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Chapter 1 Convergence of Eigenvalues for Elliptic Systems on Domains

with Thin Tubes

1.1 Introduction

In this chapter, we consider the behavior of eigenvalues for elliptic systems in

singularly perturbed domains. We give a simple characterization of the family of

domains that we can study and it is easy to see that this class includes dumbbell

domains formed by connecting two domains by a thin tube. We are able to give a

rate on the convergence of the eigenvalues as the tube shrinks away. We make no

assumption on the smoothness of the coefficients and only mild assumptions on the

boundary of the domain. There does not seem to be much work on eigenvalues for

elliptic systems. The work of Rauch and Taylor [32] gives limiting values of eigenvalues

in domains with low regularity, but only treats elliptic equations and does not give

a rate of convergence. Also, the work of Brown, Hislop, and Martinez [5] provides

upper and lower bounds on the splitting between the first two Dirichlet eigenvalues

in a symmetric dumbbell region with a straight tube. Furthermore, the work of Anné

[1] examines the behavior of eigenfunctions of the Laplace operator under a singular

perturbation obtained by adding a thin handle to a compact manifold, but requires

more regularity than we use.

There is also a great deal of research on eigenvalues for the Neumann Laplacian

in domains with thin tubes. Courant and Hilbert [7] point this out by taking the unit

square in R2 and attaching a thin handle with a proportional square attached to the

other end. They show that if {λε
n} and {λ0

n} are the Neumann eigenvalues of −∆

in increasing order including multiplicities with respect to the unit square and the

perturbed square, then λε
2 → 0 as ε → 0, but λ0

2 > 0. Furthermore, Arrieta, Hale,

and Han [3] show that for this type of domain, λε
m → λ0

m−1, as ε → 0 for m ≥ 3.
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Jimbo and Morita [22] show that for N disjoint domains connected by thin tubes

whose axes are straight lines, the Neumann eigenvalues of −∆ converge at a rate of

order εn−1, where ε is the tube width. Jimbo [21] also shows that if {µl} are the

Neumann eigenvalues of −∆ in D = D1 ∪D2 and {λj} are the Dirichlet eigenvalues

of d2

dx2 in (0, 1), then for {σk} = {µl}∪{λj} and the eigenvalues of D1∪D2∪Tε being

{σε
k}, where Tε is a tube with axis (0, 1), it is the case that σε

k → σk as ε→ 0. Also,

Brown, Hislop, and Martinez [4] show that if σk ∈ {µl}\{λj} then

|σk − σε
k| ≤ C

[
log

(
1

ε

)]−1
2

n = 2

|σk − σε
k| ≤ Cε

n−2
2 n ≥ 3.

Our technique relies on a reverse-Hölder inequality for eigenfunctions that uses a

technique introduced by Gehring [12]. This gives Lp-integrability of the gradient of

eigenfunctions for p > 2, which implies that they are not concentrated in the tube.

From this inequality, we are able to prove several estimates on eigenfunctions that

lead to the result. As a by-product of our research, we give a simple proof of Shi

and Wright’s [35] Lp-estimates for the gradient of the Lamé system as well as other

elliptic systems.

1.2 Preliminaries

We now define the family of domains Ωε. We let Ω and Ω̃ in Rn be two non-empty,

open, disjoint, and bounded sets. We fix ε0 > 0, and then let {Tε}0<ε<ε0 be a family

of sets such that if |Tε| denotes the Lebesgue measure of Tε, then

|Tε| ≤ Cεd (1.1)

2



where C and d > 0 are independent of ε. The connections from Tε to Ω and Ω̃ will

be contained in Bε and B̃ε, which will be balls of radius ε in Rn so that Tε ∩ Ω = ∅

and Tε ∩ Ω ⊂ B ε
2

where B ε
2

is the concentric ball to Bε of radius ε
2
. Also, suppose a

similar condition for Ω̃ and B̃ε. Then for any ε, define Ωε to be the set Ω ∪ Ω̃ ∪ Tε,

which we assume to be open, and Ω0 = Ω ∪ Ω̃. So, you may think of Tε as a “tube”

connecting the two domains. We now have the family of domains {Ωε}0≤ε<ε0 .

Next, we give a condition on the boundary of Ωε. If Br is any ball of radius r

satisfying Br ∩ Ωc
ε 6= ∅, then

|B2r ∩ Ωc
ε| ≥ C0r

n (1.2)

where C0 is a constant independent of r and ε. This eliminates domains with “cracks.”

Throughout this paper we use the convention of summing over repeated indices,

where i and j will run from 1 to n and α, β, and γ will run from 1 to m. We

let aαβ
ij (x) be bounded, measurable, real-valued functions on Rn which satisfy the

symmetry condition

aαβ
ij (x) = aβα

ji (x), i, j = 1, 2, ..., n, α, β = 1, 2, ...,m. (1.3)

We let L2(Ωε) denote the space of square integrable functions taking values in Rm and

H1
0 (Ωε) denotes the Sobolev space of vector valued functions having one derivative in

L2(Ωε) and which vanish on the boundary. We use uα
j to denote the partial derivative

∂uα

∂xj
.

Let ηε ∈ C∞
c (Rn) be a cutoff function so that ηε = 0 in Tε, ηε = 1 in Ω0\(Bε∪ B̃ε),

|∇ηε| ≤ Cn

ε
, and 0 ≤ ηε ≤ 1, where Cn only depends on n. We emphasize that Bε,

B̃ε, and ηε depend on the parameter ε. With these assumptions and definitions, we

have that for any u ∈ H1
0 (Ωε), ηεu will be in H1

0 (Ω0).

We now introduce the notion of a weak eigenvalue and corresponding weak eigen-

vector. We say that the number σ is a weak Dirichlet eigenvalue of L with weak

3



Dirichlet eigenfunction u ∈ H1
0 (Ω), if u 6= 0 and∫

Ω

aαβ
ij (x)uα

i (x)φβ
j (x) dx = σ

∫
Ω

uγ(x)φγ(x) dx for any φ ∈ H1
0 (Ω). (1.4)

As we will see in a later section, the eigenvalues for the elliptic systems we consider

form an increasing sequence. The lower bound on the smallest eigenvalue, however,

depends on which ellipticity condition we use.

1.3 Ellipticity Conditions

If we define a norm on matrices A = Ai
j ∈ Rm×n as |A|2 =

m∑
i=1

n∑
j=1

|Ai
j|2, then

we say that L satisfies a strong Legendre condition or a strong ellipticity condition if

there exists θ > 0 so that

aαβ
ij (x)ξα

i ξ
β
j ≥ θ|ξ|2, ξ ∈ Rm×n, a.e. x ∈ Ωε. (1.5)

We introduce the Lamé system as Lu = −divζ(u), where ζ(u) denotes the stress

tensor defined by

ζβ
j (u) := aαβ

ij u
α
i (1.6)

which is defined in terms of the Lamé moduli υ and µ by

aαβ
ij = υδiαδjβ + µδijδαβ + µδiβδjα. (1.7)

Also, define the strain tensor κ(u) as

κij(u) :=
1

2

(
ui

j + uj
i

)
. (1.8)

Note that for the Lamé system, m = n and the Lamé parameters υ and µ given in

(1.7) are bounded, measurable, and satisfy the conditions

υ(x) > 0 µ(x) ≥ δ > 0. (1.9)
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The Lamé system does not satisfy the strong ellipticity condition, but does satisfy

the ellipticity condition

aαβ
ij u

α
i u

β
j ≥ τ |κ(u)|2 , u ∈ H1

0 (Ωε) (1.10)

where τ = 2δ. Next, consider a well-known inequality from Oleinik [30, p. 13].

Theorem 1.3.1. Korn’s Inequality Let Ω be a bounded domain. If u ∈ H1
0 (Ω),

then

‖∇u‖2
L2(Ω) ≤ 2‖κ(u)‖2

L2(Ω) (1.11)

where κ(u) is from (1.8) and C only depends on n.

With Korn’s Inequality (1.11), it is easy to see that for the Lamé system, we have

τ

2

∫
Ωε

|∇u|2 dy ≤
∫

Ωε

aαβ
ij u

α
i u

β
j dy, u ∈ H1

0 (Ωε).

Furthermore, we say that L satisfies the Legendre-Hadamard condition if there

exists θ > 0 so that

aαβ
ij (x)ξαξβψiψj ≥ θ|ξ|2|ψ|2, ξ ∈ Rm, ψ ∈ Rn, a.e. x ∈ Ωε. (1.12)

For scalar equations, the Legendre-Hadamard condition is equivalent to the strong

Legendre condition. However, for systems, this is not the case, as illustrated in this

example taken from Chen [6, p. 133]. Let m = n = 2 and

aαβ
ij = sδαβδij + bαβ

ij , 0 < s <
1

2

where b21
21 = 1, b12

21 = −1, and bαβ
ij = 0 otherwise. Then,

aαβ
ij (x)ξαξβψiψj = sξ2

1(ψ
2
1 + ψ2

2) + sξ2
2(ψ

2
1 + ψ2

2)

= s(ξ2
1 + ξ2

2)(ψ
2
1 + ψ2

2)

= s|ξ|2|ψ|2,

5



which means that this system satisfies the Legendre-Hadamard condition. But, if

ξ = (0, 1, 2s, 0)t, we obtain

aαβ
ij (x)ξα

i ξ
β
j = s|ξ|2 + (ξ2

2ξ
1
1 − ξ2

1ξ
1
2)

= s(1 + 4s2)− 2s

= s(4s2 − 1).

Hence, this system does not satisfy the strong Legendre condition.

Even in the case of the coefficients satisfying a symmetry condition, the Legendre-

Hadamard condition is still a weaker condition. As stated earlier, the Lamé system

does not satisfy the strong ellipticity condition. This can be observed by noting that

for any ξ ∈ Rn2
, we have

aαβ
ij ξ

α
i ξ

β
j = υξi

iξ
j
j + µ|ξα

i |2 + µξj
i ξ

i
j

so that by choosing n = 2, ξ1
2 = −1, ξ2

1 = 1, and ξ1
1 = ξ2

2 = 0, we have

aαβ
ij ξ

α
i ξ

β
j = 2µ− 2µ

= 0

which implies that the Lamé system does not satisfy the strong ellipticity condition.

However, note that for ξ, η ∈ Rn, we have

aαβ
ij ξiξjηαηβ = υξiξjηiηj + µξiξiηαηα + µξiξjηjηi

= (υ + µ) (ξiηi)
2 + µ|ξ|2|η|2

≥ δ|ξ|2|η|2

so that the Lamé system satisfies the Legendre-Hadamard ellipticity condition. In

general, systems with continuous coefficients satisfying the Legendre-Hadamard el-

lipticity condition also satisfy the following inequality taken from Treves [37, p. 347].
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Proposition 1.3.2. G̊arding’s Inequality If L satisfies the Legendre-Hadamard

condition (1.12) with continuous coefficients in Ωε, then for any u ∈ H1
0 (Ωε),

C1

∫
Ωε

|∇u|2 dy ≤
∫

Ωε

aαβ
ij u

α
i u

β
j dy + C2

∫
Ωε

|u|2 dy (1.13)

where both C1 and C2 depend on the ellipticity constant in (1.12) and the coefficients

aαβ
ij .

Proof. We first restrict to when the domain is a small ball, Br, and consider the case

when the coefficients are constant. It suffices to consider u ∈ C∞
c (Br). We define the

Fourier transform for scalar-valued functions f ∈ L2(Rn) as

fb(ξ) =

∫
Rn

f(x)e−2πix·ξ dx,

and set

(u)b= ((u1)b, ..., (um)b)t.

Parseval’s identity and properties of the Fourier transform then yield∫
Br

aαβ
ij u

α
i (y)uβ

j (y) dy =

∫
Br

aαβ
ij (uα

i )b(ξ)(uβ
j )b(ξ) dξ

=

∫
Br

aαβ
ij (2πiξi)(2πiξj)(u

α)b(ξ)(uβ)b(ξ) dξ
≥
∫

Br

θ|2πiξ|2|(u)b(ξ)|2 dξ
where the ellipticity condition (1.12) was used on the last line. Thus, since∫

Br

θ|2πiξ|2|(u)b(ξ)|2 dξ =
n∑

j=1

m∑
α=1

∫
Br

θ|2πiξj(uα)b(ξ)|2 dξ

=
n∑

j=1

m∑
α=1

∫
Br

θ|(uα
j )b(ξ)|2 dξ

=

∫
Br

θ|∇u(y)|2 dy

we thus obtain

θ

∫
Br

|∇u|2 dy ≤
∫

Br

aαβ
ij u

α
i u

β
j dy. (1.14)
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Next, define the modulus of continuity to be

M(x0, R) = max
y∈BR(x0)

i,j,α,β

|aαβ
ij (y)− aαβ

ij (x0)|. (1.15)

We have ∣∣∣∣∫
Br(x0)

[aαβ
ij (x0)− aαβ

ij ]uα
i u

β
j dy

∣∣∣∣ ≤M(x0, r)

∫
Br(x0)

|∇u|2 dy

so that by freezing the coefficients at x0,∫
Br(x0)

aαβ
ij u

α
i u

β
j dy =

∫
Br(x0)

aαβ
ij (x0)u

α
i u

β
j dy +

∫
Br(x0)

[aαβ
ij − aαβ

ij (x0)]u
α
i u

β
j dy

and using the constant coefficient case (1.14), we obtain

(θ −M(x0, r))

∫
Br(x0)

|∇u|2 dy ≤
∫

Br(x0)

aαβ
ij u

α
i u

β
j dy. (1.16)

Now, for the global estimate, since the coefficients are uniformly continuous in Ωε,

we may fix r0 small enough so that

θ −M(y, r0) >
θ

2
, y ∈ Ωε. (1.17)

Cover Ωε with a finite number of balls {Br0(xk)}N
k=1. There exists a smooth partition

of unity {ρk}N
k=1 subordinate to the cover {Br0(xk)}N

k=1 so that



0 ≤ ρk ≤ 1 k = 1, ..., N

N∑
k=1

ρ2
k(x) = 1 for each x ∈ Ωε

|∇ρk| ≤ C
r0

k = 1, ..., N.

8



We may write∫
Ωε

aαβ
ij u

α
i u

β
j dy =

N∑
k=1

∫
Ωε

ρ2
ka

αβ
ij u

α
i u

β
j dy

=
N∑

k=1

∫
Ωε

aαβ
ij (ρku)

α
i (ρku)

β
j dy

−
N∑

k=1

∫
Ωε

aαβ
ij [(ρk)i(ρk)ju

αuβ + ρk(ρk)ju
α
i u

β + (ρk)iρku
αuβ

j ] dy

= I − II.

We have that

II ≤
(
CN

r2
0

+
CN2

r2
0ω

)∫
Ωε

|u|2 dy + ω

∫
Ωε

|∇u|2 dy (1.18)

for any ω > 0.

Also, since ρku has compact support in Br0(xk), we may apply (1.16) and (1.17)

to obtain

I ≥ θ

2

N∑
k=1

∫
Ωε

|∇(ρku)|2

≥ θ

2

N∑
k=1

∫
Ωε

(ρ2
k|∇u|2 − |∇ρk|2|u|2) dy

≥ θ

2

∫
Ωε

|∇u|2 dy − Cθ

r2
0

∫
Ωε

|u|2 dy. (1.19)

So, now using (1.19) and choosing ω = θ
4

in (1.18), we obtain

θ

4

∫
Ωε

|∇u|2 dy ≤
∫

Ωε

aαβ
ij u

α
i u

β
j dy +

C

r2
0

(
N +

N

θ
+ θ

)∫
Ωε

|u|2 dy.

9



1.4 Construction of Eigenvalues

The construction of eigenvalues and eigenfunctions is taken from Gilbarg and

Trudinger [15, p. 212] and is well-known. We will construct eigenvalues assuming

that u ∈ H1
0 (Ωε) satisfies (1.13). We note that if L satisfies the strong Legendre

ellipticity condition (1.5) or the ellipticity condition (1.10), then the construction is

a special case of this construction. Define the bilinear form Bε on H1
0 (Ωε)×H1

0 (Ωε)

as

Bε(u, v) =

∫
Ωε

aαβ
ij u

α
i v

β
j dy (1.20)

and define the Rayleigh quotient Rε as

Rε(u) =
Bε(u, u)

‖u‖2
L2(Ωε)

(1.21)

for u 6= 0. From G̊arding’s inequality (1.13),

Rε(u) ≥
C1‖∇u‖2

L2(Ωε)
− C2‖u‖2

L2(Ωε)

‖u‖2
L2(Ωε)

≥ −C2. (1.22)

So, σ = inf
0 6=w∈H1

0 (Ωε)
Rε(w) exists and is finite.

Claim 1.4.1. There exists u ∈ H1
0 (Ωε) such that σ = Rε(u).

Proof. Choose a sequence {wp} ∈ H1
0 (Ωε) so that Rε(wp) → σ. Then set

up =
wp

‖wp‖L2(Ωε)

so that ‖up‖L2(Ωε) = 1 and Rε(up) → σ. By G̊arding’s inequality (1.13),

C1‖∇up‖2
L2(Ωε)

≤
∫

Ω

aαβ
ij (up)

α
i (up)

β
j dy + C2‖up‖2

L2(Ωε)

= Rε(up) + C2

≤ C

the last line owing to the fact that {Rε(up)} converges. Thus, by the compact imbed-

ding of H1
0 (Ωε) into L2(Ωε), there exists u ∈ L2(Ωε) so that by passing to a subse-

quence of {up}, and renaming it {up}, we have ‖up−u‖L2(Ωε) → 0 and ‖u‖L2(Ωε) = 1.
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We will next show ‖up − u‖H1
0 (Ωε) → 0. Define Q(w) = Bε(w,w). Then, for any l

and k, we have

Q

(
ul + up

2

)
+Q

(
ul − up

2

)
=

∫
Ωε

aαβ
ij

(
ul + up

2

)α

i

(
ul + up

2

)β

j

dy +

∫
Ωε

aαβ
ij

(
ul − up

2

)α

i

(
ul − up

2

)β

j

dy

=
1

2

(∫
Ωε

aαβ
ij (ul)

α
i (ul)

β
j dy +

∫
Ωε

aαβ
ij (up)

α
i (up)

β
j dy

)
=

1

2
(Q(ul) +Q(up)) .

Thus, since σ = inf
0 6=w∈H1

0 (Ωε)
Rε(w), we have

Q

(
ul − up

2

)
≤ 1

2
(Q(ul) +Q(up))− σ

∫
Ωε

∣∣∣∣ul + up

2

∣∣∣∣2 dy

=
1

2
(Q(ul) +Q(up))−

σ

4

∫
Ωε

|ul|2 + |up|2 + 2(ul)
α(up)

α dy

→ 1

2
(σ + σ)− σ

4
(4) (as p, l→∞)

= 0.

Therefore, using G̊arding’s inequality (1.13) and since {up} converges in L2(Ωε),

C1‖∇(ul − up)‖2
L2(Ωε)

≤
∫

Ωε

aαβ
ij (ul − up)

α
i (ul − up)

β
j dy + C2‖ul − up‖2

L2(Ωε)

= 4Q

(
ul − up

2

)
+ C2‖ul − up‖2

L2(Ωε)

→ 0 (as p, l→∞)

so that {up} is a Cauchy sequence in H1
0 (Ωε). It now follows that up → u in H1

0 (Ωε).

To finish up the proof of the claim, we will now show Q(u) = Rε(u) = σ. We have∣∣∣∣∫
Ωε

aαβ
ij (up)

α
i (up)

β
j dy −

∫
Ωε

aαβ
ij u

α
i u

β
j dy

∣∣∣∣
≤ C

∫
Ωε

∣∣∣(up)
α
i (up)

β
j − uα

i (up)
β
j + uα

i (up)
β
j − uα

i u
β
j

∣∣∣
≤ C

∫
Ωε

|(up)
β
j | |(up)

α
i − uα

i |+ |uα
i |
∣∣∣(up)

β
j − uβ

j

∣∣∣ .
11



So, since up → u in H1
0 (Ωε), we may apply Hölder’s inequality to obtain∣∣∣∣∫

Ωε

aαβ
ij (up)

α
i (up)

β
j dy −

∫
Ωε

aαβ
ij u

α
i u

β
j dy

∣∣∣∣
≤ C‖up‖H1

0 (Ωε)‖up − u‖H1
0 (Ωε) + ‖u‖H1

0 (Ωε)‖up − u‖H1
0 (Ωε)

→ 0 (as p→∞)

so that σ = lim
p→∞

Rε(up) = Rε(u) and the proof of the claim is complete.

Claim 1.4.2. σ = Rε(u) from Claim 1.4.1 is the minimum eigenvalue with eigen-

function u.

Proof. Fix v ∈ H1
0 (Ωε) and define f(t) = Rε(u + tv) where t ∈ R. Then, by the

symmetry of the coefficients (1.3) and the normalization of u,

f ′(0) =

(∫
Ωε
aαβ

ij

(
vα

i u
β
j + uα

i v
β
j

)
dy
)(∫

Ωε
|u|2 dy

)
−
(∫

Ωε
2uαvα dy

)(∫
Ωε
aαβ

ij u
α
i u

β
j

)
(∫

Ωε
|u|2
)2

= 2Bε(u, v)− 2σ

∫
Ωε

uαvα.

So, since Rε achieves a minimum at u, we have 2Bε(u, v) − 2σ
∫

Ωε
uαvα = 0 or

Bε(u, v) = σ
∫

Ωε
uαvα which implies u is an eigenfunction of L with eigenvalue σ.

Also, if λ < σ is another eigenvalue with eigenfunction w, then Bε(w,w) =

λ
∫

Ωε
wαwα which implies

Bε(w,w)

‖w‖2
L2(Ωε)

= λ < σ

which contradicts σ = inf
0 6=w∈H1

0 (Ωε)
Rε(w). The proof of the claim is now complete.

To construct the remaining eigenvalues, we need to make sure the eigenspaces are

all finite-dimensional.

Claim 1.4.3. We have EN = span{uk : σk ≤ N} ⊂ L2(Ωε) is finite-dimensional for

every N .
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Proof. We prove by contradiction. So, suppose there is an infinite orthonormal se-

quence {uk} in EN . Then by the ellipticity condition (1.13), for each k, we have

C1

∫
Ωε

|∇uk|2 dy ≤ Bε(uk, uk) + C2

∫
Ωε

|uk|2 dy

≤ σk + C2

≤ N + C2. (1.23)

So, we have that the sequence {uk} is bounded inH1
0 (Ωε). So, again using the compact

imbedding of H1
0 (Ωε) into L2(Ωε), there exists a convergent subsequence in L2(Ωε).

Renaming this subsequence {uk} and using that this subsequence is orthonormal, we

have

‖ul − up‖2
L2(Ωε)

= 〈ul − up, ul − up〉L2(Ωε)

= ‖ul‖2
L2(Ωε)

+ ‖up‖2
L2(Ωε)

− 2〈ul, up〉L2(Ωε)

= 2 (l 6= p)

which implies this subsequence is not Cauchy in L2(Ωε). This contradicts that this

subsequence converges. So, there cannot be an infinite orthonormal sequence.

Now that we have that each eigenspace is finite-dimensional, we may continue the

construction of subsequent eigenvalues. Given the (k − 1)th eigenfunction uk−1, set

σk = inf
0 6=w∈H1

0 (Ωε)

w∈{u1,u2,...,uk−1}⊥

Rε(w) (1.24)

where the orthogonal complement is taken in L2(Ωε). We note that σk exists since

Rε(w) is bounded below. Furthermore, following the same arguments from Claim

1.4.1, there exists uk ∈ H1
0 (Ωε) such that Rε(uk) = σk and ‖uk‖2

L2(Ωε)
= 1. To show

that uk is an eigenfunction of L with eigenvalue σk, we decompose

L2(Ωε) = span{u1, u2, ..., uk−1} ⊕ {u1, u2, ..., uk−1}⊥.

13



If v ∈ H1
0 (Ωε) ∩ {u1, u2, ..., uk−1}⊥, then by construction of the eigenvalues, we may

set f(t) = Rε(uk + tv) and follow the same argument from Claim 1.4.2 to get that

Bε(uk, v) = σk

∫
Ωε
uα

kv
α. If v ∈ H1

0 (Ωε) ∩ span{u1, u2, ..., uk−1}, then write v =∑k−1
l=1 clul. We have Bε(v, w) =

k−1∑
l=1

clσl

∫
Ωε

uα
l w

α for any w ∈ H1
0 (Ωε). Consequently,

by the symmetry condition (1.3) and since uk ∈ {u1, u2, ..., uk−1}⊥, we have

Bε(uk, v) = Bε(v, uk)

=
k−1∑
l=1

clσl

∫
Ωε

uα
l u

α
k

= 0

= σk

∫
Ωε

uα
kv

α.

We now have that uk is an eigenfunction of L with eigenvalue σk. We also note

that by construction, σl ≤ σk if l ≤ k. We thus have a non-decreasing sequence of

eigenvalues, listed according to multiplicity such that

min
0 6=w∈H1

0 (Ωε)

w∈{u1,u2,...,uk−1}⊥

Rε(w) = Rε(uk) = σk (1.25)

and

‖uk‖L2(Ωε) = 1 (1.26)

for any k.

Claim 1.4.4. The constructed sequence of eigenvalues {σk}∞k=1 is increasing and sat-

isfies σk →∞ as k →∞.

Proof. We show σk →∞ by contradiction. Suppose σk ≤ C uniformly in k. Then, by

construction of the eigenvalues, EC is infinite-dimensional, but Claim 1.4.3 guarantees

that EC is finite-dimensional. We thus have

σk →∞ as k →∞. (1.27)
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1.5 Theorem for Convergence of Eigenvalues

We now state the main result for this chapter.

Theorem 1.5.1. Let

(Lu)β = − ∂

∂xj

(
aαβ

ij

∂uα

∂xi

)
β = 1, ...,m

satisfy one of the following:

1. L has uniformly bounded coefficients and satisfies either the ellipticity condition

(1.5) or the ellipticity condition (1.10).

2. L has continuous coefficients and satisfies the ellipticity condition (1.12).

Also assume {σ0
k}∞k=1 and {σε

k}∞k=1 are the Dirichlet eigenvalues of L with respect to Ω0

and Ωε in increasing order numbered according to multiplicity. Then for each J ∈ N,

we have the following estimate:

|σε
J − σ0

J | ≤ Cεa

where a > 0 is independent of any eigenvalue and C only depends on σ0
J and the

distance from σ0
J to nearby eigenvalues.

The proof relies on the reverse-Hölder inequality for the gradient of solutions of

elliptic equations that is established by a technique introduced by Gehring [12]. This

gives Lp-integrability of the gradient of eigenfunctions for p > 2, which implies that

they are not concentrated in the tube.

A Reverse-Hölder Inequality

If −
∫

E

|f(y)| dy is defined to be the average of f on E, then recall that the maximal

function is defined for f ∈ L1
loc(Rn) to be

M(f)(x) = sup
r>0

−
∫

Br(x)

|f(y)| dy

15



where Br(x) is a ball of radius r centered at x. Also, define MR(f)(x) to be

MR(f)(x) = sup
r<R

−
∫

Br(x)

|f(y)| dy.

We will need the following theorem, which uses a technique introduced by Gehring

[12] and was refined by Giaquinta and Modica [14].

Theorem 1.5.2. Let r > q > 1, and Q = QR be a cube in Rn with sidelength R

centered at 0. Also, define d(x) = dist(x, ∂Q). If f and g are non-negative measurable

functions such that f ∈ Lr(Q), g ∈ Lq(Q), f = g = 0 outside Q, and with the added

condition that

M d(x)
2

(gq)(x) ≤ bM q(g)(x) +M(f q) + aM(gq)(x)

for almost every x in Q where b ≥ 0 and 0 ≤ a < 1, then g ∈ Lp(QR
2
(0)), for

p ∈ [q, q + ε) and(
−
∫

QR/2

gp(y) dy

) 1
p

≤ C

[(
−
∫

QR

gq(y) dy

) 1
q

+

(
−
∫

QR

fp(y) dy

) 1
p

]
(1.28)

where ε and C depend on b, q, n, a and r.

The conclusion of this theorem is known as a reverse-Hölder inequality. To show

that the gradient of eigenfunctions satisfy this inequality, we will need to prove a

Caccioppoli inequality. However, to show this Caccioppoli inequality, we first need

the following two well-known inequalities taken from Hebey [19, p. 44] and Oleinik

[30, p. 27].

Theorem 1.5.3. Sobolev-Poincaré Inequality Let 1 ≤ p < n and 1
q

= 1
p
− 1

n
.

Also, let Br be any ball of radius r with u ∈ W 1,p(Br). Then, for S contained in Br

with |S| ≥ c0r
n, ∫

Br

|u(x)− uS|q dx ≤ C

(∫
Br

|∇u|p(x) dx
) q

p

(1.29)

where uS = −
∫

S
u dy and for some constant C(n, p, c0), independent of u.
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Theorem 1.5.4. Korn’s Inequality on Balls If u ∈ H1(Br) then

‖∇u‖2
L2(Br) ≤ C

(
‖κ(u)‖2

L2(Br) +
1

r2
‖u‖2

L2(Br)

)
(1.30)

where C only depends on n.

We now state and prove a Caccioppoli inequality for eigenfunctions.

Theorem 1.5.5. Let u be an eigenfunction with eigenvalue σ associated to the opera-

tor L satisfying either (1.5) or (1.10) with uniformly bounded coefficients or associated

to (1.12) with continuous coefficients. Extending u to be 0 outside Ωε, there exists

r0 > 0 so that if r0 ≥ r > 0, x ∈ Rn, we have

−
∫

Br

|∇u|2 dy ≤ C1

(
−
∫

B2r

|∇u|
2n

n+2 dy

)n+2
n

+ C2|σ| −
∫

B2r

|u|2 dy + C3 −
∫

B2r

|∇u|2 dy (1.31)

where Br is a ball with radius r centered at x, C3 < 1, and Cl > 0 only depends on

M = maxi,j,α,β ‖aαβ
ij ‖L∞(Ωε), n, m, θ, τ , and C0. Furthermore, if L satisfies either

(1.5) or (1.10) with uniformly bounded coefficients, then the inequality (1.31) holds

for any r > 0.

Proof. First, choose a ball Br and define a cutoff function ν ∈ C∞
c (Rn) to be so

that ν = 1 in Br, ν = 0 outside B2r, |∇ν| ≤ Cn

r
, and 0 ≤ ν ≤ 1, where Cn only

depends on n. Below, we will find an appropriate constant vector ρ ∈ Rm, so that

ν2(u− ρ) ∈ H1
0 (Ωε). By the weak formulation (1.4), we have∫

Ωε

aαβ
ij u

α
i [ν2(u− ρ)]βj dy = σ

∫
Ωε

uγ[ν2(u− ρ)]γ dy.

By performing the differentiations, we then get∫
Ωε

aαβ
ij u

α
i [2ννj(u− ρ)β + ν2uβ

j ] dy = σ

∫
Ωε

uγν2(u− ρ)γ dy. (1.32)
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From this point, the argument depends on which ellipticity condition L satisfies. We

have 3 cases.

case 1: L satisfies the strong ellipticity condition (1.5).

Using (1.5) and properties of ν, we obtain the inequality∫
B2r

ν2aαβ
ij u

α
i u

β
j dy ≤

∫
B2r

2M
Cn

r
ν|∇u||u− ρ| dy +

∫
B2r

|σ||u||u− ρ| dy

which, for any constant ω > 0, then leads to∫
B2r

ν2aαβ
ij u

α
i u

β
j dy ≤

∫
B2r

ων2|∇u|2

2
dy +

C

ωr2

∫
B2r

|u− ρ|2 dy

+ C|σ|
∫

B2r

|u|2 dy (1.33)

where C depends on M and Cn. Then choosing ω = θ in (1.33) gives

θ

2

∫
B2r

ν2|∇u|2 dy ≤ C

θr2

∫
B2r

|u− ρ|2 dy + C|σ|
∫

B2r

|u|2 dy.

Then, multiplying both sides by 2
θ

and using that ν = 1 on Br gives∫
Br

|∇u|2 dy ≤ 2C

θ2r2

∫
B2r

|u− ρ|2 dy +
2C|σ|
θ

∫
B2r

|u|2 dy. (1.34)

Now, for the term

∫
B2r

|u− ρ|2 dy, we must consider two subcases.

subcase A

If B2r ⊂ Ωε, then let ρα = −
∫

B2r

uα dy. Our condition on the support of ν implies

ν2(u−ρ) ∈ H1
0 (Ωε). So, setting q = 2 and S = B2r in the Sobolev-Poincaré Inequality

(1.29), we obtain ∫
B2r

|u− ρ|2 dy ≤ C

(∫
B2r

|∇u|
2n

n+2 dy

)n+2
n

.

Using this estimate with (1.34) gives∫
Br

|∇u|2 dy ≤ C

r2

(∫
B2r

|∇u|
2n

n+2 dy

)n+2
n

+ C|σ|
∫

B2r

|u|2 dy.
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Now, dividing through by rn gives the desired result with C3 = 0.

subcase B

If B2r∩Ωc
ε 6= ∅, then set ρ = 0, which, again, guarantees that ν2(u−ρ) ∈ H1

0 (Ωε).

So setting q = 2 and S = B4r ∩Ωε in the Sobolev-Poincaré Inequality (1.29), we have

by our assumption on Ωc
ε (1.2) that∫

B4r

|u− ρ|2 dy ≤ C

(∫
B4r

|∇u|
2n

n+2 dy

)n+2
n

.

From (1.34), we obtain∫
Br

|∇u|2 dy ≤ C

r2

(∫
B4r

|∇u|
2n

n+2 dy

)n+2
n

+ C|σ|
∫

B4r

|u|2 dy.

A simple covering argument gives the estimate with B4r replaced with B2r.

case 2: L satisfies the ellipticity condition (1.10).

From (1.10) and (1.33), we have∫
Br

τ |κ(u)|2 dy ≤
∫

B2r

ων2|∇u|2

2
dy +

C

ωr2

∫
B2r

|u− ρ|2 dy + C|σ|
∫

B2r

|u|2 dy.

Also, by Korn’s inequality (1.30), we have

τ

C

∫
Br

|∇u|2 dy − τ

r2

∫
Br

|u− ρ|2 dy ≤
∫

Br

τ |κ(u)|2 dy.

This implies∫
Br

|∇u|2 dy ≤ Cω

2τ

∫
B2r

|∇u|2 dy+C
(

1

ωτr2
+

1

r2

)∫
B2r

|u−ρ|2 dy+C|σ|
τ

∫
B2r

|u|2 dy.

This again leads to two subcases as in case 1. We must choose ρ appropriately and

use the Sobolev-Poincaré inequality (1.29) as in case 1. Then, by taking ω sufficiently

small, we obtain the desired result.

case 3: L satisfies the Legendre-Hadamard condition (1.12) with continuous coeffi-

cients in Ωε.
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We note that it suffices to study u ∈ C∞
c (Ωε) and first consider when the coeffi-

cients are constant. We rewrite the left side of (1.32) as∫
Ωε

aαβ
ij ((u− ρ)αν)i((u− ρ)βν)j dy

+

∫
Ωε

aαβ
ij [ννju

α
i (u− ρ)β − νiν(u− ρ)αuβ

j − νiνj(u− ρ)α(u− ρ)β] dy.

This, then implies that∫
B2r

aαβ
ij ((u− ρ)αν)i((u− ρ)βν)j dy

≤ C

∫
B2r

|∇ν||∇((u− ρ)ν)||u− ρ|+ |u− ρ|2|∇ν|2 + |σ||u||u− ρ| dy. (1.35)

We note that we may use the Fourier transform to get a lower bound of∫
B2r

θ|∇((u− ρ)ν)|2 dy

on the left side of (1.35) as in the derivation of (1.14). This leads to the estimate∫
Br

|∇u|2 dy ≤
∫

B2r

|∇((u−ρ)ν)|2 dy ≤ C

r2

∫
B2r

|u−ρ|2 dy+C|σ|
∫

B2r

|u|2 dy. (1.36)

So, again, if we employ the Sobolev-Poincaré inequality (1.29), we get the desired

result in the case of constant coefficients.

If the coefficients are continuous and non-constant, then we freeze the coefficients

at x. That is, from the weak formulation (1.4), we have∫
Ωε

aαβ
ij (x)uα

i ((u− ρ)ν2)β
j dy +

∫
Ωε

(aαβ
ij − aαβ

ij (x))uα
i ((u− ρ)ν2)β

j dy

= σ

∫
Ωε

uγ((u− ρ)ν2)γ dy. (1.37)

So, recalling the definition of the modulus of continuity from (1.15), we have that∫
B2r

(aαβ
ij − aαβ

ij (x))uα
i ((u− ρ)ν2)β

j dy

≤M(x, 2r)

∫
B2r

ν2|∇u|2 dy + 2M(x, 2r)

∫
B2r

ν|∇ν||∇u||u− ρ| dy

≤ C(M(x, 2r) +M(x, 2r)2)

∫
B2r

|∇u|2 dy +
C

r2

∫
B2r

|u− ρ|2 dy.
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Also, by the uniform continuity of the coefficients on Ωε, for any c < 1, there exists r0

depending on c, so that if C(x0, R) = C(M(x0, 2R) +M(x0, 2R)2) and r ≤ r0, then

C(x0, r) ≤ c

for all x0 ∈ Ωε. So, now moving the second term on the left side of (1.37) to the right

and using the constant coefficient case (1.36), we obtain that for any c < 1, there

exists r0 so that if r ≤ r0,∫
Br

|∇u|2 dy ≤ C

r2

∫
B2r

|u− ρ|2 dy + C|σ|
∫

B2r

|u|2 dy + c

∫
B2r

|∇u|2 dy.

We again note that here, we must choose ρ appropriately and apply the Sobolev-

Poincaré inequality (1.29) to get the desired result.

As stated earlier, our proof of Theorem 1.5.1 relies on the gradient of an eigen-

function satisfying the reverse-Hölder inequality, as in our next theorem.

Theorem 1.5.6. There exists ε1 > 0 so that if u is an eigenfunction with eigenvalue

σ, then

−
∫

Ωε

|∇u|ep dy ≤ C

[(
−
∫

Ωε

|∇u|2 dy
) ep

2

+ |σ|
ep
2 −
∫

Ωε

|u|ep dy
]

(1.38)

where 2 ≤ p̃ < 2 + ε1, and ε1 and C are independent of ε and any eigenvalue.

Proof. Now if u is an eigenfunction with eigenvalue σ, we have u ∈ H1
0 (Ωε), and thus

we may employ the Sobolev inequality to get that |u| ∈ Lr(Ωε) for some r > 2. If

L satisfies either (1.5) or (1.10) with uniformly bounded coefficients, then we may

choose a cube QR, centered at 0, with radius R such that Ωε ⊂ QR
2
, uniformly in ε,

and set g = |∇u|
2n

n+2 , f = (C3|σ|)
n

n+2 |u|
2n

n+2 , q = n+2
n

, and u = 0 outside Ωε, we may

conclude by (1.31) and (1.28) that(
−
∫

Ωε

|∇u|
2np
n+2 dy

) 1
p

≤ C

[(
−
∫

Ωε

|∇u|2 dy
) n

n+2

+ σ
n

n+2

(
−
∫

Ωε

|u|
2np
n+2 dy

) 1
p

]
where n+2

n
≤ p ≤ n+2

n
+ ε, which is independent of ε and any eigenvalue. So, setting

p̃ = 2np
n+2

, we have the result. If L satisfies (1.12) with continuous coefficients, then
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since we only have Theorem 1.5.5 true for small r, we must cover Ωε with a fixed

number of cubes and apply (1.28) to each cube to obtain the result.

Eigenvalue Estimates

From this point, let σε
k be the kth eigenvalue with respect to Ωε, and φε

k be its

corresponding eigenfunction with φε
k = 0 outside Ωε for ε ≥ 0. We also fix an

eigenvalue σ0
J with multiplicity mJ where σ0

J−1 < σ0
J if J ≥ 2. We will consider the

family {σε
J} as ε > 0 tends to 0. We begin with the following proposition taken from

Anné [2, p. 2595-2596]:

Lemma 1.5.7. Let (q,D) be a closed non-negative quadratic form in the Hilbert space

(H, 〈, 〉). Define the associated norm ‖f‖2
1 = ‖f‖2

H + q(f), and the spectral projector

ΠI for any interval I = (α, β) for which the boundary does not meet the spectrum.

1. Suppose f ∈ D and λ ∈ I satisfy

|q(f, g)− λ〈f, g〉| ≤ δ‖f‖‖g‖1 g ∈ D.

Then there exists a constant C > 0, which depends on I, such that if a is less

than the distance of α or β to the spectrum of q,

‖ΠI(f)− f‖1 = ‖ΠIc(f)‖1 ≤
Cδ

a
‖f‖.

2. Suppose the spectral space E(I) has dimension m and f1, ..., fm is an orthonor-

mal family which satisfies

‖ΠIc(fj)‖1 ≤ δ j = 1, ...,m.

Also let E be the space spanned by the fj’s. Then,

dist(E(I), E) ≤ Cδ

where the distance is measured as the distance between the two orthogonal pro-

jectors.

22



This lemma will give us the results we need for the convergence of eigenvalues.

We will prove estimates on eigenfunctions using the reverse-Hölder inequality (1.38),

which will allow us to use this lemma. We begin with the following well-known

mini-max theorem for systems taken from Grubb and Sharma [16].

Theorem 1.5.8. Let Sk denote any subspace of L2(Ωε), with dimension k. Then

σε
k = min

Sk
max

0 6=u∈Sk
Rε(u). (1.39)

This leads to the following proposition.

Proposition 1.5.9. We have for any ε > 0, and any k ∈ N,

σε
k ≤ σ0

k. (1.40)

Proof. Now, by (1.39),

min
Sk

max
0 6=u∈Sk

Rε(u) = σε
k.

Set T k = span{φ0
1, ..., φ

0
k}. Then for w ∈ T k, say w =

k∑
l=1

clφ
0
l , and by the definition

of Rε(w), we have

Rε(w) =

∑k
l,s=1Bε(clφ

0
l , csφ

0
s)∑k

l,s=1〈clφ0
l , csφ

0
s〉L2(Ωε)

=

∑k
l,s=1 clcsBε(φ

0
l , φ

0
s)∑k

l,s=1 clcs〈φ0
l , φ

0
s〉L2(Ωε)

=

∑k
l,s=1 clcsσ

0
l 〈φ0

l , φ
0
s〉L2(Ωε)∑k

l,s=1 clcs〈φ0
l , φ

0
s〉L2(Ωε)

where we have used the weak formulation of an eigenfunction (1.4) on the last line.

So, by the orthogonality in L2 of the eigenfunctions and since eigenvalues form an

increasing sequence,

Rε(w) =

∑k
l=1 σ

0
l c

2
l 〈φ0

l , φ
0
l 〉L2(Ωε)∑k

l=1 c
2
l 〈φ0

l , φ
0
l 〉L2(Ωε)

≤ σ0
k

∑k
l=1 c

2
l 〈φ0

l , φ
0
l 〉L2(Ωε)∑k

l=1 c
2
l 〈φ0

l , φ
0
l 〉L2(Ωε)

= σ0
k
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so that by the construction of eigenvalues,

σ0
k = Rε(φ

0
k) = max

u∈span{φ0
1,...,φ0

k}
Rε(u).

Thus, since span{φ0
1, ..., φ

0
k} is one of the Sk’s, we have the result.

This proposition gives us the easy half of the inequality in our theorem. To prove

the second half of the inequality, we will need a few items.

Proposition 1.5.10. For any ε > 0, and k ≥ 1, if φ = φε
k, then we have∫

Ωε

|∇φ|ep dy ≤ C (1.41)

where p̃ > 2 is from (1.38) and C depends on the domain Ω0 and n, and has order

(σ0
k)

2ep+n(ep−2)
4 for n ≥ 3 or (σ0

k)
qep+2(ep−q)

2q for n = 2, where 2 − κ < q < 2 for small κ.

Furthermore, p̃ and C are both independent of ε, and if n = 2, C blows up as q → 2.

Proof. Now, from (1.38), we have∫
Ωε

|∇φ|ep dy ≤ C

[
|Ωε|

2−ep
2

(∫
Ωε

|∇φ|2 dy
) ep

2

+ (σε
k)

ep
2

(∫
Ωε

|φ|ep dy
)]

(1.42)

where p̃ > 2 is from (1.38). Observe that by G̊arding’s inequality (1.13), we have

C

∫
Ωε

|∇φ|2 dy ≤
∫

Ωε

aαβ
ij φ

α
i φ

β
j dy + C

∫
Ωε

|φ|2 dy

≤ C(1 + |σε
k|)
∫

Ωε

|φ|2 dy

≤ C(1 + |σε
k|) (1.43)

the last line owing to the normalization of the eigenfunctions. Next, we will consider

n ≥ 3 and estimate ∫
Ωε

|φ|ep dy.
Using Sobolev’s inequality and (1.43), we have

24



(∫
Ωε

|φ|
2n

n−2 dy

)n−2
2n

≤ C

(∫
Ωε

|∇φ|2 dy
) 1

2

≤ C(1 + |σε
k|

1
2 ). (1.44)

Also, by Hölder’s inequality, we have(∫
Ωε

|φ|ep dy
) 1ep

≤
(∫

Ωε

|φ|2 dy
) 1−t

2
(∫

Ωε

|φ|
2n

n−2 dy

) t(n−2)
2n

where t satisfies

1

p̃
=

1− t

2
+
t(n− 2)

2n
.

From this inequality and (1.44), it follows that(∫
Ωε

|φ|ep dy
) 1ep

≤ C
(
1 + |σε

k|
t
2

)
= C

(
1 + |σε

k|
n(ep−2)

4ep )
.

Now, using this inequality along with (1.42), (1.43), and (1.40), we obtain∫
Ωε

|∇φ|ep dy ≤ C

[(
1 + σ0

k

) ep
2 + (σ0

k)
ep
2

(
1 + |σ0

k|
n(ep−2)

4

)]
≤ C

[(
σ0

k

) 2ep+n(ep−2)
4 +

(
σ0

k

) ep
2 + 1

]
.

This completes the proof for n ≥ 3.

If n = 2, then from Gilbarg and Trudinger [15, p. 158], we use Sobolev’s inequality,

along with Hölder’s inequality and (1.43) to obtain(∫
Ωε

|φ|q∗ dy
) 1

q∗

≤ C

(2− q)
1
2

(∫
Ωε

|∇φ|q dy
) 1

q

≤ C

(2− q)
1
2

(∫
Ωε

|∇φ|2 dy
) 1

2

|Ωε|
1

q∗

≤ C

(2− q)
1
2

(
1 + |σε

k|
1
2

)
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where q∗ = 2q
2−q

is the Sobolev conjugate of q. Then, applying Hölder’s inequality, we

obtain (∫
Ωε

|φ|ep dy
) 1ep

≤ C

(2− q)
t
2

(
1 + |σε

k|
t
2

)
=

C

(2− q)
(ep−q)epq

(
1 + |σε

k|
(ep−q)epq

)
and using (1.42), (1.43), and (1.40), we obtain∫

Ωε

|∇φ|ep dy ≤ C

(2− q)
(ep−q)

q

[(
1 + σ0

k

) ep
2 + (σ0

k)
ep
2

(
1 + |σ0

k|
(ep−q)

q

)]
≤ C

(2− q)
(ep−q)

q

[(
σ0

k

) qep+2(ep−q)
2q +

(
σ0

k

) ep
2 + 1

]
.

Lemma 1.5.11. For the eigenfunction φε
k, J ≤ k ≤ J+mJ−1, and any w ∈ H1

0 (Ω0),

we have the following estimate:∣∣∣∣∫
Ω0

aαβ
ij (ηεφ

ε
k)

α
i w

β
j dy − σε

k

∫
Ω0

(ηεφ
ε
k)

αwα dy

∣∣∣∣ ≤ Cε
n(ep−2)

2ep ‖w‖1 (1.45)

where ‖w‖1 is from Lemma 1.5.7 and C only depends on the domain Ω0, n, σ
0
J , and

is independent of ε.

Proof. First, we extend w to be 0 outside Ω0 and φε
k to be 0 in (Bε ∪ B̃ε)∩Ωc

ε. Then

we have ∣∣∣∣∫
Ω0

aαβ
ij (ηεφ

ε
k)

α
i w

β
j dy − σε

k

∫
Ω0

(ηεφ
ε
k)

αwα dy

∣∣∣∣
≤
∣∣∣∣∫

Ω0

aαβ
ij [(ηε)i(φ

ε
k)

αwβ
j − (ηε)j(φ

ε
k)

αwβ] dy

∣∣∣∣
+

∣∣∣∣∫
Ωε

aαβ
ij (φε

k)
α
i (ηεw)β

j dy − σε
k

∫
Ωε

(φε
k)

α(ηεw)α dy

∣∣∣∣
= |I + II|+ |III + IV | .
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First, since φε
k is an eigenfunction with eigenvalue σε

k, we have that III + IV = 0.

Also, by Hölder’s inequality and Poincaré’s inequality, we have

|I + II| ≤ C

ε
‖φε

k‖L2(Bε∪ eBε)
‖∇w‖L2(Bε∪ eBε)

≤ C‖∇φε
k‖L2(Bε∪ eBε)

‖w‖1

where we have used G̊arding’s inequality (1.13) on the last line for w. Thus, from

Hölder’s inequality and Proposition 1.5.10,

|I + II| ≤ Cε
n(ep−2)

2ep ‖∇φε
k‖Lep(Ωε)‖w‖1

≤ Cε
n(ep−2)

2ep ‖w‖1.

This concludes the proof of the lemma.

If we choose an interval I around σ0
k such that σε

k ∈ I, then it is easy to see that for

q(f, g) =

∫
Ω0

aαβ
ij f

α
i g

β
j dy and f = ηεφ

ε
k, we have satisfied the hypotheses for part 1 of

Lemma 1.5.7. To satisfy part 2, we start with the following well-known proposition.

Proposition 1.5.12. If A is an N × N matrix and v is a N × 1 vector such that

Av = 0 and
N∑
i6=l

|Ali| < |All| for each l = 1, ..., N , then v = 0.

The next proposition shows that the functions {ηεφ
ε
k}

J+mJ−1
k=J are almost orthonor-

mal.

Proposition 1.5.13. For any ε > 0 and l, k ∈ N, (J ≤ l, k ≤ J+mJ−1), if φk = φε
k,

we have the following estimates:∫
Ωε

η2
ε |φk|2 dy ≥ 1− Cε

d(ep−2)ep (1.46)

∣∣∣∣∫
Ωε

η2
εφk · φl dy

∣∣∣∣ ≤ Cε
d(ep−2)ep if k 6= l (1.47)

where C only depends on |Ω0|, n, and σ0
J , and is independent of ε.
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Proof. We start by showing (1.46). Since the eigenfunctions are normalized, we obtain

for each k,

1−
∫

Ωε

η2
ε |φk|2 dy =

∫
Ωε

(1− η2
ε)|φk|2 dy

=

∫
Tε∪Bε∪ eBε

(1− η2
ε)|φk|2 dy

≤ ‖∇φk‖2
Lep(Ωε)

|Tε ∪Bε ∪ B̃ε|
ep−2ep

≤ Ckε
d(ep−2)ep

where, from (1.41), Ck depends on σ0
k. So, since Ck = CJ , we have (1.46).

Next, to show (1.47), we have∣∣∣∣∫
Ωε

η2
εφk · φl dy

∣∣∣∣ ≤ ∣∣∣∣∫
Bε∪ eBε

η2
εφk · φl dy

∣∣∣∣+ ∣∣∣∣∫
Ω0\(Bε∪ eBε)

η2
εφk · φl dy

∣∣∣∣
=

∣∣∣∣∫
Bε∪ eBε

η2
εφk · φl dy

∣∣∣∣+ ∣∣∣∣∫
Ω0\(Bε∪ eBε)

φk · φl dy −
∫

Ωε

φk · φl dy

∣∣∣∣
≤
∫

Bε∪ eBε

|φk · φl| dy +

∫
Tε∪Bε∪ eBε

|φk · φl| dy

the second inequality following since the set of eigenfunctions form an orthogonal set

in L2(Ωε). So, next by Hölder’s inequality, we get∣∣∣∣∫
Ωε

η2
εφk · φl dy

∣∣∣∣ ≤ (∫
Bε∪ eBε

|φk|2 dy
) 1

2
(∫

Bε∪ eBε

|φl|2 dy
) 1

2

+

(∫
Tε∪Bε∪ eBε

|φk|2 dy
) 1

2
(∫

Tε∪Bε∪ eBε

|φl|2 dy
) 1

2

= I + II.

Now, from Poincaré’s inequality and (1.41), we get

I ≤

[(∫
Bε∪ eBε

|φk|ep dy
) 2ep

|Bε ∪ B̃ε|
ep−2ep
] 1

2
[(∫

Bε∪ eBε

|φl|ep dy
) 2ep

|Bε ∪ B̃ε|
ep−2ep
] 1

2

≤ ‖∇φk‖Lep(Ωε)ε
n(ep−2)

2ep ‖∇φl‖Lep(Ωε)ε
n(ep−2)

2ep

≤ Ckε
n(ep−2)

2ep Clε
n(ep−2)

2ep
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where Ck again depends on σε
k and Cl depends on σε

l . Thus, we have

I ≤ Cε
n(ep−2)ep (1.48)

where C depends only on |Ω0|, n, and σ0
J . Similarly,

II ≤ Cε
d(ep−2)ep (1.49)

so that the proposition is proved.

To satisfy the hypotheses for part 2 of Lemma 1.5.7, we need an orthonormal

basis. The next proposition shows that for small ε, we have a basis.

Proposition 1.5.14. For ε > 0 small enough, {ηεφ
ε
k}N

k=J forms a linearly indepen-

dent set for any N ≥ J .

Proof. Assume CJηεφ
ε
J + ...+CNηεφ

ε
N = 0. Then, multiplying this equation by ηεφ

ε
l ,

we achieve
N∑

k=J

Ck〈ηεφ
ε
k, ηεφ

ε
l 〉L2(Ωε) = 0, l = J, ..., N.

So, if Alk = 〈ηεφ
ε
k, ηεφ

ε
l 〉L2(Ωε), we obtain by (1.46) and (1.47) that

|Akk| ≥ 1− Cε
d(ep−2)ep

> Cε
d(ep−2)ep

≥
N∑

k=J
i6=k

|Aki|

if ε is small enough. Thus, if C = (CJ , ..., CN)t, since AC = 0, we have by Proposition

1.5.12 that C = 0 so that the proposition is proved.

Now we define I =

(
σ0

J −Mε
n(ep−2)

4ep ,
σ0

J+σ0
J+mJ

2

)
forM > 0 to be chosen later. Also,

let Π be the projector onto the space spanned by the eigenfunctions corresponding

to the eigenvalues, {σε
k}, in I. We note that for fixed ε, we may choose M so that σε

k

is in I for J ≤ k ≤ N where N ≥ J +mJ − 1. This is due to Proposition 1.5.9. We
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next define J0 : L2(Ωε) → L2(Ω0) to be given by J0f = ηεf , and similarly, we define

Jε : L2(Ω0) → L2(Ωε) to be such that

Jεf(x) =


f(x), if x ∈ Ω0

0, if x ∈ Ωε\Ω0.

By Proposition 1.5.14, {ηεφ
ε
k}N

k=J is a basis for the range of J0ΠJε. Thus, we may

apply the Gram-Schmidt process to this basis. That is, define

fJ = ηεφ
ε
J

...

fk = ηεφ
ε
k −

〈ηεφ
ε
k, fJ〉

‖fJ‖2
fJ − ...− 〈ηεφ

ε
k, fk−1〉

‖fk−1‖2
fk−1

...

Lemma 1.5.15. Let I be as defined above. For each k, J ≤ k ≤ J+mJ −1, we have

‖ΠIc(fk)‖1 ≤
Cε

n(ep−2)
4ep

M
, for ε ≤ 1, and where M only depends on σ0

J and σ0
J−1.

Proof. First let ε = 1. We note that from Proposition 1.5.9, for each k, J ≤ k ≤

J+mJ−1, we may chooseM so that σε
k lies in I. So, defining q(f, g) =

∫
Ω0
aαβ

ij f
α
i g

β
j dy,

we may apply Lemma 1.5.11 and then Lemma 1.5.7 (part 1) to obtain

‖ΠIc(fJ)‖1 ≤
Cε

n(ep−2)
4ep

M

where C depends on Ω0, n, σ0
J , and σ0

J+mJ
. Then, from Proposition 1.5.13, Lemma

1.5.11, and properties of the norm, we get the result. We next note that if ε ≤ 1, since

σ1
k ≤ σε

k, M will grow as ε shrinks. This means that we obtain the same estimate.

Corollary 1.5.16. ‖ΠI −J0ΠJε‖L2(Ω0)→L2(Ω0) ≤
Cε

n(ep−2)
4ep

M
, where M only depends on

σ0
J and σ0

J−1.

Proof. Normalize the fk’s and observe that
1

‖fk‖
≤ 1

1− Cε
n(ep−2)

2ep . Then apply Lemma

1.5.7 (part 2) to the normalized functions.
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We are now ready to prove Theorem 1.5.1.

Proof. When choosing M , we must be careful that no smaller eigenvalues for Ω0 are

in I. So, we first prove for J = 1. Since every eigenvalue is bounded below, we can

choose such an M . We have rank (J0ΠJε) = rank(Π) = N for ε ≤ ε̃, where ε̃ is chosen

small from Proposition 1.5.14. Then we use Corollary 1.5.16 to apply Lemma I-4.10

from Kato [23, p.34] to get that for ε < min{1, ε̃}, m1 = rank (ΠI) = rank(Π) = N .

This implies that σε
k ∈ I only for k, 1 ≤ k ≤ m1, and hence, the result for J = 1.

The result for J = 1 implies that not only may we choose M so that all eigenvalues

{σε
k}

m1+m2
k=m1+1 are in the interval corresponding to the next highest eigenvalue σ0

m1+1,

but also that σ0
1 is not in this interval. Thus, we apply the same reasoning here to

get the result for σ0
m1+1. Then, by an induction argument, we get the result for each

J ∈ N, satisfying σ0
J > σ0

J−1.

Future Work

We close this chapter with a list of questions.

• Is the rate of convergence optimal?

• Can the methods used for Dirichlet eigenvalues be extended to Neumann eigen-

values, if we have some additional regularity on the domain?

• For particular systems, can we determine if there is a lower bound for |σε
J−σ0

J |?

Copyright c© Justin L. Taylor, 2011.
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Chapter 2 The Green Function for the Mixed Problem on Lipschitz

Domains

2.1 Introduction

There has been much activity recently on the study of classical boundary value

problems for the Laplacian on domains that are not smooth especially including

Lipschitz domains as in Dahlberg [8], Dahlberg and Kenig [9], Jerison and Kenig [20],

and Verchota [38]. This is of interest because it allows us to treat physically realistic

problems in regions with corners and edges and it is interesting from a mathematical

viewpoint because the conditions on the domain are scale invariant; thus, we are able

to study something that is really new, rather than study problems that are really just

perturbations of a boundary value problem in half-plane.

The study of the mixed problem in Lipschitz domains appears as problem 3.2.15

in Kenig’s CBMS lecture notes [24]. The work of Brown and Sykes [36] establishes

results for the mixed problem in Lipschitz graph domains. I. Mitrea and M. Mitrea

[27] studied the mixed problem for the Laplacian with data taken from a large family

of function spaces. More recently, Ott and Brown [31] studied the mixed problem

when the boundary between the Dirichlet set D and the Neumann set N is a Lip-

schitz surface. It is well-known that an elliptic operator with bounded measurable

coefficients [26] has a Green function in all of space, provided the dimension is at

least three. Given this free space fundamental solution, if the boundary between D

and N is Lipschitz, then by using a reflection argument as in Dahlberg and Kenig

[9], there is a Green function G such that the solution u to the mixed problem with

fD = 0 and fN ∈ W−1/2,2
D (∂Ω) may be represented as

u(x) = −
∫

∂Ω

fN(y)G(x, y) dy
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Then, from the methods of de Giorgi [11], Nash [29], and Moser [28], one may ob-

tain regularity results of the Green function that show how the solution behaves. In

Stampacchia [34], a study of Hölder continuity of solutions to elliptic equations is

given with a more restrictive condition on the decomposition of the boundary. Also,

Haller-Dintelmann et al. [18] show Hölder continuity for solutions to the mixed prob-

lem under a condition similar to Stampacchia’s. Roughly speaking, Stampacchia’s

condition is that the Dirichlet set D ⊂ ∂Ω and Neumann set N ⊂ ∂Ω are separated

by a Lipschitzian hypersurface of ∂Ω. In this chapter, we consider properties of the

Green function for the mixed problem where the decomposition of the boundary is

more general.

2.2 Preliminaries

A bounded, connected open set Ω is called a Lipschitz domain with Lipschitz

constant M if the boundary is locally given by the graph of a Lipschitz function.

To make this precise, use coordinates (x′, xn) ∈ Rn−1 × R and define a coordinate

cylinder Zr(x) to be a set of the form Zr(x) = {y : |y′−x′| < r, |yn−xn| < (1+M)r}.

We assume that this coordinate system is a translation and rotation of the standard

coordinates. For each x in the boundary, we assume that we may find a coordinate

cylinder and a Lipschitz function φ with Lipschitz constant M so that

Ω ∩ Zr(x) = {(y′, yn) : yn > φ(y′)} ∩ Zr(x)

∂Ω ∩ Zr(x) = {(y′, yn) : yn = φ(y′)} ∩ Zr(x).

To describe the mixed problem, let Ω be a bounded, connected open Lipschitz

domain in Rn and decompose the boundary ∂Ω = D ∪N , where D is an open subset

in ∂Ω and N = ∂Ω\D. Also, let Λ be the boundary between D and N relative to ∂Ω.

We define the space W 1,2
D (Ω) to be the closure in W 1,2(Ω) of C∞(Ω) functions which

vanish on D. We note here that by definition, if w ∈ W 1,2
D (Ω), then w = lim

n→∞
wn
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where each wn ∈ C∞(Ω) and wn = 0 on D. The limit here is taken in W 1,2(Ω). Since

we have a bounded Lipschitz domain, we define the trace map as trace(w) = lim
n→∞

wn

where the limit is taken in L2(∂Ω). We let W
1/2,2
D (∂Ω) be these restrictions to ∂Ω of

W 1,2
D (Ω) and let W

−1/2,2
D (∂Ω) be the dual of W

1/2,2
D (∂Ω). Then the mixed problem is

given as


Lu = −(aijuxi

)xj
= f in Ω

u = fD on D

aijuxi
νj = fN on N

(2.1)

with the following:

1. We use the convention of summing over repeated indices, where i and j sum

from 1 to n.

2. The coefficients aij are bounded and measurable functions satisfying the ellip-

ticity condition θ|ξ|2 ≤ aijξiξj for any ξ ∈ Rn.

3. f is taken from Lq/2(Ω), for q > n, and we have ‖f‖Lq/2(Ω) ≤Mf .

4. fD is the trace of a function f̃D from W 1,2(Ω).

5. fN is taken from W
−1/2,2
D (∂Ω).

We will also assume 2 conditions on ∂Ω. The first is a condition on D. There

exists C > 0 such that

for any x ∈ Λ, σ(Br(x) ∩D) ≥ Crn−1, 0 < r ≤ r0 (2.2)

where σ(E) is the Rn−1 surface measure of a set E. The next condition is on N .

There exists c > 0 such that

for any x ∈ N, if Br(x) ∩D = ∅, then |Br(x) ∩ Ω| ≥ crn, 0 < r ≤ r0. (2.3)
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Even though this is a restriction on ∂Ω, it still allows for a quite general decom-

position of the boundary. We will use (2.2) and (2.3) in order to apply Sobolev and

Poincaré inequalities.

We say that u ∈ W 1,2(Ω) is a weak solution to the mixed problem (2.1) if u− f̃D ∈

W 1,2
D (Ω) and

∫
Ω

aijuxi
wxj

dx =

∫
Ω

fw dx+ 〈fN , w〉N for any w ∈ W 1,2
D (Ω) (2.4)

where 〈fN , w〉N is interpreted as the pairing of fN and trace(w) ∈ W 1/2,2
D (∂Ω).

2.3 Global Boundedness and Hölder Continuity for Solutions to the Mixed

Problem

The next theorem is adapted from Gilbarg and Trudinger [15] and uses an iteration

technique introduced by Moser [28]

Theorem 2.3.1. Let u solve the mixed problem (2.1) with fD = 0 and fN = 0. Then,

sup
Ω
u ≤ C(‖u‖L2(Ω) + 1) where C depends on |Ω|, ‖f‖Lq/2(Ω), n, q, and θ.

Proof. Set k ≥ 1, β ≥ 1, and define H ∈ C1[k,∞) by

H(z) =


zβ − kβ, z ∈ [k,N ]

Nβ−kβ

N
z, z ≥ N

Next, set w = u+ + k where u+ = sup(u, 0) is the positive part of u. Then, if

v = G(w) =

∫ w

k

|H ′(s)|2 ds, we have for x ∈ D that

v(x) =

∫ w(x)

k

|H ′(s)|2 ds

=

∫ k

k

|H ′(s)|2 ds

= 0
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So, by the chain rule [15, p. 151], v ∈ W 1,2
D (Ω) is an acceptable test function in the

weak formulation for u. So, from (2.4),∫
Ω

aijuxi
vxj

dx =

∫
Ω

fv dx

or ∫
Ω

aijuxi
G′(w)wxj

dx =

∫
Ω

fG(w) dx

Since wxj
= uxj

when u ≥ 0 and wxj
= 0 otherwise, and G′(w) ≥ 0, we have by the

ellipticity condition that∫
Ω

|∇w|2G′(w) dx ≤ 1

θ

∫
Ω

aijuxi
wxj

G′(w) dx

≤ 1

θ

∫
Ω

|f ||G(w)| dx

Also,

G(t) =

∫ t

k

|H ′(s)|2 ds

≤
∫ t

0

|H ′(t)|2 ds

= tG′(t)

Thus, we obtain ∫
Ω

|∇w|2G′(w) dx ≤ 1

θ

∫
Ω

|f ||w||G′(w)| dx

≤ 1

θ

∫
Ω

|f ||w|2|G′(w)| dx

the last line owing to w ≥ 1. This is equivalent to∫
Ω

|∇H(w)|2 dx ≤ C

∫
Ω

|f ||H ′(w)w|2 dx
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so that by applying Sobolev’s inequality and Hölder’s inequality, we obtain

‖H(w)‖
L

2bnbn−2 (Ω)
≤
(
C

∫
Ω

|f ||H ′(w)w|2 dx
) 1

2

≤ C‖f‖
1
2

Lq/2(Ω)
‖H ′(w)w‖

L
2q

q−2 (Ω)

≤ C‖H ′(w)w‖
L

2q
q−2 (Ω)

(2.5)

where n̂ = n if n ≥ 3 and 2 < n̂ < q if n = 2. So, now letting N → ∞ in (2.5), we

obtain the condition that if w ∈ Lβ 2q
q−2 (Ω), then also w ∈ Lβ 2bnbn−2 (Ω). Furthermore,

setting q∗ =
2q

q − 2
and ξ =

n̂(q − 2)

q(n̂− 2)
> 1, we have

‖w‖Lβξq∗ (Ω) ≤ (Cβ)
1
β ‖w‖Lβq∗ (Ω) (2.6)

By the Sobolev inequality, we may set βq∗ = 2bnbn−2
which means β = bnq−2bnbnq−2q

> 1

to obtain w ∈ Lξ 2bnbn−2 (Ω) in (2.6). Then by an induction argument, we show w ∈⋂
1≤p<∞

Lp(Ω). Moreover, setting β = ξm for m = 0, 1, 2, ..., and iterating (2.6), we

obtain

‖w‖LξN q∗ (Ω) ≤
N−1∏
m=0

(Cξm)ξ−m‖w‖Lq∗ (Ω)

≤ C‖w‖Lq∗ (Ω) (2.7)

where C depends on n, q, ‖f‖Lq/2(Ω), and θ. Now let N →∞ in (2.7) to obtain

sup
Ω
w ≤ C‖w‖Lq∗ (Ω)

Using a simple result from Hölder’s inequality, we obtain

sup
Ω
w ≤ C‖w‖L2(Ω)

Now repeating this argument with u+ replaced with u−, we get the desired result.

We aim to show Hölder continuity of solutions to the mixed problem with the

general decomposition of the boundary described earlier. To achieve this, we will
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modify the well-known de Giorgi methods [11] from Ladyzhenskaya and Ural’tseva

[25, p. 81]. We start with a definition. We say u ∈ H1(Ω) = W 1,2(Ω) belongs to

ßm(Ω,M, γ, δ, 1
q
) for M,γ, δ > 0 and q > n if ‖u‖∞ ≤M and if both u and −u satisfy

the following inequalities for an arbitrary region Br ⊂ Ω or Ωr = Br ∩ Ω if Br is

centered on ∂Ω and arbitrary σ ∈ (0, 1):∫
Ak,r−σr

|∇u|m dx ≤ γ

[
1

σmrm−mn
q

sup
Ak,r

(u(x)− k)m + 1

]
|Ak,r|1−

m
q (2.8)

for k satisfying both k ≥ 0 and k ≥ sup
Ωr

u(x) − δ if Br ∩ D 6= ∅ and for only

k ≥ sup
Ωr

u(x) − δ otherwise, where Ak,r = {x ∈ Ωr : u(x) > k}. Here Br−σr is the

concentric ball to Br and r ≤ r0 for some positive r0.

With this definition, we can state

Proposition 2.3.2. Let u solve the mixed problem (2.1) with fD = 0 and fN = 0.

Then u ∈ ß2(Ω,M, γ, δ, 1
q
) where δ = 1

Mf
and γ = γ(n, θ).

Proof. We note that by Theorem 2.3.1, u is bounded. Next, fix Ωr and define η ∈

C∞
c (Rn) to be so that 0 ≤ η ≤ 1, η = 1 on Br−σr, η = 0 outside Br, and |∇η| ≤ Cn

σr
.

We aim to show that max{u− k, 0} ∈ W 1,2
D (Ω), so that we may use φ = η2 max{u−

k, 0} ∈ W 1,2
D (Ω) as a test function. To do this let F (x) = max{x, 0}. Then, F is

piecewise smooth on R and ‖F ′‖∞ ≤ 1. So, since u − k ∈ W 1,2(Ω), we may use

Theorem 7.8 from Gilbarg and Trudinger [15, p. 153] to get that F (u−k) ∈ W 1,2(Ω).

Furthermore, since trace(u−k) = −k on D, we have trace(F (u−k)) = max{−k, 0} =

0 on D, for k ≥ 0.

We may set φ = η2 max{u− k, 0} ∈ W 1,2
D (Ω). Since φ is non-zero only in Ak,r, we

have by the weak formulation (2.4)∫
Ak,r

aijuxi
φxj

dx =

∫
Ak,r

fφ dx (2.9)
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Performing the differentiations, and using ellipticity, we have∫
Ak,r

θ|∇u|2η2 dx ≤ C

∫
Ak,r

|∇u|η|∇η||u− k| dx+

∫
Ak,r

|f |η2|u− k| dx

= I + II

Using the Cauchy inequality, we obtain

I ≤
∫

Ak,r

ε|∇u|2η2 dx+
C

ε

∫
Ak,r

|∇η|2|u− k|2 dx

so that by choosing ε = θ
2
, we obtain

θ

2

∫
Ak,r

|∇u|2η2 dx ≤
∫

Ak,r

|f |η2|u− k| dx+ C

∫
Ak,r

|∇η|2|u− k|2 dx (2.10)

= II + III

Also, since 1 ≤ C
(

rn

|Ak,r|

) 2
q
, it follows that

|Ak,r|
r2

≤ C
|Ak,r|1−

2
q

r2− 2n
q

From this, we obtain that

III ≤ C

σ2r2
sup
Ak,r

|u− k|2|Ak,r|

≤ C

σ2r2− 2n
q

sup
Ak,r

|u− k|2|Ak,r|1−
2
q

Next, from Hölder’s inequality,

II ≤ ‖f‖
L

q
2 (Ω)

(∫
Ak,r

(|u− k|η2)
q

q−2 dx

)1− 2
q

≤Mf

(
1

Mf

)
|Ak,r|1−

2
q

= |Ak,r|1−
2
q

It now follows from (2.10) that∫
Ak,r−σr

|∇u|2 dx ≤
∫

Ak,r

|∇u|2η2 dx

≤ C

(
1

σ2r2− 2n
q

sup
Ak,r

|u− k|2 + 1

)
|Ak,r|1−

2
q
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Thus, noting that this inequality for −u is true by a similar proof, we have that

u ∈ ß2(Ω,M, γ, δ, 1
q
).

Before stating a theorem for Hölder continuity in the interior of Ω, we need several

lemmas taken from Ladyzhenskaya and Ural’tseva [25]. The first is a consequence of

Poincaré’s inequality.

Lemma 2.3.3. If u ∈ W 1,1(Br), then

(l − k)|Al,r|1−
1
n ≤ βrn

|Br\Ak,r|

∫
Ak,r\Al,r

|∇u| dx

where l ≥ k and β = β(n).

Lemma 2.3.4. Suppose a sequence yl satisfies

0 ≤ yl+1 ≤ cbly1+ε
l

and

y0 ≤ c
−1
ε b

−1

ε2 ,

where c, ε, and b are positive constants with b > 1. Then,

yl → 0 as l→∞.

The proof of Lemma 2.3.5 is presented, but can also be found in Ladyzhenskaya

and Ural’tseva [25, p. 83].

Lemma 2.3.5. There exists θ1 > 0 so that for any u ∈ ß2(Ω,M, γ, δ, 1
q
) and for any

Ωr with k ≥ sup
Ωr

u(x)− δ, the inequalities

1. |Ak,r| ≤ θ1r
n

2. H = sup
Ωr

u(x)− k ≥ r1−n
q

imply

|Ak+H
2

, r
2
| = 0.
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Proof. Fix Br and u ∈ ß2(Ω,M, γ, δ, 1
q
). Define the sequences

• rh = r
2

+ r
2h+1

• kh = k + H
2
− H

2h+1

for h = 0, 1, 2, ..., and consider the balls Brh
that are concentric to Br. Also, set

σ = rh−rh+1

rh
in (2.8) to obtain

∫
Akh,rh+1

|∇u|2 dx ≤ γ

 r
2n
q

h

(rh − rh+1)2
sup

Akh,rh

(u(x)− kh)
2 + 1

 |Akh,rh
|1−

2
q (2.11)

then use Lemma 2.3.3 with k = kh and l = kh+1 to obtain

(kh+1 − kh)|Akh+1,rh+1
|1−

1
n ≤

βrn
h+1

|Brh+1
\Akh,rh+1

|

∫
Akh,rh+1

|∇u| dy (2.12)

If we impose that θ1 ≤ wn

2n+1 , then by assumption, we have

|Akh,rh+1
| ≤ |Ak,r| ≤

|Brh+1
|

2

Thus, since H
2h+2 = kh+1 − kh, by (2.12), we have

H

2h+2
|Akh+1,rh+1

|1−
1
n ≤ 2β

ωn

∫
Akh,rh+1

|∇u| dx

≤ 2β

ωn

(∫
Akh,rh+1

|∇u|2 dx

) 1
2

|Akh,rh+1
|
1
2

≤ 2β

ωn

(∫
Akh,rh+1

|∇u|2 dx

) 1
2

|Akh,rh
|
1
2 (2.13)

Then from (2.11) and (2.13), we arrive at(
Hωn

2h+3β

)2

|Akh+1,rh+1
|2−

2
n |Akh,rh

|−1 ≤
∫

Akh,rh+1

|∇u|2 dx

≤ γ
[
(2h+2)2H2r2(n

q
−1) + 1

]
|Akh,rh

|1−
2
q

which implies

|Akh+1,rh+1
|2−

2
n ≤ γ

(
2h+3β

ωn

)2 [
22h+4r( 2n

q
−2) +H−2

]
|Akh,rh

|2−
2
q
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so that, by the assumption H ≥ r(1−n
q
), we have(

|Akh+1,rh+1
|

rn

)1− 1
n

≤ C22h

(
|Akh,rh

|
rn

)1− 1
q

(2.14)

where C = C(γ, β, n). So, if we define µh =
|Akh,rh

|
rn , we have the inequality

µh+1 ≤ C
n

n−1 2
2n

n−1
hµ1+ε

h

where ε = q−n
q(n−1)

. Hence, in accordance with Lemma 2.3.4, if

µ0 ≤
1

C
n

ε(n−1) 2
2n

ε2(n−1)

= C0

then µh → 0 as h → ∞. To satisfy this condition, we let θ1 = min
{ ωn

2n+1
, C0

}
.

Finally, observing that kh → k+ H
2

and rh → r
2

as h→∞, we get the desired result.

If we are able to satisfy the hypotheses of the next lemma taken from Ladyzhen-

skaya and Ural’tseva [25, p. 66], we will have the Hölder continuity we desire.

Lemma 2.3.6. Suppose u is bounded and measurable in some Ωr0. Consider Br and

Bbr for b > 1 which are concentric with Br0. Suppose for arbitrary r ≤ r0

b
at least

one of the following holds:

1. osc(u,Ωr) ≤ c1r
ε

2. osc(u,Ωr) ≤ Θosc(u,Ωbr)

where c1, ε ≤ 1 and Θ < 1. Then for r ≤ r0,

osc(u,Ωr) ≤ cr−α
0 rα

where α = min{− logb(Θ), ε}, c = bα max{ω0, c1r
ε
0}, and ω0 = osc(u,Ωr0).

The next lemma is taken from Ladyzhenskaya and Ural’tseva [25, p. 85], and we

present the proof with more detail. This lemma will allow us to use Lemma 2.3.6,

and hence obtain interior continuity for a solution to the mixed problem.
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Lemma 2.3.7. Let u ∈ ß2(Ω,M, γ, δ, 1
q
). There exists a positive integer

s = s(n, θ,M, δ) so that for any Br, concentric with B4r ⊂ Ω, at least one of the

following inequalities hold for u:

1. osc(u,Br) ≤ 2sr1−n
q

2. osc(u,Br) ≤
(
1− 1

2s−1

)
osc(u,B4r)

Proof. We impose the condition

M

2s−3
≤ δ (2.15)

on s and assume condition 1. is false. Define

• Mr = sup
Br

u

• mr = inf
Br

u

• M r =
Mr +mr

2

• osc(u,Br) = ωr = Mr −mr

• Dt =
(
AM4r−ω4r

2t ,2r\AM4r− ω4r
2t+1 ,2r

)
, t = 1, 2, ..., s

where Ak,r = {x ∈ Br : u(x) > k}. We may also assume that

∣∣AM4r,2r

∣∣ ≤ |B2r|
2

, (2.16)

for, if not, we replace u with −u and then prove the lemma for −u.

First, use Lemma 2.3.3 with k = M4r − ω4r

2t and l = M4r − ω4r

2t+1 to obtain

ω4r

2t+1

∣∣∣AM4r− ω4r
2t+1 ,2r

∣∣∣1− 1
n ≤ β(2r)n

1
2
|B2r|

∫
Dt

|∇u| dx

=
2β

ωn

∫
Dt

|∇u| dx (2.17)

where we have also used (2.16) on the first line. So, by Hölder’s inequality,( ω4r

2t+1

)2 ∣∣∣AM4r− ω4r
2t+1 ,2r

∣∣∣2− 2
n ≤

(
2β

ωn

)2

|Dt|
∫

Dt

|∇u|2 dx t = 1, 2, ..., s (2.18)
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Next, we aim to place conditions on k so that we may use the inequality from (2.8).

We need k = M4r − ω4r

2t ≥ M4r − δ. This will mean that we need t ≥ log2(
2M
δ

) = t0.

With these values of t, we may use the inequality (2.8) with σ = 1/2 to obtain

∫
A

M4r−
ω4r
2t ,2r

|∇u|2 dx ≤ γ

4(4r)2n/q−2 sup
A

M4r−
ω4r
2t ,4r

∣∣∣u− (M4r −
ω4r

2t
)
∣∣∣2 + 1

 |AM4r−ω4r
2t ,4r|1−2/q

≤ γr2n/q−2

[
(4)2n/q−1

(ω4r

2t

)2

+ r2−2n/q

]
|AM4r−ω4r

2t ,4r|1−2/q

Also, since we are assuming condition 1. is false and 1 ≤ t ≤ s, we have∫
A

M4r−
ω4r
2t ,2r

|∇u|2 dx ≤ γr2n/q−2
(ω4r

2t

)2

|AM4r−ω4r
2t ,4r|1−2/q

[
(4)2n/q−1 + 1

]
≤ C

(ω4r

2t

)2

rn−2

so that by (2.18),

( ω4r

2t+1

)2 ∣∣∣AM4r− ω4r
2t+1 ,2r

∣∣∣2− 2
n ≤ C

(ω4r

2t

)2

|Dt|rn−2, t = 1, 2, ..., s

or ∣∣∣AM4r− ω4r
2s−2 ,2r

∣∣∣2− 2
n ≤ C|Dt|rn−2, t = 1, 2, ..., s− 3 (2.19)

Then, summing (2.19) from t = 1 to t = s− 3, we obtain

(s− 3)
∣∣∣AM4r− ω4r

2s−2 ,2r

∣∣∣2− 2
n ≤ Crn−2

s−3∑
t=1

|Dt|

≤ Crn−2|B2r|

= Cr2n−2

Thus, we obtain the inequality∣∣∣AM4r− ω4r
2s−2 ,2r

∣∣∣ ≤ (Cωn2n

s− 3

) n
2n−2

rn (2.20)

We now look at H = M2r−k = M2r−M4r + ω4r

2s−2 , defined in accordance with Lemma

2.3.5. We have two cases, depending on H.
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(case 1) H < (2r)1−n
q

Again, since we are assuming ω4r > 2sr1−n
q , we have

M2r ≤M4r −
ω4r

2s−2
+ (2r)1−n

q

< M4r −
ω4r

2s−2
+ 21−n

q

(ω4r

2s

)
≤M4r −

ω4r

2s−1

which implies

M2r −m2r < M4r −m2r −
ω4r

2s−1

< M4r −m4r −
ω4r

2s−1

=

(
1− 1

2s−1

)
ω4r

so that osc(u,Br) <
(
1− 1

2s−1

)
osc(u,B4r). For case 1, the proof of the lemma is now

complete.

(case 2) H ≥ (2r)1−n
q

For this case, from the condition (2.15), we have H ≤ ω4r2
2−s ≤ 2M22−s ≤ δ. Thus,

we may apply Lemma 2.3.5 to get the existence of θ1 so that with our choice of k and

H, the inequalities

• |Ak,2r| ≤ θ1(2r)
n

• H ≥ (2r)1−n
q

imply

|Ak+H
2

,r| = 0.
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This inequality implies

|AM4r− ω4r
2s−2 +

ω4r
2s−1 ,r| = 0.

Hence,

Mr ≤M4r −
ω4r

2s−2
+

ω4r

2s−1

=
(
M4r −

ω4r

2s−1

)
which again leads to osc(u,Br) <

(
1− 1

2s−1

)
osc(u,B4r).

Now that we have interior continuity for solutions to the mixed problem with

zero Dirichlet data and zero Neumann data, we aim to extend this result up to the

boundary. In order to do this, we will use a similar lemma to Lemma 2.3.7. The

proof requires the use of Lemma 2.3.3, but the right side of the inequality in this

lemma may blow up as we approach the Dirichlet set D. To compensate, we must

replace
βrn

|Br\Ak,r|
from Lemma 2.3.3 with a constant which does not depend on r,

as we approach D. To do this, we first need a well-known theorem taken from

Ladyzhenskaya and Ural’tseva [25, p. 54]. Again, we present the proof with more

detail.

Theorem 2.3.8. Let u ∈ W 1,1(Br), S ⊂ Br, and S0 = {x ∈ Br : u(x) = 0}. Then∫
S

|u| dy ≤ βrn|S|1/n

|S0|

∫
Br

|∇u| dy (2.21)

Proof. It suffices to prove for smooth u. Fix x ∈ Br and y ∈ S0. Then for ω = y−x
|y−x| ,

we have

−u(x) = u(y)− u(x) =

∫ |y−x|

0

∂u(x+ rω)

∂r
dr

or

−u(x)|S0| =
∫

S0

∫ |y−x|

0

∂u(x+ rω)

∂r
dr dy (2.22)
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Also, ∣∣∣∣∣
∫

S0

∫ |y−x|

0

∂u(x+ rω)

∂r
dr dy

∣∣∣∣∣ ≤
∫ 2r

0

ρn−1

∫ |y−x|

0

∣∣∣∣∂u(x+ rω)

∂r

∣∣∣∣ dr dω dρ

≤ (2r)n

n

∫
Br

|∇u(z)|
|x− z|n−1

dz

So, from (2.22), we obtain

|u(x)||S0| ≤
(2r)n

n

∫
Br

|∇u(z)|
|x− z|n−1

dz

Integrating over S, we obtain

|S0|
∫

S

|u(x)| dx ≤ (2r)n

n

∫
Br

|∇u(z)|
∫

S

dx

|x− z|n−1
dz

=
(2r)n

n

∫
Br

|∇u(z)|
(∫

S∩{x:|x−z|≤ε}

dx

|x− z|n−1
+

∫
S∩{x:|x−z|≥ε}

dx

|x− z|n−1

)
dz

=
(2r)n

n

∫
Br

|∇u(z)| (I + II) dz

for ε > 0. We have that

I ≤ εσ(∂B(0, 1))

and

II ≤ ε1−n|S|

So, choosing ε = |S|1/n, we obtain the result with β = 2n

n
(σ(∂B(0, 1)) + 1).

Using the previous theorem, we are able to state and prove a version of Lemma

2.3.3, when we are on the Dirichlet set D.

Lemma 2.3.9. Let Ω be a Lipschitz domain and Br/2(x) be a ball centered on ∂Ω

such that B r
2
(x) ∩ D 6= ∅. Also, recall the definition of Ak,r from (2.8). Then for

r ≤ r0 from (2.2) and (2.3), and u ∈ W 1,2
D (Ω), we have

(l − k)|Al,r/2|(n−1)/n ≤ C̃

∫
Ak,Cr\Al,Cr

|∇u| dy (2.23)

for l > k ≥ 0, where C̃ is independent of r, and where C depends on the Lipschitz

constant M .
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Proof. Since ∂Ω is Lipschitz, there is a coordinate cylinder Zr so that we may extend

u by even reflection to ũ in Zr. That is, for x ∈ Zr, define

ũ(x) =


u(x) if xn ≥ φ(x′)

u(Rx) if xn < φ(x′)

where Rx = (x′, 2φ(x′)− xn). We note∫
Br\Ωr

|ũ(x)|dx =

∫
Br∩{xn<φ(x′)}

|u(x′, 2φ(x′)− xn)|dx′dxn

≤
∫

Zr∩{w>φ(x′)}
|u(x′, w)|dwdx

=

∫
Zr∩Ω

|u(x)|dx

and ∫
Br\Ωr

∣∣∣∣ ∂∂xn

ũ(x)

∣∣∣∣ dx ≤ ∫
Zr∩{w>φ(x′)}

| − uxn(x′, w)|dwdx

=

∫
Zr∩Ω

|uxn(x)|dx

Thus, ∫
Br

|ũ| dy ≤
∫

Zr∩Ω

|u| dy (2.24)

and ∫
Br

|∇ũ| dy ≤ C

∫
Zr∩Ω

|∇u| dy (2.25)

We let η be so that η = 1 in Br/2, η = 0 outside B3r/4, and |∇η| ≤ Cn/r. For any

S ⊂ Br, we use (2.21), (2.24), and (2.25) to obtain∫
S

ηũ dy ≤ C|S|1/n

∫
Br

|∇(ηũ)| dy

≤ C|S|1/n

(∫
Br

|∇η||ũ| dy +

∫
Br

|∇ũ| dy
)

≤ C|S|1/n

(∫
Zr∩Ω

1

r
|u| dy +

∫
Zr∩Ω

|∇u| dy
)

≤ C|S|1/n

(∫
Zr∩Ω

|∇u| dy
)
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where we have used Poincaré’s inequality on the last line since σ(Br ∩ D) ≥ Crn−1

and u ∈ W 1,2
D (Ω). Consequently,∫

S

ηũ dy ≤ C|S|1/n

∫
Zr∩Ω

|∇u| dy

Now, define

u(x) =


0 if u(x) ≤ k

u(x)− k if k ≤ u(x) ≤ l

l − k if u(x) ≥ l

and S = Al,r/2. Since k ≥ 0, we have u ∈ W 1,2
D (Ω). So, we may replace u by u in the

previous inequality and choose C so that BCr is the smallest ball which contains Zr

to obtain the result.

We can now state a theorem for Hölder continuity up to the boundary.

Lemma 2.3.10. Let Ω be a Lipschitz domain and u ∈ ß2(Ω,M, γ, δ, 1
q
)∩W 1,2

D (Ω). Fix

x ∈ ∂Ω and assume r ≤ r0/16C along with the boundary conditions (2.2) and (2.3).

There exists a positive integer s = s(n, θ,M, δ, C) so that for any Ωr(x), concentric

with Ω16Cr(x), at least one of the following inequalities hold for u:

1. osc(u,Ωr) ≤ 2sr1−n
q

2. osc(u,Ωr) ≤
(
1− 1

2s−1

)
osc(u,Ω16Cr)

Here, C is from Lemma 2.3.9 and depends on the Lipschitz constant M .

Proof. We will modify the proof of Lemma 2.3.7. If Ω4r ∩ D = ∅, the proof is the

same as the proof of Lemma 2.3.7. So, assume Ω4r ∩D 6= ∅. In this case, we do not

impose a condition of the form (2.16). Instead, we assume k = M16Cr − ω16Cr

2t ≥ 0,

for, if not, we replace u with −u in the definitions of Mr and mr. Since k ≥ 0, we

use (2.23) with r replaced with 8r. This leads to the inequality

ω16Cr

2t+1

∣∣∣AM16Cr−
ω16Cr
2t+1 ,4r

∣∣∣1− 1
n ≤ C̃

∫
Ak,8Cr\Al,8Cr

|∇u| dx (2.26)
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We replace (2.17) with (2.26). We next redefine Dt on balls of radius 8Cr and use

(2.8) with Ak,16Cr and σ = 1/2. This replaces (2.20) with∣∣∣AM16Cr−
ω16Cr
2s−2 ,2r

∣∣∣ ≤ (Cωn2n

s− 3

) n
2n−2

rn. (2.27)

Then, from here, letting H = M8Cr−k = M8Cr−M16Cr + ω16Cr

2s−2 , we obtain the result.

Corollary 2.3.11. Let Ω be a Lipschitz domain and assume the boundary conditions

(2.2) and (2.3). Let u solve the mixed problem (2.1) with fD = 0 and fN = 0. Then u

is Hölder continuous in Ω. Moreover, for each r ≤ r0, if either Ωr(x) ⊂ Ω or x ∈ ∂Ω,

there exists α such that u satisfies the estimate

|u(z)− u(z′)| ≤ C

(
|z − z′|
r

)α(
1 + sup

Ωr

|u(x)|
)
, z, z′ ∈ Ωr (2.28)

where C and α both depend on n, |Ω|, ‖f‖Lq/2(Ω), q, ‖u‖L2(Ω), θ, and the Lipschitz

constant.

Proof. The proof follows immediately from applying Proposition 2.3.2, Lemmas 2.3.7

and 2.3.10, and Lemma 2.3.6.

2.4 The Green Function for the Mixed Problem

We introduce an approximation for the Green function for the mixed problem.

We fix y ∈ Ω and ρ > 0. If we define the bilinear form a(u, v) on W 1,2
D (Ω)×W 1,2

D (Ω)

as

a(u, v) =

∫
Ω

aijuxi
vxj

dx

then the Lax-Milgram theorem guarantees the existence of a unique function Gρ ∈

W 1,2
D (Ω) so that

a(Gρ, φ) = −
∫

Bρ(y)

φ dx for any φ ∈ W 1,2
D (Ω) (2.29)
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This function, Gρ, is then a weak solution to the mixed problem (2.1) with fD = 0,

fN = 0, and f = χ
1

|Bρ(y)|
, where χ is the characteristic function over Bρ(y). Before

we list some properties of Gρ, we have a definition.

We say the operator L satisfies a symmetry condition if

aij = aji for each i and j. (2.30)

From this point we assume (2.30) on the coefficients. Our first property of Gρ is the

following:

Lemma 2.4.1. For any x ∈ Ω, Gρ(x) ≥ 0.

Proof. We have that

a(Gρ − |Gρ|, Gρ − |Gρ|) = a(Gρ, Gρ) + a(|Gρ|, |Gρ|)− 2a(Gρ, |Gρ|).

Thus, noting that |Gρ|xi
= sign(Gρ)Gρ

xi
, we obtain

a(Gρ − |Gρ|, Gρ − |Gρ|) = 2(a(Gρ, Gρ)− a(Gρ, |Gρ|))

= 2

(
−
∫

Bρ(y)

Gρ dx−−
∫

Bρ(y)

|Gρ| dx

)

≤ 0

so that, by ellipticity, |∇(Gρ − |Gρ|)| = 0. So, since Gρ vanishes on D, we obtain

Gρ = |Gρ|.

The next estimate, due to Moser, gives a local estimate.

Theorem 2.4.2. If u ∈ W 1,2(Ω) is a bounded weak solution to the mixed problem

(2.1) with f = 0, then

sup
Ωr(x0)

|u| ≤ C −
∫

Ω2r(x0)

|u| dz

for either
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1. Ω2r(x0) = B2r(x0) ⊂ Ω or

2. Ω2r(x0) = B2r(x0) ∩ Ω for x0 ∈ ∂Ω and fD = 0, fN = 0 on ∂Ω2r(x0) ∩ ∂Ω

Proof. We first prove for r = 1. We also first assume u ≥ 0. Define r1 and r2 to

be such that 1 ≤ r1 < r2 ≤ 2. Also, let η ∈ C∞
c (Rn) to be so that η = 1 in Br1 ,

η = 0 outside Br2 , and |∇η| ≤ C
r2−r1

. Then, for m ≥ 1, since u is bounded, we have

v = η2um ∈ W 1,2
D (Ω), we have∫

Ω

aijuxi
vxj

dx =

∫
Ω

aijuxi
(η2mum−1uxj

+ 2ηηxj
um) dx

= 0

This gives ∫
Ω

θmη2um−1|∇u|2 dx ≤
∫

Ω

2η|∇u||∇η|um

≤
∫

Ω

Cεη2|∇u|2um−1 +
C

ε
|∇η|2um+1

so that by choosing ε = θm
2C

, we obtain∫
Ω

η2um−1|∇u|2 dx ≤ C

m2

∫
Ω

|∇η|2um+1 dx (2.31)

Now, defining w = u(m+1)/2, we may use Sobolev’s inequality to obtain

‖ηw‖2
2bnbn−2

≤ C

∫
Ω

|η∇w|2 + |w∇η|2 dx

≤ C

(
m+ 1

m

)2 ∫
Ω

|w∇η|2

where n̂ = n for n ≥ 3 and 2 < n̂ < q when n = 2. So, now defining χ = bnbn−2
, we

obtain

‖w‖L2χ(Ωr1 (x0)) ≤ C

(
m+ 1

m

)
1

r2 − r1
‖w‖L2(Ωr2 (x0)) (2.32)
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Now for p ≥ 2, setting m+1 = χlp and rl = 1+2−l for l = 0, 1, 2, .., we iterate (2.32)

to get

‖u‖
Lpχl (Ω1(x0))

≤ C

(
l∏

j=1

(2j)
1

χj−1

)2/p

‖u‖Lp(Ω2(x0))

≤ C‖u‖Lp(Ω2(x0)) (2.33)

Taking l→∞ in (2.33), we get

sup
Ω1(x0)

|u| ≤ C‖u‖Lp(Ω2(x0)), p ≥ 2 (2.34)

We note that by employing a technique from Fabes and Stroock [10], we obtain (2.34)

for p > 0. Then we rescale to obtain the result for u ≥ 0. Then for general u, write

as u = u+ + u− and apply (2.34) to each of u+ and u−.

We now only consider Gρ for n ≥ 3.

We prove a weak L
n

n−2 estimate for Gρ. Define Ωα = {x ∈ Ω : Gρ(x) > eα}.

Lemma 2.4.3. We have |Ωα| ≤ Cα
−n
n−2 for any α > 0, where C = C(θ, n).

Proof. Set φ =
[

1
α
− 1

Gρ

]+ ∈ W 1,2
D (Ω). Then, by Lemma 2.4.1,

1

α
= −
∫

Bρ(y)

1

α
dx

≥ −
∫

Bρ(y)

φ dx

= a(Gρ, φ)

So, since φ is positive only in E = {x ∈ Ω : Gρ(x) > α}, we have

1

α
≥
∫

E

aijG
ρ
xi

Gρ
xj

(Gρ)2
dx

≥ θ

∫
E

|∇Gρ|2

(Gρ)2
dx

= θ

∫
E

∣∣∣∣∣∇
(

log

(
Gρ

α

))+
∣∣∣∣∣
2

dx (2.35)
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We thus obtain by Sobolev embedding that

1

α
1
2

≥ θ
1
2

∫
E

∣∣∣∣∣∇
(

log

(
Gρ

α

))+
∣∣∣∣∣
2

dx

 1
2

≥ Cθ
1
2

∫
E

∣∣∣∣∣
(

log

(
Gρ

α

))+
∣∣∣∣∣
2∗

dx

 1
2∗

(2.36)

Also, by the Chebyshev inequality,∫
Ωα

∣∣∣∣log

(
Gρ

α

)∣∣∣∣2∗ dx ≥ C|Ωα|

Hence, putting this with (2.36), we obtain

θ
1
2 |Ωα|

1
2∗ ≤ C

α
1
2

or

|Ωα| ≤
C

α
2∗
2

= Cα
−n
n−2

We now state and prove a pointwise estimate for Gρ.

Theorem 2.4.4. Let x ∈ Ω be so that |x− y| ≥ 2ρ. We have the estimate

Gρ(x) ≤ C|x− y|2−n.

Proof. We start by showing

−
∫

Br(x)

Gρ dz ≤ Cr2−n (2.37)

for any r and x such that Br(x) ⊂ Ω. We have

−
∫

Br(x)

Gρ dz ≤ Cr−n

∫ ∞

0

|Ωα ∩Br(x)| dα

= Cr−n

(∫ s

0

+

∫ ∞

s

)
|Ωα ∩Br(x)| dα

≤ Cr−n

(∫ s

0

|Br(x)| dα+

∫ ∞

s

α
−n
n−2 dα

)
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for any s > 0, where we have used Lemma 2.4.3 in the last line. Choosing s = r2−n,

we obtain

−
∫

Br(x)

Gρ dz ≤ C
(
r2−n + r−nr(2−n)( −2

n−2)
)

= Cr2−n

so that (2.37) is true. So, if we set r = |x−y|
2

in (2.37), since we have LGρ = 0 in

Ω\Bρ(y) for the mixed problem (2.1), we have by Theorem 2.4.2 that

Gρ(x) ≤ C −
∫

Br(x)

Gρ dz

≤ Cr2−n

= C|x− y|2−n

as required. The proof for Ωr(x) = Br(x) ∩ Ω for x ∈ ∂Ω is similar.

We now discuss Holder continuity for the Green function. We first state a defini-

tion, which is a slight modification of the definition of ßm(Ω,M, γ, δ, 1
q
) as in (2.8).

We say u ∈ H1(Ω) belongs to ß̃m(ΩR,M, γ, δ, 1
q
) for M,γ, δ > 0 and q > n

if ‖u‖L∞(ΩR) ≤ M and if both u and −u satisfy the following inequalities for an

arbitrary concentric Ωr ⊂ ΩR and arbitrary σ ∈ (0, 1):∫
Ak,r−σr

|∇u|m dx ≤ γ

[
1

σmrm−mn
q

sup
Ak,r

(u(x)− k)m + 1

]
|Ak,r|1−

m
q (2.38)

for k satisfying both k ≥ 0 and k ≥ sup
Ωr

u(x) − δ if Ωr ∩ D 6= ∅ and for only

k ≥ sup
Ωr

u(x) − δ otherwise, where Ak,r = {x ∈ Ωr : u(x) > k}. Here Ωr−σr is

concentric to Ωr and r ≤ r0 for some positive r0.

We note that the only difference in this definition is that the regions Ωr are

required to be concentric with the domain ΩR. With this definition, we state a

corollary.

Corollary 2.4.5. If |x − y| ≥ 2ρ, then Gρ(x) ∈ ß̃m(ΩR(x),MR, γ, δ, 0) where δ > 0

is arbitrary, γ = γ(n, θ), R = |x−y|
4

, and MR = sup
ΩR(x)

Gρ.
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Proof. First, we note by Theorems 2.3.1 and 2.4.2 that ‖Gρ‖L∞(ΩR) ≤ M for some

M . Thus, since LGρ = f = 0 in ΩR, from (2.9), we have∫
Ak,r

aijuxi
φxj

dx = 0

where η and φ are defined the same way as in Proposition 2.3.2. Then the same proof

leads to the result.

Now consider an analog of Lemma 2.3.7 for Gρ:

Corollary 2.4.6. Let |x − y| ≥ 2ρ, R = |x−y|
4

, and fix ΩR(x) = BR(x) ⊂ Ω. There

exists a positive integer s = s(n, θ) so that for any B4r ⊂ BR(x), concentric with

BR(x), at least one of the following inequalities hold for Gρ:

1. osc(Gρ, Br) ≤ 2sr

2. osc(Gρ, Br) ≤
(
1− 1

2s−1

)
osc(Gρ, B4r)

Proof. The proof is almost the same as the proof of Lemma 2.3.7. The dependence

on s is different. One of the conditions on s was (2.15). But, from Corollary 2.4.5,

since Gρ(x) ∈ ß̃m(ΩR(x),MR, γ, δ, 0) for any δ > 0, we may choose δ = MR to omit

this condition. Then, s no longer depends on the bound MR. Also, since q = ∞,

r1−n
q becomes r. The rest of the proof goes without change.

We also have an analog for Lemma 2.3.10.

Corollary 2.4.7. Let Ω be a Lipschitz domain and assume the boundary conditions

(2.2) and (2.3). Let |x− y| ≥ 2ρ, R = |x−y|
4

, and R0 = min{r0, R}. For r ≤ R0/16C

and any x ∈ ∂Ω, there exists a positive integer s = s(n, θ, C) so that for any Ω16Cr ⊂

ΩR0(x), concentric with ΩR0(x), at least one of the following inequalities hold for Gρ:

1. osc(Gρ,Ωr) ≤ 2sr

2. osc(Gρ,Ωr) ≤
(
1− 1

2s−1

)
osc(Gρ,Ω16Cr)
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Here, C depends on the Lipschitz constant M .

Proof. Replace u with Gρ in the proof of Lemma 2.3.10, with the only difference

being that by Lemma 2.4.1, k = M16Cr − ω16Cr

2t is always positive.

We now state a theorem for Hölder continuity for Gρ:

Theorem 2.4.8. Let Ω be a Lipschitz domain and assume the boundary conditions

(2.2) and (2.3). Let |x−y| ≥ 2ρ, R = |x−y|
4

, and R0 = min{r0, R}. Then Gρ belonging

to ß̃2(ΩR0 ,MR0 , γ,MR0 , 0) satisfies a Hölder condition in ΩR0. Moreover, there exists

α such that Gρ satisfies the estimate

|Gρ(z)−Gρ(z′)| ≤ C

(
|z − z′|
R0

)α
(

1 + sup
ΩR0

|Gρ(x)|

)
, z, z′ ∈ ΩR0 (2.39)

where C and α both depend on n, θ, |Ω|, and the Lipschitz constant.

Proof. The proof follows immediately from applying Corollaries 2.4.5, 2.4.6, and

2.4.7, and Theorem 2.4.2 with Lemma 2.3.6.

Following an argument from Grüter and Widman, we will now show that there

exists a Green function G(·, y) such that G(·, y) ∈ W 1,s
D (Ω) for any s ∈ [1, n

n−1
).

Furthermore, this function G(·, y) is also in W 1,2
D (Ω\Br(y)) for any r > 0. Then from

the Hölder estimate (2.39), we also get a continuous extension of G(·, y) onto ∂Ω.

For the next theorem, define weak Lp for p > 1 as

L∗p(Ω) = {f : f is measurable and ‖f‖L∗p(Ω) <∞}

where

‖f‖L∗p(Ω) = sup
t>0

t |{x ∈ Ω : |f(x)| > t}|
1
p

Theorem 2.4.9. Let s ∈ [1, n
n−1

). There exists a sequence Gρk(·, y) and a Green

function G(·, y) ∈ W 1,s
D (Ω)∩W 1,2

D (Ω\Br(y)) such that Gρk(·, y) ⇁ G(·, y) as k →∞.
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Proof. We will start by showing a weak L
n

n−1 (Ω) estimate for ∇Gρ. That is,

‖∇Gρ‖L∗ n
n−1

(Ω) ≤ C(n, L) (2.40)

Define a cutoff function η ∈ C∞(Rn) to be so that η = 1 outside B2r(y), η = 0 in

Br(y), and |∇η| ≤ C
r
. Then inserting the test function η2Gρ in the weak formulation

for Gρ (2.29), we have

∫
Ω

aijG
ρ
xi

(η2Gρ
xj

+ 2ηηxj
Gρ) dx = −

∫
Bρ(y)

η2Gρ dx

Using the ellipticity condition, we then obtain

∫
Ω

θη2|∇Gρ|2 dx ≤ −
∫

Bρ(y)

η2Gρ dx+ C

∫
Ω

η|∇η||Gρ||∇Gρ| dx

Then if r ≥ 2ρ, we have

∫
Ω\Br(y)

θ|∇Gρ|2 dx ≤ C

∫
B2r(y)\Br(y)

|∇η||Gρ||∇Gρ| dx

≤ C

∫
B2r(y)\Br(y)

|∇η|2|Gρ|2

ε
dx+

∫
B2r(y)\Br(y)

ε|∇Gρ|2 dx

≤ C

r2ε

∫
B2r(y)\Br(y)

|Gρ|2 dx+

∫
Ω\Br(y)

ε|∇Gρ|2 dx

where ε > 0. Then, choosing ε = θ
2

and using the estimate from Theorem 2.4.4, we

obtain ∫
Ω\Br(y)

|∇Gρ|2 dx ≤ C

r2

∫
B2r(y)\Br(y)

|Gρ|2 dx

=
C

r2

∫ 2r

r

∫
|x−y|=s

|x− y|4−2n dσ(x) ds

=
C

r2

∫ 2r

r

s3−n ds

so that ∫
Ω\Br(y)

|∇Gρ|2 dx ≤ Cr2−n (2.41)
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If r ≤ 2ρ, we note that

θ

∫
Ω

|∇Gρ|2 dx ≤
∫

Ω

aijG
ρ
xi
Gρ

xj
dx

= −
∫

Bρ(y)

Gρ dx

≤ Cρ−n

(∫
Bρ(y)

(Gρ)
2n

n−2 dx

)n−2
2n

ρ
n(n+2)

2n

≤ Cρ
2−n

2

(∫
Ω

|∇Gρ|2 dx
) 1

2

so that (2.41) holds for all r > 0. Next, defining Ωt := {x ∈ Ω : |∇Gρ(x)| > t} and

setting r = t−
1

n−1 , then by Chebyshev’s inequality and (2.41), we have

t2|Ωt ∩ (Ω\Br(y))| ≤ Ct
n−2
n−1

which is equivalent to

|Ωt ∩ (Ω\Br(y))| ≤ Ct
−n
n−1 (2.42)

Also,

|Ωt ∩Br(y)| ≤ Crn = Ct
−n
n−1

Combining this with (2.42) gives the weak L
n

n−1 (Ω) estimate for ∇Gρ, (2.40).

Next, we claim that

‖f‖Lp−ε(Ω) ≤ |Ω|
ε

p(p−ε)

(
p− ε

ε

) 1
p

‖f‖L∗p(Ω) (2.43)

for 0 < ε ≤ p− 1. This is true since

‖f‖p−ε
Lp−ε(Ω) = (p− ε)

∫ ∞

0

αp−ε−1|{|f | > α}| dα

= (p− ε)

(∫ A

0

+

∫ ∞

A

)
αp−ε−1|{|f | > α}| dα

= I + II

We have

I ≤ (p− ε)|Ω|
∫ A

0

αp−ε−1 dα = |Ω|Ap−ε (2.44)
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and

II = (p− ε)

∫ ∞

A

αp−ε−1|{|f | > α}| dα

≤ (p− ε)‖f‖p
L∗p(Ω)

∫ ∞

A

α−ε−1 dα

= (p− ε)‖f‖p
L∗p(Ω)

A−ε

ε
(2.45)

Choosing A =

(
(p− ε)‖f‖p

L∗p(Ω)

|Ω|ε

) 1
p

, we obtain from (2.44) and (2.45) that

‖f‖p−ε
Lp−ε(Ω) ≤ |Ω|

ε
p

(
p− ε

ε

) p−ε
p

‖f‖p−ε
L∗p(Ω) (2.46)

and hence, (2.43). So, we may use (2.40) and (2.43) with p = n
n−1

and ε = p − s to

obtain

‖∇Gρ‖Ls(Ω) ≤ C‖∇Gρ‖L∗ n
n−1

(Ω) ≤ C(n, L, s, |Ω|) (2.47)

where s ∈ [1, n
n−1

).

Next, define sk = n
n−1

− 1
k

and choose a sequence ρl1 which tends to 0 as l1 →

∞. Then from the estimate (2.47) and (2.41), the sequence {Gρl1} is bounded in

W 1,s1

D (Ω) ∩ W 1,2
D (Ω\Br(y)). So, by weak compactness, there exists a subsequence

{Gρl1l2} and a function G(·, y) ∈ W 1,s1

D (Ω) ∩W 1,2
D (Ω\Br(y)) such that Gρl1l2 (·, y) ⇁

G(·, y) in W 1,s1

D (Ω) ∩ W 1,2
D (Ω\Br(y)) as l2 → ∞. Similarly, the sequence {Gρl1l2}

is bounded in W 1,s2

D (Ω) ∩W 1,2
D (Ω\Br(y)). So, there exists a subsequence {Gρl1l2l3}

such that Gρl1l2l3 (·, y) ⇁ G(·, y) in W 1,s2

D (Ω) ∩W 1,2
D (Ω\Br(y)) as l3 → ∞. Using an

inductive argument, we see that for each k, there exists a subsequence {Gρl1···lk+1}

such that Gρl1···lk+1 (·, y) ⇁ G(·, y) in W 1,sk

D (Ω) ∩W 1,2
D (Ω\Br(y)) as lk+1 → ∞. So if

we define the sequence Gρk = Gρl1···lk−1k , then given any s ∈ [1, n
n−1

), we have that

{Gρk} converges weakly to G(·, y) in W 1,s
D (Ω) ∩W 1,2

D (Ω\Br(y)).

Theorem 2.4.10. Given any s ∈ [1, n
n−1

), the function G(·, y) solves the mixed

problem (2.1) with f = δy (δy being the Dirac−δ measure at y), fD = 0, and fN = 0
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in the sense that∫
Ω

aij(x)Gxi
(x, y)φxj

(x) dx = φ(y) for any φ ∈ W 1,s′

D (Ω) ∩ C(Ω)

where s′ is the Hölder conjugate of s.

Proof. Consider the sequence {Gρk} from the proof of Theorem 2.4.9. Then from the

weak formulation for Gρk(·, y) (2.29), we have∫
Ω

aij(x)G
ρk
xi

(x, y)φxj
(x) dx = −

∫
Bρk

(y)

φ(x) dx

The right side converges to φ(y) as k →∞ since φ is continuous. Also, from Theorem

2.4.9, since

〈A,ϕ〉 =

∫
Ω

aij(x)ϕxi
(x)φxj

(x) dx

≤ C‖∇ϕ‖Ls(Ω)‖∇φ‖Ls′ (Ω)

is a bounded linear functional on W 1,s
D (Ω), we have∫

Ω

aij(x)(G
ρk
xi

(x, y)−Gxi
(x, y))φxj

(x) dx→ 0, as k →∞

thus, giving the result.

We note that Theorem 2.4.8 implies that Gρk extends continuously to ∂Ω. Also,

from the pointwise bound 2.4.4, we have a uniform bound for the Hölder norm of

each Gρk on compact sets of Ω\{y}. Hence, from Rudin [33, p. 158], for each y, we

may find a subsequence ρk tending to 0 such that Gρk(·, y) converges uniformly to

G(·, y) on compact subsets of Ω\{y}. This implies that G(·, y) is Hölder continuous

in Ω\{y}. Furthermore, in light of Theorem 2.4.4, we have

G(x, y) ≤ C|x− y|2−n, x 6= y (2.48)

We have the following representation theorem for solutions to the mixed problem

with zero Dirichlet data.
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Theorem 2.4.11. Given any s ∈ [1, n
n−1

), if u is a weak solution to the mixed problem

(2.1) with fD = 0, fN ∈ W−1/2,2
D (∂Ω), and f ∈ Ls′(Ω), then

u(y) =

∫
Ω

f(x)G(x, y) dx+ 〈fN , G(·, y)〉N . (2.49)

Moreover, this function G is unique.

Proof. From the above discussion, there is a sequence {Gρk} from the proof of The-

orem 2.4.9 which also converges uniformly on compact subsets of Ω\{y}. Since

u ∈ W 1,2
D (Ω) is an acceptable test function in the weak formulation for Gρk(·, y)

(2.29), we have ∫
Ω

aij(x)G
ρk
xi

(x, y)uxj
(x) dx = −

∫
Bρk

(y)

u(x) dx.

Also, from the weak formulation for u (2.4),∫
Ω

aij(x)uxi
(x)Gρk

xj
(x, y) dx =

∫
Ω

f(x)Gρk(x, y) dx+ 〈fN , G
ρk(·, y)〉N

Thus, from the symmetry condition (2.30), we have

−
∫

Bρk
(y)

u(x) dx =

∫
Ω

f(x)Gρk(x, y) dx+ 〈fN , G
ρk(·, y)〉N .

The left side converges to u(y) as k tends to ∞ by Lebesgue’s differentiation theorem.

Also, Theorem 2.4.9 implies∫
Ω

f(x)Gρk(x, y) dx→
∫

Ω

f(x)G(x, y) dx, k →∞

and the uniform convergence of {Gρk} implies

〈fN , G
ρk(·, y)〉N → 〈fN , G(·, y)〉N , k →∞

To show uniqueness, we adopt the definition of weak solution taken from Littman,

Stampacchia, and Weinberger [26]. For a measure µ of bounded variation on Ω, we

say that w ∈ L1(Ω) is a very weak solution of the mixed problem Lw = µ with zero

Neumann data and zero Dirichlet data if∫
Ω

wψ dx =

∫
Ω

φ dµ (2.50)
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for every φ ∈ C(Ω) satisfying the mixed problem (2.1) with f = ψ ∈ C(Ω), fD = 0,

and fN = 0.

If ψ ∈
(
W 1,2

D (Ω)
)′

, then the Lax-Milgram theorem gives the existence of a unique

weak solution φ ∈ W 1,2
D (Ω) to the mixed problem (2.1) with f = ψ, fD = 0, and

fN = 0. Furthermore, from Corollary 2.3.11, if ψ ∈ C(Ω), then φ ∈ C(Ω). So from

(2.49), given any ψ ∈ C(Ω), we have

φ(y) =

∫
Ω

ψ(x)G(x, y) dx (2.51)

We also know that there exists a unique function G̃(·, y) ∈ W 1,2
D (Ω\Br(y)) ∩

W 1,1
D (Ω) which is a very weak solution to

LG̃ = δy in Ω

G̃ = 0 on D

∂ eG
∂ν

= 0 on N

where δy is the Dirac-δ measure at y. That is,

φ(y) =

∫
Ω

ψ(x)G̃(x, y) dx (2.52)

So, from (2.51) and (2.52), we have∫
Ω

ψ(x)(G(x, y)− G̃(x, y)) dx = 0, for any ψ ∈ C(Ω) (2.53)

This implies G = G̃, thus giving uniqueness of the Green function.

Future Work

We close this chapter with a list of questions.

• Can we study the fundamental solution for the Lamé system?

• Can we study the fundamental solution for general elliptic systems?
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• Can we study the fundamental solution for the Robin problem?

Copyright c© Justin L. Taylor, 2011.
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