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ASPECTS OF THE GEOMETRY OF METRICAL CONNECTIONS

Differential geometry is about space (a manifold) and a geometric structure on
that space. In Riemann’s lecture (see [17]), he stated that “Thus arises the problem,
to discover the matters of fact from which the measure-relations of space may be
determined...”. It is key then to understand how manifolds differ from one another
geometrically. The results of this dissertation concern how the geometry of a manifold
changes when we alter metrical connections. We investigate how diverse geodesics are
in different metrical connections. From this, we investigate a new class of metrical
connections which are dependent on the class of smooth functions. Specifically, we fix
a Riemannian metric and investigate the geometry of the manifold when we change
the metrical connections associated with the fixed Riemannian metric. We measure
the change in the Riemannian curvatures associated with this new class of metrical
connections, and then give uniqueness and existence criterion for curvature of compact
2-manifolds. These results depend on the use of Hodge Theory and ultimately on the
function f we choose to define a metrical connection.
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Overview and Background of Research

To study and quantify the changes that happen to a mathematical object as one
of its properties vary has been a philosophy in many areas of mathematics, whether
it be algebra, geometry, topology, or analysis. In Riemannian geometry as well as
this thesis, we follow this philosophy with respect to the geometry of a fixed space
(manifold). We are interested in how the geometric properties vary as we change ob-
jects associated with the space, such as Riemannian metrics, linear connections, etc.
Of particular emphasis here, we are interested in how the curvature and geodesics of
a space are influenced by metrical connections defined on a manifold.

In Chapters 1 and 2, the author outlines the essential definitions and well known
results we will need for the results in later chapters. The author introduces the idea
of a differentiable manifold and ideas associated with the differentiable structure in
Chapter 1. One topic essential to understanding later work is that of tensor fields,
which is given in Section 1.3. The idea of a metrical connection is defined in Section
2.2, and some common analysis ideas are presented through the machinery of tensor
fields and linear connections. In Chapter 2, the Riemannian curvature tensors of type
(1, 3) and (0, 4) are defined. The author then concludes the chapter by discussing the
independent nature of curvature by looking at Gauss’s Theorema Egregium.

Chapter 3 starts with a discussion of conformal Riemannian metrics given by a
function f ∈ F(M). As we move forward, the author will be comparing geometrical
objects with respect to manifolds which are conformally related. Therefore, in Sec-
tion 3.2 the author establishes notation that will aid in later work. The main idea
of Chapter 3 is to compare geodesics which are given by two metrical connections
(which may be metrical with respect to conformal metrics). Millman’s article ([11])
is motivation for the main ideas. Millman showed that the Q-tensors need to be
equal if two metrical connections are to have the same geodesics (in his work, the
metrical connections are metrical with respect to the same Riemannian metric). In
Section 3.5, the author generalizes Millman’s ideas via Theorem 3.5.4. A corollary
to this theorem is that the conformal function is constant if we wish for two metrical
connections to produce the same geodesics.

In Chapter 4, metrical connections are examined with respect to curvature and
new classes of metrical connections are introduced. Motivated by the relationship of
the Levi-Civita connections between conformally related Riemannian manifolds, the
author defines three types of metrical connections in Section 4.1, each dependent on
a smooth function f . The author then describes the Riemannian curvature of two of
these classes of metrical connections in the last two sections of Chapter 4. Specifically,
the author looks at the metrical connection f(L)∇XY which is defined using the Levi-
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Civita connection and a smooth function f . Comparing the Riemannian curvature
of f(L)∇ to the Riemannian curvature of L∇, the author establishes the key equation

f(L)K(X,Y ) = LK(X, Y ) + (Xf)2 + (Y f)2 − ‖gradf‖2 −Hf (X,X)−Hf (Y, Y )

in Theorem 4.3.1, which is found with respect to an orthonormal basis of (local) vec-
tor fields. Here, Hf is the Hessian of the function f .

In Chapter 5, the author presents results concerning the Riemannian curvature of
f(L)∇ on manifolds that are oriented, compact, connected, and of dimension 2. With
the condition that a manifold is dimension 2, the equation established in Chapter 4
(see above) can be reduced to

f(L)K(X, Y ) = LK(X, Y ) + ∆f.

To attain the results given in Sections 5.5 and 5.6, the author reviews basic Hodge
theory as it pertains to compact manifolds and specializes the results to dimension
2 in Section 5.3. In Section 5.4, the Gauss-Bonnet Theorem is presented as context
for later ideas. Utilizing the tools established in Chapter 4 and the first sections of
Chapter 5, the author shows that the Riemannian Curvature f(L)K associated with
f(L)∇ necessarily must satisfy the integral given in Theorem 5.5.2,

∫
M

f(L)K = 2πχ(M).

In Section 5.6, the author then gives existence and uniqueness criterion (in terms
of the function f) for the Riemannian curvature of f(L)∇ in Theorems 5.6.1 and
5.6.2. The results show that any function h which integrates to 2πχ(M) is necessarily
and sufficiently a Riemannian curvature for some metrical connection f(L)∇. Also,
the author shows that only when functions f1 and f2 differ by a constant can the
Riemannian curvatures of f1(L)∇ and f2(L)∇ to be the same. The work is concluded by
outlining further research and indicating how the ideas presented in this paper cannot
be immediately extended to higher dimensions. Generalizing to higher dimensions
will be the next major research focus of the author.

ix



Chapter 1 Preliminaries of Differential Geometry

1.1 Introduction

Differential geometry is the study of space (a manifold) and a geometric structure
of the space using an analytical viewpoint. Early work (see Spivak [16]) in differential
geometry focused on the geometry of spaces that were embedded in some Euclidean
space. The basic ideas of a manifold were limited to what the structure of the ambi-
ent space was and the properties the manifold inherited. For instance, if one wanted
to discuss the geometrical properties of the 2-sphere S2, we would first need to find
maps which described S2 in terms of lying in Euclidean 3-space R3. Even though there
are many ways to place a sphere into R3, Riemann discussed how we could envision
manifolds as intrinsic objects, not spaces that were embedded in Euclidean space.
A well written, intuitive discussion of the modern history of differential geometry
can be found in M. Berger, A Panoramic View of Riemannian Geometry, especially
pages 101-104 (see [1]).

In Riemann’s lecture of 1854 (see [17]), he stated that “Thus arises the prob-
lem, to discover the matters of fact from which the measure-relations of space may
be determined...”. Riemann thus considered looking at manifolds from an intrinsic
point of view; i.e. looking at the geometry of a manifold independent of any ambient
spaces. Initially, this viewpoint was not practiced by classical differential geometers,
even though Carl Friedrich Gauss embraced Riemann’s abstract approach. In the
beginning of the twentieth century, much work was being done in the field of differ-
ential geometry using this intrinsic point of view. Of significant importance, it was
shown that certain properties of manifolds were independent of how the manifold
was embedded in Euclidean (or other) space. The power of results like this allows
us to more completely describe the structure of a given manifold. In Chapter 5, we
will visit some of these results and discuss how we can use these to describe different
classes of manifolds.

Given the evolution of differential geometry, we naturally start by describing the
basic concepts of differentiable manifolds. We will only give a basic sketch here, and
encourage the reader to read Lee (see [10]) for a modern interpretation of the ideas
we assume as basic knowledge. Other texts, such as do Carmo (see [4]), Kobayashi-
Nomizu (see [7]), or Hicks (see [6]), have greatly influenced my interpretation of ideas
in differential geometry, and are also suggested to the reader (though Lee will suffice
for the knowledge we will need). After the introduction, we will examine other ideas
we will need in more depth than we do here.

Throughout the paper, M will be an n-dimensional smooth (differentiable) man-
ifold. Topologically, M is Hausdorff, connected, and second countable. With these
properties, M is also necessarily normal, metrizable, paracompact, and path con-
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nected (see Munkres [13] for definitions and the reasons these four properties follow
from the other). In particular, there exist smooth partitions of unity on M which
allow us to construct functions on M , even though M need not be Euclidean space.
Warner presents these ideas in the early chapter of [19], but since these are details
that get away from the main ideas of this paper, we do not present them here. The
other main topological properties are that M is locally like n-dimensional Euclidean
space, meaning that the manifold has the structure of Euclidean space in neighbor-
hoods on M , and the overlaps are smooth.

Analytically, M has a C∞ differentiable structure. Throughout the paper, it is
understood that the structure on all of our manifolds is C∞, and we refer to M as a
smooth manifold. The differentiable structure is simply a maximal collection of open
sets of Rn mapping into M which overlap smoothly (see Figure 1.1 below; ψ ◦ φ−1 is
smooth) and cover all of M (see chapter 1 of Warner [19]). Let U ⊂ M be an open
set in the differentiable structure. Thus U is homeomorphic to an open subset in
Rn. As we proceed, (x1, x2, . . . , xn) will represent the local coordinates of U in terms
of this mapping into Rn (see Figure 1.1 for U). Note that geometrical concepts are
dependent on the choice of coordinate chart we are in.

Figure 1.1: Smooth Overlap of Coordinate Charts

2



1.2 Brief Overview of Definitions in Differential Geometry

Let N be an m-dimensional smooth manifold. Hence, N also has a smooth struc-
ture which depends on open sets in Rm. A function F : M → N is smooth if the
function is infinitely differentiable through the smooth structures defined on M and
N . Said another way, for p ∈ M mapping to q ∈ N , we can find charts projecting
into Rm and Rn such that the coordinate transformations (the map ψ ◦ f ◦ φ−1) in
the picture below are smooth.

Figure 1.2: Smoothness of a Function Through Coordinate Charts

Generally, we will not concern ourselves with maps from M to N , but rather maps
involving M and R, where R is the real line with the usual structure. We denote the
space of smooth functions from M to R as

F(M) = {f smooth | f : M → R}

Having established the idea of smooth functions, we define the concept of a tangent
vector Xm at a point m ∈M as a derivation on F(M) (See Lee [10] chapter 3). Using
coordinate charts, we can define tangent vectors in terms of the coordinates back in
Rn. Given f ∈ F(M), we look locally through a coordinate chart about m ∈ M .
Thus, for the coordinate xi in a coordinate chart about m, we define a tangent vector
( ∂

∂xi
)m as the derivation induced by looking through (x1, . . . , xn) (see Lee [10] p.70). A

consequence of this definition is that the tangent space at a point m, usually denoted
Tm(M), has the same dimension as the manifold (n in this case) and the set

3



{( ∂

∂xi

)m for 1 ≤ i ≤ n}

forms a basis for the tangent space at m. Using these facts, we can conclude that
Tp(M) is a real vector space of dimension n. For the coordinate chart used above to
find coordinate tangent vectors, we can in fact find a basis for each m in the chart.
As we proceed, the subscript m will be omitted from our notation. If a result is
dependent on m ∈M , we will include the subscript.

Lastly, we define a smooth vector field X as a smooth choice of a tangent vector at
each point m ∈M . For X to be smooth, it is necessary that Xf is smooth for every
smooth function f . Observe that Xf makes sense, as at a point m ∈M , Xmf gives a
real value, so Xf is indeed a function. We define the set of smooth vector fields on M
as X(M). Using the fact that Tp(M) is a real vector space, we can deduce with little
work that X(M) is also a real vector space (of infinite dimension). In a coordinate
chart (x1, . . . , xn), the set { ∂

∂xi
} forms a basis for each point in the coordinate chart.

We view this basis as a collection of local smooth vector fields. For a smooth vector
field X, we can represent X locally with this basis as

X =
∑

i

X i ∂

∂xi

,

where X i are smooth functions in the coordinate chart. As is typical convention, we
do not provide limits on our sums, as it is assumed we are summing to the dimension
of our manifold (which is n). Keep this in mind as we proceed. Also, observe that
fX is a smooth vector field for any f ∈ F(M).

For X, Y ∈ X(M), we define the Lie Bracket as the smooth vector field [X,Y ],
where

[X, Y ]m = Xm(Y f)− Ym(Xf) (1.1)

for f ∈ F(M) and m ∈M . For the purposes of this paper, we limit the presentation
of the basics to these brief paragraphs.

1.3 Tensors of Type (r, s)

We provide the mathematics of tensors from the viewpoint of differential geometry
in this section. The presentation of tensors in differential geometry varies from text
to text, as some authors present a rigorous algebraic definition (see Lee [9]), while
others utilize tangent bundles over smooth manifolds (see Lang [8]). Since we only
consider tensors over the tangent space Tm(M) (which is a real vector space), the
definitions which ensue are with respect to this and later to X(M), which is also a
vector space over the reals. The issue of point dependence in M will also be discussed.
We then briefly discuss the concept of a covector, which is used in Chapter 5.
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Definition 1.3.1 Let r, s ≥ 0 be integers. We define a (smooth) tensor of type (r, s)
at m ∈M as a map of a product of s copies of Tm(M) into r copies of Tm(M)

Tm : Tm(M)× · · · × Tm(M)︸ ︷︷ ︸
s times

−→ Tm(M)× · · · × Tm(M))︸ ︷︷ ︸
r times

which is multilinear over R. Said another way, given a, b ∈ R,

Tm(. . . , aXm + bYm, . . .) = aTm(. . . , Xm, . . .) + bT (. . . , Ym, . . .)

When r (or s) is 0, the product becomes R. Thus, a tensor of type (0, s) is a map
from s copies of the tangent space into R. Notice that Definition 1.3.1 is defined for
a point in M . Of particular importance to us will be tensor fields. We present the
definition of a tensor field, and discuss what smooth means after our definition.

Definition 1.3.2 Let r, s ≥ 0 be integers. We define a ( smooth) tensor field of type
(r, s) as a choice of a tensor of type (r, s) for each m ∈ M which is compatible with
X(M).

Let T be a tensor field of type (r, s). Thus T is a choice of a tensor of type (r, s) at
each m ∈M . We think of T as a map

T : X(M)× · · · × X(M)︸ ︷︷ ︸
s times

−→ X(M)× · · · × X(M)︸ ︷︷ ︸
r times

. (1.2)

In this map, a product of s smooth vector fields maps to a product of r smooth vector
fields, while maintaining point dependence. For smooth vector fields X1, . . . , Xs and
Y1, . . . , Yr, we write

T (X1, . . . , Xs) = (Y1, . . . , Yr),

with the understanding that at m ∈M ,

Tm((X1)m, . . . , (Xs)m) = ((Y1)m, . . . , (Yr)m).

We can approach tensor fields by evaluating them with smooth vector fields, or by
evaluating the individual tensor field at the point m ∈M . The smoothness criterion
is linked to the compatibility with smooth vector fields. That means that the Yj above
must be in X(M). Also note that since smooth tensors are linear over R, tensor fields
are function linear over F(M). In fact, since tensor fields are linear, we need only be
concerned with basis elements when showing that a candidate T is indeed a tensor
field. Therefore, an equivalent condition for T to be a tensor field is to check that T
is linear over F(M), which is to say that T is addition linear in each slot and

5



T (. . . , fX, . . .) = fT (. . . , X, . . .)

As before, unless the dependence of m ∈ M is vital to a result, we will drop the
subscript. We will reference Definition 1.3.1 and encourage the reader to think of T
as the map described in Equation (1.2).

Now, we take note of some specific types of tensor fields. First, let us consider a
tensor field T of type (0, 1). Notice that Tm is simply a map from Tm(M) into R.
Thus, Tm is simply a vector in the dual of Tm(M). We call Tm a 1-covector, and T a
differential (or smooth) 1-form. We will revisit differential forms again in Chapter 5.

Lastly, we make a note about tensor fields when we change the arguments within
them. Continue to let T be a tensor field of type (r, s). For X, Y ∈ X(M), we say
that T is a symmetric tensor field if, regardless of where X and Y are placed,

T (. . . , X, . . . , Y, . . .) = T (. . . , Y, . . . , X, . . .). (1.3)

Additionally, we say T is a skew-symmetric tensor field if, regardless of where X and
Y are placed,

T (. . . , X, . . . , Y, . . .) = −T (. . . , Y, . . . , X, . . .). (1.4)

Within Equations (1.3) and (1.4), we have only swapped the X and Y in the argu-
ments of the tensor field T . Not all tensor fields are symmetric or skew-symmetric,
as we shall see, and in general we cannot hope to describe a tensor field in terms of
symmetric and skew-symmetric tensor fields. As Hicks (see [6]) observed, there is a
nice decomposition when dealing with tensor fields of type (1, 2).

Lemma 1.3.3 Let T be a tensor field of type (1, 2) for M a smooth manifold and
X, Y ∈ X(M). Then T can be decomposed as

T (X, Y ) = S(X, Y ) +A(X, Y ),

where S is a symmetric tensor field of type (1, 2) and A is a skew-symmetric tensor
of type (1, 2).

Proof Observe that T (X, Y ) =
1

2
(T (X,Y ) + T (Y,X)) +

1

2
(T (X, Y ) − T (Y,X)) is

the decomposition. Q.E.D.

There is one last easy result about tensor fields of type (1, 2) that needs to be
discussed. Suppose T is a tensor field of type (1, 2). For X,Y ∈ X(M), we have

T (X + Y,X + Y ) = T (X,X) + T (Y, Y ) + T (X,Y ) + T (Y,X). (1.5)
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Equation (1.5) has a useful consequence. If T is a symmetric tensor field, then
T (X, Y ) is determined by T (Q,Q) for all Q ∈ X(M). In fact,

T symmetric ⇒ T (X, Y ) =
T (X + Y,X + Y )− T (X,X)− T (Y, Y )

2
.

Thus for symmetric tensor fields T of type (1, 2), knowing T on a diagonal suffices
to know T . Also, we see that if we evaluate a skew-symmetric tensor field A of type
(1, 2) on a diagonal, we get zero; i.e. for all X ∈ X(M),

A(X,X) = 0.

1.4 The Differential of a Map

In this section, we define what the differential of a smooth map f is. Any smooth
function induces a linear map from the tangent space of a manifold to the tangent
space of another tangent space at the image point. We present the definition for
arbitrary smooth manifolds M,N of dimension n,m respectively.

Definition 1.4.1 Let F : M → N be smooth for smooth manifolds M and N . Define
the differential dF of F at p ∈M as

(dF )p(Xp)(h) = Xp(h ◦ F )

for Xp ∈ F(M) and h ∈ F(N). Thus, dF is the map

dFp : Tp(M) → TF (p)(N).

Observe that the differential map transforms tangent vectors in M to tangent vectors
in N , defined in terms of the original map F . It is easy to check that this definition
does indeed define a tangent vector at F (p) by showing that (dF )p(Xp) is a derivation
on F(N). Suppose N = R. Since the tangent space to a point on R is naturally
isomorphic to R, dF would be the map, for each p ∈M ,

Tp(M) −→ R,

which can be interpreted as a covector at p. The map dF is therefore a differential
1-form for f ∈ F(M). In chapter 5, we re-visit this concept and use the differential
to define a map from p-forms to (p+ 1)-forms.
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1.5 Concepts of Linear Connections

We start this section by introducing the idea of linear connections (also called
covariant derivatives) of smooth vector fields (by other smooth vector fields), then
present some common analysis concepts as they relate to linear connections. The
ideas discussed in this section are standard in the literature, and can be found in
most introductory differential geometry texts. Assume M to be a smooth manifold
of dimension n.

Definition 1.5.1 The map ∇ : X(M) × X(M) → X(M) is a linear connection if,
for X,Y, Z ∈ X(M) and f ∈ F(M),

(1) ∇X(Y + Z) = ∇XY + ∇XZ and ∇X+YZ = ∇XZ + ∇YZ ,

(2) ∇fXY = f∇XY,

(3) ∇X(fY ) = (Xf)Y + f∇XY.

We look at a linear connection ∇XY as taking a derivative of Y in the direction of
X. As such, ∇ does not behave like a tensor field. Indeed, ∇XY is not function
linear in Y . To define a linear connection in local coordinates (x1, . . . , xn), we define
the Christoffel symbols Γij

k, locally by

∇ ∂
∂xi

(
∂

∂xj

)
=

∑
k

Γij
k ∂

∂xk

. (1.6)

Once we discuss Riemannian metrics in the next chapter, we can establish how to
generate linear connections on M and obtain a formula for the Christoffel symbols in
terms of a Riemannian metric.

Even though linear connections are not tensor fields, we can use them to define
tensor fields. What follows are some ideas which naturally extend familiar concepts
from analysis to differential manifolds. Although these topics are typically discussed
in conjunction with the Levi-Civita connection, which will be presented in Chapter
2, we present them here, as they will be needed in the last two chapters. The purpose
of this is to emphasize that these definitions are needed for any arbitrary linear
connection ∇.

Definition 1.5.2 Let M be a smooth manifold and let X, Y ∈ X(M). Suppose ∇ is
a linear connection. We define the torsion tensor Tor of ∇, or Tor∇,as

Tor∇(X, Y ) = Tor(X,Y ) = ∇XY − ∇YX − [X,Y ],

where [X, Y ] is the Lie Bracket.
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Definition 1.5.3 Let M be a smooth manifold, X, Y ∈ X(M), and f ∈ F(M).
Suppose ∇ is a linear connection. We define the Hessian of f , denoted Hf , as

Hf (X, Y ) = X(Y f)− (∇XY ) f.

Proposition 1.5.4 For ∇ a linear connection on a smooth manifold M and f ∈
F(M), Tor is a tensor field of type (1, 2) and Hf is a tensor field of type (0, 2).

Proof We need to show that Tor and Hf are linear and function-linear over F(M).
Showing this for the torsion tensor is straightforward. As for the Hessian of f , we show
that Hf is function-linear in the second argument (the other conditions are obvious).
Let h ∈ F(M) and X, Y ∈ X(M). Using the definition of a linear connection,

Hf (X, hY ) = X(hY )f − (∇X(hY )) f

= ((Xh)Y f + h(XY )f)− (h (∇XY ) f + (Xh)Y f)

= h ·Hf (X, Y ).

Thus the Hessian of f is a tensor field of type (0, 2). Q.E.D.

A few words need to be said about the torsion and Hessian tensors. First,
each depends on the choice of linear connections. The torsion tensor specifically
is easily seen to be skew-symmetric. Notice that the torsion tensor measures, in a
sense, the difference between the Lie bracket and ∇XY − ∇YX; indeed, some write
Tor(X, Y ) = [∇X ,∇Y ] − [X, Y ]. In Chapter 2, we will relate the torsion to certain
types of linear connections and give existence and uniqueness criterion for certain
linear connections. This is how we interpret torsion in general.

The Hessian, on the other hand, will not necessarily be symmetric or skew-
symmetric. As we see in Chapter 2, specific classes of connections (those for which
Tor∇(X, Y ) ≡ 0) cause Hf to be symmetric. In the case of Euclidean space (where
the Chistoffel symbols are zero), the Hessian is exactly the matrix of second order
partial derivatives. That is, for flat Rn, Hf has the representation

(Hf )ij =

(
∂2f

∂xi∂xj

)
.

Lastly, given a coordinate chart (x1, . . . , xn), we can express the torsion tensor in
terms of the basis { ∂

∂xi
} as

Tor(
∂

∂xi

,
∂

∂xj

) =
∑

k

Torij
k

(
∂

∂xk

)
. (1.7)
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We use this notation as we proceed; since we will not use the coefficients of the Hes-
sian, we do not introduce a similar notation.

The last topic we discuss is the notion of a “line” on a manifold. First, we
introduce a smooth curve. The concept of a curve is simply a smooth map

α : (a, b) ⊂ R −→M.

The definition of a curve is natural, yet curves can help us understand the geometry
involved with a smooth manifold M of dimension n. Consider the differential of α.
Observe that dα sends a tangent vector in R to a tangent vector in M . Thus, if we
have a smooth curve α going through a point m ∈ M at t = 0, we get dα( d

dt
) = Xm

for some Xm ∈ Tm(M). This suggests that we can think of tangent vectors at m as
the differential of d

dt
for some curve α, which is true as we shall see.

For Euclidean real space, the idea of a line is what we normally envision, where we
can represent a line with a linear equation. With the abstraction to smooth manifolds,
the concept is not as obvious as it once was. One way to visualize a line on a manifold
is a curve which has zero “wobble” as you travel along it. We have the tool of the
linear connection to help measure the deviation that a curve has. There is a rather
important issue of how to evaluate a curve using a linear connection, since linear
connections work on smooth vector fields. But, as J.H.C. Whitehead demonstrated
(see [18]), given a smooth curve α, we can construct a coordinate chart (x1, . . . , xn)
so that the curve given by x1 is α. Thus ∂

∂x1
represents the tangent vectors along α.

More generally, if α is a curve, then dα
dt

can be extended locally to a vector field X̃ on

M so that ∇ eXX̃ is independent of which extension X̃ of dα
dt

is used in a neighborhood.
Thus we can define a geodesic as our interpretation of a line as:

Definition 1.5.5 Let α : (a, b) → M be a smooth curve on a smooth manifold M .
Then α is a geodesic with respect to a linear connection ∇ if, for all a < t < b,

∇ dα
dt

(
dα

dt

)
= 0.

The existence of geodesics is not obvious when the spaces we deal with do not behave
as Euclidean space. There is much detail left to the reader, but computation shows
that α is a geodesic if and only if α satisfies the system of differential equations given
by

d2αk

dt2
+

∑
i,j

Γij
k dαi

dt

dαj

dt
= 0 (1.8)

for k = 1, . . . , n. Here, αi represents the ith component of α when we look at α locally
through a coordinate chart; that is, α(t) = (α1(t), . . . , αn(t)) locally. The solutions
of this system yield the following useful result.
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Theorem 1.5.6 Let M be a smooth n-manifold and let m ∈M . For Xm ∈ Tm(M),
there exists a geodesic α : (−ε, ε) →M for ε > 0 such that α(0) = m and

dα

(
d

dt

)
(t=0)

= Xm.

This theorem says we can produce coordinate charts to “fit” a geodesic just as we
would fit a coordinate chart to any curve. We will utilize a coordinate chart con-
structed this way to make conclusions about geodesics associated with metrical con-
nections in Chapter 3. Observe that in Euclidean space, geodesics, which we can
visualize as linear equations between a pair of points, represents the shortest distance
between these two points. The main reason why this is true depends on the nature
of the space we are working in. When we abstract to smooth manifolds, this is not
necessarily true globally. In fact, how do we speak of distance on a manifold? From
calculus, we defined the length of a curve as the integral of the length of the tangent
vectors as we integrated over the curve. Notice that we do not have any notion of
length of a tangent vector, which is ultimately depends on an inner product on the
tangent space. It is key then to understanding how manifolds differ from one another
geometrically after we introduce the idea of an inner product on a tangent space and
this will be discussed in the next chapter.

Copyright c© Matthew J. Wells, 2009.
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Chapter 2 Preliminaries of Riemannian Geometry

2.1 Introduction of a Riemannian Metric on a Manifold

To this point, we have described the abstract idea of a smooth n-manifold M ,
and developed machinery for a smooth manifold which relates to what we see in
any Calculus course (the concepts of tangent vectors, vector calculus, etc...). Early
differential geometers worked with these ideas under the condition that the smooth
manifolds were embedded in some Euclidean space. Using this classical approach, we
could then assign an inner product to Tm(M) using the ambient Euclidean space.

In the nineteenth century, Bernhard Riemann was asked by Gauss to generalize
the foundations of geometry. Riemann described this abstraction at the University of
Göttingen (see a translation in [17]), which involved varying the inner product from
point to point, and doing so independent of any embedding into Euclidean space.
This choice of inner product is called the Riemannian metric for a smooth manifold
M , and adds geometry to the topological (or space) concept of manifold as in Rie-
mann’s Habilitationsschrift. Another way of “adding geometry” is to start with a
smooth manifold M and put a linear connection ∇ on it. In section 2.2, we’ll see the
way a Riemannian metric naturally gives a special linear connection, the Levi-Civita
connection.

The purpose of this chapter is to introduce the definition of Riemannian metric,
and re-visit some of the ideas of Chapter 1 with respect to a given Riemannian
metric. Later, we discuss a variety of tools to aid in distinguishing the geometry of
one manifold from another.

Definition 2.1.1 Let M be a smooth manifold. Define a Riemannian metric g on
M to be a (0, 2) symmetric tensor field that has the following property: for m ∈ M
and Xm ∈ Tm(M) ,

gm(Xm, Xm) ≥ 0 with gm(Xm, Xm) = 0 only when Xm = 0.

Fundamentally, this definition make sense, as a Riemannian metric takes pairs of
tangent vectors and returns a real number. The condition stated in Definition 2.1.1
is equivalent to requiring that non-zero tangent vectors have positive length. For a
smooth manifold M of dimension n, there are many different ways to choose a Rie-
mannian metric. The choice of a Riemannian metric determines the geometry of a
space. Therefore, we call a smooth manifold M with a choice of Riemannian metric
g a Riemannian manifold, and denote this with (M, g). From here on, our work will
be on Riemannian manifolds.
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Suppose we are given a coordinate chart (x1, . . . , xn) on a Riemannian manifold
(M, g). Since { ∂

∂xj
} form a basis for the tangent space at each point of M , we

can describe the Riemannian metric g (locally) in terms of this basis. Define the
Riemannian metric coeffients associated with the coordinate chart (x1, . . . , xn) as

gij = g

(
∂

∂xi

,
∂

∂xj

)
. (2.1)

Be warned that this description is only valid when discussing the given coordinate
chart. As soon as we change coordinate charts, the Riemannian metric coefficients
will change. We can represent the Riemannian metric coefficients locally as an n× n
matrix, which is positive definite by definition of Riemannian metric.

Another tool that a Riemannian metric g allows us is the use of an orthonormal
basis. Let X1, . . . , Xn ∈ X(M) be a basis of vector fields on M . Then {Xi} is
orthonormal if

g(Xi, Xj) = δij,

where δij is the Kronecker-delta. In general, we are not guaranteed an orthonormal
basis of smooth vector fields that cover the entire manifold. Locally, though, we can
take the basis { ∂

∂xi
} and apply the Gram-Schmidt algorithm to attain an orthonormal

basis at a point m ∈ M . We can find an orthonormal basis about a point m ∈ M
(which need not come from a coordinate chart).

Euclidean Space Consider real n-dimensional space Rn. To think of Rn as
an abstract smooth manifold, we need to construct coordinate charts to cover
Rn. The natural way to do this is to consider the identity map

id : Rn → Rn.

Notice that this one coordinate chart covers Rn. Because of this, we can describe
any Riemannian metric on Rn in terms of this single chart. The natural way to
define a Riemannian metric on Rn is with the identity matrix; i.e. for δij the
Kronecker-delta,

gij = g

(
∂

∂xi

,
∂

∂xj

)
= δij.

This definition indeed gives us the usual dot product that we are familiar with
from Calculus.
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In general, describing a Riemannian metric on a smooth manifold M is not easy.
When dealing with the 2-sphere, for example, we would need to describe the Rieman-
nian metric of the upper half as well as the lower half, the right and left hemispheres,
and front and back hemispheres. Then, we would need to check that the Rieman-
nian metric was indeed smooth where any coordinate charts overlap. We reference
Kobayashi and Nomizu (see [7]) to see how this is done. On the other hand, given a
Riemannian metric g, we can easily define a new Riemannian metric g̃ in terms of g
by multiplying g by some f ∈ F(M) such that f > 0, or for X, Y ∈ X(M),

g̃(X, Y ) = f · g(X, Y ). (2.2)

It is easily seen that g̃ is a symmetric tensor field of type (0, 2). Since f > 0, g̃
satisfies the condition in Definition 2.1.1, so that g̃ is a Riemannian metric. We call
g̃ conformal to the Riemannian metric g; this idea will be discussed in detail at the
beginning of Chapter 3. For now, we present a well-known space which is conformal
to Euclidean space.

Hyperbolic Upper-Half Plane Consider the upper-half Euclidean 2-Plane,
R2

+ = {(x, y) ∈ R2|y > 0}, where the Riemannian metric is the same as R2

(and so all coefficients described in the above example are still 0). We define a
Riemannian metric conformal to g using f ∈ F(R2

+), where f(x, y) = 1
y2 , as

g̃(X, Y ) =

(
1

y2

)
g(X, Y ).

Note here that the Riemannian metric is dependent on the point (x, y), which we
have suppressed in the notation. Thus, where before the Riemannian metric (on
R2

+) was represented by the identity matrix, now the matrix has non-constant
entries dependent on the function 1

y2 . Since we have altered the Riemannian
metric, we will refer to the upper-half plane with g̃ as Hyperbolic Space H. In
terms of the same coordinate chart used in the previous example, we easily see
that

g̃ij =

(
1

y2

)
δij.

Another concept that can be discussed since the introduction of a Riemannian
metric is the idea of distance on a manifold. Recall that we can define the length of
a curve in calculus as the integral of the length of the tangent vector as we run over
the curve. Distance is quite similar for an abstract smooth Riemannian manifold M .
Given a curve α, we can calculate the distance between two points on the curve by
computing the integral along the curve of the length of the tangent vectors. Thus,
define distance between points on a manifold as:
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Definition 2.1.2 Let p, q ∈ M for (M, g) a Riemannian manifold. Define the dis-
tance d from p to q as

d(p, q) = inf
α
|α|qp,

where the infimum is taken over all piece-wise smooth curves which are smooth except
at finitely many points and go from p to q.

The distance function d is commonly seen as a metric in any topology course. Be
careful of the notation; when we say Riemannian metric, we are referring to a choice
of inner product for the tangent spaces on a manifold. We present this concept of
distance to give the reader a deeper understanding of the implications of Riemannian
metrics; that is, each Riemannian metric gives rise to a measure of distance d(p, q)
as given in Definition 2.1.2. Earlier, we discussed the notion of geodesics as lines on
a smooth manifold. In fact, there exist neighborhoods (see Whitehead [18]) where
any two points can be connected by a geodesic, such that the geodesic realizes the
infimum and represents the shortest distance between the two points. Note that a
geodesic need not represent the shortest distance between two points (think of the 2-
sphere and the equator). Even though we do not discuss the distance function again,
the importance as it relates to geodesics should be kept in mind as we proceed.

2.2 Differential Geometry Concepts Revisited: Linear Connections and
Riemannian Manifolds

Suppose (M, g) is a Riemannian manifold of dimension n. Equipped with a Rie-
mannian metric g, we now turn to describing some of our earlier tools through the
Riemannian metric. Specifically, we describe linear connections which are naturally
associated to the Riemannian metric, and present the concept of a metrical connec-
tion. We then show that torsion tensor fields determine metrical connections. The
main focus of this section will be on linear connections; we develop other tools that
help describe the geometry of M as it pertains to concepts seen in analysis in the
next section.

Let ∇ be a linear connection (Definition 1.5.1) on M . Recall that we think of
∇XY as a covariant derivative of Y in the direction of X. To this point, there are
many different ways to define such a covariant derivative. Of particular interest to
us are linear connections which satisfy the following definition.

Definition 2.2.1 Let (M, g) be a Riemannian manifold and let X, Y, Z ∈ F(M). We
say that a linear connection ∇ is metrical with respect to g if

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ). (2.3)
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One interpretation of Equation (2.3) is that we are taking a derivative of g(Y, Z) in
the direction of X. In other words, this is the derivative of the dot product. Not every
linear connection will be metrical with respect to g. As the next proposition shows,
though, we can describe metrical connections by specifying the torsion tensor. Recall
the definition of the torsion tensor associated with ∇ from Definition 1.5.2. This
next proposition is usually proven in the case where T is zero (see Millman-Parker
[12] p.236). We include it for its increased generality, although the proof of the case
where T is zero has the same proof.

Proposition 2.2.2 Let (M, g) be a Riemannian manifold. Then, given a (1, 2) skew-
symmetric tensor field T , there exists a unique metrical connection ∇ on (M, g) whose
torsion is given by T .

Proof We prove uniqueness first. Suppose ∇ is a metrical connection whose torsion
tensor is T = Tor. Writing the metrical condition with respect to the definition of
the torsion tensor for X, Y, Z ∈ X(M), we get

g(∇XY, Z) = Xg(Y, Z)− g(Y,∇XZ)

= Xg(Y, Z)− g(Y,∇ZX)− g(Y, [X,Z])− g(Y, T (X,Z)). (2.4)

Notice that we can continue to substitute for the terms on the right of Equation (2.4)
that involve ∇. Eventually, −g(∇XY, Z) will show up on the right side of Equation
(2.4). Solving for g(∇XY, Z), we get

2g(∇XY, Z) = Xg(Y, Z)− Zg(X, Y ) + Y g(X,Z)

−g(Y, [X,Z]) + g(X, [Z, Y ])− g(Z[Y,X])

−g(Y, T (X,Z)) + g(X, T (Z, Y ))− g(Z, T (Y,X)) (2.5)

Notice that Equation (2.5) depends only (on the right hand side) on the metric g,
the Lie bracket, and the torsion tensor T . If 1∇ is another metrical connection with
torsion T , then Equation (2.5) can be used with a basis to show ∇ and 1∇ are the
same. Furthermore, given a skew-symmetric (1, 2) tensor field T , we can define a
metrical connection whose torsion is T by means of Equation (2.5), which proves
existence because Equation (2.5) gives the gij’s. Q.E.D.

Definition 2.2.3 For a Riemannian manifold (M, g), denote by L∇ as the (unique)
metrical connection which is torsion-free, called the Levi-Civita connection; that is,
for X, Y ∈ X(M), L∇ is metrical with respect to g and

L∇XY − L∇YX − [X,Y ] = LTor(X, Y ) = 0

Proposition 2.2.2 is typically proven in the case when torsion is 0. In fact, we generally
approach Riemannian geometry with the focus of looking at the Levi-Civita connec-
tion given in Definition (2.2.3) and how the geometry of M can be described with
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respect to L∇ (we use the superscript L to denote the unique Levi-Civita connection;
in Chapter 3, we support our choice of notation). For example, using a coordinate
chart (x1, . . . , xn), we can describe the Christoffel symbols of L∇ by using Equation
(2.5). We note that the torsion is zero and each Lie bracket will vanish, leaving

LΓij
k =

1

2

∑
l

glk

(
∂glj

∂xi

− ∂gij

∂xl

+
∂gil

∂xj

)
(2.6)

where glk is the inverse of the matrix of (gij). Further work in Riemannian geometry
is centered about studying the Levi-Civita connection as it pertains to the curvature
of a manifold (see Lee [9] or Sakai [15]). We want to maintain a general approach to
metrical connections whose torsion need not necessarily be zero. Thus, as we proceed,
the reader should be aware that any linear connection discussed will not necessarily
be the Levi-Civita connection. Of particular interest to us will be the behavior
of geodesics and describing curvature properties for arbitrary metrical connections.
Later, we use the Levi-Civita connection (Definition 2.2.3) to aid in describing other
metrical connections.

2.3 The Gradient, Laplacian, and Hessian of a Function

Let f ∈ F(M) for a Riemannian manifold (M, g). The purpose of this section is
to describe two ways to operate on a function: one is the gradient of f , which is a
vector field, and the other is the Laplacian of f , which is a function. Both depend on
the Riemannian metric g. Recall from Definition 1.5.3 that we described the Hessian
of a function. As we will see now, the Hessian can be described nicely in terms of
the gradient of a function. Thus, we naturally start with defining the gradient of a
function.

Definition 2.3.1 For (M, g) a Riemannian manifold and f ∈ F(M), define the gra-
dient of f to be the vector field gradf which satisfies

g(gradf,X) = Xf

for X ∈ X(M).

It can easily be seen that gradf is a unique vector field from the definition. Supposing
that M is dimension n, we can describe the gradient of f in terms of an (local)
orthonormal basis {Xj} as

gradf =
∑

j

(Xjf)Xj.

Suppose ∇ is a metrical connection on (M, g) and X, Y ∈ X(M). With Definition
2.3.1 as our definition of gradient, we can use the metrical condition of ∇ to see the
following Lemma.
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Lemma 2.3.2 Let (M, g) be a Riemannian manifold and f ∈ F(M). For X,Y ∈
X(M) and ∇ a metrical connection of (M, g),

g(∇Xgradf, Y ) = Hf (X, Y ), (2.7)

where Hf and gradf are the Hessian and gradient of f respectively with respect to
the linear connection ∇.

Proof Use the metrical condition of ∇ to see

g(∇Xgradf, Y ) = Xg(gradf, Y )− g(gradf,∇XY )

= X(Y f)− (∇XY )f

= Hf (X, Y ).

Q.E.D.

Equation (2.7) shows how the gradient is related to the Hessian. Note that this equa-
tion is only true for metrical connections, which is why we discussed the previous
section first. In the case where ∇ = L∇ is the Levi-Civita connection, Hf is in fact
a symmetric tensor field. Indeed, we use the fact that L∇ is torsion-free to see this
fact. Since we will be dealing with metrical connections, either interpretation of the
Hessian (Equation (2.7) or Definition 1.5.3) will suffice.

The last topic involving smooth functions we discuss is the concept of the Lapla-
cian of a function. From analysis, we know the Laplacian in Rn as opposite the trace
of the Hessian. Since the Hessian is a tensor field of type (0, 2), we can think of
the Hessian (with respect to a basis) as a square matrix of dimension n (for M of
dimension n). Thus, the trace of the Hessian is nothing more than the sum of the
diagonal elements of this matrix. Suppose we are given an orthonormal basis {Xj}
in a neighborhood of m ∈ M . Because Hf is a tensor field, we can construct vector
fields from this basis which give ∇Xj

Xj as zero at the given point m ∈ M . This is
done as follows:

Choose Vectors Using Xj, choose (Xj)m

Fit Geodesics Find geodesic αX which fit Xj at m (see Millman-Parker [12] p.231)

Define New Vector Fields Use result of (see Hicks [6]) to find a new (local) vector

field X̃ which fits geodesic from last step using normal coordinates.

For convenience, we will use {Xj} to represent the vector fields constructed. As we
proceed, remember that the Xj are orthonormal at m, and need not be orthonormal
in a neighborhood. Notice that ∇Xj

Xj = 0 at m ∈ M by construction. Therefore,
the Hessian of f at the point m reduces to
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Hf (Xj, Xj)m = (Xj)m((Xj)f) = ((Xj)m)2f = X2
j f (2.8)

Hence, we can define the Laplacian of f , denoted ∆f , as, for any orthonormal smooth
vector fields in a neighborhood,

∆f = −trace (Hf (Xi, Xj)) = −
∑

j

X2
j f. (2.9)

The definition of the Laplacian resembles how we typically think of the Laplacian in
analysis. As we will see in Chapter 5, there is another interpretation of the Laplacian
of f that is equivalent, yet describes the Laplacian in terms of operators on differential
forms.

Functions on Hyperbolic Space Recall Hyperbolic Space H from our ex-
ample earlier. We looked at H using the usual coordinate chart, and were able
to describe the g̃ij coefficients. We use the same formula from Equation (2.6)

to compute the Christoffel symbols of the Levi-Civita connection L∇̃ for H as

Γ̃11
1 = Γ̃12

1 = Γ̃21
2 = Γ̃22

1 = 0

Γ̃12
1 = Γ̃21

1 = Γ̃22
2 = −1

y

Γ̃11
2 =

1

y
.

With the obvious change in Christoffel symbols, it comes as no surprise that
the geodesics of H are different than those of R2

+. We will re-visit geodesics and
this example later in following chapters. Notice that the Christoffel symbols are
with respect to the Levi-Civita connection of H. Let f ∈ F(H). We investigate
arbitrary f under the machinery of the gradient, Laplacian, and Hessian. From
Equation (2.3.1), we see for X ∈ X(H),

g̃(g̃radf,X) = Xf.

Since g̃ = 1
y2 g, we can see that the gradient of f as it relates to Euclidean space

is

g(g̃radf,X) = (y2)Xf.

We use Equation (2.7) to compute the Hessian of f . Note that, using { ∂
∂x
, ∂

∂y
}

to be the usual orthonormal basis of Euclidean R2, that
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{ ∂
∂x
, y

∂

∂y
}

is an orthonormal basis for hyperbolic space H. Thus, we use this basis to write
∆H for the Laplacian on H:

∆Hf = −
(
∂2f

∂x2
+ y

∂

∂y

(
y
∂f

∂y

))
= −

(
∂2f

∂x2
+ y2∂

2f

∂y2
+ y

∂f

∂y

)
.

2.4 Two Riemannian Curvature Tensor Fields on a Manifold with Linear
Connection

The goal of this section is to discuss well-known tensor fields with respect to met-
rical connections. As we look through the standard presentation of curvature (see
Lee [9], Sakai [15], etc...), we notice that curvature is almost always discussed with
respect to the Levi-Civita connection. This approach has merits, as we are allowed
the useful fact that the Levi-Civita connection has zero torsion, which provides many
additional properties. Within our presentation, we seek to describe Riemannian man-
ifolds whose linear connections are more general. Therefore, as we proceed, we should
question what we have seen about curvature, and essentially work with the basic def-
initions.

Let (M, g) be a Riemannian manifold and let ∇ be a linear connection of M .
Using the Lie bracket (Equation (1.1)), we define the following curvatures:

Definition 2.4.1 For ∇ a linear connection on a smooth manifold M , define the
Riemannian curvature tensor R of type (1, 3) as the map

R : X(M)× X(M)× X(M) → X(M),

where for X, Y, Z ∈ X(M),

R(X, Y )Z = ∇X∇YZ − ∇Y ∇XZ − ∇[X,Y ]Z.

Definition 2.4.2 For ∇ a linear connection on a Riemannian manifold (M, g), de-
fine the Riemannian curvature tensor Rm of type (0, 4) as the map

Rm : X(M)× X(M)× X(M)× X(M) → R,
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where for X, Y, Z,W ∈ X(M) and R the Riemannian curvature tensor of type (1, 3)
associated with ∇,

Rm(X, Y, Z,W ) = g(R(X, Y )Z,W )

Proposition 2.4.3 Let (M, g) be a Riemannian manifold and ∇ be a linear connec-
tion on M . The Riemannian curvature tensors R and Rm (dependent on ∇) are
tensor fields of type (1, 3) and (0, 4) respectively.

Proof We need to check that each is function multi-linear. As this is straight forward,
we omit the proof.

A few words are in line about the Riemannian curvature tensors. First, we follow
the convention of Lee (see [9] p.117-118), where we use R for Riemannian curvature of
type (1, 3) and Rm for the Riemannian curvature of type (0, 4). As such, we need to be
careful not to regard the m in Rm as a point on the manifold. There will never arise a
situation in the later chapters where we confuse these ideas. Moreover, we classically
look at Rm as “lowering an index” from the curvature tensor R (see Kobayashi-
Nomizu [7]). Thus we refer to each as Riemannian curvature, and distinguish them
by R and Rm. Within a coordinate chart (x1, . . . , xn) with local basis { ∂

∂xi
}, we

represent Rm and R locally as

R

(
∂

∂xi

,
∂

∂xj

)
∂

∂xk

=
∑

l

Rijk
l

(
∂

∂xl

)
(2.10)

Rm

(
∂

∂xi

,
∂

∂xj

,
∂

∂xk

,
∂

∂xl

)
= Rijkl. (2.11)

For the coefficients, we also follow the convention of Lee (see [9] p. 118). Further-
more, we can use the expression of ∇ in terms of Christoffel symbols (see Equation
(1.6)) to express R in terms of Christoffel symbols locally. Since the computations are
tedious and straightforward, we omit the computations and describe Rijk

l in terms
of Christoffel symbols.

Rijk
l =

∂

∂xi

Γjk
l − ∂

∂xj

Γik
l +

∑
m

(
Γim

lΓjk
m − Γjm

lΓik
m

)
. (2.12)

Within the Riemannian curvature tensors, we see obvious symmetries (and skew-
symmetries). Some are quite obvious, such as

R(X, Y )Z = −R(Y,X)Z

Rm(X, Y, Z,W ) = −Rm(Y,X,Z,W ),
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while others are not as obvious (such as the Bianchi identities (see Lee [9] p.122
or Boothby [3]), which assumes that ∇ is torsion-free). The following proposition
outlines one other property that is true for metrical connections, and is needed when
we discuss sectional curvature. The proof is the same for the Levi-Civita connection
(see Lee [9] p.122), but we give it here for added emphasis.

Proposition 2.4.4 Let (M, g) be a Riemannian manifold and ∇ be metrical with
respect to g on M . For X, Y, Z,W ∈ X(M),

Rm(X, Y, Z,W ) = −Rm(X,Y,W,Z),

where Rm is defined with respect to ∇.

Proof To show skew-symmetry, it is enough to show Rm(X, Y, Z, Z) = 0, for the
result follows from expanding Rm(X, Y,W + Z,W + Z). Since ∇ is metrical with
respect to g, we use Equation (2.2.1) to write

XY g(Z,Z) = X(2g(∇YZ,Z)) = 2g(∇X∇YZ,Z) + 2g(∇YZ,∇XZ) (2.13)

Y Xg(Z,Z) = Y (2g(∇XZ,Z)) = 2g(∇Y ∇XZ,Z) + 2g(∇XZ,∇YZ) (2.14)

[X, Y ]g(Z,Z) = 2g(∇[X,Y ]Z,Z). (2.15)

If we subtract Equations (2.14) and (2.15) from Equation (2.13), we get the desired
result. Q.E.D.

Note that since we cannot assume the connection is metrical AND torsion-free,
the common identities cannot be assumed true. We keep this in mind as we proceed.

Lastly, we interpret the Riemannian curvature tensor of type (1, 3). From Defini-
tion 2.4.1, we can think of R as measuring the difference between ∇X∇YZ−∇Y ∇XZ
and ∇[X,Y ]Z. This is occasionally written as R(X, Y )Z = [∇X ,∇Y ]− ∇[X,Y ]. In an
abstract sense, R and Rm measures how much the manifold curves with respect to
the linear connection ∇. Notice that if we know either R or Rm, the other curvature
can be found. In the next section, we present other ways to measure the curvature
of a Riemannian manifold and conclude with Gauss’s Theorema Egregium

2.5 Sectional Curvature and Gauss’s Theorema Egregium

In classical differential geometry, manifolds were studied as objects embedded in
Euclidean 3-space. Geometers studied the properties of M ⊂ R3, where M inherits
a Riemannian metric from R3. The linear connection involved was assumed to be
the Levi-Civita connection. Of particular interest, we could study the Riemannian
curvature of M . Surprisingly, Gauss saw that the Riemannian curvature was an
isometry invariant; i.e. the Riemannian curvature does not depend on the Riemannian
metric determined by the imbedding. We state the original result here, which is due
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to Gauss (and can be found in Lee [9] p.143). The proof can also be seen in Lee.
Again, take note that the following results are true for Rm the Riemannian curvature
associated with the Levi-Civita connection.

Theorem 2.5.1 (Gauss’s Theorema Egregium) Let M ⊂ R3 be a submanifold
of dimension 2 and let g be the induced metric on M . For any p ∈M and any basis
{X, Y } for Tp(M), the Gaussian curvature of M at p is given by

K =
Rm(X,Y, Y,X)

|X|2|Y |2 − (g(X, Y ))2
.

Notice that for a surface M of dimension 2, {X, Y } spans the tangent space at p.
Also, we think of Gaussian curvature as the product of the principal curvatures of
the surface M as it sets in R3, or alternatively K is the determinant of the scalar
second fundamental form. With this in mind, we see that the formula given in Gauss’s
Theorema Egregium is true for any basis that is chosen in Tp(M). The number Kp

describes the Riemannian curvature of M independent of the embedding of M , which
can be seen by the following formula (for X, Y, Z,W ∈ X(M)):

Rm(X, Y, Z,W ) = K · (g(X,W )g(Y, Z)− g(X,Z)g(Y,W )). (2.16)

Keep in mind that Equation (2.16) describes Rm in terms of K for M a submanifold
of dimension 2. We are able to generalize these concepts to higher dimensions, which
is what we look at next.

Let M be a Riemannian manifold of dimension n. Here, M is not assumed to
be a submanifold or embedded in another space. Let p ∈ M and consider Tp(M).
Denote Πp ⊂ Tp(M) as a 2-dimensional plane contained in the tangent space of p.
Gauss noticed that we could build a 2-dimensional submanifold of M using Πp as
follows: choose a tangent vector Xp ∈ Πp, fit a geodesic to Xp, and extend away from
the point. If we do this for all tangent vectors in Πp, we can build a 2-dimensional
submanifold (to build properly, we would use the exponential map). Therefore, we
could apply the machinery of Gauss’s Theorema Egregium to find a number KΠ,
which describes the 2-dimensional submanifold.

Definition 2.5.2 Let (M, g) be a Riemannian manifold and let LRm be the Rie-
mannian curvature tensor associated with L∇. For X,Y ∈ X(M) a basis, denote the
sectional curvature LK(X, Y ) as

LK(X, Y ) =
LRm(X, Y, Y,X))

|X|2|Y |2 − (g(X, Y ))2
.

Here, we can think of X and Y as spanning a plane in the tangent space at a point
(locally). The results of Gauss’s Theorema Egregium are then naturally extended to
planes of the tangent space in the next theorem.
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Theorem 2.5.3 Let (M, g) be a Riemannian manifold and let LRm be the Rieman-
nian curvature tensor associated with L∇. Let p ∈ M and Πp ⊂ Tp(M) be a 2-plane
in the tangent space. Then the sectional curvature of Πp is independent of basis; i.e
for any X, Y ∈ X(M) which span Πp at p,

LK(Π) = LK(X, Y ) =
LRm(X, Y, Y,X)

|X|2|Y |2 − (g(X, Y ))2
.

We follow conventional notation and suppress the point p in this last theorem. What
we notice is that we can describe the Riemannian curvature with respect to planes
in the tangent space. The proof centers about looking at orthonormal bases and
extending to any basis (see Lee [9] p.143). There is a subtle detail in the proof, where
the fact that

Rm(X, Y, Z,W ) = −Rm(Y,X,Z,W ) = −Rm(X, Y,W,Z)

is used. From Proposition 2.4.4, we know these properties to be true for ANY metrical
connection. Thus, we can think of sectional curvature with regards to any metrical
connection.

Theorem 2.5.4 Let (M, g) be a Riemannian manifold and let Rm be the Rieman-
nian curvature tensor associated with a metrical connection ∇. Let p ∈ M and
Πp ⊂ Tp(M) be a 2-plane in the tangent space. Then the sectional curvature of Πp is
independent of basis; i.e for any X, Y ∈ X(M) which span Πp at p,

K(Π) = K(X, Y ) =
Rm(X, Y, Y,X)

|X|2|Y |2 − (g(X,Y ))2
.

Notice, though, that there are many planes in the tangent space when the dimension
of M is large. We will only need the facts given in Theorem 2.5.4 for manifolds
of dimension 2. By specifying to this class of manifolds, we inherit the property
that sectional curvature determines Riemannian curvature. In higher dimensions, we
cannot assume sectional curvature determines Riemannian curvature, as we would
need the Bianchi identities to prove this fact (see Boothby [3] p.385). When dealing
with manifolds of dimension 2, there is only one sectional curvature we need to find,
as the tangent space is a plane. We will visit curvature again in chapters 4 and 5.

Copyright c© Matthew J. Wells, 2009.
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Chapter 3 The Geometry of Manifolds with Conformal Metrics

3.1 Introduction

In the last chapter, we encountered different ways to describe the geometry of a
Riemannian manifold (M, g). We discussed interpretations of the different curvatures,
the idea of “distance” on a manifold, as well as the idea of shortest path between two
points on a manifold. Underlying in these geometrical ideas is the dependence on the
Riemannian metric g of the manifold M . Recall (Definition 2.1.1) that a Riemannian
metric g is a positive definite (0, 2) tensor field and can be represented locally by
smooth functions {gij}. If we think about this locally as a matrix of functions (gij),
then we see there are many ways in which we can define a Riemannian metric for M .
One way to generate many Riemannian metrics on a manifold is to start with one
(which exists since the manifold is assumed to be paracompact) and to look at the
Riemannian metrics which are conformal to the original one.

Definition 3.1.1 Let g be a Riemannian metric on M ,let X, Y ∈ X(M), and let
f ∈ F(M). Define g̃(X, Y ) = e2f · g(X, Y ) as the Riemannian metric conformal to g
determined by f .

In the previous chapter (see Equation (2.2)), we saw that as long as a function
h ∈ F(M) is positive, then h · g(X, Y ) would make sense (for X,Y ∈ X(M)). Note
that for any h > 0, we can find an f (not necessarily positive) such that h · g = e2f · g
(by using natural logarithms). We will assume Definition 3.1.1 as our definition of
conformal for the rest of this paper.

The importance of conformal Riemannian metrics is seen in many different areas
of Riemannian Geometry. In the Proceedings of the American Mathematical Society
(see [14]), for example, Nomizu and Ozeki showed how we could construct complete
or bounded metrics on any manifold M . Given any Riemannian metric g, we could
build Riemannian metrics conformal to g by using the fact that a manifold is locally
like Rn. Nomizu and Ozeki did this, and found functions locally that they “glued”
together and produced Riemannian metrics which were complete or bounded (and
were conformal to g). After Nomizu and Ozeki showed the existence of complete (or
bounded) Riemannian metrics, they combined these to prove the following impressive
theorem:

Theorem 3.1.2 If every Riemannian metric g on a smooth manifold M is complete,
then M must be compact.

The results are quite powerful, as we know we can always find a complete Riemannian
metric for ANY manifold, and compact goes hand in hand with every Riemannian
metric being complete!
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Other work related to conformal Riemannian metrics deal with Riemannian met-
rics which are changed independently of one another (the ideas are motivated by
conformal Riemannian metrics). Fegan and Millman (see [5]) showed that we could
take a complete Riemannian metric g1 and an arbitrary Riemannian metric g2, and
look at a linear combination (using positive coefficients) of these after constant con-
formal changes to the metrics. The result is a Riemannian metric that is complete.
Bishop and O’neill (see [2]) utilize warped products to produce a Riemannian met-
ric that has negative curvature (under the right conditions). The ideas involved in
warping a Riemannian metric are closely related to the idea of building a conformal
Riemannian metric, except that we change the Riemannian metric on part of the
metric associated with part of a product of manifolds. The use of conformal Rie-
mannian metrics extends into other fields, and is one focus for this paper. Conformal
Riemannian metrics are also used in Physics.

3.2 Notation and Examples

From Definition 3.1.1, we defined a conformal Riemannian metric g̃ by multiplying
a Riemannian metric g by a function dependent on f ∈ F(M). Of course, changing
the Riemannian metric on a manifold alters the geometry of the space. To help us
compare the changes in the geometrical properties, we will use the tilde notation for
properties associated with the conformal Riemannian metric g̃ (and no tilde for those
associated with g). Within the context of ideas presented later, we will not be dealing
with more than these two specific Riemannian metrics, so this notation should suffice.
Here are some examples to demonstrate our notation, where δij is the Kronecker delta
and Γij

k are the Christoffel symbols, as usual. Some of the coefficients found earlier
will be restated here to aid in demonstrating notation.

Euclidean Plane Consider R2. Recall that we defined the (usual) Rieman-
nian metric in terms of the identity coordinate chart, for coordinates { ∂

∂x1
, ∂

∂x2
},

as

g

(
∂

∂xi

,
∂

∂xj

)
= gij

= δij

Using Equation (2.6) to compute the Christoffel symbols for the Levi-Civita
connection L∇, we can easily see that

(
L∇ ∂

∂xi

(
∂

∂xj

))k

= Γij
k ∂

∂xk

,

= 0.

Since the Christoffel symbols are 0 for all 1 ≤ i, j, k ≤ 2, we can conclude that
the Riemannian curvature coefficients of the (usual) 2-dimensional Euclidean
plane must be 0; i.e.
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Rijkl = Rijk
l = 0.

Hyperbolic Upper-Half Plane Recall Hyperbolic space from Chapter 2.
We define a conformal Riemannian metric to g using f ∈ F(R2

+), where f(x, y) =
− ln(y), as

g̃(X, Y ) = e2f · g(X,Y ) =

(
1

y2

)
g(X, Y ).

Note here that each Riemannian metric is dependent on the point (x, y), which
we have suppressed. We still ge the same Riemannian metric as before, but the
difference is in how we look at the function f . In terms of the same coordinate
chart used in the previous example, we easily see that

g̃ij =

(
1

y2

)
δij.

and the Christoffel symbols were

Γ̃11
1 = Γ̃12

1 = Γ̃21
2 = Γ̃22

1 = 0

Γ̃12
1 = Γ̃21

1 = Γ̃22
2 = −1

y

Γ̃11
2 =

1

y
.

We compute the Riemannian curvature coefficients using Equation (2.12) to
find the coefficients and list them below. Since most of the coefficients will be
zero, only the non-zero coefficients are listed. The computations are omitted,
as these are rather straightforward.

R̃1,2,2
1 = R̃2,1,1

2 = − 1

y2

R̃1,2,1
2 = R̃2,1,2

1 =
1

y2
.

As shown in the example, we will associate any invariants with a tilde with
the conformal Riemannian metric g̃, and those without a tilde with g. If we
extended our computations to find the scalar curvatures (see Lee [9] p.124-126)
for both H and R2

+, we would find that the scalar curvatures are both 0 (which
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is not surprising, since scalar curvature is found using only some of the geo-
metrical information of a space). This does not set well as there is an obvious
difference in the geometry of these two spaces. Can we quantify how differ-
ent two Riemannian manifolds are from one another in terms of invariants like
curvature and other geometrical objects? In a general sense (for conformally
related Riemannian manifolds), much work has been done relating the geomet-
rical invariants. We present some of these ideas to finish out this chapter while
giving new ways to aid in the comparison of conformally related Riemannian
manifolds.

3.3 Geometrical Objects of Conformal Metrics

Assume that g̃ = e2f · g on a Riemannian manifold (M, g). We are particularly
interested in how the geometry of (M, g) is related to the geometry of (M, g̃). Recall
from Definition 2.2.3 that we can find a unique torsion free metrical linear connection
L∇ for each Riemannian metric g on a manifold, where

Xg(Y, Z) = g(L∇XY, Z) + g(Y, L∇XZ)

[X, Y ] = L∇XY − L∇YX.

From solving the systems given in Equation (1.8), we are able to get an idea of what
geodesics look like given a linear connection. We give graphical representations of
geodesics in H in figure 3.1; note that geodesics in R2

+ are simply lines.

Figure 3.1: Geodesics in Hyperbolic Space

It should be emphasized that in order to solve the systems involved to find a geodesic
is quite exhaustive. In any event, we can see that the geodesics of R2

+ are simply lines
in classical Euclidean geometry. The geodesics of H are vastly different, consisting
of arcs of circles (whose center lies on the x-axis) and vertical lines. Clearly, the
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geodesics of these two spaces are different. How “different” are they? To answer this
question, we need to understand first how the Levi-Civita connections of H and R2

+

are related. A well-known result in Riemannian geometry gives us insight into the
relationship between conformally related manifolds.

Proposition 3.3.1 Let (M, g) and (M, g̃) be conformally related Riemannian man-
ifolds; let gradf be the gradient of f ∈ F(M) with respect to g. Then the Levi-Civita
connections ∇ and L∇ with respect to g, g̃ respectively are related by the following
equation:

L∇̃XY = L∇XY + (Xf)Y + (Y f)X − g(X, Y )gradf. (3.1)

Proof To prove that this equation is true, we would only need to show that L∇̃ is
indeed the Levi-Civita connection associated with g̃; i.e. that L∇̃ is torsion-free and
metrical with respect to g̃. Since these facts are not too hard to show, the proof will
be left to the reader.

We note here that Equation (3.1) depends on the gradient of f , and that the gradient
is given with respect to the Riemannian metric g (not g̃). Observe how the Levi-Civita
connections are related between H and R2

+ in the following example.

H versus R2
+ Recall that g was the usual Riemannian metric on R2

+. For H,
we defined the metric

g̃(X, Y ) = e2f · g(X, Y ),

where f(x, y) = − ln(y). Consider the usual chart on the upper half plane,
where { ∂

∂x
, ∂

∂y
} span the tangent space at each point. Set X = ∂

∂x
and Y = ∂

∂y
.

The Levi-Civita connections of g and g̃ are related by Equation (3.1) in the
next equation:

L∇̃XY = L∇XY + (−1

y
)X. (3.2)

Notice that the basis {X,Y } is orthogonal, which is why the term with the
gradient vector field vanishes. If this had not been the case, the gradient vector
field (which is associated with g) is the same object we see in an introductory
analysis course. We can use Equation (3.2) to understand the geodesic behavior
in H. Observe that L∇ has Christoffel symbols zero. Therefore the geodesics in
H are heavily influenced by (− 1

y
)X. As we see, the “weight” of the Riemannian

metric on H is much heavier near the x-axis since 1
y2 → ∞ as y → 0. This

has the effect of requiring geodesics which are not vertical to resemble arcs of
circles by bending back towards the y-axis.
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From the comparison of H and R2
+, we can conclude that the geodesic behavior

is different between the spaces. It is not too far-fetched to believe that manifolds
that are related conformally would have different geodesics with respect to the Levi-
Civita connections. As we shall see, looking to the class of metrical connections
potentially gives many different ways to place geodesics on manifolds. Recall that a
linear connection is metrical with respect to a Riemannian metric g if the connection
satisfies the “product rule”:

Xg(Y, Z) = g(L∇XY, Z) + g(Y, L∇XZ).

A metrical connection need not be torsion-free. For a Riemannian metric g on M ,
there happen to be many ways to define metrical connections associated with g.
Each metrical connection will produce geodesics on M . We shall see some classes of
metrical connections later in the paper. For now, we are interested in how metrical
connections are related in terms of their geodesics.

3.4 Comparing Metrical Connections using the Q-Tensor

We see from the past section how the Levi-Civita connections are related between
conformal metrics. What Levi-Civita noticed (demonstrated in Theorem 2.2.2) was
that metrical connections are uniquely determined by their torsion. One way to look
at this is that two metrical connections that have the same torsion have the same
geodesics (and are in fact the same connection). Millman (see [11]) showed that the
torsion, as a geometrical invariant, was too strong to determine geodesics. In fact, he
found a weaker invariant (the Q-tensor) which we could use to compare the geodesics
of metrical connections, which is based on the following definition.

Definition 3.4.1 Let (M, g) be a Riemannian manifold and {Xk} be an orthonormal
basis (in a neighborhood of x) for k = 1, 2, . . . n. Let T be a (1, 2) skew symmetric
tensor field. For vector fields X,Y , define the Q-tensor of T as

QT (X, Y ) = −1

2

∑
k

{g(T (X,Xk), Y ) + g(T (Y,Xk), X)}Xk (3.3)

= −1

2

∑
k

(QT )k(X, Y )Xk. (3.4)

The fact that Q is a tensor field should be verified by the reader. We note here
that the Q-tensor is defined for a local orthonormal basis, but through a change of
basis argument is easy to show to be defined globally. Of interest to us with the
Q-tensor is the torsion tensor that is associated with a metrical connection. From
here on, we will drop the T , as the Q-tensor will only be associated with (metrical)
connections and their associated torsion tensor. Also, Qk will represent the k-th term
of the Q-tensor in terms of the orthornormal basis {Xk}. Millman (see [11]) focused
on looking at metrical connections which were metrical to the same metric g. We
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present the main theorem of his paper while maintaining the notation we have been
using here.

Theorem 3.4.2 Let (M, g) be a Riemannian manifold with metrical connections 1∇,
2∇. Let Q(1Tor), Q(2Tor) be the Q-tensors associated with the torsions of 1∇ and 2∇
respectively. Then 1∇,2∇ have the same geodesics if and only if Q(1Tor) = Q(2Tor).

For notational convenience, we will let 1Q, 2Q and 1Tor, 2Tor be the Q-tensor and
torsion tensor associated with the metrical connections 1∇ and 2∇ respectively. Hicks
(ref) noticed that the difference of two connections is a tensor of type (1, 2). This
fact is indeed not hard to show; we provide the main ideas of the proof after the
definition. We use the conventional notation that Hicks (see [6] p.64) used to denote
the difference of two connections,

Definition 3.4.3 For 2∇, 1∇ linear connections on a smooth manifold M , let B2,1

represent the difference of 2∇ and 1∇, or for X, Y ∈ X(M),

B2,1(X, Y ) = B(X,Y ) = 2∇XY − 1∇XY.

Lemma 3.4.4 For 2∇, 1∇ linear connections on a smooth manifold M , B(X, Y ) is
a tensor field of type (1, 2).

Proof We need to show that B is bi-linear and function linear. Since 1∇XY and
2∇XY are linear in X and Y , B is bi-linear. Similarly, since each of the connections
are function linear in X, B is function linear in X. Since Y is not as easily seen to
be function linear, we show this fact. Let h ∈ F(M). Then

B(X, hY ) = 2∇XhY − 1∇XhY = ((Xh)Y + h2∇XY )− ((Xh)Y + h1∇XY )

= h2∇XY − h1∇XY

= hB(X, Y )

Thus B is indeed function linear in Y , and so B is a (1, 2) tensor field. Q.E.D.

Hicks (Lemma 1.3.3 or [6] p.64) noticed that any (1, 2) tensor field can be de-
composed as a sum of a symmetric and skew-symmetric tensor field. Looking at the
B-tensor using an orthonormal basis, Millman was able to decompose the difference
(of metrical connections). Millman (see [11]) described these tensors for metrical con-
nections in the following theorem. We take this approach for ideas presented later in
this chapter.

Theorem 3.4.5 Let (M, g) be a Riemannian manifold and let 2∇ be a metrical con-
nection. Let 1∇ be a connection and let B(X, Y ) represent the difference of 2∇ and
1∇. Then 1∇ is metrical if and only if

B(X, Y ) = 2Q(X, Y )− 1Q(X, Y ) +
2Tor(X, Y )− 1Tor(X, Y )

2
, (3.5)

where 2Q and 1Q are defined using the torsion 2Tor, 1Tor of 2∇ and 1∇ respectively.
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Here, the torsion tensor fields are the skew-symmetric tensor fields of the de-
composition, while the Q-tensor (from Equation (3.3)) is the symmetric piece of the
decomposition. From Equation (3.5), we could use the skew-symmetry of the torsion
to prove Theorem 3.4.2. We note also that these ideas came about when we specified
our work to metrical connections, which are metrical to the same metric g. Naturally,
we are interested in the geometry of metrical connections, whether they be metrical
with respect to the same Riemannian metric or related through a conformal change
in Riemannian metric. The next section discusses the latter idea.

3.5 Generalizing the Q-Tensor

In this section, we turn our attention to the metrical connections that are asso-
ciated with conformal Riemannian metrics and prove new theorems which generalize
those of Section 3.4. Throughout the following, g and g̃ are conformal Riemannian
metrics, which are conformal using the smooth function f : M → R. We continue
to use the notation established for metrical connections. Motivated by Millman (see
[11]), we generalize his results to conformal metrics. We are interested in the differ-
ence of metrical connections, which in our case are metrical with respect to different
Riemannian metrics. Recalling Definition 3.4.3, we will continue to use the B-tensor.
For our purposes, the B-tensor will represent the difference between ∇ and ∇̃ (Note:
later, we shall see easily that this definition of the B-tensor coincides with the pre-
vious definition). Recall that the Levi-Civita connection has zero-torsion, so that
LQ = LQ̃ = 0. Therefore, we know

∇̃XY − L∇̃XY = Q̃(X, Y ) +
T̃or(X, Y )

2
(3.6)

∇XY − L∇XY = Q(X, Y ) +
Tor(X, Y )

2
. (3.7)

If we combine Equations (3.6) and (3.7) to form the B-tensor, which is defined as

B(X, Y ) = B
e∇,∇(X, Y ), we get

B(X, Y ) = ∇̃XY − ∇XY

= Q̃(X, Y )− Q(X, Y ) +
T̃or(X, Y )− Tor(X,Y )

2

+(L∇̃XY − L∇XY ). (3.8)

We denote BL as the B-tensor of the Levi-Civita connections of conformal Rie-
mannian metrics, which is the last term of Equation (3.8) above. Thus, B(X, Y ) is
written as

B(X, Y ) = Q̃(X, Y )− Q(X, Y ) +
T̃or(X,Y )− Tor(X, Y )

2
+BL(X, Y ). (3.9)
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Of particular interest, we would like to understand BL (which is a tensor of type
(1, 2)). Recall Equation (3.1), which shows how the Levi-Civita connections are re-
lated across conformal Riemannian metrics. We can easily see the following corollary:

Corollary 3.5.1 The difference between L∇ and L∇̃, denoted BL(X,Y ) for vector
fields X and Y is

BL(X, Y ) = (Xf)Y + (Y f)X − g(X, Y )gradf. (3.10)

Proof This is immediate from Theorem 3.3.1 Q.E.D.

Millman (see [11]) saw the functionality of looking at the Q-tensor in terms of a
local orthonormal basis. Particularly, we can simplify ideas involving the Riemannian
metric while still describing the geometry of these metrical connections. Therefore,
we consider Equation (3.10) in terms of an orthonormal basis.

Definition 3.5.2 Let {Xk} be an orthonormal basis with respect to the n-dimensional
Riemannian manifold (M, g); let f ∈ F(M) and X,Y ∈ X(M). Define the C-tensor
and its components fCk as

fC(X, Y ) =
∑

k

{
(Xf)g(Y,Xk) + (Y f)g(X,Xk)− (Xkf)g(X, Y )

}
Xk

=
∑

k

{
fCk(X, Y )

}
Xk.

It is straight forward to see that Definition 3.5.2 is the BL-tensor when we look
locally in an orthonormal basis. The notation BL follows from Definition 3.4.3 as
a difference of two connections, which in this case are the Levi-Civita connections.
We introduce fC to represent the “conformal difference” between conformal metrics.
The results we will show will emphasize the importance of the conformal difference
when comparing metrical connections across conformal Riemannian metrics. We will
write fCk to represent the k-th term of fC in terms of the orthornormal basis {Xk}.
We re-write Equation(3.9) as

B(X, Y ) = Q̃(X, Y )− Q(X, Y ) +
T̃or(X, Y )− Tor(X, Y )

2
+ fC(X, Y ).(3.11)

For now, we note that because of the symmetry of the terms in Definition 3.5.2,the
fC-tensor is easily seen to be symmetric.

Theorem 3.5.3 Let ∇, ∇̃ be metrical connections with respect to (M, g), (M, g̃),

where g and g̃ are related conformally using f ∈ F(M). Let Q and Q̃ be the Q-

tensors associated with the torsion of ∇ and ∇̃ respectively. Then ∇, ∇̃ have the
same geodesics if and only if

Q̃(X, Y )− Q(X, Y ) + fC(X,Y ) = 0.
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Proof The result hinges on Equation (3.11). Assume that ∇ and ∇̃ have the same

geodesics. We want to conclude information about Q̃−Q+ fC, which is a symmetric
tensor field of type (1, 2). Recall from Equation (1.5) that we need only evaluate this
tensor field with diagonal elements. From our discussion of tensor fields in Chapter
1, it suffices to evaluate these tensor fields at m ∈M . For any Xm ∈ Tm(M), we can
fit a geodesic to Xm and ultimately a smooth vector field X to fit this geodesic (see
section 1.5 of Chapter 1). Using this construction, B(X,X) = 0 at m, and since the
torsion is skew-symmetric, we get (again at the point m)

Q̃(X,X)− Q(X,X) + fC(X,X) = 0.

The result follows from the discussion right after Lemma 1.3.3.

Conversely, suppose Q̃− Q+ fC = 0. Therefore,

B(X, Y ) =
T̃or(X, Y )− Tor(X, Y )

2
.

Since torsion is skew symmetric, B(X,X) = 0, and it follows that ∇ and ∇̃ have
the same geodesics, where we use the technique of constructing a smooth vector field
about any geodesic as described in Chapter 1. Q.E.D.

From Proposition 3.5.3, we gain some insight into what must happen with the
fC and Q tensors in order for metrical connections to have the same geodesics (for
connections that are metrical to different Riemannian metrics). The next theorem
generalizes Millman’s (from [11]) results as the function f of the conformal change
also plays a role in deciding the behavior of geodesics in metrical connections.

Theorem 3.5.4 Let ∇, ∇̃ be metrical with respect to connected Riemannian mani-
folds (M, g), (M, g̃), where g and g̃ are related conformally using f ∈ F(M). Let Q

and Q̃ be the Q-tensors associated with the torsion of ∇ and ∇̃ respectively. Then
∇, ∇̃ have the same geodesics if and only if Q̃ = Q and f is constant on M .

Proof Recall that we expressed Q and fC in terms of an orthonormal basis {Xk}.
Using Theorem 3.5.3 and the independence of {Xk}, we have

∇, ∇̃have same geodesics ⇔ Q̃(X, Y )− Q(X, Y ) + fC(X, Y ) = 0 (3.12)

Equation (3.12) is true for any vector fields X and Y . Of note, Equation (3.12)
is true for Xi for all i. Therefore statement (3.12) is true

⇔ Q̃(Xi, Xi)− Q(Xi, Xi) + fC(Xi, Xi) = 0

⇔ Q̃k(Xi, Xi)− Qk(Xi, Xi) + fCk(Xi, Xi) = 0 (3.13)
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Because {Xk} is an independent basis, Equation (3.13) is true for any 0 ≤ k ≤ n.
Notice that if k = i, then the torsion tensors inside of the Q-tensors are identically
0. Thus Equation (3.13) can be reduced (keeping in mind that {Xk} is orthonormal)
using the definition of the fC tensor to

0 = fCk(Xi, Xi)

= 2Xif + 2Xif − 2Xif

= 2Xif.

Since this is true for any i, we must have that f is indeed constant. From Theorem
3.5.3, f is constant if and only if fC ≡ 0, which happens if and only if Q = Q̃, and
the theorem is proven. Q.E.D.

The results from Theorem 3.5.3 and Theorem 3.5.4 generalize the ideas that Mill-
man had shown from Theorem 3.4.2. But Theorem 3.5.4 says more about the class
of metrical connections than what might have been thought. Observe that metrical
connections from conformal metrics need the conformal function f to be constant to
have any chance that the metrical connections have the same geodesics. Therefore,
metrical connections look “geodesically different” in general. Up to this point, we
have not given many examples of metrical connections to consider. We have not done
this deliberately, but rather we cannot give examples due to a lack of concrete met-
rical connections. We know of metrical connections that are torsion-free (Levi-Civita
connections), but there is very little literature discussing other classes of metrical con-
nections that may have torsion. We will discuss how we can construct a few classes
of metrical connections, and the role these classes play in terms of the geometry of a
manifold in the coming chapters.

Copyright c© Matthew J. Wells, 2009.
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Chapter 4 Classes of Metrical Connections

4.1 Defining Certain Classes of Metrical Connections

Clearly, looking into conformal metrics on a Riemannian manifold M gives us
insight into how we can relate the Levi-Civita connections between two conformal
metrics. Hidden in this connection (no pun intended!) of the Levi-Civita connections
is the motivation for creating other metrical connections (metrical with respect to
either g or g̃) by using f ∈ F(M) (see Theorem 3.1). We maintain the same notation
of letting g be a Riemannian metric, and letting g̃ be a conformal metric to g. Using
Theorem 3.1 as motivation, we define classes of metrical connections based off of
smooth functions f ∈ F(M). While C∇̃ seems well known (see Sakai [15] p.50), the
definition of f∇ does not appear in the literature. Once we show that f∇ is metrical
(with respect to g), we will have a whole new family of metrical connections which
are parameterized by C∞ functions on M .

Definition 4.1.1 Let f ∈ F(M) for the Riemannian manifold (M, g), and let ∇ be a
metrical connection with respect to g. Let X, Y be smooth vector fields on M . Define
the following:

C(f)∇̃XY = ∇XY + (Xf)Y + (Y f)X − g(X, Y )gradf (4.1)
f∇XY = ∇XY + (Y f)X − g(X,Y )gradf (4.2)

Proposition 4.1.2 For smooth vector fields X and Y and f ∈ F(M), C(f)∇XY ,
f∇XY are connections which are metrical to g̃ and g respectively.

Proof We prove that f∇ is a metrical connection with respect to g, as the proof that
C(f)∇ is a metrical connection is similar to this proof and Theorem 3.1. Since the
space of smooth vector fields is linear and g is linear, it follows that f∇XY is (real)
linear in the X and Y position.

We now show that f∇ behaves like a connection with regards to functions. Let
h ∈ F(M). Since ∇XY is function linear in the X position,

f∇hXY = ∇hXY + (Y f)(hX)− g(hX, Y )gradf

= h(f∇XY ).

In a similar fashion, we use the fact that ∇ is a connection to show

f∇XhY = ∇XhY + (hY )(f)X − g(X, hY )gradf

= h∇XY + (Xh)Y + h(Y f)X − hg(X, Y )gradf

= hf∇XY + (Xh)Y.
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Therefore, f∇ is indeed a connection. Let Z be a smooth vector field of M . Using
that ∇ is metrical with respect to g, we get

g(f∇XY, Z) + g(Y, f∇XZ) = g(∇XY + (Y f)X − g(X, Y )gradf, Z)

+g(Y,∇XZ + (Zf)X − g(X,Z)gradf)

= [g(∇XY, Z) + g(Y,∇XZ)]

+[(Y f)g(X,Z)− g(X, Y )(Zf)

+(Zf)g(Y, Z)− g(X,Z)(Y f)]

= Xg(Y, Z).

Thus f∇ is metrical with respect to g. Q.E.D.

Before we move on to looking at the geometry of some classes of metrical con-
nections, we discuss the notation we are using and introduce other notation we will
need. From Chapter 3, recall we use a tilde (∼) with geometrical objects which are
associated with the conformal metric g̃, and omit the tilde for those associated with
g. Since C∇̃ is metrical with respect to g̃, we justify including a tilde for the definition
(f∇ has no tilde as it is metrical with respect to g) from Proposition 4.1.2.

When we discuss classes of metrical connections in the rest of this paper, we want
to be reminded that the metrical connections as defined above are quite dependent on
the function f . Therefore, we will use a superscript before our geometrical invariants
to help organize. Here is a sample comparing the different notations:

Connection Torsion R. Curvature Sectional Curvature

∇XY Tor(X,Y ) Rm(X, Y, Z,W ) K(X, Y )

f∇XY
fTor(X, Y ) fRm(X, Y, Z,W ) fK(X, Y )

C(f)∇̃XY
C(f)T̃or(X,Y ) C(f)R̃m(X, Y, Z,W ) C(f)K̃(X, Y )

Table 4.1: Notation for Metrical Connections

Millman (see [11]) showed that for two metrical connections that were metrical
with respect to the same metric g, it was necessary and sufficient for the Q− tensors
to be equal in order that the geodesics were the same. From Chapter 3, we also
learned that metrical connections which were metrical with respect to conformal Rie-
mannian metrics would not have the same geodesics unless the conformal function
was constant on connected components. We examine these ideas using our newly
defined metrical connection f∇.
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Suppose ∇ is metrical with respect to (M, g) and define f∇ for f ∈ F(M) as in
Equation (4.2). When could we expect ∇ and f∇ to have the same geodesics? We
look at this through the machinery of the Q−tensor.

Proposition 4.1.3 Suppose ∇ is metrical on a connected Riemannian manifold
(M, g). Let f ∈ F(M). Then ∇ and f∇ have the same geodesics if and only if
f is constant.

Proof Clearly, if f is constant, ∇ and f∇ are the same as the terms of (Y f)X −
g(X, Y )gradf vanish in the definition of f∇.

Suppose ∇ and f∇ have the same geodesics. From Theorem 3.4.2, it follows that
Q(X, Y ) = fQ(X, Y ). Thus, given an orthonormal basis {Xk} on M , the coefficients
from Equation (3.3) must be equal for Tor and fTor; if X = Y , this looks like

g(Tor(X,Xk), X) = g(fTor(X,Xk), X). (4.3)

Since g and torsion are tensor fields, the linearity gives us

g(Tor(X,Z), X) = g(fTor(X,Z), X), (4.4)

which is true for any X,Z ∈ X(M). Using a coordinate chart on M with coordinates
(x1, . . . , xn), set X = ∂

∂xj
and Z = ∂

∂xk
for j 6= k. With this, Equation (4.4) tells us

that fTorjk
j = Torjk

j. By the definition of torsion (see Definition 1.5.2), we get

fTor(X,Z) = f∇XZ − f∇ZX − [X,Z]

=
{
∇XZ + (Zf)X − g(X,Z)gradf

}
−

{
∇ZX + (Xf)Z − g(Z,X)gradf

}
− [X,Z]

= Tor(X,Z) + (Zf)X − (Xf)Z.

If we write each side of this last equation in terms of our basis { ∂
∂xi
}, we can equate

the jth coefficients to get

fTorjk
j = Torjk

j +
∂f

∂xk

,

and it follows that ∂f
∂xk

= 0. Since this is true for any k, f follows to be constant on
connected components. Q.E.D.

This result gives some insight into f∇ for arbitrary f . Up until now, we have
maintained a focus on (metrical) connections and how they are related to one an-
other geodesically. As we move forward, we are interested in how other geometrical
invariants are related. Naturally, we move onto curvature tensors, and observe re-
lationships between the classes of metrical connections defined in this section and
“other” connections.
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4.2 Riemannian Curvature of a Class of Metrical Connections

We continue to let ∇ be a metrical connection with respect to (M, g) and f ∈
F(M). Define ∇̃ as a metrical connection (with respect to g̃) as

∇̃XY = C(f)
(
(̃−f∇)

)
X
Y

= ∇XY + (Xf)Y, (4.5)

for X,Y ∈ F(M) (as usual, g̃ = e2f · g). Notice that ∇̃ is metrical with respect to g̃,
as what’s given in Equation (4.5) is a combination of Equations (4.1) and (4.2) given

in the previous section. Since ∇ and ∇̃ are related by definition, it is natural to see
how the Riemannian curvatures are related. Recall the Riemannian curvature tensor
of type (1, 3) from Chapter 2, given in Definition 2.4.1.

Proposition 4.2.1 Let ∇ be metrical with respect to a Riemannian manifold (M, g)

and define ∇̃XY = ∇XY + (Xf)Y for f ∈ F(M). Let R(X,Y )Z, R̃(X,Y )Z be

the Riemannian curvature tensors of type (1, 3) for ∇, ∇̃ respectively and X, Y, Z ∈
X(M). Then

R(X, Y )Z = R̃(X, Y )Z.

Proof The proof is a straightforward application of the definitions. Applying Defi-
nition 2.4.1 for our connections,

R(X,Y )Z = ∇X∇YZ − ∇Y ∇XZ + ∇[X,Y ]Z (4.6)

R̃(X,Y )Z = ∇̃X ∇̃YZ − ∇̃Y ∇̃XZ + ∇̃[X,Y ]Z (4.7)

Using the definition of ∇̃ and using Equation (4.6), we write the terms of Equation
(4.7) as follows:

∇̃X ∇̃YZ = ∇̃X(∇YZ + (Y f)Z)

= ∇X∇YZ + (Xf)∇YZ + ∇X(Y f)Z + (Xf)(Y f)Z

= ∇X∇YZ + (Xf)∇YZ +X(Y f)Z + (Y f)∇XZ + (Xf)(Y f)Z

(4.8)

− ∇̃Y ∇̃XZ = −∇Y ∇XZ − (Y f)∇XZ − Y (Xf)Z − (Xf)∇YZ − (Y f)(Xf)Z

(4.9)

− ∇̃[X,Y ]Z = −∇[X,Y ]Z − ([X, Y ]f)Z

= −∇[X,Y ]Z −X(Y f)Z + Y (Xf)Z. (4.10)

Combining Equations (4.8), (4.9), and (4.10), we get the desired result. Q.E.D.
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Corollary 4.2.2 The Riemannian curvature tensors of type (0, 4) for ∇ and ∇̃ are
related as

e2f · Rm(X, Y, Z,W ) = R̃m(X, Y, Z,W ).

One immediate observation is that we have compared Riemannian curvature ten-
sors across Riemannian metrics. Said another way, given two metrical connections
which were metrical to different Riemannian metrics, we proved that the Riemannian
curvature tensors of type (1, 3) were equal. We shall re-visit Proposition 4.2.1 and
Corollary 4.2.2 again in Chapter 5.

4.3 The Sectional Curvature of f∇XY

So far, we have defined some classes of metrical connections parameterized by
f ∈ F(M), which are metrical with respect to either g or g̃, and seen one result
concerning the Riemannian curvature tensor. We now turn our interest to the class
of connections defined by f∇XY . In particular, we are interested in how the sectional
curvature of f∇XY relates to the sectional curvature of the Levi-Civita connection
of a Riemannian manifold (M, g). Define the metrical connection of Equation (4.2)
which uses the Levi-Civita connection as

f(L)∇XY = L∇XY + (Y f)X − g(X, Y )gradf. (4.11)

Note that Equation (4.11) is Equation (4.2) in the special case that ∇ is the Levi-
Civita connection of the Riemannian manifold (M, g). We will continue to use the
superscript notation f(L) for geometrical objects which are dependent on the con-
nection f(L)∇. Keep in mind that each of the objects in Equation (4.11) is dependent
on the metric g and not g̃. This fact will aid later in demonstrating how the sectional
curvature of f(L)∇ relates to L∇. This theorem will be used significantly in sections
5.4 and 5.5.

Theorem 4.3.1 Let Πm be a plane in the tangent space to M at m ∈M . Let X and
Y be local vector fields which span Πm at the point m and also form an orthonormal
basis locally with respect to a Riemannian manifold (M, g) and let f ∈ F(M). Denote
the sectional curvature of the plane spanned by this basis as f(L)K(X, Y ), LK(X, Y )
for the respective connections f(L)∇, L∇. Then we have

f(L)K(X, Y ) = LK(X, Y ) + (Xf)2 + (Y f)2 − ‖gradf‖2 −Hf (X,X)−Hf (Y, Y ).

(4.12)

Proof The proof uses the definition of sectional curvature and is rather computa-
tional. Recall that K(Πm) = K(X, Y )m = Rm(X, Y, Y,X)m on orthonormal bases,
so for arbitrary connections ∇ (suppressing the dependence on m ∈M),
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K(X, Y ) = Rm(X, Y, Y,X)

= g(R(X,Y )Y, Y )

= g(∇X∇Y Y − ∇Y ∇XY − ∇[X,Y ]Y,X). (4.13)

Using the definition of f(L)∇, we will write out a term from the Riemannian
curvature. Through the following, keep in mind that {X, Y } is orthonormal.

f(L)∇X(f(L)∇Y Y ) = f(L)∇X(L∇Y Y + (Y f)Y − g(Y, Y )gradf)

= L∇X
L∇Y Y + L∇X [(Y f)Y ]− L∇Xgradf

+[(L∇Y Y )f ]X + (Y f)(Y f)X − [(gradf)f ]X

−g(X, L∇Y Y )gradf − g(X, (Y f)Y )gradf + g(X, gradf)gradf

= L∇X
L∇Y Y +X(Y f)Y + (Y f)L∇XY − L∇Xgradf

+[(L∇Y Y )f ]X + (Y f)2X − ‖gradf‖2X

−g(X, L∇Y Y )gradf + (Xf)gradf. (4.14)

Since we want to eventually get an equation similar to Equation (4.13), we take
the inner product of Equation (4.14) with X. Again, noting that X and Y are
orthonormal, we get

g(f(L)∇X
f(L)∇Y Y ,X) = g(L∇X

L∇Y Y ,X) + (Y f)g(L∇XY,X)− g(L∇Xgradf,X)

+L∇Y Y + (Y f)2 − ‖gradf‖2

−(Xf)g(X, L∇Y Y ) + (Xf)2. (4.15)

Our goal is to reduce Equation (4.15) and compare the sectional curvatures. We
recall here that L∇ is metrical (with respect to g) and also torsion free. Using the
metrical condition with the orthonormal basis, we can deduce the following:

2g(L∇XY, Y ) = Xg(Y, Y ) = 0 (4.16)

g(L∇YX, Y ) + g(X, L∇Y Y ) = Y g(X, Y ) = 0 (4.17)

Hf (X,X) = X(Xf)− (L∇XX)f

= Xg(gradf,X)− (L∇XX)f

= g(L∇Xgradf). (4.18)

Using Equations (4.16),(4.17),and (4.18), we can reduce Equation (4.15) to get

g(f(L)∇X
f(L)∇Y Y ,X) = g(L∇X

L∇Y Y ,X) + (Y f)g(L∇XY,X)

−Hf (X,X) + L∇Y Y + (Y f)2 + (Xf)2

−‖gradf‖2 + (Xf)g(L∇YX, Y ). (4.19)
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In a similar fashion, we can find equations for the other terms of the Riemannian
curvature in Equation (4.13) as

g(f(L)∇Y
f(L)∇XY ,X) = g(L∇Y

L∇XY ,X) + Y (Y f)

+(Y f)g(L∇YX,X) (4.20)

g(f(L)∇[X,Y ]Y,X) = g(L∇[X,Y ]Y,X) + (Y f)g([X, Y ], X)

−(Xf)g([X, Y ], Y ). (4.21)

We are interested in subtracting Equations (4.20) and (4.21) from (4.19), or
[(4.19) − (4.20) − (4.21)]. Utilizing Equation (4.16), the definition of the Hessian,
and the fact that L∇ is torsion-free, we get

(Y f)g(L∇XY,X)− (Y f)g(L∇YX,X)− (Y f)g([X, Y ], X) = 0

(Xf)g(L∇YX,Y ) + (Xf)g([X, Y ], Y ) = (Xf)g(L∇XY, Y )

= 0

(L∇Y Y )f − Y (Y f) = −Hf (Y, Y ).

Using these equations, we can thus reduce [(4.19)− (4.20)− (4.21)] to the result
that we wished to show. Q.E.D.

Curvatures of Different Connections

Recall our previous example with R2
+ and H, where f(x, y) = − ln(y) was

the conformal function between g (usual Riemannian metric) and g̃. Using
the usual coordinate chart with coordinate vector fields { ∂

∂x1
, ∂

∂x2
}, we give the

Riemannian curvature coefficients for the metrical connections previously de-
scribed. Two of the metrical connections will be metrical on R2

+: the Levi-Civita
connection L∇ and f∇ defined earlier. The other two metrical connections will
be metrical on H: the Levi-Civita connection L∇̃ and ∇̃ defined in Equation
(4.5) (using f(x, y) = − ln(y)). In the ensuing table, we will use R to signify
the Riemannian curvature coefficient of type (0, 4) and write Rijkl to denote
the curvature coefficients for both R2

+ and H (the purpose here is to see all the
coefficients next to one another). Also, we use symmetries of the coefficients so
that we need not list all of them (see Chapter 2 or Lee [9]).

Copyright c© Matthew J. Wells, 2009.
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R. Coefficients L∇ f∇ L∇̃ ∇̃

R1,1,1,1 0 0 0 0

R1,1,1,2 0 0 0 0

R1,1,2,2 0 0 0 0

R1,2,2,1 0 − 1

y2
− 1

y4
0

R1,2,1,2 0
1

y2

1

y4
0

R1,2,2,2 0 0 0 0

R2,2,2,2 0 0 0 0

Table 4.2: Comparison of Coefficients of Riemannian Curvature Tensors, R2
+ and H
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Chapter 5 Curvature of f(L)∇ on Compact Riemannian 2-Manifolds as f
Varies

5.1 Overview

In the previous section, we introduced f(L)∇ and saw that this was a viable way
to produce a vast array of connections which are all metrical with respect to the same
Riemannian metric. We continue to look at metrical connections given by f(L)∇ for
some smooth function f on a manifold M . Specifically, we are interested in looking at
properties of curvatures which are associated with this class of metrical connections,
and ask which curvatures can be generated.

The central problem of Chapter 5 is to focus on a problem of global analysis in the
realm of differential geometry. In general, and to put it in an oversimplified way, if
one has a manifold with a variety of geometric structures, a global analysis approach
means looking at how various well-known properties of the geometric structure vary
as the geometric structure changes. For example, our work in previous chapters gives
a method in which each smooth function gives rise to a certain type of metrical lin-
ear connection and describes the curvature of these connections with respect to the
Levi-Civita connection (Theorem 4.3.1) .

We outline in this first section of Chapter 5 the specific global analysis problem
we are considering. On a smooth manifold M of dimension n, each linear connection
gives rise to a tensor of type (0, 4), specifically its Riemannian curvature (See Defi-
nition 2.4.2). Since each smooth function f on M gives a linear connection which is
metrical with respect to a given Riemannian metric, we now have a way of generating
a family of Riemannian curvature tensors by varying the function f . Said differently,
we have a mapping from F(M) into the set of possible curvature tensors on M . The
general question of this section then concerns itself with seeing which tensors can
be written as a curvature tensor defined by f(L)∇ for some f ∈ F(M), and whether
the curvature tensor (uniquely?) determines such an f . In more informal words,
these ideas lead to asking existence and uniqueness questions for curvatures coming
from linear connections which are metrical with respect to a given Riemannian metric.

The major result for manifolds of dimension 2 is that the possible curvature tensors
(here, n = 2 necessarily means the curvature tensors are smooth functions of M)
obtained as described earlier must average to 2π times the Euler characteristic of
M . Of course, the Euler characteristic is independent of the choice of Riemannian
metric. Furthermore, two functions give metrical linear connections which produce
the same curvature exactly when they differ by a constant. Our primary theorems
(Theorems 5.6.1 and 5.6.2), which give criterion for the existence and uniqueness in
the case n = 2, are proven using the theory of the Hodge Decomposition Theorem
(see Warner [19] p.223).
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5.2 Riemannian 2-Manifolds and f(L)∇

We now describe the global analysis problem, which can be pictured as

F(M) →

{
Metrical Linear Connections

with respect to g

}
→ {Curvatures on M} ⊂

{
Tensor Fields
of type (0, 4)

}

From Theorem 4.3.1, we see how the sectional curvature of f(L)∇ relates to the
sectional curvature of the Levi-Civita connection L∇. Let M be an n−dimensional
manifold and let {X1, X2, . . . , Xn} be an orthonormal basis at a point m ∈ M . It
is well known that the sectional curvatures of all planes spanned by vectors in this
basis will determine the Riemannian curvature tensor of the Levi-Civita connection
(see Boothby [3]); i.e. the collection

{LK(Xi, Xj) for 0 ≤ i, j ≤ n and i 6= j}

determines the Riemannian curvature tensor. Therefore, in knowing information
about the Levi-Civita connection, we can use Equation (4.12) to potentially give
information about the curvatures associated with f(L)∇. In terms of Equation (4.12)
and a pair of orthonormal vectors Xi, Xj with i 6= j, the curvatures are related as

f(L)K(Xi, Xj) = LK(Xi, Xj) + (Xif)2 + (Xjf)2

−‖gradf‖2 −Hf (Xi, Xi)−Hf (Xj, Xj).

For arbitrary manifolds of dimension n, this last equation is really a system of differ-
ential equations. This system gets complicated to solve in dimensions that are three
or larger. Thus, we focus our attention first to manifolds that are dimension 2 and
compact, for which we have explicit results. The assumption of compactness gives us
the tools to use to solve the n = 2 case.

For the next few sections, consider (M, g) to be a compact Riemannian 2-manifold.
Recall that we defined the sectional curvature of a plane Πm in the tangent space at
m ∈M (see Definition 2.5.2) as, for {X,Y } a basis for Πm,

K(Πm) =
Rm(X, Y, Y,X)

|X|2|Y |2 − (g(X, Y ))2

Since we are working with 2-dimensional manifolds, the sectional curvature and Rie-
mannian curvature are the same. In the case where the 2-manifold is actually a
surface in R3, as in Gauss’ Theorema Egregium, the sectional curvature is in fact the
Gaussian curvature of M , which is the product of the eigenvalues of the Weingarten
map at the point. This is described later in Theorem 5.4.1. Therefore, Equation
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(4.12) relates the curvature of f(L)∇ to that of the Gaussian curvature of L∇ in the
case when we look at surfaces in R3.

Now we turn our attention to some facts about 2-manifolds that will aid in the
main result of this chapter. Consider the Hessian from Equation (4.12) on a 2-
manifold. Recall that the Hessian of f with respect to a linear connection ∇ is given
as

Hf (X, Y ) = X(Y f)− (∇XY ) f

for vector fields X,Y ∈ X(M). Notice that Equation (4.12) involves the Hessian of
vector fields with themselves, i.e. Hf (X,X). We have seen the Hessian described in
terms of the Laplacian in Equation (2.9). For an orthonormal basis {X, Y },

∆f = −X2f − Y 2f. (5.1)

Therefore, the Hessian terms in Equation (4.12) reduce to the Laplacian:

−Hf (X,X)−Hf (Y, Y ) = −X2f − Y 2f = ∆f. (5.2)

Lastly, we consider the gradient term in Equation (4.12), which was ||gradf ||2.
Recall Definition 2.3.1. Using our basis {X, Y } which is orthonormal at m, the
gradient vector field can be written locally as

gradf = (Xf)X + (Y f)Y.

Therefore, the gradient term reduces to

||gradf ||2 = g(gradf, gradf) (5.3)

= (Xf)2 + (Y f)2 (5.4)

Using the facts established for 2-manifolds in Equations (5.2) and (5.3), we see that
Equation (4.12) for 2-manifolds reduces to

f(L)K(X, Y ) = LK(X, Y ) + (Xf)2 + (Y f)2 − ‖gradf‖2 −Hf (X,X)−Hf (Y, Y )

= LK(X, Y ) + ∆f. (5.5)

Again, we emphasize that Equation (5.5) is true at each point m. As we have seen,
looking to manifolds of dimension 2 has enabled us to simplify the equation relating
the curvature of f(L)∇ to that of L∇. Knowing this relationship, what can we learn
about the curvature of f(L)∇? To answer this, we look to Hodge Theory and use the
Gauss-Bonnet Theorem. Note that in dimension n, where n ≥ 3, there is not the
simplification that Equation (5.5) affords. That is why the higher dimensional cases,
which have non-linearity in them, are much more difficult and will be a natural topic
to consider as a research agenda for a future research program.

46



5.3 Basic Hodge Theory

The purpose of this section is to present some of the tools of Hodge Theory for
our result later in the chapter. As such, we do not give a detailed view of Hodge
Theory, but rather discuss the ideas that we find particularly useful for this chapter,
and present the material for manifolds of any dimension (not just n = 2) as we did
earlier. We encourage the reader to reference Frank Warner (see [19]) or John Lee
(see Chapter 12 [10]) for the details of basic ideas of Hodge Theory.

For the initial exposition of Hodge Theory, we suppose (M, g) is an n−manifold
and f ∈ F(M). Recall Definition 1.4 of a skew-symmetric (alternating) tensor field
(defined on the tangent space of a point m ∈ M). We define a differential p-form as
follows.

Definition 5.3.1 Let X1, X2, . . . , Xp ∈ X(M) for p ≤ n on an n-dimensional smooth
manifold M . Define a differential p−form ω on M as a skew-symmetric tensor field
of type (0, p)

ω : X(M)× · · · × X(M) −→ R,

where ω(X1, X2, . . . , Xp) ∈ F(M).

Observe that this definition is similar to the definition of a Riemannian metric,
with the difference being that we are choosing skew-symmetric tensor fields instead
of symmetric positive definite tensor fields. We will denote the space of differential
p−forms by Ωp(M). Of particular interest, since Definition 5.3.1 is in terms of skew-
symmetric tensors, we can conclude that “p-forms” for p > n will be 0 (see Lee
Chapter 12 [10]), since when two or more of the arguments in the p−form are the
same, the form is 0. Also, Ω0(M) is F(M), which will make sense later when we
discuss the differential operator. It follows that Ω1(M) is simply the dual of the
space of vector fields, or the set of co-vectors in M . In particular, within a coordinate
chart(x1, . . . , xn), dxi is the 1-form associated with the coordinate vector field ∂

∂xi

such that

dxi

(
∂

∂xj

)
= δij.

To get a better idea of what a p−form for p 6= 1 looks like locally, we introduce
the wedge product (or exterior product) on forms.

Definition 5.3.2 Let ω ∈ Ωk(M) and η ∈ Ωp(M) for M a smooth n-manifold. For
X1, X2, . . . , Xk+p ∈ X(M), define the wedge product of ω and η as the (alternating)
(k + l)-form

(ω ∧ η)(X1, . . . , Xk+p) =
1

k!p!

∑
σ∈Sk

ω(Xσ(1), . . . , Xσ(k)) · η(Xσ(k+1), . . . , Xσ(k+p))
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The proof that ω∧η is indeed a (k+p)-form can be found in the literature and is quite
technical. We omit the proof here, and maintain a focus on the use of forms for our
later results. Using the wedge product and a basis argument for Ωk(M), we conclude
that in a coordinate chart with n coordinates (x1, x2, . . . , xn), ω can be expressed as

ω =
∑

I

ωIdx
i1 ∧ · · · ∧ dxik .

Here, the ωI are smooth functions in the coordinate chart. Also, I represents k of the
n indices in increasing order. We are therefore summing over possible combinations
of k indices included in the k−form ω. Here are some examples of forms in R2.

Forms in Rn Let x1, x2, . . . xn be coordinates for the usual chart on Rn.

dx1, . . . , dxn

1-Forms:2-Forms: dx3 ∧ dx1 + dx2 ∧ dx1 + dx2 ∧ dxn, sin(x1x3)dx
1 ∧ dxn

...

n-Forms: (ex2)dx1 ∧ · · · ∧ dxn.

Now that we have established what differential forms are, we present operators
(exterior derivative, Hodge star operator, and Laplace-Beltrami operator) on Ωp(M),
which send p−forms to forms in Ωk(M) for some k ≤ n.

Exterior Derivative
Suppose f ∈ F(M). We defined the differential df in Chapter 1 (Definition
1.4.1) as a map which sends tangent vectors of M into R. Notice that this is
exactly that df is a co-vector or 1-form. We extend the operator d to p−forms
naturally. In a coordinate chart, let

ω = ωIdx
i1 ∧ · · · ∧ dxip

be a basis p−form in Ωp(M). Here, ωI is a smooth function in the coordinate
chart. We define dω as

dω = dωI ∧ dxi1 ∧ · · · ∧ dxip .

There is a rather important issue of whether the operator d is well-defined with
respect to coordinate charts. The fact is well-known and technical, and we refer
the reader to Lee (see [10] P.306). As such, we have thus defined an operator
which increases forms by 1 dimension; i.e.
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Definition 5.3.3 Let p < n and let M be a smooth n-manifold. Define d on
forms as discussed above. We call d the exterior derivative, and d is the map

d : Ωp(M) −→ Ω(p+1)(M)

Looking back, defining differential 0-forms to be smooth functions fits with how
we defined the differential of a function in Chapter 1, as dF is a differential
1-form. That d2 = 0 is an important conclusion, which is again quite technical.

Hodge Star Operator

To properly present the Hodge star operator, we need to discuss orientation
of manifolds. Observe that for M an n-dimensional smooth manifold, each
differential p-forms (where p = n) in a coordinate chart can be described by

dx1 ∧ dx2 ∧ · · · ∧ dxn. (5.6)

Thus the space of differential n-forms is one dimensional. Thinking of the wedge
in Equation (5.6) as a skew-symmetric tensor field T , an orientation on M is a
choice of either T −1(R+) or T −1(R−). Thus we define the Hodge star operator
(see Warner [19] p.79):

Definition 5.3.4 Let M be an oriented smooth n-manifold and let ε1, . . . , εn

be differential 1-forms in a coordinate chart on M which are orthonormal. For
p ≤ n, we define the Hodge star operator ∗ on basis p-forms as

∗(e1 ∧ · · · ∧ ep) = ±ep+1 ∧ · · · ∧ en,

where the (n − p)-form on the right is “+” if e1 ∧ · · · ∧ en lies in the positive
component of the orientation and − otherwise.

The action of the Hodge star operator takes p-forms to (n − p)-forms and is
dependent on the orientation of the manifold M .

Laplace-Beltrami Operator

This last operator we define connects the previous 2 operators to the well-known
Laplacian operator (which we have seen in Equation (5.5)). First, define δ as
an operator from p−forms to (p− 1)-forms as

δ = (−1)n(p+1)+1 ∗ d ∗ .

49



One can easily follow the actions of the operators ∗ and d to see that δ does
indeed take p-forms to (p− 1)-forms.

Definition 5.3.5 Let M be an oriented smooth n-manifold. The Laplace-
Beltrami operator ∆ is an operator taking p−forms to p−forms defined as

∆ = δd+ dδ.

This definition of ∆ looks different than our previous definition of the Lapla-
cian ∆ seen in Equation (2.9). Lang establishes (see [8] p.410) that these two
definitions of ∆ are indeed the same. Therefore, we will refer to the Laplace-
Beltrami operator as the Laplacian from here on, with the understanding that
∆ has multiple descriptions.

Having established these operators, we now present some ideas that will aid in
establishing the result we use from Hodge Theory. At this point, we now suppose
that M is a connected compact oriented Riemannian manifold (not necessarily a 2-
manifold). Recall (see Warner Chapter 2 [19]) that an arbitrary differential n-form
ω can be expressed (uniquely) in a coordinate chart as

ω = ωI dx
1 ∧ dx2 ∧ · · · ∧ dxn

for some ωI ∈ F(M). We define integration of differential n-forms as

∫
M

ω =

∫
M

ωI dx
1 ∧ dx2 ∧ · · · ∧ dxn =

∫
M

(ωI)dx
1dx2 · · · dxn.

In simple terms, we think of the abstract idea of integration on M of a differential
p-form by using the local Euclidean structure of M and integrating as usual in Rn.
Since M is compact, our definition will make sense for all differential forms (for non-
compact manifolds, more work needs to be done; this exposition will suffice for our
needs).

Another advantage of compactness is that we can define an inner product on dif-
ferential p−forms, since integration on compact smooth manifolds is defined. Define
the inner product of α, β ∈ Ωp(M) as

〈α, β〉 =

∫
M

α ∧ ∗β.

Proposition 5.3.6 Let α, β ∈ Ωp(M), where (M, g) is a compact Riemannian man-
ifold. The operator δ is the adjoint of d in the inner product 〈 , 〉; that is

〈dα, β〉 = 〈α, δβ〉.

50



Proof See Warner ([19] p.221)

Proposition 5.3.6 has an especially useful consequence in terms of compact Rieman-
nian manifolds and differential 0-forms. We turn to understanding information about
∆f found in Equation (5.5) of the previous section. Recall that differential 0-forms
are nothing more than smooth functions on the manifold M . Therefore, the ideas
established in Proposition 5.3.6 and the inner product defined on differential p−forms
applies to differential 0-forms as well.

Theorem 5.3.7 Let h be a differential 0-form on a connected, compact, oriented
Riemannian manifold (M, g). Then h is harmonic, i.e. ∆h = 0, if and only if h is a
constant function

Proof We show that it is necessary and sufficient for dh = 0. If this happens, h must
be constant. Observe that if h is constant, then ∆h = 0 by the definition of ∆ given
in Equation (2.9).

Conversely, suppose ∆h = 0. Using Theorem 5.3.6 and the definition of ∆, we see

0 = 〈∆h, h〉
= 〈(dδ + δd)h, h〉
= 〈δh, δh〉+ 〈dh, dh〉.

Since δh is a (−1)-form, as h is a 0-form, δh = 0. Therefore, dh must be 0, and h is
constant. Q.E.D.

Notice that without M compact, we are unable to nicely define an inner product
on forms, and could not obtain the result shown in Theorem 5.3.7 (although one
could work with compactly supported differential forms on manifolds). The result
that is of particular interest is that only constant functions are harmonic on connected
components of compact manifolds. We shall revisit these ideas later in the proof of
our main result.

5.4 Gauss-Bonnet Theorem as Context for Section 5.6

In classical differential geometry, mathematicians considered 2-dimensional sur-
faces which are embedded in R3. Using this approach, the structure of the embedded
surface was described in terms of the embedding, and eventually some results were
shown to be independent of the actual embedding into R3. We present some of the
classical ideas here, and connect these ideas to the curvature equation given in Equa-
tion (5.5).

Let K be the Gaussian curvature of a surface in R3. That is, K is the Rie-
mannian curvature of the Levi-Civita connection of the Riemannian metric which is
induced from (flat) R3. Recall from Gauss’ Theorema Egregium that K, which is a

51



function on M , is independent of the basis chosen to define it (because K is a tensor).

The next important result is that the Gaussian curvature of a surface is indepen-
dent of how the surface is embedded in R3. The Gaussian curvature can be written
(and is usually defined as such in introductory differential geometry courses) in terms
of the determinant of the Weingarten map. Since the Weingarten map L depends
on the normal to M , it depends on the embedding. However, we find by Gauss’
Theorema Egregium (stated differently than in Theorem 2.5.1) that

Theorem 5.4.1 For M a surface embedded in R3, where g = det(gij), we locally get

K = det(Lj
k) =

∑
i

R121
i(gi2/g). (5.7)

Proof See Millman-Parker ([12] p.143)

Within Equation (5.7), observe that R121
i corresponds to the Riemannian curva-

ture tensor in a local chart, and the coefficients Lj
k come from the Weingarten map

in the same local chart.

The last aspect of the independent nature of K on a Riemannian manifold (not
necessarily a surface in R3) is that different Riemannian metrics on M usually give
different curvatures. Yet the average of curvature on a 2-manifold is a multiple of the
Euler characteristic, χ(M), of M . This result is stated here, which is given as seen
in Hicks (see [6]) or Lee (see [9]).

Theorem 5.4.2 (Gauss-Bonnet Theorem) Let M be a compact, connected, ori-
ented Riemannian 2-manifold with Riemannian (Gaussian) curvature function K.
Then

∫
M

K = 2πχ(M) (5.8)

Of particular importance in the midst of these results is the independence of the
embedding of the 2-manifold. We interpret the results of the Gauss-Bonnet Theorem
as stating the average of the Riemannian Curvature over M is a multiple of its Euler
characteristic. The astounding fact (hence the word “egregium”) is that the integral
of a purely geometric property (curvature) is independent of the geometry and just
depends on the topology of M . Here, the Riemannian curvature is associated with
the Levi-Civita connection. As we will see, this result is not just for the special case
of the connection being metrical and having zero-torsion.

5.5 The Integral of the Curvature of f∇XY on Compact 2-Manifolds

Assume that (M, g) is a compact, oriented, connected Riemannian 2-manifold.
We have seen that f∇ is a metrical connection with respect to g and have established
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Equation (5.5) to relate the sectional curvature of f∇ to that of L∇ (which depends
on M being compact, connected, and oriented). We re-state that relationship here:

f(L)K(X, Y ) = LK(X,Y ) + ∆f.

We view this partial differential equation on a manifold as a relationship which re-
lates a smooth function f , which defines a metrical connection f(L)∇, to the sectional
curvature of f(L)∇ and the sectional curvature of L∇, the Levi-Civita connection of
the manifold. We turn to the tools of the Hodge Decomposition Theorem to exploit
this relationship and prove the major theorems in this chapter.

Moving forward, we will need to know information about the role ∆f plays in this
equation. Let ω be a differential p-form of M . We say that ω is harmonic if

∆ω = 0.

We define some important subsets of Ωp(M) as

Hp = the space of harmonic p-forms

∆(Ωp(M)) = {β ∈ Ωp(M)|∆α = β} = image of the Laplacian.

To understand ∆f , we consider the following powerful decomposition.

Theorem 5.5.1 (Hodge Decomposition Theorem) Let 0 ≤ p ≤ n for M an
n−dimensional Riemannian manifold. The space of p−forms decomposes as an or-
thogonal direct sum as follows:

Ωp(M) = ∆(Ωp(M))⊕Hp.

Furthermore, ∆ω = α has a solution ω ∈ Ωp(M) if and only if α is orthogonal to
Hp.

Proof See Warner ([19]).

The Hodge Decomposition Theorem is a much stronger result than we will need, but
it beautifully describes p−forms in terms of the Laplacian and harmonic forms. As
we move forward, we will only need this result to help describe smooth functions
(which are 0-forms).

We now state one of the main theorems of this chapter for f(L)∇. For emphasis,
we re-write the definition of f(L)∇:

f(L)∇XY = L∇XY + (Y f)X − g(X, Y )gradf.
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Theorem 5.5.2 If M is a connected, compact, oriented, Riemannian 2-manifold,
then

∫
M

(f(L)K) = 2πχ(M),

where f(L)K is the Gaussian curvature associated with the metrical connection f(L)∇.

Proof Recall that on a 2-dimensional manifold, sectional curvature is a smooth func-
tion K ∈ F(M). Let {X, Y } be a basis in a neighborhood of m ∈M orthonormal at
m. From Equation (5.5) we see the curvatures of L∇ and f(L)∇ are related as

f(L)K(X, Y ) = LK(X, Y ) + ∆f. (5.9)

Since the sectional curvatures and the Laplacian are independent of the basis we
choose (about a point), we are left with the differential equation defining h ∈ F(M)

∆f = f(L)K − LK

= h. (5.10)

What Equation (5.10) tells us is that f(L)K is the curvature of f(L)∇ as long as
f satisfies the equation given. Viewing each of the terms in Equation (5.10) as func-
tions in F(M), and furthermore as 0-forms, we can apply the Hodge Decomposition
Theorem. Thus to solve Equation (5.10) it is necessary and sufficient for h to be
the image of ∆(Ωp(M)) with p = 0. That is the same as h being orthogonal to the
space of harmonic 0-forms. From Theorem 5.3.7, harmonic 0-forms are simply con-
stant functions on M . Let C > 0 be a constant function on M . Using properties of
integration, the star operator, and the inner product of forms, we see

0 = 〈h,C〉

=

∫
M

h ∧ ∗C

=

∫
M

C(h ∧ ∗1)

= C

∫
M

h.

Hence f(L)K is the sectional curvature provided that
∫

M
h = 0. Using this fact and

also that LK is the Gaussian curvature for the Levi-Civita connection, the Gauss-
Bonnet Theorem provides us the result:

∫
M

h = 0 ⇔
∫

M

(f(L)K)−
∫

M

(LK) = 0

⇔
∫

M

(f(L)K) dA = 2πχ(M).
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Q.E.D.

Putting this result into the similar words used earlier, the sectional curvature
of f(L)∇ has average 2πχ(M) when we integrate over the entire manifold M . We
have successfully extended the result from connections with zero-torsion to a class of
connections which are defined using smooth functions. This holds true for Riemannian
manifolds which are compact, oriented, and dimension 2. Yet we can learn much
more about curvature on compact 2-manifolds and discuss extensions to Riemannian
manifolds of dimension 3 in future research.

5.6 A Global Analysis Result: Characterization of the Metrical Connec-
tion f∇ with a given Curvature

In the last section, we saw that the sectional curvature associated with f(L)∇
must have an “average” of 2πχ(M). Recall that the sectional curvature f(L)K can be
thought of as a smooth function when dealing with 2-manifolds. There are many func-
tions whose “average” over M is 2πχ(M). Naturally, we wonder for which functions
can we find an f so that f(L)∇ gives sectional curvature which is a given function. In
other words, can we find a change of metrical connection to give a desired curvature
whose integral is 2πχ(M)?

Suppose we start with h ∈ F(M), where (M, g) continues to be a compact, con-
nected, oriented, Riemannian 2-manifold. We deal with the question of whether there
is a metrical connection with respect to g whose curvature is given by the function h.
Using the ideas of Hodge Theory, we will show that h can be expressed as a curvature
of the form f(L)K for some f ∈ F(M) if and only if the results of Theorem 5.5.2 hold.
We state and prove here.

Theorem 5.6.1 Let h ∈ F(M), where (M, g) is a compact, oriented, connected Rie-
mannian 2-manifold. Then there exists f ∈ F(M) such that the sectional curvature
of f(L)∇ is h if and only if ∫

M

h = 2πχ(M).

Proof If such an f exists, we have shown in Theorem 5.5.2 that h follows to integrate
to 2πχ(M). Suppose h integrates to 2πχ(M). By the Hodge Decomposition Theorem,
∆f = h has a solution if and only if h integrates to zero (shown in Theorem 5.5.2);
that is, h is orthogonal to harmonic functions (constants). If h is the difference
between h and LK, i.e.

h = h− LK,

then such an f exists (as
∫

M
h = 0). We choose this f , which induces f(L)∇ to have

curvature h by construction. Q.E.D.
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From this result, we can see that the possible sectional curvatures that exist for
fixed (M, g) are quite diverse. Even more, as we show in the next theorem, the only
way two functions f1 and f2 could hope to produce the same sectional curvature (via
f1(L)∇ and f2(L)∇) is when the functions are the same up to an additive constant.

Theorem 5.6.2 Let (M, g) be a compact, connected, Riemannian 2-manifold. Let
f1, f2 ∈ F(M) and let f1(L)K, f2(L)K represent the sectional curvature of f1(L)∇, f2(L)∇
respectively. Then f1(L)K = f2(L)K if and only if the difference of f1 and f2 is con-
stant.

Proof Using Equation (5.5), we find

∆f1 = f1(L)K − LK (5.11)

∆f2 = f2(L)K − LK. (5.12)

Looking at the difference of Equation (5.11) and Equation (5.12), we get

∆(f1 − f2) = f1(L)K − f2(L)K. (5.13)

If the right side of Equation (5.13) is 0, then (f1 − f2) is harmonic on M (compact).
So by Theorem 5.3.7, (f1 − f2) is constant. If the left hand side of Equation (5.13)
is such that (f1 − f2) is constant, then clearly the sectional curvatures f1(L)K and
f2(L)K are equal. Q.E.D.

What we have shown for compact Riemannian 2-manifolds is very intriguing.
Once we defined a new class of metrical connections f(L)∇ which depend on smooth
functions, we saw that the sectional curvature induced from this could be any function
whose “average” was a multiple of the characteristic function of M . Then, we proved
that the functions used to define our metrical connections would only produce the
same curvature if the functions were the same up to an additive constant. In a sense,
f1 must be uniquely different from f2 (up to a constant) if we ever wish the curvatures
coming from them to be the same.

5.7 The Sectional Curvature of f(L)∇ on Higher Dimensional Manifolds

For compact manifolds of dimension 2, we were able to describe the sectional
curvature associated with f(L)∇ and f ∈ F(M). Looking back to how we accomplished
this, the key was to simplify

f(L)K(X, Y ) = LK(X, Y ) + (Xf)2 + (Y f)2

−‖gradf‖2 −Hf (X,X)−Hf (Y, Y ) (5.14)

using the Laplacian to get the following equation:
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f(L)K(X, Y ) = LK(X,Y ) + ∆f. (5.15)

Simplifying Equation (5.14) to Equation (5.15) was accomplished precisely because
the compact manifold was assumed to have dimension 2. In turn, because the anal-
ysis of the Laplacian is so well understood, we were able to use Equation (5.15) to
prove the key necessary and sufficient conditions of Section 5.6.

Naturally, the next step is to learn about the sectional curvature for f(L)∇ for
manifolds of dimension n ≥ 3. To gain insight, we consider what happens when
n = 3. Suppose (M, g) is a Riemannian manifold of dimension 3 and f ∈ F(M). Let
X,Y, Z ∈ X(M) be an orthonormal basis locally (about a point m ∈ M) which is
constructed as in Equation (2.8). We investigate Equation (5.14) with respect to the
plane spanned by X and Y . Observe that gradf and the Hessian terms in Equation
(2.8) with respect to our basis are

− ‖gradf‖2 = −(Xf)2 − (Y f)2 − (Zf)2 (5.16)

−Hf (X,X)−Hf (Y, Y ) = −X2f − Y 2f

= ∆f + Z2f. (5.17)

Here, we used Equation (2.8) and Equation (2.9). The addition of a third vector in
the basis does not give us the nice cancelations and substitutions that we had before.
Equation (5.14) thus reduces to

f(L)K(X, Y ) = LK(X, Y ) + ∆f − (Zf)2 + Z2f. (5.18)

Here, we need to emphasize that Equation (5.18) relates the sectional curvatures of
f(L)∇ to that of L∇ with respect to the plane spanned by X and Y . With regards
to our problem of working on a manifold of dimension 3, we need to determine facts
about sectional curvature of planes spanned by X, Y and Y, Z and X,Z (for a basis
{X, Y, Z} spanning Tp(M) at p ∈M). Therefore, we are working with the system

f(L)K(X, Y ) = LK(X,Y ) + ∆f − (Zf)2 + Z2f
f(L)K(Y, Z) = LK(Y, Z) + ∆f − (Xf)2 +X2f
f(L)K(Z,X) = LK(Z,X) + ∆f − (Y f)2 + Y 2f

This system of equations shows the difficulty if the dimension of M is greater than
2. The dimension 3 case and the dimension 2 case both involve the Laplacian on a
manifold. However, the dimension 2 case gives linear partial differential equations to
solve. Because of the (Zf)2 term (for example), the dimension 3 (and higher) case is
non-linear. The non-linearity means that additional analytical tools will need to be
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brought to the task when the dimension is greater than 2.

There is a technical point here. There may be a difference between knowing the
Riemann curvature and knowing the sectional curvature. In fact, either curvature
determines the other. The following well-known result (given in Boothby p. 385 [3])
shows the relationship between the sectional curvatures of planes in the tangent space
and the Riemannian curvature tensors.

Theorem 5.7.1 If dim M ≥ 3 and the sectional curvature is known on all sections
of Tp(M), then the Riemann curvature tensor is uniquely determined at p ∈M .

In other words, using the linearity of sectional curvature and Riemannian curvature,
it is enough to find the sectional curvature of all possible planes spanned by pairs of
tangent vectors included in a basis which spans the tangent space.

Notice that the result given in Theorem 5.7.1 is given with respect to the Levi-
Civita connection. Within the proof of Theorem 5.7.1, we use properties of the Levi-
Civita connection which rely on the fact that the connection is torsion-free. Recall
that f(L)∇ is not necessarily torsion-free. Thus, we cannot easily hope to directly
use this result coupled with the system of equations given above to help relate the
Riemannian curvature of f(L)∇ to that of L∇. Furthermore, we are not allowed the
luxury of the results we used for compact manifolds of dimension 2. Hence, even if
we hoped to compare the Riemannian curvatures, the results we established here in
Chapter 5 would not hold true without further work. Questions like these are left
unanswered. Yet, as shown with compact 2-manifolds, there is potential in looking
through the machinery we set up throughout this paper on other classes of manifolds,
and is an avenue for future research.

Copyright c© Matthew J. Wells, 2009.
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