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ABSTRACT OF DISSERTATION

ALGEBRAIC PROPERTIES OF FORMAL POWER SERIES COMPOSITION

The study of formal power series is an area of interest that spans many areas of mathematics. We
begin by looking at single-variable formal power series with coefficients from a field. By restricting
to those series which are invertible with respect to formal composition we form a group. Our focus
on this group focuses on the classification of elements having finite order. The notion of a semi-
cyclic group comes up in this context, leading to several interesting results about torsion subgroups
of the group. We then expand our focus to the composition of multivariate formal power series,
looking at similar questions about classifying elements of finite order. We end by defining a natural
automorphism on this group induced by a group action of the symmetric group.
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Chapter 1 Introduction

1.1 Motivation

The study of formal power series is an area of interest that spans many areas of mathematics, for

example analysis [2], combinatorics [14], commutative algebra [1], and dynamical systems [9]. This

work focuses primarily on the algebraic properties of the ring of formal power series with coefficients

from a field. Specifically, we will be looking at various results that arise with respect to formal com-

position of power series. Related work can be found in [7], [3], [5], [8], [11], and [12]

My interest in this topic can be traced back to a topics course on the subject taught by Edgar

Enochs in the spring semester of 2013. The question of which formal power series with integer

coefficients produced the single term x when composed with themselves was posed as an extra

credit question. After looking at this question, we began looking at which series in C[[x]] gave x

when composed with themselves any finite number of times, and eventually moved on to series with

coefficients from an arbitrary field.

We begin this work by looking at single-variable formal power series with coefficients from a

field. Elements of F [[x]] that are invertible with respect to formal composition form a group with

respect to this operation. We will build toward a classification of elements of finite order. Elements

of order 2 were classified Edward Kasner [7] and another classification can be found here [12]. We

build on both of these works to offer a new perspective on the topic.

From there we will introduce the concept of a semi-cyclic group, and use this notion to show

that torsion subgroups of invertible formal power series of this group are semi-cyclic groups. Fur-

thermore, this result is used to show that torsion subgroups of the same “size” must be conjugate

to one another.

Composition of formal power series can also be generalized to multivariate formal power series.

In order to have a well-defined generalization of formal composition of formal power series with n

variables, we need to consider n-tuples of such objects. Looking at n-tuples of formal power series

with n variables, we can define a group with respect to composition in a fashion similar to that

which was done with single variable formal power series. Here the question of how to classify series

of finite order with respect to composition becomes much more difficult. So, we will impose some

restrictions on the degree-one terms of these series in order to arrive at some similar results to those

found for single-variable formal power series.
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From there we move to defining several group actions of the symmetric group of n objects on

the set of n-tuples of formal power series over n variables. One of these group actions in particular,

offers a very natural group automorphism on the group of invertible n-tuples of formal power series.

Finally, we will end by looking at which n-tuples are fixed by this automorphism.

Copyright c© Thomas Scott Brewer, 2014.
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Chapter 2 Single-Variable Formal Power Series

2.1 Preliminaries

We begin by looking at the ring of formal power series over an arbitrary ringR. For more information

on this ring, see [2], [10], and [14]. Given a ring R and an indeterminant x, we consider the set of

formal symbols

a0 + a1x+ a2x
2 + · · · =

∞∑
n=0

anx
n

Definition 2.1.1. We define the sum of S(x) and T (x) to be(
∞∑
n=0

snx
n

)
+

(
∞∑
n=0

tnx
n

)
=
∞∑
n=0

anx
n

where

an = sn + tn

Definition 2.1.2. We define the product of S(x) by a scalar λ to be

λ

(
∞∑
n=0

snx
n

)
=
∞∑
n=0

λsnx
n

Definition 2.1.3. We define the product of S(x) and T (x) to be(
∞∑
n=0

snx
n

)
·

(
∞∑
m=0

tmx
m

)
=
∞∑
k=0

akx
k

where

ak =
∑

n+m=k

sntm

If R is a field, then with the above definitions 2.1.1 and 2.1.2, R[[x]] forms a vector space over

R. Multiplication defined in 2.1.3 is associative, so we also have that R[[x]] is a ring. If R is a

commutative ring, then so is R[[x]].

One important concept that we will make use of involves the ideal of R[[x]] generated by the

series consisting of a single term of the form xn for some natural number n. We will denote this

ideal (xn). We want to look at elements of R[[x]] modulo this ideal. Let a0 + a1x + a2x
2 + . . . be

any element of R[[x]]. We note that

a0 + a1x+ a2x
2 + · · · ≡ a0 + a1x+ a2x

2 + · · ·+ an−1x
n−1 mod (xn)

In other words, looking at elements modulo (xn) allows us to focus only on the terms having degrees

n− 1 and smaller. It is in regard to this notion that we have the following theorem.
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Theorem 2.1.4. Given S(x) =
∑∞

k=0 skx
k and T (x) =

∑∞
k=0 tkx

k in R[[x]] for some ring R, we

have S(x) = T (x) if and only if S(x) ≡ T (x) modulo (xn) for each n ≥ 0.

Proof. If S(x) = T (x), it is trivial that we get congruence modulo (xn) for each n ≥ 0. So let us

assume that we have S(x) ≡ T (x) modulo (xn) for each n ≥ 0. We want to show that, in fact,

S(x) = T (x). S(x) ≡ T (x) modulo (xn) means that S(x)− T (x) ∈ (xn). However, this gives that

s0 − t0 = s1 − t1 = · · · = sn−1 − tn−1 = 0

In other words, si = ti for i = 1, 2, . . . , n− 1. Furthermore, if this is true for each natural number

n, this gives us that S(x) = T (x).

The following definition will also prove useful.

Definition 2.1.5. Given S(x) =
∑∞

k=0 skx
k in R[[x]], we define the order of S(x) to be the least

n ≥ 0 such that sn 6= 0. If there is no such n, that is if S(x) = 0, we define the order to be the

symbol ∞.

We will denote the order of S(x) ∈ R[[x]] by ω(S(x)) or simply ω(S).

2.2 Composition of Formal Power Series

Here, for convenience, we suppose R is commutative. We now wish to define the operation of formal

composition on the ring R[[x]]. We do so as follows:

Definition 2.2.1. Let S(x) =
∑∞

k=0 skx
k and T (x) =

∑∞
k=1 tkx

k be elements of R[[x]] with ω(T ) >

0. We denote S(x)

S(x) = s0 + s1x+ s2x
2 + . . .

and we similarly denote T (x)

T (x) = t1x+ t2x
2 + . . .

We define the composition of S(x) composed with T (x), denoted S ◦T , to be the formal power series

U(x) in R[[x]] such that

U(x) = S ◦ T
= S(T (x))

= s1(T (x)) + s2(T (x))2 + . . .

= s1(t1x+ t2x
2 + . . . ) + s2(t1x+ t2x

2 + . . . )2 + . . .

=
∑∞

n=1 anx
n

where

an =
∑

k∈N, j1+···+jk=n

sktj1tj2 . . . tjk

4



Note that if we tried the above procedure with T (x) such that ω(T ) = 0, we would have

S ◦ T =
∞∑
k=0

sk(t0 + . . . )k = s1(t0 + . . . ) + s2(t0 + . . . )2 + . . .

In other words,

S ◦ T ≡ s1t0 + s2t
2
0 + s3t

3
0 + . . . modulo (x)

We can see that with many choices of t0, this value would be undefined. It is for this reason that we

restrict to only those elements with order greater than or equal to 1 when we look at composition.

Notice the following properties of composition of formal series.

Proposition 2.2.2. For S1, S2, and T in R[[x]], with ω(T ) > 0, we have that

1. (S1 + S2) ◦ T = (S1 ◦ T ) + (S2 ◦ T )

2. (S1 · S2) ◦ T = (S1 ◦ T ) · (S2 ◦ T )

Proof. Both of these results follow from the definitions above. Let S1(x) =
∑∞

n=0 anx
n, T (x) =∑∞

n=0 bnx
n, and T (x) =

∑∞
n=1 tnx

n be elements of R[[x]]. Then we have that

S1 + S2 =
∞∑
n=0

(an + bn)xn

Thus,

(S1 + S2) ◦ T =
∞∑
n=0

cnx
n

where cn =
∑

k∈N,j1+···+jk=n (ak + bk)tj1tj2 . . . tjk
On the other hand,

S1 ◦ T =
∞∑
n=0

dnx
n where dn =

∑
k∈N,j1+···+jk=n

aktj1tj2 . . . tjk

and

S2 ◦ T =
∞∑
n=0

enx
n where en =

∑
k∈N,j1+···+jk=n

bktj1tj2 . . . tjk

Notice that cn = dn + en. Hence, (S1 ◦ T ) + (S2 ◦ T ) is also equal to
∑∞

n=0 cnx
n.

For the second part, notice that

S1 · S2 =
∞∑
n=0

cnx
n where cn =

∑
n1+n2=n

an1bn2

Thus,

(S1S2) ◦ T =
∞∑
n=0

dnx
n where dn =

∑
k∈N, j1+···+jk=n

( ∑
k1+k2=k

ak1bk2

)
tj1tj2 . . . tjk

5



On the other hand

S1 ◦ T =
∞∑
n=0

dnx
n where dn =

∑
k∈N, j1+···+jk=n

aktj1tj2 . . . tjk

Likewise,

S2 ◦ T =
∞∑
n=0

enx
n where en =

∑
k∈N, j1+···+jk=n

bktj1tj2 . . . tjk

So when we take the product of S1 ◦ T and S2 ◦ T , we get

∞∑
n=0

fnx
n where fn =

∑
n1+n2=n

( ∑
k∈N, j1+···+jk=n1

aktj1tj2 . . . tjk

)( ∑
k∈N, j1+···+jk=n2

bktj1tj2 . . . tjk

)
However, this is the same as ∑

k∈N, j1+···+jk=n

( ∑
k1+k2=k

ak1bk2

)
tj1tj2 . . . tjk

Thus, (S1 · S2) ◦ T = (S1 ◦ T ) · (S2 ◦ T )

Proposition 2.2.3. For a given T (x) ∈ R[[x]] with ω(T ) > 0, the map φ : R[[x]] → R[[x]] which

sends S(x) 7→ S ◦ T is a homomorphism.

Proof. This follows from Proposition 2.2.2

Proposition 2.2.4. The single-term element x ∈ R[[x]] is an identity element with respect to

composition.

Proof. This result is trivial. For any S(x) = s0 + s1x+ s2x
2 + . . . , we clearly see that

x ◦ (s0 + s1x+ s2x
2 + . . . ) = (s0 + s1x+ s2x

2 + . . . ) ◦ x = s0 + s1x+ s2x
2 + . . .

Proposition 2.2.5. Let S(x) =
∑∞

k=0 skx
k, T (x) =

∑∞
k=1 tkx

k, and U(x) =
∑∞

k=1 ukx
k be elements

of R[[x]] such that ω(T (x)) and ω(U(x)) are greater than zero. Then,

(S ◦ T ) ◦ U = S ◦ (T ◦ U)

In other words, composition of elements of R[[x]] is associative.

Proof. Since ω(T (x)) > 0 and ω(U(x)) > 0 both sides of this equation are defined. First suppose

S(x) = sxk is a monomial. Then (S ◦ T ) ◦ U = (s(T (x))k) ◦ U = s(T ◦ U)k by Proposition

2.2.2. If S is not a monomial, then we think of S as an (infinite) sum of its monomials. So

S ◦ T =
∑∞

n=0 sn(T (x))n. It follows that

(S ◦ T ) ◦ U =

(
∞∑
n=0

sn(T (x))n

)
◦ U =

∞∑
n=0

sn(T ◦ U)n = S ◦ (T ◦ U)

6



Proposition 2.2.6. Given a commutative ring R, let S(x) = s1x + s2x
2 + · · · ∈ R[[x]], then S(x)

has an inverse T (x) = t1x + t2x
2 + . . . in R[[x]] with respect to composition if and only if s1 is a

unit in R.

Proof. Suppose that T (x) is such an inverse of S(x). Then we have that S ◦ T = x. Note that

S ◦ T ≡ s1t1x modulo (x2)

So we have that s1t1 = 1. Thus, it follows that s1 (as well as t1) is a unit in R.

On the other hand suppose S(x) = s1x + s2x
2 + · · · ∈ R[[x]] is such that s1 ∈ R is a unit. We

want to identify coefficients t1, t2, . . . such that T (x) = t1x + t2x
2 + . . . is an inverse of S(x). We

do this inductively by looking at the coefficients of S ◦ T for each term.

Note that we have already said that the coefficient of x in S ◦ T is s1t1. Since we want this to

be 1, we let

t1 = s−11

The coefficient of x2 is s1t2 + s2t
2
1. Since we want this coefficient to be zero, we let

t2 = s−11 (−s2t21)

We continue in this fashion. Note that for the general case, for some natural number k, the

coefficient of xk will be given by

s1tk + C(k)

where C(k) ∈ R is a value given by an expression involving only coefficients t1, t2, . . . tk−1 and

coefficients of S(x) itself. if we assume we have already defined coefficients t1, t2, . . . tk−1, then we

just let

tk = s−11 C(k)

in this fashion we define a value for each ti to arrive at a series T (x) = t1x+ t2x
2 + . . . for which

S ◦ T = x.

Since t1 is also a unit in R, this same argument gives us that there exists a series U(x) ∈ R[[x]]

such that T ◦ U = x. However, we easily see that U(x) = S(x), since

S = S ◦ x = S ◦ T ◦ U = x ◦ U = U

Therefore, we have that S ◦ T = T ◦ S = x.

Now we define the subset I ⊂ R[[x]] to be the set of all S(x) = s1x + s2x
2 + · · · ∈ R[[x]] such

that ω(S) = 1 and s1 is a unit in R.

Theorem 2.2.7. The subset I ⊂ R[[x]] along with the operation of composition forms a group.

Proof. This follows from the previous three propositions.

7



2.3 The Group of Invertible Formal Power Series With Respect to Composition

From now on, we will be looking at the formal power series with coefficients from a field F with

characteristic p. Note that p can be either a prime or zero. Also note that all a ∈ F such that a 6= 0

are units. So the group I ⊂ F [[x]] in this context can be defined to be the set of all S(x) ∈ F [[x]]

such that ω(S) = 1. In this section, it is our goal to determine which elements of I have finite order.

The final two theorems of this chapter, Theorem 2.5.1 and Theorem 2.5.4, will give us two ways

of classifying such elements. The first of these results, Theorem 2.5.1, is known [12]. The second,

Theorem 2.5.4, is closely related but examines the idea of classifying elements of finite order in I

in a new way.

At this time we also should clarify a bit of notation. Since we will be composing elements

S(x) ∈ F [[x]] with themselves multiple times, we denote this the following way: For a natural

number k, The composition of k copies of S(x) is denoted (S(x))(k) or simply S(k). Along with

this, the inverse for a formal power series S(x) ∈ F [[x]] with respect to composition will be denoted

(S(x))(−1) or simply S(−1). We reserve the notation Sk to refer to the usual notion of k copies of

S(x) multiplied together.

Now let S(x) = εx+ s2x
2 + s3x

3 + · · · ∈ F [[x]] be such that S(n) = x. We begin by making the

following observations:

Proposition 2.3.1. For S(x) as above, ε ∈ F is such that εn = 1.

Proof. We consider S(n) modulo x2. Note that

S(n) = S(x) ◦ S(x) ◦ · · · ◦ S(x)

≡ (εx) ◦ (εx) ◦ · · · ◦ (εx)( mod x2)

= εnx

So we see that if S(n) = x, that it must be that εn = 1.

Proposition 2.3.2. If p does not divide n, then ε = 1 implies S(x) = x.

Proof. Suppose S(x) = x+ s2x
2 + s3x

3 + . . . and S(n) = x. Then it must be that S(x)(n) ≡ x (mod

xm) for all m ∈ N.

Consider S(n) modulo x3. We see that

S(n) = (x+ s2x
2) ◦ (x+ s2x

2) ◦ · · · ◦ (x+ s2x
2) = x+ ns2x

2

Since we assume S(n) = x, we must have that ns2 = 0, i.e., s2 = 0.

Now suppose that we have s2 = s3 = · · · = sk−1 = 0, and consider S(n) modulo xk+1. We have

that

S(n) = (x+ skx
k) ◦ (x+ skx

k) ◦ · · · ◦ (x+ skx
k) = x+ nskx

k

Thus, it must be that sk = 0.

8



By induction, we have that sk = 0 for all k. Hence, S(x) = x.

So from here on, we address the case that ε is a primitive nth root of unity (or ε has order n in

the multiplicative group F ∗), and S is a nth root of x for n ≥ 2. Consider the following proposition:

Proposition 2.3.3. If p does not divide n, and S(n) = x where S(x) is of the form S(x) =

εx+ axkn+1 + . . . , for some integer k, then a = 0.

Proof. We consider S(n) modulo xkn+2. So we have

S(n) = S(x) ◦ S(x) ◦ · · · ◦ S(x)

≡ (εx+ axkn+1) ◦ (εx+ axkn+1) ◦ · · · ◦ (εx+ axkn+1)( mod xkn+2)

= εnx+ nεn−1axkn+1

= x+ nεn−1axkn+1

Now since we assume S(n) = x, it must be that nεn−1a = 0. Hence, we have that a = 0.

2.4 Conjugates of Formal Power Series

We now turn our attention to taking conjugates in F [[x]] under composition. Consider the following:

Proposition 2.4.1. If S ∈ F [[x]] such that S(n) = x, then for any conjugate R = T (−1) ◦ S ◦ T ,

R(n) = x.

Proof. Note that if R = T (−1) ◦ S ◦ T for some T ∈ F [[x]] and S(n) = x, we have that

R(n) = (T (−1) ◦ S ◦ T )(n)

= (T (−1) ◦ S ◦ T ) ◦ (T (−1) ◦ S ◦ T ) ◦ · · · ◦ (T (−1) ◦ S ◦ T )

= T (−1) ◦ S ◦ (T ◦ T (−1)) ◦ S ◦ (T ◦ T (−1)) ◦ · · · ◦ (T ◦ T (−1)) ◦ S ◦ T
= T (−1) ◦ S(n) ◦ T
= T (−1) ◦ x ◦ T
= T (−1) ◦ T
= x

So we clearly see that if R is conjugate to S, then R(n) = x.

Proposition 2.4.2. If T ∈ F [[x]] is of the form T (x) = x+ bmx
m + . . . , where m ≥ 2, then T (−1)

is of the form T (−1)(x) = x− bmxm + . . . .

Proof. Suppose T (−1)(x) = c1x+ c2x
2 + . . . . Then for k ≤ m, since T ≡ x( mod xk), we have that

T (−1) ◦ T ≡ T (−1)( mod xk)

Hence, we see that c1 = 1 and c2 = c3 = · · · = cm−1 = 0.
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Furthermore, if we consider T (−1) ◦ T modulo xm+1, we see that

T (−1) ◦ T ≡ x+ cmx
m ◦ x+ bmx

m( mod xm+1)

= x+ bmx
m + cmx

m

Since we know T (−1) ◦ T = x, it must be that cm = −bm.

Proposition 2.4.3. If S(x) = εx+ a2x
2 + a3x

3 + . . . and T (x) = x+ bmx
m, then T (−1) ◦ S ◦ T is

of the form

T (−1) ◦ S ◦ T = εx+ a2x
2 + · · ·+ am−1x

m−1 + cxm + . . .

for c = am + bmε(1− εm−1).

Proof. By the Proposition 2.4.2, we know that T (−1)(x) = x − bmx
m + . . . . Now note that any

polynomial of the form (x+ bmx
m)k will only have one term of degree less than m+ 1, namely, xk.

In other words, (x+ bmx
m)k ≡ xk (mod xm+1). So we have

T (−1) ◦ S ◦ T ≡ x− bmxm ◦ εx+ a2x
2 + · · · ◦ x+ bmx

m( mod xm+1)

≡ x− bmxm ◦ ε(x+ bmx
m) + a2(x+ bmx

m)2 + · · ·+ am(x+ bmx
m)m( mod xm+1)

≡ x− bmxm ◦ εx+ a2x
2 + · · ·+ am−1x

m−1 + (am + εbm)xm( mod xm+1)

≡ εx+ a2x
2 + · · ·+ am−1x

m−1 + (am + εbm)xm − bmεmxm( mod xm+1)

≡ εx+ a2x
2 + · · ·+ am−1x

m−1 + (am + εbm − bmεm)xm( mod xm+1)

≡ εx+ a2x
2 + · · ·+ am−1x

m−1 + cxm( mod xm+1),

where c = (am + bmε− bmεm).

This proposition also leads to the following corollaries:

Corollary 2.4.4. If m− 1 does not divide n, then given any c ∈ F , we can choose bm such that

T (−1) ◦ S ◦ T = εx+ a2x
2 + · · ·+ am−1x

m−1 + cxm + . . .

for S(x) = εx+ a2x
2 + a3x

3 + . . . and T (x) = x+ bmx
m.

Proof. From the previous proposition, we see that we can choose

bm =
c− am

ε(1− εm−1)

to get any desired value for c, as long as εm−1 6= 1.

Specifically, we may choose bm so that c = 0, i.e.,

T (−1) ◦ S ◦ T = εx+ a2x
2 + · · ·+ am−1x

m−1 + 0xm + . . .
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Corollary 2.4.5. If S(x) = εx+ a2x
2 + a3x

3 + . . . where ε, a2, a3, . . . , am−1 are given and we allow

am to vary, and T (x) = x + bmx
m is given, then the map which sends am 7→ c (c as above)is a

bijection.

Proof. From the previous proposition, we see that for any particular am,

T (−1) ◦ S ◦ T = εx+ a2x
2 + · · ·+ am−1x

m−1 + cxm + . . .

where c = (am + bmε− bmεm). So am 7→ c is injective.

On the other hand, if we want a given value c ∈ F , we need only let am = c− bmε(1− εm−1) to

have am 7→ c. So this map is also surjective.

2.5 Classifying Series of Finite Order

We now come to our main results of the chapter. Again we recall that first of these results is known

[12]. However our proof is new and can be used in later work with multivariate formal power series.

A proof is nonetheless worth including here as later work with multivariate formal power series will

use similar ideas. Also, techniques used up to this point and further used in the proof, assist in our

general understanding of the subject matter and, specifically, in proving Theorem 2.5.4 below.

Theorem 2.5.1. For F a field of characteristic p - n, ε ∈ F such that |ε| = n and S(x) =

εx+
∑∞

i=2 aix
i ∈ F [[x]], we have that S(n) = x if and only if S is conjugate to εx.

Proof. Note εx is clearly a nth root of x, since we are assuming |ε| = n. So if T (−1) ◦ S ◦ T = εx for

some T ∈ F [[x]], it follows from Proposition 2.4.1 that S(n) = x.

On the other hand, suppose S(n) = x. We can use our previous observations to show that S is

conjugate to εx. By Corollary 2.4.4, we can choose a b2 such that if T2(x) = x+ b2x
2, we have that

S2 = T
(−1)
2 ◦ S ◦ T2 = εx+ a′3x

3 + . . .

If n 6= 2, then we continue by choosing a b3 such that if T3(x) = x+ b3x
3, we have

S3 = T
(−1)
3 ◦ S2 ◦ T3 = εx+ a′4x

4 + . . .

Now we can continue in this fashion until we have

Sn = T (−1)
n ◦ Sn−1 ◦ Tn = εx+ a′n+1x

n+1 + . . .

However, by construction we have that Sn is a conjugate of S, and we assume that S(n) = x. It

follows that S
(n)
n = x. Furthermore, we see that Sn = εx+ a′n+1x

n+1 + . . . , so by Proposition 2.3.3,

we know that it must be that an+1 = 0. So we let Sn+1 = Sn = εx + a′n+2x
n+2 + . . . , and we can
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proceed as above by choosing Tn+2 = x + bn+2x
n+2, Tn+3 = x + bn+3x

n+3, . . . , T2n = x + b2nx
2n.

Then we have

S2n = T
(−1)
2n ◦ S2n−1 ◦ T2n = εx+ a′2n+1x

2n+1 + . . .

Again by Proposition 2.3.3, it must be that a2n+1 = 0. We proceed in this fashion.

So we claim that

. . . T
(−1)
2n ◦ · · · ◦ T (−1)

n+2 ◦ T (−1)
n ◦ · · · ◦ T (−1)

2 ◦ S ◦ T2 ◦ · · · ◦ Tn ◦ Tn+2 ◦ · · · ◦ T2n ◦ · · · = εx

We must now turn our attention to showing that T2 ◦ · · · ◦ Tn ◦ Tn+2 ◦ · · · ◦ T2n ◦ . . . and . . . T
(−1)
2n ◦

· · · ◦ T (−1)
n+2 ◦ T

(−1)
n ◦ · · · ◦ T (−1)

2 are well-defined. So we consider T2 ◦ · · · ◦ Tn ◦ Tn+2 ◦ · · · ◦ T2n ◦ . . .
modulo xm for all m ∈ N.

Now for any k ∈ N, note that Tk = x + bkx
k ≡ x (mod xm), for k ≥ m. Hence, modulo xm,

we have that the infinite composition T2 ◦ · · · ◦ Tn ◦ Tn+2 ◦ · · · ◦ T2n ◦ . . . is equivalent to the finite

composition T2 ◦ · · · ◦ Tn ◦ Tn+2 ◦ · · · ◦ T2n ◦ . . . Tk, where k is the largest subscript in our infinite

composition that is less than or equal to m. Since this finite composition is well-defined for each

value of m, we have that T2 ◦ · · · ◦ Tn ◦ Tn+2 ◦ · · · ◦ T2n ◦ . . . is well-defined.

Similarly, it follows that . . . T
(−1)
2n ◦ · · · ◦ T (−1)

n+2 ◦ T
(−1)
n ◦ · · · ◦ T (−1)

2 is well-defined.

However, this gives us that

. . . T
(−1)
2n ◦ · · · ◦ T (−1)

n+2 ◦ T (−1)
n ◦ · · · ◦ T (−1)

2 ◦ S ◦ T2 ◦ · · · ◦ Tn ◦ Tn+2 ◦ · · · ◦ T2n ◦ · · · = εx

Here it is worth revisiting some of the first results from section 2.4, namely Proposition 2.3.1

and Proposition 2.3.2. These results were provided earlier because they are fairly clear an give

some early insight into the topic. However, neither are needed to prove the previous theorem, and

both follow nicely as corollaries of this theorem. So even though they were presented earlier, we list

them again here to emphasize their relation to the previous result.

Corollary 2.5.2. If S(x) = εx+ . . . has order n in I, then ε has order n in the multiplicative group

F ∗.

Proof. This result is actually stronger than Proposition 2.3.1 and follows immediately from the

previous theorem. We know that S has finite order if and only if S is conjugate to εx. Clearly S

and εx have the same order, and clearly εx has the same order as does ε as an element of F ∗.

Corollary 2.5.3. (Proposition 2.3.2 )let S(x) = εx + · · · ∈ I be such that S(n) = x. If p does

not divide n, then ε = 1 implies S(x) = x.

Proof. If S(n) = x, then S is conjugate to εx and will have the same order as εx. So if ε = 1, εx = x

has order 1. Thus, S has order 1. Hence, S(x) = x.

Here is another way of thinking about elements of I that have finite order.
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Theorem 2.5.4. Given arbitrary a2, a3, . . . an, an+2, . . . , a2n, a2n+2, . . . in F , we can choose unique

an+1, a2n+1, . . . so that S(x) = εx+ a2x
2 + . . . is an n-th root of x.

Proof. First, let a2, a3, . . . an, an+2, . . . , a2n, a2n+2, . . . in F be given. We want to show that we can

chose an+1, a2n+1, . . . so that S(x) = εx + a2x
2 + . . . is an n-th root of x. By Theorem 2.5.1, it

suffices to show that there exist an+1, a2n+1, · · · ∈ F so that S(x) = εx + a2x
2 + . . . is a conjugate

of εx.

So we begin with εx and proceed in a fashion similar to that found in the proof to Theorem

2.5.1. By Corollary 2.4.4, we can find a T2 and T
(−1)
2 such that

T
(−1)
2 ◦ εx ◦ T2 = εx+ a2x

2 + . . .

Similarly we can choose T3, T4, . . . , Tn ∈ F [[x]] such that

T (−1)
n ◦ · · · ◦ T (−1)

3 ◦ T (−1)
2 ◦ εx ◦ T2 ◦ T3 ◦ · · · ◦ Tn = εx+ a2x

2 + a3x
3 + . . . anx

n + . . .

We can then choose Tn+2, Tn+3, . . . , T2n ∈ F [[x]] so that we have

T
(−1)
2n ◦· · ·◦T

(−1)
n+2 ◦T (−1)

n ◦· · ·◦T (−1)
2 ◦εx◦T2◦· · ·◦Tn◦Tn+2◦· · ·◦T2n = εx+a2x

2+a3x
3+. . . a2nx

2n+. . .

Notice that in the above expression a2, a3, . . . an, an+2, an+3, . . . , a2n are all our previously chosen

values, while an+1 is simply some additional value in F .

We continue in this manner, choosing, T2n+2, T2n+3, . . . , T3n , . . . . Then we define

T = T2 ◦ · · · ◦ Tn ◦ Tn+2 ◦ · · · ◦ T2n ◦ . . .

T (−1) = . . . T
(−1)
2n ◦ · · · ◦ T (−1)

n+2 ◦ T (−1)
n ◦ · · · ◦ T (−1)

2

Notice that this gives us

T (−1) ◦ εx ◦ T = S(x) = εx+ a2x
2 + . . .

where a2, a3, . . . an, an+2, . . . , a2n, a2n+2, . . . are our previously chosen values, and an+1, a2n+1, . . . are

some other values in F . Now since this S(x) is a conjugate of εx, we know that S(x)(n) = x by Propo-

sition 2.4.1. So, we have found a series with our given values a2, a3, . . . an, an+2, . . . , a2n, a2n+2, . . .

that is an nth root of x in F [[x]].

Now it remains to show that these values of an+1, a2n+1, . . . are unique. So in addition to S(x)

as above, let us define S ′(x) = εx+ a′2x
2 + a′3x

3 + . . . . Suppose that the for all coefficients am and

a′m where m is not of the form kn + 1, we have that am = a′m, i.e., all coefficients of S ′ are the

same as the corresponding coefficients of S except possibly for a′n+1, a
′
2n+1, . . . . Further, suppose

that both are nth roots of x, i.e., S(n) = S ′(n) = x.

Then by Theorem 2.5.1, we know that S is a conjugate of εx. So there are T, T (−1) ∈ F [[x]]

such that T (−1) ◦ S ◦ T = εx. So we also consider T (−1) ◦ S ′ ◦ T . Now for k ≤ n, S ≡ S ′ (mod xk).

So it follows that

T (−1) ◦ S ′ ◦ T ≡ εx+ an+1 x
n+1 mod xn+2
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for some an+1 ∈ F . However, the fact that S ′(n) = x implies (εx + an+1 x
n+1)(n) ≡ x (mod xn+2)

by Proposition 2.4.1. This further implies, by Proposition 2.3.3, that an+1 = 0. However, by the

bijective correspondence seen in Corollary 8, this implies that an+1 = a′n+1.

A similar argument gives us that a2n+1 = a′2n+1, a3n+1 = a′3n+1, . . . . Thus, we see that the choice

of coefficients an+1, a2n+1, . . . is unique.

We conclude this chapter by noting that Theorem 2.5.4 gives a new description of the conjugate

class of εx in I. If F is the Galois field of order p > 0 (p a prime), i.e. F = GF (p), then Klopsch

[8] in his thesis described the conjugacy classes of elements of order p in the corresponding group

I. There seems to be little known about the conjugacy classes for elements of order pk (k ≥ 2) and

even whether there exist elements of these orders. We note that the group I in this situation is

usually called the Nottingham group.

Copyright c© Thomas Scott Brewer, 2014.
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Chapter 3 Semi-Cyclic Groups and an Application to Formal Power Series

3.1 An Introduction to Semi-Cyclic Groups

In this Chapter we will build toward a result concerning torsion subgroups of I. Specifically, we

want to show that any two torsion subgroups of I of the same size are, in fact, conjugate to one

another. In order to arrive at this result involving torsion subgroups, we first discuss what we call

semi-cyclic groups, and prove the theorem below:

Theorem 3.1.1. If G is an abelian group, then the following are equivalent:

1. G = ∪∞n=1 (an), where (a1) ⊂ (a2) ⊂ . . . are finite cyclic groups

2. Every finitely generated subgroup of G is cyclic of finite order.

3. All the elements of G have finite order and for a, b ∈ G, |(a, b)| = lcm(|a|, |b|)

4. All elements of G are of finite order and for a, b ∈ G, (b) ⊂ (a) if and only if |b| divides |a|.

5. All the elements of G have finite order and for a, b ∈ G, |(a) ∩ (b)| = gcd(|a|, |b|)

6. G is the weak direct product of a family of subgroups indexed by the primes p where for each

p the factor indexed by p is isomorphic to Z/(pn), for n ≥ 0, or to Z(p∞)

Definition 3.1.2. Groups that satisfy the conditions of Theorem 3.1.1 we will refer to as semi-

cyclic groups.

As we will see below, it turns out that torsion subgroups of the group I are semi-cyclic groups.

Using this fact, it is not difficult to show that any two torsion subgroups of I having the same order

are conjugate to one another.

3.2 Preliminaries

In order to accomplish our goal, we must first introduce a few preliminary ideas. First, the following:

Recall that Z(p∞) is the subgroup of Q/Z generated by the elements 1/pn+Z, n ≥ 0. So Z(p∞)

is the union of the cylcic groups

(1/p+ Z) ⊂ (1/p2 + Z) ⊂ . . .

of order p, p2, . . .

Lemma 3.2.1. If a, b ∈ G (an abelian group) where a, b are of finite order, there is an element

c ∈ (a, b) whose order is lcm(|a|, |b|)
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Proof. Let |a| = pk11 p
k2
2 . . . pkss and |b| = pl11 p

l2
2 . . . p

ls
s where p1, p2, . . . , ps are distinct primes. Then

|ap
k2
2 ...pkss | = pk11 and |bp

l2
2 ...p

ls
s | = pl11 . Proceeding in a similar manner we see that in (a) there are

elements of order pk11 , p
k2
2 , . . . , p

ks
s and in (b) there are elements of order pl11 , p

l2
2 , . . . , p

ls
s .

For each i, 1 ≤ i ≤ s we choose an element ci in (a) or in (b) (so in (a, b)) which has the largest

of the two orders pkii or plii . Then c = c1c2 . . . cs has order lcm(|a|, |b|)

Lemma 3.2.2. Let G be an abelian group, and suppose for all a, b ∈ G, we have that |(a, b)| =

lcm(|a|, |b|). Then for a, b ∈ G such that |a| = |b|, we have that (a) = (b).

Proof. We have that |(a, b)| = lcm(|a|, |b|) = |a| = |b|. So since (a) ⊂ (a, b), we have that (a) =

(a, b). Similarly, (b) = (a, b). So (a) = (b).

Corollary 3.2.3. Let G be an abelian group, and suppose for all a, b ∈ G, we have that |(a, b)| =

lcm(|a|, |b|). Then, if |b| divides |a|, then (b) ⊂ (a).

Proof. There is a subgroup of (a), say (a′), such that |(a′)| = |b| (since |b| divides |a|). Hence

|a′| = |b|. So by the above lemma, (b) = (a′) ⊂ (a).

Now, we let A be any torsion abelian group with operation +. To say A is torsion just means

that every element of A has finite order. For ever prime p let Ap ⊂ A consist of the elements of A

whose order is a power of prime p. Clearly Ap is a subgroup of A.

Lemma 3.2.4. The sum
∑

pAp is a direct sum, and A =
⊕

pAp.

Proof. We first argue that the sum
∑

pAp is direct, or equivalently that Ap ∩ (
∑

q 6=pAq) = 0 for

all p. So suppose, on the contrary, x ∈ Ap ∩ (
∑

q 6=pAq). Since x ∈ Ap, we have pkx = 0 for

some k ≥ 0. Since x ∈
∑

q 6=pAq, we have qk11 q
k2
2 . . . qkss x = 0 for primes q1, q2, . . . qs 6= p. Since

gcd(pk, (q1, q2, . . . qs)) = 1, we see that x = 0.

Now since
⊕

pAp ⊂ A, it only remains to show that A ⊂
⊕

pAp. So let x ∈ A and let

|x| = pk11 p
k2
2 . . . pkss , where p1, p2, . . . , ps are distinct primes and k1, k2, . . . , ks are all nonnegative.

Then gcd(pk22 p
k3
3 . . . pkss , p

k1
1 p

k3
3 . . . pkss , . . . , p

k1
1 p

k2
2 . . . p

ks−1

s−1 ) = 1. So let

1 = l1p
k2
2 p

k3
3 . . . pkss + l2p

k1
1 p

k3
3 . . . pkss + · · ·+ lsp

k1
1 p

k2
2 . . . p

ks−1

s−1

Then we have that

x = 1x = l1p
k2
2 p

k3
3 . . . pkss x+ l2p

k1
1 p

k3
3 . . . pkss x+ · · ·+ lsp

k1
1 p

k2
2 . . . p

ks−1

s−1 x

However, note that pk11 (l1p
k2
2 p

k3
3 . . . pkss x) = 0. So, l1p

k2
2 p

k3
3 . . . pkss x ∈ Ap1 . Similarly, we have that

l2p
k1
1 p

k3
3 . . . pkss x ∈ Ap2 , etc.
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So, if we denote

x1 = l1p
k2
2 p

k3
3 . . . pkss x

x2 = l2p
k1
1 p

k3
3 . . . pkss x

...

xs = lsp
k1
1 p

k2
2 . . . p

ks−1

s−1 x

we have that

x = x1 + x2 + · · ·+ x2 ∈ Ap1 + Ap2 + · · ·+ Aps ⊂
⊕
p

Ap

Corollary 3.2.5. To give a subgroup B ⊂ A is equivalent to giving a subgroup of Ap for each p.

Proof. We note that for such an A and a subgroup B ⊂ A, we have Bp ⊂ Ap. Conversely, if Sp ⊂ Ap

is any subgroup and if B =
∑
Sp, it is easy to argue that Bp = Sp.

We also note that if B,C ⊂ A are subgroups, then (B ∩C)p = Bp ∩Cp and (B+C)p = Bp +Cp

for all p.

Recalling that the sum of cyclic groups of relatively prime finite orders is cyclic and that every

subgroup of a cyclic group is cyclic, we easily see that B ⊂ A is cyclic and if and only if each Bp is

cyclic and if Bp = 0 for all except a finite number of p.

We are now ready to prove Theorem 3.1.1.

3.3 Proof of Theorem 3.1.1

Theorem 3.1.1 If G is an abelian group, then the following are equivalent:

1. G = ∪∞n=1 (an), where (a1) ⊂ (a2) ⊂ . . . are finite cyclic groups

2. Every finitely generated subgroup of G is cyclic of finite order.

3. All the elements of G have finite order and for a, b ∈ G, |(a, b)| = lcm(|a|, |b|)

4. All elements of G are of finite order and for a, b ∈ G, (b) ⊂ (a) if and only if |b| divides |a|.

5. All the elements of G have finite order and for a, b ∈ G, |(a) ∩ (b)| = gcd(|a|, |b|)

6. G is the weak direct product of a family of subgroups indexed by the primes p where for each

p the factor indexed by p is isomorphic to Z/(pn), for n ≥ 0, or to Z(p∞)

Proof. (1 ⇒ 2): Every finitely generated subgroup is contained in one of the cyclic groups (an),

and so as a subgroup of a cyclic group it is cyclic.
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(2 ⇒ 3): If c ∈ (a, b), then clcm(|a|,|b|) = 1. But by (2), (a, b) is cyclic. Also there is a c ∈ (a, b)

with |c| = lcm(|a|, |b|). Since by the above lemma lcm(|a|, |b|) is the largest possible order of an

element of (a, b). So (a, b) = (c). This gives that |(a, b)| = |c| = lcm(|a|, |b|).
(3⇒ 4): This follows directly from Corollary 3.2.3.

(4 ⇒ 5): Note that gcd(|a|, |b|) is the largest natural number that divides both |a| and |b|, it

is the largest possible order of any common subgroup of (a) and (b). Specifically, (a) ∩ (b) is such

a subgroup. So we have that |(a) ∩ (b)| ≤ gcd(|a|, |b|). Now since gcd(|a|, |b|) divides |a| and (a)

is cyclic, (a) has a cyclic subgroup (a′) of order gcd(|a|, |b|). Furthermore, Since |a′| = gcd(|a|, |b|)
and gcd(|a|, |b|) divides |b|, condition (4) gives us that (a′) ⊂ (b). So we have that (a′) ⊂ (a) ∩ (b).

Hence, gcd(|a|, |b|) ≤ |(a) ∩ (b)|. Thus, it must be that |(a) ∩ (b)| = gcd(|a|, |b|).
(5 ⇒ 6): By Lemma 3.2.4 above, we have that A =

⊕
pAp. We now want to find out what it

means for such an A =
⊕

pAp to satisfy condition (4) in Theorem 1, i.e., all the elements of A have

finite order, and for any a, b ∈ A,

|(a) ∩ (b)| = gcd(|a|, |b|)

(recall that we are using the + notation)

First note that our previous remarks about subgroups of A imply that A satisfies condition (5) if

and only if each Ap satisfies condition (5). So now we ask what it means for Ap to satisfy condition

(5).

Let x, y ∈ Ap have orders pk and pl, respectively. Assume k ≤ l. By condition (5), with x as a

and y as b,

|(x) ∩ (y)| = gcd(pk, pl) = pk

So (x)∩(y) ⊂ (x). Furthermore, since these groups have the same order, we have that (x)∩(y) = (x).

Hence, (x) ⊂ (y).

So now we have that for x, y ∈ Ap, either (x) ⊂ (y) or (y) ⊂ (x). So, if Ap has an element x of

largest order pn, we have that Ap = (x) ∼= Z/(pn).

It remains to argue that if Ap does not have an element of largest order, then Ap ∼= Z(p∞). If

Ap doesn’t have an element of largest order, then for each n ≥ 1, there is an xn ∈ Ap of order pn.

But then

(x1) ⊂ (x2) ⊂ (x3) ⊂ . . .

Also, Ap = ∪∞n=1(xn), for if y ∈ Ap has order pk then (xk) = (y). Thus, y ∈ ∪∞n=1(xn). Hence

Ap = ∪∞n=1(xn). Now with this and

(x1) ⊂ (x2) ⊂ (x3) ⊂ . . .

we want to argue that we can assume

x1 = px2, x2 = px3, . . .
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Noting that |px2| = p = |x1|, we get that (x1) = (px2). So we could replace x1 with px2 and get

px2 = x1. We could then similarly replace x2 with px3. However, then we might loose the fact that

px2 = x1. So we consider the infinite diagram

(x1) ⊂ (x2) ⊂ (x3) ⊂ (x4) ⊂ . . .

= = = =

(px2) ⊂ (x2) ⊂ (x3) ⊂ (x4) ⊂ . . .

= = = =

(p2x3) ⊂ (px3) ⊂ (x3) ⊂ (x4) ⊂ . . .
= = = =

(p3x4) ⊂ (p2x4) ⊂ (px4) ⊂ (x4) ⊂ . . .

= = = =

...
...

...
...

Note that the group (x1) is finite. So among its elements, x1, px2, p
2x3, . . . , at least one of

the elements is repeated infinitely often. We call one such element y1. Now we redraw the above

diagram, but only using the rows beginning with (pkxk+1) where y1 = pkxk+1. Then we repeat the

procedure we used to find y1 with the second column to find a y2. Clearly, py2 = y1.

Repeating, we find a y3, y4, . . . , and we have that (y1) ⊂ (y2) ⊂ (y3) ⊂ . . . , with py2 = y1, py3 =

y2, . . . .

With this choice it is easy to establish an isomorphism. Note that (y1) = (x1), (y2) = (x2), (y3) =

(x3), . . . . We define

φ : Ap → Z(p∞)

by

φ(yn) =
1

pn
+ Z

So, (again with a change to + notation) we have (5) implies (6).

(6 ⇒ 1): We have that A =
⊕

pAp with each Ap isomorphic to Z/(pn) or Z(p∞). Recall that

Z(p∞) is the increasing union of a chain of cyclic groups. So then using a zig-zag procedure we can

find x1, x2, x3, · · · ∈ A with (xn) cyclic for each n and such that

(x1) ⊂ (x2) ⊂ (x3) ⊂ . . .

This completes our proof.

3.4 Properties of Semi-cyclic Groups

We now define what we mean by the order of a semi-cyclic group G.
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Definition 3.4.1. By condition (6) of Theorem 3.1.1, G is the weak direct product of a family of

subgroups Gp ⊂ G (p a prime), where G ∼= Z/(pn) or G ∼= Z(p∞) for each p. So we define the order

of G to be the formal symbol
∏

p p
kp = 2k23k35k5 . . . (p ranges over the primes), where each kp is

such that 0 ≤ kp ≤ ∞ and where kp = k if Gp
∼= Z/(pk), and where kp =∞ if Gp

∼= Z(p∞).

Jean-Pierre Serre called these symbols super-natural numbers in his Galois Cohomology [13].

He used them originally to define the order of a pro-finite group. However, they are also suitable

for defining the order of a semi-cyclic group.

Letting m and n be the supernatural numbers m =
∏

p p
kp and n =

∏
p p

lp , Serre says m|n if

and only if kp ≤ lp for each p. With these notions we can establish many claims about semi-cyclic

groups that correspond to similar results about cylcic groups.

Proposition 3.4.2. Every subgroup of a semi-cyclic group is semi-cyclic.

Proof. note that Z/(pn) has a (unique) subgroup of order Z/(pk) if and only if k ≤ n, i.e. if pk|pn.

We have a similar claim for Z(p∞), i.e. it has a (unique) subgroup of order pk for each k with

0 ≤ k ≤ ∞. Noting this, we see that our result follows directly from Corollary 3.2.5 above.

Proposition 3.4.3. Any two semi-cyclic groups of order N are isomorphic.

Proof. This result follows from condition (6) of Theorem 3.1.1.

Proposition 3.4.4. A semi-cyclic group G of order N has a unique (semi-cyclic) subgroup of order

M if and only if M divides N .

Proof. We just showed that any two semi-cyclic groups of order N are isomorphic. Based on this,

we can say that if H and G are semi-cyclic groups of order M and N , then also using condition

(6) of Theorem 1, it is easy to see that H is isomorphic to a (unique) subgroup of G if and only if

M |N .

Proposition 3.4.5. Quotient groups of semi-cyclic groups are themselves semi-cyclic.

Proof. Concerning this result, if H and G are semi-cyclic groups such that H is a subgroup of G,

then
G

H
=

⊕
Gp⊕
Hp

=
⊕ Gp

Hp

Clearly, each Gp

Hp
will be of the form Z/(pn) or Z(p∞).

In addition to these four propositions, we can also note that for supernatural numbers M and N

we can define gcd(M,N) and lcm(M,N) in the obvious fashion. With these notions we can further

show the following:

Proposition 3.4.6. If H and G are semi-cyclic groups of orders m,n respectively, then H ×G is

semi-cyclic if and only if gcd(m,n) = 1
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Proof. Let G and H be semi-cyclic groups of orders m,n respectively. Then by condition (6) of

Theorem 3.1.1, G =
∏

pGp and H =
∏

pHp are the weak direct product of families of subgroups

indexed by the primes p where for each p the factors indexed by p are isomorphic to Z/(pn), 0 ≤ n

or to Z(p∞). Furthermore, let eG and eH denote the respective identities of G and H.

Suppose gcd(m,n) 6= 1. Then we have that there is some prime p such that |Gp| = pk and

|Hp| = pl where neither k nor l are 0. So suppose we have 0 < k ≤ l. Let g ∈ Gp and h ∈ Hp

with |g| = pk and |h| = pl. Consider the cyclic subgroups (eG, h) and (g, eH). Note that we have

|(eG, h)| = pl, |(g, eH)| = pk, and

|(eG, h) ∩ (g, eH)| = |(eG, eH)| = 1 6= pk = gcd(|(eG, h)|, |(g, eH)|)

So by condition (5) of Theorem 3.1.1, G×H is not a semi-cyclic group.

On the other hand, suppose gcd(m,n) = 1. Then For each prime p, either |Gp| = 1 or |Hp| = 1.

Then we define a series of cyclic groups indexed by the primes as follows:

Fp =

Gp, if |Hp| = 1

Hp, if |Gp| = 1

This gives us

G×H ∼=
∏
p

Gp ×
∏
p

Hp
∼=
∏
p

Fp

where all above products depict weak direct products. Hence, we see that G × H is a semi-cyclic

group.

We make one last observation about a semi-cyclic group of order
∏

p p
kp . By condition (1) of

Theorem 3.1.1 we know that we can write G = ∪∞k=1(ak) where (a1) ⊂ (a2) ⊂ (a3) ⊂ . . . are finite

cyclic groups.

Furthermore, if G = ∪∞k=1(ak) and H = ∪∞k=1(bk) are semi-cyclic groups of the same order n,

then a1, a2, . . . and b1, b2, . . . can be chosen such that |a1| = |b1|, |a2| = |b2|, |a3| = |b3|, . . . . This is

easily seen if we note that if n =
∏

p p
kp then each of G and H is isomorphic to a common semi-cyclic

group K with K = ∪∞k=1(ck) (as above). If φ : K → G and ψ : K → H are isomorphisms, we only

need to let φ(ck) = ak and ψ(ck) = bk and we have our desired values for each ak and each bk.

For a basic example, consider any field F and let U ⊂ F be the set of all units in F . Then U

is a group under multiplication. Furthermore, we can easily see that U satisfies condition (4) of

Theorem 3.1.1. If a, b ∈ U and |b| divides |a| = k, then b is a root of the polynomial xk − 1 in

F [x]. However, we know that xk − 1 has at most k roots, which can all be found in the subgroup

(a). Thus, b ∈ (a) and (b) ⊂ (a).
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3.5 An Application with Formal Power Series

For another example, we return to consider the set of formal power series F [[x]] with coefficients

from some field F , along with the operation of composition of series. Here, for convenience, we

assume that F has characteristic 0. More specifically, we will once again be looking at our group I

of all invertible formal power series with respect to composition.

If we let G ⊂ I be any torsion subgroup of I, we find that G is a semi-cyclic group. For the rest

of this section we assume that F has characteristic 0 and that G ⊂ I is a torsion subgroup.

Before we proceed, we recall from Chapter 2 that a formal power series S has order n in I if and

only if S is conjugate to εx, for some ε ∈ F where ε has order n in F ∗. Furthermore, given such an

S, we can choose T ∈ I of the form x + . . . such that T (−1) ◦ S ◦ T = εx. Recall that for such an

S, we have S = εx+ . . . .

Now for power series T, S ∈ I, if we have that T (−1) ◦ S ◦ T = εx, then it is easy to see that the

degree 1 term of S must be εx. So we have that the order of S in I is the same as the order of its

degree 1 coefficient in the field F . One specific consequence of this is that the only power series of

finite order with degree one coefficient 1 would be the identity itself, x ∈ I.

Lemma 3.5.1. If k ≥ 1, the S ∈ I of the form

S = a1x+ ak+1x
k+1 + a2k+1x

2k+1 + . . .

form a subgroup of I.

Proof. If there is an ε ∈ F with |ε| = k, then these S are precisely the S such that S◦(εx) = (εx)◦S.

So they form a subgroup of I. If there is no such ε ∈ F , then, since F has characteristic 0, we

have an extension F ⊂ F ′ such that there is such an ε ∈ F ′. So again we see that these S form a

subgroup of I.

Note that if S1, S2, · · · ∈ I are of this form, where S ′n(0) = 1 for each n ≥ 1 (i.e. Sn = x+ . . . ),

and if S1 ◦ S2 ◦ S3 . . . converges to S, then S is also of this form.

Here, we also recall from the previous chapter that if we let S = εx+ axk+1 + . . . , where k ≥ 1

and |ε| = n, then if n does not divide k (i.e. ek 6= 1), there is a (unique) b ∈ F such that if

T = x+ bxk+1, then T (−1) ◦S ◦T = εx+ 0xk+1 + . . . . Furthermore, if |S| = n and n divides k, then

a = 0.

Now we turn our attention back to torsion subgroups of I. let G ⊂ I be a torsion subgroup.

Then

Theorem 3.5.2. G is abelian.

Proof. Let S1, S2 ∈ G. We want to show S1 and S2 commute, i.e., S
(−1)
2 ◦ S1 ◦ S2 = S1. Let

S3 = S
(−1)
2 ◦S1 ◦S2. Suppose |S1| = k. Then it follows that |S3| = k, since S1 and S3 are conjugate.
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However, since S1 and S3 are conjugate, we can write T (−1) ◦ S3 ◦ T = S1, for some T ∈ F [[x]] with

the additional property that T , and so T (−1), are of the form x+ . . . .

So T (−1) ◦ S3 ◦ T ◦ Sk−13 = x + . . . . However, since T (−1) ◦ S3 ◦ T ◦ Sk−13 ∈ G, we know that

T (−1) ◦ S3 ◦ TcircSk−13 has finite order. So, T (−1) ◦ S3 ◦ T ◦ Sk−13 = x. Hence, T (−1) ◦ S3 ◦ T = S3.

This gives us that

S1 = T (−1) ◦ S3 ◦ T = S3 = S
(−1)
2 ◦ S1 ◦ S2

Therefore, we have that S1 and S2 commute.

Theorem 3.5.3. G is a semi-cyclic group.

Proof. Let S1 = εx+ . . . and S2 = δx+ . . . be elements of G. Then S1 ◦ S2 = εδx+ . . . . Here we

note that |S1| = |ε|, |S2| = |δ|, and |S1 ◦ S2| = |εδ|. So it follows that lcm(|S1|, |S2|) = lcm(|ε|, |δ|).
Further, we know that, in F , |εδ| = lcm(|ε|, |δ|).

Now consider (S1, S2). Clearly, |(S1, S2)| ≤ lcm(|S1|, |S2|) Also, (S1◦S2) ⊂ (S1, S2). So |(S1◦S2)|
divides |(S1, S2)|. However, we now have that |(S1◦S2)| = |εδ| = lcm(|ε|, |δ|) = lcm(|S1|, |S2|). Thus,

lcm(|S1|, |S2|) divides |(S1, S2)|. Thus, lcm(|S1|, |S2|) = |(S1, S2)|. Hence, G is semi-cyclic.

This leads us to the following result about torsion subgroups of the group I:

Theorem 3.5.4. If F is a field of characteristic 0, then two torsion subgroups G,G′ ⊂ I of the

same order N (here a supernatural number) are conjugates in I.

Proof. We let G and G′ be two torsion subgroups of I having the same order. Since G and G′ are

torsion subgroups, we know that they are semi-cyclic. Since G and G′ are semi-cyclic with the same

order, part 6 of Theorem 3.1.1 gives us that G and G′ can be written as the union of chains of

finite cyclic subgroups

(S1) ⊂ (S2) ⊂ (S3) ⊂ . . .

(S ′1) ⊂ (S ′2) ⊂ (S ′3) ⊂ . . .

where G = ∪∞n=1(Sn) and G′ = ∪∞n=1(S
′
n), and each (Sn) and (S ′n) have the same order. We will

denote this value kn.

To show that G and G′ are conjugate, we first show that each are conjugate to a third semi-cyclic

subgroup of I, which we will call H and define as follows:

We know that a formal power series Sn has order kn if and only if it is conjugate to εnx. Here

we note that εn is the coefficient of the degree 1 term of Sn and also happens to be an element of

order kn in our field F . So we consider the chain of finite cyclic groups

(ε1x) ⊂ (ε2x) ⊂ (ε3x) ⊂ . . .
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where each εnx is conjugate to Sn ∈ G. Then we let H = ∪∞n=1(εnx). By construction, H is a

semi-cyclic group of the same order as G and G′.

Further, by construction we know that each (Sn) is conjugate to (εnx), i.e. (εnx) = T−1n ◦(Sn)◦Tn
for some Tn ∈ F [[x]]. Choosing such a T1, we consider, G1 = Tt−11 ◦ G ◦ T1. Note that G1 is the

union of the chain

(ε1x) ⊂ (S1
2) ⊂ (S1

3) ⊂ . . .

where each (S1
n) is conjugate to and, thus, has the same order as the original (Sn). Also, note that

G1 is commutative. So, specifically, S1
2 commutes with ε1x. This tells us that S1

2 is of the form

S1
2 = ε2x+ ak1+1x

k1+1 + a2k1+1x
2k1+1 + . . .

Since the only (potentially) non-zero terms of S1
2 have degree jk1 + 1 for natural numbers j, we

can choose T2, such that T
(−1)
2 ◦ S1

2 ◦ T2 = ε2x, to be of the form

T2 =
∞∏
j=1

(x+ bjk1+1x
jk1+1)

Notice that each term (x + bjk1+1x
jk1+1) will commute with ε1x. Hence, T2 will commute with

ε1x. So, we can conjugate G1 by T2, and doing so will leave (ε1x) unchanged. Furthermore, we now

have that G2 = T−12 ◦G1 ◦ T2 is the union of the chain

(ε1x) ⊂ (ε2x) ⊂ (s23) ⊂ . . .

where, again, each (S2
n) is conjugate to and, thus, has the same order as the original (Sn).

Now since G2 is commutative, S2
3 must be of the form

S2
3 = ε3x+ alx

l+1 + a2l+1x
2l+1 + . . .

where l = lcm(k1, k2). Therefore, as above, we can choose T3 to commute with ε1x and ε2x.

If we continue in this manner, we can find a T4, T5, . . . just as we found T2 and T3. Then, letting

T = T1 ◦ T2 ◦ T3 ◦ . . .

we get that

T−1 ◦G ◦ T = H

Here we should note that T as defined above is indeed well-defined. To see this, we need only

consider the composition T1 ◦ T2 ◦ T3 ◦ . . . modulo xm for all natural numbers m. Note that from

how T1, T2, T3, . . . were chosen, for any specific value of m, there will only be a finite number of

T1, T2, T3, . . . that are not congruent to x modulo xm. Thus, for each specific value of m, the

composition

T = T1 ◦ T2 ◦ T3 ◦ . . .
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is well-defined. Hence, T is well defined in general.

So now we have that G is conjugate to H = ∪∞n=1(εnx). By using the same process with G′,

we get that G′ is conjugate to the semi-cyclic group H ′ = ∪∞n=1(ε
′
nx), where again each ε′nx has

order kn. However, since both εnx and ε′nx have the same order for each value of n, we have that

(εnx) = (ε′nx). Hence, H = H ′. So we have that G and G′ are both conjugate to the same group.

Therefore, G and G′ are conjugate to one another.

Furthermore, we note that Theorem 3.5.4 holds for F of characteristic p > 0 with the additional

assumption that N is relatively prime to p.

Copyright c© Thomas Scott Brewer, 2014.
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Chapter 4 Multivariate Formal Power Series

4.1 The Group of Invertible Multivariate Series With Respect to Composition

In this chapter, it is our goal to generalize some of the questions and results mentioned in Chapter

2 to multivariate formal power series. In order to do this, we must first define formal composition

for multivariate series. In this section, we again let F be a field with characteristic 0 or p for some

prime p. If we consider two formal series in n variables, S, T ∈ F [[x1, x2, . . . , xn]], we notice that

it is unclear how one might go about composing S with T or vice versa. Instead we look, not at

individual multivariate series, but at n-tuples of formal power series in n variables. So here, we

are looking at elements of the ring F [[x1, x2, . . . , xn]]n, as opposed to simply F [[x1, x2, . . . , xn]]. If

S = (S1, S2, . . . , Sn) and T = (T1, T2, . . . , Tn) are two elements of F [[x1, x2, . . . , xn]]n, for which each

individual series, S1, S2, . . . , Sn, T1, T2, . . . , Tn has no degree 0 coefficient, then we can define the

composition, S ◦ T to be the following:

Definition 4.1.1.

S ◦ T = (S1(T1, T2, . . . , Tn), S2(T1, T2, . . . , Tn), . . . , Sn(T1, T2, . . . , Tn))

Again, we note here that each individual power series must have no constant term, that is, for

each S1, S2, . . . , Sn, T1, T2, . . . , Tn, we must have Si(0, 0, . . . , 0) = 0 and Ti(0, 0, . . . , 0) = 0. This

is required for much the same reason we cannot compose two single variable formal power series

unless the constant term is zero. Suppose for example T1 = 1 + . . . and S1 (or any individual series

Si of S = (S1, S2, . . . , Sn)) had infinitely many terms containing powers of the variable x1, then we

clearly see that taking S1(T1, T2, . . . , Tn) could lead to a series containing a non-converging infinite

sum as the degree 0 coefficient.

At this point, we would like to determine a subset of F [[x1, x2, . . . , xn]]n that forms a group

with formal composition. However, first we address the property which will prove useful. Similar to

what was done in the single-variable case, for an element S = (S1, S2, . . . , Sn) of F [[x1, x2, . . . , xn]]n,

we would like a method of focusing on only finitely many terms of each series Si of S. More

precisely, it will prove useful to focus on only the terms having degree less than k for some natural

number k. So consider the ideal J generated by all single terms of degree k for some natural

number k with coefficient 1. That is, J is the ideal generated by terms of the form xj11 x
j2
2 . . . x

jn
n for

j1 + j2 + · · · + jn = k. We want to examine each Si modulo J . We will usually refer to this as Si

modulo terms of degree k.

Proposition 4.1.2. Let S = (S1, S2, . . . , Sn) and T = (T1, T2, . . . , Tn) be two elements of

F [[x1, x2, . . . , xn]]n. We have that S = T if and only if Si ≡ Ti modulo terms of degree k for all

natural numbers k.
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Proof. Let us denote each Si

Si = εxi +
∞∑
k=0

∑
j1+j2+···+jn=k

si(j1,j2,...,jn) x
j1
1 x

j2
2 . . . x

jn
n

and each Ti as

Ti = εxi +
∞∑
k=0

∑
j1+j2+···+jn=k

ti(j1,j2,...,jn) x
j1
1 x

j2
2 . . . x

jn
n

It is clear that S = T if and only if Si = Ti for each i. The rest of the proof is similar to the

single-variable case. Consider a given value of i. If Si = Ti, it is trivial that we get congruence

modulo terms of degree k for each k ≥ 0. So assume that Si ≡ Ti modulo terms of degree k for all

natural numbers k. Si ≡ Ti modulo terms of terms of degree k means that Si − Ti ∈ J , where J is

the ideal generated by all terms of degree k with coefficient 1. However, this gives that

s(j1, j2, . . . , jn)− t(j1, j2, . . . , jn) = 0

for all values of j1, j2, . . . , jn for j1 + j2 + · · ·+ jn = l and l = 1, 2, . . . k − 1. In other words,

s(j1, j2, . . . , jn) = t(j1, j2, . . . , jn)

all values of j1, j2, . . . , jn for j1 + j2 + · · ·+ jn = l and l = 1, 2, . . . k− 1. Furthermore, if this is true

for each natural number k, this gives us that Si = Ti.

Now we return to trying to determine a subset of F [[x1, x2, . . . , xn]]n that forms a group with

formal composition. We have already eliminated all elements with non-zero constant terms. We

now consider the following properties.

Proposition 4.1.3. The element E = (x1, x2, . . . , xn) ∈ F [[x1, x2, . . . , xn]]n is an identity element.

Proof. This result is trivial. If S = (S1, S2, . . . , Sn) is an element in F [[x1, x2, . . . , xn]]n, we see that

(x1, x2, . . . , xn) ◦ S = S ◦ (x1, x2, . . . , xn) = (S1, S2, . . . , Sn)

Proposition 4.1.4. Formal composition of elements of F [[x1, x2, . . . , xn]]n having no degree-0 co-

efficient is associative.

Proof. This result follows fairly directly from the definition. Let

S = (S1(x1, x2, . . . , xn), S2(x1, x2, . . . , xn), . . . , Sn(x1, x2, . . . , xn)),

T = (T1(x1, x2, . . . , xn), T2(x1, x2, . . . , xn), . . . , Tn(x1, x2, . . . , xn)), and

U = (U1(x1, x2, . . . , xn), U2(x1, x2, . . . , xn) . . . , Un(x1, x2, . . . , xn)) be elements of F [[x1, x2, . . . , xn]]n.

Notice that the ith series of S ◦ T is

Si(T1(x1, x2, . . . , xn), T2(x1, x2, . . . , xn), . . . , Tn(x1, x2, . . . , xn))
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Further the ith series of (S ◦ T ) ◦ U is

Si(T1(U1, U2, . . . , Un), T2(U1, U2, . . . , Un), . . . , Tn(U1, U2, . . . , Un))

If we instead first take T ◦ U , we see the ith term of T ◦ U is

Ti(U1, U2, . . . , Un)

Then taking S ◦ (T ◦ U) we find that we also arrive at the n-tuple whose ith entry is

Si(T1(U1, U2, . . . , Un), T2(U1, U2, . . . , Un), . . . , Tn(U1, U2, . . . , Un))

So we have that our operation is associative.

Now, in order to form a group with respect to formal composition, we need only identify which

elements of F [[x1, x2, . . . , xn]]n are invertible with respect to formal composition. However, first we

consider the following:

Definition 4.1.5. If S = (S1, S2, . . . , Sn) ∈ F [[x1, x2, . . . , xn]]n is such that each Si is denoted

Si = si1x1 + si2x2 + . . . , we define the matrix

MS =


s11 s12 . . . s1n

s21 s22 . . . s2n
...

sn1 sn2 . . . snn


to be the degree-one matrix of S.

Proposition 4.1.6. An element S ∈ F [[x1, x2, . . . , xn]]n is invertible with respect to formal compo-

sition if and only if the degree-one matrix of S is an invertible matrix.

Proof. Let S = (S1, S2, . . . , Sn) and T = (T1, T2, . . . , Tn) be two elements of F [[x1, x2, . . . , xn]]n.

Further, let each Si (for i = 1, 2, . . . , n) be denoted Si = si1x1 + si2x2 + . . . and each Ti (for

i = 1, 2, . . . , n) be denoted Ti = ti1x1 + ti2x2 + . . . .

Then, S ◦ T = (S1(T1, T2, . . . , Tn), S2(T1, T2, . . . , Tn), . . . , Sn(T1, T2, . . . , Tn)). Focusing on the ith

series, Si, modulo terms of degree 2, we see that

Si(T1, T2, . . . , Tn) = si1T1 + si2T2 + · · ·+ sinTn

= si1(t11x1 + . . . t1nxn) + si2(t21x1 + . . . t2nxn) + · · ·+ sin(tn1x1 + . . . tnnxn)

= (si1t11 + si2t21 + · · ·+ sintn1)x1 + · · ·+ (si1t1n + si2t2n + · · ·+ sintnn)xn

In summary, the coefficient of xj of the ith series of S ◦ T , is given by

n∑
k=1

siktjk
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Now let MS and MT denote the degree-one matrices of S and T , respectively. That is,

MS =


s11 s12 . . . s1n

s21 s22 . . . s2n
...

sn1 sn2 . . . snn

 TS =


t11 t12 . . . t1n

t21 t22 . . . t2n
...

tn1 tn2 . . . tnn


Then, we can see that the the coefficient of xj of the ith series of S ◦ T , is given by the ijth

entry of the product of MSM
T
T , where MT

T denotes the transpose of MT .

It follows then that S being invertible (modulo terms of degree 2) is equivalent to there existing

a T ∈ F [[x1, x2, . . . , xn]]n such that the matrix product MSM
T
T is the n× n identity matrix

In =



1 0 0 . . . 0

0 1 0 . . . 0

0 0 1
...

. . .

0 1


Furthermore, this is true if and only if the determinant of MS is non-zero [4].

So it suffices to assume that S is congruent to (x1, x2, . . . xn) modulo terms of degree 2. However,

suppose S 6= (x1, x2, . . . xn) in general. Then there is some least value k1 such that each Si is of the

form

Si = εxi +
∑

j1+j2+···+jn=k

si(j1,j2,...,jn) x
j1
1 x

j2
2 . . . x

jn
n

Now suppose T k = (T k1 , T
k
2 , . . . , T

k
n ) ∈ F [[x1, x2, . . . , xn]]n is such that the ith series of T k is

T ki = xi −
∑

j1+j2+···+jn=k

si(j1,j2,...,jn) x
j1
1 x

j2
2 . . . x

jn
n

Then, modulo terms of degree k + 1, the ith term of S ◦ T k would be

Si(T
k
1 , T

k
2 , . . . , T

k
n ) = T ki +

∑
si(j1,j2,...,jn) x

j1
1 x

j2
2 . . . x

jn
n

= xi −
∑
si(j1,j2,...,jn) x

j1
1 x

j2
2 . . . x

jn
n +

∑
si(j1,j2,...,jn) x

j1
1 x

j2
2 . . . x

jn
n

= xi

We can do this for each value of k for k ≥ 2. We can then take

S ◦ T 2 ◦ T 3 ◦ T 4 . . .

Here we note that T 2◦T 3◦T 4 · · · = T 2◦T 3◦T 4 · · ·◦T k modulo terms of degree k+1 for all values

of k. Hence, T 2◦T 3◦T 4 . . . is well-defined modulo terms of degree k+1 for all values of k. Therefore,

T 2 ◦T 3 ◦T 4 . . . is well-defined in general. Furthermore, S ◦T 2 ◦T 3 ◦T 4 · · · = (x1, x2, . . . , xn) modulo

terms of degree k + 1 for all values of k. Therefore, we have that

S ◦ T 2 ◦ T 3 ◦ T 4 · · · = (x1, x2, . . . , xn)
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So by letting T = T 2 ◦ T 3 ◦ T 4 . . . , we have that S ◦ T = E. Therefore, T is a right inverse of S,

and this completes our proof.

So we now have all that we need to form a group of elements of F [[x1, x2, . . . , xn]]n with formal

composition

Definition 4.1.7. We define the set I ⊂ F [[x1, x2, . . . , xn]]n to be the set of all S ∈ F [[x1, x2, . . . , xn]]n

such that the degree-one matrix MS of S has a non-zero determinant, along with the operation of

formal composition.

Theorem 4.1.8. The set I along with formal composition is a group

Proof. This follows from Propositions, 2, 3, and 5.

4.2 Elements Having Finite Order

We now seek to answer some questions about elements of I with finite order. As one might expect,

this question seems to be much more difficult than the single-variable case. So, let us restrict our

search to elements S = (S1, S2, . . . , Sn) ∈ I for which each Si is of the form

Si = εixi + . . .

for some εi ∈ F . That is, we assume that S = (ε1x1, ε2x2, . . . , εnxn) modulo terms of degree 2. In

this case, we have similar results to the one-dimensional case. So let us assume that S is such that

S(m) = E. Then we first note that there are only a select few values that εi could be.

Proposition 4.2.1. For S ∈ F [[x1, x2, . . . , xn]]n such that S = (ε1x1, ε2x2, . . . , εnxn) modulo terms

of degree 2, let k1, k2, . . . , kn denote the orders of ε1, ε2, . . . , εn in the multiplicative group F ∗, re-

spectively. If S(m) = E, then for i = 1, 2, . . . , n, ki divides m and, furthermore, the least common

multiple of k1, k2, . . . , kn is equal to m.

Proof. The fact that ki divides m for i = 1, 2, . . . , n is clearly seen by looking at S(m) modulo terms

of degree 2. In this case, note that

S(m) = (ε1x1, ε2x2, . . . , εnxn)(m)

= (εm1 x1, ε
m
2 x2, . . . , ε

m
n xn)

So if we assume that S(m) = (x1, x2, . . . , xn), it must be that εmi = 1 for i = 1, 2, . . . , n. Furthermore,

if we denote the least common multiple of k1, k2, . . . , kn as k. It is clear that S(k) = (x1, x2, . . . , xn),

since each ki divides k.

At this point we restrict S even further, to prove some results about elements of I of finite order.

So let S = (S1, S2, . . . , Sn) ∈ I be such that each S = (εx1, εx2, . . . , εxn) modulo terms of degree 2,

i.e., we assume that the value ε ∈ F is the same for each series. In this case we have the following:
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Lemma 4.2.2. Let S = (S1, S2, . . . , Sn) ∈ I be such that each

Si = εxi +
∑

j1+j2+···+jn=k

si(j1,j2,...,jn) x
j1
1 x

j2
2 . . . x

jn
n

for some integer k. Then, S(m) is such that the ith series is given by

εmxi + εm−1(1 + εk−1 + ε2(k−1) + · · ·+ ε(m−1)(k−1))
∑

j1+j2+···+jn=k

si(j1,j2,...,jn) x
j1
1 x

j2
2 . . . x

jn
n

modulo terms of degree k + 1.

Before we give the proof of this lemma, we offer the following notational clarification. From

this point on, we let (j) denote the n-tuple (j1, j2, . . . , jn). In addition, in order to attempt to keep

things from becoming too cluttered, we will often omit the index j1 + j2 + · · · + jn = k from the

summation ∑
j1+j2+···+jn=k

Proof. We will show this by induction on m. If we suppose that m = 1, then the result is trivial.

Now suppose that S(m) is such that the ith series is given by

εmxi + εm−1(1 + εk−1 + ε2(k−1) + · · ·+ ε(m−1)(k−1))
∑

si(j) x
j1
1 x

j2
2 . . . x

jn
n

Consider S(m+1). We note that S(m+1) = S(m) ◦ S. So (modulo terms of degree k + 1), the ith

series of S(m+1) is given by

εmSi + εm−1(1 + εk−1 + ε2(k−1) + · · ·+ ε(m−1)(k−1))
∑
si(j) S

j1
1 S

j2
2 . . . Sjnn

= εm(εxi +
∑
si(j) x

j1
1 . . . x

jn
n ) + εm−1(1 + εk−1 + · · ·+ ε(m−1)(k−1))

∑
si(j) (εx1)

j1 . . . (εxn)jn

= εm+1xi + εm
∑
si(j) x

j1
1 . . . x

jn
n + εm−1(1 + εk−1 + · · ·+ ε(m−1)(k−1))

∑
εksi(j) x

j1
1 . . . x

jn
n

= εm+1xi + (εm + εk+m−1(1 + εk−1 + ε2(k−1) + · · ·+ ε(m−1)(k−1)))
∑
si(j) x

j1
1 x

j2
2 . . . x

jn
n

= εm+1xi + (εm + εmεk−1(1 + εk−1 + ε2(k−1) + · · ·+ ε(m−1)(k−1)))
∑
si(j) x

j1
1 x

j2
2 . . . x

jn
n

= εm+1xi + (εm + εm(εk−1 + ε2(k−1) + · · ·+ ε(k−1)))
∑
si(j) x

j1
1 x

j2
2 . . . x

jn
n

= εm+1xi + εm(1 + εk−1 + ε2(k−1) + · · ·+ ε(k−1))
∑
si(j) x

j1
1 x

j2
2 . . . x

jn
n

Therefore, by induction, our result holds for all integer values of m.

Proposition 4.2.3. Let S = (S1, S2, . . . , Sn) ∈ I be such that each

Si = εxi +
∑

j1+j2+···+jn=k

si(j) x
j1
1 x

j2
2 . . . x

jn
n

for some integer k. Then, if p does not divide m, S(m) = E, and k is congruent to 1 modulo m, we

have that each si(j1,j2,...,jn) = 0 for j1 + j2 + · · ·+ jn = k.
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Proof. By the previous lemma, the ith series of S(m) is

εmxi + εm−1(1 + εk−1 + ε2(k−1) + · · ·+ ε(m−1)(k−1))
∑

si(j) x
j1
1 x

j2
2 . . . x

jn
n

modulo terms of degree k + 1. If S(m) = E, it must be that

εm−1(1 + εk−1 + ε2(k−1) + · · ·+ ε(m−1)(k−1))
∑

si(j) x
j1
1 x

j2
2 . . . x

jn
n = 0

Now if k is congruent to 1 modulo m, we have that

εm−1(1 + εk−1 + ε2(k−1) + · · ·+ ε(m−1)(k−1)) ≡ εm−1(1 + ε0 + ε0 + · · ·+ ε0) = mεm−1 mod

Thus, if p does not divide m, it must be that si(j) = 0 for all values of si(j).

4.3 Conjugation of Multivariate Series

Now, as we did in the single variable case, we turn our attention to conjugating elements of I.

Proposition 4.3.1. If S = (S1, S2, . . . , Sn) ∈ I be such that S(m) = E. Then for any conjugate,

T = P (−1) ◦ S ◦ P , for any P ∈ I, we have that T (m) = E.

Proof. The proof is identical to the single variable case.

T (n) = (P (−1) ◦ S ◦ P )(m)

= (P (−1) ◦ S ◦ P ) ◦ (P (−1) ◦ S ◦ P ) ◦ · · · ◦ (P (−1) ◦ S ◦ P )

= P (−1) ◦ S ◦ (P ◦ P (−1)) ◦ S ◦ (P ◦ P (−1)) ◦ · · · ◦ (P ◦ P (−1)) ◦ S ◦ P
= P (−1) ◦ S(m) ◦ P
= P (−1) ◦ E ◦ P
= P (−1) ◦ P
= x

Proposition 4.3.2. Let P = (P1, P2, . . . , Pn) ∈ F [[x1, x2, . . . , xn]]n be such that

Pi = xi +
∑

j1+j2+···+jn=k

pi(j1,j2,...,jn) x
j1
1 x

j2
2 . . . x

jn
n

Then P (−1) = (P
(−1)
1 , P

(−1)
2 , . . . , P

(−1)
n ) exists and is such that

P
(−1)
i = xi −

∑
pi(j) x

j1
1 x

j2
2 . . . x

jn
n

modulo terms of degree k + 1.
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Proof. For i = 1, 2, . . . , n, observe that (modulo terms of degree k + 1)

Pi(P
(−1)
1 , P

(−1)
2 , . . . , P

(−1)
n ), = P

(−1)
i +

∑
pi(j) (P

(−1)
1 )j1(P

(−1)
2 )j2 . . . (P

(−1)
n )jn

= xi −
∑
pi(j) x

j1
1 x

j2
2 . . . x

jn
n +

∑
pi(j) x

j1
1 x

j2
2 . . . x

jn
n

= xi

Therefore,

P ◦ P (−1) = (P1(P
(−1)
1 , . . . , P

(−1)
n ), P2(P

(−1)
1 , . . . , P

(−1)
n ), . . . , Pn(P

(−1)
1 , . . . , P

(−1)
n ))

= (x1, x2, . . . , xn)

We similarly have that P (−1) ◦ P = (x1, x2, . . . , xn).

Proposition 4.3.3. Let S = (S1, S2, . . . , Sn) ∈ F [[x1, x2, . . . , xn]]n be such that each Si is of the

form

Si = εxi +
∑

si(j) x
j1
1 x

j2
2 . . . x

jn
n

modulo terms of degree k + 1, where ε ∈ F has order m in F ∗, and if

Pi = xi +
∑

pi(j) x
j1
1 x

j2
2 . . . x

jn
n

and P = (P1, P2, . . . , Pn). Then the ith series of P (−1) ◦ S ◦ P has the form

εxi +
∑

qi(j)x
j1
1 x

j2
2 . . . x

jn
n

where

qi(j) = si(j) + (ε− εk)pi(j)

Proof. We begin by examining the ith entry of the n-tuple S ◦ P modulo terms of degree k + 1.

Note that

Si(P1, P2, . . . , Pn) = εPi +
∑
si(j) P

j1
1 P

j2
2 . . . P jn

n

= εxi + ε
∑
pi(j) x

j1
1 x

j2
2 . . . x

jn
n +

∑
si(j) x

j1
1 x

j2
2 . . . x

jn
n

= εxi +
∑

(εpi(j) + si(j)) x
j1
1 x

j2
2 . . . x

jn
n

To help simplify some notation, we will let Ŝi = Si(P1, P2, . . . , Pn) and Ŝ = (Ŝ1, Ŝ2, . . . , Ŝn) for

i = 1, 2, . . . , n. Hence, S ◦ P = Ŝ = (Ŝ1, Ŝ2, . . . , Ŝn).

Now note that, for i = 1, 2, . . . , n

P
(−1)
i (Ŝ1, Ŝ2, . . . , Ŝn) = Ŝi −

∑
pi(j) Ŝ1

j1
Ŝ2

j2
. . . Ŝn

jn

= εxi +
∑

(εpi(j) + si(j)) x
j1
1 x

j2
2 . . . x

jn
n −

∑
pi(j)ε

j1xj11 ε
j2xj22 . . . ε

jnxjnn

= εxi +
∑

(εpi(j) + si(j) − εkpi(j))x
j1
1 x

j2
2 . . . x

jn
n

So we have that

P (−1) ◦ S ◦ P = P (−1) ◦ Ŝ = Q = (Q1, Q2, . . . Qn)

where each

Qi = εxi +
∑

(si(j) + (ε− εk)pi(j))x
j1
1 x

j2
2 . . . x

jn
n
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Corollary 4.3.4. If k is not congruent to 1 modulo m, then given any values for each qi(j) in F ,

we can choose corresponding values for pi(j) in F such that if

Si = εxi +
∑

si(j) x
j1
1 x

j2
2 . . . x

jn
n

modulo terms of degree k + 1, where ε ∈ F has order m in F ∗, and if

Pi = xi +
∑

pi(j) x
j1
1 x

j2
2 . . . x

jn
n

and P = (P1, P2, . . . , Pn), we have that the ith series of P (−1) ◦ S ◦ P is

εxi +
∑

qi(j)x
j1
1 x

j2
2 . . . x

jn
n

Proof. From the previous proposition, we see that the ith series of P (−1) ◦ S ◦ P has the form

εxi +
∑

qi(j)x
j1
1 x

j2
2 . . . x

jn
n

where

qi(j) = si(j) + (ε− εk)pi(j)
Hence, if k is not congruent to 1 modulo m, the expression (ε− εk) is non-zero. Thus, we can let

pi(j) =
qi(j) − si(j)
(ε− εk)

Clearly, this gives us our desired result.

Corollary 4.3.5. If we let P = (P1, P2, . . . , Pn) ∈ I be such that each Pi has the form

Pi = xi +
∑

pi(j) x
j1
1 x

j2
2 . . . x

jn
n

Further let S = (S1, S2, . . . , Sn) ∈ I be such that each

Si = εxi +
∑

si(j) x
j1
1 x

j2
2 . . . x

jn
n

and let Q = P (−1) ◦ S ◦ P be denoted

Q = εxi +
∑

qi(j))x
j1
1 x

j2
2 . . . x

jn
n

If we let P be fixed, then the map that sends each

si(j1,j2,...,jn) 7→ qi(j1,j2,...,jn))

is a bijection.

Proof. Note that for any given values of si(j) ∈ F , we can simply choose qi(j) = si(j) + (ε− εk)pi(j) and

map si(j) to qi(j). So this map would be injective.

Similarly, for any given values of qi(j), letting si(j) = qi(j)− (ε− εk)pi(j) will give us that si(j) is sent

to qi(j). Hence, this map is surjective.
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4.4 Classifying Multivariate Series of Finite Order

We now come to a main result that closely resembles one of our earlier results for single-variable

series.

Theorem 4.4.1. Let F be a field of characteristic zero or characteristic p such that p does not

divide m. Furthermore, let ε ∈ F have order m in F ∗, and let S = (S1, S2, . . . , Sn) ∈ I be such that

each Si has the form

Si = εxi + . . .

Then S(m) = E if and only if S is conjugate to (εx1, εx2, . . . , εxn).

Proof. First we note that (εx1, εx2, . . . , εxn) clearly has order m in F [[x1, x2, . . . , xn]]n. So it follows

from Proposition 4.3.1. that if S is conjugate to (εx1, εx2, . . . , εxn), S will also have order m.

On the other hand, suppose we know that S has orderm. Then by Corollary 4.3.4, we can choose

values {pi(j)} for i = 1, 2, . . . , n and j1 + j2 + · · ·+ jn = 2 such that if we let P 2 = (P 2
1 , P

2
2 , . . . , P

2
n)

with

P 2
i = x+

∑
pi(j)x

j1
1 x

j2
2 . . . x

jn
n

we will have that

(P 2)(−1) ◦ S ◦ P 2 = S2 = (S2
1 , S

2
2 , . . . , S

2
n)

where each 2
i has no terms of degree 2. Then, (as long as m 6= 2) we can choose values for {pi(j)} for

i = 1, 2, . . . , n and j1 + j2 + · · · + jn = 3 and define P 3 in a similar fashion to that used to define

P 2, so that we get that

(P 3)(−1) ◦ (P 2)(−1) ◦ S ◦ P 2 ◦ P 3 = S3 = (S3
1 , S

3
2 , . . . , S

3
n)

where S3
i has no terms of degree 2 or 3. We continue in this manner until we arrive at

(Pm)(−1) ◦ · · · ◦ (P 3)(−1) ◦ (P 2)(−1) ◦ S ◦ P 2 ◦ P 3 ◦ · · · ◦ Pm = Sm = (Sm1 , S
m
2 , . . . , S

m
n )

where each Smi has no terms of degree 2, 3, . . . ,m.

So we now have that Sm = (Sm1 , S
m
2 , . . . , S

m
n ) is such that for each i,

Smi = εxi +
∑

j1+j2+···+jn=k

si(j) x
j1
1 x

j2
2 . . . x

jn
n

However, Sm is a conjugate of our original S. Hence, Sm has order m in i. Thus, by Proposition

4.2.3, it must be the case that each si(j) = 0 for j1 + j2 + · · · + jn = m. So, we let Pm+1 =

(Pm+1)(−1) = x, and we have that

(Pm+1)(−1) ◦ · · · ◦ (P 3)(−1) ◦ (P 2)(−1) ◦ S ◦ P 2 ◦ P 3 ◦ · · · ◦ Pm+1 = Sm+1 = (Sm+1
1 , Sm+1

2 , . . . , Sm+1
n )

where each Sm+1
i has no terms of degree 2, 3, . . . ,m+ 1.

We can continue in this manner, at each stage either
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1. choosing coefficients {pi(j)} for i = 1, 2, . . . , n and j1 + j2 + · · · + jn = k if k is not congruent

to 1 modulo m, to give us

(P k)(−1) ◦ · · · ◦ (P 3)(−1) ◦ (P 2)(−1) ◦ S ◦ P 2 ◦ P 3 ◦ · · · ◦ P k = Sk = (Sk1 , S
k
2 , . . . , S

k
n)

where each Ski has no terms of degree 2, 3, . . . , k, or

2. if k is congruent to 1 modulo m, we let P k = (P k)(−1) = x, since Proposition 4.2.3 tells us

that it must be the case that

(P k−1)(−1) ◦ · · · ◦ (P 3)(−1) ◦ (P 2)(−1) ◦ S ◦ P 2 ◦ P 3 ◦ · · · ◦ P k−1 = Sk−1 = (Sk−11 , Sk−12 , . . . , Sk−1n )

where each Sk−1i has no terms of degree 2, 3, . . . , k.

Doing this we end up with the following expression

· · · ◦ (P 3)(−1) ◦ (P 2)(−1) ◦ S ◦ P 2 ◦ P 3 ◦ · · · = (εx1, εx2, . . . , εxn) (4.4)

At this stage, we should discuss why the above is well-defined. Notice that at each stage we

chose P k to be such that the ith series is of the form

P k
i = x+ . . .

Hence, by Proposition 4.3.2, we have that (P k)(−1) is such that the ith series is of the form

(P k)
(−1)
i = x+ . . .

Thus, if we look at the left hand side of equation (4) modulo terms of degree k + 1, we have

(P k)(−1) ◦ · · · ◦ (P 3)(−1) ◦ (P 2)(−1) ◦ S ◦ P 2 ◦ P 3 ◦ · · · ◦ P k

which is a finite composition, and hence well-defined. This gives us that the infinite composition

found in the left hand side of (4) is well-defined modulo terms of degree k for all positive integer

values of k. Therefore, it is well-defined in general.

So, we can define the series P ∈ I to be

P = P 2 ◦ P 2 ◦ . . .

and we have that

P (−1) ◦ S ◦ P = (εx1, εx2, . . . , εxn)

Therefore, S is a conjugate of (εx1, εx2, . . . , εxn).
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Corollary 4.4.2. Let F be a field of characteristic zero or characteristic p such that p does not

divide m. Furthermore, let S = (S1, S2, . . . , Sn) ∈ I be such that each Si has the form

Si = εxi + . . .

for a given ε ∈ F . Then S having order m in I implies that ε has order m in F ∗.

Proof. If S has finite order m in I, we have that there is some P ∈ I such that P (−1) ◦ S ◦ P =

(εx1, εx2, . . . , εxn). Since S and (εx1, εx2, . . . , εxn) are conjugates, they have the same order. Clearly

(εx1, εx2, . . . , εxn) has order m if and only if ε has order m in F ∗.

In other words, if we have an S ∈ I of the above form and we know that S has finite order, we

can determine what that order is simply by looking at the degree one coefficient ε.

Corollary 4.4.3. Let F be a field of characteristic zero or characteristic p such that p does not

divide m. Furthermore, let S = (S1, S2, . . . , Sn) ∈ I be such that each Si has the form

Si = xi + . . .

Then S has finite order if and only if S = (x1, x2, . . . , xn)

Proof. We have shown that if S has finite order, it is the same as the coefficient of the degree one

term of each series Si. Since the coefficient of each in this case is 1, the order of S must be 1. Hence

S = (x1, x2, . . . , xn). The other direction is trivial. Clearly (x1, x2, . . . , xn) has finite order.

Also, similar to the single-variable case, we have the equivalent condition below:

Theorem 4.4.4. Let F be a field of characteristic zero or characteristic p such that p does not

divide m. If S = (S1, S2, . . . , Sn) ∈ I is such that, for each Si denoted

Si = εxi +
∑

j1+j2+···+jn=k

si(j1,j2,...,jn) x
j1
1 x

j2
2 . . . x

jn
n

ε has order m in F ∗ and all coefficients of terms with degree k 6= 1 modulo m are arbitrarily chosen

from F , then there exist unique coefficients for all terms of degree k = 1 modulo m for each Si such

that S(m) = E.

Proof. Let S = (S1, S2, . . . , Sn) be an element of I, and let us denote each Si as

Si = εxi +
∑

j1+j2+···+jn=k

si(j1,j2,...,jn) x
j1
1 x

j2
2 . . . x

jn
n

We assume that ε ∈ F has order m in F ∗, and we also assume that si(j1,j2,...,jn) are arbitrarily chosen

for all i and all j1, j2, . . . , jn such that j1 + j2 + · · ·+ jn 6= 1 modulo m. We want to show that there

are unique values of si(j1,j2,...,jn) for j1 + j2 + · · ·+ jn = 1 modulo m such that S(m) = E.
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By Theorem 4.4.1, it suffices to show that such a S is a conjugate of (εx1, εx2, . . . , εxn). So

we proceed by beginning with (εx1, εx2, . . . , εxn) and showing that we can conjugate to get S. We

begin by choosing values for pi(j1,j2,...,jn) in F for j1 + j2 + · · ·+ jn = 2 such that if

P 2
i = xi +

∑
pi(j) x

j1
1 x

j2
2 . . . x

jn
n

and P 2 = (P 2
1 , P

2
2 , . . . , P

2
n), we have that the ith series of (P 2)(−1) ◦ (εx1, εx2, . . . , εxn) ◦ P 2 is

εxi +
∑

si(j)x
j1
1 x

j2
2 . . . x

jn
n

In other words, we have that the degree 2 terms of (P 2)(−1) ◦ (εx1, εx2, . . . , εxn) ◦ P 2 match the

degree 2 terms of S. Note that this is assuming that m 6= 1. However, if m = 1, the theorem is

trivial.

Then, ifm 6= 3, we can proceed as above choosing coefficients pi(j1,j2,...,jn) in F for j1+j2+· · ·+jn =

3, letting

P 3
i = xi +

∑
pi(j) x

j1
1 x

j2
2 . . . x

jn
n

and defining P 3 = (P 3
1 , P

3
2 , . . . , P

3
n) such that the ith series of (P 3)(−1)◦(P 2)(−1)◦(εx1, εx2, . . . , εxn)◦

P 2 ◦ P 3 agrees with S modulo terms of degree 4. That is, (P 3)(−1) ◦ (P 2)(−1) ◦ (εx1, εx2, . . . , εxn) ◦
P 2 ◦ P 3 matches S up through terms of degree 3.

We proceed in this fashion until we have that (Pm)(−1) ◦ · · · ◦ (P 2)(−1) ◦ (εx1, εx2, . . . , εxn) ◦
P 2 ◦ · · · ◦ Pm is equivalent to S modulo terms of degree m + 1. At this point, we know that since

(Pm)(−1) ◦ · · · ◦ (P 2)(−1) ◦ (εx1, εx2, . . . , εxn) ◦ P 2 ◦ · · · ◦ Pm is a conjugate of (εx1, εx2, . . . , εxn), we

have that

(Pm)(−1) ◦ · · · ◦ (P 2)(−1) ◦ (εx1, εx2, . . . , εxn) ◦ P 2 ◦ · · · ◦ Pm)(m) = E

Since m + 1 ≡ 1 modulo m, we cannot find a Pm+1 in this fashion, so we let Pm+1 = x and

proceed by finding appropriate coefficients to give us Pm+2, Pm+2, . . . , P 2m so that

(P 2m)(−1) ◦ · · · ◦ (P 2)(−1) ◦ (εx1, εx2, . . . , εxn) ◦ P 2 ◦ · · · ◦ Pm)(2m)

contains all of our chosen coefficients si(j1,j2,...,jn) such that j1 + j2 + · · · + jn 6= 1 modulo m up

through terms of degree 2m.

We continue in this manner and then define

P = P 2 ◦ P 3 ◦ . . .

Notice that P modulo terms of degree k for any natural number k is equivalent to

P 2 ◦ P 3 ◦ · · · ◦ P k−1

since all P j for j ≥ k are equivalent to x. Hence, P is in fact well-defined and it makes sense to

consider conjugation by P .
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Furthermore, note that from how we constructed P , S = P (−1) ◦ (εx1, εx2, . . . , εxn) ◦ P will

contain all of our previously chosen coefficients si(j1,j2,...,jn) for all i and all j1, j2, . . . , jn such that

j1 + j2 + · · · + jn 6= 1 modulo m. The coefficients for terms of degree k where k ≡ 1 modulo m,

which we will also denote si(j1,j2,...,jn) for j1 + j2 + · · ·+ jn = k, are simply some additional values in

F .

Therefore, we have S = (S1, S2, . . . , Sn) ∈ I containing our arbitrarily chosen coefficients

si(j1,j2,...,jn) where j1 + j2 + · · · + jn = k for k 6= 1 modulo m, such that S(m) = E. It only re-

mains to show that the coefficients si(j1,j2,...,jn) where j1 + j2 + · · ·+ jn = k for k ≡ 1 modulo m are

unique. So suppose we have S as above such that S(m) = E. In addition, let S̄ = (S̄1, S̄2, . . . , S̄n) ∈ I
be such that S̄(m) = E and the ith series of S̄ is denoted

S̄i = εxi +
∑

j1+j2+···+jn=k

s̄i(j1,j2,...,jn) x
j1
1 x

j2
2 . . . x

jn
n

Also assume that for j1 + j2 + · · ·+ jn = k where k 6= 1 modulo m, we have that

s̄i(j1,j2,...,jn) = si(j1,j2,...,jn)

We want to show that when j1 + j2 + · · ·+ jn = k for k ≡ 1 modulo m, we also have

s̄i(j1,j2,...,jn) = si(j1,j2,...,jn)

Now we know that there exists a P in I such that P (−1) ◦ S ◦ P = E. It follows that, since S

and S̄ are equivalent modulo terms of degree m+ 1, that

P (−1) ◦ S̄ ◦ P ≡ P (−1) ◦ S ◦ P = E

modulo terms of degree m+ 1. So the i the series of P (−1) ◦ S̄ ◦ P is of the form

εxi +
∑

j1+j2+···+jn=m+1

qi(j1,j2,...,jn) x
j1
1 x

j2
2 . . . x

jn
n

modulo terms of degree m + 2, for some values qi(j1,j2,...,jn) ∈ F . However, since P (−1) ◦ S̄ ◦ P is a

conjugate of S̄, we know that, like S̄, (P (−1) ◦ S̄ ◦P )(m) = E. So, we know that each qi(j1,j2,...,jn) = 0.

Thus, we have that conjugating both S and S̄ by P yields E modulo terms of degree m + 2. By

Corollary 4.3.5, this gives us that

s̄i(j1,j2,...,jn) = si(j1,j2,...,jn)

for j1 + j2 + · · ·+ jn = m+ 1.

A similar argument gives us that

s̄i(j1,j2,...,jn) = si(j1,j2,...,jn)

for all j1 + j2 + · · ·+ jn = k when k ≡ 1 modulo m. Thus, the coefficients si(j1,j2,...,jn) for each i and

k = j1 + j2 + · · ·+ jn where k ≡ 1 modulo m are, in fact, unique.

Copyright c© Thomas Scott Brewer, 2014.
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Chapter 5 Group Actions and A Natural Automorphism of I

5.1 Group Actions of the Symmetric Group on I

In this chapter, it is our goal to identify a natural automorphism of the group I ⊂ F [[x1, x2, . . . , xn]]n.

In particular, we seek to identify a kind of permutation automorphism corresponding to elements

σ ∈ Σn, where Σn denotes the Symmetric group on a set of n elements.

The two most obvious possibilities for such permutation automorphisms would be following:

1. The map that permutes the order of individual series in an n-tuple. That is, if (S1, S2, . . . , Sn) ∈
F [[x1, x2, . . . , xn]]n, the map which sends

(S1, S2, . . . , Sn) 7→ (Sσ(1), Sσ(2), . . . , Sσ(n))

2. The map that permutes the variables of each individual series in an n-tuple. That is, the map

which sends

(S1(x1, . . . , xn), . . . , Sn(x1, . . . , xn)) 7→ (S1(xσ(1), . . . , xσ(n)), . . . , Sn(xσ(1), . . . , xσ(n)))

However, it turns out that neither give an automorphism. For example, consider (x, y) ∈
F [[x, y]]2 for some field F , and consider (12) ∈ S2. If we think of (12) permuting the series in (x, y)

as in our first possible map, we find that

(12)((x, y) ◦ (x, y)) = (12)(x, y)

= (y, x)

while, on the other hand,

(12)(x, y) ◦ (12)(x, y) = (y, x) ◦ (y, x)

= (x, y)

If we think of (12) permuting the variable in each series, we get the same result:

(12)((x, y) ◦ (x, y)) = (12)(x, y)

= (y, x)

while, on the other hand,

(12)(x, y) ◦ (12)(x, y) = (y, x) ◦ (y, x)

= (x, y)

Clearly, our two previous examples do not work. However, it turns out that if we do both,

permute the series of the n-tuple and permute the variables of each series, then we do get an

automorphism of I. The rest of this sections seeks to establish this fact.

For the following we want to define two actions of the group Σn on F [[x1, x2, . . . , xn]]n. Our first

action is as follows:

40



Definition 5.1.1.

⊥ : Σn × F [[x1, x2, . . . , xn]]n → F [[x1, x2, . . . , xn]]n

where an element σ ∈ Σn acts on (S1, S2, . . . , Sn) ∈ F [[x1, x2, . . . , xn]]n by permuting S1, S2, . . . , Sn

according to σ in the following way: if σ(i) = j, then replace Sj with Si.

In other words, σ(S1, S2, . . . , Sn) = (Sσ−1(1), Sσ−1(2), . . . , Sσ−1(n)).

Note that it is important that, if σ(i) = j, we replace Sj with Si and not Si with Sj. For if we

are to consider the map which sends

σ × (S1, S2, . . . , Sn) 7→ (Sσ(1), Sσ(2), . . . , Sσ(n))

we find that it is in fact not a group action. Consider the following example

Let (S1, S2, S3) ∈ F [[x1, x2, x3]]
3 for some field F . Then consider (12) ∈ S3 and (23) ∈ S3. We

see that (12) ◦ (23) = (123). So we have that

(12)((23)(S1, S2, S3)) = (12)(S1, S3, S2)

= (S3, S1, S2)

On the other hand

((12) ◦ (23))(S1, S2, S3) = (123)(S1, S2, S3) = (S2, S3, S1)

Since (12)((23)(S1, S2, S3)) 6= ((12) ◦ (23))(S1, S2, S3), we see that this map is not a group action.

Hence, we define our operation ⊥ as above.

Proposition 5.1.2. The operation ⊥, as defined above, is a group action.

Proof. Let σ, τ ∈ Σn, and let (S1, S2, . . . , Sn) ∈ F [[x1, x2, . . . , xn]]n. Then,

σ(τ(S1, S2, . . . , Sn)) = σ(Sτ−1(1), Sτ−1(2), . . . , Sτ−1(n))

Here we rename (Sτ−1(1), Sτ−1(2), . . . , Sτ−1(n)), (T1, T2, . . . , Tn). So we have

σ(τ(S1, S2, . . . , Sn)) = σ(T1, T2, . . . , Tn)

= (Tσ−1(1), Tσ−1(2), . . . , Tσ−1(n))

On the other hand, we have that

(στ)(S1, S2, . . . , Sn) = (S(στ)−1(1), S(στ)−1(2), . . . S(στ)−1(n))

Now we need only show that Tσ−1(k) = S(στ)−1(k) for k = 1, 2, . . . , n. So for a given value of k,

we let σ−1(k) = j. We, then, let τ−1(j) = i. So we have that

i
τ7→ j

σ7→ k
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Thus, it follows that

Tσ−1(k) = Tj

= Sτ−1(j)

= Si

On the other hand, clearly S(στ)−1(k) = Si. Hence, we see that

σ(τ(S1, S2, . . . , Sn)) = (στ)(S1, S2, . . . , Sn)

Furthermore, we clearly see that if e ∈ Σn is the identity and (S1, S2, . . . , Sn) ∈ F [[x1, x2, . . . , xn]]n,

then e(S1, S2, . . . , Sn) = (S1, S2, . . . , Sn).

Therefore, ⊥ as defined above is a group action.

The second action of Σn on F [[x1, x2, . . . , xn]]n is as follows:

Definition 5.1.3.

> : Σn × F [[x1, x2, . . . , xn]]n → F [[x1, x2, . . . , xn]]n

where σ ∈ Σn acts on (S1, S2, . . . , Sn) by permuting the variables x1, x2, . . . , xn of each Si according

to σ in the following way: if σ(i) = j, then replace xi with xj.

In other words, for a given (S1, S2, . . . , Sn), each Si(x1, x2, . . . , xn) is replaced with

Si(xσ(1), xσ(2), . . . , xσ(n)).

Proposition 5.1.4. The operation >, as defined above, is a group action.

Proof. To arrive at the conclusion that > is a group action, we first define the action on an individual

S ∈ F [[x1, x2, . . . , xn]], then use the product action to to obtain our desired result. Thus, it suffices

to prove that the operation

> : Σn × F [[x1, x2, . . . , xn]]→ F [[x1, x2, . . . , xn]]

is indeed a group action.

Let σ, τ ∈ Σn, and let S(x1, x2, . . . , xn) ∈ F [[x1, x2, . . . , xn]]. Then,

σ(τS(x1, x2, . . . , xn)) = σ(S(xτ(1), xτ(2), . . . , xτ(n)))

= S(xσ(τ(1)), xσ(τ(2)), . . . , xσ(τ(n)))

= S(x(στ)(1), x(στ)(2), . . . , x(στ)(n))

= (στ)S(x1, x2, . . . , xn)

Furthermore, we clearly see that if e ∈ Σn is the identity and S(x1, x2, . . . , xn) ∈ F [[x1, x2, . . . , xn]],

then eS(x1, x2, . . . , xn) = S(x1, x2, . . . , xn).

Therefore, > as defined above is a group action.
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Since at this point we have two distinct group actions of Σn on F [[x1, x2, . . . , xn]]n, we will use

the following notation. Suppose σ ∈ Σn and (S1, S2, . . . , Sn) ∈ F [[x1, x2, . . . , xn]]n. If we wish to

denote that σ acts on (S1, S2, . . . , Sn) via our action >, then we write

σ>(S1, S2, . . . , Sn)

Similarly, if we wish to denote that σ acts on (S1, S2, . . . , Sn) via our action ⊥, then we write

σ⊥(S1, S2, . . . , Sn)

Now we turn our attention to the issue of how our two group operations, > and ⊥ interact with

one another. Specifically, it is fairly easy to see that these two operations will commute. That is,

That is, if σ, τ ∈ Σn and (S1, S2, . . . , Sn) ∈ F [[x1, x2, . . . , xn]]n, then we have that

σ⊥(τ>(S1, S2, . . . , Sn)) = τ>(σ⊥(S1, S2, . . . , Sn))

So, We now introduce a new action defined as follows:

Σn × F [[x1, x2, . . . , xn]]n
•→ F [[x1, x2, . . . , xn]]n

where σ ∈ Σn acts on (S1, S2, . . . , Sn) in the following way

σ • (S1, S2, . . . , Sn) = σ⊥(σ>(S1, S2, . . . , Sn))

Proposition 5.1.5. The above operation, •, is in fact a group action.

Proof. Let σ, τ ∈ Σn, and let (S1, S2, . . . , Sn) ∈ F [[x1, x2, . . . , xn]]n. Then we have that

σ • (τ • (S1, S2, . . . , Sn)) = σ • (τ⊥(τ>(S1, S2, . . . , Sn)))

= σ⊥(σ>(τ⊥(τ>(S1, S2, . . . , Sn))))

= σ⊥(τ⊥(σ>(τ>(S1, S2, . . . , Sn))))

= (στ)⊥((στ)>(S1, S2, . . . , Sn))

= (στ) • (S1, S2, . . . , Sn)

Further, we clearly see that if e ∈ Σn is the identity, then

e • (S1, S2, . . . , Sn) = e⊥(e>(S1, S2, . . . , Sn)) = (S1, S2, . . . , Sn)

Therefore, • gives us a group action.

5.2 A Natural Automorphism of I

Now we will seek to show that our previously defined group action, •, in fact, defines a group

automorphism for I. That is, given σ ∈ Σn, the map defined by

(S1, S2, . . . , Sn) 7→ σ • (S1, S2, . . . , Sn)
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is a group automorphism of I.

So we first note that I is in fact stable under •. Let us consider an element (S1, S2, . . . , Sn) ∈
F [[x1, x2, . . . , xn]]n where each Sk in (S1, S2, . . . , Sn) can be denoted

Sk =
∑

sk(i1,i2,...,in)x
i1xi2 . . . xin

It was shown in Proposition 4.1.6 that whether or not an element

(S1, S2, . . . , Sn) ∈ F [[x1, x2, . . . , xn]]n is contained in the group I is dependent only on the degree

one terms of each Sk in (S1, S2, . . . , Sn). Specifically, (S1, S2, . . . , Sn) is contained in I if and only if

the degree one matrix 
s1(1,0,...,0) s2(1,0,...,0) . . . sn(1,0,...,0)
s1(0,1,0,...,0) s2(0,1,0,...,0) . . . sn(0,1,0,...,0)

...

s1(0,...,0,1) s2(0,...,0,1) . . . sn(0,...,0,1)


is invertible. We denote this matrix MS = (mij). Here we note that mij is the coefficient of the xi

term of Sj in the n-tuple (S1, S2, . . . , Sn).

Now consider a permutation σ ∈ Σn. If we examine now our action • affects the degree one

matrix M of an n-tuple (S1, S2, . . . , Sn), we find that σ(S1, S2, . . . , Sn) results in the n-tuple with

corresponding degree one matrix

PσMPσ = (mσ(i)σ(−1)(j))

where Pσ is the permutation matrix corresponding to σ.

Since the determinant of Pσ = (−1)t for some natural number t, we can see that the determinant

of PσMPσ is nonzero if and only if the determinant of M is nonzero. Hence, it follows that I is

stable under •.
Now to show that • defines a group automorphism for I, we first look at the particular case where

σ = (ij) ∈ Σn, for i 6= j. However, first we introduce some notation. For a given (ij) ∈ Sn any series

S ∈ F [[x1, x2, . . . , xn]], we will let S ′ = (ij)>S. Furthermore, for an element of F [[x1, x2, . . . , xn]]n,

(S1, S2, . . . , Sn), we introduce the shorthand notation (S) = (S1, S2, . . . , Sn).

So with this notation, we have that (ij) • (S) = (S ′1, . . . , S
′
j, . . . , S

′
i, . . . , S

′
n).

We now consider the following claim:

Proposition 5.2.1. If σ ∈ Σn is of the form σ = (ij), where i 6= j, then the map

(S1, S2, . . . , Sn) 7→ σ • (S1, S2, . . . , Sn)

is a group automorphism for I.

Proof. Let σ = (ij) ∈ Σn such that i 6= j. In fact, without loss of generality, let us assume i < j. In

addition, let (S) = (S1, S2, . . . , Sn) and (T ) = (T1, T2, . . . , Tn) be elements of I. We want to show

that

σ • ((S1, S2, . . . , Sn) ◦ (T1, T2, . . . , Tn)) = σ • (S1, S2, . . . , Sn) ◦ σ • (T1, T2, . . . , Tn)
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We have that

σ • (S) ◦ σ • (T ) = σ>(σ⊥(S1, S2, . . . , Sn)) ◦ σ⊥(σ>(T1, T2, . . . , Tn))

= σ>(S1, . . . , Sj, . . . , Si, . . . , Sn)) ◦ σ⊥(T ′1, T
′
2, . . . , T

′
n)

= (S1, . . . , Sj, . . . , Si, . . . , Sn)) ◦ (T ′1, T
′
2, . . . , T

′
n)

= (S1(T
′), . . . , Sj(T

′), . . . , Si(T
′), . . . , Sn(T ′))

On the other hand, we also have that

σ • ((S) ◦ (T )) = σ>(σ⊥(S1(T ), . . . , Si(T ), . . . , Sj(T ), . . . , Sn(T ))

= σ>(S1(T ), . . . , Sj(T ), . . . , Si(T ), . . . , Sn(T )

= ((S1(T ))′, . . . , (Sj(T ))′, . . . , (Si(T ))′, . . . , (Sn(T ))′)

Now the coefficient of xh11 x
h2
2 . . . xhnn in Sk(T ) for some 1 ≤ k ≤ n, is given by∑
k1≥0, k2≥0, ..., kn≥0

s(k1,k2,...,kn) c
(h1,h2,...,hn)

(k1,k2,...,kn)

where c
(h1,h2,...,hn)
(k1,k2,...,kn)

is the coefficient of xh11 x
h2
2 . . . xhnn for T k11 T k22 . . . T knn . So the coefficient of

xh11 x
h2
2 . . . xhnn in (Sk(T ))′ is given by∑

k1≥0, k2≥0, ..., kn≥0

s(k1,k2,...,kn)c
(h1,...,hj ,...hi,...,hn)

(k1,k2,...,kn)

Hence, permuting xi and xj in Sk(T ) is equivalent to permuting xi and xj in (T1, T2, . . . , Tn),

then composing with Sk. In other words, (Sk(T ))′ = Sk(T
′).

Therefore, we have that

σ • ((S) ◦ (T )) = ((S1(T ))′, . . . , (Sj(T ))′, . . . , (Si(T ))′, . . . , (Sn(T ))′)

= (S1(T
′), . . . , Sj(T

′), . . . , Si(T
′), . . . , Sn(T ′))

= (σ • (S)) ◦ (σ • (T ))

Therefore, we have our desired result.

Now then, we are ready to address the more general case where σ is any element of Σn.

Theorem 5.2.2. For any σ ∈ Σn, the map

(S1, S2, . . . , Sn) 7→ σ • (S1, S2, . . . , Sn)

is a group automorphism for I.

Proof. We have proven the result for the special case that σ = (ij), where i 6= j. Now for any

arbitrary σ ∈ Σn, we can write

σ = (i1j1) ◦ (i2j2) ◦ · · · ◦ (isjs)
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Since we have shown previously that • is a group action, it follows that the map

(S1, S2, . . . , Sn) 7→ σ • (S1, S2, . . . , Sn)

is a composition of the automorphisms

(S1, S2, . . . , Sn) 7→ (i1j1)(S1, S2, . . . , Sn)

(S1, S2, . . . , Sn) 7→ (i2j2)(S1, S2, . . . , Sn)
...

(S1, S2, . . . , Sn) 7→ (isjs)(S1, S2, . . . , Sn)

Therefore, the map

(S1, S2, . . . , Sn) 7→ σ • (S1, S2, . . . , Sn)

is itself an automorphism of I.

5.3 Elements of F [[x1, x2, . . . , xn]]n Fixed by All Elements of Σn

In this section we focus on the previously defined group action, •, of elements of Σn acting on

F [[x1, x2, . . . , xn]]n. It is our goal here to give a characterization of all elements S = (S1, S2, . . . , Sn) ∈
F [[x1, x2, . . . , xn]]n such that σS = S for all σ ∈ Σn. More specifically, we seek to show that there

is a bijective correspondence between all such S fixed by all σ ∈ Σn and individual formal power

series S1(x1, x2, . . . , xn) that are symmetric with respect to the variables x2, x2, . . . , xn.

To find all such S = (S1, S2, . . . , Sn) ∈ F [[x1, x2, . . . , xn]]n, it suffices to find all

S ∈ F [[x1, x2, . . . , xn]]n such that σS = S for all σ in the set of generators {(12), (13), . . . , (1n)} for

the set Σn.

For each element (1k) in this set of generators of Σn, we need

(1k)(S1, S2, . . . , Sn) = (S1, S2, . . . , Sn)

In particular, this requires that

Sk(xk, x2, . . . , xk−1, x1, xk+1, . . . , xn) = S1(x1, x2, . . . , xn)

or

Sk(x1, x2, . . . , xn) = S1(xk, x2, . . . , xk−1, x1, xk+1, . . . , xn)

Hence, once we know S1, we also know what Sk must be for all k = 2, 3, . . . , n.

Now we turn our attention to elements (ij) ∈ Σn where neither i nor j are 1 and i 6= j. Without

loss of generality, let us assume that i < j. For such an element (ij) ∈ Σn, we must of course have

S1(x1, . . . , xi−1, xj, xi+1, . . . , xj−1, xi, xj+1, . . . , xn) = S1(x1, x2, . . . , xn)
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Since this must be true for all integers 2 ≤ i, j ≤ n, we see that S1(x1, x2, . . . , xn) must be symmetric

in the variables x2, x3, . . . , xn.

Furthermore, going back to the equation above

Sk(xk, x2, . . . , xk−1, x1, xk+1, . . . , xn) = S1(x1, x2, . . . , xn)

we see that Sk must be symmetric in the variables x1, x2, . . . , xk−1, xk+1, . . . , xn.

This leads us to the following conjecture:

Theorem 5.3.1. The element S = (S1, S2, . . . , Sn) ∈ F [[x1, x2, . . . , xn]]n is such that σS = S for

all σ ∈ Σn if and only if S has the following two properties:

1. The series S1(x1, x2, . . . , xn) is symmetric in the variables x2, x3, . . . , xn.

2. For each k = 2, 3, . . . , n, Sk is such that

Sk(x1, x2, . . . , xn) = S1(xk, x2, . . . , xk−1, x1, xk+1, . . . , xn)

Proof. The fact that S having the two listed properties is a necessary condition is shown in the

paragraphs above. So we only concern ourselves here with showing that the two properties are

sufficient for S to be fixed by all σ ∈ Σn.

So, assume S = (S1, S2, . . . , Sn) has the two properties above. Let k be an integer greater than

1 and less than or equal to n, and consider the generating element (1k) of the set Σn. We seek to

show that

(1k)(S1(x1, . . . , xn), . . . , Sn(x1, . . . , xn)) = (S1(x1, . . . , xn), . . . , Sn(x1, . . . , xn))

Before we proceed, let us introduce the following notation: For each Si(x1, x2, . . . , xn), let

S ′i = Si(xk, x2, . . . , xk−1, x1, xk+1, . . . , xn). Also, if no variables are listed, we assume that Si =

Si(x1, x2, . . . , xn).

Now note that

(1k)(S1(x1, . . . , xn), S2(x1, . . . , xn), . . . , Sn(x1, . . . , xn))

= (S ′k, S
′
2, . . . , S

′
k−1, S

′
1, S

′
k+1, . . . , S

′
n)

Now for every Sj, where j is neither 1 nor k, we know that

S ′i = Si(xk, x2, . . . , xk−1, x1, xk+1, . . . , xn) = Si(x1, x2, . . . , xn)

since Si is symmetric in the variables x1, x2, . . . , xi−1, xi+1, . . . , xn.

Furthermore, we know that our assumed properties of S that

S ′k = Sk(xk, x2, . . . , xk−1, x1, xk+1, . . . , xn) = S1(x1, x2, . . . , xn)
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and

S ′1 = S1(xk, x2, . . . , xk−1, x1, xk+1, . . . , xn) = Sk(x1, x2, . . . , xn)

Thus, we have that

(1k)(S1(x1, . . . , xn), S2(x1, . . . , xn), . . . , Sn(x1, . . . , xn))

= (S ′k, S
′
2, . . . , S

′
k−1, S

′
1, S

′
k+1, . . . , S

′
n)

= (S1, S2, . . . , Sn)

Therefore, we have that (1k)S = S for all generators of Σn. It follows that σS = S for all

σ ∈ Σn if and only if S has the two listed properties.

The above theorem, shows us that we have a bijective correspondence between all formal power

series S1(x1, x2, . . . , xn) that are symmetric with respect to x2, x3, . . . , xn and all elements S =

(S1, S2, . . . , Sn) ∈ F [[x1, x2, . . . , xn]]n such that σS = S for all σ ∈ Σn.

Copyright c© Thomas Scott Brewer, 2014.
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