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ABSTRACT OF DISSERTATION

A CHARACTERIZATION OF SERRE CLASSES OF REFLEXIVE MODULES
OVER A COMPLETE LOCAL NOETHERIAN RING

Serre classes of modules over a ring R are important because they describe relation-
ships between certain classes of modules and sets of ideals of R. We characterize the
Serre classes of three different types of modules. First we characterize all Serre classes
of noetherian modules over a commutative noetherian ring. By relating noetherian
modules to artinian modules via Matlis duality, we characterize the Serre classes of
artinian modules. A moduleM is reflexive with respect to E if the natural evaluation
map fromM toMνν is an isomorphism whereMνν = HomR(HomR(M,E), E). When
R is complete local and noetherian, take E as the injective envelope of the residue
field of R. The main result provides a characterization of the Serre classes of reflexive
modules over a complete local noetherian ring. This characterization depends on an
ability to “construct” reflexive modules from noetherian modules and artinian mod-
ules. We find that Serre classes of reflexive modules over a complete local noetherian
ring are in one-to-one correspondence with pairs of collections of prime ideals which
are closed under specialization.

KEYWORDS: Serre class, reflexive module, Matlis duality, complete local ring, local
nilpotence
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Chapter 1 Introduction

1.1 Motivation

Serre classes have held the interest of researchers since their introduction in [13] by
Jean-Pierre Serre. This is due to their relationship with localization which is ex-
plained by Gabriel in [6]. The task of classifying all Serre classes of R-modules for
a general ring R remains unfinished. To quote Walker and Walker ([14]), “It is a
hopeless task to attempt to characterize all Serre classes for an arbitrary R.” Indeed,
this is a daunting task, but significant progress has been made.

Gabriel characterized Serre classes of left R−modules which are closed under arib-
trary direct sums. In 1972, Walker and Walker [14] built upon Gabriel’s work and
–assuming the ring commutative and noetherian– characterized the Serre classes of
modules whose socles are essential. Their approach was to first study characteriza-
tions of more general classes such as additive classes and bounded, complete additive
classes.

In 2000, Mark Hovey and Karen Collins of Wesleyan University claimed, but never
published, the characterization of Serre classes of noetherian modules over a general
commutative ring. In 2003 Manuel López classified all Serre classes of artinian mod-
ules over a complete local noetherian ring using their results. His result relies also on
the work of Lam in [10] which describes a bijection between Serre classes of noethe-
rian modules and artinian modules.

The work included in this thesis classifies all Serre classes of noetherian modules
over a commutative noetherian ring and all Serre classes of artinian modules with
the additional assumption that the base ring is complete. We use different tech-
niques than those mentioned above. The culmination of ideas presented in this paper
provides a characterization of Serre classes of reflexive modules over a commutative
local noetherian ring which is also complete. This characterization will rely on the
ability to “build” reflexive modules from noetherian modules and artinian modules.
Throughout, arguments will rely on properties of Matlis duality, bijections formed
between Serre classes and sets of certain ideals, and the relationship between mod-
ules and their Matlis duals.

Many results in this paper require familiarity with the dual of an R−module.
In the study of duality, objects of interest include those which are self-dual, dual-
preserving or even dual-reversing. We will focus on the properties of reflexive mod-
ules. These modules are isomorphic to their double dual (the dual of their dual) via
the canonical map which we define in the following section. Results on duality can be
traced back to Gauss’s work which studied the set of homomorphisms from a finite
abelian group G to the quotient Q/Z. Gauss defined this set of homomorphisms as
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the dual of G. Gauss used the fact that every finite abelian group is reflexive to prove
many of his number theory results.

Finite dimensional vector spaces provide another arena for studying duality. In
1974 Halmos wrote about the nature of this duality and gave an argument that any
vector space of finite dimension is reflexive. So that we can become familiar with
reflexive modules, a proof of this fact is included in chapter two.

After studying the duality of vector spaces, a natural next step is considering du-
ality for modules. In particular, the algebraic dual of a left R−module M is the set
of module homomorphisms from M to R, which we represent by Hom(M,R). This
dual is a right R−module, but not every M is reflexive. The question of which M
are reflexive comes up in commutative algebra.

In the case where R is complete, local and noetherian, we consider the Matlis dual
([11]). This is the dual which considers Mν = Hom(M,E) as the dual of M with
respect to E. Here E is the injective envelope of R/m and m is the unique maximal
ideal of R. We will be interested in using Matlis duality to better understand the
relationship between noetherian modules and artinian modules. In turn, this will
help us in our study of reflexive modules. Matlis duality is also related to Macaulay
duality which concerns graded polynomial rings. In particular, Macaulay duality is
used to understand properties of Gorenstein ideals.

More recent work in duality can be attributed to Grothendieck who studied a local
dual related to the Matlis dual. In this work there is the notion of a dualizing module.
This module is useful because certain finitely generated modules are reflexive with
respect to their dualizing module. In fact, if dualizing modules are in R, R must be
Cohen-Macaulay. Not all Cohen-Macaulay rings have dualizing modules, but they do
if they are complete and local. In [5], Enochs, López-Ramos and Torrecillas showed
that if a ring R admits two Matlis dualizing modules, M and N , then an R−module
is reflexive with respect to M if and only if it is reflexive with respect to N . Further,
they found that the Matlis dualizing modules exist in bijective correspondence with
invertible (R,R)−bimodules.

Grothendieck extended the study of duality to complexes (chains of modules with
their module homomorphisms). In particular, if C and D are complexes of modules,
we can form Hom(C,D) with the natural homomorphism Hom(Hom(C,D), D). As
isomorphisms of complexes are rare, Grothendieck instead considered isomorphisms
of homologies. Homologies are quotient modules formed by specific kernels and im-
ages of the homomorphisms from the complexes at each step. Grothendieck described
situations in which these homologies are isomorphic. Grothendieck’s duality extends
to sheaves and complexes of sheaves. Another duality which also concerns sheaves
is called Serre duality. While this duality is named for the same Serre of the Serre
classes studied here, we will not be concerned with sheaves or Serre duality.
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A recent and interesting result in [2] described by Belshoff, Enochs and Garcia
Rozas also considers Matlis duality and gives a classification of reflexive modules, M ,
where R is only assumed commutative and noetherian. This result gives that M is
reflexive with respect to Matlis duality if and only if M has a finitely generated sub-
module, S so that M/S is artinian and R/ ann(M) is a complete and semi-local ring.
(Note that the annihilator of an element x ∈ M is ann(x) = {r ∈M |rx = 0}.) The
S and M/S referred to in this work explain how reflexive modules can be built up
by noetherian modules and artinian modules. A similar construction is explained in
chapter six which allows us to characterize Serre classes of reflexives over a complete
local noetherian ring.

In [15], Xue generalized the results in [2] by showing an R−moduleM is reflexive if
and only if R/ ann(M) is linearly compact andM has a finitely generated submodule
S so thatM/S is finitely cogenerated. Xue explains that the Prüfer group (described
below) is linearly compact but lacks the additional assumption on submodules. By
noticing the Prüfer group is not reflexive, we see linear compactness is not enough to
guarantee reflexivity.

For each characterization result in this dissertation, we will be concerned with
different types of filters. We will consider modules with a finite filtration, and our
characterization of Serre classes will depend on a filter which is closed under special-
ization. In the recent work of Kameyama ([8]), Matlis duality is extended to filtered
noetherian rings. In this situation, the filter is the one associated with the m−adic
topology described here in chapter five. Specifically, Kameyama showed that Matlis
duality extends to filtered pseudocompact algebras. In the case where this algebra fits
under some additional restraints, Xue also examined local cohomology. Cohomology
is the algebraic dual of homology.

In this dissertation we will be primarily concerned with the Hom functor. In recent
work by Kubic, Leamer and Sather-Wagstaff ([9]), it is assumed that R is commu-
tative local and noetherian. The authors show that if M1 is an artinian R−module
and M2 is a noetherian R−module, then Hom(M1,M2) has finite length. They also
give results on the Ext and Tor functors. The relationship they describe between Ext
and Tor over the completion of R is similar to a result included in chapter four for
the duals of noetherian and artinian modules. Kubik, Leamer and Sather-Wagstaff
also show that when M1 is artinian and M2 is Matlis reflexive, then ExtiR(M1,M2),
ExtiR(M2,M1) and TorRi (M1,M2) are each Matlis reflexive.

Serre classes are also relevant to other areas of current research such as the work in
[7]. Here Garkusha and Prest give a bijection between thick subcategories of perfect
complexes and the Serre classes of finitely presented modules. In this paper we will
not address complexes, homology, cohomology or the Ext and Tor functors. However,
their relationship to Serre classes and duality highlights many avenues for extending
the efforts which follow.

3



1.2 Notation

Throughout this paper, we assume R to be commutative unles otherwise stated. In
this section we introduce basic definitions, notation and ideas which will be needed
throughout the paper. We start by describing both the dual of a module and the
dual of a linear R−module homomorophism.

Duals

When R is a commutative ring and M,N are R−modules, we define HomR(M,N) as
the set of all R−linear module homomorphisms fromM to N . Now, ifM1,M2, N are
R−modules, an element f ∈ HomR(M1,M2) gives a natural linear homomorphism
from HomR(M2, N) to HomR(M1, N) by mapping an h ∈ HomR(M2, N) to h◦ f . We
write Mν = HomR(M,N) for the dual of M with respect to N and write h ◦ f as f ν .
We will also define linear map to mean linear R−module homomorphism.

Definition 1.1. By the canonical homomorphism from M to Mνν , we mean the
homomorphism which takes x ∈ M to the map in Mνν which evaluates a homomor-
phism in Mν at the element x.

We define M to be a reflexive R−module if the canonical homomorphism is an
isomorphism. Throughout this dissertation, we will refer to the canonical homomor-
phism by φ where φ(x) = (ϕ 7→ ϕ(x)) where x ∈M and ϕ ∈ Mν .

Exact Sequences

Given linear maps f :M → N and g : N → P between R−modules M,N and P , we

say M
f
−→ N

g
−→ P is an exact sequence if Im(f) = ker(g). This definition can be

extended to longer sequences –even infinite sequences.

Definition 1.2. We call an exact sequence of the form 0 → M
f
−→ N

g
−→ P → 0 a

short exact sequence.

Note that based on the definition of an exact sequence, we have f is injective and
g is surjective. It follows easily from the definition that given any submodule S ⊂M ,
0 → S →֒ M

p
−→ M/S → 0 is short exact where →֒ represents the inclusion map and

p represents the projection p(x) = x+ S for any x ∈M .

We say that two short exact sequences 0 → M1
f
−→ N1

g
−→ P1 → 0 and 0 →

M2
f
−→ N2

g
−→ P2 → 0 are isomorphic if we have isomorphisms σ : M1 → M2 and

ϕ : P1 → P2 so that the diagram formed by joining the two short exact sequences via
σ and ϕ is commutative. Note that by the short five lemma, this makes N1

∼= N2.
The following property of short exact sequences will be quite useful to us throughout
this dissertation, as it is often preferable to reduce arguments on general submodules
to arguments on submodules and their quotients.
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Lemma 1.3. Any short exact 0 →M
f
−→ N

g
−→ P → 0 is isomorphic to a short exact

sequence of the form 0 → S →֒ M
p
−→M/S → 0 where S is a submodule of N .

Proof. Two applications of the first isomorphism theorem for modules give M ∼=
f(M) ⊂ N and P ∼= N/ ker(g) = N/f(M). In the following diagram, let id represent
the identity map. Notice the diagram is commutative as g is an isomorphism on
N/ ker(g) = N/ ker(f).

M
f

//

∼=
��

N
g

//

id
��

P

∼=
��

f(M)
i

// N
p
// N/f(M)

Simple Modules and Module Length

A left R−module, M is said to be simple if M 6= 0 and if the only submodules of M
are 0 and M itself. One standard result of this definition is given below as a remark.
Another result is that if M is simple, then M is isomorphic to R/I for some maximal
left ideal I of R.

Remark 1.4. If S and T are two simple left R−modules and if f : S → T is linear,
then either f = 0 or f is an isomorphism.

Together, this remark and the fact above show that if R is a commutative local
ring, any two simple R−modules are isomorphic to each other. This relies on the fact
that, in a local ring, there is a unique maximal ideal, m.

Definition 1.5. If M is a left R−module, a finite filtration of M is a finite in-
creasing sequence of modules 0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M where n <∞.

The moduleM is said to be amodule of finite length if there is such a filtration
where each of the quotients Mi/Mi−1 is a simple module. The result that if M has
finite length that any submodule S ⊂ M and its quotient M/S also have finite length
is standard. An equivalent description of modules of finite length will be needed for
our final result, and is introduced in the next chapter.

It can be shown by induction that any two different finite filtrations of the same
module with simple quotients must have the same length. The unique length of these
filtrations is called the length of M and we denote it by ℓ(M). It is a standard result
that any vector space V over a field F has finite length if and only if it has finite
dimension and that ℓ(V ) = dim(V ).

Given a filtration ofM and any submodule S ⊂M , considering the filtration built
by submodules of the form S ∩Mi, we can show that any submodule S also has finite
length. Additionally, considering the filtration formed by submodules (Mi+S)/S, we
get that M/S has finite length. The more interesting result about modules of finite
length is that ℓ(M) = ℓ(S) + ℓ(M/S).

5



Noetherian and Artinian Modules

We define an R−module, M to be noetherian if it satisfies the ascending chain
condition (ACC) on submodules. This means that for every increasing sequence
S0 ⊂ S1 ⊂ S2 · · · of submodules of M , there exists some n ≥ 0 so that Sm = Sn
whenever m ≥ n. An equivalent definition is that any submodule S ⊂ M is finitely
generated.

Analogously, we define a module to be artinian if it satisfies the descending
chain condition (DCC) on submodules. In other words, for every decreasing sequence
· · · ⊂ S2 ⊂ S1 ⊂ S0 of submodules of M , there exists some n ≥ 0 so that Sm = Sn
whenever m ≥ n. If M is an artinian module, any descending chain of submodules
of M must stabilize, and as a result we will have a simple submodule of M .

Remark 1.6. If M is a nonzero artinian module, then M contains some submodule
S ⊂ M which is simple.

Injective Envelopes

For Matlis duality, we allow our ring to be local and take the dual of a module with
respect to the injective envelope of the residue field of R. We will first describe what it
means for a module to be injective, and develop Matlis duality more fully in chapter 2.

Definition 1.7. A module E is said to be injective if for M,N , left R−modules,
and f : M → N an injective homomorphism, g : M → E a homomorphism, there
exists h : N → E such that h ◦ f = g. In other words, there exists an h which makes
the following diagram commutative.

M
f

//

g
��

N

h
~~⑤
⑤
⑤
⑤

E

While the definition of a projective module is dual to that of an injective module,
we will not consider the former in this paper. As explained by Eisenbud in [4], “the
theory is not dual at all”. To better understand injective modules, some well-known
properties are included here. One property of injective modules is that direct sums
of finitely many injective modules is injective, but infinite direct sums of injective
modules may not be injective. In fact, a ring is left noetherian if and only if arbitrary
direct sums of injective modules are injective (Bass-Papp Theorem [1][12]). Direct
summands of injective modules are always injective as are arbitrary products of injec-
tives. Lam includes in [10] proof that if a direct product of modules is injective, then
each module from the product is injective. Yet another useful property of injective
modules is Baer’s Criterion which we state in the following remark([4]).

6



Remark 1.8 (Baer’s Criterion). A module M over R is injective if and only if
every module homomorphism from an ideal I ⊂ R to M can be extended to a
homomorphism from R to M .

Denote the set of prime ideals of a commutative ring R by Spec(R) which stands
for spectrum. Matlis showed that for a commutative noetherian ring R every in-
jective R−module can be written uniquely, up to isomorphism, as the direct sum
of indecomposable injective modules. Each indecomposable injective from the direct
sum is isomorphic to an injective envelope of R/P where P ∈ Spec(R). In other
words, every injective E can be written uniquely as E =

⊕

iEi where Ei
∼= R/P

and P ∈ Spec(R). Furthermore, Matlis’s Theorem gives that Spec(R) is in bijective
correspondence with these indecomposable injectives [11].

Definition 1.9. E is said to be an essential extension of M if M ⊂ E and for
every H ⊂ E, H ∩M = {0} implies that H = {0}. We can also say that M is an
essential submodule of E, or simply M is essential in E.

We define E(M) as an injective envelope ofM if E(M) is an essential extension
ofM and E(M) is injective. One example of an essential extension is found by letting
R = Z. Note that a Z module is injective if and only if it is divisible. Next show
that Q is divisible. After checking that Q is an essential extension of Z/(0), conclude
E(Z) = Q.

It can also be shown that if p ∈ Z is a prime, then E(Z/(p)) = Z(p∞), the Prüfer

p−group. More concretely, Z(p∞) =

{

m

pk
+ Z|m, k ∈ Z and k ≥ 0

}

. The only

possibilities for R/P given R = Z are Z and Z/(p), so every indecomposable injective
over Z is isomorphic to Q or Z(p∞) by Matlis’s Theorem. Incidentally, the module
Z(p∞) is an example of an artinian module which is not noetherian.

For the main result of this dissertation, we will be interested in a ring, R, which
is local. A local ring is a ring with a unique maximal ideal m. Up to isomorphism,
this ring has a unique simple module which we denote κ = R/m. This is the residue
field of R and we denote its injective envelope by E = E(κ). As Lam points out in
[10], E is the m−adic completion of R with respect to m.

Copyright c© Casey Ryan Monday 2014
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Chapter 2 Preliminary Results

As mentioned in chapter one, the duality of vector spaces has been an important
motivation for studying later dualities. We include here some basic, yet important
results on the duality of vector spaces as well as properties of the Matlis dual. We will
also introduce Serre classes and give several examples. In this section we introduce
local nilpotence and use this concept to prove a version of the Krull Intersection
Theorem where the R is local.

Duality of Vector Spaces

Below, let V be a vector space over a fixed field F . Define the vector space HomF (V, F )
as the dual of V and denote it by V ∗. Then any element of V ∗ is a linear map
σ : V → F , regarding F as a vector space over itself. It can be shown that
if v1, v2, . . . , vn is a base for a finite dimensional V , then v′1, v

′

2, . . . , v
′

n such that
v′i(vj) = 1 if i = j and v′i(vj) = 0 if i 6= j is a base for V ∗. This shows that
dim(V ) = dim(V ∗).

Notice that the canonical map V → V ∗∗ is an injection because if φ(v) = 0 for
some nonzero v ∈ V , then f(v) = 0 for all f ∈ HomF (V, F ). In particular, considering
each v′i gives v = 0. Additionally, if dim(V ) <∞ we can show the canonical injection
is an isomorphism due to the fact that dim(V ) = dim(V ∗) = dim(V ∗∗). Note that
this shows V is reflexive. In fact, we have the following lemma which characterizes
all reflexive vector spaces.

Lemma 2.1. A vector space V is reflexive if and only if dim(V ) <∞.

Proof. By the arguments above, we need only show if dim(V ) = ∞, then V is not
reflexive. To simplify notation, let v1, v2, . . . be a countable base for V . Defining
v′i ∈ V ∗ as above does not give a spanning set of V ∗, so does not form a base of
V ∗. (Note that even if the basis were uncountable, this argument still holds, only the
notation would change.) If the v′i spanned V

∗, then any σ ∈ V ∗ could be written as
a linear combination of the v′i. Consider the map σ : V → F where σ(vi) = 1 for all i
and write σ = α1v

′

1+α2v
′

2+ · · ·+αmv
′

m for a finite collection of m possibly re-indexed
v′i and each αi ∈ F . Notice that if v′j is not one of the v′1, v

′

2, . . . , v
′

m, then σ(vj) = 0,
but also σ(vj) = 1. This is a contradiction for all but finitely many basis elements of
V .

Notice this implies a basis of V ∗ must contain an element from outside the span
of the v′i. This allows us to define a map ψ ∈ V ∗∗ where ψ(v′i) = 0 for all i and ψ 6= 0.
Recall we are using φ to represent the canonical homomorphism from V to V ∗∗ and
suppose there exists some 0 6= v ∈ V so that φ(v) = ψ. Notice 0 = ψ(v′i) = φ(v)(v′i)
for all i which implies v = 0. This is a contradiction.
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2.1 Properties of the Dual

The following properties of the dual of a module will eventually be extended to the
Matlis dual mentioned earlier. For now, we consider a module duality where the ring
is only assumed commutative.

Lemma 2.2. When M1,M2,M3, N are R−modules and M1
f
−→ M2

g
−→ M3 are linear

maps, (g ◦ f)ν = f ν ◦ gν.

Proof. Let h ∈ HomR(M3, N). By definition, (g ◦ f)ν(h) = h ◦ (g ◦ f). Notice that
(f ν ◦gν)(h) = f ν(h◦g) = (h◦g)◦(f) = h◦(g ◦f) making the two maps identical.

Remark 2.3. If f :M1 →M2 is the zero map, then f ν :Mν
2 →Mν

1 is also zero.

Remark 2.4. Let f :M1 →M2 be a surjection. Then f ν is injective.

Lemma 2.5. If S ⊂ M and 0 → S
i
−→ M

p
−→ M/S → 0 is the standard short exact

sequence formed where i is the canonical injection and p is the canonical surjection,
then

0 → (M/S)ν
pν

−→Mν iν
−→ Sν (2.1)

is exact.

Proof. Notice p ◦ i is the zero map. By 2.3 iν ◦ pν = 0. This means Im(pν) ∈ ker(iν).
We now show pν is injective and ker(iν) ∈ Im(pν). If ϕ ∈ (M/S)ν so that pν(ϕ) = 0,
2.4 and the surjectivity of p conclude pν is injective.

Now, let ϕ ∈ ker(iν). Then ϕ ∈Mν and iν(ϕ) = ϕ ◦ i = 0. Notice that because p
is surjective, for any m+ S ∈M/S, there exists some m ∈M mapping to it. Define
ψ :M/S → N by ψ(m+ S) = ϕ(m). This ψ proves that ϕ ∈ Im(pν), as ψ ∈ (M/S)ν

and ϕ = pν(ψ). We need only check that ψ is well-defined.

S
i

//

ϕ◦i
��❄

❄❄
❄❄

❄❄
❄ M

ϕ

��

p
//M/S

ψ
||②②
②②
②②
②②

N

This map is well-defined because if m1 + S = m2 + S, then m1 −m2 ∈ S = ker(p) =
Im(i). Since ϕ ◦ i = 0, ϕ(m1 −m2) = 0 ⇒ ϕ(m1) = ϕ(m2). The existence of this ψ
proves the exactness of the sequence of the duals in (2.1).

We would like to extend 2.5 and get that 0 → (M/S)ν
pν

−→Mν iν
−→ Sν → 0 is short

exact. However, to get iν surjective we need the module N above to be injective. The
next theorem shows why considering duality with respect to an injective module is
important.

9



Theorem 2.6. When N is injective, the standard short exact sequence formed by the
duals and dual maps of submodules and quotient modules of M , i.e.,

0 → (M/S)ν
pν

−→Mν iν
−→ Sν → 0

is short exact.

Proof. By 2.5 we only need to show that iν is surjective. So we want to show that
given ϕ ∈ Sν , there exists some ψ ∈Mν so that iν(ψ) = ϕ. This amounts to showing
that there is some ψ :M → N that makes the following diagram commutative.

S
i

//

ϕ
  ❆

❆❆
❆❆

❆❆
❆ M

ψ
��

N

This is clear by the injectivity of i and the fact that N is an injective module.

Lemma 2.7. With f linear, and φM1
and φM2

the canonical homomorphisms between
M1 and Mνν

1 , and respectively M2 and Mνν
2 , the following diagram commutes.

M1
f

//

φM1

��

M2

φM2

��

Mνν
1

fνν
//Mνν

2

Proof. Let m1 ∈ M1. Notice (φM2
◦ f)(m1) sends m1 to the homomorphism in Mνν

2

which evaluates any ϕ ∈Mν
2 at f(m1). We write ϕ(f(m1)) as our result. Considering

(f νν ◦ φM1
)(m1) takes m1 to the map in Mνν

2 which performs f νν((φM1
)(m1)) on ϕ ∈

Mν
2 . Recalling the definition of the dual of a map, we see that [f νν◦(φM1

)(m1)]◦(ϕ) =
[(φM1

)(m1)◦f
ν]◦(ϕ). Applying the definition again, we get [(φM1

)(m1)]◦(ϕ◦f). This
gives ϕ(f(m1)) as our result, and we conclude that the diagram is commutative.

2.2 Matlis Duality

Theorem 2.6 gives motivation for studying duals taken with respect to injective mod-
ules. Matlis duality, named after Eben Matlis, is such a dual. Included here are
several useful features of the Matlis dual. In what follows, let R be a commutative
ring, E an injective module and for an R−module M , let Mν denote the dual with
respect to E. Ultimately, Matlis duality refers to duality with respect to E = E(κ)
for local rings, but the following results are true for any injective E. With this new
notation, we rephrase the previous theorem as a remark.

Remark 2.8. If 0 → S → M → M/S → 0 is the exact sequence formed by a
submodule S ⊂ M where the canonical maps are implied, then

0 → (M/S)ν →Mν → Sν → 0

is exact where (−)ν represents the dual of − with respect to E.
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Remark 2.9. With the same hypothesis as 2.8, by again taking duals, the following
is an exact sequence.

0 → Sνν →Mνν → (M/S)νν → 0

As mentioned in the first chapter, an R− module M is reflexive if the canonical
homomorphism between M and Mνν = HomR(HomR(M,E), E) is an isomorphism.

Theorem 2.10. The following diagram is commutative and if S and M/S are re-
flexive, then so is M .

0 // S //

φS
��

M //

φ

��

M/S

φM/S

��

// 0

0 // Sνν //Mνν // (M/S)νν // 0

Proof. The diagram is commutative by 2.7. If S and M/S are reflexive then φS and
φM/S are isomorphisms.

We first prove that φ :M →Mνν is injective and use the following section of the
diagram for reference:

S i
//

∼=
��

M
p

//

φ

��

M/S

∼=
��

Sνν
iνν

//Mνν pνν
// (M/S)νν

Suppose φ(x) = 0 for some x ∈ M . Notice φM/S(p(x)) = pνν(φ(x)) = pνν(0) = 0.
That φM/S is an isomorphism implies p(x) = 0, hence x ∈ ker(p). Now, ker(p) = Im(i)
which implies x ∈ Im(i) thus landing x ∈ S. Now, iνν(φS(x)) = φ(i(x)) = φ(x) = 0.
Because iνν◦φS is an injection, we see that x = 0 and conclude φ is injective as desired.

We now prove that φ is surjective. Let ψ be any map in Mνν . We see that
pνν(ψ) ∈ (M/S)νν . By φM/S an isomorphism and p surjective, there exists x ∈M so
that φM/S(p(x)) = pνν(ψ). But pνν(φ(x)) = φM/S(p(x)), so p

νν(φ(x)) = pνν(ψ). This
implies pνν(φ(x)− ψ) = 0, placing φ(x)− ψ ∈ ker(pνν) = Im(iνν). This implies that
there exists some ϕ ∈ Sνν so that iνν(ϕ) = φ(x)−ψ. By the surjectivity of φS, there
exists an s ∈ S so that iνν(φS(s)) = φ(x) − ψ. Notice that φ(i(s)) = iνν(φS(s)) =
φ(x)− ψ. This implies φ(x− s) = ψ, thus proving the surjectivity of φ.

Our goal is to have a converse of 2.10. Then we will know given M is reflexive,
so are S and M/S for any submodule S ⊂ M . It turns out this holds for faithfully
injective modules.

Definition 2.11. An injective R−module, E is faithfully injective if for every
R−module, N , Hom(N,E) = 0 implies N = 0.

Remark 2.12. Let E and N be R−modules. If E is faithfully injective, and y ∈ N
and y 6= 0 then there exists some homomorphism σ : N → E so that σ(y) 6= 0.

11



Lemma 2.13. Let E and N be R−modules. E is faithfully injective if and only if
the canonical homomorphism φ :M → Mνν is injective.

Proof. Let x ∈M be such that φ(x) = 0. By the definition of φ, x maps to ψ ∈Mνν

where ψ is the map which evaluates any σ ∈Mν at x. So, φ(x) = 0 implies σ(x) = 0
for all σ ∈ Mν . By 2.12 this implies x = 0. Hence the canonical homomorphism is
injective.

Now, let φ be injective and M 6= 0. Choose some nonzero y ∈ M and define
φ(y) = ψ. By the injectivity of φ, ψ 6= 0. This implies there exists some ϕ ∈ Mν so
that ψ(ϕ) 6= 0. Since ψ(ϕ) = ϕ(y) we have ϕ(y) 6= 0 implying ϕ 6= 0 and that E is
faithfully injective.

We are interested in local rings and would like to extend the 2.12 to E = E(κ).
If R has finite length as a module over itself it is true that E is faithfully injective.

Lemma 2.14. In a local ring, R which has finite length as a module over itself,
E = E(κ) is faithfully injective.

Proof. By the definition of a faithfully injective module, it is enough to show that
Nν = HomR(N,E) 6= 0 for any nonzero R−module, N . Notice there exists a finitely
generated M ⊂ N . We have M ∼= Rn/S for some n ≥ 1 and S ⊂ Rn implying
M has finite length. Suppose ℓ(M) = n and 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M for
some n > 0 where each Mi/Mi−1 is simple. In particular this makes M1 simple, thus
M1

∼= κ. ConsiderM1
∼= κ →֒ E and notice that because E is an injective module and

M1 →֒ M is an injective homomorphism, there exists a nonzero h ∈ HomR(M,E) so
that the implied diagram between the three modules commutes. Clearly this means
HomR(N,E) 6= 0.

In fact, if the ring is local, E = E(κ) is faithfully injective if and only if (R/m)ν 6=
0. One direction is easily realized, but showing given (R/m)ν 6= 0 that E is faithfully
injective takes some work. Below we show that given R is a local ring, then E = E(κ)
is faithfully injective. In fact, we prove a stronger result: given any nonzero element
of an R−module, M , there exists a map so that the image of that element is nonzero.

Lemma 2.15. In a local ring R, E = E(κ) is faithfully injective by the following:

If M 6= 0 is any R−module then there is a nonzero, linear map σ :M → E which
maps a given nonzero element of M to a nonzero element of E.

Proof. Consider first any nonzero cyclic submodule C ⊂ R with generator x 6= 0.
Mapping any r ∈ R to rx, we see that R/ ann(x) ∼= C. We must have ann(x) ⊆ m. If
ann(x) is a maximal ideal, then ann(x) = m. If ann(x) 6= m, then ann(x) is a subset
of m since R is a local ring. (Otherwise ann(x) = R making C ∼= 0.) This gives a
map

C
∼=
−→ R/ ann(x)

g
−→ κ

rx 7→ r + ann(x) 7→ r +m

12



which is well-defined since ann(x) ⊆ m. Because g is nonzero and linear, our compo-
sition defines a map h : C → κ which is nonzero and linear. We know any nonzero
R−module, M , has a nonzero cyclic submodule, making the following a commutative
diagram:

C

h

��

� � //

ϕ

  

M

σ

��✌
✌
✌
✌
✌
✌
✌

κ� _

��

E

The map ϕ : C → E is a nonzero homomorphism and we use the natural injection
from C to M and the fact that E is injective to give σ. By the existence of σ from
above where C is the cyclic submodule generated by y, ϕ(y) 6= 0, otherwise ϕ is the
zero map. Since the diagram commutes, σ(y) 6= 0.

Extending this property from rings which have finite length to more general local
rings will help to characterize Serre classes of finitely generated modules. In chapter
five we will want to extend another useful property of rings with finite length to
more general local rings. This will not be possible without requiring that the ring be
complete as well.

2.3 Reflexivity of the Dual of Reflexives

When M is known to be reflexive, notice thatMν is isomorphic toMννν . It is tempt-
ing to assume this makes Mν reflexive. We must instead examine more carefully the
reason the canonical map Mν → Mννν is an isomorphism. First, we will need some
notation and a lemma.

In the arguments below, assume M reflexive and let:

x be any element of M

σ be any element of Mν

ψ be any element of Mνν

β be any element of Mννν

We denote by φM the canonoical homomorphism

φM :M →Mνν

which maps φM(x)(σ) = σ(x). In other words φM = (x 7→ (σ 7→ σ(x)). An analogous
definition gives us φMν : Mν → Mννν . By definition of the dual of a map, we also
get (φM)ν :Mννν → Mν defined by φνM(β) = β ◦ φM .

Lemma 2.16. If f : M → N is an isomorphism for R−modules M and N , then
f ν : Nν →Mν is an isomorphism.
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Proof. Recall by the definition of f ν that it maps an h ∈ Nν to h ◦ f . To show
ker(f ν) = 0, suppose h ◦ f(x) = 0 for all x ∈ M . Because f is injective, f(x) = 0
if and only if x = 0. This implies h evaluates the image of f as zero. Since f is
surjective, h(N) = 0 which proves h = 0.

Now, because f is injective there exists f−1 : N → M . Let g ∈ Mν . We would
like to find some element of Nν so that when composed with f and evaluated at any
x we get g(x). Notice g ◦ f−1 is such a function.

Theorem 2.17. Given M is reflexive, Mν is also reflexive.

Proof. First we show that:
φνM ◦ φMν = idMν (2.2)

By definition of φνM , we see φνM(φMν(σ)) = φMν(σ)◦φM . After noticing these are both
maps from M to E, we would like to see that the latter is exactly σ. By definition,
φMν(σ)(ψ) = ψ(σ) for any ψ ∈Mνν . So, φMν (σ) ◦ φM(x) = σ(x). Hence (2.2) holds.

Now, if M is reflexive, φM is an isomorphism, so φνM is an isomorphism by 2.16.
By (2.2) we know φνM has an inverse in φMν which makes φMν an isomorphism as
well. Hence Mν is reflexive.

The following properties of modules and their duals are helpful, but are not dif-
ficult to verify. They are presented without proof. We will need these basic results
in chapter five when we change from local rings which have finite length as modules
over themselves to more general local rings.

Remark 2.18. In a local ring, κ ∼= κν . (This also implies the dual of a simple module
is simple and the dual of a module of length 1 is a module of length 1.)

Remark 2.19. By 1.4 a module of length 1 is reflexive. Hence κ is reflexive.

Remark 2.20. The dual of a module of length n is of length n. (Use induction with
2.18 as a base case.)

2.4 Serre Classes

Serre classes of modules over an arbitrary ring R are useful in part because they
describe the relationships between certain classes of modules and sets of ideals of R.
However, this relationship was not the reason for their introduction in 1953 (see [13]).
Serre used these classes –which were later named after him– to study the homotopy
groups of spheres. After introducing some useful properties of Serre classes, our focus
will be to characterize the Serre classes of three types of modules over a specific type
of ring.

Definition 2.21. A class of modules, S, is called a Serre class if S is non-empty
and satisfies the property that for a short exact sequence of modules

0 →M → N → P → 0

14



N ∈ S if and only if M ∈ S and P ∈ S where M,N, P are modules of an abelian
category C of which S is a full subcategory.

The following remark follows easily by considering 0 →M ′ →M → 0 → 0 where
M and M ′ are R−modules.

Remark 2.22. If M ∼= M ′ and M ∈ S then M ′ ∈ S.

Remark 2.23. Let S be a class of modules, and let M ∈ S. When proving that S
is a Serre class, it suffices to show the following:

(i) if S ⊂M , then S,M/S ∈ S

(ii) if 0 → N1 → N → N2 → 0 is a short exact sequence of R−modules with
N1, N2 ∈ S, then N ∈ S.

Proof. This is clear by the definition of a Serre class and 1.3.

In the final chapter we will be interested in Serre classes of reflexive modules. In
chapter six we will show that the reflexive modules over a specific type of ring form a
Serre class. We can give examples of Serre classes over a more general ring here. For
a general ring R, we show below that left noetherian and left artinian R−modules
form a Serre class.

Lemma 2.24. Let R be a ring and let S consist of left noetherian modules. S is a
Serre class.

Proof. Using the technique in 2.23, let S ⊂ M and notice any submodule of S is a
submodule of M . Hence S must be finitely generated implying S ∈ S. Considering
M/S and any ascending chain of submodules T1/S ⊂ T2/S · · · ⊂ M/S, note that
T1 ⊂ T2 ⊂ · · · ⊂ M is an ascending chain of submodules of M which must stabilize.
This implies T1/S ⊂ T2/S · · · ⊂ M/S must stabilize. This implies M/S ∈ S.

Now, suppose 0 →M1 →M →M2 → 0 is a short exact sequence with M1,M2 ∈
S. NoticeM1 is isomorphic to a submodule ofM andM2 is isomorphic to the quotient
M/S, so consider instead the sequence 0 → S →֒ M

π
−→ M/S → 0 where π is the

projection map. Consider the ascending chain of submodules T1, T2, · · · ⊂M and the
submodule Di = Ti ∩ S. The Di form an ascending chain in S which must stabilize,
say, atDn. Notice the π(Ti) form an ascending chain inM/S which must stabilize, say,
at π(Tm). Define N = max{n,m} and consider the following commutative diagram.

0 // DN
//

=

��

Tn //

��

π(TN )

=

��

// 0

0 // DN+1
// TN+1

// π(TN+1) // 0

By the Snake Lemma, TN = TM for all M ≥ N .
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Lemma 2.25. Let R be a ring and let T consist of left artinian modules. T is a
Serre class.

Proof. The proof is entirely similar to above, only we use the descending chain con-
dition and rather than consider Ti ∩ S, consider (Ti + S)/S.

Another consequence of Serre classes following easily from the definition is that
the intersection of two Serre classes is again a Serre class. The following result gives
that the class of modules of finite length is a Serre class.

Lemma 2.26. An R−module, M is of finite length if and only if it is both noetherian
and artinian.

Proof. First we show ifM is noetherian and artinian, thenM has finite length. Since
M is artinian, there exists some M1 ⊂ M so that M1 is simple by 1.6. Now, if
M/M1 is simple, ℓ(M) = 1, which is finite. If not, there is a module M2 so that
0 ⊂ M1 ⊂ M2 ⊂ M . As needed, insert more submodules until each Mi+1/Mi is
simple. This chain must stabilize, as M is finitely generated. Hence, M has finite
length.

Now we show if M has finite length, then M is noetherian (artinian). If M has
finite length and we pick any submodule S ⊂ M , since ℓ(S) < ℓ(M), we see that any
descending (ascending) chain stabilizes due to strict containment of submodules in
the chain and the fact that lengths of modules are integers. Hence, every submodule
satisfies DCC (ACC).

Remark 2.27. Let R be a ring and let S consist of modules of finite length. S is a
Serre class.

2.5 An Application of Local Nilpotence

In this section, we use the concept of local nilpotence to prove a version of the Krull-
Intersection theorem that will be useful for our final result. Some proofs of the Krull
Intersection theorem appeal to the Artin-Rees lemma (see [4]). Since we only need
this theorem for local rings, we take a different approach.

Lemma 2.28. Suppose R is a local ring and P ∈ Spec(R). Also let x ∈ E(R/P )
and r ∈ P . There exists an n ≥ 1 so that rnx = 0.

(In other words, multiplication by such an r is locally nilpotent on E.)

Proof. Define E = E ⊕E ⊕E ⊕ · · · and p = (R/P )⊕ (R/P )⊕ (R/P )⊕ · · · . Notice
that the map from E to itself defined by

(x1, x2, x3, . . . , 0, 0, 0, . . . ) 7→ (x1, x2 + rx1, x3 + rx2, . . . )

is a homomorphism which fixes p, making it an isomorphism. The injectiveness of
this map is realized by the injectiveness of the restriction to p and the fact that
p is essential in E. The map is surjective because Im(p) ⊂ Im(E) ⊂ E. By the
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first isomorphism theorem, Im(E) ∼= E making Im(E) an injective module. Since
it’s injective envelope is the smallest injective module containing p, Im(E) = E
meaning the map is surjective. Hence there exists (x1, x2, x3, . . . , 0, 0, 0, . . . ) so that
(x1, x2 + rx1, x3 + rx2, . . . ) = (x, 0, 0, 0, . . . ) which shows that for some n ≥ 1, rnx =
0.

Theorem 2.29. With the same requirements above, there is an n ≥ 1 so that P nx =
0.

Proof. We must find n ≥ 1 so that the product of any n elements of P together with
x is zero. R noetherian implies that any r ∈ P is a linear combination of some given
r1, . . . , rm elements of P , where m < ∞. By 2.28, since each ri ∈ P , there exists
ji ≥ 1 so that rjii x = 0.

Defining j =
m

max
i=1

ji, and letting n = m(j − 1) + 1, it is clear that each term of

the product of any n many elements of P will have a factor of rji for at least one
i ∈ {1, . . . , m}, and so multiplies x to zero. This, in turn, makes the product of any
n elements of P with x zero.

Krull Intersection Theorem

We now use the two results above to prove a different version of the Krull Intersection
Theorem. First, recall 2.15 says for any nonzero element x ∈ M where M is an
R−module, there is a nonzero, linear map σ :M → E so that σ(x) 6= 0.

Theorem 2.30 (Krull Intersection). Let R be a local ring with maximal ideal m.
Then ∩∞

n=1m
n = 0.

Proof. Choose any nonzero r ∈ ∩∞

n=1m
n. By 2.15, considering R as a module over

itself, there exists a nonzero, linear σ : R→ E so that σ(r) 6= 0, and σ is determined
completely by σ(1) = x.

Since m is prime, by 2.29, ∃n̂ ≥ 1 so that mn̂x = 0. Now, because r ∈ ∩∞

n=1m
n,

r ∈ mn̂ for this particular n̂ associated to x. This means r ∈ ann(x). However, if
σ(1) = x 6= 0, σ(r) = rσ(1) = rx 6= 0. This is a contradiction.

Now that we have completed the necessary background, we will begin the work of
classifying Serre classes. In chapter three we do this for noetherian modules. The goal
is to extend these results, but we will first need to look at the relationship noetherian
modules have with other types of modules.

Copyright c© Casey Ryan Monday 2014
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Chapter 3 The Characterization of Serre Classes of Noetherian Modules

Here we characterize all Serre classes of finitely generated modules over a given com-
mutative noetherian ring R. This characterization is given by a bijection between the
Serre classes and the defining sets of ideals of R described below. We will use this
characterization along with the results of chapter four (i.e., the characterization of
Serre classes of artinian modules) to characterize the Serre classes of reflexive modules
in chapter six.

3.1 A Defining Set of Ideals

The defining set of ideals is composed of prime ideals. These ideals have a special
relationship with respect to containment which we will now examine.

Lemma 3.1. Let x be a nonzero element of M . There is an r ∈ R so that ann(rx)
is a prime ideal of R.

Proof. Notice ann(x) 6= R since x 6= 0 and 1 ∈ R. If ann(x) is prime, choose r = 1.
If ann(x) is not prime, let rs ∈ ann(x) where r /∈ ann(x) and s /∈ ann(x). We know
ann(rx) 6= R since if 1 ∈ ann(rx), rx = 0 which implies r ∈ ann(x). We also know
s ∈ ann(rx) since s(rx) = srx = rsx = 0, yet s /∈ ann(x). So we have:

ann(x) ( ann(rx) ( R

Now, if ann(rx) is prime, we have found our r. If ann(rx) is not prime, there exists
some r′ ∈ R so that ann(x) ( ann(rx) ( ann(r′rx). Because R is noetherian, this
chain must stabilize.

Lemma 3.2. Let M be a finitely generated R−module. Then M has a filtration

0 =M0 ⊂M2 ⊂ · · · ⊂Mn =M

for some n ≥ 0 such that for each i with 0 ≤ i < n we have that Mi/Mi−1
∼= R/pi for

some prime ideal pi of R.

Proof. As in the proof of 2.15, R/ ann(x) ∼= Rx. So, by the above, we see that M
has a submodule isomorphic to R/p where p is prime. Choose some nonzero x ∈M .
By 3.1, there is an r ∈ R so that ann(rx) is prime. Define x1 = rx, p1 = ann(x1).
Define also M1 = Rx1 ∼= R/p1. If M/M1 = 0, we have our (very short) filtration.

If M/M1 6= 0 we can find some 0 6= y ∈M/M1. Using 3.1 again, there is an r ∈ R
so that x2 = ry and ann(x2) = p2. So to keep track, Rx2 ⊂ M/M1 meaning Rx2
looks like some M2/M1 where M1 ⊂M2 ⊂ M .

Define M2 so that M1 ⊂ M2 so that Rx2 ∼= M2/M1. Because Rx2 ∼= R/p2, we
have continued our filtration. We can continue in this way using 3.1. Since M is
finitely generated, our filtration will stabilize at some n <∞.
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Lemma 3.3. Let p be a prime ideal and let M = R/p.

(i) If x ∈M and x 6= 0, ann(x) = p.

(ii) If we have a filtration of M as above, p = p1 and p ⊂ pi for 1 ≤ i ≤ n.

Proof. First we show p ⊆ ann(x). Let p ∈ p. Notice x = r+p where r ∈ R and r /∈ p.
Now, px = p(r + p) = p which implies p ⊂ ann(x). We now show ann(x) ⊆ p. Let
y ∈ ann(x). Then y(r + p) = 0 ⇒ yr ∈ p. Because p is prime, r ∈ p which concludes
ann(x) = p.

We now prove the second claim above. Let M have a filtration as above. Recall
p1 = ann(x1) where 0 6= x1 ∈ M , hence ann(x) = p by the first part of 3.3, so by
definition we get p = p1.

Now we will show p ⊂ pi. Let q ∈ p1 and notice q annihilates x1. Consider any
xi, 1 ≤ i ≤ n as determined in 3.2. We have xi ∈ M/Mi−1, so xi = m +Mi−1 where
m ∈ M and m /∈ Mi−1. Then qxi = q(m +Mi−1) = qm +Mi−1. Notice m 6= 0, so
by the first part of 3.3 ann(m) = p which implies qm = 0, so qm ∈ Mi−1, meaning q
annihilates xi.

Notice that the above result means we could begin our filtration of such an
M = R/p with different x1, but all will have p as their annihilator. The Mi formed
may be different, but we still have the property that p ⊂ pi no matter what the
filtration.

Given that S is a Serre class, let F be the set of prime ideals, p, of R so that
R/p ∈ S. Our goal is now to find all such sets F that come from some Serre class S in
the category of finitely generated modules. We then set up a bijective correspondence
between the Serre classes S and these sets F of prime ideals of R to give the complete
characterization of finitely generated modules over a commutative noetherian ring.

These sets, F were studied by Gabriel in [6] and also used by Walker and Walker
in [14]. Gabriel described when such sets, F form a Serre class, but finding a bijection
between the two took more work. Rather than immediately using these sets F to
study Serre classes, their approach was to first look at more general classes and the
sets F that could be mapped bijectively to them. They began characterizing additive
classes, then bounded, complete additive classes and eventually characterize what the
sets F looked like for some Serre classes. In particular, they described such sets F
for classes of modules with essential socles, which we will discuss in chapter six.

3.2 A Characterizing Bijection

Remark 3.4. If F is as above for some Serre class S in the category of finitely
generated modules over R, given p ∈ F and p ⊂ q for some q ∈ Spec(R), we have
that q ∈ F .
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To realize this, consider the short exact sequence 0 → q/p → R/p → R/q → 0.

By 2.24 q/p ∈ S, and
R/p

q/p
∈ S. Since

R/p

q/p
∼= R/q, 2.22 shows R/q ∈ S, meaning

q ∈ F .

The property described in 3.4 means that F is a filter which is closed under
“specialization”. We now show through the following two lemmas that given a filter
F ⊂ Spec(R), we can generate a set S which is a Serre class. The generation of
this set S indicates a bijection thus giving our characterization of all Serre classes of
finitely generated modules over R.

Lemma 3.5. Let F ⊂ Spec(R) be a filter. This means that when p ∈ F and p ⊂ q

for q ∈ Spec(R), then q ∈ F . Define S to be the set of finitely generated modules M
such that M has a filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M

with Mi+1/Mi
∼= R/p for p ∈ F . Given any submodule A ⊂ M , if A and its quotient

M/A are elements of S, we have that M ∈ S.

Proof. We quickly check that M is finitely generated by noticing if {x1, . . . , xm}
generates A and {y1 + A, . . . , yn + A} generates M/A, any y ∈ M is such that
y − (α1y1 + · · · + αnyn) ∈ A where αi ∈ R for 1 ≤ i ≤ n. This implies y =
α1y1+ · · ·+αnyn+β1x1+ · · ·+βmxm for βi ∈ R, showing thatM is finitely generated.
Because A,M/A ∈ S, there exist filtrations A = An ⊃ An−1 ⊃ · · · ⊃ A1 ⊃ A0 = 0
and M/A = Tk/A ⊃ Tk−1/A ⊃ · · · ⊃ T1/A ⊃ T0/A = 0 where A ⊂ Tj, 0 ≤ j ≤ k, and

Ai+1/Ai ∼= R/pi+1 with pi+1 ∈ F , for 0 ≤ i ≤ n− 1 (3.1)

Tj+1/A

Tj/A
∼= Tj+1/Tj ∼= R/qj+1 with qj+1 ∈ F , for 0 ≤ j ≤ k − 1 (3.2)

So, we have M = Tk ⊃ Tk−1 ⊃ · · · ⊃ T1 ⊃ T0 = A = An ⊃ An−1 ⊃ · · · ⊃ A0 = 0 and
noting (3.1),(3.2), conclude M ∈ S.

Lemma 3.6. Let F ⊂ Spec(R) be a filter. Define S to be the set of finitely generated
modules M so that M has a filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M

with Mi+1/Mi
∼= R/p for p ∈ F . Given M ∈ S, any submodule A ⊂ M and its

quotient, M/A are also elements of S.

Proof. Because M ∈ S, 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn−1 ⊂ Mn = M where Mi+1/Mi
∼=

R/pi+1 and pi+1 ∈ F for 0 ≤ i ≤ n. It is clear that both A and M/A are finitely
generated, being submodules and quotient modules of M . We look for our filtration
of A which will show A ∈ S.
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Notice 0 = (M0 ∩ A) ⊂ (M1 ∩ A) ⊂ · · · ⊂ (Mn ∩ A) = A. While this does not
directly give us the necessary filtration of A, it will give rise to one. Consider first
the following map:

Mi+1 ∩ A/Mi ∩ A
f
−→ Mi+1/Mi

x+ (Mi ∩ A) 7→ x+Mi

where x ∈Mi+1∩A. Notice that ker(f) is the set of elements in (Mi+1∩A)/(Mi∩A)
which map into Mi. If x+(Mi ∩A) maps into Mi, then x ∈Mi. Since x ∈Mi+1 ∩A,
x ∈ Mi ∩ A implying ker(f) = 0. This gives Mi+1 ∩ A/Mi ∩ A is isomorphic to a
submodule of Mi+1/Mi, which we know is isomorphic to R/pi+1 by M ∈ S.

Now, if M1 ∩ A ∼= R/p, where p ∈ F , we continue. If not, we have M1 ∩ A
is isomorphic to a submodule of R/p1. Use 3.2 to find a filtration of M1 ∩ A with
subquotients isomorphic to R/q where q ∈ Spec(R). By 3.3 these q contain p1.

Insert these new submodules given by the filtration of M1 ∩ A into our filtration
as needed. Continue this process for each Mi ∩ A, noticing in each case these q ∈ F
because F is a filter. This gives the necessary filtration of A, showing A ∈ S. Lastly
we show that M/A ∈ S. Notice that

0 = (M0 + A)/A ⊂ (M1 + A)/A ⊂ · · · ⊂ (Mn−1 + A)/A ⊂ (Mn + A)/A =M/A

is a filtration of M/A. While its subquotients may not subscribe to our requirements
for S, we can use a similar process to that above by defining the map g below:

Mi+1/Mi
g
−→ (Mi+1 + A)/(Mi + A)

x+ (Mi) 7→ x+ (Mi + A)

Notice that g is surjective, so we have:

(Mi+1 + A)/(Mi + A) ∼=
Mi+1/Mi

ker(g)
∼=
R/pi+1

ker(g)

We see that each (Mi+1 + A)/(Mi + A) is isomorphic to a quotient of R/pi+1. Call
this quotient N and notice that pi+1 annihilates any element of N . Similar to above,
if (M1 + A)/A ∼= R/p1, continue. If not, use 3.2 to find a filtration of (M1 + A)/A
with subquotients isomorphic to R/q, q ∈ Spec(R). By 3.3 and the fact that F is a
filter, q ∈ F . Continue to add more modules into our filtration of M/A as needed
using this method and we see that M/A ∈ S.

Theorem 3.7. Let F ⊂ Spec(R) be a filter. Define S to be the set of finitely generated
modules M so that M has a filtration

0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M

with Mi+1/Mi
∼= R/p for p ∈ F . This S is a Serre class.
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Proof. Recall that any short exact sequence of R−modules 0 → M1 →M →M2 → 0
is isomorphic to a short exact sequence 0 → A → M → M/A → 0 where A is a
submodule of M and M/A is its corresponding quotient module. By 3.5 and 3.6, our
claim is proved.

We now write S ⇒ F to mean that F is the set of prime ideals associated with
a given Serre class S. Write F ⇒ S to indicate S is the Serre class associated with
a given set of prime ideals F . We will show that there is a bijective correspondence
between these two sets.

Theorem 3.8. With S and F as above:

(i) If S ⇒ F and if F ⇒ S ′, then S = S ′.

(ii) If F ⇒ S and if S ⇒ F ′, then F = F ′.

Proof. We first prove that S ⊆ S ′. If M ∈ S, then M = Mn ⊃ · · · ⊃ M1 ⊃ M0 ⊃ 0
where each Mi+1/Mi is isomorphic to R/p. This implies p ∈ F . We know that if
M ′ ∈ S ′ there is a similar chain of submodules forming a filtration of M ′ and the
exact same F is prescribed up front. Clearly M is of this type.

We now prove that S ′ ⊆ S. Let M ′ ∈ S ′. Then 0 = M ′

0 ⊂ M ′

1 ⊂ · · · ⊂ M ′

n = M ′

where M ′

i/M
′

i−1
∼= R/pi and pi ∈ F . But pi ∈ F ⇒ R/pi ∈ S. This implies M ′

i/M
′

i−1

is isomorphic to some element of S and since S is a Serre class, we haveM ′

i/M
′

i−1 ∈ S
for each i. We will now use induction to show M =M ′

n ∈ S. Begin by noting noting
M ′

0 = 0 ∈ S. We use the short exact sequence below, the fact that M ′

n = M ′ and
that M ′

n−1 ∈ S by our induction assumption to finish our claim.

0 → Mn−1 →Mn → Mn/Mn−1 → 0

Next we show F = F ′. Notice that F ⊆ F ′ because if p ∈ F , R/p ∈ S which
implies p ∈ F ′. Letting p ∈ F ′ implies R/p ∈ S. Given any filtration of R/p,
0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = R/p, notice M1

∼= R/p1 which means p1 ∈ F . By 3.3
p = p1, thus proving p ∈ F .

The result described in 3.8 was announced by Mark Hovey and Karen Collins
of Wesleyan University without publication. Since Hovey and Collins didn’t publish
their result, we included this proof for completeness. It seems likely that the tech-
niques they used were similar. Manuel López, a student of Hovey and Collins, used
their result in his thesis where he characterized Serre classes of artinian modules.
In the following chapter, we will also characterize Serre classes of artinian modules,
only using different techniques. We will need to use the fact that the Serre classes
of finitely generated modules exist in bijective correspondence with the sets F where
F = {p ∈ Spec(R)|R/p is a finitely generated R − module} and F is closed under
specialization.

Copyright c© Casey Ryan Monday 2014
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Chapter 4 A Noetherian-Artinian Relationship

In this chapter we will define a bijective correspondence between submodules of M
and Mν when M is a reflexive module over a complete and local ring R. We show
that M satisfies the ascending chain condition (M is noetherian) if and only if Mν

satisfies the descending chain condition (Mν is artinian). We will then have an
analogous result which says M is artinian if and only if Mν is noetherian. In chapter
three, we characterized all Serre classes of noetherian modules, and we now use that
result to characterize Serre classes of artinian modules.

4.1 A Bijective Correspondence

In what follows, we build an argument to explain the relationship between the chain
conditions on an R−module M and the chain conditions on its dual. We use in-
terchangeably the phrases “M satisfies the ascending chain condition (ACC) on its
submodules” with “M is noetherian” and “M satisfies the descending chain condition
(DCC) on its submodules” with “M is artinian”. At first, M is allowed to be any
module over our usual R. Then, we use the fact that when M is reflexive, so is Mν

(see 2.17) to get a bijective correspondence between submodules. We extend this
result to show that M satisfies ACC (DCC) if and only if Mν satisfies DCC (ACC).

Now, let M be any R−module with S ⊂ M a submodule. Define, as we did
previously, p as the canonical surjection M → M/S. By 2.8, pν : (M/S)ν → Mν is
an injection. Denote the image of pν by ⊥S, and notice ⊥S is a submodule of Mν . In
fact, this ⊥S will be the submodule of Mν hinted at above which forms half of the
bijective correspondence. Before defining this bijection, we need to obtain a better
understanding of ⊥S.

Lemma 4.1. With the notation defined above:

⊥S = {ϕ ∈ Mν |ϕ(S) = 0}

Proof. We first show that any element, ϕ, of ⊥S is such that ϕ(s) = 0 for all s ∈ S.
Since ⊥S = Im(pν), ϕ ∈⊥ S implies ϕ = pν(ψ) = ψ ◦ p where ψ ∈ (M/S)ν . Notice
ψ ◦ p ∈ Mν and consider ϕ(s) = ψ(p(s)). Since s ∈ S, p(s) = 0 and we conclude
ϕ(s) = 0.

Now, if ϕ ∈ Mν and ϕ(s) = 0 for all s ∈ S, notice ker(p) = S ⊂ ker(ϕ).
Define ψ : M/S → E by x + S 7→ ϕ(x), where x ∈ M . This ψ is well-defined as
ϕ(S) = 0 = ϕ(S). Clearly ϕ = ψ ◦ p which means ϕ ∈⊥ S.

Now that we have a more concrete understanding of ⊥S, we can construct a similar
set to complete our proposed bijection between submodules of M and submodules
of Mν . Notice that the map Mν × M → R which takes (ϕ, x) to ϕ(x) helps us
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understand why we used the notation for ⊥S: it is the set of all homomorphisms in
Mν which are orthogonal to S. Now, given T ⊂ Mν , define T⊥ to consist of all the
x ∈ M so that ϕ(x) = 0 for all ϕ ∈ T . We formalize this definition in the following
remark.

Remark 4.2. As described above:

T⊥ = {x ∈M |ϕ(x) = 0 for all ϕ ∈ T}

Notice that the above remark holds true for any subset T of Mν , but we will be
especially interested in those T which are submodules of Mν . In order to prove the
injectivity of our bijection between S and ⊥S, we will need the following results. For
the first, recall, as in the proof of 2.15 that for any element x ∈M , Rx is isomorphic
to R/ ann(x). We now want to use this fact to show that there exists some ϕ ∈ Mν

so that the evaluation of this ϕ at our nonzero x is also nonzero. Recall first 2.15
which states that in a local ring, E is faithfully injective. We use this to better fit
our current needs as shown below.

Lemma 4.3. If x is a nonzero element of M , then there is a homomorphism ϕ ∈Mν

so that ϕ(x) 6= 0.

Proof. Consider the diagram below where the map from Rx to E is defined by the
composition of the nonzero map found in 2.15 and the injection of R/m into its
injective envelope.

Rx

��

� � //M

ϕ
}}④
④
④
④

E

Because E is injective and the map from Rx to E is nonzero, there exists a nonzero
ϕ :M → E so that ϕ(x) is nonzero.

Lemma 4.4. Let S ⊂M be a submodule of M with x ∈M and x /∈ S. There exists
a ϕ ∈Mν so that ϕ(S) = 0, but ϕ(x) 6= 0.

Proof. Notice by our assumption if x 6= 0, x + S is also nonzero as an element of
M/S. Noting that M/S is an R−module, we apply 4.3 to find ϕ̄ :M/S → E so that

ϕ̄(x) 6= 0. Consider the composition M
p
−→ M/S

ϕ̄
−→ E. Define ϕ := ϕ̄ ◦ p and notice

that ϕ(x) 6= 0. Also, ϕ(s) = ϕ̄(0) = 0 for any x ∈ S.

Lemma 4.5. If S is any submodule of the R−module M , then (⊥S)⊥ = S.

Proof. By our definitions in 4.1 and 4.2, we see that:

(⊥S)⊥ = {x ∈M |ϕ(x) = 0 for all ϕ ∈Mν where ϕ(S) = 0}

We need to show that ϕ(x) = 0 for all ϕ ∈Mν provided ϕ(S) = 0 precisely when
x ∈ S. Clearly if x ∈ S and ϕ is of this type, then ϕ(x) = 0, giving S ⊆ (⊥S)⊥. Now,
suppose there exists some x ∈ (⊥S)⊥ where x /∈ S, and ϕ(x) = 0 for all ϕ ∈ Mν

where ϕ(S) = 0. By 5.15, this is impossible.
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Lemma 4.6. Consider the correspondence described above which maps submodules
of M to submodules of Mν described by S 7→⊥ S. This map is injective.

Proof. Let ⊥S1=
⊥S2 where ⊥S1,

⊥ S2 ∈ Im(M). Notice that

(⊥S1)
⊥ = {x ∈M |ϕ(x) = 0 for all x ∈⊥ S1} = {x ∈M |ϕ(x) = 0 for all x ∈⊥ S2} = (⊥S1)

⊥

where the middle equality is clear because ⊥S1 =⊥ S2. Using 4.5 upon noticing
(⊥S1)

⊥ = (⊥S2)
⊥, we conclude S1 = S2 meaning our correspondence is injective.

Notice that so far, we have not needed M reflexive. To prove the injectivity of the
map T 7→ T⊥ needed for our correspondence, we will need this assumption. Recall
that by 2.17 if M is reflexive, then so is Mν . Now, just as with reflexive modules, we
can “identify”M withMνν through the canonical isomorphism. Looking back on the
previous arguments in this chapter, we see that we can apply the same procedures
that we did on the map M ×Mν → R, to the map Mνν ×Mν → R. This is, in
essence, repeating the procedure with Mν in the place of M . Because M is reflexive,
identifying M with Mνν gives us a map from M ×Mν → R. It turns out by a simple
check that this map is defined by (x, ϕ) 7→ ϕ(x).

First we let (τ, ϕ) ∈ Mνν ×Mν and note that this element should map to τ ◦ ϕ.
Because M ∼= Mνν via the canonical isomorphism, φ, there exists a unique x ∈
M corresponding to τ . This defines our identified map from M × Mν → R by
(φ−1(τ), ϕ) 7→ φ−1(τ)(ϕ) which is ϕ(x) based on the definition of φ. Now that we
realize our two maps Mν ×M → R and M ×Mν → R are defined in the same way,
we refer to the map from here on as Mν ×M → R.

Lemma 4.7. When M is reflexive, the map T → T⊥ we get from Mν ×M → R is
an injection.

Proof. Let T⊥

1 = T⊥

2 . By definition we see that ⊥(T1)
⊥ =⊥ (T2)

⊥. Because Mν is a
reflexive module in its own right, we can easily use 5.15 to prove a similar version of
4.5 (ie: that ⊥(T⊥) = T ). This implies T1 = T2. (Note that we needed a reflexive M
to properly consider the map Mν ×M → R.)

Lemma 4.8. Let M be a reflexive R−module. There is a bijective correspondence
between the submodules of M and the submodules of Mν .

Proof. Define S as the set of all submodules of M and T as the set of all submodules
of Mν . As suggested above, define our bijection ψ : S → T by S 7→⊥ S where S ∈ S.
By 4.6, we have that S 7→⊥ S is injective. We will show ψ has an inverse and its
surjectivity will be clear by 4.7. Notice that ψ̄ : T → S defined by T 7→ T⊥ suggested
above is an inverse for ψ. This is because ψ̄ ◦ ψ(S) = ψ̄(⊥S) = (⊥S)⊥ = S for all
S ∈ S (by 4.5). Also, ψ ◦ ψ̄(T ) = ψ(T⊥) =⊥ (T⊥) = T for all T ∈ T by the proof of
4.7. Now that ψ has an inverse, notice ψ is surjective, because if T ∈ T, there exists
some ψ̄(T ) ∈ S so that ψ(ψ̄(T )) = T . We now have a bijection between M and Mν

when M is reflexive.
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Along with this bijection we also find that certain chain conditions on M imply
certain chain conditions on Mν and vice versa. In order to realize this property, we
need the following, more specific result related to 4.8.

Remark 4.9. If S1, S2 are submodules of M and T1, T2 are the corresponding sub-
modules of Mν (via the bijection described in 4.8), then S1 ⊂ S2 if and only if
T1 ⊃ T2.

Proof. Both directions are clear simply by the assumed containment and the definition
of the sets mapped to under the bijection.

Theorem 4.10. Let M be a reflexive R−module. M satisfies ACC (DCC) on its
submodules if and only if Mν satisfies DCC (ACC) on its submodules.

Proof. Both directions of both cases are easily realized using 4.9.

4.2 Serre Classes of Artinian Modules

We will now characterize all Serre classes of artinian modules over a complete local
noetherian ring using the results of chapter four and the bijection developed above.
We know that there exists a bijective correspondence between Serre classes of noethe-
rian modules and the subsets F ⊂ SpecR which are closed under specialization. We
also know if M is reflexive then M satisfies 4.10.

Given any class S of modules, denote by Sν the set of all Mν where M ∈ S.
We will begin with some basic properties of Sν . Then we will show that there is
a bijection between the Serre classes, T , of artinian modules and certain subsets of
Spec(R) which will give our characterization.

Lemma 4.11. If S is any Serre class of reflexive modules, then Sν is also a Serre
class of reflexive modules.

Proof. By our definition of Sν and the fact that Serre classes are closed under iso-
morphism, first note that Sνν = S where S is any class of reflexive modules.

Now, let Mν
1 ,M

ν
3 ∈ Sν and let 0 → Mν

1 → M → Mν
3 → 0 be a short ex-

act sequence. Then by definition of Sν , we must have M1,M3 ∈ S. Notice that
0 → Mνν

3 → Mν → Mνν
1 → 0 is short exact by 2.8. By M1,M3 reflexive, we have

another short exact sequence 0 → M3 → Mν → M1 → 0. Because S is a Serre class,
we have Mν ∈ S. By the definition of Sν , this implies Mνν ∼=M ∈ Sν .

Now, let Mν ∈ Sν . We need to show that if 0 → S → Mν → M/S → 0 is short
exact, then both S and M/S are elements of Sν . We have the commutative diagram
below from 2.8 and the fact thatM is reflexive. (Mν ∈ Sν implies thatM is reflexive
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by definition of Sν .)

0 // (M/S)ν //

∼=
��

Mνν //

∼=

��

Sν //

∼=

��

0

0 // (M/S)ν //M // Sν // 0

From here we see that (M/S)ν , Sν ∈ S. Since we showed above S = Sνν , our
claim is proved.

Lemma 4.12. If S is a Serre class of finitely generated (noetherian) modules, then
Sν is a Serre class of artinian modules.

Proof. Let S be a Serre class of noetherian modules. In a complete local noetherian
ring, noetherian modules are reflexive. (We will prove this fact in chapter five.) Then
by 4.11 we know that Sν is a Serre class. If M ∈ S, M is finitely generated and
Mν is artinian by 4.10. So, letting Mν ∈ Sν gives by definition, M ∈ S which im-
plies M is noetherian and Mν is artinian. Given a short exact sequence of the form
0 → S → Mν → Mν/S → 0 where S ⊂ Mν , we know S and Mν/S are artinian
because submodules and quotient modules of artinian modules are artinian.

Finally, if we begin withMν
1 ,M

ν
3 ∈ Sν we must have that they are artinian. Given

a short exact sequence 0 → Mν
1 → Mν → Mν

3 → 0 yields 0 → M3 → M → M1 → 0
short exact, giving M ∈ S and Mν artinian.

In a complete local noetherian ring, artinian modules are also reflexive. We will
prove this in the next chapter as well. Since Mν is artinian as well as the dual of a
reflexive, by 2.17 it will follow that artinian modules are reflexive.

Notice that there exists a bijective correspondence between Serre classes, S of
noetherian modules and the Serre classes, T of artinian modules. We formalize this
bijection in the following remark which is clear by the fact that both noetherian mod-
ules and artinian modules are reflexive. (This makes S = Sνν , for example.)

Remark 4.13. The correspondence S ↔ T given by S 7→ T when Sν = T (equiva-
lently T ν = S) is a bijection.

We now characterize Serre classes of artinian modules by concretely relating an
artinian Serre class to its dual. The bijection between Serre classes of noetherian
modules and Serre classes of artinian modules is shown above. We have also shown
that the dual of a Serre class of noetherian modules is artinian. All that remains to
show is that the dual of an artinian Serre class of modules is a Serre class of noetherian
modules.
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Lemma 4.14. If T is a Serre class of artinian modules then T ν is a Serre class of
noetherian modules.

Proof. Let T be a Serre class of artinian modules. By the bijection in 4.13, there exists
a Serre class, S of noetherian modules such that Sν = T . Notice that T ν = Sνν = S
which is a Serre class of noetherians.

Now, recall that in chapter four we described the characterization of all Serre
classes of noetherian modules. These Serre classes, S are completely determined by
the set of prime ideals p of R so that R/p ∈ S. We called this set F and also noted
F is closed under specialization.

Based on 4.14, we see that any Serre class T of artinian modules is in bijective
correspondence with a subset G ⊂ Spec(R) where G is closed under specialization so
that p ∈ G if and only if (R/p)ν ∈ T . Note that by the relationship given above,
R/p ∈ S. As we mentioned in chapter three, Manuel López achieved this result in
his Wesleyan thesis only he used a different argument. In chapter six, we will turn
our attention to characterize the Serre classes of reflexive modules over a complete lo-
cal noetherian ring which will be an extension of the results in chapters three and four.

Copyright c© Casey Ryan Monday 2014
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Chapter 5 Requiring R to be Complete

In the next chapter, the proof of the main result of this dissertation is completed. We
will characterize all Serre classes of reflexive modules over a complete local noetherian
ring R. We will need to understand the relationship between Rν and E = E(κ). To
achieve the most beneficial relationship (ie: Eν ∼= R) we will need R to be complete.

We will then show that there are many examples of reflexive modules for such
an R. For example, if R is local, a direct sum of reflexives is reflexive. When R is
also complete, R itself is reflexive. Additional examples of reflexive modules include
any free module with a finite bases and any finitely generated R−module. Still other
examples include noetherian modules and artinian modules.

Lemma 5.1. In a local ring, R, Rν ∼= E.

Proof. Considering R as a module over itself, notice that ϕ ∈ Rν is completely
determined by ϕ(1) = x where x is an element of E. In addition, each element x ∈ E
defines a homomorphism ϕ ∈ Rν . Hence Rν ∼= E.

In the results that follow, suppose R is a local ring which has finite length as
a module over itself. Note that this implies when R has finite length, E has finite
length by 2.20. In fact, we can show that over a local ring, any module of finite length
is reflexive.

Lemma 5.2. Given M is a module of finite length, M is reflexive.

Proof. We use induction. By 2.19 any module of length 1 is reflexive. Suppose any
module of length n − 1 is reflexive and let M have length n. Since 0 → M1 →֒
M → M/M1 → 0 is a short exact sequence and E is injective, 0 → Mνν

1 →֒ Mνν →
M/Mνν

1 → 0 is short exact by 2.9. Because ℓ(Mνν
1 ) + ℓ(M/Mνν

1 ) = ℓ(Mνν), 2.20
implies ℓ(M/Mνν

1 ) = n− 1. By assumption, M/Mνν
1 is reflexive and 2.10 implies M

is reflexive.

Notice that if R has finite length as a module over itself, R ∼= Rνν ∼= Eν by 5.1
making Eν ∼= R. We will extend this result to rings that do not necessarily have
finite length. This will take some work and relies on considering completeness with
respect to the m−adic topology. For now we give an explicit isomorphism between
Eν and R when R has finite length as a module over itself.

Lemma 5.3. Eν ∼= R where the isomorphism is described by ṙ : R → Eν where
ṙ(r) = (x 7→ rx) for any r ∈ R.
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Proof. Consider the diagram below and notice that by showing ϕ is an isomorphism
and that the diagram commutes we get ṙ is an isomorphism.

R
ṙ

!!❈
❈❈

❈❈
❈❈

❈

∼=
// Rνν

ϕ
��

Eν

Notice ϕ is an isomorphism as Rνν ∼= Eν by 5.1. This means mapping r ∈ R right
and down via the diagram results in r 7→ (σ 7→ σ(r)) 7→ (x 7→ σ(r)) where each σ
can be described by a unique x ∈ E. Now, notice the homomorphism (x 7→ σ(r))
maps x to σ(r · 1) = r(σ(1)). As σ is defined by x, we have σ(1) = x making
(x 7→ σ(r)) = (x 7→ rx).

5.1 Relating R to a Module of Finite Length

We now develop a result which allows us to change from a local R to a local ring
which also has finite length. After that we will use the results above in a more general
case. We will find that R/mn has finite length and the following arguments will allow
us to compare injective modules over a local ring R with injective modules over R/mn.

The next few results are true for any commutative R, an injective left R−module
E and I ⊂ R a two-sided ideal of R. We will later take I = mn and require a local R.

Lemma 5.4. With R, E and I as above, 0 → HomR(R/I, E) → HomR(R,E) is
exact.

Proof. We denote HomR(R/I, E) by (R/I)ν and HomR(R,E) by Rν . Notice that
R

σ
−→ R/I → 0 is exact where σ represents the projection map. Let h ∈ (R/I)ν and

recall σν(h) = h ◦ σ by definition. If σν(h) = 0, h(σ(r)) = 0 for all r ∈ R. Suppose
h 6= 0. Then there exists some s ∈ R where s /∈ I so that h(s + I) 6= 0. By the
surjectivity and definition of σ, σ(s) = s+I 6= 0 which is a contradiction to σν(h) = 0
as h(σ(s)) = 0.

We now show that (R/I)ν can be identified with a submodule of E. This will be
key in relating R to R/mn.

Lemma 5.5. Define E ′ = {x|x ∈ E, Ix = 0} and notice E ′ ⊂ E. This E ′ is
isomorphic to (R/I)ν.

Proof. Consider the inclusion (R/I)ν →֒ Rν and recall we have Rν ∼= E. (Remember,
what we do not have yet for a general local ring is R ∼= Eν .) This means (R/I)ν is
isomorphic to some submodule of E, call it T . We claim that T = E ′ and proceed
by showing both inclusions.

Claim: T ⊂ E ′. Let τ ∈ T and recall by 5.4 σν is an injection. Consider

(R/I)ν
σν
−→ Rν

∼=
−→ E. By the nature of the isomorphism between Rν and E, we
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have that τ maps as follows: τ 7→ τ ◦ σ 7→ τ(σ(1)). Define τ(σ(1)) = x and notice
if r ∈ I, τ(σ(r)) = rx. However, by definition of σ, σ(r) = 0, so we have rx = 0.
This shows that when τ is identified with an element x ∈ E, Ix = 0 implying T ⊂ E ′.

Claim: E ′ ⊂ T . Let x ∈ E ′ meaning x ∈ E and Ix = 0. By Rν ∼= E we know
x corresponds to the ϕ ∈ Rν so that ϕ(1) = x. Since ϕ : R → E and because any
r ∈ I, is such that r ∈ ker(ϕ), we have that ϕ defines a map R/I → E. This shows
E ′ ⊂ T .

Now that we have E ′ ∼= (R/I)ν , we can view E ′ as a left R/I module. The only
tricky part is defining scalar multiplication. An easy check shows that (r + I)x = rx
where r + I ∈ R/I and x ∈ E ′ is well-defined. In fact, we can show that E ′ is an
injective R/I module.

Lemma 5.6. E ′ as defined above is an injective R/I module.

Proof. By Baer’s criterion we must show that if ϕ : J/I → E ′, where J/I is an ideal
of R/I, then there exists an extension of ϕ which maps R/I to E ′. The following
claim will help us achieve such an extension.

Claim 5.7. A linear map σ : R → E is such that σ(R) ⊆ E ′ if and only if σ(1) = x
where Ix = 0.

Proof. To prove the claim, let σ ∈ Rν so that σ(R) ⊆ E ′. If σ(1) = x and Ix 6= 0
then x /∈ E ′. This implies σ(1) /∈ σ(R) which is impossible as 1 ∈ R.

Now, if σ(1) = x where Ix = 0, suppose there exists some r ∈ R where σ(r) /∈ E ′.
Then σ(r) = y and Iy 6= 0. We also have σ(r) = rσ(1) = rx. This provides a
contradiction as 0 6= Iy = Irx = Ix = 0.

Now that our claim is proved, consider the commutative diagram below where each
→֒ represents an inclusion map and the homomorphism f exists by the injectivity of
E.

J

��

� � // R

f

��

J/I

ϕ

��

E ′ �
�

// E

Notice that our diagram is such that If(1) = 0 and by our claim this means f(R) ⊂
E ′. Finally, notice I ⊂ ker(f) giving the induced map we desire. By Baer’s criterion,
E ′ is an injective R/I module.

We can now define what sort of submodules of E ′ have E ′ as an injective envelope.
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Lemma 5.8. Let M ⊂ E be a submodule of E so that E is an injective envelope of
M . Define M ′ = {x|s ∈ M, Ix = 0}. As R/I−modules, M ′ ⊂ E ′ is an injective
envelope.

Proof. Note thatM ′ is anR/I module asM ′ ⊂ E ′. We need only show thatM ′ ⊂′ E ′.
Suppose T ⊂ E ′ and T ∩M ′ = 0 but T 6= 0. By M ⊂′ E and T 6= 0 we must have
T ∩M 6= 0. Let 0 6= t ∈ T ∩M . Since T ⊂ E ′, we have t ∈ M which contradicts
T ∩M ′ = 0.

We now require R to be local with our usual E = E(κ). We do not assume R
to have finite length as a module over itself. In the results which follow, we see that
R → Eν as defined in 5.3 might not always be injective. We need R ∼= Eν , but this
will require that R is complete with respect to the m−adic topology.

Note that the residue field of R which we are calling κ is the only simple module
(up to isomorphism) over R. If V is a vector space over κ, then V can also be con-
sidered an R−module. If dim(V ) = n < ∞, then V is the direct sum of n copies of
κ. This means that as an R−module, V has finite length.

Since R is noetherian, any ideal of R is finitely generated as an R−module. It
can be checked that I/mI is the direct sum of a finite number of copies of κ when
I ⊂ R is an ideal of R. Now, notice that R ⊃ m ⊃ m2 ⊃ · · · ⊃ mn. These two facts
allow us to argue that R/mn has finite length.

Lemma 5.9. For n ≥ 1 R/mn has finite length.

Proof. Note that ℓ(R/m) = 1 and proceed by induction. Suppose ℓ(R/mn−1) < ∞.

By the chain of inclusions above we have R/mn ϕ
−→ R/mn−1 → 0 is exact. Additionally,

if r + mn−1 = 0, r ∈ mn−1 which implies ker(ϕ) = {r + mn|r ∈ mn−1} = mn−1/mn.

This implies 0 → mn−1/mn → R/mn ϕ
−→ R/mn−1 → 0 is short exact. By 2.27, R/mn

has finite length.

In what follows, for n ≥ 1, define En = {x|x ∈ E,mnx = 0} and E0 = 0.

Lemma 5.10. With En defined as above, ∪∞

n=0En = E.

Proof. Clearly E0 is a submodule of each En and E0 ⊂ E. Let x ∈ E1 and notice
x ∈ E and mx = 0. Notice m2x = 0, so E1 ⊂ E2, and we see that:

E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ E.

This shows if x ∈ ∪∞

n=0En, x ∈ Ei for some i ≥ 1 which implies x ∈ E. Now, if x ∈ E,
by 2.29 there is some n ≥ 1 so that mnx = 0 which implies x ∈ En.

So far we know R/mn is an R−module with finite length, but we would like it to
be local as well. Noticing that m/mn is the unique maximal ideal of R/mn gives just
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that. Now we define the residue field of R/mn as
R/mn

m/mn
∼= R/m.

Now, by 5.6, and 5.8 we have R/m ⊂′ En. This makes En an injective envelope
of R/m. By our comments above, En is isomorphic to an injective envelope of the
residue field of R/mn.

Lemma 5.11. When R is assumed local, ṙ : R→ Eν which maps r to the linear map
x 7→ rx is injective.

Proof. Our approach will be to show ker(ṙ) ⊂ mn for any n. This will give by 2.30
(Krull-Intersection) that ker(ṙ) = 0.

By 5.9, R/mn has finite length, so we can use 5.3. After recalling that En is
isomorphic to an injective envelope of the residue field of R/mn, we see R/mn ∼=
HomR/mn(En, En) = HomR(En, En). Notice that if ψ ∈ Eν , ψ(mnx) = ψ(0) = 0 for
all x ∈ E by 5.10. This implies mnψ(x) = 0 which puts ψ(x) ∈ En. This allows us to
consider ṙ as a map from R to HomR(En, En).

Considering the diagram below gives that ker(ṙ) ⊂ mn for all n. This implies
ker(ṙ) = 0, making ṙ injective.

R //

ṙ

&&

R/mn∼= // HomR(En, En)

Now, even though we have shown ṙ : R → Eν is injective, we must reduce back
to the map R → HomR(En, En) to get surjectivity.

Lemma 5.12. With En as above, the map R → HomR(En, En) defined by sending
r ∈ R to the map x 7→ rx is surjective, and its kernel is mn.

Proof. Let ψ ∈ HomR(En, En). By noticing HomR(En, En) ∼= R/mn, ψ corresponds
one-to-one with some unique r+mn. The projection map from R→ R/mn is surjec-
tive, so our map from R to HomR(En, En) is surjective. Furthermore, the kernel of
this map is the same as the kernel of the canonical projection, which is mn.

As mentioned in the beginning of this section, we will need a complete R to have
R ∼= Eν . Because we want R → Eν surjective, we really just need to answer the
question: Given ψ ∈ Eν , when is there an r ∈ R so that ψ(x) = rx for all x ∈ E. We
first form several equivalent conditions that give R complete, and then realize this
answers our question.

Lemma 5.13. R is complete if and only if whenever we have a sequence r0, r1, · · ·
of elements of R such that rn ∼= rn+1 mod mn for each n there is an r ∈ R so that
r ≡ rn mod mn for each n ≥ 0.
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Proof. Let R be complete and suppose {ri}
∞

i=0 is a sequence as above. Define t0 =
r0, t1 = r1 − r0, t2 = r2 − r1, · · · , tn = rn − rn−1, · · · .

Notice rn =

n
∑

i=0

ti and lim
n→∞

tn = 0 since rn−rn+1 ∈ ∩∞

n=0m
n which by 2.30 we know

to be zero. By the completeness of R, {ri}
∞

i=0 converges. In fact we see it converges

to r =
∞
∑

n=0

tn.

Now, let R have the property described above for sequences. Let {sn}
∞

n=0 be any
Cauchy sequence in R. (Note that we mean Cauchy with respect to the linear topol-
ogy associated with the subgroups mn. This is the m−adic topology discussed by
Lam ([10]).) Then for some N ∈ N, when m ≥ N , |sm − sm+1| < ε for any given
ε > 0. Now, because {sn} is a general Cauchy sequence, we may not have sn ∼= sn+1

mod mn, but a subsequence will have this property.

We use the notation as {sm}, noting that we are now referring to the subsequence

mentioned above. So, sm − sm+1 ∈ mk and sm − sm+1 /∈ mk+1 where k > ln(
1

ε
− 2).

By choosing ε =
1

em + 2
, sm− sm+1 ∈ mm for each m. By assumption, we have some

s ∈ R so that s ≡ sn mod mn for each n ≥ 0. Letting ε > 0 and N = ln(ε−
1

2
) we

see that sn → s as n→ ∞, thus proving R is complete.

Lemma 5.14. If ϕn ∈ HomR(En, En) for each n ≥ 1 and ϕn+1 agrees with ϕn for
each n, there exists a unique ϕ ∈ HomR(E,E) such that ϕ agrees with ϕn on En for
each n ≥ 1.

Proof. If x ∈ E, x ∈ En for some n ≥ 0 by 5.10. Define ϕ(x) = ϕn(x) where n is the
smallest index where x ∈ En. The only tricky part of checking ϕ is well-defined is in
checking ϕ(x+ y) for x, y ∈ E. Perhaps x ∈ En and y ∈ Em where x /∈ Ei, y /∈ Ej for
i < n, j < m. Without loss of generality, suppose m ≥ n. Then because En ⊂ Em,
ϕm(x) = ϕn(x). So, ϕ(x + y) = ϕm(x + y) = ϕn(x) + ϕm(y) = ϕ(x) + ϕ(y). This
map is unique because if ϕ1 = ϕ2, there is some x ∈ E so that ϕ1(x) 6= ϕ2(x).
But if both ϕ1 and ϕ2 satisfy our hypothesis, ϕ1(x) = ϕn(x) = ϕ2(x), which is a
contradiction.

With the arguments above, we can now answer the question of surjectivity for
R → Eν . For a local ring, this map is surjective if and only if R is complete.

Lemma 5.15. When R is a local ring, R is complete if and only if for every ϕ ∈
Eν = HomR(E,E) there is an r ∈ R so that ϕ(x) = rx for all x ∈ E.

Proof. Let R be complete and local and ϕ ∈ Eν . If x ∈ E, x ∈ En as in 5.10.
As En ⊂ En+1 ⊂ · · · ⊂ E, each map ϕn, ϕn+1, · · · mentioned in 5.12 is surjective.
This implies we can find an rn in R so that rnx = ϕn(x), and an rn+1 ∈ R so that
ϕn+1(x) = rn+1x = rnx, where ϕi : Ei → Ei is the map x 7→ rix for i ≥ n. Continuing
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in this way, we form a sequence {ri}
∞

i=n where rix−ri+1x = 0. This means ri−ri+1 is
in the kernel of the map mentioned in 5.12. So, ri−ri+1 ∈ mn for all i ≥ n. By 5.13 we
realize our sequence converges to an r ∈ R so that ϕ(x) = rx. This r is unique by 5.14.

Now, let R be local and have the property described above for every ϕ ∈ Eν . Let
{rn}

∞

n=0 be a sequence of elements of R so that rn ∼= rn+1 mod mn. By 5.13, we
need only show there exists some r ∈ R so that r ≡ rn mod mn for each n ≥ 0. By
our assumption, the ϕ defined by ϕn(x) as above can be defined by one r ∈ R. This
completes our proof.

By 5.11 and 5.15, we have the following theorem.

Theorem 5.16. If R is a local ring, R is complete if and only if R ∼= Eν via the
map defined by r 7→ (x 7→ rx).

5.2 Examples of Reflexive Modules

We finally come to our first example of a nontrivial reflexive module. When R is local
and complete, R is reflexive.

Theorem 5.17. A local ring R is reflexive if and only if it is complete.

Proof. First, let R be complete and consider the canonical homomorphism φ as
defined in 1.1. This map is injective because if φ(r1) = φ(r2) for r1, r2 ∈ R,
then ϕ(r1) = ϕ(r2) for all ϕ ∈ Rν . Because we showed E is faithfully injective,
ϕ(r1) − ϕ(r2) = 0 implies r1 − r2 = 0. This means φ is injective. To show that φ is
surjective, let ψ ∈ Rνν . We have Rνν ∼= Eν by 5.1 and Eν ∼= R by 5.16 as R is com-
plete. By the nature of the isomorphisims we have defined above for Rνν ∼= Eν ∼= R,
it is easy to check that the r ∈ R guaranteed by 5.16 is such that φ(r) = ψ. We
conclude φ is an isomorphism, making R reflexive.

Now, let R be reflexive and ϕ ∈ Eν . By 5.15, we need only show there exists some
r ∈ R so that ϕ(x) = rx for all x ∈ E. By 5.1, Rνν ∼= Eν , meaning ϕ corresponds
bijectively with some ψ ∈ Rνν , which in turn corresponds to some r ∈ R by the
reflexivity assumed. Note that ψ acts on elements of Rν , which are homomorphisms
from R to E. The inverse of the canonical isomorphism from R to Rνν preserves
the desired property that ψ(f) = f(r) when f ∈ Rν . We conclude ϕ(x) = rx as
desired.

So, in a local ring, R, we have a nontrivial reflexive module. It is helpful here to
recall that the work of Matlis and Gabriel in [11] and [6] shows that under the Matlis
dual, finitely generated (noetherian) and artinian modules are reflexive. We complete
this result here by instead introducing a new type of submodule called the socle.

In [14] Walker and Walker showed that over a commutative noetherian ring, mod-
ules, M , with soc(M) ⊂′ M form a Serre class. We will show below that for an
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artinian module, its socle is an essential submodule, so this would give an alternate
proof of 2.25. We will use the socle to prove that artinian modules are reflexive over
a complete, local, noetherian ring.

Definition 5.18. The socle of a module is defined as the intersection of all the
essential submodules of M . In a local ring this can be described more explicitly as the
set of all x ∈M so that mx = 0.

The socle of a module can be made into a κ module by defining (r + m)x = rx.
This naturally makes soc(M) a vector space over κ. While we understand artinian
modules are those which satisfy DCC, we will need a more useful characterization
for proving the theorem at the end of this section. As it turns out, a module, M ,
is artinian if and only if its socle has finite dimension and is an essential submodule
of M . We include here the direction which is relevant in this chapter. The second
direction appears in chapter six.

Lemma 5.19. IfM is an artinian module, then soc(M) is a finite dimensional vector
space over κ and soc(M) ⊂′ M .

Proof. First we will show if M is artinian, then its socle has finite dimension as a
vector space over κ. It is clear that soc(M) ⊂ M which implies soc(M) is artinian.
If soc(M) had infinite dimension, we could find a descending chain of submodules
of soc(M) that did not stabilize by looking at submodules generated by the basis
elements.

Now we show soc(M) ⊂′ M . Let 0 6= S ⊂ M and suppose S ∩ soc(M) = {0}.
Because S ⊂ M , S is artinian which implies S contains a simple submodule, S ′, as
any descending chain must stabilize. Because our ring is local, S ′ ∼= κ. Let s ∈ S ′

and notice ms = 0 which implies s ∈ soc(M). Since s ∈ S ∩ soc(M), we have that
s = 0 which shows S ′ = 0, contradicting that S ′ is simple and making S = 0.

Before we can show that noetherian and artinian modules are reflexive, we will
show that when R is complete, direct sums of reflexives are reflexive and that evey
free R−module with a finite base is reflexive.

Lemma 5.20. Let M1 and M2 be R−modules. M1 ⊕M2 is reflexive if and only if
M1 and M2 are reflexive.

Proof. First, let M1 ⊕ M2 be reflexive and consider the canonical homomorphism

M1
φ
−→ Mνν

1 . Injectivity follows from 2.13. Let ϕ ∈ Mνν . Notice that this ϕ can
be considered as a map on (M1 ⊕ M2)

νν by defining σ(m1 + m2) = σ(m1) where
m1 ∈ M1, m2 ∈ M2 and σ ∈ Mν

1 . By reflexivity of M1 ⊕M2, φ is surjective. The
proof for M2 is similar.

Now, let M1,M2 be reflexive and consider M1 ⊕ M2
φ
−→ (M1 ⊕ M2)

νν . Again,
injectivity follows from 2.13. Let ϕ ∈ (M1 ⊕ M2)

νν . For any σ ∈ (M1 ⊕ M2)
ν ,

the restrictions of σ to M1 and M2 respectively are surjective thereby making φ
surjective.
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Lemma 5.21. If R is complete, then every free R−module with a finite base is
reflexive.

Proof. Note that a free module with a finite base is isomorphic to the direct sum of
finitely many copies of R. By 5.17 and 5.20, R is reflexive.

Lemma 5.22. If R is complete and M is a finitely generated R−module, then M is
reflexive.

Proof. Let M be finitely generated by x1, x2, . . . , xn for some n < ∞. Consider the
map Rn ϕ

−→M which is defined as follows:

(1, 0, 0, . . . , 0) 7→ x1
(0, 1, 0, . . . , 0) 7→ x2

...
(0, . . . , 0, 0, 1) 7→ xn

Notice ϕ is a homomorphism which makes M ∼= Rn/ ker(ϕ). By 5.21, Rn is reflexive.
By 6.1 we notice quotient modules of reflexive modules are reflexive. Since M is
isomorphic a reflexive module, M reflexive.

Lemma 5.23. If M is artinian, then M is reflexive.

Proof. For this proof, we will show thatM is isomorphic to a submodule of a reflexive.
By 5.19, soc(M) has finite dimension, as does κn making soc(M) and κn isomorphic.
Consider the following commutative diagram:

κn
∼=
//

� _

��

soc(M) � � //M

ϕ
uu❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥❥❥

En

where ϕ exists because En is injective. Now, ϕ(M) ∼= M/ kerϕ. By 5.19,
soc(M) ⊂′ M . Note that restricting ϕ to the socle of M gives an isomorphism
and makes ker(ϕ) ∩ soc(M) = {0} thus implying ker(ϕ) = 0. This means
M ∼= ϕ(M) ⊂ En.

We have shown R itself is reflexive, and by 2.17 Rν is reflexive. In 5.1 we showed
Rν ∼= E, so E is reflexive. Finally, in 5.21 we showed En is reflexive. Now that M is
isomorphic to a submodule of a reflexive, M is reflexive.

Now we have shown noetherian modules and artinian modules over a complete, lo-
cal, noetherian ring are also reflexive. From our previous work, we know that finitely
generated modules and artinian modules each form a Serre class. This shows that
some subclasses of reflexive modules form a Serre class. We will continue to use the
socle in the following section.
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Chapter 6 The Characterization of Reflexive Modules

Recall that in chapter two we showed that noetherian and artinian left R−modules
form a Serre class. Note that the following result shows that reflexive modules over
a complete local noetherian ring form a Serre class.

Lemma 6.1. When R is local, M is reflexive if and only if S and M/S are reflexive.

0 // S
i

//

φS
��

M
p

//

φ

��

M/S

φM/S

��

// 0

0 // Sνν
iνν

//Mνν pνν
// (M/S)νν // 0

Proof. One direction is clear by 2.10. The fact that E is faithfully injective (2.15)
implies that all vertical maps are injective (2.13). It remains to be shown that φS
and φM/S are surjective. The latter is clear by the surjectivity of φ and pνν . We
see that φS is surjective by considering some nonzero ψ ∈ Sνν . By injectivity of
iνν , iνν(ψ) 6= 0. The fact that φ is an isomorphism implies there exists a nonzero
m ∈ M so that φ(m) = iνν(ψ). Because Im(iνν) = ker(pνν), we have pνν(iνν(ψ)) =
0 = φM/S(p(m)). The injectivity of φM/S implies p(m) = 0 which places m ∈ ker(p).
Since Im(i) = ker(p), there exists some s ∈ S so that iνν(φS(s)) = φ(i(s)) = iνν(ψ).
The injectivity of iνν allows us to conclude φS(s) = ψ.

6.1 A Useful Theorem

The very reason we can characterize all Serre classes of reflexive modules over a com-
plete local noetherian ring is that reflexive modules can, in a sense, be built from
noetherian and artinian modules. In the next section we show how this is achieved.
In the process a bijection will be defined which will complete the characterization.
First, however, we will need a useful theorem.

One key fact that is needed to build reflexive modules from noetherian modules
and artinian modules was given as an exercise by Bourbaki in [3]. We will first need
to prove several lemmas based on two exercises suggested by Bourbaki.

Lemma 6.2. No infinite direct sum of nonzero modules is reflexive.

Proof. One approach for proof might be to recall that in 2.1 we showed a vector space
with an infinite base cannot be reflexive. We could relate this result to our new sit-
uation by considering cyclic ideals and quotient modules, then relate these to our κ.
The alternate approach which follows uses a result from chapter 5.

For the sake of notation, assume the sum is countable and let M = M0 ⊕M1 ⊕
M2 ⊕ · · · where each Mi is nonzero. Note that we can think of Mν as the product
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Mν =Mν
0 ⊗Mν

1 ⊗Mν
2 ⊗ · · · .

All but finitely many of the summands in the direct sumM =Mν
0 ⊕M

ν
1 ⊕M

ν
2 ⊕· · ·

are zero, so M ( Mν . So, let ϕ ∈ Mν where ϕ /∈ M . By 5.15, there exists a map
ψ ∈Mνν so that ψ(ϕ) 6= 0 while ψ(M) = 0.

Consider the canonical isomorphism, φ, between M and Mνν and suppose there
exists some x ∈ M so that φ(x) = ψ. This means that ψ is defined by evaluating
homomorphisms from Mν at x. Notice x = (x1, x2, . . . , xn, 0, 0 . . . ) where only the
first n elements may be nonzero and n is finite. Now, since ϕ ∈Mν , ϕ = (σ1, σ2, . . . )
where all maps may be nonzero. Consider σ = (σ1, σ2, . . . , σn, 0, 0, . . . ) ∈M . By the
definition of ψ, ψ(σ(x)) = σ1(x1)+σ2(x2)+· · ·+σn(xn) = 0. However, 0 6= ψ(ϕ(x)) =
σ1(x1) + σ2(x2) + · · ·+ σn(xn) + 0 + 0 + . . . . This is a contradiction, showing M is
not reflexive.

Definition 6.3. A subquotient of M is a quotient module of a submodule of M .
Such a subquotient has the form S/T where T ⊂ S are submodules of M .

Notice that by this definition, a subquotient of a subquotient of M is always
isomorphic to a subquotient of M . Also notice that if M is reflexive, any submodule
or quotient module of M is also reflexive, so subquotients of M are reflexive. This
together with 6.2 gives the corollary below.

Corollary 6.4. If M is reflexive, no subquotient of M can be an infinite direct sum
of nonzero modules.

Lemma 6.5 (Bourbaki Exercise 1). Let M be an R−module where R is complete,
local and noetherian. M is artinian if and only if the dimension of soc(M) (as a
vector space over κ) is finite and soc(M) ⊂′ M .

Proof. By 5.19 one direction is clear. Now, let soc(M) ⊂′ M and dim(soc(M)) <∞.
Since dim(soc(M)) is finite, we can think of soc(M) as a vector space over κ. So,
soc(M) ∼= κ ⊕ κ ⊕ · · · ⊕ κ ⊂′ M . By the fact that E ⊕ E ⊕ · · · ⊕ E is injective, we
can complete the following commutative diagram with ϕ as shown.

soc(M)
∼=

//
� _

��

κ⊕ κ⊕ · · · ⊕ κ �
�

//M

ϕ

uu❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦

E ⊕ E ⊕ · · · ⊕ E

Because κ ⊕ κ ⊕ · · · ⊕ κ is essential in M , we have ker(ϕ) = 0. By 5.1 E ∼= Rν .
Because R is noetherian and has ACC, E has DCC by the results of chapter 5. This
means E ⊕E ⊕ · · · ⊕E satisfies DCC. Because M ∼= ϕ(M) ⊂ E ⊕E ⊕ · · · ⊕E, M is
isomorphic to a submodule of a module satisfying DCC which means M also satisfies
DCC.
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We will now prove a lemma for a more general situation than what we need. The
notation in the corollary that follows will be more useful.

Lemma 6.6. If M is not an artinian module, then there is a finitely generated
submodule U ⊂ M such that the map soc(M) → soc(M/U) induced by the map
M → M/U is injective, but not surjective.

Proof. By 6.5, if dim(soc(M)) < ∞ for a non-artinian M , then soc(M) is not es-
sential in M . (We are choosing dim soc(M) < ∞ without loss of generality because
when we use this lemma, this will be our situation.) This implies there exists some
nonzero T ⊂M with soc(M)∩T = {0}. Without loss of generality, we can assume T
is finitely generated. If not, choose a finitely generated submodule of T . Now, since
T is finitely generated and nonzero, there exists a maximal submodule U ⊂ T by
Zorn’s lemma, and T/U is simple.

Consider f : M → M/U and notice ker(f) = U . This defines the induced map
g : soc(M) → M/U by restricting the domain of f to soc(M). Since T ∩ soc(M) = 0
and ker(g) = U ∩ soc(M), g is injective.

It is clear that g maps soc(M) into soc(M/U), but we show now that g is not
surjective. First, we argue T/U ⊆ soc(M/U). Notice that soc(M/U) = {x + U ∈
M/U |mx ∈ U}. Now, T/U is a simple submodule of M/U , so T/U ∼= κ = R/m.
Notice m (T/U) ∼= m (R/m) = 0 which puts T/U ⊂ soc(M/U). Now, choose some
nonzero t+U ∈ T/U . Suppose there exists a nonzero x ∈ soc(M) so that g(x) = t+U .
This implies x− t ∈ U ⊂ T so that x ∈ V ∩ soc(M) = {0}. This contradicts that x
was nonzero thus proving g(soc(M)) ( soc(M/U).

The wording in following corollary to 6.6 will be more useful for what we need to
prove.

Corollary 6.7. Let M be an R−module and suppose that for any finitely generated
S ⊂ M we have M/S is not artinian. Then if T ⊂ M is finitely generated, there
exists T ′ ⊂ M that is finitely generated with T ⊂ T ′ so that the map soc(M/T ) →
soc(M/T ′) (induced by the map M/T →M/T ′) is injective, but not surjective.

Theorem 6.8 (Bourbaki Exercise 2). If a module M is reflexive, then M has a
finitely generated submodule S ⊂M so that M/S is artinian.

Proof. Suppose every finitely generated S ⊂ M is such that M/S is not artinian.
Note that in the proof of 6.6 we assumed the dimension of the socle was finite. We
have assumed here that M is reflexive, so its socle has finite dimension as a vector
space over κ. This allows us to use (6.7) to find a finitely generated subquotient T/S

where T ⊂ S ⊂ M and M/S →
M/S

T/S
∼= M/T induces a map on the socles which is

injective but not surjective. For notation, define T (1) = T/S. Define T (2) by again
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taking the appropriate subquotients. Notice we have the following maps as well as
their induced maps below:

M/S →M/T (1) →M/T (2) → · · ·

soc(M/S) → soc(M/T (1)) → soc(M/T (2)) → · · ·

Each map along the bottom row is injective, but not surjective. This allows us to

consider the map M/T (n) →
M

∪∞

i=1T
(i)

for any n. Note that the induced map on

soc(M/T (n)) → soc(∪∞

i=1T
(i)) is injective for each n.

Recall that for any module, its socle is a vector space over κ. As each successive
map from soc(M/T (n)) → soc(M/T (n+1)) is injective, but not surjective, each succes-

sive socle has dimension larger than the previous one. This implies
M

∪∞

i=1T
(i)

has a

socle of infinite dimension.

Notice this means M has a subquotient that is an infinite direct sum of nonzero
modules which contradicts that M is reflexive by 6.4. Hence we must have that for
some finitely generated S ⊂M that M/S is artinian.

The following theorem is the useful one mentioned in the title of this section. Only
part of this theorem was already known. The last piece will be particularly useful in
the next section.

Theorem 6.9. For a module M over a complete, local ring R the following are
equivalent:

(i) M is reflexive.

(ii) M has no subquotient that is an infinite direct sum of nonzero modules.

(iii) There is a finitely generated submodule S ⊂M so that M/S is artinian.

Proof. By 6.4, 6.8 our theorem is nearly complete. We need only show that if there
is a finitely generated submodule S ⊂M so thatM/S is artinian, thenM is reflexive.

Suppose there exists such an S ⊂ M . Because noetherian modules and artinian
modules in a complete, local ring are reflexive, we see that the canonical homo-
morphism between S and Sνν and the canonical homomorphism between M/S and
(M/S)νν are isomorphisms.

0 // S � � //

∼=

��

M //

��

M/S //

∼=
��

0

0 // Sνν �
�

//Mνν // (M/S)νν // 0

By 2.7, M is reflexive.

41



6.2 Building Reflexive Modules

At first we will begin with a Serre class of reflexive modules and show that we can de-
velop a bijection between this Serre class and corresponding subclasses of noetherian
and artinian modules. Next, we will begin with certain Serre classes of noetherian
and artinian modules and show that we can build a Serre class of reflexive modules.
It is the bijection we develop along the way that allows for the characterization of
the Serre classes of reflexive modules.

For the following, let R be a complete, local ring with the usual κ. Also, let U be
a Serre class of reflexive modules and let S ⊂ U , and T ⊂ U consist of, respectively,
all the noetherian (artinian) modules in U . The fact that S and T are Serre classes
in their own right follows easily from the fact that S, T ⊂ U and that U is assumed
to be a Serre class.

Remark 6.10. If U is a Serre class of modules then S and T as defined above are
Serre classes of modules.

With our definitions above, we can describe an important uniqueness result re-
garding the relationship between these Serre classes. To achieve this result, we must
utilize the useful theorem from the previous section.

Lemma 6.11. Let U and U ′ be Serre classes of reflexive modules. Let S, T be defined
as above. Let S ′, T ′ be defined similarly as corresponding classes for U ′.

Then U = U ′ if and only if S = S ′ and T = T ′.

Proof. Letting U = U ′, it is clear by definition that S = S ′ and T = T ′ because U
and U ′ will have the exact same noetherian and artinian submodules.

Let S = S ′ and T = T ′. Also, suppose U 6= U ′. Then without loss of generality,
there exists some M ∈ U where M /∈ U ′ so that M is reflexive, but not noetherian
and not artinian. By 6.9 there exists some finitely generated S ⊂ M where M/S is
artinian.

Consider the short exact sequence 0 → S → M → M/S → 0 for this particular
S. Since S is noetherian and a submodule of M , S ∈ S. Similarly M/S ∈ T . By our
equality, S ∈ S ′ and T ∈ T ′. Furthermore, S, T ∈ U ′. This means M ∈ U ′ by U ′ a
Serre class.

This gives us a glimpse at a possible bijection between Serre classes of reflexives
and these pairs of noetherians and artinians. It turns out that to get a true bijection,
more is needed about the classes S and T . For now, we will settle for a map whose
injectivity follows directly from 6.11.
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Corollary 6.12. The map defined by U 7→ (S, T ) which maps a Serre class U to
the pair (S, T ) where S and T are the corresponding Serre classes of noetherian and
artinian modules is injective.

To make the map above a bijection, we will first need to assume that neither S
nor T are zero. If we assume that one is nonzero, we see below that both are nonzero.

Lemma 6.13. With the notation above, S 6= 0 if and only if T 6= 0.

Proof. First, let S 6= 0. Then S contains a nonzero finitely generated moduleM with
generator x. Then Rx is a cyclic submodule of M , putting Rx ⊂ S. Note that Rx ∼=
R/ ann(x) ∈ S. The short exact sequence 0 → m/ ann(x) → R/ ann(x) → R/m → 0
shows R/m ∈ S. Since R/m ∈ S and κ is simple, we know κ is artinian as well. Thus
R/m ∈ T proving T 6= 0.

Now, let 0 6= N ∈ T . N contains a simple submodule by 1.6. This submodule
must be isomorphic to κ because our ring is complete and local, which shows R/m ∈
T . We must also have R/m ∈ S as it is a simple module, meaning S 6= 0.

We get a corollary to 6.13 by again applying our useful theorem 6.9 from the
previous section.

Corollary 6.14. If S = 0, we must have that U = 0.

Proof. Let 0 6= M ∈ U and use 6.9 on the resulting short exact sequence 0 → S →
M → M/S → 0 to get a contradiction.

Now we will build our reflexive modules by selecting the appropriate S and T .
In what follows, let S be a nonzero Serre class of finitely generated modules and let
T be a nonzero Serre class of artinian modules. We show below that there exists
a Serre class, U of reflexive modules so that U 7→ (S, T ), making the map in 6.12
surjective. One important property that allows for this construction is that taking
the intersection of any nonzero S and T results in precisely all R−modules which
have finite length.

Lemma 6.15. Let S and T be as described above and let M be any R−module.
M ∈ S ∩ T ⇔M is a module of finite length.

Proof. Note this is just a way of rephrasing 2.26 and because κ is the unique simple
module of R up to isomorphism, we also have κ ∈ T . It is this property that concludes
that in a local ring we have that S ∩ T consists of all modules of finite length.

So, we know that choosing a module from S ∩T means we are choosing a module
of finite length. Now, as our useful theorem 6.9 suggests, define U to consist of
all modules M so that there exists a finitely generated submodule S ⊂ M with
M/S artinian and S ∈ S,M/S ∈ T . We will show that U is a Serre class of reflexive
modules and that S and T consist, respectively, of all noetherian and artinian modules
in U . In doing this we will have that our map from 6.12 is bijective.
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Lemma 6.16. U , as defined above, consists of reflexive modules.

Proof. This is clear by 6.9 and the definition of U .

Lemma 6.17 (Submodule Closure). If M ∈ U and T ⊂M , then T ∈ U .

Proof. Since M ∈ U , there exists is an S ∈ S so that S ⊂ M and M/S ∈ T .
Consider the short exact sequence 0 → S → M → M/S → 0 and the submodule
T ∩ S ⊂ S ∈ S. We have T ∩S is finitely generated and a submodule of T . We want
to show T/(T ∩ S) is artinian and in T .

Consider T → (T + S)/S defined by t 7→ t + S. This map is surjective, so the
elements in its kernel are exactly the elements of T that are also in S, so T/(T ∩ S) ∼=
(T + S)/S. Furthermore, (T + S)/S ⊂ M/S ∈ T and since Serre classes preserve
submodules and isomorphisms, (T + S)/S ∼= T/(T ∩ S) ∈ T and T/(T ∩ S) is
artinian.

Lemma 6.18 (Quotient Closure). If M ∈ U and T ⊂M , then M/T ∈ U .

Proof. Let T ⊂ M ∈ U and S ⊂M where S ∈ S and M/S ∈ T . Consider (S+T )/T
which is clearly a submodule of M/T .

Looking at short exact sequence 0 → (S + T )/T → M/T →
M/T

(S + T )/T
→ 0, we

see we need to show (S + T )/T ∈ S and
M/T

(S + T )/T
∼=M/S + T ∈ T .

By the second isomorphism theorem for modules, (S + T )/T ∼= S/(T ∩ S). Since
Serre classes preserve intersections, quotients, and isomorphisms, (S + T )/T ∈ S.

By applying the first isomorphism theorem for modules twice,

M/T

(S + T )/T
∼=M/(S + T ) ∼=

M/S

(S + T )/S
.

Since M/S ∈ T and (S + T )/S ⊂ M/S, we have
M/S

(S + T )/S
∈ S. This gives

M/T

(S + T )/T
∼= M/S + T ∈ T as desired.

To show U is a Serre class, we still have to show a bit more than what has been
established above. The following property gives motivation for one possible way to
continue. While we will not use this property directly to finish our proof that the U
built from a given S and T is a Serre class, it gives some insight on how to proceed.
In addition, the property gives an alternate way to build U .

Theorem 6.19. If there exists T ∈ T so that T ⊂ M and M/T ∈ S, then there
exists S ∈ S so that S ⊂M and M/S ∈ T .
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Proof. LetM/T ∈ S and define S to consist of the elements inM which map onto the
generators of M/T . This S is finitely generated and a submodule of M . In addition,
S maps onto M/T by sending s to s + T . So, Im(S) = (S + T )/T which implies
M = S + T . Also notice that the kernel of the map S → M/T is T ∩ S ⊂ S, which
implies T ∩ S is finitely generated. In addition, T ∩ S ⊂ T ∈ T which implies S ∩ T
is a module of finite length. By 6.15, T ∩ S ∈ S.

Now, since the kernel of S → M/T is S ∩ T , we have S/(S ∩ T ) ∼= M/T ∈ S
which implies S/(S ∩ T ) ∈ S. Considering the short exact sequence
0 → T ∩ S → S → S/(T ∩ S) → 0, we see that because both (T ∩ S) and
S/(T ∩ S) are elements of S we get S ∈ S as desired.

Because S + T =M , we prove M/S ∈ T by showing (S + T )/S ∈ T . The second
isomorphism theorem gives (S+T )/S ∼= T/(S∩T ) ∈ T since T ∈ T . ThusM/S ∈ T
as desired.

Theorem 6.20. U is a Serre class.

Proof. By 6.17 and 6.18 we know that ifM ∈ U , then S,M/S ∈ U for any submodule
S ⊂ M . By 2.23 this shows half of what we need.

Suppose now that M1,M2 ∈ U and that 0 → M1 → M → M2 → 0 is a short
exact sequence. We will show M ∈ U . Notice since M1 ∈ U , there exists a finitely
generated T1 ⊂ M1 so that T1 ∈ S and M1/T1 ∈ T . Also, there exists a finitely
generated T2 ⊂M2 so that T2 ∈ S and M2/T2 ∈ T .

Consider T ⊂M containing the elements ofM which map to the generators of T2.
Then the map T → T2 is surjective. Notice that T may contain more elements than
Im(T1), but as T maps onto T2, T is still finitely generated. Since T1 is a submodule of
the kernel of the mapM1 → M2, we can form T ′

1 by adding any elements ofM1 which
are missing from the kernel ofM1 → M2. (So, explicitly, T

′

1 is the set of all x ∈M1 so
that x maps to an element in Im(M1∩T .) Now we have that 0 → T ′

1 → T → T2 → 0
is short exact.

Since T is finitely generated, Im(M1) ∩ T is finitely generated. This implies T ′

1 is
finitely generated. As suggested by 6.19, consider (T ′

1 + T1)/T1 ⊂ M1/T1 ∈ T . By
the second isomorphism theorem for modules, T ′

1/(T1 ∩ T ′

1) = T ′

1/T1 ∈ T . In ad-
dition, T ′

1 finitely genearated because it is isomorphic to a submodule of T which
is finitely generated. This in turn makes T ′

1/T1 finitely generated. This means
T ′

1/T1 ∈ S ∩T by 6.15, which implies T ′

1 ∈ S by considering the short exact sequence
0 → T1 → T ′

1 → T ′

1/T1 → 0 where T1, T
′

1/T1 ∈ S. Finally, 0 → T ′

1 → T → T2 → 0
implies T ∈ S.

We have M1/T1 ∈ T and T ′

1/T ∈ S ∩ T , so T ′

1/T ∈ T . Notice that M1/T
′

1
∼=

M1/T1
T ′

1/T1
∈ T . We use the Nine Lemma to conclude, based on the following commuta-
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tive diagram that M/T ∈ T .

0

��

0

��

0

��

0 // T ′

1
//

��

T //

��

T2 //

��

0

0 //M1
//

��

M //

��

M2
//

��

0

0 //M1/T
′

1
//

��

M/T //

��

M2/T2 //

��

0

0 0 0

Now we know that we can build a Serre class of reflexives, U given a pair of non-
empty Serre classes (S, T ) as described. It remains to show that our map from 6.12
is surjective. For this, we need to show that U does not contain any finitely generated
modules that are not in S and that U does not contain any artinian modules which
are not in T . We will also need to show that the map U 7→ (S, T ) is well-defined.
Our characterization of Serre classes of reflexive modules will follow as a consequence
of this bijection.

Lemma 6.21. If M is a finitely generated R−module and M ∈ U , then M ∈ S.

Proof. Since M ∈ U , our definition of U gives a finitely generated S ⊂ M with
S ∈ S and M/S artinian with M/S ∈ T . Now, because M is finitely generated,
M/S is finitely generated, being the quotient of a finitely generated module. Since
M/S is artinian and noetherian, by 6.15 M/S ∈ S ∩ T . The short exact sequence
0 → S →M →M/S → 0 implies M ∈ S as both S and M/S are in S.

The proof of the following remark is similar to that above by again using 6.15 .

Remark 6.22. If M is an artinian R−module and M ∈ U , then M ∈ T .

Finally we can argue that our map U 7→ (S, T ) is well-defined. Let U 7→ (S ′, T ′).
If we suppose S ′ 6= S, then there exists some M ∈ U so that M ∈ S and M /∈ S ′.
This contradicts the very definition of S and S ′, proving that S = S ′. A similar
argument shows that T = T ′, giving that the map U 7→ (S, T ) is a bijection.

46



6.3 Serre Classes of Reflexive Modules

We can now, given the bijection developed in the previous section, describe the char-
acterization of all Serre classes of reflexive modules over a complete local noetherian
ring. They are in one-to-one correspondence with the pairs (F ,G) described in chap-
ter five.

Theorem 6.23. The Serre classes of reflexive modules over a complete local noethe-
rian ring are in one-to-one correspondence with the pairs (F ,G) where either both F
and G are empty, or they are both nonempty and are as described in chapter five.

Remark 6.24. The case where F and G are both empty corresponds to the Serre
class consisting of the module 0. More precisely, this class consists of all modules
with only one element.

Copyright c© Casey Ryan Monday 2014
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