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ABSTRACT OF DISSERTATION

DIAGONAL FORMS AND THE RATIONALITY OF THE POINCARE SERIES.

The Poincaré series, P,(f) of a polynomial f was first introduced by Borevich and
Shafarevich in [BS66], where they conjectured, that the series is always rational.
Denef and Igusa independently proved this conjecture. However it is still of interest
to explicitly compute the Poincaré series in special cases. In this direction several
people looked at diagonal polynomials with restrictions on the coefficients or the
exponents and computed its Poincaré series. However in this dissertation we consider
a general diagonal polynomial without any restrictions and explicitly compute its
Poincaré series, thus extending results of Goldman, Wang and Han. In a separate
chapter some new results are also presented that give a criterion for an element to be
an m!™ power in a complete discrete valuation ring.
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Chapter 1 Introduction

The Poincaré Series, Pr(y) of a polynomial f is defined to be the formal power series
given by
Pr(y) = Z cy'.
=0

Here ¢, denotes the number of solutions of the equation f = 0 in Z/p™Z with
co = 1. Z.I. Borevich and L.R. Shafarevich in [BS66] conjectured that Pr(y) is always
a rational function. The conjecture was proved by Igusa in [[gu79] and a second
somewhat simpler proof was given in the appendix of [Igu77]. These proofs are
nonconstructive and depend on Hironaka’s theorem on resolution of singularities. D.
Meuser in [Meu81] generalized Igusa’s theorem to a system of polynomials. Jan Denef
gave an additional proof in [Den84] that avoided Hironaka’s theorem, but still used
sophisticated methods.

It is still of interest to explicitly compute the Poincaré Series, at least in special
cases. This was investigated by J.R. Goldman in [Gol83] and [Gol86] for strongly
nondegenerate forms and algebraic curves all of whose singularities are “locally” of
the form ax® = By°. The papers of Wang, [Wan92] and [Wan93] and Han in [Han99)
considered the Poincaré series of diagonal polynomials. Let R denote a discrete
valuation ring with maximal ideal generated by the prime element 7 and let R,
denote the completion of R with respect to the m-adic topology on R with a finite
residue field. Let

¢
1yeerdn) = ' n
f(x Tp) =i 4+ et + b

where €1,...,€¢, € R, t1,...,t, are positive integers, and b € R,. Wang computed
P¢(y) in [Wan92] when b = 0, R, = Z,, the ring of p-adic integers, and €y,...,¢€,
are units in R,. Wang generalized this computation in [Wan93] to the case when

b =0, R, is the ring of integers of a finite extension of Q,, the field of p-adic integers,



and €, ..., €, are units in R,. Han considered the case when R is a discrete valuation
ring with a finite residue field, €, ..., ¢, and the positive integers t,...,t, are units
in R, (the case of so-called strongly nondegenerate diagonal polynomials), and b € R,
is arbitrary.

In this dissertation, Ps(y) is computed for an arbitrary diagonal polynomial when
R is a discrete valuation ring with char R = 0 and having a finite residue field and
with no restrictions on €4,...,€,,t1,...,%, or b.

In Chapter 2, a brief history of earlier work of Goldman, Wang and Han on this
topic is outlined including their main results. In Chapter 3, some basics of local field
theory are covered. These include sections on discrete valuations, completions and
Hensel’s lemma. In Chapter 4, we look at powers of elements in a complete discrete

valuation ring. The result in this chapter is presented in Theorem 4.3.5, where it is

shown that if ¢ > pfl +~e and 2™ = b mod 7 has a solution in R, then the equation

™ = b has a solution in R,, where R is a discrete valuation ring. In Chapter

x
5, the main results of this dissertation are outlined in Theorems 5.5.1 and 5.5.2,
where the Poincaré series is computed for a general diagonal polynomial without any
restrictions. In the next chapter a different formulation of ¢,,, the number of solutions

of the diagonal polynomial is given. Finally in Chapter 7, a simple example is used

to illustrate the results from the previous chapters.

Copyright© Dibyajyoti Deb, 2010.



Chapter 2 Brief History

Significant work have been done by Goldman, Wang and Qing in [Gol83], [Wan92],
[Wan93] and [Han99] involving the Poincaré Series of certain polynomials with re-
strictions on the coefficients and exponents. Their results are discussed in the next

few sections.

2.1 Work of J.R. Goldman

Definition 2.1.1. Let R be a Unique Factorization Domain(UFD), m a prime element
in R and let A € R™ be a solution of f(z1,...,x,) = 0mod 7. If %:(B?) =0 mod 7

for all 1 < i <mn, then A is a singular solution of f otherwise A is nonsingular.

Definition 2.1.2. Let F(x1,...,x,) be a homogeneous polynomial such that the only
singular solution of F = 0mod m is (0,0,...,0). Then F(xy,...,x,) is called a

strongly nondegenerate form.

Examples of such forms include Zle e;xd, where p 1 d and the e; are p-adic units,

and x? + y? + zy where p # 2, 3.
Here is a theorem due to Goldman where he computes an expression for the
number of solutions of strongly nondegenerate forms of a certain degree and also

computes the resulting Poincaré Series upto a polynomial.

Theorem 2.1.3 ([Gol83], p.588). Let F(xy,...,x,) be a strongly nondegenerate form
of degree d with coefficients in Z,. Let c,, denote the number of solutions of F' =0

in (Z/p"7Z)", with co = 1. Then

(c; — 1)ptm=Dn=1) 4 prim=1) 1<m<d;

Cm =

(c1 = Dptm=D=b) pnld=De, oy m > d.



The Poincaré Series is given by

R(y)
(1 —pr=ty)(1 — pr@=Dyd)

where R(y) is a polynomial of degree d, which is effectively and easily computable.

Pr(y) =

Definition 2.1.4. Let R be a UFD, 7 a prime element in R and let F(xy,...,x,) =
almlf +...tazlr+b, with ged(l;a;, m) = 1. Then F is called a strongly nondegenerate

diagonal polynomial.

In Goldman’s theorem if we restrict F' to the strongly nondegenerate diagonal
polynomial F(zy,...,7,) = e12¢ + -+ + g,2%, where p { d, then we can explicitly

compute the polynomial R(y). It turns out to be

d—2
R(y) =1-p"'y+(ca — Dy + > 0"y’ (y—p""v")
=0

2.2 Work of J. Wang
Wang in [Wan92| considers a diagonal form
f@) = ma + -+ anay,

where n,d,,...,d, are positive integers and ay,...,a, are units in Z,. Let d =
lem{dy,...,d,}, fi =d/d;, v = fi +---+ f, and ¢&,, = p~™" V¢, where ¢, is the
number of solutions of the congruence f(x) = 0 mod p™. Here is the theorem due

to Wang.

Theorem 2.2.1 ([Wan92]). For any prime p and f(x) as above, we have
1. Form > 2, Cpaqg=c+pPTCn;
2. the Poincaré Series is given by

Py = L= Py (S ciy’) + ept IOyt — pdnryd(n — prly) (1 )

(1 —py)(1 — pin=ryd)

4=T¢, is a constant depending upon the polynomial f(z).

where ¢ = Cqr1 — P



Wang’s proof of the above theorem uses properties of exponential sums. He sim-

plifies the expression of the Poincaré series. This simplification is presented next.

Theorem 2.2.2 ([Wan92]). Suppose that p is an odd prime or p = 2, d; # 2,4 for

each i, 1 <1 <s. Then we have
1. Form >0, Cpyqg = +pT"Cp;

2. the Poincaré series is given by

Py = L7 ey') + dpt Dy
v (1 —p~ty)(d —p™ry?)

is a constant depending upon the polynomial f(x).

where ¢ = ¢4 — p? !

2.3 Work of Q. Han

Han, on the other hand, considers a strongly nondegenerate polynomial with a con-
stant involved and having different exponents. He also computes the Poincaré Series

associated to it. Here is Han’s result.

Theorem 2.3.1 ([Han99], p.271). Suppose that R is a UFD, 7w a prime element in
Rand | R/(x) | = P. Let f(x1,...,2,) = a1z + ... + a,al — b be a strongly
nondegenerate diagonal polynomial. If b # 0, let b = br', ged(b,7) = 1; if b = 0, let

[ =m. Then the number of solutions c,, of

alxl11+ .+ a,x ":bmodﬁ

15 equal to
(1— 9(1’m))pn(mfl)*[(mfl)/h]*--f[(m*l)/ln} 4+ pn=1)(m-1)
n [(min(m,l)—1)/[Liy y--esli, ]
(Z > elinein) Pllgseodidk= il b6/
t=2 1<i1<...<i:<n k=0

+6(1, m) P!~ 5= WZ > e(il,...,it)),

1<i1 <. <t <n, [lil ..... l;



where e(iy,...,1;) and €(iy,...,i;) are the number of primitive solutions of
l; l;
a, "+ ...+ a,r, =0mod 7
and
a,xy" + ...+ a,r, =bmodm

respectively, and

Han also precisely computes the Poincaré Series for the strongly nondegenerate
polynomial f(z1,...,x,) when b = 0. According to him if d = lem({y,...,l,), then

the Poincaré Series is given by

py(y) = (Ca= PO gyt 4 (1= Prly) S et
\Y) = (1 — Prly)(1 — Patn=1/h——1/ln)yd)

The motivation for the work in this thesis arises out of the fact that the work
of Wang, Goldman and Han does not give a complete picture of the Poincaré series
of an arbitrary diagonal polynomial. There are some restrictions attached to all the
theorems that we mentioned above.

In this thesis, an arbitrary diagonal polynomial given by
flzy,...,zn) =l + -+ el +b

over a discrete valuation ring R with a finite residue field is considered. There are
no restrictions on €q,...,€,,t1,...,t, or b. An expression is constructed for ¢,,, the

number of solutions of the congruence

f(z1,...,2,) =0 mod 7™,



where 7 is a prime element in R that generates the maximal ideal. Finally the
Poincaré Series of this diagonal polynomial is computed. A review of discrete valua-

tion rings is presented in the next chapter.

Copyright®© Dibyajyoti Deb, 2010.



Chapter 3 Discrete Valuation Ring

3.1 Discrete Valuations

Let K be any field. A discrete(non-Archimedean) valuation on K is a mapping

v: K\{0} — Z with the additional value v(0) = +o00, such that for any x,y € K,

v(zy) = v(z) +v(y)

and
v(z +y) = min{v(z), v(y)}.

Given the field K with a valuation v, the set R, = {z € K : v(z) > 0} is a ring
with the unique maximal ideal M, = {z € K : v(z) > 0}. The set R, is called the
discrete valuation ring of v. The subgroup U, = U = {z € K* : v(x) = 0} is the
group of units of R,. The quotient R,/M, is a field, and is called the residue field
of the discrete valuation ring R,. If we fix any p € (0,1) C R, then the valuation v
induces a norm on K, defined as | z |, = p*™®, for any x € K\{0} (with |0 |, set
to be 0). The metric induced by such a norm makes K an ultrametric space and its
topology is independent of the choice of p. We will refer to this topology directly in
terms of v in later sections.

Choose an element 7 € K such that v(7) = 1. Then every a € K* has a unique
representation

a=mn"un€Z,ueclU

It is also seen that M, = (m), and every non-zero ideal of the ring R, is the set
M = {z € R, : v(z) > n} for positive values of n. Therefore M = (7™). Such
an element 7 is called the uniformizing element of R, (or uniformizer; Weil [Wei74]

calls it a “prime element”).



3.2 Completion

Let R be a discrete valuation ring, with uniformizer m and valuation v. Let K denote
the field of fractions of R, K* the multiplicative group of non-zero elements of K. If

x € K*, one can again write x in the form
x=7"un¢€Z

and set v(z) = n. The properties from the previous section are easily verified making
v into a discrete valuation which we denote from now on by v,. The norm | |,
induced by the valuation v on the field K induces a topology in which the basis for

the neighbourhoods of « are the “open spheres”
Ss(a)={reK: |z—al,<d}

for 6 >0 and a € K.
So one can introduce the notion of a fundamental sequence in order to define

completion.

Definition 3.2.1. A sequence (a,)n>o0 of elements of K is called a fundamental
sequence if for every real number c, there is a M > 0 such that v(c, — a,,) > ¢ for

m,n > M.

If (o) is a fundamental sequence then for every integer r there is a n,., such that
for all n,m > n, we have v(a, — ay,) > r. We can assume that ny < ny < ... If
for every r, there is a n; > n,, such that v(a, ) # v(an 41), then v(ay,) > r and

v(a,) > r for n > nl, and hence limv(a,,) = +00. Otherwise limv(ay,) is finite.

Lemma 3.2.2. The set A of all fundamental sequences form a ring with respect to
component wise addition and multiplication. The set of all fundamental sequences
(an)n>0 with o, — 0 as n — +oo forms a maximal ideal M of A. The field A/M is
a discrete valuation field with its discrete valuation 0 defined by v((«,)) = limv(a,)

for a fundamental sequence (au,)n>0-



Proof. A sketch of the proof is as follows. It suffices to show that M is a maximal ideal
of A. Let (avn)n>0 be a fundamental sequence with «,, # 0 as n — +o0o. Hence, there
is an ng > 0 such that «a,, # 0 for n > ny. Put 8, = 0 for n < ng and 3, = ;! for
n > ng. Then (8,)n>0 is a fundamental sequence and (a,)(8,) € (1) + M. Therefore

M is maximal. O

Definition 3.2.3. The quotient field A/M 1is called the completion of R with respect
to the valuation v, and is denoted by R, with valuation © derived from above. {a,}

is written as the coset of the fundamental sequence (ay,).

Theorem 3.2.4. E) 18 complete with respect to the valuation v. Moreover, R can be

identified with a dense subring of fi\v

Proof. First observe that for a € R, the constant sequence (a,) = (a) is fundamental
and so we obtain the element {a} in R,; this allows us to embed R as a subring of R,.
We will identify R with its image without further comment; thus we will often use
a € R to denote the element {a} € R,. It is easy to verify that if (ay) is a fundamental
sequence in R with respect to v, then (a,) is also a fundamental sequence in f%: with
respect to 0. Of course it may not have a limit in R, but it always has a limit in E,
namely the element {a,} by definition on R,.

Now suppose that (a,) is a fundamental sequence in f%\v with respect to the norm

0. Then we must show that there is an element o € ]/%\U for which

lim |ay,|s = a.
n—oo

Notice that each a, is in fact equivalence class of a fundamental sequence (@) in
R with respect to the valuation v, hence if we consider each a,,, as an element of ff\v
as above, we can write

O = 1M |G- (3.1)
n—oo

10



We need to construct a fundamental sequence (¢,,) in R with respect to v such that
{c,} = lim |oyls.
m—ro0

Then a = {¢,} is the required limit of (ay,).

Now for each m, by Equation (3.1) there is an M, such that whenever n > M,,,

1

| — A ls < —.
m

For each m we now choose an integer k(m) > M,,. We can assume that these integers

are strictly increasing, hence
k(1) <k(2)<---<k(m)<---.

We define our sequence (c,) by setting ¢, = ayx(n). We must show it has the required

properties.

Lemma 3.2.5. (¢,) is fundamental with respect to v and hence 0.

Proof. Let € > 0. As («,) is fundamental there is an M’ such that if ny,ny > M’

then
€
Oy — Oy o < 3
Thus
|Cm - Cn2‘17 = |(an1 k(n1) — anl) + (Oénl - anQ) + (Oém — Qny k(m))lﬁ

< |(CLm k(n1) — anl)’@ + |(Oén1 - Oém)‘{, + ’(O‘nz — Qny k(m))’ﬁ
If we now choose M = max{M’,3/e}, then for ny,ny > M, we have

€ € €
|Cn1_cn2|ﬁ<§+§+§:€v

and so the sequence (c¢,) is indeed fundamental. O

Lemma 3.2.6. lim || = {c.}
m—o0

11



Proof. Let € > 0. Then denoting {c,} by v we have

Y —amls = [(v— amk(m)) + (Gmk(m) — )l s
< O = @mren)lo + [(@mrgm) — am)lo

Next choose M” so that M"” > 2/e and whenever ny,ny > M" then

€

‘anl k(n1) — Qpy k(nQ)‘v < 5

So for m,n > M" we have

€ €
|(amk(m) - ank(n))'y + |(amk(m) — Ozm)|{} < 5 + 5 = €.

Hence we see that

(7= am)ls < € ¥m > M.

Lemmas 3.2.5 and 3.2.6 complete the proof of Theorem 3.2.4. O O

3.3 Hensel’s Lemma

Even though Hensel’s Lemma is used in this thesis to lift solutions, it nevertheless

can be stated in it’s original form.

Theorem 3.3.1. (Hensel’s Lemma). Let R be a complete discrete valuation ring with
uniformizer 7, (v(m) = 1). Let p(z) denote the coefficients of the polynomial p(zx)
reduced modw. Let f(x) € Rlx] be monic. If f(x) = go(x)ho(x) mod 7 for some
monic go(z), ho(z) € R[x], such that ged(go(z), ho(x)) = 1, then f(x) = g(x)h(z)
for some monic polynomials g(z), h(x) € Rlz]|, where g(x) = go(z) mod m, h(z) =

ho(z) mod 7.

We will define a sequence of ¢;’s and h;’s that converge to the desired g and h.

We will use the fact that if f = gh mod 7", V n then f = gh.

12



Proof. By induction assume that there are go(z),...,gn_1(z), ho(x), ..., hy_1(x) €
R[z] monic, such that f(z) = g;(x)hi(x) mod 7 and g¢;(z) = g¢;_1(z) mod 7,
hi(x) = h;_1(x) mod 7 fori=1,...,n.

We want to find g, (), h,(z) such that f(z) = g,(x)h,(z) mod 7" and g,(z) =
gn—1(x) mod 7", h,(z) = h;—,(z) mod ™.

To satisfy the above conditions we need g,(z) = g,_1() + 7" u,(z) and h,(x) =
hyn—1(z)+7"v, (z) for some polynomials u, (), v, (). So gnhn = gn_1hn_1+7" (uphpn_1+

n+1

Ungn—1) mod 7. The congruences modn™ are clear. We must show there exists u,

and v,, that satisfy the congruence to f(x) mod 7.

We want £@=9n-1@hn1@) — ) p 4 Ungn—1 mod 7. Observe that u,h,_1 +

n

UnGn-1 = Unhg + vago mod 7. Since ged(go(x), ho(z)) = 1 therefore there exists
solutions for w, and v,. Consider the sequences {g;}ien and {h;};en. These are
fundamental sequences. Since R is complete therefore these sequences converge in R.
If g and h are their respective limits then f = gh as desired. O]

The following corollary, rather than the theorem just proved is sometimes referred

to as Hensel’s Lemma.

Corollary 3.3.2. Let f(x) € R[z]|, f monic, and f(a) = 0 mod 7 for some a € R.

Suppose that f'(a) Z 0 mod 7, then there exists b € R such that f(b) = 0.

Proof. Observe that f’(a) # 0 mod m means that a is a single root so the relatively

prime condition is met and proof is done by setting go(z) = = — a. O

The above corollary can be generalized to a polynomial of n variables. This is

stated as a theorem next.

Theorem 3.3.3. Let f(xy,...,z,) € R[x1,...,2,]. Let y1,...,7 € R and § €

0
jj(fyl,...,ﬁyn);—é()mod

i

31 Then there exists 01,...,0, € R, such that f(0y,...,0,) =0 and 6; = v; mod

20+1

Z>o, such that for some i, f(y1,...,7) =0 mod m and
i

w1 <i <n).

13



Proof. See [BS66], p.42.

Note that Corollary 3.3.2 is special case of the above theorem when § = 0.

Copyright© Dibyajyoti Deb, 2010.
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Chapter 4 Powers of elements in Complete Discrete Valuation Rings

4.1 Introduction

Let R denote a discrete valuation ring with uniformizer 7, and let R, denote the
completion of R with the m-adic topology on R. In this chapter we consider the
interesting problem of determining the least value of i, if one exists, such that if
a € R, is an m™ power modulo 7, then « is an m'® power in R,. This result is
needed in the next chapter where we introduce our main problem. Our main result
in this section is stated in Theorem 4.3.5.

Let U denote the group of units of R,.
Proposition 4.1.1. R/m'R >~ R, /7'R,
Proof. Consider the map ¢ : R, — R/m'R, given by
ap+ a1m + asmt + - —> ag+ a4+ - - + a;_ ! mod 7'

It is easy to check that ¢ is a well defined homomorphism. Moreover Ker ¢ =
{ag + a1 + -+ € Rylag + a1 + -+ + a;_17 ! € w'R}. Therefore it is clear that
Ker ¢ C n*R,. On the other hand if a € 7*R,, then ¢(a) = 0, in R/7'R, therefore
a € Ker ¢. Therefore the proposition is proved by the isomorphism theorem. O

For each integer i > 1, the set U; = 1 + 7' R, is an open multiplicative subgroup
of U (For example, (1 —an’)™" =1+ 377, /79 € U;), and (), U; = 1.

We assume that char R = 0 and that the residue field has char R/(7) = p. Then
p € (7), and we let p = 7°s where e € Z~o and 7 1 s.

Many aspects of this problem has been dealt with in [Art67](p.209-211), [FV02](p.14-
16), [Has80](p.219-225, 228-232), and [Lan70](p.45-48). In [Art67] and [Lan70], the

focus was to compute the index [U : U™]. In [FV02], the focus was to study U; /U, .
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Let v, : R — Z U {00} denote the valuation associated to 7. Since 7 is the

uniformizer therefore v, (7) = 1. Hence v,(p) =e>1and s € U.

4.2 Prime powers of elements in R,

Lemma 4.2.1. Leti >0 and let o« € R,.
(1) If o' € Uy, then a € Uy,
(2) UY =UP NU; for all i > 0.

Proof. (1) If o € Uy, then o € U. Let o = by mod . Then 1 = o' = b’gi mod 7.

Since char R/(m) = p, it follows that by = 1 mod 7. Thus « € Uj.

(2) Tt is clear that Ufi CUP NU; for all i > 0. Let 8 € UP' NU,. Then 8 = o*'
where o € U. Since o' = § € Uy, it follows that a € U; by (1). Thus § € Ufi.

O

Lemma 4.2.2. Let i > 1. Then

(1) Ifi > S5, then U C Uise.

17’

(2) Ifi < -5, then UP C U,.

17

(3) If i > =%, and o € U\U,y1, then of € Ui e\Uis1te.

p—1’

(4) If i < -5, and a € U\Uis1, then o € Uip\Uips1. In particular o & U, .

Proof. Let o € U;. Thus a = 1 + 73 where € R,;. Then
p—1
o =1+ Z (p) xiigi | 4 pirge.
— \J
J
Each of the terms in the inner sum has valuation at least e + i because p | (?) for
1<j<p—1landij>i Ifi> pf then e +¢ < ip. Thus o € U;;.. This proves

(1).
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If i <e/(p—1), then ip < e + i and again each of the terms in the inner sum has
valuation at least e + 4. Thus o? € U;,. This proves (2).

Now assume that a € U;\U;;;. Then 7 1 . The minimum of the valuations of
each term in the inner sum is e + ¢ and this minimum valuation occurs when j = 1.

Ifi >e/(p—1), then e +1 < ip, so a? € Upye\Uit1+e. If 1 < e/(p — 1), then
ip < e + 1, therefore o € U, \U,p41. Since ip + 1 < e + 1, if follows that of & U, ..

O
Lemma 4.2.3. Leti > 1 and let o € R,;.
(1) Ifi >e/(p—1),a € U;, and o € U1 \Uit11e, then o & Usyq.
(2) If i <e/(p—1) and o € Up\Ujpt1, then a € U\U,;.

Proof. For (1), since a € U;, we may write « = 1 + 778 where 7 { 8 and i < j.
Thus o € U;\Uj41. Since j > @ > e/(p — 1), it follows from Lemma 4.2.2(3) that
a? € Ujte\Ujt1+e. The assumptions imply that j = 4, and thus a ¢ U;4y. This
proves (1).

For (2), we have o € Uy, C U;. Thus a € Uy, by Lemma 4.2.1(1). Let o = 14773
where 71 . Thus o € Uj\Uj11. If j > e/(p—1), then o? € Uj;. by Lemma 4.2.2(1).
Thus j+e<ip<i+e soj<i<e/(p—1), acontradiction. Thus j < e/(p — 1).
Then of € U;,\Ujp+1 by Lemma 4.2.2(4). Thus j =4, so o € U\Uj1. O

Proposition 4.2.4. Leti > 1.
(1) Ifi> 5, then Uy = Upye.

(2) Suppose that i = -5 Let 1+ i3 € Uiy, where B € Ry. Then 1+ 't € U?

iof and only if the congruence P + sx — = 0 mod 7 has a solution in R.

Proof. 1f i > pfl, then U’ C U; + e by Lemma 4.2.2(1). First assume that i >

Let 8 € R, and let
(L4 m'z)? — (14 7%pB)
7ri+e

fz) =
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Since i > -, it follows that f(z) € Rx[z]. To see this, we observe as above that

the valuation of each term in the numerator, after cancelling the 1’s, is at least e + i.

Since

1 i \p—1,,1 )
fio) =TT 1y i,
ite

it follows that f/(r) #Z 0 mod 7 for all r € R.

Now assume that ¢ > pil' Let 1+ n**¢8 € U; .. We wish to find § € R, such

that (1 + 7%5)P = 1 + 7¢3. We will first find d, € R such that f() = 0 mod =.
Then f'(dy) # O7 from above, so Hensel’s lemma in Corollary 3.3.2 implies that there
exists § € R, such that f(4) = 0. This will imply that (1 4+ 7*§)? = 1 + 7*T¢8. We

have

-1
At+rdf = 1+ (Z @ ””53) o
j=1
= 1+ pr'dy + 7P, mod 7Tt
= 14 pr'dy =1+ 755y mod 7Tt
because i > e/(p — 1) implies that ip > i + e. We choose §y € R such that dy =

5718 mod 7. Then B = sd, mod 7, so
L+ 778 =1+7"s6 = (1 + 7°0)P mod w1,

It follows that f(dp) = 0 mod m. This proves (1).
For (2), we follow the proof of (1) and note that the inequality ¢ > e/(p — 1) was
used in just one place. If i = e/(p — 1), then ip =i + e and
(14 70)? = 14 pr'dy + 765 mod 'ttt
= 14 7"*¢s5 + 768 mod m'tet!
= 1+ 7%%(s6y + 0F) mod 7ot
If 9y is a solution of P + sz — f = 0 mod 7, then f(dy) = 0 mod m. Conversely, if

1+ 73 = (1 4 7%0)P, then ¢ is a solution of 2? + sz — 8 = 0 mod 7. This proves

2). O
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Proposition 4.2.5. Let © > 1. Then the following statements hold.
(1) Ifi<e/(p—1), then UPNU,;, = U/.

(2) Ifi > ¢e/(p—1), then UP N Uy = UP.

7

Proof. First note that both statements are identical when i = e¢/(p — 1) because
t + e = ip in this case.

Assume that ¢ < e/(p — 1). Then UP N U, O U by Lemma 4.2.2(2). Now let
T € U'NU;, By Lemma 4.2.1(2), we have 7 € U}. Let 7 = (1 + 7/3)P where
7 1 5. Suppose that j < i. Then Lemma 4.2.2(4) implies that 7 € U;,\Ujp+1. But
7 € U, € Ujpy1 because ip > jp + 1. This is a contradiction, and thus j > . Then
7 € U} C U}. This proves (1).

If i >e/(p—1), then Uy = U by Proposition 4.2.4(1), so (2) follows easily in

this case. The case i = ¢/(p — 1) was proved in (1). O
Proposition 4.2.6. Ifi >e¢/(p — 1), then UipT = Ujire for all r > 0.

Proof. The result is trivial for r = 0. For » > 1, we have by induction on r that

UP = (UF ) = Uy = Uiire

K3 K3

by Proposition 4.2.4(1) because i + (r — 1)e > i > ¢/(p — 1). O

4.3 Arbitrary powers of elements in R,

Proposition 4.3.1. Let m > 1 be an integer. If gcd(m,p) =1, then U™ = U; for all

1> 1.

Proof. Clearly U™ C U;. Now let « = 1+ 7' € U;. Let f(x) = 2™ — o. Then
f'(z) = maz™ . Since f(1) = —7'8 = 0 mod 7* and f’(1) = m # 0 mod 7, Hensel’s
lemma in Corollary 3.3.2 implies that there exists n € R, such that 0 = f(n) = n" —«

and 7 = 1 mod 7. Thus n € U;, so a € U™. Therefore U; = U". O
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Lemma 4.3.2. Let G be an abelian group written multiplicatively. Let m,r,s be

positive integers and let m = rs where ged(r,s) = 1. Then G™ = G" N G".

Proof. 1t is clear that G™ C G" N G*® because m = rs. Now let ¢ € G" N G®. Then

g = g] = g5 where g1, g2 € G. Take integers k,[ such that kr +1s = 1. Then

9=9g""=(g)"(91)" = (919)" = (g195)"
Therefore G" N G* C G™, so we have G™ = G" N G®. O

Proposition 4.3.3. Let m be a positive integer. Suppose that m = p”s where v > 0

and pts. Then U; C U™ for all i > -7 e

Proof. We have U; = Ufjve C UP" by Proposition 4.2.6 because i — ve > —%. We

p—

also have U; = U# C U® by Proposition 4.3.1. Thus U; C U?’ NU® = U™ by Lemma

4.3.2. [l

Theorem 4.3.4. Let p be a prime number. Let m = p's where v > 0 and p 1t s.

Consider the surjective group homomorphism

fi:U— (R/T'R)*/((R/x"R)*)™.

If i > %= + ve, then ker(f;) = U™.

p—1
Proof. First we show that ker(f;) = U;U™ for all i« > 1. It is obvious that U;U™ C
ker(f;) for all ¢ > 1. Now suppose that b € ker(f;). Then there exists ¢ € R such

that 7 ¢ and b = ¢™ mod 7’. Let 8 = b/c™. Then 8 =1 mod 7', so 8 € U;. Thus

b= pBc™ e U;U™ and it follows that ker(f;) = U;U™ for all i > 1. If i > -1 + e,
then Proposition 4.3.3 implies that U; C U™ and thus ker(f;) = U™. O

We now present the main theorem of this section.

Theorem 4.3.5. Keep the same notation from Theorem 4.53.4. Letb € R and assume

that w1 b. Assume that i > pfl +~e. If the congruence x™ = b mod 7 has a solution

in R, then the equation x™ = b has a solution in R..
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Proof. If the congruence z™ = b mod 7 has a solution in R, then b € ker(f;) = U™.
O
If R/(r) = R,/mR, is finite, then [U : U™| can be computed easily as done in

[Art67], pp. 209-211, and strengthened slightly in [Lan70], p. 47.

4.4 Primitive p'" roots of unity in R,

It is clear that Lemma 4.2.2 doesn’t seem to fully treat the case i = ¢/(p —1). Also
Lemma 4.2.3(1) seems to include an extra hypothesis (« € U;). The statement in
Proposition 4.2.4(2) deserves more development. In each case, this is better explained

by knowing whether or not R, contains a primitive p** root of unity.

Lemma 4.4.1. Suppose that R, contains (, a primitive p'* root of 1. Then the

following statements hold.

(1) p—1]eand ( € Uc \U_-c_44.

p—1 p—1

(2) —p € R2.
Proof. Let ¢ be a primitive p'* root of 1. Let
haz)= (2" =1)/(z =D =2+ Fa+l=(r - —) - (z—- ).

The p = h(1) = (1 = ¢)---(1 = ¢*7"). We have (1 - ¢")/(1 = ¢/) € Z[¢] for all
i,j € {1,2,...,p—1}. Thus (1-¢%)/(1—¢?) € U. Tt follows that v (1—(?) = v (1-¢7),
and thus (p — v (1 — ) = v.(p) = e. Therefore v,(1—¢) =e¢/(p—1) € Z~g. Let

a=1—(. Then(=1—-ac¢€ Urfl\U e_yq. This proves (1).

p—1

We have

p o= (1-¢Q@=¢)(1-¢")

= - (ﬁ‘_f) (%) —(1-¢rA
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where A= (14+¢)(1+¢+¢*) - (1+¢+C*+---¢P%) € R,. Wehave ( =1 mod 7

because v, (1 — () € Zsg. It follows that

A=2-3---(p—1)=p-1)'=—-1modn

because 7 | p. Since # = A= —1modr and ged(p,p — 1) = 1, it follows
that (1__—?)}7_1 el = Uf—l. Then # = nP~1 where n € U;. Thus —p =
(n(1 —¢))P~t € Re~1. This proves (2). O

Suppose that R, contains a primitive p** root of unity (. Then Lemma 4.2.2 does

not contain a full statement for the case 1 = pfl because ¢ € U;\U;11 but (P =1 € U;

for all j > 1. In Lemma 4.2.3(1), the hypothesis that o € U; is necessary because if
a € U, where i > —4, then (()? = o” but (o & U;.
Let k denote the residue field R/(w). If a € R, let a denote the image of a in k.

Let 0 : k — k be the additive homomorphism defined by 6(c) = ¢* + sc.
Proposition 4.4.2. The following statements are equivalent.

(1) R; contains a primitive pt" root of unity.

(2) p—1]eand —s € UP™L.

(3) p—1]e and —s € kP71,

(4) —p€ R

(5) 0 is not injective.

Proof. The equivalence of (3) and (5) is immediate. We shall prove (4) = (2) =
3) = (1) = (4).
Assume that (4) holds. Let —p = 777! where 7 € R,. Then e = v,(—p) =

(p — Dvg(7), so (p — 1) | e. This gives




Thus (2) holds. It is obvious that (2) implies (3).
Assume that (3) holds. Then there exists § € U such that 77! = —s mod 7. Let

i=e/(p—1). Let « =1+ fn’. Then a € U;\U,41. Since ip =i + e, we have
o = (1+pr" VY =1+ (sf+ B°)r" =1 mod w1,

Thus o € Ujeqy1 = Uy by Proposition 4.2.4(1). Then o = 6” where § € Uj4.
Since a & Uy, we have a/§ € Uy, /6 # 1,(a/5)P = 1. Thus «/§ is a primitive p™
root of unity in R,. Thus (1) holds.

Finally, Lemma 4.4.1(2) shows that (1) implies (4). O

(&
p—1°

Proposition 4.4.3. Assume that p— 1| e and let i = Assume also that k is a

finite field. Then the following statements are equivalent.
(1) Uzp = Ulite
(2) The congruence z? + sz — f = 0 mod 7 has a solution in R for all § € R.
(3) 0 is surjective.
(4) Rx does not contain a primitive p™* root of unity.
(5) —s & kP!
(6) 0 is injective.

Proof. The proof of Proposition 4.2.4(2) shows that (1) and (2) are equivalent. The
equivalence of (2) and (3) is immediate. Proposition 4.4.2 implies that (4), (5), and
(6) are equivalent. Finally, (3) and (6) are equivalent because k is finite. O

We now obtain the following supplement to Lemmas 4.2.2 and 4.2.3.
Corollary 4.4.4. Assume that R, does not contain a primitive p'* root of unity.

(1) Ifi=e/(p—1) € Zso and a € U\U;y1, then of € U1 \Uii1e.
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(2) If i >e/(p—1) and o® € U;1\Uii1+e, then a € U\Ui1.

Proof. We refer to the proof of Lemma 4.2.2. Since i = e/(p— 1) and o € U;\;11, we
have 71 § and so
o =1+ (B + sB)n"t mod 7T

Then equivalence of (4) and (5) in Proposition 4.4.3 (or (1) and (3) in Proposition
4.4.2) implies that f? + s # 0 mod 7. Thus o € U;;.\Uit14.. This proves (1).

Now assume that ¢ > e/(p—1) and o € U;yc\Ujy11.. We have a € U; by Lemma
4.2.1(1). Assume that a € U;\Uj;; where j > 1. First suppose that j < e/(p —1).
Then o € U;,\Ujp+1 by Lemma 4.2.2(4). Then i+e = jp < e+j,s0i < j <e/(p—1),
which is impossible. Thus j > e/(p—1). Then o® € U4 \Ujet1 by Lemma 4.2.2(3).

It follows that j =i, so o € U;\Uj41. O

4.5 Supplement to Section 2

In this section we use information of roots of unity from the previous section to extend

Propositions 4.2.5 and 4.2.6. The first result concerns Proposition 4.2.6 for the case
i=e/(p—1).
Proposition 4.5.1. Assume thati=¢/(p —1).
(1) Uz-pr C Uigre for allr > 0.
(2) The following statements are equivalent.
(a) Ufr = Ui ire for all v > 0.
(b) Ufr = Ujire for some value of r > 1.
(c) Ufr = Uisre forr=1. (That is, U’ = Uj,..)

Proof. (1) The statement is trivial for » = 0 and holds for r = 1 by Lemma 4.2.2 (1).

Now assume that » > 2. The case r = 1 and Proposition 4.2.6 imply that

r—1

(o r—1
Ur = U7 CUhe =User—1)e = Uitre.
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(2) It is trivial that (a) implies (b). Next we assume that (c¢) and prove (a). The case
r =01in (a) is trivial. The case r = 1 in (a) follows from (c). Now assume that r > 2.

Then (c¢) and Proposition 4.2.6 imply that

r—1

r r—1
Up = U7 =Use)’ = Uirertr—1)e = Uipre.

Now we prove that (b) implies (¢). We can assume that r» > 2. We have U’ C U; .

by Lemma 4.2.2 (1). For the opposite inclusion, let 5 € U;,.. Then

r—1 r—1 r

513 € Uip+e = U’i+e+(r71)e = Vidre — Uzp .

r—1

Then 7' = o where a € U;. Let A = /a”. Then § = o\ and "' = 1. We
have o? € U;y. by Lemma 4.2.2 (1) and § € U;1.. Then A € U;.. If X\ # 1, then for
some 7 satisfying 1 < 7 <r—2, we have = ¢. It follows that ( = PLNS Uite, which
contradicts Lemma 4.4.1 (1). Thus A = 1, so 8 = a. Therefore, § € U? N Uy = U
by Proposition 4.2.5 (2). This proves (c). O

Next we consider Proposition 4.2.5 and try to extend the result to cover (p")™

powers.

Proposition 4.5.2. (1) Ifi >¢e/(p — 1), then U” N Usype = UP".

(2

(2) If i =¢/(p —1) and Uiye = U, then UP" N Uippe = U”.

7

Proof. (1) Proposition 4.2.6 implies that
U NUpye =UP MUY =0

(2) Proposition 4.5.1 (2) shows that the proof in (1) works again in this case. O

Copyright© Dibyajyoti Deb, 2010.
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Chapter 5 The Poincaré Series of a Diagonal Polynomial

It was mentioned in an earlier chapter that the work of Wang, Goldman and Han
does not give us a complete picture of the Poincaré series of a diagonal polynomial
due to restrictions on the diagonal polynomial itself. In this chapter we finally look
into an arbitrary general diagonal polynomial without any restrictions and compute

it’s Poincaré series.

5.1 Preliminary Results

Let R denote a unique factorization domain (UFD) with maximal ideal generated
by a prime element 7 and let R, denote the completion of R with respect to this
valuation. Assume that the residue field R/(7) is finite with cardinality ¢. Let U

denote the group of units of R, and let char R/(7) = p.

Theorem 5.1.1. Let R/(m) ={a|a €I C R}. Then

R/(m™) ={ao+ arm + -+ + @771 | a; € T}

Proof. By induction on m. The case where m = 1 is trivial. We now assume that

the theorem is true for m = k. Then any element a of R can be written as
ap+ a4 -+ ap_ 7! —|—)\7rk, a; € I,\ € R.

From the condition of the theorem, there exists a;, € I and u € R such that \ =
ar + pm. Thus

a:a0+a17r—|—---+ak7rk—|—mrk+1.

If we also have a = by+byw+- - -+bpmi+p/ 7%, b, € I,/ € R, then ay = by mod 7. So
ap = by, since ag, by € I. Therefore, a;+- - ~+apm* 1 = by+- - -+bpm ! mod 7*. By the

inductive hypothesis, a; = b;,i = 1,...,k. We therefore conclude that R/(7*1) =
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{ap + a1+ -+ apm* | a; € I}. This the theorem is valid for m = k + 1. This

completes the proof. O
Corollary 5.1.2. If R/(~) is finite and | R/(w) | =q, then | R/(7™) | = q™.

Proof. Since | R/(m) | = g, hence each a; in Theorem 5.1.1 has ¢ choices, therefore
| R/ (m™) | =q™. O
If char R = 0 and char R/(mw) = p, then p € (), and we let p = 7°s where e € Z+
and 71 s.
The next proposition plays a crucial role in the proof of the rationality of the

Poincaré series.

Proposition 5.1.3. Assume that char R =0. Letb € U and let t € Z~q. Then there

exists a positive integer M depending on t such that the following two statements hold.

(1) If the congruence ' = bmod ™ has a solution in R, then the congruence

2! = bmod ™ has a solution in R for all m > M. In particular, b € U*.

(2) If the congruence x* = b mod 7 has solution in R, then the number of solutions
in R/(7™) to the congruence x* = b mod 7™ is the same for all m > M. This

number of solutions equals [U : U'].

Proof. Suppose that t = p’d where v > 0 and d € Z~ with p{d. Then 7 1d in R,.
We will show that the positive integer M = 2evy + 1 satisfies (1) and (2).

Let G(xz) = 2! — b and suppose that G(a) = 0 mod 7™ where a € R and m >
M = 2evy + 1. Note that a € U. Let G(a) = 7™ where 5 € R. Let z € R, which

will be determined below. Then
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Gla+ zr™ ) = (a+ 27™ ) —b

= a' +tataa™ Y 4+ 72 m=eNy — b, for some 1 € Ry,

(a' —b) +ta" t2r™ % mod 7™, because 2(m —ey) > m + 1,

7B+ a1 (7%s) dn™ "z mod 7™

= 7"(B+a"'s7dz) mod 7™

Since 7§ a'~'s7d, there exists z € R such that 7 | (8 + a'~'s7dz). With this value
z, we have G(a + 2™~ %) = 0 mod 7™+, This argument gives a construction of a
coherent sequence in R, that converges to a solution of G = 0 in R,. Thus b € U
and (1) holds.

Since R/(m™) = R,/m™R, by Theorem 4.1.1, we denote both rings by R,, to

simplify our notation. Let R denote the group of units of R,, and let
O : U — RXJ(RX)"
denote the composition of the surjective group homomorphisms
U— R — R/(RA).

It follows from (1) that ker(f,,) = U* for all m > M.

If a € R, let a denote the image of a in R,,. Let
Tm : Ry, — R,

denote the group homomorphism given by 7,,(a) = a’. Then im(r,,) = (R))". If 2' =
b mod 7 has a solution in R, then the number of solutions in R,, to ' = b mod 7™

is given by | ker(r,,) | . Since

R’V>T<l X X
Ker(rn) | = 2l | R sr2y | = o

[ im(7y) |

for all m > M, it follows that (2) holds. O
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It is clear that the value M = 2ev 4 1 in Proposition 5.1.3 is in general not the

least integer satisfying (1) and (2). In this direction the result in Theorem 4.3.5, given

by M = pfl + e+ 1 serves as the least value of M for which Proposition 5.1.3 holds.
It is interesting to find an analogous result to Proposition 5.1.3 when char R = p. If
char R = p, then R, = K]{[r]], the ring of formal power series in 7.

Let t € Zo. For m > 1, let YY) denote the number of solutions in R/(m™) to the
congruence ' = 1 mod ™. If t = rs where ged(r,s) = 1, then pY = nipY) . In
particular, write ¢ = p”d where p{ d and v > 0. Then hﬁfl) = %V)h%).

If p 1 ¢, then Proposition 5.1.3 and its proof remain valid without any change when

char R = p. In this case, t = p’d where v = 0 and d = t. The proof shows that we

may take M = 1.

Lemma 5.1.4. If m > 2 and v > 0, then hfﬁl)m = ¢ hE) . Ifm =1, then

R =1 for all v > 0.

Proof. First assume that m = 1. If a € R,, then ¢ = 1 mod 7 if and only if
a = 1 mod w because the residue field has characteristic p. Thus h%v) = 1 for all
v 2 0.

If v = 0, then it is easily checked that R =1 for all m > 1. In particular, the
statement for m > 2 holds when v = 0 because ¢*’ ~! = 1 in this case.

Now assume that m > 2and v > 1. Let a € R, and suppose that a?”” =1 mod ™.
Then

a=ag+ a4+ apom™ ! mod 7™,

where a; € K,0<¢<m —1, and

Y 2 2 Y 2 — 2
a’ =ad) +a' 7 4+ adb w7 mod o™,

Choose k € Z such that £k — 1 < m < k < m — 1. This is possible because

p’Y
ﬁﬂ/ < % < m — 1since m > 2 and v > 1. Since (k — 1)p” < m < kp?, it follows
p
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that ag =1,a; =---=a,_1 =0, and ay, ..., a,,_1 are arbitrary elements. Therefore

h%ﬂ) — qm—k:.
N
Similarly, £ < mp <k+landk+1<(m+p’)—1Dbecause k < (m—1)+
(p¥ —1). Then
ht s = gD gk = g L),

]

Corollary 5.1.5. Assume that char R = p. Lett € Z~o and write t = p”d where

ptdand~y>0. If m>2, then hijLm =g 1nY.
Proof. If m > 1, then hfjflm = hfff) = [U : U']. Then for m > 2, we have

h(t) _ h(PW) h(d

m4py — bmgpy mi—p” = qpv_lhggw)hgg) = qu_lhﬁﬁ)-

5.2 Computing c,,

We let f(z1,...,2,) = e@t + -+ 4+ ot + b where €1,...,¢, € Ry ty,...,t, are
positive integers, and b € R,.
Let | = lem(ty,...,t,), where lem denotes the least common multiple. Let | =

tiu;, 1 <1 <n. We may assume that t; <ty < --- <t,. Then u; > us > -+ > uy,.

Let C'=uy + -+ + u,.

For each m > 1, let ¢, denote the number of solutions to the congruence f(xy, ..., z,)
0 mod 7™.

Let (ai,...,a,) € RY where (a1,...,a,) # (0,...,0) mod 7™. We say that
(aq,...,a,) has level j in R if j is the largest integer such that 7/ | a; in R, for
each i where a; Z 0 mod 7™. We will say that (0,...,0) has level m in R Note
that j = 0 always satisfies the condition so that (as,...,a,) always has level > 0 and

level m in R,,.
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Let DY) denote the set of elements (ay,...,a,) € R that have level j in R\

and satisfy f(ar,...,a,) =0 mod ™. Let d¥) = | DY | .

Proposition 5.2.1. ¢,, = d'2 +d'Y + - +d"™ for each m > 1.

Proof. The equation holds because each solution of f(z1,...,2,) = 0 mod 7™ has
level j where 0 < j7 < m, and D(()O) u---u D,(%n) is a disjoint union. O]

For 0 < j < m, we now partition Dq(f;) as follows. For 1 <k <nand 0 < X < uy,

let DY* denote the solutions (a,...,a,) € DY) satisfying

(1) wl+Du

a; in R,,, where 1 <i <k —1 and a; # 0 mod 7™,
(2) mIwtA | qpin R, and w7 AL 4 g in R, where 0 < X < uy and ag # 0 mod 7™.

Let d* = | D | . This partition of DY shows that

d9) = zn: uf AUk,
k=1 A=0

Let v(€;) = 6;, 1 <i <mn, and let M, be the positive integer from Proposition 5.1.3

that is associated to ¢;, 1 <7 <mn. Let j € Z>¢ and let

M(j) = max {M; + §; + jl + t;(u; — 1)}.

1<i<n

Proposition 5.2.2. Let j € Z>,. Assume that char R = 0. Then dgll = ¢ 1dY)

for allm > M(j).

Proof. Note that 0 < j < M (j) < m. It is sufficient to show that dfg’jff) = q”fld,(f;’k’)‘)
forallm > M(j), 1 <k<mn, 0 <\ < u.

Assume that m > M (j) and suppose that
flai,...,a,) =0 mod 7™

where (ai, ..., a,) € DY,
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Let ap = n/%+Ab, where b, € R,, and 7 1 b,. We have

k—1 n
ek(wj“”)‘bk)tk = — (Z 6,@?) — < Z eia?) — b mod ™.

i=1 i=k+1

Then

k—1 ; ;
t —(2im Gia?) - (Z?:k—i—l Eia?) —b mod 7m0k =il
k= Ekﬂ-jl+)\tk ’

b

For convenience, let

k—1 i i
—(2im1 eiai ) — (Z?:k:-i—l eiaﬁ ) —0b

L= ,
€k7T]l+>‘tk

Since 7 t by and m — §y, — jl — Ay, > My, > 0, it follows that L € R, and 7 { L.

We now count solutions f(a},...,a’) =0 mod 7™ where a; = a; mod 7™ for all

r'n

1 < ¢ <n. Since

and

a;,in Ry, forl1 <i<k—1and I HA is the exact power dividing

we have gU+Dui
aj, in R, ;1. There are ¢ choices for each @, in R,,; where i # k, for a total of ¢"~!

choices. For each choice, let

_(Zfz_ll eia)") — (Xiigy €ilay)") — b.

L' = :
6k7T]l+/\tk

Then L' € R;,7{ L', and L' = L mod 7M.
Let h denote the number of solutions to x* = L mod 7™*. Proposition 5.1.3
implies that z'* = L’ mod 7™ has exactly h solutions for all m > M, and for all L’

for which there is at least one solution to the congruence.

Given ay,...,a_ 1,041, -.,0, as above, there are h values of a; as above that
satisfy f(ay,...,a,) = 0mod ™. These h solutions give rise to ¢"~h solutions to
the congruence f = 0 mod 7™*!. This finishes the proof. O

32



5.3 The case b# 0

In this section we give an expression for ¢,, when b # 0.

Proposition 5.3.1. Assume that b # 0 and let v, (b) = mgy. Let m > 1 and suppose
Mo

;i < 7, then d) = 0.

that 0 < 7 < m. if mg <m and
Proof. Suppose that d¥ > 0 and let (ay,...,a,) € DY), Then
eal + -+ +e,alr +b=0mod 7"

Since my < jl, we have either my < m < jl or my < 51 < m.
First assume that my < m < jl. Since either a; = 0 mod 7 or m/% | a; in
n
R,,, it follows that Zeia’;ﬁ" = 0 mod ™ because m < jl. Then b = 0 mod 7™,
which is impossible i):ecause my < m. Now assume that mg < jl < m. Then
n
Zeia? = 0 mod 7/'. Then b = 0 mod 77!, which is impossible because my < jl.

i=0
Thus d%) = (0 as stated. O

Corollary 5.3.2. Assume that b # 0 and v:(b) = mg. If m > my, then

(2]
Cm = Z dY).
=0
Proof. This follows immediately from Propositions 5.2.1 and 5.3.1 [

5.4 The case b=0

In this section we give an expression for ¢, when b = 0. Lemma 5.4.1 below contains
some simple computations that are needed to ensure that certain expressions make
sense in Proposition 5.4.2.

Let r € Z>¢ such that r < % < r+1. Then r < rl < m and so it follows that

r+1<m.

Lemma 5.4.1. Assume that m > .
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(1) If t; > 2, then m — (r + 1)u; >0 for 1 <i <mn.

(2) Suppose that ty = -+ =tp_1 =1 and 2 <t < --- <t,. Then max{m — (r +

Du;, 0 =0 for1<i<k—1,andm— (r+ 1)u; >0 fork <i<n.

Proof. (1) If r =0, then m > 1 > u;, so m — (r + 1)u; > 0. Now assume that r > 1.

Then u; =

(T+1)ui§(r—|—1)%:r+1

[ <rl<m,

som — (r+ 1)u; > 0.
(2) First assume that 1 <¢ <k —1. Then v; =l and m < (r+ 1)l = (r + 1)u,.
Thus m— (r+1)u; <0, so max{m—(r+1)u;,0} =0 for 1 <i < k—1. The argument

in (1) shows that m — (r + 1)u; > 0 for k <i <n. O

Proposition 5.4.2. Assume that b= 0. If m > 1, then

r+2) r+3) m+l) r r m)\ _nl—
o) o) S = (A5 dG ) 44 d) g

Proof. We first find a formula for Ao gt g™ Let (a1,...,an) € R

Then (ay,...,a,) € DG U+ u DY if and only if (ay,...,a,) has level > r + 1
in Rﬁg’), and this occurs if and only if ar(r+Dus | a; in R, for each i where a; #
0 mod 7™. If m — (r +1)u; > 0, then the number of possible a;’s equals ¢~ D% If
m — (r+1)u; <0, then the number of possible a;’s equals 1. Namely, a; = 0 mod 7™
in this latter case. Thus the number of elements (ay,...,a,) € R%) that have level
> 1+ 1 equals H gmedm=(r+Du0} e conclude that

=1

n

dg;l;-‘rl) + d%+2) 4ot d(m) _ quax{m—(r—l—l)ui,O}

m
i=1

n

H ~rDui - hy Lemma 5.4.1 because 2 < .
i—k

l
Similarly, since r + 1 < % <r+ 2, we have
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(r+2 (r+3 (mA+1)
— H qmax{m+l—(r+2)ui,0} _ H qmax{m—(r+1)ui+(l—ui)70}

i=1 i=1
n

= Hq ~(r+Duit(- “1) because | = u; for 1 <i <k —1,

i=k
— ﬁqm (r+1)u qu up Hq —(r+1)u; qu ug

i=k
= (dtY +d;;+2>+---+dm )q”l .

O
Proposition 5.4.3. Assume that b= 0. Assume that 0 < j < % Then
d9) = d . ¢™=0),
Proof. Since
F@by, . w0 b,) = 7 f (b, by),
we must solve f(by,...,b,) = 0 mod 7™ where (b, ...,b,) has level 0. There are
dgg)_ il such solutions and each b; lifts in
q(m*juz')*(m*ﬂ) — qj(l*m)
ways. Thus
d) = dfﬁ),ﬂ L) gilimum) — g0 @O,
O
Proposition 5.4.4. Assume that b =0. Then
e d0 T = d (A 4 d)) g
l
Proof. Let 0 < j < ? Then0<j<rand0<j+1< % Applying Proposition
5.4.3 gives
G+ _ 400 i+1)(nl—C) _ 4(0) i-+1)(ni—C
dnzm = dingy- (]+1)lq(]+ =€) = dm—jlq(ﬁ_ =€)

m

_ d(O) zq j(nl— C)q(nlfc) _ d(j)q(nlfC)_
—J
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It follows that

dO 4+ dT) = d0 4 (dQ )

m
We now apply Propositions 5.2.1, 5.4.2, 5.4.4 to obtain the following result.
Proposition 5.4.5. Assume that b =0 and m > 1. Then ¢, = a0 gl T Cmq" =C,
Proof.
r+1 m-+l
Cmtl = Zd T Z dm+l
i=r+2
= dfnll +(dD 4+ dD)g" O (@ A o d) g
= d(oll + cmq -¢
m

We are now in a position to construct the Poincaré series of our diagonal polyno-

mial. We do this in the next section.

5.5 The Poincaré Series

Using results from the previous sections we can now finally compute the Poincaré

series of our diagonal polynomial
f(xl)"'axn) :Ell’? ++€n-rqun+b

where €1,...,¢, € R., t1,...,t, are positive integers, and b € R,.
For each m > 1, if ¢,,, denotes the number of solutions to the congruence f(x1,...,x,)

0 mod 7™, then the Poincaré series of f is the formal power series

Pi(y) =1+ Z Cmy™.
m=1

As was the case in the previous sections, we computed ¢, separately for b # 0 and
b = 0. Similarly here we first present the Poincaré series of f when b # 0 as out next

theorem.

36



Theorem 5.5.1. Assume that char R = 0,b # 0, and v,(b) = mgy. Let

M= max {M(j)}.
0<5<[2]
Let my = max{M,mg}. If m > my, then ci1 = q" ‘¢ In particular,
mi mi+1
i Cmi+1Y
Pr(y) =1+ ey | + ——F——.
)= (S 4
Proof. The formula for ¢, follows from Proposition 5.2.2 and Corollary 5.3.2. Then

mi 00
Piy) = 1+ Z Gy’ + Z Cony 41y
=1 1=0

mi 00
= 1+ (Z cw’) + Cm1y™ Y (")’
=1 =0
mi1+1

mi
o i Cm1+1y
_— 1+<Zciy)+—1_qnly.

=1

In the next theorem the Poincaré series is constructed for b = 0.

Theorem 5.5.2. Assume that char R = 0. Then Ps(y) is a rational function when
b= 0. In particular, if M = max{M (0),l} where M(0) is defined just before Propo-

sition 5.2.2, then

(1 _ qn—1y> <(Zi1\{gl—1ciyi) _ qnl—Cyl (Z%o_lczyz)) + ql(n—l)ds\?[)yMJrl

Prlv) = (I =g 1y)(1 — ¢"=y!)

Proof. Proposition 5.4.5 gives

0 M+1-1 9] M+1-1 o)
Pr(y) = Zciyz = Z Gy + Z Gy’ = Z Gy + Z Cipry™
i=0 i=0 =M+l i=0 i=M
M+1-1 00
) 0 nl— %
= > e+ ) (@Y + " ey
i=0 i=M
After setting i« = M + j, Proposition 5.2.2 gives
0) 4 0 n— j n— 0 n— j
STdy T = Ay (@) = VA (¢ Y
i=M =0 =0
n—1) 4(0
_ q1( 1)d§w)yM+l
L—q"ly
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Next, we have that
[e'e) M-1
Z qnlfcciywrl _ qnlfcyl <Pf<y> _ Z Ciyz) .
i=M i=0

Combining the last three displayed equations gives

l(n—l)dg\(/)[)yM—l-l

M41—1

nl— i nl— -1, 9

(1-¢"=Cy")Ply) = ( > cw) =" YiM ey’ + i
=0

Dividing both sides of this equation by 1 — ¢ =%y gives the result.

Copyright© Dibyajyoti Deb, 2010.
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Chapter 6 A Different formulation for ¢,

In this chapter we present a different formulation of the number of solutions c,,.
The final expressions for ¢, is different from the previous chapters and relies less on

recurrence relations.

6.1 Preliminaries

Definition 6.1.1. Let R denote a unique factorization domain (UFD) with maximal
ideal generated by a prime element w, f € Rlxq,...,x,] and let [;m be positive

integers, | <m, and (vy1,...,2,), (2", ... 2)) € R™. If

f(z1,...,2,) =0mod 7™, f(x},...,2") =0mod '

z; =2, mod 7' for 1 <i<n,

then we say that (xy,...,x,) is a descendant of (x),... ) with respect to f. We

also call (x7,...,2) the ancestor of (xy,...,2,).

A solution of f = 0 mod 7™ is a descendant of a unique solution of f = 0 mod ='.
The notion of descendant yields a transitive property: if u is v’s descendant and v is

w’s descendant, then u is w’s descendant.

Theorem 6.1.2. Let R be a discrete valuation ring, ™ a prime element in R which

generates the unique mazimal ideal, such that |R/(7)| = ¢ < co. If A € R™ is a

n—1 m+1

solution of f =0 mod 7™, then there are exactly \q solutions of f =0 mod w

which are descendants of A, where
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1, if A is nonsingular,

P, if A is singular and also a solution of f = 0 mod 7™+,

0, else

Proof. Assume A = (ay,...,a,). Let B = (by,...,b,) be a solution of f = 0 mod

,n_erl

which is a descendant of A. From the definition of descendant, b; = a; + n;7™,

n € R/(m),i=1,...,n. So we can decide B as long as we know 7;. If b, = a; +ni7™,

then

b = b, mod 7" & (g — n))m™ € (7™M & n; = ) mod 7.

So from the condition of the theorem, 7; has ¢ different values. By Taylor’s theorem,

1.

= A
0= f(B)=f(A) + Zz; agiz )nﬂrm mod 7™+,
Assume f(A) = cn™,c € R. Then the above congruence is equivalent to

S %m = cmod 7. If A is nonsingular, then % # 0 mod 7 for some 1.

So we can solve for some 7; since R/(w) is a field. Therefore the number of B

n—1

is g

. In the case when A is singular, the above congruence becomes f(A) = 0 mod

m+1

7™+ So the number of B is ¢" if A is a solution of f = 0 mod 7 and there

is no B otherwise.

]

Corollary 6.1.3. Let p denote the characteristic of the finite residue field R/(w). If

a € R is a solution of x™ =bmod ™, w1 b then,

1.

m+1

If p 1 n, then there is exactly one solution of ™ = bmod 7 which is a

descendant of .
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m+1

2. If p | n, then there are exactly q solutions of 2" = bmod 7 which are

descendants of o if o is also a solution of 2™ = b mod 71,

Proof. Consider f(x) = 2™ —b. If p { n, then 7 { n. Therefore %(;) = na"t £

0 mod 7. Therefore « is nonsingular and the result follows from Theorem 6.1.2.

If p | n, then 7 | n. Therefore a’;(;‘) = na™ ! = 0 mod 7. Therefore « is singular
and the result follows from Theorem 6.1.2. O

Theorem 6.1.4. Let ¢,,(> 0) denote the number of solutions of the congruence

" = bmod 7™ and let p = 7°s,m 1 s. If m > ey + pfl + 1 then ¢; = ¢y, for all

1> m.

Proof. 1t is not hard to show that if the congruence 2" = b mod 7™ has a solu-
tion then it has the same number of solutions as the congruence 2" = 1 mod 7.
Consider the homomorphism ¢,, : R/m™R* — R/7™R* which maps an element a
to a”. Now Im ¢,, = (R/m™R*)" and |Ker ¢,,| is the number of solutions of the
congruence z" = 1 mod ™. Since ¢,, is a homomorphism therefore by the sec-
ond isomorphism theorem |Ker ¢,,| = |R/7™R*/(R/m™R*)"|. By Theorem 4.3.4,

U/U" ~ R/m™R*/(R/7™R*)™ when m > ey + -7 + 1 where U denotes the group of

units in R;. Since U/U" is constant therefore |Ker ¢,,| is also a constant and hence

the result. O

Theorem 6.1.5. Suppose c,, is the number of solutions to the congruence x" =

Cm

bmod ™. Letn =p's. Ifp|n and m > ey + =% + 1 then — of these solutions
q

p—1

lift, and each of them lift in q different ways. On the other hand if p t n then all ¢,

of these solutions lift, and each of them lift in exactly 1 way.

e
p—1

Proof. Since m > ey + + 1, therefore by Theorem 6.1.4, ¢, is a constant. We

prove a small fact here.
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m+1

Claim 1. Every solution of x™ = bmod 7 15 a descendant of a solution of x" =

b mod 7.

Proof of claim. Consider C,,1 to be the set of solutions of the congruence z" =

m+1

b mod m and let C),, denote the set of solutions of the congruence ™ = b mod 7™.

Let a1 € Chp1. Therefore ay, 1 = B, + 07 after reduction modulo 7™. We have
(B + 07™)™ = b mod 7™ !
B+ B inén™ 4+ 7?™n = b mod 7™
for some n € R. If p | n, then we have

A" =bmod 7™t

Therefore 3, € C,,+1 and hence 3, € C,,. Therefore o, 1 is a descendant of f3,,.
By Corollary 6.1.3, there are exactly g descendants of 3,,.

On the other hand if p { n, then every f,, € C,, has exactly one descendant

i1 € Chy1 by Corollary 6.1.3. Since ¢, is a constant for m > ey + pfl + 1, and

since every descendant comes from a unique solution in C),, therefore every every

m+l ig a descendant of a solution of z™ = b mod 7™. O]

solution of ™ = b mod 7

Now we shift our focus to proving the theorem. Consider the map 6,, : Cy,,11 —
Cpn, which maps a,, 41 to its ancestor a,,. This map is well defined by the previous
claim. Also |Cpy11| = |Cn| = ¢ If p | n then by Corollary 6.1.3 since «,,, € Cpy1,
therefore o, has ¢ descendants. Therefore |0,.' (0,,(n11))| = ¢. If sy Tuns through
all the elements in C,, 1, then 0_1(0,,(c,11)) will give us a partition of C,,; into
disjoint sets, where each set consists of the descendants of «,. The sets are disjoint
since every a,,.; has a unique ancestor a,,. Since | 0,10, (ms1)) | = ¢ and
| Crni1 | = Cm, therefore the number of such disjoint sets is C?m Therefore |Im6,,| =
C?m and hence the theorem is proved when p | n.

On the other hand if p t n then by Corollary 6.1.3, «,, has exactly 1 descendant.

Therefore |Im 6,,| = ¢,, and hence every «,, has exactly one descendant a, . O
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Proposition 6.1.6. Let n = p7s,p { s,m t b. Suppose the congruence ™ = b mod

_e 11 . .
751 has a solution, then the congruence 2" = b mod 7° has a solution for every

Bzey+;5+1

Proof. Since z" = b mod 75Tt has a solution, therefore from Theorem 4.3.5,
2" = b has a solution in R,, hence 2" = bmod 7” has a solution for every f >

ey+ 5+ 1L 0

6.2 The Main Theorem

We keep previous notations, but also introduce some new notations here.

o F(ry,...,w,) = el +... +euatn.

e (), = The set of all solutions of F(xy,...,z,) = —bmod 7.

e D,, = The set of all primitive solutions of F(xy,...,x,) = —b mod 7.

e B,, = The set of all non-primitive solutions of F(xy,...,z,) = —b mod =™.

® Cp = ‘Cm‘adm = |Dm’7bm = |Bm‘
o t;=plis;, v >0,p1 s
® &, = Wnili,’l]i > O,ijli.
e
Also let M = lrga;;{m +ev}+ P + 1.

Theorem 6.2.1. Assume that dy; # 0 and let t = 1rgl<rl {t;}. If m > M then the

number of solutions, ¢, of
g1zl + ...+ el = —bmod ™ (6.1)

1S given by
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(

dprgm=—M(n=1) 4 gm=1)n if M <m <t v(=b)>m

Cm = dpqm=0=0 D g =Dn iy > (—b) > ¢
dppqm—M =1 if m> M and v.(—b) <m orv.(—b) <t
\
where cﬁ,ll)_t 1s the number of solutions of the congruence
ti—t .t tt 4, _ D m—t
ermtTt et 4+ . e, mn":—tmodﬁ

™

To prove our main theorem we first find out the number of primitive solutions,

d,, of the congruence.

6.3 Finding d,,
Lemma 6.3.1. Assume dy; # 0. Then d,, = drrgm= M= form > M.

Proof. Let’s start with a solution (ay,...,a,) € D,,. Let j be the smallest number

such that 7 1 ;. Take a lifting (oq + 617™, ...,y + 6,7™) of (a1,...,0,),6; € K.

We want (g + 017™, ...,y + 0,m™) € Dppy1. Therefore we solve the congruence for
52"8.
e1(ag + 6™ + -+ ep(ay + 6m™) = —b mod 7™
7—1 n
Denote —b— (Zei(ai + 8™+ Z gi(a; + &;m™)") by A(dy, . .. ,5}, ..., 0,). Then
i=1 i=j+1

gilaj + 0,75 = A(dy,...,05,...,6,) mod 7!
mili(o; + 6;7™) = A(6y,...,05...,08,) mod 7™}

Li(a + 5j7Tm)tj = 7 MA(dy,... ,5}-, ..., 0,) mod ot

(aj + 6™ = L, ' WA(Sy,...,05,...,6,) mod 7™t
Let us choose arbitrary values d1, . . . ,5}, ..., 0, € R. Therefore we have
2l =LAy, ., 05, .., 0,) mod g
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a; is a solution of the above congruence mod 7™~" and since 7 { «; therefore 7 {
L Ay, 5 ,o.,0p). Now m > M hence m—mn;+1 > eyt +1, therefore
if p | t; then by Theorem 6.1.5, % of these solutions lifts to a solution mod 7™ "+,
These give rise to solutions of congruence (6.1). Each of these solutions lift in ¢
different ways. There are ¢"~! different choices of lflw_”fA((Sl, . ,(5}-, ey On)-
Therefore the number of different solutions to the above equation with different
L Ay, 5; iy- .-, 0p)’s is given by
A,

dpps1 = ? -t =dng" !t for m > M.

Solving the simple recurrence relation we have d,,, = dy ¢ "1 for m > M.
On the other hand if p { ¢; then by Theorem 6.1.5, all d,, of these solutions lifts

to a solution mod 7™ 1 Each of them lifting in exactly one way. There are ¢" !

different choices of I; a5 A(6y,...,0;,...,0,).
Therefore the number of different solutions to the above equation with different

L Ay, 5; iy .-, 0n)’s is given by
pp1 = dm - 1-¢" = d,q" " for m > M.

Solving the simple recurrence relation we have d,,, = dy ¢ "1 for m > M.
Therefore

dpy = dMq(m*M)(”*l) for m > M.

m
In the next section we find the number of non-primitive solutions, b,, of our

congruence.
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6.4 Finding b,,

Lemma 6.4.1. Let t = 112z‘i§nn{ti}' If 1 <m <t then
(@™ )", if 1 <m <t and v (=b) > m.
0, if 1 <m <t and v (—b) < m.
Proof. Let’s consider arbitrary oy, ..., a, such that 7 | o, 1 < i < n.

Claim 2. (aq,...,ay) € By, iff v.(=b) > m.

Proof of Claim. Let a; = ;. Therefore

Flay,...,a,) =7'G(v,. .., )

where G(z1,...,2,) = eyt + ...+ gm0 I (aq,. .., @) € B, then
TG(Y1, ..., 7) = —b (mod 7™) is solvable. But since m < t therefore —b = 0 (mod
™) which implies v;(—b) > m. On the other hand if v, (—b) > m then 7™ | —b.

Also since m < t therefore 7 | F'(ay, ..., a,). Therefore
F(ag,...,a,) =0 (mod ™)

O

Now if v, (—b) < m, then since m < ¢t therefore 7™ | F(ay, ..., a,), which implies

= —bmod 7™ but this contradicts the assumption that v,(—b) < m. Therefore
by = 0 if v,(=b) < m. Each a; has ¢™~! choices , 1 < i < n. Therefore the number

of different choices for (aq,...,a,) is (¢ 1)". Hence the result. O

Lemma 6.4.2. Lett = 11313 {t;}. If m >t then
cfi),t gt ifm >t o (—b) >t

0, if m > tu.(—b) <t
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Proof. Suppose F(ay,...,a,) = —bmod n™. If v (—=b) < t, then m > v.(—b),
therefore v, (F(aq,...,ap) +b) < m. Hence b,, = 0 if v.(=b) < t, therefore we

—b
consider vy (—b) > t. Let t/ = —-. Consider the congruence
7

G(z1,...,2,) = mod 7"
Let us denote the set of solutions of the above congruence by Cﬁlt. Let (01,...,0,) €
C’g)_t. From (oy,...,0,) we want to construct a solution (aq,...,,) such that

(cv1,..., ) € By,
Claim 3. B,, = {(a1, ..., ) | a; = w(oy + hyw™ "), 1 <i < n} for arbitrary h;’s.

Proof of Claim. (ay,...,a,) € By, since

Flay,...,a,) = F(r(oy+ha™™, .. 7(o, + b))

= 'G(oy + 7™ on + ha™ )
Its easy to see that

G(oy +h7™ " . . o+ h,m™ ) =G(oy,...,0,) mod 77"

Now G(oy,...,0,) =V modn™ . Therefore
Gloy + ™ o+ h,o™h) = ;—f mod 7"
©Goy + ™t op + hy™ ) = —bmod 7"
F(ag,...,a,) = —bmod ™

This implies (aq,...,®,) € B,. On the other hand given (ay,...,qa,) € By, let

«; = 7o;. Substituting it in F(xy,...,z,) we get

F(ay,...,a,) =7'G(01,...,0,) = —bmod 7"
—b
G(o1,...,0n) = - mod 7"
G(oy,...,0,) = b mod 7"
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This implies (oq,...,0,) € ¢, and any solution (v, ..., ) is of the above form
by taking h; = 0. O

Now «; = mo; + hym™ ', Since the h;’s were chosen arbitrarily, there are P!~!

choices of h,’s for each a;. Therefore there are ¢*=1" choices for (o, . .., a,). But we
started with a solution (o4, ...,0,) € ¢V, and constructed a solution (a1, ...,ap) €

B,,. Therefore it’s easy to see that b,, = cﬁ,ll),t ¢V for vy (—b) > t. Hence the
result. O
Therefore combining results in Lemmas 6.4.1 and 6.4.2 we have the following

result.

Lemma 6.4.3. Lett = 1I£li<rl {t;}. Then

¢

(g™ )", if1<m <t ve(=b) =m

b = ci,ll)_t SO i > o (—b) >t

0, if m>tu(=b) <torl<m<tuv(=b)<m

\

Now since ¢, = d,,, + b,, therefore number of solutions ¢, is given by

(

daygm—MD) 4 glm—tn. M <m <t vos(=b) >m
Cm — dMq(m_M)(n_l) + C’S’Vll)—t . q(t_l)n’ m 2 t’ 'Uﬂ_(—b) 2 t
dargm—Mn=1), if m > M and v,(—b) < m or v, (—=b) <t
\

where M = max {ni+evi}+ Ll +1 and ¢V, is the number of solutions of the
<i1s<n D —

congruence

—b
ettt 4 eyt = — mod 7
s

m—t

Copyright© Dibyajyoti Deb, 2010.
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Chapter 7 A Simple Example

In this chapter we present a simple example which illustrates the results of the pre-
vious two chapters. We keep all the notations from the previous chapters. We start

off with a very simple proposition.

7.1 Verifying previous results related to c,,

Proposition 7.1.1. Let f(xq,...,2,) = 6121 + g(xs, ..., z,) where € is a unit and
g(xa, ..., x,) s a polynomial of n—1 variables. Let ¢,, denote the number of solutions

of the congruence f(xy,...,x,) = 0mod 7™ and by, the number of non-primitive

m(n—1) (m—1)(n—1)

solutions of the same congruence. If|R/(7)| = q, then ¢,, = ¢ ,bm =¢q .

Proof. We fix zq, then there are ¢ choices for each zs,...,x,. Since € is a unit
therefore the congruence always has a solution and therefore c,, = (¢™)"~* = g™V,
Now to find the number of non primitive solution every z;’s has to be divisible by

7. Therefore there are ¢™~! choices for each z, ..., z,. Therefore b, = (g™ )"~ =

q(mfl)(nfl) N

In this chapter we fix g(z2,...,x,) = €229 + -+ - + €,x, + b. Therefore
f(x1, ... %) = €101 + €229 + - - - + €2, + .

Here €; is a unit, €,...,¢6, € R; and b € R,. Now using the same notations from
Section 5.2, we see that [ = lem(1,...,1) = 1, w; = 1, 1 < i < n. Therefore
C=u1+...+u,=n.

Since ¢,, = d,, + b,,, where d,,, is the number of primitive solutions, therefore by

Proposition 7.1.1, d,,, = ¢™"~1) — g(m=D=1),
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Applying Theorem 6.2.1, we have t = 1ri1j<n {t;} = 1. Since m > 1, therefore if

b#0,v:(—b) < 1, then

dMq(me)(nfl) — <qM(n71) . q(Mfl)(nfl))q(me)(nfl)
_ qm(n—l) i q(m—l)(n—l)
= dm

By Lemma 6.4.2, b,, = 0 when v,(—b) < 1. Therefore ¢,, = d,, and hence the result
of Theorem 6.2.1 is verified.

If b # 0,v,(—b) > 1, then by Theorem 6.2.1 we have

dygm= M=) c;ll)_l = (qM(n—l) _ q(M—l)(n—l))q(m—M)(n—l) 4 Cgi)—1
— qm(n—l) . q(m—l)(n—l) + 67(71)_1
where cf})_l is the number of solutions of the congruence

€111 + €39 + - + €,2, = — mod 7™}
T

b
Applying Proposition 7.1.1 with g(zo,...,x,) = €229 + - -+ + €,x, + —, we see that
™

01(713_1 g Cm—l g q(mfl)(nfl).

Therefore

dMq(m—M)(n—l) + C(l) _ qm(n—l) . q(m—l)(n—l) + q(m—l)(n—l) _ qm(n—l) _

m—1

which verifies Theorem 6.2.1.
Now when b # 0, then the result of Theorem 5.5.1 from Chapter 4, ¢,1 = ¢" e
is easily verified to be true when ¢, = g™ .

Now we verify the same results when b = 0. In this case v;(—b) = co. Therefore

vx(—=b) > 1 and by Theorem 6.2.1 we have

dMq(m—M)(n—l) Jr67%)_1 _ (qM(n—l) _ q(M—l)(n—l))q(m—M)(n—l) +Cg)_1
_ qm(nq) . q(mfl)(nfl) + b

m—1
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Applying Proposition 7.1.1 with g(xs, ..., z,) = €axg+ - - -+ €,2,, we see that cn}b)_l
Cm—l — q(mfl)(nfl)‘

Therefore

dMq(m—M)(n—l) +C(1)

= qm(n—l) . q(m—l)(n—l) + q(m—l)(n—l) _ qm(n—l) _

Crm.-

which verifies Theorem 6.2.1.

Now we verify the result from Chapter 4 when b = 0. By Proposition 5.4.5

df,?l_l_'_cmqnlic — d(mO)Jrl_i_Cmqnfn

= d$2)+1 + qm(n_l)

If 7 = 0, then by the definition of M(j) just before Proposition 5.2.2, we have
M(0) = 1{1&};{]\4 + 0; + t;(u; — 1)}. By Proposition 5.2.2, we have dgf;)ﬂ = ¢"1d¥)
for all m _Z_M (7). Therefore dfngzrl = d¥¢"~1. By looking at the definition of d'’ in
Section 5.2, it can be easily seen that 49 = d,,, the number of primitive solutions.

But d,,, = g™ — g(m=D("=1) Hence

10, g = ¥, 4 g

_ dgL))qn—l + qm(n—l)
_ (qm(n—l) . q(m—l)(n—l))qn—l + qm(n—l)
_ q(m+1)(n—1) . qm(n—l) + qm(n—l)
= ¢mth-1)

= Cm+41
Therefore ¢,41 = dﬁgll + @™ and hence the result from Proposition 5.4.5 is
verified. At last we compute the Poincaré series and compare it with our results from

previous chapters.
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7.2 Verifying the Poincaré series

The Poincaré series, Pf(y) is the formal power series 1 + Z ciy'. Therefore
i=1

Pi(y) = 1+ ¢y
i=1

1
1—qty

Now if b # 0, by Proposition 5.5.1 we have

Pily) = 1+ ﬁé o) 4 Gy
Yy) = GY _
! i=1 L=qly
mi (mi14+1)(n—1),mi+1
Lo . q Y
= 14+ qz(n l)yz +
1 — (qn—1y>m1+1 q(m1+1)(n—1)ym1+1

1—q"ly 1—q" 'y
1

L—q"ly

Now if b = 0 then by Proposition 5.5.2 we have

(1 o qn—ly) ((ZlMarl—lciyi) _ qnl—Cyl (Zf\/[o_lcz?f)) + ql(n—l)dg\(/)[)yM-i-l

(1 =g ty)(1 — qmi=Oyt)

Pi(y) =
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Due to our choice of the polynomial g, we have [ = 1,C' = n and dg\g) = M1 _

gM=D=1)  Therefore

(1 . qn71y> ((ZZMOqi(nl)yi> o y(zf\/[alqi(nl)yi>> + qnfldg\g)yMJrl

(1—-gy)(1—y)

n— _(n—1,\M+1 _(n—1,\M i n— 0
(1—¢"""y) ((%) - y(%y )) + gy M

(1—g"'y)(L—y)

Pi(y) =

1 — g DM MAL g 4 g(n=D)My M1 qn—l(qM(n—l) _ q(M—1)(n—1))yM+1
(1—q¢"'y)(1—-y)

_ -y
(1—q¢"'y)(1—-y)
B 1
1—q" 'y

Both of these expressions match with our findings at the beginning of the section and

hence the Poincaré series is verified.

7.3 Future Directions

Even though the work in this dissertation gives a complete picture of the Poincaré
series for a diagonal polynomial, there are still several unanswered questions which

could be tackled in the future. We next outline some of them.

e Geometric Properties - In our work we explicitly computed the Poincaré Series
for a general diagonal polynomial by finding the number of solutions to congru-
ences modulo powers of a prime. An interesting question to look at is whether
the expression for the Poincaré series gives us any insight into the variety de-
fined by our general diagonal polynomial. Can something be said about the

geometric properties of the variety.
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e Char R = p - The proof of Denef and Igusa assume that char R = 0. It is an
interesting question to ask whether the Poincaré series is rational when char
R = p, for a prime p. In this direction our method still holds when f is a
diagonal polynomial with the coefficients €q,..., €, and b being arbitrary and
the exponents tq, ..., t, being relatively prime to p. Is the same true when all

the parameters are arbitrary?

e Faxtending results of Goldman - Another problem of interest to me would be
extending results of Goldman that I stated in Theorem 2.1.3. In his theorem
Goldman restricts to strongly non-degenerate forms. Now suppose that for some

2k+1

fixed k we have F(aq,...,a,) = 0 mod 7 , such that there exists at least

, . 1 OF k41 .
one ¢ for which 6—@(041, ..y ap) Z 0mod 7t for every solution (o, ..., ;) of

F. Tt would be interesting to find ¢,, for m > 2k 4 1 in this case. This would

extend Goldman’s result, which is the special case when k = 0.

e Other types of polynomials - In this dissertation we looked at diagonal poly-
nomials and computed their Poincaré series explicitly. Can we do this for any
other types of polynomials and give explicit computations for their Poincaré

series?

Copyright© Dibyajyoti Deb, 2010.
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