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ABSTRACT OF DISSERTATION

DETERMINANTAL IDEALS FROM SYMMETRIZED SKEW TABLEAUX

We study a class of determinantal ideals called skew tableau ideals, which are gen-
erated by t × t minors in a subset of a symmetric matrix of indeterminates. The
initial ideals have been studied in the 2× 2 case by Corso, Nagel, Petrović and Yuen.
Using liaison techniques, we have extended their results to include the original de-
terminantal ideals in the 2× 2 case, as well as special cases of the ideals in the t× t
case. In particular, for any skew tableau ideal of this form, we have defined an ele-
mentary biliaison between it and one with a simpler structure. Repeated applications
of this result show that these skew tableau ideals are glicci, and thus Cohen-Macaulay.

A number of other classes of ideals have been studied using similar techniques,
and these depend on a technical lemma involving determinantal calculations. We
have uncovered an error in this result, and have used the straightening law for minors
of a matrix to establish a new determinantal relation. This new tool fixes the gaps in
the previous papers and is a critical step in our own analysis of skew tableau ideals.
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Chapter 1 Introduction

The powerful interactions between algebra and geometry which Descartes and Fermat
began exploring almost 400 years ago have matured beautifully into modern algebraic
geometry. At the end of the 19th century, the heavy dependence on intuition was
increasingly problematic. David Hilbert’s program of formalization pointed the way
to greater rigor, and the tools of commutative algebra developed by Emmy Noether
were eventually established as the foundation of algebraic geometry by mathemati-
cians such as Oscar Zariski and André Weil. In the second half of the last century,
Serre and Grothendieck propelled the subject to further heights of sophistication with
the concepts of sheaves and schemes.

The history of Liaison Theory (or Linkage Theory) follows similar contours, with
roots in the work of Francesco Severi nearly a hundred years ago and of his stu-
dent Federico Gaeta in the 1950s. Gaeta determined that space curves with finite
residual are exactly the arithmetically normal curves; these notions were studied in
[19] by Peskine and Szpiro in 1974, when the modern treatment of Liaison The-
ory may be properly said to have begun. Their formulation of Gaeta’s Theorem is
that the codimension 2 subschemes that can be linked to a complete intersection
are exactly the arithmetically Cohen-Macaulay ones. This is actually a fact about
determinantal schemes, since every standard determinantal scheme is arithmetically
Cohen-Macaulay, and in codimension 2 the notions are equivalent.

Much work has been done to extend and generalize Gaeta’s Theorem (e.g. in
[15, 11, 19]), and liaison has been used as a tool in a wide variety of contexts (e.g.
in [12, 4]). Recently, Gorla and others have studied the G-liaison classification of
different types of determinantal schemes, defined by ideals associated to minors of
mixed size in various subsets of a matrix of indeterminates. Our main results extend
this line of study by examining the liaison classification of skew-tableau ideals, which
were introduced in [4]. We have also proven a determinantal identity that is useful
in producing elementary biliaisons. This fills a gap in the proof of a lemma that is
used in several papers on the linkage of determinantal ideals.

Linkage of Determinantal Ideals

The main object of study in Liaison Theory is links between schemes and between
the ideals that define them. Roughly speaking, two varieties (e.g. algebraic curves,
surfaces, etc.) are linked if their union is nice enough; when this happens, properties
of one variety carry over to the other. For us, “nice enough” means Gorenstein, and
the notions are G-links and G-liaison. When an ideal is in the G-liaison class of a
complete intersection, we say that it is glicci. A major result in Liaison Theory [19]
is that every glicci ideal is Cohen-Macaulay; it is still an open question whether the
converse is true.
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To determine whether a given ideal is glicci, one must produce a sequence of links
that eventually lead to a complete intersection. Our main method of producing links
is an elementary biliaison. In [15] it was shown that if there is an elementary biliaison
between ideals I and J , then they can be G-linked in two steps.

There are several classes of determinantal ideals that have been studied using
liaison techniques (such as in [3, 5, 8, 12, 15]). These are generated by minors of a
designated size in the given shape:

• matrix determinantal ideals

• symmetric matrix determinantal ideals

• ladder determinantal ideals

• two-sided mixed ladder determinantal ideals

• symmetric ladder determinantal ideals

In every one of these classes, the ideal is glicci, its generating set of minors forms a
Gröbner basis, and its initial ideal is squarefree monomial and glicci.

In the same vein, we study the liaison classification of a class of ideals called skew
tableau ideals. If A = (xi,j) is a matrix of indeterminates, then we define a skew
tableau F to be a subset of A above the main diagonal such that if xi,j and xi,k are
in F , then so is the rectangular submatrix with xi,j and xi,k as lower corners and x1,j

and x1,k as upper corners. A symmetric skew tableau F̃ is a skew tableau reflected
across the diagonal in a symmetric matrix of indeterminates. A skew tableau ideal is
generated by minors of specified sizes in a skew tableau.

The following are examples of a skew tableau and a reflected skew tableau:

x1,1 x1,2 x1,3 x1,4 x1,5

x2,3 x2,4 x2,5

x3,4 x3,5

x4,4 x4,5

x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

x1,2 x2,3 x2,4 x2,5 x2,6

x1,3 x2,3 x3,4 x3,5 x3,6

x1,4 x2,4 x3,4 x4,4 x4,5

x1,5 x2,5 x3,5 x4,5

x1,6 X2,6 X3,6

Ideals generated by 2× 2 minors in skew tableaux were introduced in [4], where they
arose in connection with edge ideals of Ferrers graphs. It was shown in that paper
that the generating set forms a Gröbner basis, and that their initial ideals are glicci.
Our work uses this result as a starting point.
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In Section 2.3, we discuss a gap in the proof of a lemma from [10]. The lemma
involves determinantal calculations that are used in showing elementary biliaisons in
several of the linkage results for determinantal ideals mentioned above. We explain
the error in the proof, and then prove a different determinantal identity that implies
a strengthened version of the lemma. We apply this new version of the lemma in
Chapter 4.

In Chapter 3, we show that skew tableau ideals generated by 2 × 2 minors are
glicci, and thus Cohen-Macaulay. We do this by producing an elementary biliaison
between an arbitrary skew tableau ideal and one generated in a strictly smaller skew
tableau. Repeating this process a finite number of times eventually links to an ideal
generated by indeterminates, which is a complete intersection.

In Chapter 4, we study skew tableau ideals generated by higher order minors. If
there are no “holes,” these ideals are a special case of symmetric ladder ideals. We
recall some properties of these ideals from other work, reprove a Gröbner basis cal-
culation and codimension formula, and give a new proof that these ideals are glicci
(which does not depend on the faulty lemma mentioned above). For unsymmetrized
skew tableau ideals, we use some of our determinantal calculations from Section sec-
tion 2.3 to show that the minors form a Gröbner basis. We also offer some examples
to show that for arbitrary skew tableau ideals, the Gröbner basis property and pri-
mality may not longer hold. We conclude with some plans for further study.

Copyright c© Bill Robinson, 2015.
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Chapter 2 Preliminaries

2.1 Standard Results in Liaison Theory

Liaison theory, or linkage, is typically regarded as a classification tool for ideals.
Among other nice properties, linkage preserves Cohen-Macaulayness. Though there
are many structural results established for complete intersection-linkage (i.e. CI-
linkage), less is known about Gorenstein linkage (i.e. G-linkage). Of particular inter-
est is showing that a various classes of ideals are glicci, i.e. in the Gorenstein liaison
class of a complete intersection. Every glicci ideal is Cohen-Macaulay; a significant
open question is whether the converse is true.

We present here an overview of some of the basic definitions and constructions in
liaison theory, along with some classical results which we use in our own results. We
assume throughout that K is an algebraically closed field, and that R = K[x0, . . . , xn]
is a polynomial ring over K.

Definition 2.1.1. Let J ⊂ R be a homogeneous, saturated ideal. We say that J is
Gorenstein in dimension ≤ c if the localization (R/J)p is a Gorenstein ring for any
prime ideal p of R/J of height smaller than or equal to c. We often say that J is Gc.
We call generically Gorenstein, or G0, an ideal J which is Gorenstein in codimension
0.

Definition 2.1.2. An ideal I ⊂ R is said to be (directly) linked to an ideal J ⊂ R
by a Gorenstein ideal c ⊂ R if c ⊂ I ∩ J , and c : I = J and c : J = I.

Recall that the ideal quotient corresponds to set difference for algebraic varieties.
If V and W are affine varieties with ideals I(V ) and I(W ), then I(V ) : I(W ) =
I(V \W ). Thus we may say heuristically that two ideals are linked when the geomet-
ric objects they describe have a nice union.

To show that a given ideal I is glicci, we must produce a sequence of new ideals
that eventually link to a complete intersection. There are two classical constructions
that are useful for producing these links.

Definition 2.1.3. Let A ⊂ B ⊂ R be homogeneous ideals such that ht(A) = ht(B)−
1 and R/A is Cohen-Macaulay. Let f ∈ Rd be a homogeneous element of degree d
such that A : f = A. The ideal C := A+ fB is called a Basic Double Link of degree
d of B on A. If moreover A is G0 and B is unmixed, then C is a Basic Double G-Link
of B on A.

Definition 2.1.4. Let I, J ⊂ R be homogeneous, saturated, unmixed ideals, such
that ht(I) = ht(J) = c. We say that J is obtained by an elementary biliaison of
height l from I if there exists a Cohen-Macaulay ideal N in R of height c − 1 such
that N ⊂ I ∩ J and J/N ∼= I/N (−l) as R/N modules. If in addition the ideal N
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is G0, then J is obtained from I via an elementary G-biliaison. If l > 0 we have an
ascending elementary G-biliaison.

Basic Double Linkage is a special case of biliaison. Moreover, it can be shown
that if J is obtained from I via an elementary biliaison of height l on N , then there
exists an ideal H and a d ∈ Z s.t. H is a Basic Double Link of degree d + l of I on
N and also a Basic Double Link of degree d of J on N .

Theorem 2.1.5 ([15]). Suppose J is obtained from I via an elementary G-biliaison.
Then I is linked to J in two steps.

We end this section with a classical result of Peskine and Szpiro that reveals some
of the power of linkage.

Theorem 2.1.6 ([19]). Suppose I and J are linked by a Gorenstein ideal N . Then
R/I is Cohen-Macaulay if and only if R/J is Cohen-Macaulay.

In particular, it follows from this result that glicci ideals are Cohen-Macaulay.
Although an affirmative answer has been shown in special cases (e.g. Gaeta’s Theorem
for codimension 2), it is unknown in general whether every Cohen-Macaulay ideal is
glicci.

2.2 Initial Ideals, Gröbner Bases, and Vertex Decomposibility

Again we let R be a standard graded polynomial ring in finitely many indeterminates
over an algebraically closed field K. Gröbner bases are a powerful computation tool
for studying ideals in commutative algebra and algebraic geometry, and we will use
them several times throughout this paper.

For a fixed term-order < on R, recall that the initial term (or leading term) in<(r)
of an element r ∈ R is the largest monomial of r with respect to <. If I ⊂ R is an
ideal, then the initial ideal of I, denoted in<(I), is the ideal of R generated by the
initial terms of the elements of I,

in<(i) = 〈in(r) ∈ R | in(r) ∈ I〉.

When the term-order is clear, we will just write in(r) and in(I).

Definition 2.2.1. Let X be a matrix of indeterminates. Let < be a term-order on the
set of terms of K[X]. The term-order < is diagonal if the leading term with respect
to < of the determinant of any submatrix of X is the product of the indeterminates
on its diagonal.

If X = (xi,j), then the lexicographic term-order on monomials is a well-known
example of a diagonal term-order.

Definition 2.2.2. Let G be a set of polynomials in R that generate an ideal I. Then
G is a Gröbner basis of I if the initial terms of the elements of G generate in(I).

5



Every ideal of R has a Gröbner basis by Hilbert’s basis theorem, and Buchberger’s
algorithm is a standard method for transforming a generating set of an ideal into a
Gröbner basis. We will use the well-known Buchberger’s Criterion and two lemmas
from [2] for our Gröbner basis calculations.

Definition 2.2.3. Let f, g ∈ R be nonzero polynomials. The S-polynomial of f and
g is the polynomial

S(f, g) =
lcm(in(f), in(g))

in(f)
· f − lcm(in(f), in(g))

in(g)
· g

where lcm refers to the least common multiple.

Theorem 2.2.4 (Buchberger’s Criterion). Let I be a polynomial ideal. Then a basis
G = {g1, . . . , gt} for I is a Gröbner basis for I if and only if for all pairs i 6= j, the
remainder of division of S(gi, gj) by G is zero.

Lemma 2.2.5 ([2, Lemma 1.3.13]). Let I ⊂ K[X] be an ideal with Gröbner bases G.
Let F ⊂ X have the property that if f ∈ G and in(f) ∈ K[F ], then f ∈ K[F ]. Then
G ∩K[F ] is a Gröbner basis of I ∩K[F ].

Lemma 2.2.6 ([2, Lemma 1.3.14]). Let I, J ⊂ K[x1, . . . , xr] be homogeneous ideals.
Let G be a Gröbner basis of I and let H be a Gröbner basis of J . Then G

⋃
H is a

Gröbner bases of I + J if and only if for all f ∈ F and g ∈ G, there is an h ∈ I ∩ J
such that in(h) = lcm(in(f), in(g)).

Although it is not our main object of interest in this paper, linkage results for
the initial ideals we study also provide information about their associated simplicial
complexes (see [12]). The rest of this section may be skipped by readers uninterested
in these results.

Definition 2.2.7. A simplicial complex ∆ on n+ 1 vertices is a collection of subsets
of [n] such that for any F ∈ ∆, if G ⊂ F , then G ∈ ∆. An F ∈ ∆ is called a face of
∆. The dimension of a face F is dimF = |F | − 1, and the dimension of the complex
is

dim ∆ = max{dimF |F ∈ ∆}.
The complex ∆ = 2{0,...,n} is called a simplex.

The vertices of ∆ are the subsets of [n] of cardinality one. The faces of ∆ which
are maximal with respect to inclusion are called facets. A complex is pure if all its
facetrs have dimension equal to the dimension of the complex.

Notation 2.2.8. To each face F ∈ ∆ we associate the following two simplicial
subcomplexes of ∆: the link of F :

lk∆ = {G ∈ ∆ |F ∪G ∈ ∆, F ∩G = ∅}

and the deletion
∆− F = {G ∈ ∆ |F ∩G = ∅}.

6



If F = {k} is a vertex, we denote the link of F and the deletion by lkk(∆) and ∆−k,
respectively.

Definition 2.2.9. A simplicial complex ∆ is vertex decomposable if it is a simplex,
or it is the empty set, or there exists a vertex k such that lkk(∆) and ∆− k are both
pure and vertex decomposable, and

dim ∆ = dim(∆− k) = dim lkk(∆) + 1.

These notions for simplices are relevant to our study of determinantal ideal because
of the following construction.

Definition 2.2.10. The Stanley-Reisner ideal associated to a complex ∆ on n + 1
vertices is the squarefree monomial ideal

I∆ = (xi1 , . . . , xis | {i1, . . . , is} 6∈ ∆) ⊂ K[x0, . . . , xn].

Conversely, to every squarefree monomial ideal I ⊂ K[x0, . . . , xn] one can associate
the unique simplicial complex ∆(I) on n+ 1 vertices such that I∆(I) = I.

2.3 A New Determinantal Identity

We discuss now an identity that will be a key for establishing the existence of certain
elementary biliaisons later on. In particular, the identity will allow us to give a
corrected proof of [10, Lemma 2.6]. There are several papers, including [8], [9], and
[11], which employ the latter result. We begin with some notation drawn from [20].

Notation 2.3.1. Let M be an m×n matrix with entries in a commutative ring with
identity. For ordered lists A = {a1 < · · · < as} with ai ∈ [m] and B = {b1 < · · · < bt}
with bi ∈ [n], we define MA|B to be the submatrix of M whose entries are have row
indices in A and column indices in B (in the given order). Set M(A|B) = detMA|B
if |A| = |B|, and put M(A|B) = 0 otherwise.

We adopt the convention that the determinant of a 0× 0 matrix is 1.

Definition 2.3.2. Let M be a square n × n matrix with A and B as above. Let Ã
be the complement of A in [m] and let B̃ be the complement of B in [n], and denote
by
∑
A and

∑
B the sum of the elements of A and B respectively. We define the

Laplace product to be M{A|B} = (−1)
∑
A+

∑
BM(A|B)M(Ã|B̃).

We want to manipulate ordered lists.

Definition 2.3.3. For α ∈ A = {a1 < · · · < as}, define

A− α = {a1, . . . , α̂, . . . , as} = {a1, . . . , ai−1, ai+1, . . . , as}

if α = ai. For an integer β /∈ [A], we denote by A+ β the ordered list consisting of β
and the entries ofA. In particular, |A+β| = |A|+1. For example, {1, 5}+4 = {1, 4, 5}.

7



The goal of this section is to establish:

Lemma 2.3.4 ([10, Lemma 2.6]). Let M be a matrix of size m× n. Let I and K be
ordered lists in [m − 1], and let J and L be ordered lists in [n − 1] with |I| = |J | =
|K| = |L| = t − 1. Let IY be the ideal generated by the t-minors of M of size t × t
that do not involve both row m and column n. Then

M(I +m|J + n) ·M(K|L)−M(I|J) ·M(K +m|L+ n) ∈ IY .

Remark 2.3.5. In [10], the previous lemma is stated for symmetric m×m matrices,
and the ideal IY is taken to be generated by all minors which do not involve the
last row of M . If M is symmetric then this definition of IY is equivalent to the one
we have given; however, that statement does not generalize in the case of a generic
matrix. For its application here (and in other papers), we need our more general
statement.

The proof of Lemma 2.3.4 depends on the following lemma of the same paper:

Lemma 2.3.6 ([10, Lemma 2.4]). Let M be a matrix of size m×m. Let I and K be
lists of row indices and let J and L be lists of column indices with |I| = |J | = |K| =
|L| = t. Let It+1(M) be the ideal generated by the minors of M of size (t+1)×(t+1).
Then

M(I|J) ·M(K|L)−M(K|J) ·M(I|L) ∈ It+1(M).

We have uncovered a gap in the proof of [10, Lemma 2.4], and though its claim
may still be true, we have not searched for another proof. Instead, we will establish
a new determinantal identity using the straightening law for minors of a matrix that
implies [10, Lemma 2.6] directly. Before we prove this new identity, we will explain
the error in the proof of [10, Lemma 2.4].

Gap in Proof of [10, Lemma 2.4]

In the first half of the proof of this lemma, there is a chain of equalities that gives

M(I|J) ·M(K|L)−M(K|J) ·M(I|L)

as a summation of the terms

M(i1, . . . , ia|j1, . . . , jb, lb+1, . . . , la) ·M(i1, . . . , ia−1, ka|l1, . . . , lb, jb+1, . . . , ja)

−M(i1, . . . , ia|j1, . . . , jb−1, lb, . . . , la) ·M(i1, . . . , ia−1, ka; l1, . . . , lb−1, jb, . . . , ja),

where b ranges from 1 to a. After this, it is stated that “all the minors in the
expression have all the rows and columns in common, except for possibly one. So
Sylvester’s Theorem applies, and the thesis follows.” However, we have included below
the only formulation of Sylvesters Identity known to us, and this does not apply to
the expression in question. A more detailed discussion of Sylvester’s Identity may be
found in [1].
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Proposition 2.3.7 (Sylvester’s Identity). Let M be an m × n matrix. Let I be an
ordered list in [m − 1], and let J an ordered list in [n − 1], with |I| = |J | = t − 1.
Then, for every i ∈ I and j ∈ J ,

M(I|J) ·M(I − i+m|J − j +m)−M(I − i+m|J) ·M(I|J − j +m)

= M(I − i|J − j) ·M(I +m|J + n)

Note that, for t = 2, this is the formula for computing the determinant of the
2× 2 matrix MI+m|J+n.

In general, Sylvester’s identity relates an expression of four matrix determinants
of size t×t to a product of an (t−1)×(t−1) determinant and a (t+1)×(t+1) deter-
minant. All six of these minors have (t− 1) rows and columns in common. However,
in Gorla’s Lemma 2.4, the expression involves minors with (t − 1) rows in common
but completely disjoint columns, and so Sylvester’s Identity does not apply. A similar
problem occurs in the second half of the proof, where the expressions involve minors
with (t− 1) columns in common but completely disjoint rows.

In fact, not only does Sylvester’s Identity not apply in this case, but the expres-
sions

M(I|J) ·M(I − i+m|J − j +m)−M(I − i+m|J) ·M(I|J − j +m)

are not in general in the ideal It+1(M) from Lemma 2.3.6.

Example 2.3.8. Let M be the 6× 6 matrix:
x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

x3,1 x3,2 x3,3 x3,4 x3,5 x3,6

x4,1 x4,2 x4,3 x4,4 x4,5 x4,6

x5,1 x5,2 x5,3 x5,4 x5,5 x5,6

x6,1 x6,2 x6,3 x6,4 x6,5 x6,6

 .

Let (i1, i2, i3) = (1, 2, 3), (j1, j2, j3) = (1, 2, 3), (k1, k2, k3) = (4, 5, 6), and (l1, l2, l3) =
(4, 5, 6). Then an example of one of the summands in the proof of Lemma 2.4 is

x1,1 x1,5 x1,6

x2,1 x2,5 x2,6

x3,1 x3,5 x3,6

·
x1,4 x1,2 x1,3

x2,4 x2,2 x2,3

x6,4 x6,2 x6,3

−
x1,4 x1,5 x1,6

x2,4 x2,5 x2,6

x3,4 x3,5 x3,6

·
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x6,1 x6,2 x6,3

.

However, according to Macaulay2, the expression is not in I4(M).

Lemma 2.4 claims that the expression

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

·
x4,4 x4,5 x4,6

x5,4 x5,5 x5,6

x6,4 x6,5 x6,6

−
x4,1 x4,2 x4,3

x5,1 x5,2 x5,3

x6,1 x6,2 x6,3

·
x1,4 x1,4 x1,4

x2,5 x2,5 x2,5

x3,6 x3,6 x3,6

∈ I4(M).

9



Macaulay2 verifies this claim; however, the presentation of the expression that is given
in terms of generators of I4(M) requires 15 generators, and not all of the coefficients
given are minors of M . For this reason, we have not searched for a different lemma
comparable to Lemma 2.4.

Determinantal Lemma

Our proof of Proposition 2.3.10 uses the following result by Swan.

Theorem 2.3.9 ([20, Theorem 2.6]). Let M be an m ×m matrix. Then, for every
choice of ordered lists A and B in [m],∑

V⊆B

M{A|V } =
∑
U⊇A

M{U |B}.

We use this result to show:

Proposition 2.3.10. Let M be a matrix of size (2t− 1)× (2t− 1). Let I and K as
well as J and L disjoint ordered lists of t− 1 ≥ 1 numbers such that

I ∪K = J ∪ L = [2t− 2].

Then we have

M(I +m|J + n) ·M(K|L)−M(I|J) ·M(K +m|L+ n)

=
∑
i∈I

(−1)n+iM(I − i+m|J) ·M(K + i|L+ n)

−
∑
l∈L

(−1)n−lM(I +m|J + l) ·M(K|(L− l + n),

where m = n = 2t− 1.

Proof. We apply Theorem 2.3.9 to M with A = K and B = L+n as the fixed subsets:∑
V⊆L+n

M{K|V } =
∑
U⊇K

M{U |L+ n}.

On the left hand side, the only subsets V ⊆ L+n for which the Laplace products
M{A|V } are nonzero are those with size |V | = |A| = t − 1. Since M is a (2t −
1)× (2t− 1) matrix, these M{K|V } are the signed products of a t× t minor and a
(t− 1)× (t− 1) minor. Similarly, on the right hand side, the only subsets U ⊇ K for
which the Laplace products M{U |L+n} are nonzero are those with size |U | = |B| = t.
In this case, these M{U |L+n} are signed products of a t×t minor and a (t−1)×(t−1)
minor. Thus, we get the equality∑

l∈L

M{K|L− l + n}+M{K|L} =
∑
i∈I

M{K + i|L+ n}+M{K +m|L+ n},
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which can be expanded as∑
l∈L

(−1)n−lM(K|L− l + n) ·M(I +m|J + l) +M(K|L) ·M(I +m|J + n)

=
∑
i∈I

(−1)n+iM(K + i|L+ n) ·M(I − i+m|J)

+ (−1)m+nM(K +m|L+ n) ·M(I|J).

The signs of these minors come directly from Definition 2.3.2 after we multiply both
sides by (−1)

∑
K+

∑
L. Since m = n, the claim follows.

As a consequence, we get a slightly strengthened version of [10, Lemma 2.6], i.e.
Lemma 2.3.4.

Corollary 2.3.11. Let M be a matrix of size m×n. Let I and K be ordered lists in
[m−1], and let J and L be ordered lists in [n−1], where |I| = |J | = |K| = |L| = t−1.
Let IY be the ideal that is generated by the t-minors of the submatrix of M with column
indices in (I ∪K) + m and row indices in (J ∪ L) + n that do not involve both row
m and column n. Then

M(I +m|J + n) ·M(K|L)−M(I|J) ·M(K +m|L+ n) ∈ IY .

Proof. Consider first the special case where I and K as well as J and L are disjoint
and

I ∪K = J ∪ L = [2t− 2].

Then the claim follows by Proposition 2.3.10 because each of the t-minors M(K +
i|L+ n) and M(I +m|J + l) is in IY .

Now we reduce the general case to the above special case. Consider any lists
I, J,K, and L as in the statement. Write I = {i1 < · · · < it−1}, J = {j1 < · · · <
jt−1}, L = {k1 < · · · < kt−1}, and L = {l1 < · · · < lt−1}. Form a (2t− 1)× (2t− 1)
submatrix N of M whose entries are taken from the indicated rows and columns of
M :

N = M(i1,...,it−1,k1,...,kt−1,m)|(j1,...,jt−1,l1,...,lt−1,n).

Applying the above special case to the submatrix N , our claim follows.

Example 2.3.12. Let M = (xi,j) be a 5×5 matrix, and let SY be the ideal generated
by the 3×3 minors of M that do not involve the entry x5,5. Let I = (3, 4), J = (1, 2),
K = (1, 2), and L = (3, 4). Then according to Corollary 2.3.11 ,

M(1, 2|3, 4) ·M(3, 4, 5|1, 2, 5)−M(1, 2, 5|3, 4, 5) ·M(3, 4|1, 2) ∈ SY .

This follows from Proposition 2.3.10, which gives

{3, 4, 5|1, 2, 5} − {1, 2, 5|3, 4, 5}
= {1, 2, 3|3, 4, 5}+ {1, 2, 4|3, 4, 5} − {3, 4, 5|1, 2, 3} − {3, 4, 5|1, 2, 4}.
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More explicitly, this is the identity

x3,1 x3,2 x3,5

x4,1 x4,2 x4,5

x5,1 x5,2 x5,5

· x1,3 x1,4

x2,3 x2,4
−

x1,3 x1,4 x1,5

x2,3 x2,4 x2,5

x5,3 x5,4 x5,5

· x3,1 x3,2

x4,1 x4,2

=
x1,3 x1,4 x1,5

x2,3 x2,4 x2,5

x3,3 x3,4 x3,5

· x4,1 x4,2

x5,1 x5,2
−

x1,3 x1,4 x1,5

x2,3 x2,4 x2,5

x4,3 x4,4 x4,5

· x3,1 x3,2

x5,1 x5,2

−
x3,1 x3,2 x3,3

x4,1 x4,2 x4,3

x5,1 x5,2 x5,3

· x1,4 x1,5

x2,4 x2,5
+

x3,1 x3,2 x3,4

x4,1 x4,2 x4,4

x5,1 x5,2 x5,4

· x1,3 x1,5

x2,3 x2,5
.

We illustrate this relation by shading the subregion of M corresponding to each minor.
The equality above comes from the determinantal identity in Proposition 2.3.10,
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which gives:
x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5

 ·


x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5



−


x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5

 ·


x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5



+


x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5

 ·


x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5



=


x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5

 ·


x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5



−


x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5

 ·


x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5



+


x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5

 ·


x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4 x5,5


The reader should be reminded of calculating a determinant using expansion by co-
factors. Indeed, this is the same process, but using a more general notion of cofactor.

2.4 Skew Tableau Ideals

Our main object of study is ideals generated by minors in a subregion of a matrix of
indeterminates called a skew tableau. In this section, we will introduce the definitions
and notation for describing skew tableau ideals. In Section 3.1 we recall some known
results about skew tableau ideals generated by 2×2 minors, and in Section 3.2 we show
that these ideals are glicci. In Chapter 4 we discuss skew tableau ideals generated by
higher order minors.
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Definition 2.4.1. Let X ⊂ N2 represent a rectangular array of boxes, with the box
in row i and column j indicated by its location (i, j) ∈ X. A skew tableau F is a
subregion of X such that if F contains two boxes on the same row, say the boxes at
(i, p) and (i, q) with p ≤ q, then it also contains all the boxes in the largest rectangular
subregion of X with lower corners at (i, p) and (i, q), i.e.

(1, p) . . . (1, q)
...

. . .
...

(i, p) . . . (i, q)

We will always label tableaux so that, in the notation above, p ≥ i, which places
F above the main diagonal of X. The reasons for this will be made clear in Defini-
tion 2.4.4. Eventually, we will take X to be a symmetric matrix of indeterminates.

Notation 2.4.2. According to the previous definition, a finite list of these pairs of
locations (i, p) and (i, q) determines a skew tableau F . However, sometimes it will be
convenient to define the left and right borders of the tableau separately. We do this by
a list of left corners (b1, c1), . . . , ((b`, c`) and a list of right corners (a1, d1), . . . , (ak, dk)
that satisfy the following inequalities:

1 ≤ c` ≤ · · · ≤ c1 ≤ d1 ≤ · · · ≤ dk

1 ≤ ak ≤ · · · ≤ a1

1 ≤ b` ≤ · · · ≤ b1

bi ≤ ci

ai ≤ di

These conditions ensure that left corners are indeed farther left than right corners,
that both lists of corners are ordered from lowest to highest (i.e. from greatest to
smallest row index), and that all corners are on or above the main diagonal of X.
The skew tableau F (a, b, c, d) defined by these corners is

F = {(i, j) ∈ N2 | 1 ≤ i ≤ ar, j ≤ dr for some r and 1 ≤ i ≤ bs, j ≥ cs for some s}

A more concise way to express this information is to define vectors

a = (a1, . . . , ak)

b = (b1, . . . , b`)

c = (c1, . . . , c`)

d = (d1, . . . , dk)

and denote F as T (a, b, c, d).

Example 2.4.3. The skew tableau with vectors

a = (5, 3) b = (5, 3, 2)

d = (7, 8) c = (6, 4, 2)

would look like this:
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where the top left box is at location (1, 2).

Definition 2.4.4. Let F ⊂ X be a skew tableau, and recall that ai ≤ ci, so that F
includes no locations below the main diagonal of X. We define a symmetrized skew
tableau F̃ to include every location (i, j) in F along with its transposed location (j, i),
i.e.

F̃ = {(i, j) ∈ X | (i, j) ∈ F or (j, i) ∈ F}.

Graphically, this is the shape F along with its reflection across the main diagonal of
X. We always assume that X is large enough to include all locations in F̃ . At times
we will colloquially refer to these as reflected skew tableaux.

Example 2.4.5. If F is the skew tableau in Example 2.4.3, then F̃ would look like
this:

�

� �

� �

The white boxes form the original skew tableau F , the gray boxes are those added
to form F̃ , and the black boxes are “holes” in the skew tableau.

Definition 2.4.6. Suppose F has right corners {(ai, di)}, with 1 ≤ i ≤ k. Define Fi
to be the intersection of F with the following subset of X:

Xi =

 (1, 1) . . . (1, di)
...

. . .
...

(ai, 1) . . . (ai, di)
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Each Fi contains exactly those locations of F which are above and to the left of the
ith right corner, inclusive. Note that F =

⋃k
i=1 Fi and F̃ =

⋃k
i=0 F̃i.

Example 2.4.7. Using the same skew tableau F as in the previous examples, F1 is
the region shaded in gray:

In this paper, we are interested in ideals generated by minors in a skew tableau-
shaped subset of a matrix of indeterminates. We will slightly abuse notation by
now taking X = (xi,j) to be a symmetric matrix of indeterminates in R with xi,j
at location (i, j) when i ≤ j and xj,i at location (i, j) when i > j. From this point
forward, all skew tableaux F and F̃ will be considered as subsets of such a matrix.

Definition 2.4.8. Let F =
⋃k
i=1 Fi be a skew tableau of indeterminates and let

t = (t1, . . . , tk) a vector with positive integer entries. Define Iti(Fi) to be the ideal
generated by the ti × ti minors in Fi, and let It(F ) = It1(F1) + . . . Itk(Fk). We call
It(F ) a skew tableau ideal. A projective scheme associated with such an ideal is a skew
tableau scheme. Similarly, we define a symmetrized skew tableau ideal to be It(F̃ ) =
It1(F̃1) + . . . Itk(F̃k) and call the corresponding projective scheme a symmetrized skew
tableau scheme. Note that It(F ) ⊂ It(F̃ ).

Example 2.4.9. We again let F be defined by the vectors

a = (5, 3) b = (5, 3, 2)

d = (7, 8) c = (6, 4, 2)

As a skew tableau of indeterminates, this is:

x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8

x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8

x3,4 x3,5 x3,6 x3,7 x3,8

x4,6 x4,7

x5,6 x5,7

The symmetrized skew tableau F̃ is:
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x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8

x1,2 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8

x1,3 x2,3 x3,4 x3,5 x3,6 x3,7 x3,8

x1,4 x2,4 x3,4 x4,6 x4,7

x1,5 x2,5 x3,5 x5,6 x5,7

x1,6 x2,6 x3,6 x4,6 x5,6

x1,7 x2,7 x3,7 x4,7 x5,7

x1,8 x2,8 x3,8

Note that there are no new variables introduced by symmetrizing.

Example 2.4.10. Let F̃ be the tableau

x1,1 x1,2 x1,3 x1,4 x1,5

x1,2 x2,3 x2,4 x2,5

x1,3 x2,3 x3,4 x3,5

x1,4 x2,4 x3,4 x4,4

x1,5 x2,5 x3,5

Then I3(F̃ ) is the ideal generated by the minors

x1,1 x1,4 x1,5

x1,2 x2,4 x2,5

x1,3 x3,4 x3,5

and
x1,1 x1,3 x1,4

x1,2 x2,3 x2,4

x1,4 x3,4 x4,4

.

Remark 2.4.11. If we define a skew tableau ideal from a tableau with a hole at
location (i, j), we do not obtain the same ideal by including the variable xi,j but
setting it equal to 0. For example, if we set x1,1 = 0 in the matrix below, then the
result is that

x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

= −x1,2x2,1x3,3 + x1,2x2,3x3,1 + x1,3x2,1x3,2 − x1,3x2,2x3,1,

when in fact we want the whole minor to be 0.

Remark 2.4.12. Note that if A is any ti×ti submatrix of F̃i and Xi is the submatrix
of X defined in Definition 2.4.6, then either A ∈ F̃i ∩ Xi or Atr ∈ F̃i ∩ Xi. So
Iti(F̃i) = Iti(F̃i ∩Xi). For instance, the two shaded minors below are equal.
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x1,1 x1,2 x1,3 x1,4 x1,5

x1,2 x2,3 x2,4 x2,5

x1,3 x2,3 x3,4 x3,5

x1,4 x2,4 x3,4 x4,4

x1,5 x2,5 x3,5

x1,1 x1,2 x1,3 x1,4 x1,5

x1,2 x2,3 x2,4 x2,5

x1,3 x2,3 x3,4 x3,5

x1,4 x2,4 x3,4 x4,4

x1,5 x2,5 x3,5

We may ignore the last row of the tableau, and the ideal defined by minors in the
remaining region will be the same. In general, if F has n rows, then we may ignore
all rows below the nth row of F̃ .

It may easily occur for a skew tableau ideal that one of the subregions is redundant
or trivial. For It(F ) =

∑k
i=1 Iti(Fi), if both Fa ⊂ Fb and tb ≤ ta, then clearly Ita(Fa) ⊂

Itb(Fb) and It(F ) =
∑k

i 6=b Iti(Fi). In this case we will drop the ith corner and subregion
from the description of F and It(F ). We adopt the same convention for symmetrized
skew tableau ideals. The following lemma shows two more simplifications we may
assume for skew tableau ideals.

Lemma 2.4.13. Let F = T (a, b, c, d) be a skew tableau. We may assume, without
loss of generality, that in a symmetrized skew tableau ideal It(F̃ ),

(1.) ti ≤ ai for all i, and

(2.) db − da > tb − ta for all a > b. In particular, di−1 − di > ti−1 − ti for all i.

Proof. (1.) If ti > ai, then Iti(F̃i) is generated by ti×ti minors in a subregion of F̃ with
less than ti rows, and so Iti(F̃i) = (0). Suppose a = (a1, . . . , ak) and a = (d1, . . . , dk).
Then we may replace F by F ′ = T (a′, b, c, d′), where a′ = (a1, . . . , ai−1, ai+1, . . . , ak)
and d′ = (d1, . . . , di−1, di+1, . . . , dk). We let t′ = (t1, . . . , ti−1, . . . , tk). Then

It(F̃ ) =
∑

Itr(F̃r) =
∑
r 6=i

Iri(F̃r) = It′(F̃ ′).

(2.) Suppose db − da ≤ tb − ta for some a > b. Recall from Remark 2.4.12 that
It1(F̃i ∩ Xi) = Iti(F̃i), and note that F̃b ∩ Xb involves exactly db − da columns that
are not in F̃a ∩Xa. Suppose A is a tb × tb submatrix of F̃b ∩Xb. Then A must have
at least tb− (db− da) columns in F̃a∩Xa, and since tb− (db− da) ≥ ta, it follows that
det(A) ∈ Ita(F̃a ∩Xa). Thus Itb(F̃b) ⊂ Itb(F̃b), and we may drop the bth pair of right
corners to form a new skew tableau F ′, and replace It(F̃ ) by an ideal It′(F̃ ′) with the
property that db − da > tb − ta for all a > b.

Unsymmetrized skew tableau ideals are a special case of symmetrized skew tableau
ideals. In this paper we will prove results in the symmetrized case, and the corre-
sponding results will follow for unsymmetrized tableaux.
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Remark 2.4.14. Any skew tableau ideal It(F ) may be regarded as a symmetrized
skew tableau ideal. Suppose F = F (a, b, c, d) has n rows and k corners, and let
δ = n− ck + 1. Then we may define a new tableau F ′ = (a, b, c+ δ, d+ δ), where c+ δ
and d + δ represent the vectors obtained by adding δ to every component of c and
d, respectively. After relabelling the variables of F ′ by xi,j → xi,j−δ, we have that
It(F ) = It(F

′), and since symmetrizing F ′ does not add any new minors, it follows
that It(F ) = It(F

′) = It(F̃ ′). For instance, suppose F is the tableau

x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

x2,2 x2,3 x2,4 x2,5 x2,6

x3,4 x3,5

x4,4 x4,5

Then F̃ ′ would be the tableau

x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

x2,2 x2,3 x2,4 x2,5 x2,6

x3,4 x3,5

x4,4 x4,5

x1,1

x1,2 x2,2

x1,3 x2,3

x1,4 x2,4 x3,4 x4,4

x1,5 x2,5 x3,5 x4,5

x1,6 x2,6

By Remark 2.4.12, we may ignore the part of the tableau F̃ ′ that is below row 4 when
considering It(F̃ ′), which means that It(F ) = It(F̃ ′), and thus that skew tableau ideals
are a special case of symmetrized skew tableau ideals.

Copyright c© Bill Robinson, 2015.
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Chapter 3 Skew Tableau Ideals Generated by 2× 2 Minors

3.1 Known Results

In [4] skew tableau ideals generated by 2× 2 minors are introduced for the study of
blowups of specialized Ferrers ideals. Among the other things, they show that the
initial ideals are Cohen-Macaulay and glicci. This leads naturally to the question of
whether these results generalize to the full ideals, and to the case of minors of higher
order. Before we address these questions, we recall some important results proven in
[4].

Theorem 3.1.1 ([4, Theorem 2.4]). The 2-minors of symmetrized skew tableau ideals
form a Gröbner basis with respect to the lexicographic term-order.

Theorem 3.1.2 ([4, Theorem 3.3]). Let I2(F̃ ) be a symmetrized skew tableau ideal.
Then the initial ideal in(I2(F̃ )) is glicci.

An immediate consequence of this by Theorem 2.1.6 is the following.

Corollary 3.1.3 ([4, Corollary 3.4]). Symmetrized skew tableau ideals generated by
2× 2 minors are Cohen-Macaulay.

Recall that the question of whether every Cohen-Macaulay ideal is glicci is open.
We will show in the following section that the answer is affirmative for skew tableau
ideals generated by 2 × 2 minors. We will also need the following property of the
ideals.

Proposition 3.1.4 ([4, Proposition 3.5]). Symmetrized skew tableau ideals generated
by 2× 2 minors are prime.

3.2 Skew Tableau Ideals Generated by 2× 2 Minors are Glicci

In this section, we will always assume that row indices bi = ai, and so will use T (a, c, d)
to refer to T (a, b, c, d). We will show that a symmetrized skew tableau ideal I2(F̃ )
can be linked to a complete intersection. To do this, we will define skew tableaux G
and H and an ideal c generated by variables such that there is an elementary biliaison

I2(F̃ )

I2(H̃)
∼=
I2(G) + c

I2(H̃)
(−1).

The variables generating c will not appear in G, so we may continue the linkage start-
ing from I2(G) alone using the same process as above (recall that unreflected skew
tableau ideals are only a special case of reflected skew tableau ideals).

After we define the skew tableaux G and H and a complete intersection c, we will
recall the height computation for the these ideals from [4] and show that the ideals
I2(H̃) and I2(G) + c have the appropriate heights for an elementary biliaison.
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Definition 3.2.1. Let F = T (a, c, d) be a skew tableau with n rows defined by the
vectors a, c, d ∈ Zk, which represent k pairs of corners. We define a new tableau G =
T (a′, c′, d′). Let qi be the number of entries in row ai and columns n, n+ 1, . . . , c1− 1
of F , and note q1 = 0. Define a′, c′, d′ ∈ Zk by:

a′ = (a1 − 1, a2, . . . , ak)

c′ = (d1 − q1, d1 − q2, . . . , d1 − qk)
d′ = (d1, . . . , dk)

The skew tableau G contains the first n− 1 rows of columns n, n+ 1, . . . , c1− 1 of F
along with the columns d1 and higher. We preserve the labelling of the indeterminates
in the first set of columns of G so that they match the indices of the original entries in
F . Let c be the ideal generated by all the other indeterminates in rows 1, . . . , n−1 of
F . These are exactly the entries which are the upper left corner of a 2×2 submatrix of
F with lower right corner at (a1, d1). They consist of all the indeterminates in columns
1 to d1 − 1 and rows 1 to n− 1 of F except for those in columns n, n+ 1, . . . , c1 − 1.

Example 3.2.2. Suppose F is a skew tableau with right corners (a1, d1) = (5, 8) and
(a2, d2) = (2, 9) and first left corner (a1, c1) = (5, 7). We have shown the symmetrized
skew tableau F̃ corresponding to such an F̃ below. The dark gray entries are the
generators of c, and the light gray entries form the new tableau G, with the labelling
preserved from F .

F =
x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9

x1,2 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9

x1,3 x2,3 x3,4 x3,5 x3,6 x3,7 x3,8

x1,4 x2,4 x3,4 x4,7 x4,8

x1,5 x2,5 x3,5 x5,7 x5,8

G =
x1,5 x1,6 x1,8 x1,9

x2,5 x2,6 x2,8 x2,9

x3,5 x3,6 x3,8

x4,8

Definition 3.2.3. We define a tableau H = T (a′′, c′′, d′′) by removing the box (a1, d1)
from F . There are two cases:

• Case 1: (a1, d1) is the only entry in row a1 of F . Define a′′, c′′, d′′ ∈ Zk by:

a′′ = (a1 − 1, a2, . . . , ak)

c′′ = (c1, . . . , ck)

d′′ = (d1, . . . , dk)

• Case 2: (a1, d1) is not the only entry in row a1 of F . Define a′′, c′′, d′′ ∈ Zk+1

by:

a′′ = (a1, a1 − 1, a2, . . . , ak)

c′′ = (c1, c1, . . . , ck)

d′′ = (d1 − 1, d1, . . . , dk)
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Example 3.2.4. Suppose F is the same skew tableau as in the previous example.
Then the new tableau H is formed by removing the box at (5, 8).

F =
x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9

x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9

x3,4 x3,5 x3,6 x3,7 x3,8

x4,7 x4,8

x5,7 x5,8

H =
x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9

x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9

x3,4 x3,5 x3,6 x3,7 x3,8

x4,7 x4,8

x5,7

This example corresponds to Case 2 in the definition of H. Case 1 is similar.

We cite the height computation from [4], Theorem 3.3 for the initial ideals to show
the formula for ht I2(F ) and ht I2(F̃ ). Note that the height is equal to the number of
entries that occur as upper left corners of a 2× 2 submatrix of F or F̃ , respectively.

Proposition 3.2.5. Let F̃ be a skew tableau with n rows defined by the pairs of
corners ((ai, ci), (ai, di)) for i = 1, . . . , k. We adopt the convention that ak+1 = 1.
Then

ht I2(F̃ ) = max{0, n− ck}+
k∑
i=1

(ai − ai+1)(di − ci)

and

ht I2(F ) =
k∑
i=1

(ai − ai+1)(di − ci).

Proof. We will show the height formula for reflected skew tableau ideals, and then
derive the formula for unreflected tableaux as a special case. First, assume that there
is exactly one pair of corners for each row of F , so that ai = n + 1 − i. In this case
ai − aa+1 = (n+ 1− i)− (n+ 1− i− 1) = 1, so our formula becomes

ht I2(F̃ ) = max{0, n− ck}+
n−1∑
i=1

(di − ci).

In [4], skew tableaux are defined using column indices λj and µj. Assuming we
define our tableau F with a pair of corners on every row, the translation between
notations is given by λj = di and µj = ci − 1, where j = n + 1 − i. In the language
of [4], our height formula becomes

ht I2(F̃ ) = max{0, n− µ1 − 1}+
n∑
j=2

(λj − µj − 1),

which is exactly the formula proven in [4, Theorem 3.3].
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Suppose now that our description of F requires fewer pairs of corners, i.e. that
there are consecutive indices i, . . . , i + m such that ci = ci+1 = · · · = ci+m and
di = di+1 = · · · = di+m. Then in the height formula we may replace the summands
from i to i+m by the term m ·(di−ci) = (ai+m+1−ai) ·(di−ci). After omitting these
redundant pairs of corners and relabelling accordingly, this agrees with the claimed
formula for reflected skew tableau ideals.

Now, recall from Remark 2.4.14 that an unreflected skew tableau ideal I2(F ) may
be regarded as a reflected skew tableau ideal I2(F̃ ′), where F ′ is the tableau F shifted
sufficiently far to the right so that reflecting across the diagonal does not introduce
any new 2× 2 submatrices. In particular, if F has n rows, we shift F so that ck > n.
In this case, max{0, n− ck} = 0, and the claimed formula for ht I2(F ) is correct.

Corollary 3.2.6. Let F , G, H, and c be defined as above. Then

ht I2(F̃ ) = ht (I2(G) + c) = ht I2(H̃) + 1.

Proof. We compare the height of (I2(G) + c) to the height of I2(F̃ ). The variables in
c do not appear in any element of I2(G), so ht (I2(G) + c) = ht I2(G) + ht c. First,
assume that qi = 0 for all i, which occurs if c1 = n. The proposition above gives that

ht I2(G) =
k∑
i=1

(a′i − a′i+1)(d′i − c′i)

=
k∑
i=1

(ai − ai+1)(di − d1)

Note that the first summand is zero, so we may ignore the −1 in a′1. The ideal c
is generated by all variables in the columns of F up to column d1 − 1, so from [4],
Theorem 3.3 we have that

ht c = max{0, n− ck}+
k∑
i=1

(ai − ai+1)(d1 − ci).

Putting these calculations together, we obtain that

ht I2(G) + ht c.

=
k∑
i=1

(ai − ai+1)(di − d1) + max{0, n− ck}+
k∑
i=1

(ai − ai+1)(d1 − ci)

= max{0, n− ck}+
k∑
i=1

(ai − ai+1)(di − d1) +
k∑
i=1

(ai − ai+1)(d1 − ci)

= max{0, n− ck}+
k∑
i=1

(ai − ai+1)(di − ci)

= ht I2(F̃ ).

23



If some of the qi are nonzero, then we have

ht I2(G) =
k∑
i=1

(ai − ai+1)(di − d1 + qi)

=
k∑
i=1

(ai − ai+1)(di − d1) +
k∑
i=1

(ai − ai+1)(qi)

This is the same computation as above, except that we have added the second sum-
mation because of the qi. But this second summation exactly counts the number of
variables excluded from c, so by the computations above and again by [4, Theorem
3.3], we get that

ht I2(G) + ht c = ht I2(F̃ ) +
k∑
i=1

(ai − ai+1)(qi)−
k∑
i=1

(ai − ai+1)(qi)

= ht I2(F̃ ).

To compute the height of I2(H̃), we must consider the situation in which there is
only one entry in the last row of F separately from the situation in which there are
more than one.

• Case 1: (a1, c1) is the last entry in the nth row of F .

In the first pair of corners, c1 = d1 and H has n− 1 rows, so the formula is

ht I2(H̃) = max{0, n− 1− ck}+ (a1 − 1− a2)(d1 − c1) +
k−1∑
i=2

(ai − ai+1)(di − ci)

= max{0, n− 1− ck}+
k−1∑
i=2

(ai − ai+1)(di − ci)

Since c1 = d1 = n and ck < c1 (as long as I2(F̃ ) is nonempty), it follows that
max{0, n− 1− ck} = n− 1− ck. Therefore

ht I2(H̃) = (n− 1− ck) +
k−1∑
i=2

(ai − ai+1)(di − ci)

= ht I2(F̃ )− 1.

• Case 2: (a1, c1) is not the last entry in the nth row of F .
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Now H̃ is defined by an extra pair of corners, and so the formula is

ht I2(H̃) = max{0, n− ck}+ (a1 − (a1 − 1))(d1 − 1− c1) + (a1 − 1− a2)(d1 − c1)

+
k−1∑
i=2

(ai − ai+1)(di − ci)

= max{0, n− ck}+ (d1 − 1− c1) + (a1 − 1− a2)(d1 − c1)

+
k−1∑
i=2

(ai − ai+1)(di − ci)

= max{0, n− ck} − 1 + (a1 − a2)(d1 − c1) +
k−1∑
i=2

(ai − ai+1)(di − ci)

= max{0, n− ck} − 1 +
k−1∑
i=1

(ai − ai+1)(di − ci)

=ht I2(F̃ )− 1.

Thus in both cases, ht I2(F̃ ) = ht (I2(G) + c) = ht I2(H̃) + 1.

Liaison classification of skew tableau ideals generated by 2× 2 minors

We now prove the main result of this chapter:

Theorem 3.2.7. Symmetrized skew tableau ideals generated by 2 × 2 minors are
glicci.

Proof. We will show how to link an arbitrary ideal I2(F̃ ) to an ideal generated by a list
of variables. Using the tableaux G and H and the ideal c defined in Definition 3.2.1
and Definition 3.2.3, we will show an elementary biliaison:

I2(F̃ )

I2(H̃)
∼=
I2(G) + c

I2(H̃)
(−1).

We will choose homogeneous polynomials f and g of order 1 and 2, respectively, such
that

f · I2(F̃ ) + I2(H̃) = g · (I2(G) + c) + I2(H̃),

and both I2(H̃) : f = I2(H̃) and I2(H̃) : g = I2(H̃). The equality may be shown
at the level of generators. Any generator a ∈ I2(F̃ ) corresponds to a generator
b ∈ I2(G) + c such that

f · a− g · b ∈ I2(H̃). (?)

Conversely, the same argument will guarantee that for any b ∈ I2(G) + c there is a
corresponding a ∈ I2(F̃ ) that gives the same equality.
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From Definition 3.2.3, it is clear that if a minor a ∈ I2(F̃ ) does not contain the
variable at location (a1, d1), then a ∈ I2(H̃). Similarly, from Definition 3.2.1, if b is a
generating minor of I2(G), then b ∈ I2(H̃). So on the left hand side, we only need to
consider generators a ∈ I2(F̃ ) which contain the variable at location (a1, d1), and on
the right hand side from I2(G) + c we only need to consider variables that generate c.
Let a ∈ I2(F̃ ) come from a 2× 2 submatrix of F̃ with lower right corner at (a1, d1).
Then the variable b which is the upper left corner of this submatrix is a generator of
c. We need to show the equality (?) for each of these pairs a and b with the fixed f
and g that we have chosen.

To avoid unnecessary indices, we will use (n, p) for the location of the right corner
(a1, d1). Let a ∈ I2(F̃ ) be a minor with upper left corner at location (i, j) and lower
right corner at location (n, p). This will fall into one of the following three types,
depending on how much of the minor comes from the unreflected part of F̃ :

• Type 1: (i, j) ∈ F and (n, j) ∈ F . Then a =

∣∣∣∣ xi,j xi,p
xn,j xn,p

∣∣∣∣ and b = xi,j.

• Type 2: (i, j) ∈ F and (n, j) 6∈ F . Then a =

∣∣∣∣ xi,j xi,p
xj,n xn,p

∣∣∣∣ and b = xi,j.

• Type 3: (i, j) 6∈ F and (n, j) 6∈ F . Then a =

∣∣∣∣ xj,i xi,p
xj,n xn,p

∣∣∣∣ and b = xj,i.

We must consider the case where (n, p) = (n, n) separately from the case where
n < p. We will show the equality (?) for all three types of minors in both cases. Each
argument is accompanied by an illustrative example with the part of the tableau
below the diagonal shaded in gray. We will at times ignore the last few rows of a
tableau, in accordance with Remark 2.4.12, in order to avoid excessively large dia-
grams.

We choose g to be the 2× 2 minor from entries at locations

(1, k) (1, p)
(n, k) (n, p)

and f to be the entry at (1, k), where k is the farthest right index such that all four
locations are in F̃ . Note that deg(f)− deg(g) = −1.

Case 1: xn,p is not the only entry of row n of F .

In Case 1, g =

∣∣∣∣ x1,k x1,p

xn,k xn,p

∣∣∣∣ and f = x1,k. Since xn,p is not the only entry of row

n in F , k = p− 1.

Type 1: (i, j) ∈ F and (n, j) ∈ F .
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A generator of I2(F̃ ) of Type 1 has the form

a =

∣∣∣∣ xi,j xi,p
xn,j xn,p

∣∣∣∣
and corresponds to a generator b = xi,j in c. We will show f · a = g · b + h for some
h ∈ I2(H̃), i.e. that

x1,k ·
∣∣∣∣ xi,j xi,p
xn,j xn,p

∣∣∣∣ =

∣∣∣∣ x1,k x1,p

xn,k xn,p

∣∣∣∣ · xi,j + h.

This is true if we choose

h = x1,p ·
xi,j xi,k
xn,j xn,k

− xn,j ·
x1,k x1,p

xi,k xi,p
,

which uses the following entries:

x1,k x1,p

xi,j xi,k xi,p

xn,j xn.k xn,p

Note that xi,k ∈ I2(H̃), since x1,k, xn,k ∈ H and 1 ≤ i < n. Thus for any choice of
Type 1 minor, h ∈ I2(H̃).

Type 2: (i, j) ∈ F and (n, j) 6∈ F .

A generator of I2(F̃ ) of Type 2 has the form

a =

∣∣∣∣ xi,j xi,p
xj,n xn,p

∣∣∣∣
and corresponds to a generator b = xi,j in c. We will show f · a = g · b + h for some
h ∈ I2(H̃), i.e. that

x1,k ·
∣∣∣∣ xi,j xi,p
xj,n xn,p

∣∣∣∣ =

∣∣∣∣ x1,k x1,p

xn,k xn,p

∣∣∣∣ · xi,j + h.

This is true if we choose

h = x1,p ·
xi,j xi,k
xj,n xn,k

− xj,n ·
x1,k x1,p

xi,k xi,p
,

which uses the following entries:
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x1,k x1,p

xi,j xi,k xi,p

xj,n xn.k xn,p

We require that xi,k ∈ H̃, and this is true since k = p − 1, x1,k ∈ H and xn,k ∈ H,
and 1 ≤ i < n. Thus for any elements a and b of Type 2, there exists an appropriate
h ∈ I2(H̃).

Type 3: (i, j) 6∈ F and (n, j) 6∈ F .

A generator of I2(F̃ ) of Type 3 has the form

a =

∣∣∣∣ xj,i xi,p
xj,n xn,p

∣∣∣∣
and corresponds to a generator b = xj,i in c. We will show f · a = g · b + h for some
h ∈ I2(H̃), i.e. that

x1,k ·
∣∣∣∣ xj,i xi,p
xj,n xn,p

∣∣∣∣ =

∣∣∣∣ x1,k x1,p

xn,k xn,p

∣∣∣∣ · xj,i + h.

This is true if we choose

h = x1,p ·
xj,i xi,k
xj,n xn,k

− xj,n ·
x1,k x1,p

xi,k xi,p
,

which uses the following entries:

x1,k x1,p

xj,i xi,k xi,p

xj,n xn.k xn,p

We require that xi,k ∈ H̃, and this is true since x1,k, xn,k ∈ H and 1 ≤ i < n. Thus
for any elements a and b of Type 3, there exists an appropriate h ∈ I2(H̃).

Case 2: xn,p is the only entry of row n of F̃ , so k < n
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In Case 2, g =

∣∣∣∣ x1,k x1,p

xk,n xn,p

∣∣∣∣ and f = x1,k. Note that Type 1 pairs do not occur

in Case 2.

Type 2: (i, j) ∈ F and (n, j) 6∈ F .

A generator of I2(F̃ ) of Type 2 has the form

a =

∣∣∣∣ xi,j xi,p
xj,n xn,p

∣∣∣∣
and corresponds to a generator b = xi,j in c. We will show f · a = g · b + h for some
h ∈ I2(H̃), i.e. that

x1,k ·
∣∣∣∣ xi,j xi,p
xj,n xn,p

∣∣∣∣ =

∣∣∣∣ x1,k x1,p

xk,n xn,p

∣∣∣∣ · xi,j + h.

This is true if we take

h = x1,p ·
xi,j xi,k
xj,n xk,n

− xj,n ·
x1,k x1,p

xi,k xi,p
,

which uses the following entries:

x1,k x1,p

xi,j xi,k xi,p

xi,k

xj,n xk,n xn,p

We need xi,k ∈ H. Since xi,j ∈ H, it is also true that x1,j ∈ H. By definition of k,
j ≤ k < p, and since and both xi,j ∈ H and xi,p ∈ H, it follows that xi,k ∈ H. Thus
for any elements a and b of Type 2, there exists an appropriate h ∈ I2(H̃).

Type 3: (i, j) 6∈ F and (n, j) 6∈ F .

A generator of I2(F̃ ) of Type 2 has the form

a =

∣∣∣∣ xj,i xi,p
xj,n xn,p

∣∣∣∣
and corresponds to a generator b = xj,i in c. We will show f · a = g · b + h for some
h ∈ I2(H̃), i.e. that

x1,k ·
∣∣∣∣ xj,i xi,p
xj,n xn,p

∣∣∣∣ =

∣∣∣∣ x1,k x1,p

xk,n xn,p

∣∣∣∣ · xj,i + h.
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This is true if we take

h = x1,n ·
xj,i xi,p
xj,k xk,p

− xj,i ·
x1,n x1,p

xk,n xk,p
− xi,p ·

x1,k x1,n

xj,k xj,n
,

which uses the following entries:

x1,k x1,n x1,p

xj,k xj,n

xj,i xi,p

xj,k xk,n xk,p

xj,n xk,n xn,p

We need x1,n, xj,k, xk,p ∈ H. Since xk,n ∈ H, it is also true that x1,n ∈ H. Note that
since xj,i ∈ H, we also know that x1,i ∈ H, so i ≤ k < n by the definition of k. Since
also xj,i and xj,n are both in H, it follows that xj,k ∈ H. Finally, since k < n and
xn,p ∈ H, it follows that xk,p ∈ H. Thus for any corresponding pair of elements a
and b of Type 3, there exists an appropriate h ∈ I2(H̃).

We have shown that for every choice of generator a ∈ I2(F̃ ), there is a generator
b ∈ I2(G) + c such that

f · a− g · b ∈ I2(H̃).

Given a variable b ∈ c, we take a to be any 2× 2 minor from a submatrix with lower
corner at xa1,d1 and upper left corner b. Then the same argument as above works in
the opposite direction to show the same conclusion. Thus we have determined that
for our chosen f and g,

f · I2(F̃ ) + I2(H̃) = g · (I2(G) + c) + I2(H̃).

By Corollary 3.2.6, ht I2(F̃ ) = ht (I2(G)+c) = ht I2(H̃)+1, and by Corollary 3.1.3
and Proposition 3.1.4 from [4], ideals of the form I2(F̃ ) are Cohen-Macaulay and
prime. Note that the minor g involves the variable xa1,d1 , which is not present in
I2(H̃), so g 6∈ I2(H̃), and also that f is just a variable, so f 6∈ I2(H̃). Thus f and g
are nonzero divisors modulo I2(H̃) that define an isomorphism

I2(F̃ )

I2(H̃)
∼=
I2(G) + c

I2(H̃)
(−1).
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By the above comments, this is an elementary biliaison between I2(F̃ ) and I2(G) + c,
and so by Theorem 2.1.5, the two ideals may be G-linked in two steps.

The variables that generate c are not present in the tableau G, so we may con-
tinue the linkage from the ideal I2(G) alone. Recall from Remark 2.4.14 that unsym-
metrized ideals are a special case of symmetrized ideals, so we may define another
tableau G2 and an ideal c2 such that I2(G) is linked to I2(G2)+ c2 in two steps by the
same result. The tableau Gi is strictly smaller than the tableau Gi−1, so this process
may be repeated a finite number of times N until the ideal I2(GN) is empty. This
gives us a series of links from I2(F̃ ) to c + c2 + · · ·+ cN , thus showing that reflected
skew tableau ideals generated by 2× 2 minors are glicci.

The choice of the element h for Type 3 minors in Case 2 of the preceding proof
has three terms instead of two, which is different from the form of the expression in
Proposition 2.3.10. This happens because that formula would involve the entry at
location (i, k), and this need not be present in a skew tableau.

Copyright c© Bill Robinson, 2015.
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Chapter 4 Skew Tableau Ideals Generated by t× t Minors

For t ≥ 3, skew tableau ideals from t×t minors lose some of the nice properties enjoyed
by the other classes of determinantal ideals that we have mentioned. In particular,
the set of minors generating the ideal do not necessarily form a Gröbner basis, and the
ideals need not be prime. We give examples of ideals where these properties fail. On
the other hand, there are special cases for which the ideals enjoy some of these nice
properties, but for which the ideals are equivalent to other known classes of ideals.
We discuss one such example in section 4.1, where we give an original proof of the
fact that skew tableau ideals from tableaux with no holes are glicci. Unsymmetrized
skew tableau ideals are a distinct class of ideals from those studied previously, and for
these we have shown that the set of minors forms a Gröbner basis. The proof of this
fact involves a somewhat surprising application of Theorem 2.3.9 that describes the
output of the division algorithm. We close the chapter with some plans for further
study.

4.1 Skew tableaux with no holes

Definition 4.1.1. A skew tableau with no holes is one which has a left corner at
every location on the main diagonal and no left corners off it. In such a skew tableau
F = T (a, b, c, d) with n rows, we will set b = (1, 2, . . . , n) and c = (1, 2, . . . , n). Since
the left corners are already determined, it is enough for us to specify a list of right
corners (ai, di) and consider F = T (a, d).

Our goal is to show that skew tableau ideals with no holes can be G-linked to
a complete intersection. From a given skew tableau ideal It(F̃ ), we will define new
skew tableaux G̃ and H̃, and then define an elementary biliaison

It(F̃ )/Iτ (H̃) ∼= It′(G̃)/Iτ (H̃) (−1).

This will determine a pair of links from It(F̃ ) to It′(G̃). The vector t′ will agree with
t except in a single entry, at which place it will be one less. Thus we may repeat
this process a finite number of times to link to a skew tableau ideal with vector
t′ = (1, . . . , 1), which defines a complete intersection. Since skew tableau ideals are
a special case of symmetrized skew tableau ideals (see Remark 2.4.14 ), we will only
treat the symmetrized case in this section.

Remark 4.1.2. Ideals from skew tableaux with no holes are equivalent to ideals
generated by minors of mixed sixed in a symmetric ladder of a symmetric matrix.
Although a Gröbner basis calculation was given for these ideals in [12], and it was
shown in [9] that ideals in this class are glicci. We provide an independent proof
of both results and note some small omissions in the second proof. Our approach
depends on the determinantal identity we have shown in Proposition 2.3.10, and
does not depend on the unproven Lemma 2.3.6. For our purposes, these new proofs
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also have the advantage that the arguments could generalize more easily to ideals
generated in arbitrary skew tableaux.

First, we compute a Gröbner basis for a skew tableau ideal with no holes, and use
this to show that the ideals are prime and to calculate the their heights. Our Gröbner
basis calculation will refer to partially-symmetric matrices. These are matrices of the
form

(S |X)

in which S is a generic symmetric matrix and X is a generic matrix of indeter-
minates. For the following lemma, we specify a diagonal term order as defined in
Definition 2.2.1.

Lemma 4.1.3 (c.f. [12, Theorem 4.7]). Let F be a skew tableau with no holes. For
any diagonal term order, the minors generating It(F̃ ) form a Gröbner basis.

Proof. Suppose F̃ is defined by the subregions F̃i for i = 1, . . . , k as in Definition 2.4.6.
Recall from Remark 2.4.12 that if A is any ti × ti submatrix of F̃i, then either
A ∈ F̃i ∩ Xi or Atr ∈ F̃i ∩ Xi. So Iti(F̃i) = Iti(F̃i ∩ Xi). We will use this fact
repeatedly. Let Gi be the set of generating minors in Iti(F̃i). We are trying to show
that G =

⋃k
i=1 Gi is a Gröbner basis of It(F̃ ) =

∑k
i=1 Iti(F̃i) =

∑k
i=1 Iti(F̃i ∩Xi).

We argue by induction on k, the number of right corners that define F . If
k = 1, then F1 ∩ X1 is a partially-symmetric matrix, and so G is a Gröbner ba-
sis of It(F̃1 ∩X1) = It(F̃ ) by [2, Remark 4.1.6 and Theorem 4.3.2].

If k = 2, then F̃ = F̃1

⋃
F̃2 is defined by the two right corners (a1, d1) and (a2, d2),

and (F̃1∩X1)
⋃

(F̃2∩X2) is contained in a partially-symmetric matrix X of size a1×d2.
Then It1(F̃1 ∩X1) + It2(F̃2 ∩X2) is a symmetric ladder ideal by [2, Section 4.6], and
so H, the set of generating minors, forms a Gröbner basis of the ideal by [2, The-
orem 4.4.4]. Clearly a skew tableau F̃ satisfies the conditions of Lemma 2.2.5, so
G = H ∩K[F ] is a Gröbner basis of It(F̃ ).

Assume the claim is true for k − 1. Let F̃ ′ =
⋃k−1
i=1 F̃i, and let t′ = (t1, . . . , tk−1).

Then
F̃ = F̃ ′ ∪ F̃k and It(F̃ ) = It′(F̃

′) + Itk(F̃k).

Let G′ =
⋃k−1
i=1 Gi. Then G′ is a Gröbner basis of It′(F̃

′) and Gk is a Gröbner basis of
Itk(F̃k) by the induction hypothesis, and G = G′

⋃
Gk. Let f ∈ G′ and g ∈ Gk. Note

that f ∈ Gj for some 1 ≤ j ≤ k− 1. By the argument above when k = 2, Gj

⋃
Gk is

a Gröbner basis of Itj(F̃j) + Itk(F̃k). Then by Lemma 2.2.6, there is an element

h ∈ Itj(F̃j) ∩ Itk(F̃k)

such that
in(h) = lcm(in(f), in(g)).
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But this means that

h ∈ Itj(F̃j) ∩ Itk(F̃k) ⊂ It′(F̃
′) ∩ Itk(F̃k),

so G′
⋃

Gk is a Gröbner basis of It(F̃ ) = It′(F̃
′) + Itk(F̃k), again by Lemma 2.2.6.

Corollary 4.1.4. Let It(F̃ ) be as above. Then the initial ideal in(It(F̃ )) is squarefree.

Since skew tableau ideals from tableaux with no holes are a special case of sym-
metric ladder determinantal ideals, we immediately get the following property.

Proposition 4.1.5 (c.f. [9, Proposition 1.7]). Symmetrized skew tableau ideals from
skew tableaux with no holes are prime.

We now describe how to define the skew tableau ideals It′(G̃) and Iτ (H̃) from
an arbitrary skew tableau ideal It(F̃ ), from which we will produce an elementary
biliaison.

Definition 4.1.6. Let F = T (a, d) be a skew tableau with no holes, with t =
(t1, . . . , tk) its corresponding vector. Suppose F has n rows. Choose any r such
that tr > 1, and such that (ar, dr) is the farthest right corner in row ar and the lowest
corner in column dr. Define the tableau G = T (a′, d′) by the vectors a′, d′ ∈ Zk,
where

a′ = (a1, . . . , ar−1, ar − 1, ar+1, . . . , ak)

d′ = (d1, . . . , dr−1, dr − 1, dr+1, . . . , dk)

and let t′ = (t1, . . . , tr−1, tr − 1, tr+1, . . . , tk) ∈ Zk.

Example 4.1.7. Suppose F is the tableau with right corners (5, 7) and (3, 10) and
vector t = (2, 2). We choose r = 2, which corresponds to the corner (3, 8). Then G
has right corners (5, 7) and (2, 9) and vector t′ = (2, 1). The relevant parts of F and
G are shown below.

F =
... x1,5 x1,6 x1,7 x1,8 x1,9 x1,10

... x2,5 x2,6 x2,7 x2,8 x2,9 x2,10

... x3,5 x3,6 x3,7 x3,8 x3,9 x3,10

x4,6 x4,7

x5,6 x5,7

G =
... x1,5 x1,6 x1,7 x1,8 x1,9

... x2,5 x2,6 x2,7 x2,8 x2,9

... x3,5 x3,6 x3,7

x4,6 x4,7

x5,6 x5,7

Definition 4.1.8. Let H = T (a′′, d′′) be the skew tableau obtained by removing the
location (ar, dr) from F . There are two cases:
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• Case 1: Suppose r = 1 and d1 = n, so there is only one entry in the last row
of F . Let H be defined by the vectors a′′′, d′′ ∈ Zk, where

a′′ = (a1 − 1, a2, . . . , ak)

d′′ = (d1, . . . , dk).

Define the corresponding vector to be τ = t.

• Case 2: Suppose that either r > 1 or that r = 1 and d1 > c1. Let H be defined
by the vectors a′′′, d′′ ∈ Zk+1, where

a′′ = (a1, . . . , ar−1, ar, ar − 1, ar+1, . . . , ak)

d′′ = (d1, . . . , dr−1, dr − 1, dr, dr+1, . . . , dk)

Define the corresponding vector to be τ = (t1, . . . , tr, tr, . . . , tk) ∈ Zk+1, which
is the same as t but with the rth entry repeated.

Example 4.1.9. We consider the same example as the previous one. Given the same
skew tableau F , we define the skew tableau H according to the description in Case
2, with right corners (5, 7), (3, 9), and (2, 10) and vector τ = (2, 2, 2). The relevant
parts of F and H are shown below.

F =
... x1,5 x1,6 x1,7 x1,8 x1,9 x1,10

... x2,5 x2,6 x2,7 x2,8 x2,9 x2,10

... x3,5 x3,6 x3,7 x3,8 x3,9 x3,10

x4,6 x4,7

x5,6 x5,7

H =
... x1,5 x1,6 x1,7 x1,8 x1,9 x1,10

... x2,5 x2,6 x2,7 x2,8 x2,9 x2,10

... x3,5 x3,6 x3,7 x3,8 x3,9

x4,6 x4,7

x5,6 x5,7

We will calculate the height of a skew tableau ideal by specifying a target region
in F , which reflects the fact that we will eventually link to the ideal generated by the
variables in that region. The number of distinct variables in the target region is the
height of the corresponding skew tableau ideal.

Definition 4.1.10. Let F be a skew tableau defined by k pairs of corners and with
associated vector t. We adopt the convention that t0 = t1 and a0 = d0 = a1, which
may be thought of as adding a redundant 0th right corner at the lowest entry on the
main diagonal of F . Define the following ideals:

• f0 =
〈
xi,j | i ≤ j, 1 ≤ i ≤ a0 − t0 + 1 and 1 ≤ j ≤ d0 − t0 + 1

〉
• for r ≥ 1, fr =

〈
xi,j | 1 ≤ i ≤ ar − tr + 1 and dr−1 − tr−1 + 2 ≤ j ≤ dr − tr + 1

〉
.

Let T̃ be the subset of indeterminates in F which generate the fi’s. We will refer to
T̃ as the target region, and the ideal f̃ = f0 + · · ·+ fk as the target ideal.
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Example 4.1.11. Let F̃ be the symmetrized skew tableau with right corners at
(a1, d1) = (5, 7) and (a2, d2) = (3, 10) and vector t = (3, 2). In this example, a0 =
d0 = 5. The first five rows of F̃ are shown below, with the target region T̃ shaded in
gray. The entries corresponding to f0 are dark gray and the entries corresponding to
f1 and f2 are light gray.

F =
x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9 x1,10

x1,2 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9 x2,10

x1,3 x2,3 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8 x3,9 x3,10

x1,4 x2,4 x3,4 x4,4 x4,5 x4,6 x4,7

x1,5 x2,5 x3,5 x4,5 x5,5 x5,6 x5,7

Here f1 =
〈
xi,j | 1 ≤ i ≤ 3 and 4 ≤ j ≤ 5

〉
and f2 =

〈
xi,j | 1 ≤ i ≤ 2 and 6 ≤ j ≤ 9

〉
.

Proposition 4.1.12. Let t0 = t1 and a0 = c0 = d0 = a1, as in the previous definition.
Define q0 =

(
a0−t0+2

2

)
, and for r ≥ 1, let qr = max{0, (ar−tr+1)(dr−tr−dr−1+tr−1)}.

Then
ht It(F̃ ) = q0 + q1 + · · ·+ qr .

Proof. First, we note that |T̃ | = q0 + q1 + · · ·+ qr. In particular, fi has qi generators,
and the generating sets of the fi’s are disjoint. The variables generating f0 come from
a symmetric submatrix of F̃ of size (a0 − t0 + 1) × (d0 − t0 + 1), and since a0 = d0,
this is generated by

q0 = (a0 − t0 + 1) · (d0 − t0 + 1) =

(
a0 − t0 + 2

2

)
distinct variables. For r ≥ 1, it follows from Lemma 2.4.13 that the variables gener-
ating fr come from a rectangular submatrix of F̃ which (if it is nonempty) has size
(ar − tr + 1)× (dr − tr − dr−1 + tr−1), and this region is completely contained in the
part of F̃ above the diagonal, so that all qr variables in it are distinct. Thus fr is
generated by

qr = max{0, (ar − tr + 1)(dr − tr − dr−1 + tr−1)}

distinct variables.

Choose any diagonal term order. By Lemma 4.1.3, the set of minors generating
It(F̃ ) form a Gröbner basis. Using the fact that ht in(It(F̃ )) = ht It(F̃ ), we only need
to show that ht in(It(F̃ )) = |T̃ |.

First, we observe that ht in(It(F̃ )) is equal to the minimal height of an associated
prime of It(F̃ ), which is the minimal cardinality among subsets S of indeterminates
in F̃ with the property that each monomial in a set of generators of in(It(F̃ )) con-
tains a variable from S. Now, it is clear that every monomial in a set of generators
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of in(It(F̃ )) contains a variable from the target region T̃ , since the upper left corner
from every minor generating It(F̃ ) is an element of T̃ . We claim that no smaller
cardinality subset of indeterminates of F̃ satisfies this condition.

Suppose there is a subset S such that each monomial in a set of generators of
in(It(F̃ )) contains a variable from S, but that |S| < |T̃ |. For each integer u that
makes the set nonempty, define δu to be the set of variables that are u spaces off the
main diagonal of F̃ , i.e.

δu = {xi,j ∈ F̃ at a location of the form (a, a+ u)}.

Note that every variable along one of these diagonals is distinct. Now, since |S| < |T̃ |,
for some u it must be true that |S ∩ δu| < |T̃ ∩ δu|. The farthest down entry in T̃ ∩ δu
comes from fr for some r, as in Definition 4.1.10. There are tr − 1 variables in δu\T̃ ,
and thus there are at least tr variables in δu\S. The product of these tr variables is
a minimal generator of in(It(F̃ )) involving no elements of S, which contradicts our
choice of S. Therefore no such S exists, and |T̃ | is indeed minimal. It thus follows
that

ht It(F̃ ) = ht in(It(F̃ )) = |T̃ | = q0 + q1 + · · ·+ qr

as claimed.

Corollary 4.1.13. Let It(F̃ ), It′(G̃), and Iτ (H̃) be defined as in Definition 4.1.6.
Then

ht It(F̃ ) = ht It′(G̃) = ht Iτ (H̃) + 1.

Proof. Recall the convention that t0 = t1 and a0 = d0 = a1. Let r be the index of the
corner that is adjusted. In the height formula of Proposition 4.1.12 , we will use the
notation ht It′(G̃) = q′0 + q′1 + · · · + q′k and ht Iτ (H̃) = q′′0 + q′′1 + · · · + q′′r + · · · + q′′k ,
where q′′r = q′′r1 + q′′r2 corresponds to the corners in H that replace the rth corner of F .
We consider two cases, which correspond to the two cases in the definition of H.

Case 1: Suppose r = 1 and d1 = n, where n is the number of rows in F , so that the
adjusted corner is the last entry on the diagonal and is the only entry of that row.
Then in the formula for the height of It(F̃ ) we have that

q0 =

(
a0 − t0 + 2

2

)
and

q1 = max{0, (a1 − t1 + 1)(d1 − t1 − d0 + t0)}.

For It′(G̃) we have that

q′0 =

(
(a0 − 1)− (t0 − 1) + 2

2

)
=

(
a0 − t0 + 2

2

)
= q0

37



and

q′1 = max{0, ((a1 − 1)− (t1 − 1) + 1)((d1 − 1)− (t1 − 1)− (d0 − 1) + (t0 − 1))}
= max{0, (a1 − t1 + 1)(d1 − t1 − d0 + t0)}
= q1.

Since q′i = qi for i > 1, it follows that ht It(F̃ ) = ht It′(G̃).

For ht Iτ (H̃), there are still only k corners, so ht Iτ (H̃) = q′′0 +q′′1 + · · ·+q′′k . Recall
that τ = t. We have that

q′′0 =

(
(a0 − 1)− t0 + 2

2

)
and

q′′1 = max{0, (a′′1 − t′′1 + 1)(d′′1 − t′′1 − d′′0 + t′′0)}
= ((a1 − 1)− t1 + 1)(d0 − t0 − (d0 − 1) + t0)

= (a1 − t1)(d1 − t1 − (a1 − 1) + t0)

= (a1 − t1)

The height formula for It(F̃ ) begins:

q0 + q1 =

(
a0 − t0 + 2

2

)
+ max{0, (a1 − t1 + 1)(d1 − t1 − d0 + t0)}

=

(
a0 − t0 + 2

2

)
=

(
a0 − t0 + 1

2

)
+ (a0 − t0 + 1)

The height formula for Iτ (H̃) begins:

q′′0 + q′′1 =

(
(a0 − 1)− t0 + 2

2

)
+ (a1 − t1)

=

(
a0 − t0 + 1

2

)
+ (a0 − t0 + 1)− 1

=q0 + q1 − 1.

Since q′′i = qi for i > 1, it follows that ht It(F̃ ) = ht Iτ (H̃) + 1.

Case 2: Suppose that either r > 1 or that r = 1 and d1 > n. Then the formula for
the rth summand in the height formula for It(F̃ ) is

qr = (ar − tr + 1)(dr − tr − dr−1 + tr−1).
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The formula for the rth summand in the height formula of It′(G̃) is

q′r = (ar − 1)− (tr − 1) + 1)((dr − 1)− (tr − 1)− dr−1 + tr−1)

= ((ar − tr + 1)(dr − tr − dr−1 + tr−1)

= qr

Since q′i = qi for i 6= r, it follows that ht It(F̃ ) = ht It′(G̃).

In the height formula for Iτ (H̃), we have that

q′′r1 = (ar − tr + 1)((dr − 1)− tr − dr−1 + tr−1)

and
q′′r2 = ((ar − 1)− tr + 1)(dr − tr − (dr − 1) + tr) = (ar − tr).

The sum of these is

q′′r = q′′r1 + q′′r2 = (ar − tr + 1)(dr − tr − dr−1 + tr−1)− 1

= qr − 1.

Since q′′i = qi for i 6= r, it follows that ht It(F̃ ) = ht Iτ (H̃) + 1, as desired.

Liaison classification of reflected skew tableau ideals with no holes

Our goal now is to show that It(F̃ ) is linked to the target ideal f̃ generated by the
indeterminates in the target region T̃ . First, we recall that the initial ideal in(It(F̃ ))
is glicci, and thus that skew tableau ideals with no holes are Cohen-Macaulay. Then
we show that the full ideals are glicci by producing an elementary biliaison between
It(F̃ ) and It′(G̃) on Iτ (H̃). This technique depends on the fact that the ideals are
Cohen-Macaulay, and we re-prove this fact using an inductive approach that does not
depend on knowing the initial ideals.

Theorem 4.1.14 ([12, Theorem 4.7]). Let F̃ be a skew tableau with no holes. Then
the initial ideal in(It(F̃ )) is glicci.

Corollary 4.1.15 ([12, Theorem 4.7]). The ideal in(It(F̃ )) is Cohen-Macaulay, and
the associated simplicial complex is vertex-decomposable.

We now provide a new proof that skew tableau ideals from tableaux with no holes
are glicci.

Theorem 4.1.16 (c.f. [9, Theorem 2.4]). Let F be a skew tableau with no holes.
Then the ideal It(F̃ ) is glicci.

Proof. Let It(F̃ ), It′(G̃), and Iτ (H̃) be defined as in Definition 4.1.6, and let r be the
index of the corner that is adjusted. We will show that

It(F̃ )/Iτ (H̃) ∼= It′(G̃)/Iτ (H̃) (−1)
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is an elementary biliaison between It(F̃ ) and It′(G̃). This graded ring isomorphism
is given by elements f and g such that

f · It(F̃ ) + Iτ (H̃) = g · It′(G̃) + Iτ (H̃). (?)

Let g be the minor from rows {1, 2, . . . , tr − 1, ar} and columns {dr − tr + 1, dr − tr +
2, . . . , dr}. Let f be the minor from rows {1, 2, . . . , tr − 1} and columns {dr − tr +
1, dr− tr + 2, . . . , dr−1}. Note that g is a tr× tr minor and f is the (tr−1)× (tr−1)
minor using all but the last row and column of g, so that deg(f) − deg(g) = −1.
As long as Itr(F̃r) is nonempty, the submatrices which form the minors f and g are
subsets of F̃ .

We will show (?) at the level of generators. For each generator a ∈ It(F̃ ), we
choose a generator b ∈ It′(G̃) such that

f · a− g · b ∈ Iτ (H̃).

The same argument will show that for any generator b ∈ It′(G̃), we can choose a
generator a ∈ It(F̃ ) with the same result.

First we note that if i 6= r, then Iti(F̃ ) = It′i(G̃) ⊂ Iτ (H̃). Thus it is enough to
show that

f · Itr(F̃r) + Iτ (H̃) = g · It′r(G̃r) + Iτ (H̃).

Now, if a is any minor in Itr(F̃ ) not involving the variable xar,dr , then a ∈ Iτ (H̃).
Using the notation defined in Notation 2.3.1, let M = F̃r and let a = M(I+ar|J+dr)
be any minor in Itr(F̃r) involving xar,dr . This corresponds to b = M(I|J) ∈ It′r(G̃r).
With g = M(K + ar|L + dr) and f = M(K|L) defined as above, it follows from
Corollary 2.3.11 that

f · a− g · b ∈ Iτ (H̃).

In the reverse direction, any minor b = M(I|J) ∈ It′r(G̃r) corresponds to a minor

a = M(I + ar|J + dr) ∈ Itr(F̃r), and the same argument applies. This establishes the
equality (?).

Skew tableau ideals with no holes are prime by Proposition 4.1.5, and so in partic-
ular, f and g are non zero-divisors of H. By Proposition 4.1.12, ht It(F̃ ) = ht It′(G̃) =
ht Iτ (H̃) + 1. By Corollary 4.1.15, the ideals are Cohen-Macaulay; however, we offer
the following inductive argument, which may be useful in other settings where the
initial ideals are not known. We use induction on N , the number of entries in the
skew tableau. The case N = 1 is trivial. Assume that every skew tableau ideal gen-
erated from a tableau with N variables is Cohen Macaulay, and suppose F̃ has N + 1
entries. Note that both G̃ and H̃ have fewer entries than F̃ , and so by assumption
they are Cohen Macaulay. Thus It′(G̃) is obtained from It(F̃ ) by an elementary bili-
aison, and since It′(G̃) is Cohen-Macaulay by assumption, Theorem 2.1.6 gives that
It(F̃ ) is Cohen-Macaulay also.
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From the arguments above, we conclude that (?) is an elementary biliaison, and
thus it follows from Theorem 2.1.5 that the ideals It(F̃ ) and It′(G̃) are G-linked in
two steps. Since the vector t′ is formed from t by decreasing the rth component tr by
1, we may iterate this process

∑k
r=1(tr − 1) times until we reach the target ideal f,

which is generated by variables and is thus a complete intersection.

4.2 General skew tableaux

When a skew tableau F has holes, it may no longer be the case that the minors form
a Gröbner basis, and we do not have a codimension formula for these ideals. It is also
not always clear how to define the tableaux G and H for the linkage. We will give
examples of ideals for which the Gröbner basis property fails, and show some partial
results for the linkage of skew tableau ideals in nice cases.

Symmetrized skew tableaux ideals are doubly symmetrized in the sense that the
shape F is reflected to give F̃ , and the indeterminates are specialized so that F̃ is
a subset of a symmetric matrix. If we take F to be a subset of a generic matrix of
indeterminates without specializing below the diagonal, then the ideal It(F̃ ) is not
generally even Cohen-Macaulay.

Example 4.2.1. Let F̃ be the “unspecialized” tableau

x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,3 x2,4 x2,5

x3,1 x3,2 x3,4 x3,5

x4,1 x4,2 x4,3 x4,4 x4,5

x5,1 x5,2 x5,3 x5,4

The shape is reflected but the variables are all distinct. Macaulay2 computes that
I3(F̃ ) is not Cohen-Macaulay.

Unsymmetrized skew tableau ideals

In this section, we discuss unsymmetrized skew tableau ideals from minors of mixed
size. First, we observe that these ideals are equivalent in some cases to ladder deter-
minantal ideals (which are known to be glicci), but in general the two classes of ideals
are distinct. We then apply Theorem 2.3.9 to show that the set of minors generating
the ideal forms a Gröbner basis.

Remark 4.2.2. Unsymmetrized skew tableau ideals generated by minors of a fixed
size are equivalent to one-sided ladder determinantal ideals. However, if the ideals
are generated by minors of mixed size, then these are a distinct class of ideals. To
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see this, let F ⊂ M = (xi,j) be a skew tableau with r columns. For convenience we
label these columns 1, . . . , r. For this example, we drop the assumption that entries
of F are on or above the main diagonal, and assume M is a generic matrix with
exactly r columns. Define nj to be the number of boxes in column j, and let σ be
the permutation on [r] such that

• σ(p) < σ(q) if np < nq, and

• σ(p) < σ(q) if np = nq and p < q.

Then the column indices σ(1), . . . , σ(r) are arranged in order of increasing number of
boxes, and the order of columns with the same number of boxes is preserved. Let Pσ
be the permutation matrix that arranges the columns of M in the order σ(1), . . . , σ(r)
via multiplication on the right. Let σ(F ) be the subset of MPσ with contains the
same entries as F . Then σ(F ) is a one-sided ladder. For instance, the columns of a
tableau F would be rearranged as follows:

x1,3 x1,4 x1,5 x1,6 x1,7 x1,8

x2,3 x2,4 x2,5 x2,6 x2,7 x2,8

x3,3 x3,4 x3,5 x3,6 x3,7 x3,8

x4,5 x4,6 x4,7 x4,8

x5,5 x5,6

σ−→
x1,3 x1,4 x1,7 x1,8 x1,5 x1,6

x2,3 x2,4 x2,7 x2,8 x2,5 x2,6

x3,3 x3,4 x3,7 x3,8 x3,5 x3,6

x4,7 x4,8 x4,5 x4,6

x5,5 x5,6

The ideal generated by minors of fixed size in F is the same as the ideal generated by
minors of the same size in σ(F ). However, our class of ideals differs from one-sided
ladder ideals in two ways. First, we specify a diagonal term-order when studying
the initial ideals, whereas one-sided ladder ideals have been studied previously using
anti-diagonal term orders. Second we allow minors of mixed size, where the size of
the minors is determined by right corners (shaded in gray above). It may happen
that σ takes a right corner of F to a non-corner of σ(F ). When this happens, the
ideal does not satisfy the conditions to be a mixed ladder determinantal ideal. See,
for example, [7] and [8] for results about the linkage of mixed ladder determinantal
ideals.

Theorem 4.2.3. Fix the lexicographic term order. Let F =
⋃k
i=1 Fi be a skew tableau

with associated vector t = (t1, . . . , tk) and let Gi be the set of ti × ti minors in Fi.
Then G =

⋃
Gi is a Gröbner basis of It(F ).

Proof. We will show that the S-polynomial of a pair of minors in G reduces to zero
with respect to G. By Remark 4.2.2 and [8], Gi is a Gröbner basis of Iti(Fi), so
if f, g ∈ Gi, S(f, g) reduces to zero with respect to Gi. Suppose that f ∈ Gi and
g ∈ Gj. To avoid unnecessary indices, we will write r for ti and s for tj. We assume
without loss of generality that r ≤ s. We also assume that i > j, since otherwise
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g ∈ Ir(Fi) and so g is redundant.

Let p ∈ {0, 1, . . . , r} be the number of entries that f and g have in common on the
main diagonals of the submatrices they come from. We consider these as submatrices
of a matrix M of size n× n with n = (r + s− p), where f comes from the upper left
r × r submatrix of M and g comes from the lower right s × s submatrix of M . For
example, if r = 3, s = 4, and p = 2, the matrix M is:

x1,3 x1,4 x1,5 x1,6 x1,7

x2,3 x2,4 x2,5 x2,6 x2,7

x3,3 x3,4 x3,5 x3,6 x3,7

x4,4 x4,5 x4,6 x4,7

x5,4 x5,5 x5,6 x5,7

We have omitted the entries which will not be used in our calculations, and shaded in
gray the entries that f and g share on their main diagonals. Here f = M(1, 2, 3|1, 2, 3)
and g = M(2, 3, 4, 5|2, 3, 4, 5), and in general f = M(1, 2, . . . , r|1, 2, . . . , r) and
g = M(r − p+ 1, r − p+ 2 . . . , n|r − p+ 1, r − p+ 2 . . . , n).

If p = 0, then the leading terms of f and g are relatively prime, and so it is
well-known (see, for example, [14, Lemma 2.3.1]) that their S-polynomial reduces to
zero with respect to {f, g}. Suppose that 1 ≤ p ≤ r. Then

S(f, g) =
lcm(in(f), in(g))

in(f)
· f − lcm(in(f), in(g))

in(g)
· g

= xr+1,r+1xr+2,r+2 . . . xn,n · f − x1,1x2,2 . . . xr−1,r−1 · g.

We wish to show that S(f, g) reduces to zero with respect to G.

Fix A = {1, 2, . . . , r − p} and B = {1, 2, . . . , r}. We apply Theorem 2.3.9 to the
transpose of M to get ∑

V⊆B

M{V |A} =
∑
U⊇A

M{B|U} (?)

where U and V are subsets of [n]. If we label the minors M(Ṽ |Ã) as fp for p =

1, . . . ,
(|B|
|V |

)
, then there are coefficients αp such that∑

V⊆B

M{V |A} = xr+1,r+1xr+2,r+2 . . . xn,n · f +
∑

αp · fp.

Note fp = f for some p. Similarly, if we label the minors M(B|U) as gq, where

q = 1, . . . ,
(|U |
|A|

)
, then there are coefficients βq such that∑
U⊇A

M{B|U} = x1,1x2,2 . . . xr−1,r−1 · g +
∑

βq · gq.
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Note gq = g for some q. Then the equation (?) becomes

xr+1,r+1xr+2,r+2 . . . xn,n · f +
∑

αp · fp = x1,1x2,2 . . . xr−1,r−1 · g +
∑

βq · gq

=⇒ xr+1,r+1xr+2,r+2 . . . xn,n · f − x1,1x2,2 . . . xr−1,r−1 · g =
∑

βq · gq −
∑

αp · fp

=⇒ S(f, g) =
∑

βq · gq −
∑

αp · fp

We claim that this gives a reduction of S(f, g) to zero with respect to G.

Note that the leading term of a minor M(a1, . . . , at|b1, . . . , bt) is the monomial
xa1,b1 · xa2,b2 · · · · · xat,bt . To find the leading term of S(f, g), we observe that

lcm(in(f), in(g))

in(f)
· f = x1,1x2,2 . . . xn,n

− x1,1x2,2 . . . xr−p,r−pxr−p,r−p+1xr−p+1,r−pxr−p+2,r−p+2, . . . , xn,n

+ . . .

and

lcm(in(f), in(g))

in(g)
· g = x1,1x2,2 . . . xn,n

− x1,1x2,2 . . . xn−2,n−2xn−1,nxn,n−1

+ . . .

The terms are written in decreasing order, and so it follows that

in(S(f, g)) = x1,1x2,2 . . . xn−2,n−2xn−1,nxn,n−1.

The largest monomials that appear in the equation (?) are x1,1x2,2 . . . xn,n and
x1,1x2,2 . . . xn−2,n−2xn−1,nxn,n−1. The former appears on the left hand side when V =
{1, 2, . . . , r − p} as the leading term of

M(1, . . . , r − p|1, . . . , r − p) ·M(r − p+ 1, . . . , n|r − p+ 1, . . . , n)

and on the right hand side when U = {1, 2, . . . , r} as the leading term of

M(1, 2, . . . , r|1, 2, . . . , r) ·M(r + 1, r + 2, . . . , n|r + 1, r + 2, . . . , n).

The latter term appears only on the left hand side, as the second term of the summand
with V = {1, 2, . . . , r − p}. From this it follows that the largest leading term of any
αi · fi or βj · gj is

x1,1x2,2 . . . xn−2,n−2xn−1,nxn,n−1,

which is exactly the leading term of S(f, g).
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By our choice of A and B and the definition of the matrix M , all terms in equation
(?) are present in K[F ] by the definition of a skew tableau. Since |Ã| = s, it follows
that fp ∈ Gi for each p, and since |B| = r, it follows that gq ∈ Gj for each q. Thus

S(f, g) =
∑

αp · fp −
∑

βq · gq

is a reduction of S(f, g) to zero with respect to G. By Theorem 2.2.4, G is therefore
a Gröbner basis of It(F ).

Example 4.2.4. For unsymmetrized skew tableau ideals generated by minors of size
3 × 3 or smaller, we consider the S-polynomial of f and g in three cases. Let G be
the set of minors generating It(F ).

Case 1: Suppose f and g are the determinants of 3 × 3 matrices which overlap in
a 2× 2 submatrix on the main diagonal of both matrices. We may assume, without
loss of generality, that these come from a subregion of F of the following form:

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,2 x4,3 x4,4

where f =
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

and g =
x2,2 x2,3 x2,4

x3,2 x3,3 x3,4

x4,2 x4,3 x4,4

. Their S-polynomial is

S(f, g) = x4,4 · f − x1,1 · g.

Division of S(f, g) by G yields the expression

S(f, g) =− x2,1 ·
x1,2 x1,3 x1,4

x3,2 x3,3 x3,4

x4,2 x4,3 x4,4

+ x3,2 ·
x1,2 x1,3 x1,4

x2,2 x2,3 x2,4

x4,2 x4,3 x4,4

− x4,2 ·
x1,1 x1,3 x1,4

x2,1 x2,3 x2,4

x3,1 x3,3 x3,4

+ x4,3 ·
x1,1 x1,2 x1,4

x2,1 x2,2 x2,4

x3,1 x3,2 x3,4

.

gives the division of S(f, g) by G with remainder zero.

Case 2: Suppose f and g are the determinants of 3× 3 matrices which overlap in a
single entry on the main diagonal of both matrices. We may assume, without loss of
generality, that these come from a subregion of F of the following form:
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x1,1 x1,2 x1,3 x1,4 x1,5

x2,1 x2,2 x2,3 x2,4 x2,5

x3,1 x3,2 x3,3 x3,4 x3,5

x4,3 x4,4 x4,5

x5,3 x5,4 x5,5

where f =
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

and g =
x3,3 x3,4 x3,5

x4,3 x4,4 x4,5

x5,3 x5,4 x5,5

. Their S-polynomial is

S(f, g) = x4,4x5,5 · f − x1,1x2,2 · g.

Division of S(f, g) by G yields the expression

S(f, g) =− x1,2x2,1 ·
x3,3 x3,4 x3,5

x4,3 x4,4 x4,5

x5,3 x5,4 x5,5

− x1,1 x1,2

x3,1 x3,2
·
x2,3 x2,4 x2,5

x4,3 x4,4 x4,5

x5,3 x5,4 x5,5

+
x2,1 x2,2

x3,1 x3,2
·
x1,3 x1,4 x1,5

x4,3 x4,4 x4,5

x5,3 x5,4 x5,5

− x4,3 x4,4

x5,3 x5,4
·
x1,1 x1,2 x1,5

x2,1 x2,2 x2,5

x3,1 x3,2 x3,5

+
x4,3 x4,5

x5,3 x5,5
·
x1,1 x1,2 x1,4

x2,1 x2,2 x2,4

x3,1 x3,2 x3,4

− x4,5x5,4 ·
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

.

This gives the division of S(f, g) by G with remainder zero.

Case 3: Suppose f is the determinants of a 2×2 submatrix and g is the determinant
of a 3 × 3 matrix, and that they overlap in a single entry on the main diagonal of
both matrices. We may assume, without loss of generality, that these come from a
subregion of F of the following form:

x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,2 x3,3 x3,4

x4,2 x4,3 x4,4

where f =
x1,1 x1,2

x2,1 x2,2
and g =

x2,2 x2,3 x2,4

x3,2 x3,3 x3,4

x4,2 x4,3 x4,4

. Their S-polynomial is

x3,3 · f − x1,1 · g.
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Division of S(f, g) by G yields the expression

S(f, g) =− x3,2 x3,3

x4,2 x4,3
· x1,1 x1,4

x2,1 x2,4
+

x3,2 x3,4

x4,2 x4,4
· x1,1 x1,3

x2,1 x2,3

+ x3,4x4,3 ·
x1,1 x1,2

x2,1 x2,2
− x2,1 ·

x1,2 x1,3 x1,4

x3,2 x3,3 x3,4

x4,2 x4,3 x4,4

.

Again, this gives the division of S(f, g) by G with remainder zero.

Remark 4.2.5. We hope to use this Gröbner basis to show that the initial ideals of
unsymmetrized skew tableau ideals are glicci. The Gröbner basis should also facilitate
codimension computations, primality testing, and showing that the full ideals are
glicci.

Skew tableaux with “nice holes”

Definition 4.2.6. Let F = T (a, b, c, d) be a skew tableau such that

{(i, j) | 1 ≤ i ≤ ar and dr − tr + 1 ≤ j ≤ dr} ⊂ F̃ .

We call F̃ a symmetrized skew tableau with nice holes.

Proposition 4.2.7. Let F be a nice skew tableau ideal with G and H defined as in
Definition 4.1.6. Then there exist homogeneous polynomials f and g such that

f · It(F̃ ) + Iτ (H̃) = g · It′(G̃) + Iτ (H̃).

Proof. Let g be the minor from rows {1, 2, . . . , tr − 1, ar} and columns {dr − tr +
1, dr − tr + 2, . . . , dr}. Let f be the minor from rows {1, 2, . . . , tr − 1} and columns
{dr − tr + 1, dr − tr + 2, . . . , dr − 1}. Using the notation defined in Notation 2.3.1, let
M = Xr and let a = M(I + ar|J + dr) be any minor in Itr(F̃r) involving xar,dr . This
corresponds to b = M(I|J) ∈ It′r(G̃r). We use g = M(K+ar|L+dr) and f = M(K|L)

defined as above, and note that these minors are in It(F̃ ) by the definition of a skew
tableau with nice holes. We wish to show that

f · a− g · b ∈ Iτ (H̃)

for the corresponding elements a and b as in the proof of Theorem 4.1.16. Although
this expression fits the pattern of Corollary 2.3.11, we must verify that all of the
submatrices of M that are used in the proof are present in F̃ . Once we have done
this, we note as before that any minor b = M(I|J) ∈ It′r(G̃r) corresponds to a minor

a = M(I + ar|J + dr) ∈ Itr(F̃r), and the same argument will applies in the reverse
direction.
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Recall from Proposition 2.3.10 that

M(I +m|J + n) ·M(K|L)−M(I|J) ·M(K +m|L+ n)

=
∑
i∈I

(−1)n+iM(I − i+m|J) ·M(K + i|L+ n)

−
∑
l∈L

(−1)n−lM(I +m|J + l) ·M(K|(L− l + n),

The left-hand side of the equation corresponds to the expression f · a− g · b. In the
summations on the right-hand side, we need to verify that M(K+i|L+n) and M(I+m|J+l)

are subsets of F̃ . To do this, we only need to check that (i, l) ∈ F̃ for any i ∈ I
and l ∈ L. In this case, by the choice of I we know that 1 ≤ i ≤ ar, and by the
choice of L we know that dr − tr + 1 ≤ j ≤ dr. By definition of a tableau with nice
holes, it follows that (i, l) ∈ F̃ , and since (i, l) 6= (ar, dr), in fact (i, l) ∈ H̃. Thus the
conclusion of Corollary 2.3.11 applies, and so

f · It(F̃ ) + Iτ (H̃) = g · It′(G̃) + Iτ (H̃).

Remark 4.2.8. (1.) In order to have basic double links in the preceding proposition,
it remains to show that the chosen elements f and g are nonzero-divisors of
Iτ (H̃).

(2.) In order to give an elementary biliaison in the preceding proposition, we would
further need to show that Iτ (H̃) is Cohen-Macaulay and generically Gorenstein.

Our argument in Section 4.1 uses an inductive argument based on the fact that
if F̃ does not have holes, then neither does G̃ or H̃. If F̃ is a skew tableau with nice
holes, then it still follows that G̃ has nice holes. However, it does not necessarily
follow that H̃ has nice holes, and in fact if there is even a single hole in F̃ , then any
inductive argument we use depends on linking ideals from tableaux that do not have
nice holes.

Skew tableaux with arbitrary holes

Symmetrized skew tableau ideals in general do not have the nice properties we have
observed in special cases. For example, the minors do not usually form a Gröbner
basis, and the ideals may not be prime. On the other hand, we have not been able
to construct an example which fails to be Cohen-Macaulay. This offers a ray of hope
that the ideals may still have nice structure from the perspective of liaison theory.

Example 4.2.9. For arbitrary symmetrized skew tableau ideals, the set of minors
may not be a Gröbner basis. Let F̃ be the tableau
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x1,1 x1,2 x1,3 x1,4 x1,5

x1,2 x2,3 x2,4 x2,5

x1,3 x2,3 x3,4 x3,5

x1,4 x2,4 x3,4 x4,4

x1,5 x2,5 x3,5

The two minors generating I3(F̃ ) are

x1,1 x1,4 x1,5

x1,2 x2,4 x2,5

x1,3 x3,4 x3,5

,
x1,1 x1,3 x1,4

x1,2 x2,3 x2,4

x1,4 x3,4 x4,4

However, the initial ideal in(I3(F̃ )) is generated by the three terms

x1,1x2,4x3,5

x1,1x2,3x4,4

x1,2x1,3x2,4x3,5x4,4

The degree five term comes, for example, as the leading term of

x1,1 x1,4 x1,5

x1,2 x2,4 x2,5

x1,3 x3,4 x3,5

· x2,3 x2,4

x3,4 x4,4
−

x1,1 x1,3 x1,4

x1,2 x2,3 x2,4

x1,4 x3,4 x4,4

· x2,4 x2,5

x3,4 x3,5
.

Example 4.2.10. Even for symmetrized skew tableau ideals from tableaux with nice
holes, the set of minors may not be a Gröbner basis. Let F̃ be the tableau

x1,1 x1,2 x1,3 x1,4 x1,5

x1,2 x2,3 x2,4 x2,5

x1,3 x2,3 x3,4 x3,5

x1,4 x2,4 x3,4 x4,4 x4,5

x1,5 x2,5 x3,5 x4,5 x5,5

Macaulay2 gives 16 minimal generators of I3(F̃ ). It gives the 16 main diagonals
of these minors as minimal generators for in(I3(F̃ )), along with the degree 5 term
x1,2x1,3x2,4x3,5x4,4. This is the same degree 5 term as in the previous example.

Example 4.2.11. Arbitrary symmetrized skew tableau ideals may not be prime.
Consider the following skew tableau:
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x1,2 x1,3 x1,4 x1,5 x1,6

x1,2 x2,3 x2,4 x2,5 x2,6

x1,3 x2,3 x3,4 x3,5 x3,6

x1,4 x2,4 x3,4 x4,4 x4,5 x4,6

x1,5 x2,5 x3,5 x4,5

x1,6 x2,6 x3,6 x4,6

Macaulay2 calculates that the minor f = M(1, 3, 4|3, 4, 5) is a zero divisor modulo
H, where H is the ideal generated by 3× 3 minors in the skew tableau which do not
include the entry x4,6.

4.3 Future work

There are still some open questions about symmetric skew tableau ideals that we
would like to resolve. Our main project right now is to show that ideals generated
by t × t minors in a skew tableau are glicci for t ≥ 3. We also hope to obtain a
nice description of a Gröbner basis and use this to extend the linkage to the initial
ideals. The first line of inquiry in this direction will be to discern the relationship
between the presence of “holes” caused by reflection and the failure of the minors
to be a Gröbner basis. In the unsymmetrized case, our computation of a Gröbner
basis provides a nice tool to compute codimension, test for primality, and show that
the initial ideals are glicci. It is hoped that these results would also lead to a similar
result for the full ideals.

When generating ideals from minors in some subset of a matrix of indeterminates,
an arbitary shape may not give rise to particularly nice ideals; for symmetric skew-
tableaux in which the entries are not symmetrized, the ideals are not even Cohen
Macaulay, as we showed in Example 4.2.1. It is natural to ask, for which shapes are
the ideals generated by minors glicci? Following [13], in which it was shown that 2×2
minors in a “simple polyomino” generate Cohen-Macaulay ideals, we would like to
use liaison techniques to study these polyomino determinantal ideals and determine
whether they are glicci.

Copyright c© Bill Robinson, 2015.
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