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ABSTRACT OF DISSERTATION

The Bourgain spaces and recovery of magnetic and electric potentials of Schrodinger
operators

We consider the inverse problem for the magnetic Schrodinger operator with the
assumption that the magnetic potential is in C* and the electric potential is of the
form p; + divp, with p;, p» € C*. We use semiclassical pseudodifferential operators
on semiclassical Sobolev spaces and Bourgain type spaces. The Bourgain type spaces
are defined using the symbol of the operator h?A + hy - D. Our main result gives a
procedure for recovering the curl of the magnetic field and the electric potential from
the Dirichlet to Neumann map. Our results are in dimension three and higher.
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Chapter 1 Introduction

Let © € R®, n > 3 be a bounded domain with C'! boundary. The magnetic
Schrodinger operator is

n

HW,p = Z(D]—FWJ)Q—’—]? (11)

j=1

where D; = %%, W is the magnetic potential, and p is the electric potential. We

assume that W € CMR"™; C"), p = p1 +divps with py, po € C2(R™; C). We are using
C%(R™) to denote the space of functions which are Holder continuous of exponent «
and compactly supported in R"™.

If we assume 0 is not a Dirichlet eigenvalue of Hyy), then the boundary value
problem

Hy,u=0 inQ,
u=f on 0f)

has a unique solution u = uy € H'(Q) for any f € HY/2(00Q).
We will use the Dirichlet to Neumann map (DN map) to describe our boundary
measurements. The DN map is defined by

ou _
iy [ = 5 Elon +i(W - 0)f

where v is the outer unit normal to 92. Furthermore, for f, g € HY?(99), if we
assume Hypur = 01in Q, up = f on 09, H_w,v, = 0in Q, vy = g on 0L, ¢y, ¢, are
any functions in H'(Q) with ¢y = f, ¢, = g on 9, then the weak formulation for
AW,p is

(Nwpf.g) = /Q (Vuyg - Vo, +iW - (urVo, — pVug) + (W - Wugpg) dz + (pug, g)-

(1.2)
Using the adjoint of Ay, we also have

(Nwpf,g) = /Q(VSDf Vg +iW - (0 Vv, —v,Vop) + (W -W)pr,v) do + (pey, vg).

(1.3)
From this definition it follows that Ay, is bounded on H/2(0Q2) — H~Y/2(0).
Since p is not a function, following Brown [4], we define the “multiplication by p” by
(pu,v) = [ pruv — [ py - V(uv) when u and v are sufficently smooth.

The inverse problem for the magnetic Schrodinger operator is the problem of
recovering curl W and p from Ay,. This problem related to the inverse conduc-
tivity problem of Calderén [5]. Previous results for this problem concern different
assumptions of W, p (starting with Sylvester and Uhlmann[22] and later work in



[26],[27]). The inverse problem of the closely related magnetic Schrodinger equa-
tion, was first worked by Sun [2I]. Nakamura, Sun and Uhlmann [I5] considered W,
p € C>(Tolmasky [24] improved to C' and Salo [17] to Dini continuous). Salo [I§]
solved this in the case when W is continuous with D - W € L*° p € L*. Krupchyk
and Uhlmann [12] worked on this problem when W € L*> and ¢ € L*. Pohjola [16]
studied the case when W € C?/3%¢ p = p; + div p, with p;, py € C?3%¢ for any small
e. Haberman([9] proves the case that on a ball B C R? when W is small in W*?3 for
some s > 0, and p € W13,

We recover p by using the complex geometrical optics (CGO) solutions of Hyy,u =
0 in Bourgain type spaces. CGO solutions are solutions of the form

u ="

where ( € C", and satisfies ( - ( = 0. The use of CGO solutions for inverse problems
first appeared in Sylvester-Uhlmann [22]. The Bourgain type spaces we use were
introduced to the study of inverse problems by Haberman and Tataru [10]. The
original Bourgain spaces were defined by Bourgain in [2]. The definition is as follows.
In this definition and throughout this paper, we use a - b= )", a;b; for vectors a and
bin C".

Definition 1.1. Let ¢(§) =& - &+ 2u- &, where p € C™ with |u| = V2 and p- =0,

we define spaces ijh, ij,h and ij,h,a with the following norms

I, = IlaRIPFOl
1l = 1A+ la(h D FC)l2
e, = 12070+ ()27l
for fed8, fe L} is a function, b, h, 0 € R with |b| <1, o € [0,1), h > 0.

In this definition and below, we use S’'(R") to denote the space of tempered
distributions and S(R") will denote the space of Schwartz functions.

Lemma 1.2. For b < 1, the the spaces Xz,m XZ,h and X?°

ho are Banach spaces.

Proof. It is clear that ‘Qhe spaces Xflh and XZM are Banach spaces. The interesting
point is to show that XZ’h is complete.
Suppose we have a Cauchy sequence { f,,} in the space XZ 5- Then by the definition

of the space Xﬁ b fn is an element of a weighted L2-space where the norm of a function
g is ||g(h-)g||z2. Since the weighted L%-space is complete, we can define

g = lim fn

n—o0

We need to show that g is a tempered distribution and thus that g = f . Then we
will have that f = lim,,_,, f,, where the limit occurs in the space X fj’ 5. 1o show that
g is a tempered distribution, observe that we have

/B(QR) 9(&)]d€ < (/B(OR) 9(&)Pla(he)[* d£> - (/B(O’R) lg(h&)| 2 dg) 1/2. (1.4)



From estimate (2.1)), since b < 1
[l < cr i,
B(O,R)

Using this in ([1.4)) implies that g is a tempered distribution. This proves the Lemma.
O

To recover p, we need to prove the existence of CGO solutions in the space X Pl/ ,?
space. We will need to define semiclassical pseudodifferential operators and define
their action on Bourgain spaces in order to establish the existence of the CGO solu-
tions. We need a variant of the pseudodifferential cutoff technique used by Takeuchi
[23] and Kenig-Ponce-Vega [I1]. Zworski [28] provides a good introduction to semi-
classical pseudodifferential operators. To recover W, we follow the method of Salo
[18, Section 6]. Even though our W is less regular than in Salo, we are still able to
adapt his proof. Once the CGO solutions are constructed, we can use a non-physical
scattering transform to recover p. The main result is

Theorem 1.3. Let Q@ C R", n > 3 be a bounded C*' domain. If W € C*(Q; C"),
p = p1 + divpy with p, py € CNQ; C) N HA(C™) and 0 is not a Dirichlet eigenvalue
of Hy,p. Then when X € (1/2,1), X € (0,1), curlW is determined by Aw,. Further,
when (A + 1)\ > %, 0< A<, Aw,, determines p uniquely.

The main interest of this result is the low regularity on W and p. If we let A = X,
then our theorem applies for A > (=1 + /7)/2 ~ 0.82. Thus our theorem allows
potentials which are not functions and represents an improvement over the work of
Krupchyk and Uhlmann. The work of Pohjola assumes that A = X and thus, our work
is slightly more general. Unlike Haberman’s recent work, there is not a restriction
that W is small. However, the result above is far from sharp.

Here is the structure of this dissertation. Chapter 2 talks about the properties
of Bourgain type spaces and semiclassical pseudodifferential operators. In chapter
3 and chapter 4, we obtain the existence of CGO solutions in the space X 3/,? and
in semiclassical Sobolev spaces. We show the boundary value of CGO solutions can
be determined by Ay, in chapter 5. chapter 6 contains the recovery of curl W. We
recover p in chapter 7. Chapter 8 talks about the future work.

Copyright© Yaowei Zhang, 2016.



Chapter 2 Bourgain type spaces and semiclassical pseudodifferential
operators

Bourgain type spaces

We first present some properties of Bourgain type spaces, which are critical when we
prove the existence of CGO solutions in the space X u/ ,3 .

Let (x) = (1 + |z|?)*/2, before we come to the proposition, we need this lemma.

Lemma 2.1. let B.(n) be the ball of radius r with center n, k € (0,2), N is a large

positive number, then
Ly —k 1k
—"<Cr" " /h 2.1
o it <O 2

and

b
Jon-a sl <0 22)

for some constant C depending only on the dimension n.

Proof. The proof of the first estimate follows from R. Brown [3], page 82]. The
second estimate is from the first estimate and is also in Haberman and Tataru [10],
Lemma 2.2]. T will show how the first estimate works.

By a rotation in the variable &, it suffices to consider the case where p = e; + es.
We define the zero set of g(h§) by X, = {& : q(h§) = h*|{]* + 2u - (hE) = 0}. We
consider 3 cases of the ball B, (7).

Case 1: When r < k™! and dist(n,%,) < 2r. We can rotate the variables
(&2,&3, -+ ,&,) about the center of 3, so that B,.(n) C Bs,(0). Since g(h&) = |h&|* +
2(Rep+iImyu)-(h€) = |hé+ Rep|? — | Rep|? +2ilmpy- (h€), we can define new variables
x1 = |h€ + Repl* — |Reu|?, xo = Imp - (h€), x; = hé;, j = 3, 4, --- ,n. Then we have

‘fl—g = 2h%¢; + 2h(Rep);, CC%’ = 2h(I'mpu);. So we obtain that

1 1
/ ’—’kSCh"/ ! — | dxy day - - - da,
By(n) q(hg) Bene(0) 1+ 122

< Ch™"(hr)"F
< Cr"F/hk.

(2.3)

Case 2: When dist(n, 3,) > 2r. Since |¢(h§)| is comparable to h dist(, 2,) when
|€| < 8h~! and comparable to |h&|* when |€| > 8h~!. Thus

1 1
< (O—. 2.4
98] = e (24)
This gives
1 k 1 k/ —k k
— "< C(— 1< Crt? he. 2.5
/B e / (2.5)



Case 3: When r > 55h~" and dist(n,$,) < 2r. We write B,(n) = By U Bx,
where By = B,.(n) N By,-1(0) and By, = B,(n) \ Byy-1(0). By the argument in Case
1 and Case 2, we know

1
L <o (2.6
/BO q(hé)
We know that X, C By,-1(0), so
1 1
<C . 2.7
o] = “Thep 27
on B.,. Thus
—— "< C =" 2.8
.. gt = 23
which implies [2.1] since r > 5=h 7" O
Proposition 2.2. For any 6 > 0, we have a constant C' = C(n,d) so that
||<“7>_1/2_5f”xif < C||f||X;{: (2.9)
||<$>_1/2_5f||xﬁ/z < Cllflly-e < Ch™' 2|\ £l 2 (2.10)
[(2) =270 fl 2 < Ch*l/QHfHX;/;- (2.11)
HfHXi/: < ||f||X;(5 < HfHX,i,/;f,g (2.12)
1l < WP < Wl v (213)
Il < h2 5l (214)
£y < B2y (2.15)
The following proof uses ideas from Haberman and Tataru [10].
Proof. Let p(x) = (x)7%/27% then
~ Cl —Csl¢
[P(&)] < We 2lel (2.16)

for some C; € R, Cy € R from Stein [19, p. 132].
To prove (2.9)), let v(§) = h+ |g(h§)] and w(&) = |q(h&)|. Tt suffices to prove that
the operator S with Sf = v'/2(p * w{/Q) is bounded on L?. Suppose that S* is the




adjoint of S, since ||S*|| 222 = ||S]|z2— 12, it suffices to show that S* is bounded on

L?. We have
(S*f,9) = (f, Sg)

1/2( 1/2 )df (2.17)
/ e [ee=n 1/2f (€ )l
Thus
1/2/ V2 F(n) dn
Since
I5°f113 =
— [ ([ 5= sman) - ([ o= emsan)ue " de
— [ [ [ F=eom oot - v Tapw(e) * dndnde
M B R e - )
~(Fr=eta - 5)\% 1/2> o)
(For=ge- s>\2—f1/2>1/2v<ﬁ>1/zm.
Using a - b < 1(a? + %), we have
I s < [ = olea - »s>|—§ o) | () Peo(€) ™ di iy e

Now we integrate in the variable 7, and use that

/ |6(1 =€) ‘ =
=N
This implies that

|5 f2 <C / / BT Ol — &[0 () Puw(€) ™ di d

<o [ ( / !mHn—€|1/2v(77)w(€)‘1d£)|f(77)|2d77

1/2
I8 12212 < C'max ( [ BT= 8l - ¢ omyute) d&) e

dngC.

It follows that

6



We need to show the right side of (2.18) is bounded by some finite number.

Since |q(hg)| ~ [h€]? when |h&| > 4 and [g(hn)| < [q(h€)|+|q(h(n—&))|+h%|€]In—
&|, we have

(1)

- h+ lq(hn)]
w(§)

= e
< ol 1ahE)] + la(h(n = )] + h*I€]ln - ¢ |
B |q(h¢)
h+ h%n — &° + hln — §] + 2I€lln — &
=cir (k€]
h+ h2|n —&° + hln — ¢
=cir k)
Now we consider the right side of ,

(2.19)

)

)

| / BT =00 — & u(myw(e) " de|

o 1 h+h2n —&* + hln — ¢
i 1 h+h?n— & + hln — €|

C Ca|n—¢| 1

/ ‘ g T q(h)]

1 h

C —Ca|n—¢| 1 d

/« et )
1 h

In — &"=170 [q(hg)]

IA

) d¢

IN

§C+c/£6wf de.

(2.20)
For the integral

—C2|n—¢| 1 h d
& = e Jg(he)]

1 h
< e—Caln—¢| d¢
/n—§>1 In — &"170 [g(hS)]

—Coln—¢] 1 h (2.21)
* /BM) g e

h 1 h
< —Coln=¢l_"__ d
—/n_of )] o T jahe)]

—A+B

By estimate (2.2) in Lemma A is bounded by finite number. For B, by



estimate (2.1) in Lemma [2.1] we have

1 h
B < d
Z/ L\B, () M — &[T ~0 [q(hg)| ¢

<C Z 2k(n—1—§)2—k(n—1)

S C i 2—k5
k=0

< C.

(2.22)

Thus we have proven the estimate ([2.9)). The estimate (2.10)) follows from ({2.9)) by
duality. For the estimate (2.11)), since 1 < %, it follows that ||(z)~1/279f||. <
h=Y2||(z)~1/2- 5f||X1/2 which is bounded by Ch~ 1/2||f|| (/2 from estimate |} The

estimates and - ) follow easily from the deﬁmtlon of the Bourgain type
spaces. ]

The semiclassical pseudodifferential operators

In our proof of existence of solutions, we need to use semiclassical pseudodifferential
operators and we give the definition of these operators.

Definition 2.3. Let 0 < o0y, 09 < 1 with 01 + 09 < 1. We define S,, 5, to be the
space of all functions a(z,&;h) where x,& € R™ and 0 < h < hy, hy < 1, such that
for each h, we have a(z,&;h) € C°(R*") and

aga?a(x’g; h) < C«aﬁh—mla\—azlﬁ\
for any multi-index o, 3.

Next we give more general symbol classes, which are defined by using an order
function. This is similar to the symbol classes in R. Beals [I, p.3] but we give a
semiclassical version of his definition.

Definition 2.4. Let p(z,&h) : R* x R™ x (0, ho] — [0,00), we say ¢ is an order
function if there exist o1 > 0,09 > 0, Ny > 0 and Ny > 0 so that ¢ satisfies

(@, & h)| < C(h™ (w = y))™ (=7 (& = n) ™ le(y, n; b))
for all x,y,&,n € R™.

Definition 2.5. Let 01, 09 € [0,1], and o1 + 02 < 1, we define the symbol class
S¢ 5, (R™) as the space of all functions a : R x R™ x (0, hg] — C such that a(-; h) €

C’OO(R2”) and
laﬁafa(x,fs h)| < Cyghlelor=l8lo2 o5 €0 1),



When the order function ¢ = 1, we use S,, ,, for symbols in place of S, , in

order to avoid confusion with other common notations. Given a symbol a in one of
the classes defined above, there is a natural way to define an operator A = Op,,(a) :
S(R™) — S'(R™). This is the subject of the next definition.

Definition 2.6. Fora € 5S¢

01,027

we define the operator A = Opy,(a) = a(xz,hD) by

n

Af(x) = (2m) " / ¢S a(a, he; 1) (€) de

where f is the Fourier transform of f. The function a(x,&; h) is called the symbol of
the operator A.

Lemma 2.7. Let b € R, then the function ¢(€) = (h*379) + |q(€)|?)*/? is an order
function and a symbol in S{il_g.

Proof. We know [q(§)| = |¢(§ —n+n)| < lq(§ —n)| + lg(n)] + 2[§ — nlln[. Thus

(P00 + a©P) g (al€ =)l + 206 = nlln)*

1 JaPy7 = TR 1 g

(1€ = nl* +2ln- (€ = )| +2|¢ — 77H77D2)b/2
) T ()P

< (14 (A2 — pft 4 23720 — g
(2[€ — nllnl)* ))”/2

2= + |q(n)?

<O (e —m))*.

IN

(1+
(2.23)

+

which gives us ¢ is an order function.
To prove ¢ is a symbol, we need to estimate the norm of derivatives. We estimate
the first order partial derivatives as follows

0 b 0 -
o — |2 (p20-0) 2\6/2-1 9
5 901 =[50 + O g (a€)a(e))|
b
= [P0 +1a(€) ) (28 + 21)a(6) + (265 + 2045)a(€)) [|6(€)]
< O|(R*07 + |g()) 721265 + 2ul||6(€)]
< Ch™g(¢)]
(2.24)
Similarly, we can calculate higher partial derivatives, and get ¢ € S& l—o O

Lemma 2.8. Ifa € S¢ ., be Sy . then ab e SZ¥

01,027 01,02°



Proof. By the product rule,

|0§‘8§a(1‘,§; h)b(z, & h) Z ¢ a17517a27ﬂ2)aa18ﬁ1 aa2352b|

Oé1+012

51+52=5
Z Clau, Bi, ag, Bo) b 1otlo1=IB1lo2 pp~lazlor=iBalen g

al1toas=a

B1+B2=p
< Cla, B W7 00
(2.25)
Thus ab € S¥Y O

01,02"°

The lemma below shows that if A and B are semiclassical pseudodifferential op-
erators, then the composition Ao B is a semiclassical pseudodifferential operator and
gives information about the symbol.

Lemma 2.9. Leta € S¢ ,, and b € S;fl 5,0 With 0o+ 01 < 1, c(x,§) be the symbol of

operator Ao B with A = Opp(a) and B = Opy(b), then c € SW

max (01,01),max (02,62) and
for each M =1,2,... we have

Jox
c(z, &)= ha' a(z,£)Deb(z, €) + KMo gev (2.26)

lo| <M

Proof. Our argument follows the proof in Stein [20, page 320 - 323|, with obvious
changes to handle the parameter h and the order functions.

We first assume that a and b have compact support in the x and £ variables. By
definition

Af(z) = (2m)" / al, n)e™™ £ () dydn

Bf(y) = (2m) " / by, he )€U §(2) dde.

So we have
ABf(x) = (27r)_2"/a(x, h)el™ @ p(y, hé)e® W) f(2) dzdEdydn.
Since M@ V) il(y=2) = i(z=2)ein=O@=Y) e can write
ABf(z) = (2m)™" / =g, hE) f(2) dzdE

where

o, hE) =(2m) " / OV, hy)b(y, h€) dydy
—(2m) " / ¢ Da(a, by + €))bly, he) dydn.

10



If we replace h€ with £ in the definition of ¢(z, h€), we have

c(w,€) = (2) ™ [ a4 hn)bly. €) dyd (2.27)

or equivalently

(x.€) = (2m)" / e a(w, € + hn)b(n, €) dn (2.28)

where b denotes the Fourier transform of b in the first variable.

We choose an arbitrary point zp in R" and we will compute ¢(z, &) for x with
|z — @o| < 1h%'. Let x(z) € C*(R™), where x(z) = 1, when = € B(zo, h"),
and y(z) = 0, when z outside of B(wg,2h?"). Define by(z,&) = b(z,&)x(x), and
boo(2,€) = b(z,£)(1 — x(x)), define cy(z, &) and coo(x, &) as

o(,€) = (2m) " / e Va(e, € + h)boly, €) dydn

el €) = (2m) " [ M e+ by, ) dydr
Thus ¢(z, &) = co(x,§) + coo(, §).
We first consider co(x,§). Replacing b by by in (2.28)), we have

o(z,€) = (2m)™ / Ma(w, & + hn)bo(n, €) di.

Apply Taylor’s formula to a(x, & + hn), to obtain
1
a(w, €+ hn) = Y —0Fa(x,)(hn)* + Rar(w.€,1, h).
laj<M
For each o, we obtain
—n in-x 1 tel af. hlal fel o
(2 [ e ogal, €) ()b, €) dyd = 08l ) Db(r.).

Then for the remainder part, we know

[Raslw, &) < Cu sup {108 ae,€)] € = €+ thn |

te[0,1],|a|l=M

< O sup {Jp(a, €)] ¢ = €+ thn)

tel0,1],|al=M
< OphMO=22) | MRy N2 o2, €)

and since by is in the symbol class 821752, we have

oin

o | (2, €).

2 e " 25 M
_ _ 1 1 < -
|b0(777 £)| ’/ <h&177>2M1 (1 h Ay) b0<y7 f)dl/| = CMl <h&177>
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So the remainder integral will be bounded by
hl o9 >N2 h&ln
ho’l 77>2M1

M
ot PO o, )[4, €) / 7 .

If we choose M large enough so the integral in this estimate is integrable, this bound
will be less then

CuhM=e2= (2, )|, €)1
Further, if we apply 85‘8? to the remainder, the remainder will be bounded by

CprhM=o2=a0) p=otlal=a21l| (g €)|[2h(x, €)], and we can conclude the remainder is in
hM(l o9—01 S@w

Above all iive2 have

hlel
co(w,§) = Y —r0fa(x,£)Dsb(x,§) + KMo gEr
la| <M o
Next we deal with ¢, (x,&). Since
(FATETY = (<1) M — y P
(1 o h?&lAy)Mgein(z—y) — <h5'177>2M26i77(x—y)
—y| > =h"
v =yl > 5

then,

(o Aa(z, €+ hn) 5 ¢ Doy
()] = | [ e S R A e |2M1}d |

h2M1(1 O'2—O'1)|S0(x’€ + hfr’)| 254 Mo
< Cry | / (o (1—h*A,)
boo (Y €)

A1 = g yn Y|

h2M1(1 02—61) h UQhT]>N2|(,0('Ta§)|
< CMl M2|/ h0'177>2M2

[ (y, €)]
(h=ot|x — y[)2M

2M1(1—00—5 (h=72hn)™|p(z, )|
SCMLMzh 2 ? 1)/ <h&1n>2M2

dydn|

(771 = )V (2, )
g

If we choose M;, M, large enough, we get this integral is less then

Cor M =727 (2, )| 1 (, €|
<Cp M7= o, &) || (z, €))|

12



Thus, we know that

hlal -
co(z,§) = Z Jag‘a(x,f)ng(x7§)+hM(1 02-61) GP

01,02
lo| <M

Finally, we consider the case when a and b do not have compact support. We choose
a function v(z,€) € C°(R™ x R"), with (0) = 1, then we can use same method
to get and ([2.28]) by replacing a and b with a, and b, respectively, where
a-(z,€) = a(z,§) -y(rx, 7€) and by (z,&) = b(z,§) - y(Tx, 7€). Note that a, and b, are
in the same symbol class as a and b respectively, 0 < 7 < 1. We let 7 — 0 to get
the symbol c. Let a,(x,€&) = a(z,§) - v(7z, 7€) and b, (x, &) = b(z,§) - y(72, 7€), and
define
C.=A,0B,.

We have proven that c¢,, which is the symbol of C, satisfies the formula , with
¢, ar and b, replacing ¢, a and b respectively, uniformly in 7. And what we did above
show that ¢, converges pointwise to some limit ¢. By the continuity properties (see
Stein |20, pp. 232 - 233]), we have C' = A o B. Thus, this theorem is proved. ]

We use L? to denote the weighted L? space with the norm || f|[z2 = [[(-)"f(-)]|2-
We need use this space in the following Proposition.

Proposition 2.10. Let a € S,, 5, with 01, 09 € [0,1], 01 + 03 <1, A= Opy(a) then
(1) A is bounded on L*.
(2) A is bounded on X°

b Jor any 1> 0 > 01, b€ (=1,1).

(3) Suppose A is bounded and invertible bounded in L?, then

[A(z)" fllL2 = [[{x)" Af |l >,
for any real number r.

Proof. For part (1), If o1 = 0y, the proof can be found in [7]. If o1 # o9, since
|a(z, hD)|| 212 = ||a(sx, s *hD)|| 12— 12

for s € R. So we can choose s = h™'7~, so that a(sz,s 'hD) € SY 0. 4110y, Which
ater,

2

is an operator bounded on L?. Thus a(x,hD) is bounded on L.

For (2), we let (&) = (h*1=7) +|q(€)[*)?* € 5§, _, which is from Lemma . The
estimate (2) is equivalent to proving that p(hD)oa(x, hD)op(hD)~! is bounded on L2
Now we consider two operators ¢(hD) and a(x, hD)p(hD)™!. Since (1—-0)+0; <1,
then by using Lemma [2.9] we know that the composition of these two operators is a
semiclassical pseudodifferential operator with symbol in S;;_,, and this operator is
bounded on L? by part (1) of this Proposition.

13



Finally for part (3), by Salo [I8], Propostion 2.2], we know that the operator norm
| Al 222 < C for any r. Thus

1AG@)" fllz2 = | Alz)" A~ a) ()" Af ||z
< CJ|A™ )" (z)" Afl| e

o (2.29)
< Of) ()" Af |2
< Ol (@) Af |l >
Similarly,we obtain ||(z)"Af||L2 < C||A{z)" f|| Lz O

Copyright© Yaowei Zhang, 2016.
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Chapter 3 Existence of CGO solution in X ;/,? spaces

We need some notation before we come to the main topic. Let A = > D, - D;,
Ac=A+2¢-D and D, = D+ (, where D = (Dy, Dy, -+, D,,).

For each ¢ € C" with (- ( = 0, we want to find CGO solutions of the equation
Hypu = 0 with u = € ¢(1+wv). Substituting v in Hy,u = 0, we obtain that v solves
the equation

(Ac+2W - D+ (W -W+D-WHp)hv=—-CW - ¢+ W -W+D-W+p).
Let G=W -W+D-W+pand f=—2W -(+ G), we have
(A¢ +2W - D +Gv = f. (3.1)

Let = h¢ with || = V2, h = v/2/|¢|. After multiplying h? on both sides of (3.1)),
we obtain an equivalent equation

(Q(hD) + 2hW - (hD + p) + h*G)v = h*f. (3.2)

where Q(hD) is the semiclassical pseudodifferential operator with symbol ¢(§) =
§-8+2u-&

Now we assume W € C* for some X > 1/2, m(x) is a standard mollifier, m,(z) =

Einm(ﬁ) , and

W =W % m,
W’ =w — w*
Wl < CH o
109 * o0 < ChooO=lal), la| > 1
where k = h=7 and oy € (0,1/2). Then our equation becomes
(Q + 2hW* - (WD + p) + 2hW" - (hD + p) + h*G)v = h*f. (3.4)

The reason we decompose W is that the term Q + 2hW* - (hD + p) in is the
main term compared with the remaining terms. This will be clear after we finish the
following Lemma [3.3| and Theorem

First we present a lemma from Haberman and Tataru [10, Lemma 2.1],

Lemma 3.1. Let wy, wy be nonnegative weights, and ¢ be a rapidly decreasing func-
tion, then

¢ vlls, < C’min{sgp VI n)d ,Slj]p vV J(n,€) d§}||UHL%U1

where

w2(§)
wi(n)

J(&n) = |o(§ —n)l

15



For symbols with some special properties, the following Lemma gives that the
pseudodifferential operator is bounded on the Bourgain space X ;/ i .

Lemma 3.2. Suppose that og+0 < 1. If we assume symbola € Sy, , and (a—1)(x) €
Seo.0, then for h small enough, we have

B (3:5)

If in addition |a| is bounded away from 0 and og + o < 1, then we have the same
estimate for the operator A=t

147 5272 5072 < Ch7/2 (3.6)
woh ",

Proof. For any u, since A = (A—1)+ I and estimate (2.12]) and (2.14)) in Proposition
(2.2), we have
[Aull 172 < (A = Dull a2 + [[Tul] /2
n,h w,h n,h

<I(A = D)) ull e+ llull 41
w,hyo0 mh

3.7
< Ol ull s+l 3D
w,h,oq w,h
—oo/2 —1
< Ch™7||(x) UHX;/; + HUHX;Q
By estimate (2.9)) in Proposition , we obtain
< 70'0/2 . .
<Ch HUHX;’/; + HUHX;(; 58

< Chiao/QH’uHXUz
w,h

Thus we have proven estimate (3.5)). For estimate (3.6]), we consider an approximate
right-inverse of A of the form
N
I+ WB,
5=0

with B; = Opy(b;) and b; € Sé?;l In fact, (a —1) € Sé?;l And

N
Ao(I+Y WBj)=1+h"1=7"70p,(by1), (3.9)

=0
with b1 € S575 “'. Then for N large enough, we have that A has a right inverse

1/2 . . - .
on X u/ 5, and by a similar argument, we can find a left inverse, so A is invertible.

16



To find b;, we use the symbol calculus to formally compute the symbol of the
composite operator

]+ZhJB =Opy, (a(1 + by)

+h Y 0¢aDby + haby

|a|=1

1 (6% (03 (0% (e
+ h? IZ Jaf aD3by + ||Z 85 aD3by + h2a62 (3.10)
al=2 al=1
1

N « « N
+h |§Na<3§anbo+---+h aby
+ pNU=e0=0) Oph(bN+1)) )

where byi1 € Sé?; 1 by Lemma Solving for b; to make all but the remainder
term vanish gives

1
bp =~ —1,
a

1

by = _E(Z 0¢aD2by)
la|=1

1 1
by =—=(Y —0%D%,+ Y  82aD%hy)
T |a|Z=2 Ch |az=1 c (3.11)

1 1
bv=—-(Y —0EaDby + -+ > 0gaDgby 1)

a :
lo|=N la|=1

Since I + ZN h B; and (I + hNU=070) Oph(bN_H))_liS bounded on X;/,f with norm
Ch=90/2 and C respectively, thus A~ (I+Zj LW Bj)o (I—i—hN(l_"O_”)Oph(bNH))_1
is bounded and || A~ 1HX1/2 12 < Ch™o0/2, O
Then we prove the following lemma.

Lemma 3.3. Suppose that h is small, § > 0 is small and W € CMR™) with A > 1/2.
If g satisfies (x)/**0g X;}L/Q, then we have a solution v to the equation

(Q(hD) + 2hW*- (hD + p))v =g (3.12)
with

[v

HX1/2 < Ch™||(x >1/2+69HX;2/2. (3.13)

Furthermore, there is only one solution to (3.12) in the space Xf/,?

17



Proof. From Salo [I8, Lemma 4.1], we know there exists o which satisfies 1/2 > o >
09, 0 = 0 — 0y, and symbols a,b,ro,(x)rg € Ss,,, Which give intertwining operators
that satisfy

(Q +2hW* - (hD + p))A = BQ + h*" Ry (3.14)

where 7 = min{f,1 — 20}, and a = ¢ with
050( (2, )| < Caph™l1=7P ()71,

Here, the support of ry is contained in the set {(z,&) : |#| < Mh=%}. Next we show

A and B are bounded and invertible on thh’ao, for =1 < b < 1 and gy € [0,1), and

when h is small enough, the norms are bounded uniformly in h. This follows from
Lemma , since £ =e7? € S, ,, then
Opy(a) Op,(1/a) = I+ h'=7°77 Op,(d)

where d € S, ;. Since Op,(d) is bounded on X', _  then operator I+h'~7~? Op,(d)

is invertible on XZ,,WO if i is small enough. So A is invertible with norm of the inverse
uniformly bounded in A. We can use the same method to prove this property for B.
Using the intertwining operators, equation (3.12)) becomes

(BQ+ h""Ry)A v = g. (3.15)
Furthermore, (3.12) is equivalent to
(I +h""AQ'B ' RyA ™ yv = AQ 'B™'y. (3.16)

Now we prove that
[AQ 7 | g-1/2 g1z < Ch™P2, (3.17)

which is equivalent to
||AH;'(;/E,X;/§ < Ch~”. (3.18)

By the estimate of symbol a after (3.14)), we have
(a—1)(x) € Soy0-

Thus we can apply Lemma to A and obtain (3.18]).
Thus, from estimate (3.17]), we obtain

R TAQ BT RyA™ ]| /2
w,h

3.19
< ChH_T_JO/Q||B_1R0A_1U||X71/2. ( )
w.h

By estimate (2.10]) in Proposition [2.2{ and part (3) of Proposition we have
< CRHT R @) P BT Ry AT | -1
w.h

< Ch1/2+7——00/2” <$>1/2+5B_1R0A_11)”L2 (320)
< Ohl/?—i-T—Uo/?HB—l<x>1/2+5R0<:L,>1/2+5<$>—1/2—5A—1,U||L2
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By the boundedness of B~! in L? and part (3) of Proposition [2.10, we obtain
< Oh1/2+7—ao/2|| <£L’>1/2+6R0<ZE>1/2+§A_1<I>_1/2_§U||L2 (321>

Using that the support of 74(, -, h) is contained in {(z, &) : |#| < Mh=?} and that
(x)ro € SY . it follows that

0,0

()49 Ry () Y29 oy 2 < CHT200, (3.22)

Finally, the estimate (3.22)), the boundedness of A~! followed by the estimate (2.11]),
gives the bound
< Oh1/2+7—00/2—205|| <x>—1/2—6v|lL2

3.23
S Ch7—00/2—205”v||xl/2. ( )
w,h

Since o could be any small positive number, we can choose suitable 7, oy to make the
power of h positive in (3.23) with the requirement 7 = min{f,1 — 20}, 0 = oo + 6.
For example, if we let 09 = 6 be some small number and 6 < 1/4, then ¢ = 20y,
T = 09, thus 7 — 0¢/2 — 200 > 09 — 0¢/2 — 0¢/2 = 0.

Then by the contraction mapping theorem, there exists a solution v for equation
, and the solution satisfies

[v]l 12 <CAQ™ B~ gl 4172
w,h wh
SCh_UOpHB_lgHXﬁ/z
§Ch*00/2||371<x>1/2+5g”X;2/2

<Ch () gy

(3.24)

For the uniqueness, suppose we have two solutions of (3.12]), v; and v,, which lie
. o1)2 . . . .
in X b Using the intertwining operators, we obtain

(BQ + R Ry) A (v1 — 1) = 0. (3.25)

Since Lemma gives that A~! is invertible on X ;/,12 , it suffices to show that v =
A~ (v; — vy) which satisfies
(BQ+ M Ry)o =0, veX,}

is zero. We will show that (-)'/?*9Ry# is in L? and then since the equation Q9 = f

has a unique solution in X ;/ hQ when f is in the weighted L*-space, L2 Jots0 We have

(I+h""Q 'B 'Ryt = 0. (3.26)

Thus by (3.22) and ([2.11)),
1) 2 RoDl e = [ {a) /20 Ro () /240 () /2700 .
Oh_206||<$>_1/2_61~)“L2
—206—-1/21~1|
Ch o] 72

<
<
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Finally, we use that the operator B~ is bounded on the weighted L*-space L? 2460
2.10), and that Q! : X;ip — X;/,f and we have

KHTIQ BT Ryd| 412 < CHT2%||
w,h

Hx;{;-

As § > 0, may be arbitrarily small, it follows that the equation (3.26]) has only the
solution v = 0. [

Our next theorem gives the existence of CGO solutions to Hyy,u = 0.

Theorem 3.4. Suppose W € C*, X > 1/2, p = p; + divps, p1, P2 € Cx, A > 0;

Then for each ¢ large enough, the equation Hw,u = 0 has a unique CGO solution
u = e®¢(1 4+ v) with v in X;/h?, and

[oll g1/ < CRE0 | (2) /2 £ -1/2 < B0
w,h w,h

for some oy > 0 and for any § > 0, and f is defined .
Proof. We know that Hy,u = 0 is equivalent to the following equation for v
(Q + 2hW* . (hD + p) + 2hW” - (hD + p) + h®°G)v = h2f. (3.27)

Furthermore, as in Lemma equation (3.16]), the equation (3.27)) is equivalent
to

(I +h""AQ 'BT'RyA™ + 2hAQ 'B~'W’(hD + p) + h*AQ 'B~'G)v

3.28
— —R?AQ7'B7'f, (3:28)
In the argument leading up to (3.23)) in Lemma we have proved
||h1+TAQ_lB_1R0A_1U”X1/2
on (3.29)

< Chr—oo/2—206 ||U ”)'(1/2
wh

with suitable 7, oy to make the power of h positive.
Now for the second remainder term, similarly, by equation (3.17)) and the definition

of the space X;}L/Q and Xi(,?, we have
I1hAQ™' BT'W’ (D + vl 4172
< Ch= P BW (hD + p)ol| 172 (3.30)

< Chl—ao/2||<x>1/2+éB—1Wb<hD_|_M)U||X_l/2’
w,h

by part 3 of Proposition and ||W’||eo < Ch7°* W" is supported in a ball B(0, M),
we obtain ((3.30)) is less then

ChM>=202| B @) VW (hD + ool e
< OWM2 72| (hD + ol
< ORV2 72| | (D + 1) ()~ />~ 1
< ORM270/24 00| (D 4 1) ()2~ 1,

(3.31)
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because |hé + pu| < h™Y2(h + |g(h€)])/?, we obtain

< Oh_ao/2+ao)\||<J]>_1/2_5U||X1/: ( )
" 3.32

S OhUO(A—l/Z) ||U”X1/2.
woh

Finally, for the last term, by same argument of AQ™'B~" and [|G||;1/2 4-1/2 <
5 w,h b
h=*** from Haberman and Tataru [10, Theorem 2.1], then

h2||AQ_1B_1GU||X1/2 < h2—00/2||GU||X71/2
w,h w,h

(3.33)

< P o]l 1o
w,h

thus, if we choose oy small enough, the power of h will be positive.
Above all, by contraction mapping theorem, there exists a solution v for equation

(3.1). And v satisfies

lv

2 —1 n-1
”Xﬁfi <Ch*||AQ™'B fHX;’/,f

<CR* /2| B~ f| 412
o2 el ) AL (3.34)

<CR* /2| BHx) Y240 f|| 1o
b

OB @)/ -y

Since f = —(2W - ( + G), we have

lv

| 412 SCR*|| ()20 - ¢+ G)
wh

ng’}lﬂ

< 2—00 1/2+5 X B 1/2+5 _
<R (@) 25 - Clly-vva + (1) 270G -vre) (3.35)
Schgfgo(h73/2+h—2+5\>

<Opro0

The uniqueness of the solution is similar to our earlier proofs. O]

Note that we can pick o arbitrarily small.

Copyright© Yaowei Zhang, 2016.
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Chapter 4 Existence of solutions in semiclassical spaces

Now we still consider equation
Hy,(e™¢(14v)) =0 (4.1)
or equivalently
(Q(hD) + 2hW (hD + p) + h*G)v = h*f (4.2)

with G = W -W +D-W +p, p=p +divp, = pt 4+ p’ with p? smooth and
p € divC*R™C), f=—-2W -+ Q).

But instead of working in the X-spaces, this time we discuss the solution in semi-
classical Sobolev spaces H},;,, which are defined by {f : ||f||H;t;h = |[(hD)(x)? fl|2 <

oo}, for any real number ¢, p.

Like Lemma we also have an estimate for operator Q(hD) + 2hW* - (hD + p)
here, where W is as defined in Chapter 3.

Lemma 4.1. Equation
(Q(hD) + 2hW* - (hD + p))v = g (4.3)
has a unique solution v € H;ﬁ, for p € (=1,0). Furthermore, we have
Il < ChMigllyzy, < Ch7Miglre,, (4.4)

Proof. By (3.14) and following the argument in the previous section, equation (4.3)
becomes
(I +hTAQ "B 'RyA v = AQ™'B'yg. (4.5)

where the symbols of A, B, Ry satisfy a, b, 79, ()70 € Spy.0-

From Salo [18, Proposition 2.2], we can see that the operators in Opp(S,, ) are
bounded in the space H,t),h for —1 < p < 0 and any real number ¢. And in Salo [18]
Propositon 4.1], consider the case when s = 1, the operator norm of the operator Q!
from L2, to H}, is bounded by Ch~".

Thus, for the second term in the equation (4.5)), and we have

W7 AQT B RoA ol
P,
<CRMT|Q ' B RyA™ || i (4.6)
p,h?
SChTHB*lROA*lvHL;z)+1

since (z)rg € Sy, ,, then we obtain

<O [RoeA 012,
<O || A o]l
<O ol

<O oll,
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So by the contraction mapping theorem, there exists solution to (4.5). Since
I| - ||H;+11 <C| - ||L’27+1, thus the operator norm of Q! is a map from Hpjrll to H),, is

bounded by C'h™1, then the solution satisfies the following estimate
[vlla:, < CIAQ™ B g,
—1p-1
< CIQ B gl
—1|| p—1
< ORY|B gl
-1
< gl

(4.8)

For the uniqueness, suppose we have two solutions vy, vg € H;’h of equation (4.3)).
Apply the intertwining operators, we have then

(BQ -+ h1+TR0)A_1('U1 — ’U2> =0. (49)

If we following the argument in Lemma , we can see A~! is invertible on H . Let
0 = A7 (v; —vy), if we can prove ¥ = 0, the uniqueness is obtained, where ¥ satisfies

(BQ+h'""Ry)o =0. veH,, (4.10)

Since the operator norm of @~ from L7, to H,, is bounded by Ch™" and || Rod|| 2, <
o) Bl < 723 < [« thus we have

(I+h""Q 'B 'Ryt = 0. (4.11)
Because
1K Q™ B~ Rotll s, <7 B~ Rl 2,
<" Roill 2., (4.12)
<[5l .
Then equation (4.11)) has only solution ¢ = 0. O

Theorem 4.2. Equation has a unique solution in H;’h for =1 < p < 0 and
satisfies
[oll, < CAIFL,

Proof. Let K = (Q +2W*- (kD + u))_l, equation 1} becomes
(I +2hKW’ - (hD + p) + h*KG)v = h*K f. (4.13)

or in more detail

(I +2hKW’ - (hD + p) + R2K(W - W + D-W* + p*) + B’ K(D - W’ +p’))v

_ aopy (4.14)
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where a, b, 7o, (z)rg € Sy, ,. Now we consider the terms on the left side of equation

(4.14). By Lemma , we have

|RKW(hD + p)olly:
<CIW*(hD + poll.z,,
<CIW | (D + o)1z
<CIW*lcllolls,

(4.15)

and since W - W + D - W* 4 p* has compact support, we obtain
IR KWW + D - W+ pof
<Ch||(W-W + D - W+ ph)ofz |
<Ch|(W - W + D - W+ p)|| o |0l 2 (4.16)
<CHI(W - W +D - W+ ) cllvl,
SC’h||v||H;Yh.

Since ||qb(:1c)||H;+11 < h*1||¢(x)||H;1)’h for any compact supported function ¢(z), thus

IR K(D - W’ + p")ol|
p,h
b b

<Ch|(D-W’+p )21||H;+11 (4.17)

<C|D- W+ (div) "'’ ool 1,
Above all and by the contraction mapping theorem, there exists a solution to (4.14]),

and the solution v satisfies that

Il , < CRIAQ™B™ fllm,

(4.18)
< Ohllf s,

For the uniqueness, it follows similar argument in Lemma 4.1}

Copyright© Yaowei Zhang, 2016.
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Chapter 5 From Ay, to boundary value of CGO solution

In this section, we show the boundary value of solution of Hyy,u = 0 is determined
by the DN map. We begin by giving several equivalent characterizations of the CGO
solution. This argument follows closely the work of Nachman [14] and Salo [I§].

Proposition 5.1. Let Q C R" be a bounded domain with C** boundary. Suppose
W e C*, p=p + divps, with py, p, € C*, A, X € (1/2,1). If 0 is not a Dirichlet
etgenvalue of Hyyy in ), let ¢ € C" with ¢ - ¢ = 0, then the following four problems
are equivalent.

(DE) Hypu=01m R"
u=e“"(14+w) withw € Xi/i

(1) U+ Geo(2W -Du+ (W -W +D-W+pu) =% e R"
u € Hlloc(Rn)

i) Au=0¢eQ

i) u € H'(QR) for any R > Ry

i11) u satisfies for a.e. x € R™

) 2 = Awp(uy) on 00

(BE) (31 + ScAwy — Be) f = e on 0Q

f e H'Y?(09).

(EP)

We first show the differential equation (DE) and the integral equation (IE) are
equivalent. Now define the Green function G¢ by

—i(-x

Ge = eic'“”gce
where g is the fundamental solution to A; = e ®Ae® such that Agl f=g*f
for f in the Schwartz class. Then

AGC = Cng + 262’(&:( : Dgg + 6i<'xAg¢ = 6iC.IA<g< = (50

where 4y is the Dirac measure at 0. So we can let G = Go+H; where Go(z) = ¢,|z|*™"

is the fundamental solution of A, ¢, = m, a(n) is the volume of unit ball in

R"™ and H, is a global harmonic function.

Lemma 5.2. Suppose we have the same conditions as Proposition [5.1. Then u is a
solution of (DE) if and only if w is a solution of (IE). Also, a solution of (DE) is
unique if and only if u is a solution of (IE) is unique.

Proof. Let u = ¢%%(1+ w) solve (DE) where w = Aglf with f € X}L/i Substitute u
into Hypu = 0, we have

(Ac+2W - De+(W-W+D-W+p))(1+ A7 f) =0.
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Since Ac(1 + Aglf) = f, apply Agl on both sides; then
w+ AW D1 4+w)+ (W -W+D-W+p)(1+w)) =0.

Next we add one on both sides and multiply €%, and we obtain (IE).
If u solves (IE), write u = ¢ %uy; then wug solves

If we apply A¢ to both sides, we have Hy,u = 0.
The uniqueness part is obtained by noting that if u; and usy solve (DE) then wu
and us solve (IE), and vice versa. O

Now, we show that (IE) and the exterior problem (EP) are equivalent. We use
the notation Q' = R™\ Q and Q% = B(0, R) \ , where R > Ry and Q C B(0, Ry).
Let uy (resp. u_) for the restriction of u to 092 from the exterior (resp. interior),
and z- (resp. —) for the value of Vu - v on 99 from the exterior (resp. interior),

where v is the outward unit normal to 02. We also write G¢(z,y) = G¢(z — y).
We want to obtain that a solution of (IE) satisfies the radiation condition

IG(z,y)
v (y)

for a.e. x € R" as R — oo. In order to apply Green’s identity, we define a smooth
approximation of G¢ by G¢ = G + H,, where

JRCECTRr) 45(y) > ¢ 5.2)
ly|=R

G = col + |z]?) 5"
In fact AGZ(z) = e™"p(x/e) where

1 n+2
=— (1 ==
() = ooy (L laf)
and [ ¢(z)dr = 1. Then AG? is an approximation of the identity.
We need a lemma on regularity properties of solution Hyy,u = 0 and of Ayyp.

Lemma 5.3. Under the conditions of Proposition the operator Py, which
maps f € HY?(Q) to the solution u of Hy,u = 0 in Q with ulaq = f is bounded
HY2(0Q) — HY(Q). Further, we have Ay, : HY2(02) — H~Y/2(0Q), and

ou
Awpf = 5!@9-

Proof. The operator Hyy,,, written in nondivergence form, satisfies the assumption of

[8]. This gives that u is in H*(Q) if f € HY?(09), and the solution operator Py, is
bounded.

26



For the Ay, part, we claim that if W € LE(R™ C") and D - W € L"?(R"; C),
then for any v € W= (Q) one has

/(W -Dv+ (D -W)v)dx = 0. (5.3)

This statement means that W - v = 0 on 02, in some weak sense. Then we take
W; € C*(R™; C") to be the convolution approximation of W so that W; — W in L"
and D-W; — D-W in L2 and we take an extension of v in W1™/("=D(R"). If the
supports of W; and W are contained in B(0, R), then

/(W-Dv+(D-W)vda::lim (W, - Dv+ (D - W;)v)dx
Q =% JB(0,R)
| (5.4)
= lim - (W;-v)vdS =0.

J=o0 1 JaB(0,R)

Let f, g € HY?(Q) and u; = Py,f and e, € H*(Q) with ey|lpg = g. Use the
definition of Ay, to obtain

ou

(a—yflag),g> = /(Vuf Ve, + 2W - Duy+ (W -W 4+ D - W + plus)ey) de.  (5.5)
Now use, € W21(Q) C Whn/(=1(Q). Using (5.3) with v = use, and substituting to
1} gives %Lyfbg =Ay,f. O

Lemma 5.4. Assume the conditions of Proposition . If u is a solution of (IE),
then ulo is a solution of (EP). Conversely, if u is a solution of (EP), then there is

a unique extension of u to R™ so that @ is a solution of (IE). The uniqueness also
holds for (IE) and (EP).

Proof. 1f u solves (IE). By Lemma , we have Hypu =0 and u = (1 + w) with
w € X;/i, which gives us (EP) i) - ii). To show iii), for fixed z, let R > |z| and
R > Ry, and write

ou 0G¢(z,y)
| (el g ) —ul) T ast)

-~/ , R)(Gé(z,y)%(y) —u(y)A, G () dy

:/ uAyGZ(x,y)dy+/ Ge(z,y) W - Du+ (W - W + D - W +pu) dy
B(0,R) B(O,R)

= (AGE * uxpo,r)(7) + (G:2W - Du+ (W -W + D - W + p)u))(z)

(5.6)
since W and p supported inside B(0, R), a solution of (IE) is harmonic and in C*°(R™\
). As e — 0, the first term converges to u(z), a.e. x. The second term converges to
(Ge* W - Du+ (W - W + D - w+ p)u))(x) for a.e. x. This gives us (EP) iii). By
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Lemma , since u € H' and 0 is not a Dirichlet eigenvalue of Hy,, we obtain (EP)
iv).

If u solve (EP). We use Lemmal[5.3)and let v = Py puy and define @(z) = u(z) for
z € @ and u(z) = v(z) for x € Q. By (EP) i) we have Hy,u = 0. The uniqueness
part follows from the facts that if u; and uy solve (IE) then u; | and us|q: solve (EP),
and if u; and ugy solve (EP) then ; and iy solve (IE). O

To prove (EP) and (BE), we need to use the single layer potential S¢, double layer
potential D, and boundary layer potential B, which are defined by

Scf(x) = / Gele.)W)dS) (xR 09),

Defo) = [ oS ast) e R\ 09) 67)

Bef) = [ P ) is) (e on)

Lemma 5.5. Under the condition of Proposz'tion if u is a solution of (EP), then
f = ulaq is a solution of (BE). Conversely, if f is a solution of (BE), then

u= e = Schwyf + D f (5.8)

is a solution of (EP), with u, = f. Also, solutions of (EP) are unique if and only if
solutions of (BE) are unique.

Proof. Suppose u solves (EP). If we let f = uy on 9Q. Then f € H3?(9Q). If v € &
and R > |z|, we have

- [ (63w duty) — ul)8,G ) dy

9Gc(z.)
=[G - un e aso)

Let ¢ — 0 and use (EP) i),iii) - iv),we have f solves (BE).

If f satisfies (BE) and define u by (5.8)in €. Then u satisfies (EP) i) - iii). We
need to show (EP) iv). Let R — 0o, we can obtain iv).

Since gives a correspondence between solutions of (BE) and (EP), this gives
the equivalence of uniqueness for the two problems. O

(5.9)

Lemma 5.6. Let Q C R", n > 3, be a bounded domain with CY' boundary. Then
the operator S¢Aw,, — Be — 21 : HY2(0Q) — H'Y?(09) is compact.

Proof. Suppose f € HY?(99Q) and u = Py, f. Then for z € 2, we have

- [ (Geta ) Aut) = ) A, Gil ) d

0GE (v, y)

N (5.10)
= /89(G€C(1’7y)$(y) - U(y)ay—(y) dS(y).
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Let € — 0 we obtain
u(x) = /Q G, y)@W - D+ (W - Wudy + (D - W + p,u) = (Scw, — Do) ()
a.e. in €. If let x — 02 nontangentially, then we get
(Schiwy — Be — 5 1)1 ()
= R/Q Ge(a,y)2W - D + (W - W) P f(y) dy + (D - W + p, P f ()
which can be written as
Sehwy — Bc — 51 = RGM P,

where R is the trace HY(Q)) — HY?(Q), G, : H™Y(Q) — H'(Q) is the map that
restricts Geto = €A e to Q with @ be the extension by zero of u € L*(€2) to
R". The map M : H'Q — H~'(Q) maps u to 2W - Du+ (W -W + D - W + p)u since
|(pu, v)| < ||ul|gr||v]|g2. Since W, p; and py are Holder continuous, the composition
is compact. O

Proposition 5.7. Suppose the conditions of Theorem then there exists C' =
C(n, W, p, Q) such that for any || > C, each of the four problems (DE), (IE), (EP),
(BE) has a unique solution.

Proof. 1f we can show the problem (DE) has a unique solution, then the other three
problems will also have a unique solution. We know problem (DE) has a unique
solution from Lemma [3.4l O

Copyright© Yaowei Zhang, 2016.
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Chapter 6 Recovery of curl W

Let u¢e = €®(wy + w) be the solution of Hyypue = 0 with

wWp = 6ix<¢ﬁ,
xe(z) = x(x/[¢]%), (6.1)
¢F(x) = N (—p - WF).

where function y € CP(R"), x = 1 in B(0,M/2), x = 0 outside B(0, M), and

Q € B(0,M/2), W# is as defined in (3.3)); the operator N, = p -V, and when
p =71 + iz where |y;| =1 and 7, - 2 =0,

1 1
N f(z) = — — i — dydys.
" f(z) o /R2 y1—|—iy2f(x Y — Y2y2) dyrdys

Lemma 6.1. The function w € H,, for =1 < p <0 and [wl[z, = o(1) as h — 0.
Proof. Substitute u, into Hypuc = 0 and we get,

or equivalently
(Q +2hW - (hD + p) + K*G)w = —h*f, (6.3)

where G = W - W2+ D-W +p and
f=(Ac+2W - De + G)wo
= P [ A +2iDxc - DEF +i(Axe)¢F + (X Vo + VX))’
+2C- (VX' +2¢ - (Vo) + 20 - (Vx)oF +2W - (x( V)
+2Wﬁ-c+zwb-(+G],

(6.4)

Since

C-VF+WH- (=0
and Wt = XCWﬁ, which can cancel two terms of f. By Theorem , we have that
ol < Chll L,

< Ch[lIneA& iz, + 1V - Vlliz,, + 1(Axe) 122

pt+1 p+1

VP lz, + 1VX)S Pz, + 11 (Tx /1)) Hlz,, (65)
W - (V) + W - (VD) + W -z,

ixcot
+ RG]
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The first nine terms in the brackets, are o(h™!) as in Salo [I8]. For the tenth term,

since G =W -W + D -W + p, we use the same argument as in (4.16)) and (4.17]),
to show it is bounded by ||Gex¢#* HH_1 < o(h™?°). Combining with the h outside the

brackets, we conclude that HwHH1 = 0( ), as h — 0. O

Now if £ € R™ with [£|> not a Dirichlet eigenvalue of A, then for any ¢ € C"
satisfies (- (=0, |(| > C >0, Re( L & and Im( L &, we define

twp(€,0) = (Awp — Ao—je) (uclon), e a0)

_/Q e TE(2(C - W)ug + W - Dug + (€ W + [€*)uo)dz + (e7p, ug).

(6.6)
where u; = €%y satisfies Hyypue = 0.
Replacing ug with w + wqy, we get

Ruy(6,0) = Tim s (€.0) =2 [ € e(- W)da

where ¢ = N '(—p - W). We use one lemma in Salo’s paper [I8][Lemma 6.2]

Lemma 6.2. One has
Ruy(6o) =2 [ €G- W),

To recover curl W, we need recover D;Wj, — D, W for any j # k. For any p with
|€]? not a Dirichlet eigenvalue of A, we let y; = %; then pq - £ = 0. Find an
unit vector o € R™ with po - & = p- g = 0, now if we let p = py + o, from Lemma
6.2, we know we can recover Ry,(&, 1) and Rw,, (&, t), since Ry, (&, 1) + Rw (€, o)
determines

[ s @ wis = (D,We - DY (€).

Thus we can recover D;W;, — D, W; from this Fourier transform.

Copyright© Yaowei Zhang, 2016.
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Chapter 7 Recovery of p

In this chapter, we show how to recover p from the D-N map. This is similar to
what we did in the last chapter, but we estimate the CGO solution in Bourgain type
spaces. In the previous chapter, we recovered curl W; now we need to construct a
certain W from curl W. Given a vector field W = (W7, ..., W,,), we consider the one
form > | W;dxz,. Applying the exterior derivative, we obtain

d( > Wida) =) 0, Wydz; A da;.
j= i<j

Thus, the coefficients on right-hand side are the components of curl W. This implies
that finding a solution W' of curl W = curl W is equivalent to finding a solution of
dY Widz; = dy; | Widx;. For the next result, we work with the differential form
v Widx; (which we still denote by W) and the exterior derivative d, rather than
the vector W and the operator curl.

Since we assume that W is compactly supported in €2, we may use a partition of
unity to reduce to the case where W is supported in a ball. According to Mitrea,
Mitrea and Monniaux [I3, Theorem 4.1], we have operators .J; and J; so that

W = Jo(dW) + d(J,W). (7.1)
Since d*(J;W) = 0, W Jg(dW) will be give us a solution of dW = dW as desired.
The coefficients of Jj(w), [ =1,2,--- ,n are defined by

Jiu(x / / — )" oy + t(x — y)(x — y) V uly) didy

with p € C°(B(0,R)) with [ =1and 1 <[ <mn. Let

T f(x / / — )" oy + t(x — ) (x5 — yy) fy) didy.

We can write
T (f(x)) = / i — )£ (y) dy

for 1 < m <mn, where k;; is the kernel supported in a ball {(z,y) : |(z,y)] < R} and
satisfies

1070, k1 (z,y)| < (7.2)

|y|n—1+\ﬁ|

Finally, to compute J;(dW), we want to consider the map 77 ;(0,,u); and we need to
show that this maps into C*(B) when v is in C2(B).

Lemma 7.1. If u € C°(B), then

i@y u() = = [0y, = 9)(uly) — u(e) dy (73
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Proof. This is a result of using integration by parts and the fact u is compactly
supported. O

If w € CMB), we may find u; € C=°(B) with u; — u uniformly and |Ju]|cx <
Cl|ul|cr. Then we may write

11,j(0y,,u)(z)
=—lim [ 0y, ki;(z, 2 —y)(w(y) —u(z))dy (7.4)

1—00

Theorem 7.2. If u € CX(Q), then
170y, uller < clluller-

Proof. We easily have
171,50y, ulloc < Clluller.

Then we can write

T jOmu(y) — 17 j0Omu(z)

= [0ty )~ 0(0) — Doz — )~z

We set # = 1/2(z + y), s = 10|z — y|, we use number 10 here to make sure we can
have a suitable distance between z and z. Then

T, 0m(y) — Thydmu(z) = / O 1y (0, — 2)(ul2) — uly)) dz

|z—z|<d

B /I |<d Oz, 0 = 2)(u(2) — u(x)) dz

+ /|I z|>d(8zmk)l7j(y7 y—2z)— 0, kij(z,x —2)) (7.6)
X (u(z) —u(y))dz
+ (u(x) — u(y)) / Osnkij(x,x —2)dz

|Z—z|>d

=[+I11+1I1+1V.
We have I + II < Cs*. For 111, we have the estimate

[z =y
02Ky, y — 2) — Oz, ki j(w, 0 — 2))] < Cm
for |z — x| > s. Then
1171 < Cs/ P gy

< Cs- st (7.7)

< s
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Finally, for IV, observe Green’s identity gives

/ s krj(z,x —2)dz = / Umkij(x,x — z)dz
|z—2|>s |z—z|=s
and using ((7.2)), we have

Thus IV < Cs?. O
Now we can recover curl W.

Theorem 7.3. Suppose the conditions in Theorem holds; then we can construct
W € C* and compactly supported with curl W = curl W and W|aq = 0.

Proof. As outlined earlier, W = Jo(dW), the Theorem follows from the mapping
properties of J, proved above. O

Next we show how to recover p. Let £ € R™ \ {0} and 71, 72 be two unit vectors
with {&, 71,72} an orthogonal set. For s = 1/h we define

2 271—'_7'872 78
£ |&|2 | )
2 T T

Let u; = €% (wp + w) be the solution of Hyypue = 0 with

e
wo = eXe?’

xc(z) = x(z/I¢l), (7.9)
¢ (x) = N, (—p - WH),

where the function x € C§°(R"™), x = 1 in B(0,M/2), x = 0 outside B(0, M), and
Q € B(0,M/2), |03W*¥(z)| < Ch~lle. Note that this ¢ is not the o we mentioned
before. In Chapter 3, 0 = o¢ + 6, but here, we choose ¢ independent of oq. Let
py = G/s = pj + p3, j = 1,2. We show the following lemma.

Lemma 7.4. Suppose W € C» and p = p1 + divps, p1, P2 € C’;\, with A > 1 2 and
A > 0. Then there exists a sequence pair of (; = h™'u;, j=1,2, defined in , such

that ||w1||X1/2 = o(h'777%), and ||w2||X1/2 = o(h'™7¢) as h — 0, where 0 = (li)\),
and ¢ > 0 can be arbitrarily small and mdependent of h, o.
Proof. Substituting u. in Hypue = 0, we get

(A¢+2W - D¢ + Gw = —f, (7.10)
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or equivalently

(Q + 2hW - (hD + p) + h*G)w = —h?f, (7.11)
with G =W -W + D -W +p, and
f=(Ac+2W - D¢ + G)w
= X [N A + 2Dxc - D& +i(Ax)¢F + (Vo + (VX)6H)?
+2C- (Vxo)9F +2¢ - (x(VoF) + 20 - (Vxe) ¢ + 2 - (x V)
+2Wﬁ-g+2wb-g+G].

(7.12)

Since

2 -Vf +2WF . (=0 (7.13)
which removes two terms from f, we have
f=(A¢ +2W - D¢ + G)wo
=eX¥ i A¢F + 2iDx¢ - D + i(Axe) o
+ (Vo + (Vxe)of)® +2¢ - (Vo) ¢
+2W - (VxS + 2W - (Vo) + 20 - C+G|.

(7.14)

Then
Jeoll g2 SCHE (@) /24y
OB {@) 20 (i AG? + 2Dy - DeF +i(Ax)¢F

+ (Ve + (Vx)d)? + 2¢ - (Vxo) ¢
+2W - (VX' +2W - (x V) + 207 - + G

(7.15)

Iz

’

Next we estimate each term, since [0¢*(z)| < Ch=1*Nzr) ™ xpoan (L), where z7
is the projection of x to span{vyi, 12} and x;, = x — xy. Then for the first term

h2_o'0 || <l’>1/2+6€ixc¢uiX4A¢ﬁ”X_lf
Hj,
S Chg/g_o—o || <x>1/2+56ixg¢uiXCA¢ﬂ”L2

§0h3/2"°(/ (x)2(1/2+5)(><<(513))2!Ad)ﬂ(x)!2 dw)uz

R”

< Ch3/2—00h—2o‘(/ <Z‘>2(1/2+6) <xT>_2 d.I) 1/2

|CCT|SM"L_9,‘$J_|§M

< Ch3/20020(/ <xT>71+25 de)l/Q
|op|<Mh—0
< Ch3/2_00_20_9(1/2+6).

(7.16)
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This term has the worst behavior among the first four terms of ([7.15)) since the
derivatives of x¢ bring decay and the other terms only have first derivatives of ¢F.
For the fifth term, we have

B0 ) VAN (V) o

< CH R TR e

< Chl/%gowH<x>1/2+5¢ﬁ“L2 (7'17)
< CpL/2=00+0p,~0(1/2+0)

< Oh1/2—00+0(1/2—6) )

The estimates for the sixth, seventh, and eighth terms are C'h3/2=70+0 (Cp3/2=c0=0
and Ch!'/?=90t7* respectively. For the ninth term, by Haberman and Tataru’s paper
[10, Lemma 3.1, p.10], we can find a sequence (5, h;) with h; tending to zero so that

|G| =12 = o(hF3%).

Hjshj

So the estimate of the ninth term is Ch1 =70~ 5+33,
Now consider the worst three terms: h3/2-00—20-0(1/2+0) p1/2=00+6(1/2=0) g p1/2=00+0A,
Let 3/2—0¢9—20—0(1/2+6) =1/2—0¢p+60(1/2—0). We find that § =1 — 20 and

h3/2=00=20=0(1/240) — p1/2=00+0(1/2=0) — pl-0-00=0(1-20) gince g, § can be arbitrarily

small. Now we let 1 — o = 1/2 — +0); we have 0 = m Thus if we make a
1

summary, choosing # =1 — 20 and o = I(ESVE then for any € > 0,

w412 < CR7ITE
| HX‘ngzh =
O
Let we,, u¢, satisfy Hypue, = 0, H_woue, = 0, respectively, and take the forms
) .t
ug, = € (e + wy)
; it
Ug, = e’@'w(e—“i72 + wo)
Define a scattering transform

t(&) = ((Awp — Aowio) (Ui on), velon) = (puc,, uc,)
Substituting u¢, and u¢,, we get
~ . o ot
1(€) = (™ Ep(et + wr), (€72 + wy))
= (e_m'gpei‘bg, e_i¢g> + <€_i”'£pei¢§,w2> + (e7 ™ Epuwy, €_i¢u2> + (e pwy, wa)
For the first term, since

G-V + WG =0,
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o Veh =W (=0,
and (1 + (o = —& = s(uy + p2) as s — oo or py = —pg — h€. Furthermore,

1 1
27 Jr2 y1 +1y2

& = N~V (g - W) (1 - W9 (@ — il — yoiil) dyrdyo

p1

and
# -1 # 1 1 # 1 2
¢y = Ny, (—po - WF) = o T +iy2(_'u2 W) (@ + y1pg + yop3) dyrdys.
So
1 1
b= — WY (& — yapd — yoi?) dipd
1 — @5 o /R2 y1+iy2(ﬂl )( Y11 y2ﬂ1) Y1aY2
1 L (2 - W9 (@ + ya iy + yopi3) dyrdys
21 Jr2 Y1 + 1Yo
1
= — — ((— iy — hE) - Wz — g1t — yopi?) dyyd
o Juo y1+zy2(( j25) f) )( Y11y yzm) Yy1aY2
1 1
+ = . W (2 + ypy + 203) dypnd
o7 e y1+zy2<“2 (@ + Y1ty + 2p5) dyrdys
1 1

_ —hE) - Wz — gt — o) dyqd
5 RleHyQ(( §) - W3 (x — yrpty — yopiy) dyrdys

1 / (k2 - WO (@ + y1g + y2p3) — (b2 - WH) (@ — g1 — yopi?)
R2

— dy,d
o L+ s Yy1ay2

+

=I+1I.
(7.18)
Because 92W*# < Ch=7lel and |(z 4+ yypd + yopd) — (x — yipd — yop?)| < Chlyy|, then
I < Chand II < Ch'7, similarly, we can prove |V(¢f — ¢4)| < Ch!=27,
It follows that
(e <pet®t, e79%) — 5(¢)

as s — 00.
. : o
Next the second term: if we consider €1 as a symbol, from Lemma , we have

|<e*im-§pei¢>§ ,wa) < C'Heﬂmépewg HX*“Z o2 HXI/Q
wih woh
< —0'/2 —ix-§ . g
< Ch™?||e pmez/sz2HX;7/}f
< Op~o/2p~lH3ipl-o—s (719

S Ch%x-%g—s

S Ch1/2(5\— 2(1§>A) )—8

: o i : :
where the estimate of [|e™<pei|| 1> leads to an average estimate found in Haber-
w,h

man and Tataru [I0][Lemma 3.1]. The third term is similar to the second.
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Finally we look at the last term,

e Spon,wa}] < Ch* | gass el 172
1w, Hss
< Op2 plo—e ploo— (7.20)
< O T

where the estimate of the operator e~®<p is follow to Haberman and Tataru [10][Theorem
2.1].

Above all, if A — 1 Sy 0, or equivalently )\(1 +A) > , we can recover p, which
is the Fourier transform of p. Then we could construct our electric potential p. If
we let A approaches 1, then A can approaches to 1/2 from above, and if we let A
approaches to 1, \ converges to 3/4 from above. To make a summary, we can say
that for any A € (1/2,1), A € (3/4,1) and A\(1 4+ \) > 3 p can be determined by DN
map.

Copyright© Yaowei Zhang, 2016.
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Chapter 8 Future work

In the previous chapter, we recovered p by using CGO solutions of the form u =

eiff'C(eﬂi’ﬁ + w). The estimate (7.19)) requires A — m > 0, the estimate (|7.20
requires \ — HLA > 0. We do not expect this result to be sharp and in future work

we would like to recover p for a larger range of A and .

Other interesting questions include studying the stability of the recovery process
for non-smooth potentials. This would extend the work of Leo Tzou [25]. We can also
consider extending Haberman’s methods for magnetic Schrodinger operators to the
case when the magnetic potential W is not small. Finally, there is much interesting
work for the inverse boundary value problem in the case when we only have data
on part of the boundary. The inverse boundary value problem for the magnetic
Schrodinger operator was studied by Chung [6]. Another area of investigation is to
study this partial data problem when the potentials are not smooth.

Copyright© Yaowei Zhang, 2016.
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