52)em do(v1)

1) (4.32)
/e_i(gz)e-w do(v)(V * V o ¢Tle + 0)dedf

52
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expand the Fourier transform of V'« V' and combine terms.

(i /d [ [ [ 2e-56 [t

0 RS RS R3 52 (4:33)
/eia-(z+§2’72) do(v)(V % V) (—x)dedfdx
52

integrate over # and ¢

t

(4#)2/d§2/dm 2(t—§2)2§2/5(w+(t—§2)71)d0(71)/5(m—|—§272)da(vg)(V*V)(—m)

0 R3 52 52
(4.34)
integrate over x setting x = —557,

(4m)? / / 5 / 2t —32)2(3)0(—Fwvat (t—52) 1) (V£ V) (5yra) dor (1) der(11) (4.35)

S22 0 S2

(4) 5[0/6523[ X0,t] (82)2(t — 52)°(52)6(—s272 + (t — 52)71) (4.36)

(V V) (5272) do(vy2)do (1)

Integrate against a smooth function ¢(t).

(4r)? / o(1) / / 055 / Yo (G220t — 52)° G2)3(—Fna + (1] — 52)n)
R S2 0 S2

(V V) (5272) do(v2)do(v1)dt
(4.37)

We split the integral into to two pieces, ¢ > 0 and ¢ < 0.

It = (47r)27¢(t) / 7@ / Xio.0(32)2([t] = 32)*(52)0 (5272 + (£ — 52)m1)
0 S2

S2 0

(V % V)(5272) do(vy2)do (1) dt
(4.38)
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I = (4%)27¢(—t)/7d§2/ X10.0(32)2(t — 52)*(32)8(—327 + (t — 32)m)

(V % V)(5272) do(vy2)do(y1)dt
(4.39)

Consider I+ and translate t = ¢ — S9

It = (47)° / / ds,
52 0

[ [ S+ 520 (5202 52 8T+ )
_'§2 S2
(V % V)(5272) do(v2)do(m)

(4.40)
Note that for 52 > 0, x(o7,5,(52) = 1 exactly when ¢ > 0.
(4.41)
S2 0 0 g2
(V * V)(8272) do(vy2)do (1)

integrate over Pda('yl)d’tv which sets 3y75 = t1
I = (4n)? / 03> 25,0(2%)) / (V £ V) Gor) do(72) (4.42)

0 52

We now consider the negative portion of the integral, I~

I~ = (4n)* 7¢(—t) / 7d’§2/ X10.1(52)2(t — 32)*(32)8(—3272 + (t — 32)m)
0 g2 52

0

(V % V)(5272) do(v2)do(y1)dt
(4.43)

We again translate and set ¢ = ¢ — 3,

I~ = (47)2//d§2/~ d’{/ ¢(—(’{+ §2>>X[O,f+§2]2,£2 gg 5(-?272 —/{’}/1)
—35
52 0 52

(V % V)(5272) do(v2)do (1)
(4.44)
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The characteristic functions behaves as in the I case giving

I~ = (4n)? / 7d§2 7d’£ / O(—(t 4 52))2t2 55 6 (=572 — tm1)
S2 0 0 S2

(4.45)
(V « V)(5272) do(v2)do (1)
integrate over t2do (7, )dt which sets 337, =t
I = [ do(-2m)25 (V2 V)G dota) (4.46)
0 52
Adding the positive and negative pieces we have
Pr = [ el [(VeViEe)det) (@47
o 4
rescaling gives
<~ S:
4 [ 0GRl (v V) () doths) (4.48)
NS 24

So in the sense of distribution we have

(47)3|§2|][(V * V)(%’Yz) do(y2) ~ 4(4m)° (5] (V % V)(0) = (47)°[Saf [VI[Z2 (4.49)

as 55 — 0. Thus our second term is given by (47)3|t|||V]|3.
4.5.4 Wave to Heat Transform

d—1
We have that for odd dimension Tr(Wy (t) — Wy(t)) ~ i w;+ >, w;|t|*~% The
j=1

- d+1
=41

next step is to show that the w;’s are multiples of the heat invaraints (as described
in Proposition [3.1.2)) associated to —A + V. This will be shown using the wave to
heat transform, which gives the heat invariants in terms of the wave invariants.

Proposition 4.5.3. Let a; be the heat invariants as described in Lemma and
w; be the wave invariants. Then the following formula holds for odd dimensions.

92(j—d)+1
o —Mj aj 1
Wi = g26-d)+1 4
-~ 4 J

N, J

< d=1
o2 (4.50)

Q. .

d+l
2

IV IA
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Where M; and N; are non-zero constants given by the formulas

M; = (—f/€d12je€z de
(2m)2

N; = / e 1617 ~de

(4.51)

We begin by considering the formula
2 1

—tx

T 67178152 cos(sz) ds 4.52
e / (s2) (4.52)

and applying it to the regularized heat trace. We then observe that this is an integral
of the kernel against the wave trace.

Tr(e v — ¢7tHoy = Tp [(m)—% / e [cos(s (—A+V))

—cos(s (—A))] ds]

= (4mt)"2 /eiT'r’ [cos(s (—A+V))
— cos(s (—A))] ds

(4.53)

N

- %(zm)— /e—‘iTr(W(s) — Wo(s))ds

d—1
1 2|8 4
:5(47@*% / e | w6t (s)
j=1

+ Z w;|s|¥~| ds.

o d+1
25
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We now have two model integral to solve. We will begin by fixing j with 1 < j < d%.

I = -——w; [ e" 561 7% (s)ds

I g\ 412 2
= 2\/ij( 1) /5(8) <ds> e aids
11 1 N1 g\ A2
— ) = a —62
= 5\/—4_th /5(\/@9) (\/4_t) (d@) e~ V/4tdo (4.54)
1/ 1\ ANTE
() w o)

_ % (40)72 w; (4t) [(d%) o 692]

using the substitution 6§ = \/LE and note that % = 5o

0=0

For j > % we have the following integral.

7 11
J 2\/@

; 6_%]5]2j_dds
J

11 —62 2j—d
=———w; | e VA0~ 4tdo
2 /4t J | |
(4.55)

= %(\/E)%'dwj/ew\&\%dd@
L4 [ 02 p2i—d
= 5(4t) 2w;(4t)? [ 77|67 4db

Comparing coefficients of the powers of ¢t we get a formula for the wave trace
coefficients in terms of the heat trace coefficients. Fixing d and defining M; and N;
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as

wel@) T
(4.56)

N; = / e~ 1617 ~de

N; is clearly always positive. We can see that for odd dimension M; is positive
and non-zero by looking at the Fourier transform of e~?

d d—1-2j , i d d—1-2j 1 .
(6] () g
(27m)2 o

do
6=0 L
r d—1-2j
_ (_(12) )12 /5d_1_2j6_€2ei50 dg] (4‘57)
)2 .
(_ )d—1—2j =0
)32

For odd dimension we get that M; # 0. This then gives the following formula for

the wave coefficients, w;.

2(4)7 74 © - d—1
a4 1=y
Wi = 4 opi—d . (4.58)
{%%’ iz
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4.6 The Poisson Formula

The relation of the resonances to the trace of the wave group is the connection that will
allow us use the iso-resonant condition to prove compactness. The Poisson Formula
is what provides this connection.

Proposition 4.6.1. (Poisson Formula) [6]
Let V € C (R4 R) with d odd. Then

Tr(Wy(t) —Wo(t) = > mae t#£0 (4.59)

AERes(V)
where my s the multiplicity of the resonance and k > d in the sense of distribution.
The proposition follows from using along with the Birman-Krein formula and

Hadamard factorization. An outline of the proof will be given here, for a full proof
see Dyatlov-Zworksi [§].

Lemma 4.6.1. [§] Suppose V € C§*(R4, R) is real valued with d odd.
Then for f € S(R) the operator f(Hy) — f(Hy) is trace class and

o K
1 9 1 1.
Tr(f(HY) = S(Ho)) = o [ FORr(S(O) 1 BS()aA + > B+ 50(0),

, —

(4.60)

where S(N) is the scattering matriz and Ey < 0 are eigenvalues of Hy .
Using the representation
Tr (Wi (t) — Wo(t)) = 2Tr [Cos (t HV> — cos (t Hoﬂ (4.61)

we note that cos()) is not in S(R). However, if we consider the formula cos(\) =
% for p(t) € C3°(R) the Fourier transform p(s) then we see that

R (4.62)

The function p(s) € S(R) so we can take f(\) = p(v/A) +p(—v/A) in the Birman-
Krein formula. Then in a sense of distribution we get that the trace of Wy (t) — Wy (t)
exists and has the expansion given in the lemma. Dyatlov and Zworski then use the

relation tr(S(A\)71O\S(N\)) = Ox(logdet S()\)) and a factorization of dy(logdet S(\))
to obtain the result.

40



Chapter 5

To establish the compactness result of [I'heorem 1.0.2| we will adapt the tools from
Briining and Donnelly presented in The uniform bounds on the Sobolev
semi-norms of the potentials in IsoRes(Vp) will allow us to show convergence of an
isoresonant sequence {V;} C IsoRes(Vp) in a Fréchet metric induced by the semi-
norms. Finally, we will show that limiting funcition is in the isoresonant set.

5.1 Uniform bounds on W, norms (Briining/Donnelly Mechanics)

We can write down a formula for the wave invariants using the formula for the heat
invariants given in R? from [3.1.2] along with the relation between the heat and wave
invariants from . We begin by restating the definition of the set, A;, from
of k-tuples of multi-indicies that we will use in the formula for the wave
invariants.

aiGNg for 1<i<k

iy o [=2(j—k)

>k al is even for each I.

Aip=<a= (041,~~ ,ock)

The jth coefficient,w;, of the small ¢ asymptotics is independent of our choice of
V € IsoRes(V}) and is given by the following formula:

wj = d; /|Vﬂ 2V|2+Z > da /D“ VDY (V)--- D (V).  (5.1)

k=3 a€A; i

A rearrangement gives that for each j we have the bound

Via<e (143 5 [itvpter-ow) 62

k=3 acA; K

where C' > 0 is independent of our choice of V' from the isoresonant set. The strategy
is to then show each term

[107 D)D)

is bounded by a constant independent of our choice of V' (d = 1) or by a multiple of
1+ ||V||572’2 with 5 < 2 (d > 3). Together these bounds yield a uniform bound on
”VH]',ZQ for each ]

Lemma 5.1.1. Let u € Cj(R) then

[ulloe < Cllull,
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Proof. This follows from [['heorem 6.0.3| with d = 1.

[
Proposition 5.1.1. Let d =1 and |V||j_32 < M,V € IsoRes(V;) then for j > 3

/ DY (V)D (V) - D (V) < C

where C' depends only on M and j.

Proof: We use the bounds on the order of the D®V terms to conclude that each
term has order less that j — 3 as || < j — k < j — 3 and there are at most 2 terms

k

with order j —3 as Y |a’| <2(j — k) < 2(j — 3). Lemma [5.1.1{ will then allow us to
i=1

get the desired bounds.

Case 1: Assume 0 terms of order j — 3

Then using the Lemma for each ¢
D (V)| < CIID* (V)12 < OV -2

This gives

/ D (VYD (V) - D (V)] < CEMF < O

(WLOG we may assume C, M > maz(1,m(B,))
Case 2: Assume 1 term is of order j — 3

Using the results from Case 1 with the Holder inequality we have

J107 D)D) < gk [ v)
<CMI(B) Ve (53)
< CIM?

Case 3: Assume 2 terms of order j — 3

Again using the results of Case 1 and the Holder inequality gives

J107 D) D ) < et [0 D)

< CF MR RIVE s, (5.4)
< CIMI

]

For d > 3 we use a proof given by Donnelly which requires reordering the Dai(V)
terms. Fixing k, we reorder the terms according to |a’| and define T in the following
way
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T =D (V)D*(V)---D*(V)D* " (V) --- D**(V)

where the ordering is chosen s.t.

i<l=d>2(j—|a'| - 3)

, 2.5
i>1l=d<2(j—|a'|—3) (5:5)

We will separate [|T| using the generalized Holder’s inequality and apply the
Sobolev embedding theorem to get an estimate. Note that the conditions determine
which case of the Sobolev embedding theorem for p = 2 and k = (5 — || — 3) is
appropriate.

Proposition 5.1.2. (Lemma 4.6, Donnelly) If d > 3,7 > 541, and ||V ||j_32 < C1,

then
/|T| <0y (1 + ||VH§—2,2>

where < 2 and Cy depends on Cy

Proof. We will look at the possible values of [ and for each case the general strategy
will be to use the generalized Holder’s inequality to show

k
/ T < T I1D% (V)]
=1

k
with >+ =1.
i=1 "'
For ¢ > | we use two Sobolev inequalities

DY (V)|loo < CIIVj=32
when d < 2(j — |af| — 3) and

1D (V)

e < ClIV][j-32

where 2 < r; < oo when d = 2(j — |a‘| — 3). These two inequalities give the bound

[1z1 <TI0~ w)

The remainder of the proof is to show that for 1 < ¢ < [ we can choose r; to apply
the appropriate Sobolev inequality.

T

l
n < CIVIES [T 1D (V)
i=1

Case 0: When [ = 0 the estimate holds for = 0 using the above method.
Case 1: Letting [ = 1 implies d > 2(j — |a'| — 3), so setting

2d
d—2(j —la'| =3)

r =
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yields ) ,
1D (V)lley < CIDT (V)j-jat-52 < ClIV [lj-5.

2d

by the generalized Sobolev inequality. The only condition on j is 2 < 3G 1aT=3)

or

j — 3> |a!| which is true for every D (V) and j.
Since L < %,
T1

So for [ = 1 we have the bound with 5 = 0.

k
we can choose the remaining 7;’s to meet the condition > + = 1.
i=1 "

Case 2: Assume [ = 2.

If |o'| and |a?| are such that r; and ry (as chosen in case [ = 1) satisfy

1 1

—+—<1

e T2
then we proceed as in the case [ = 1 and apply the generalized Holder’s inequality to
get the result with § = 0.

Now assume - + ;- = 1. Since |a'| < j — 3, this implies |a'| = [@*| = j — 3 and

thus r; = ro = 2. We may then apply the generalized Holder’s inequality to get.

Ti

k
[z < el )l 107 )
1=2

Where € > 0 and r; for ¢ > 3 are chosen to satisfy the Holder condition. Further-
more if we choose ¢ such that r +¢ < % then the general Sobolev inequality gives
that

D% (V)llrse, < CID™ (V)2 < CallV |22
So we get the result with § = 1.
Case 3: Assume [ >3 and d > 2(j — || —2) fori = 1,2
Let r; be as in case 1 and 2 and set

2d
d—2(j — o] = 2)

S; =

L, interpolation gives that for 0 < &; < 1 there exists a 0 < 8; < 1 s.t.

|DY (V)|[riie; < IDY(V)[|Z | D (V)| 17

Bi
T4
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Thus using the generalized Holder’s inequality we have

T4

/ITI < ClID* (V) lry e |1 D7 (V HT2+€2H 1D (v

=3

< D 2D (DI D (W2 D (VI B2H||D°‘ Mji-jail-3.2

< V(|25 1D (VI VI D (v ’BQHHVHJ 3.2

< C|ID* (V)[4 1D* (V)]IL,
< CIVIIT 5,
(5.6)

Where § < 2. r; may be chosen arbitrarily for ¢« > [ and as in case 1 for + <[, so in
order to satisfy the Holder condition we require.

1 1 1
+ +Y =<1
riter ratéey T
Which, for sufficiently large €1, < 1 is implied by

1 1 1
—+ = — <1
81+82+Z

Substituting for s; and r; gives

2 . ; l . .
d—2(j —|o'| = 2) d—2(j —|o'| = 3)
> o +) <1

1=1 1=3

which may be rewritten as

(d—2j—6)l+2) |a'| <2d+4
i=1
!
Because Y |af] < 2(j — k) it is sufficient to show
i=1
(d—2j — 6) +4(j — k) < 2d + 4

Using assumption [ > 3 lets us rewrite the inequality as
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d+3 2k’—4<,
2 1—o =/
. 2%k—4 ~ 2k—4 _ .
Then k > 1> 3 gives 55 > 2= =20 it suffices for
d
—+1<9
y T

Case 4: [ >3 and d < 2(j — |a’| — 2) for D' (V') and D**(V).
For 2 < s < oo we have the embedding
1D (V)lls < CIID* (V)llj—jasj-22 < ClIV [ j-22-
Then L, interpolation gives for 2 <t < s
DY(V)|l ™.

1D (V) < 1D (V)12

We may take t to be arbitrarily large reducing the Holder condition to

If [ = 3 the condition is met as r3 > 2, so we assume [ > 4. Substituting for r;
and rewriting the inequality we get

l
(1=2)(d—2j+6)+2) |a'| < 2d.

=3

! k
Using the inequality > || < Y |af| < 2(j — k) gives the sufficient condition
i=3 =1

(l—2)(d—2j+6)+4(j — k) <2d
which can be recast as
(l—4)d+6(l —2) — 4k < (21 — 8)j.

If I = 4 then the inequality reduces to 12—4k < 0 which always holds as 4 = [ < k.
For [ > 5 we rewrite the inequality as
d l—4 2 2k

PR B R R B I

which reduces to



Since k > [ it is sufficient for the following series of inequalities to hold:

d (2k—6)
R SR
d (2) .
1 — 5.7
2+ k_4<j ( )
d
—+1
2—|— <

This gives the condition on j.
O

Definition 5.1.1. Let V,, 4 be the set of potentials isoresonant to a fized potential
Vo whose support is containted in a ball of raidus r and with uniform bounds on the
W2 norms.

Vira = {V € IsoRes(Vy) C C°(RY,R)| supp V C B,(0),||V]s2 < C}

with Vo fized and C,s,r,d > 0. Furthermore let V, 4 be

V,a=1{V € C(RYR)| supp V C B,(0), |D*V||12 < Cy Va}
Theorem 5.1.1. (Donnelly 4.1) If s > %l —2 then Vs,q C V.

Suppose s > g — 2. Then there is a uniform bound on j — 3 Sobolev norm when
s = j — 3. Furthermore, this implies 7 — 3 > %l —2orj > g + 1, so by proposition
there is a uniform bound on the j —2 = s+ 1 Sobolev norm. Induction then
gives that for each ¢t < oo there is a uniform bound on ||V for V € V; , 4.

Theorem 5.1.2. For d < 3, IsoRes(Vy,7,d) C V, 4

By [Theorem 5.1.1} for d < 3 we only need an apriori bound on ||V||2, which we
get from the second term in the expansion of the wave trace.

5.2 Compactness in the Fréchet Space

To show that our isoresonant set is compact we will need to define the Fréchet metric
for which the compactness applies. Next we will show that the isoresonant set lies
inside a compact set and is closed.
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Definition 5.2.1. Let V,W € C°(R%, R) and let {a'} enumerate the set {a} of all
d-length multi-indexes. Then for this enumeration we define a Fréchet metric

DV - W e
V.W) = 27" :
(VW) =3 2 e Wl

Definition 5.2.2. Let V, 4 be the set
Via={V € C(RYR)| supp V C B,(0), |V|w,, < C;,Vj}

Lemma 5.2.1. V, 4 is equicontinuous in every derivative.

Proof. Let z,y € B,(0), a be a d length multi-index, and V' € V, 4. To show V,, is
equicontinuous in each derivative it is enough to show

|D*V (z) — DV (y)| < Culz -y

where C', depends only on «.

From the Appendix we have Lemma [Theorem 6.0.3| which gives

d
Vllzee < [IVllwy,z for do > 3

Thus

o d
1DV e < [Vl s for do > 5

Since for all V' € V, 4 the W;5 norms have a uniform bound with respect to 7,
then we get a uniform bound on the L* norms of D*V Which depends only on |a.

Now fix a and consider z,y € B,.(0). Then by the mean value theorem
DV (x) = DV (y)] < [V(DV)]|Loe]z =y < Clajsrtao |z =yl

Where C' is uniform with respect to V, 4, thus V,; is equicontinuous in the ath
derivative for each «.

]
Proposition 5.2.1. V, 4 is compact with respect to the Fréchet metric.

Proof. Let {V,} C V.4

Lemma [5.2.1| gives {V},} is equicontinuous , so there exists a uniformly convergent
subsequence {V},, }. This new sequences is equicontinuous in each derivative so we
take a sequence of convergent sub sequences {Vn‘:} for each .

K2

Diagonalizing the sequence of sequences {V, } yields the subsequence {V,,; } such
that
Vi, — V uniformly in each derivative pointwise.
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The support of each V,, is contained in B,.(0), so
Vi, — V in each semi-norm
as we can choose J (for a fixed i) such that j > J implies
| DYV, — DV |12 < eVol(B,(0)).
We claim the V,,, — V' in the C*° metric. Consider

. |ID*'V, — DYV |2
Vi = V|r=) 277 e : :
Vo, = Ve = 32 ey Dorviye

Choose [ such that

i i 1DV, = DYV <<

) L+ || DYV, — DV 2
We then choose J such that 7 > J and ¢ < [ implies

i i g2i—1
DV, — D*V||2 < .

I I Iz [+1—g2i-1
Then for j > J

i=0 L+ ||Daivnj — DV 2

Thus V,,, — V in the C*° norm.
We then note that V € Cg°(R% R), that supp V C |J supp V,,, C B,(0), and

J
| DV |12 < CyVa. So, V €V, 4 thus {V,,} has a convergent sub-sequence and V, 4 is

compact.
O

The previous proposition gives that V, 4 is compact and we know that IsoRes (V) C
V,.a4, however we still need to show that IsoRes (V) is closed. To do this we will relate
a function,my, (), that counts the order of the poles of the resolvent to m Dy, (A) which
counts the zeroes of the p determinant of the resolvent. We can then use Hurwitz’s
theorem to show that the zeroes and thus poles are the same.

Definition 5.2.3. We define the regularized p-determinant of an operator A € L,
using the following operator

R,(A)=(I+ A)exp (—Z#) — I

The p-determinant is then defined to be

dgt([ + A) :==det({ + R,(A)).
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Proposition 5.2.2. If d < 3,IsoRes(Vp, r,d) is closed under the Fréchet metric.

Proof. Let {V;} C IsoRes(Vp,r,3) be a convergent sequence in C'* such that V; —
V € V. 3. Define

Dy () = det(I + ViRo(\)p)

where p = % =2, pe (C§° and plB, = XB,-

Let my; (A) be the order of the pole of Ry; at A and mp,, (A) be the order of zeroes
for Dy, then Zworski and Dyatlov [§] give

M (\) = moy, (V).

So it remains to show that mp, (A\) = mp,_(A) or Dy, — Dy, due to Hurwitz’s
Theorem [6.0.3]  An important detail to note in regards to Hurwitz’s theorem is
the requirement that Dy (\) # 0. However we know the limiting function V., €
C°(B,(0)) and thus by Zworski-Sa Baretto [10] Ry,_(A) has at most countable number
of poles which implies Dy (A) has at most a countable number of zeroes. Thus,
Dy () # 0 and we may apply Hurowitz’s theorem once we show Dy, — Dy, . As a
remark we say at most coutable because if V' = 0 then Dy(\) = dgt(]) =det(/) = 1.

Let
K; = ViRyp
and
Ry(Vi) = (I + Ky)e ™ — 1
then

Dy, — Dy._| = |det(I + Ry(V;)) — det(I + Ry(Vio)))|
< [1Ra(Vi) = Ra(Vio)[JretIvlorlFatoc (5.8)

< Cypall(I + K)e ™ — (I + Ky )e ™ =|,.

Expanding we have

(I + K;)e & = Z (_Kf)m + Z % _ Z (1 —m)(—K;)™

I+ K)e ™™ — (I + Ky )e e =)

We then consider the terms (—K;)"™ — (—K)™ and factor the difference as
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ZKll )Kml
Case 1: n > 3,1 > 2:

1™ (Koo = K K3 [l < G (Koo — K K|

_ ._2 m— m—
< O Q 7OV Vel ™I Ro ()™~

J

. 3
< ViR 57—

m—l m—I+1
S IV Ve ™ Ro ()]

<C—||5V||||V||l Vel Ro(M) ™

< CrCEMIOV oo | Ra(N) ™
< CROPH [V oo (A)meCUmAm

< Call oVl G A e,
(5.9)
Case 2: Assuming d > 3,1 < 2 gives a similar estimate due to symmetry.
Case 3: Assume d = 2,1 = 0,2. This case follows from the previous cases.
Case 4: Assume d =2,1=1
Define J = pRy(\)p which gives

Then
pro; (Ki6V J) < i (Ki) po(6V ) i (J)

and
pr2j+1 (K0V ) < s (KG) po (0V ) prja () < s (KG) po(8V ) i ().

Using the previous trace/singular value estimates gives

1K (Koo — Ki)ll1 < Croyn), 15110V [|oo-
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Thus,
I = K2 < ) (Koo = K)KZ
= (5.10)
< |8V ||o (CA)eCTmNm

Summing gives

(7 + Ki)e™ — (I + Koo )e |y < )" = (Koo)™lx
(5.11)
o0 (1 _ m)meC(Im/\)m
< v 3o L

m=2

The ratio test show that the sum converges for all A, and taking ||§V||, — 0 gives
convergence of the trace norm and so Dy, = D. O

We now have everything we need to proof the following compactness result.

Theorem 5.2.1. Let V € C°(RY R) with d = 1,3, the operator
Hy =-A+V,
and fix r >0 and Vo € C°(B,(0),R). Then the set

IsoRes(Vy) = {V € C5°(B,(0),R) | V € IsoRes(Vp)}
is compact in the C'*° topology.

Proof. [Theorem 5.1.2| gives that IsoRes(Vy) C V.4, gives that V), 4 is compact,
and [5.2.2 gives that IsoRes(Vp) is closed under the Fréchet metric. Closed subsets of
compact sets are compact, thus IsoRes(V}) is compact.

]

Copyright© Robert Wolf, 2017.
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Chapter 6 Appendix A

Sobolev Inequalites

Theorem 6.0.2. General Sobolev Inequality
Let U be a bounded open subset of RY with C* boundary. Assume u € Wy,. Then

if k< % then w € L1(U) where%:%—s.

Theorem 6.0.3. If u € W*3(R?) for k > ¢ then u € L>(R?) with
[ulloo < Cllulln.

Proof. WLOG we identify u with its continuous representative in W#2. Then we
rewrite u using the Fourier transform and apply Cauchy-Schwarz.

1 .
i / eV u(y) dy

1 eixy ks -
< |<2ﬁ)g/1+|y|k(1+|yl Ja(y) dy| (6.1)

< o a7 )’ 10+l

The Fourier characterization of W*?2(R?) then gives that

1L+ [yl*)allz < Cllullwre (6.2)

so we only need to show bounds on the first integral. Changing to polar coordi-
nates we see that

/ L /7 " nd
R S Y B
™ = ) et

d—1 it
= O'(S ) 1 —I— / m dT

- (6.3)
d—1 it
S O’(S ) 1 + / 7“7 dr

1
00

=o(SH [ 1+ /rd_%_l dr

1

Since k > g we can see the integral converges and the bound is proven.
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Theorem 6.0.4. Let Q@ C RY, u € W/T™2(Q)and m = £ then there exists a constant
C such that

[ullwia) < Cllullwstmzq) (6.4)
for2 < q < 0.

This special case of the Sobolev Imbedding theorem comes from Adams and Fournier

5.

Lemma 6.0.2. Mean Value Theorem
Let Q C R? be open and simply connected. Then for u € C(Q), there exists an a
such that w = azx + (1 — a)y

u(z) — u(y)] < [Vu(w) - (z —y)|

Lemma 6.0.3. Hurwitz’s Theorem [11]

Let G C C be open and {f,} be a sequence of analytic functions on G such that
fo— f. If f £0,Bgr(a) C G, and f(z) # 0 for |z — a| = R then there is an N such
that n > N implies f and f, have the same number of zeros in Bg(a).
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