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ABSTRACT OF DISSERTATION

RELATIVE PERTURBATION THEORY FOR DIAGONALLY DOMINANT
MATRICES

Diagonally dominant matrices arise in many applications. In this work, we exploit
the structure of diagonally dominant matrices to provide sharp entrywise relative
perturbation bounds. We first generalize the results of Dopico and Koev to provide
relative perturbation bounds for the LDU factorization with a well conditioned L fac-
tor. We then establish relative perturbation bounds for the inverse that are entrywise
and independent of the condition number. This allows us to also present relative per-
turbation bounds for the linear system Ax=b that are independent of the condition
number. Lastly, we continue the work of Ye to provide relative perturbation bounds
for the eigenvalues of symmetric indefinite matrices and non-symmetric matrices.
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Chapter 1 Introduction

Perturbation theory for a mathematical problem is the study of the effect small

disturbances in the data have on the solution to the problem. The importance of

perturbation theory is two-fold; perturbation theory allows us to investigate compu-

tational errors and approximate solutions to complicated systems as well as to study

the stability of the solution.

Computations produced by numerical algorithms are plagued by two sources of

error. One source of error is the data imputed into the algorithm. This error can be

caused by prior calculations or from measurement errors. The second source of error is

roundoff errors made within the algorithm itself. The standard method for analyzing

roundoff errors is to use backward error analysis. In backward error analysis, we

show that the computed solution produced by an algorithm is the exact solution to

the problem with slightly perturbed inputs. In order to estimate the solution error, we

must study how the solution of a problem is changed if we slightly alter, or perturb,

the input data.

This thesis studies perturbation theory for linear algebra problems. The classical

perturbation theory is extensively studied and surveyed in [41]. Consider the matrix

eigenvalue problem, for example. Let A be a diagonalizable matrix and suppose

Ã = A + E is a perturbation of A. The classical perturbation result bounds the

distance between an eigenvalue λ̃ of Ã and the closest eigenvalue λ of A as a multiple

of the absolute perturbation E. That is,

|λ̃− λ| ≤ κ(X)‖E‖2 (1.1)

where A = XΛX−1 with Λ a diagonal matrix and κ(X) = ‖X‖2‖X−1‖2. We denote

by ‖X‖2 the spectral norm of X, which is the largest singular value of X.
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The bound in (1.1) indicates absolute error but usually it is the relative error that

is of interest. From (1.1), we have

|λ̃− λ|
|λ| ≤ κ(X)

‖E‖2
|λ| = κ(X)

‖A‖2
|λ|

‖E‖2
‖A‖2 (1.2)

The relative perturbation bound 1.2 that follows from (1.1) depends on the eigen-

value itself. This means that each eigenvalue has a different relative bound and those

bounds for eigenvalues larger in magnitude are smaller than those that are smaller

in magnitude. In the following example, we illustrate that this bound is as sharp as

possible.

Example 1.1. Let

A =

⎛⎜⎜⎜⎜⎝
λ1

. . .

λn

⎞⎟⎟⎟⎟⎠
and consider the perturbed matrix

A+ E =

⎛⎜⎜⎜⎜⎝
λ1 + ε

. . .

λn + ε

⎞⎟⎟⎟⎟⎠
where ε > 0 is a small perturbation. The absolute perturbation bound (1.1) gives that

error in an eigenvalue λ̃ of A+ E is bounded by

min
i

|λi − λ̃| ≤ ‖E‖2 = ε.

Suppose λ̃ is close to λmin, the eigenvalue of A of smallest magnitude. Then the

relative error bound is

|λ̃− λmin|
|λmin| ≤ ε

|λmin| .

By definition of A+E, the relative error is ε/|λmin| and thus the bound presented in

(1.2) is sharp.
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In general, the bound (1.2) reflects the actual perturbation. However, in some

cases, the eigenvalues are observed to exhibit much more relative accuracy than the

classical theory would indicate. This becomes an issue when small eigenvalues are

of interest because these error bounds indicate little relative accuracy. Consider the

following example from [26].

Example 1.2. Consider storing the matrix

A =

⎛⎜⎜⎜⎜⎝
λ1

. . .

λn

⎞⎟⎟⎟⎟⎠
in floating point arithmetic. This produces the perturbed matrix

A+ E =

⎛⎜⎜⎜⎜⎝
λ1(1 + ε1)

. . .

λn(1 + εn)

⎞⎟⎟⎟⎟⎠
where |εi| ≤ ε and ε > 0 reflects the machine accuracy. According to the absolute

perturbation bound (1.1), the error in an eigenvalue λ̃ of A+ E is bounded by

min
i

|λi − λ̃| ≤ ‖E‖2 = max
k

|λkεk| ≤ εmax
k

|λk|.

For large eigenvalues, this bound is realistic. If λ̃ is near the eigenvalue of largest

magnitude of A, λmax, then the relative error is

|λmax − λ̃|
|λmax| ≤ ε.

However, if λ̃ is near the eigenvalue of smallest magnitude, λmin, then the relative

error is

|λmin − λ̃|
|λmin| ≤ ε

|λmax|
|λmin| .

When the eigenvalues vary greatly in magnitude, this bound is much larger than ε.

By the definition of A+ E, the relative errors of all eigenvalues do not exceed ε and

thus this bound is not tight.
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One way to derive sharp relative perturbation bounds is to express the perturba-

tion multiplicatively. That is, instead of representing the perturbation in A as A+E,

we represent it as D1AD2 where D1 and D2 are nonsingular matrices close to the

identity matrix. The following is one such result.

Theorem 1.3 ([26]). Let A be a diagonalizable matrix with eigenvalues {λi}ni=1 and

let Ã = D1AD2 where D1 and D2 are nonsingular. Let λ̃ be an eigenvalue of Ã, then

min
i

|λi − λ̃| ≤ |λ̃|κ(X)‖I −D−1
1 D−1

2 ‖2

In this theorem, by interpreting the perturbation as a multiplicative one, we can

exploit certain matrix structures and perturbation structures to provide perturbation

bounds for eigenvalues, even the smallest, with high relative accuracy. This is known

as multiplicative perturbation theory, which has been extensively studied in [5, 10,

11, 12, 17, 18, 19, 29]. See [26] for an overview.

Although multiplicative perturbation theory provides nice relative perturbation

bounds, a practical perturbation problem is generally concerned with an additive

perturbation. On the other hand, if a matrix has certain structure, then one may

express an additive perturbation as a multiplicative perturbation so as to derive

relative perturbation bounds. One example where additive perturbations can easily

be represented as multiplicative perturbations is the following.

Example 1.4. Consider the symmetric tridiagonal matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α1

α1 0 α2

α2 0 α3

α3 0 α4

α4 0 α5

α5 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and the component-wise relative perturbation

Ã =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α̃1

α̃1 0 α̃2

α̃2 0 α̃3

α̃3 0 α̃4

α̃4 0 α̃5

α̃5 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where α̃i = αi + ei, and |ei/αi| = |εi| ≤ ε. That is, α̃i = αi(1 + εi). Let βi = 1 + εi.

Then, the perturbed matrix Ã can be represented as a multiplicative perturbation Ã =

DAD, where

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1

1

β2

β3

β2

β4β2

β3

β5β3

β4β2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Using the multiplicative relative perturbation in Theorem 1.3 we obtain

min
i

|λi − λ̃|
|λ̃|

≤ 1−
(
1− ε

1 + ε

)4

= 8ε+O(ε2).

On the other hand, if treating Ã as an additive perturbation, we have

min
i

|λi − λ̃|
|λi| ≤ 2ε

|λi| .

Perturbations that can be easily written multiplicatively do not commonly arise in

practice. In general, we are interested in additive perturbations. Thus, it is important

to study perturbation theory in terms of the perturbed elements by exploiting specific

structures.

In this thesis, we will consider an important class of matrices, i.e. diagonally

dominant matrices, for which strong relative perturbation bounds can be derived.
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A matrix is called (row) diagonally dominant if for each row, the diagonal entry is

larger than the sum of the absolute value of the off-diagonal entries. Diagonally

dominant matrices arise in many applications and have been extensively studied, see

[2, 1, 3, 13, 14, 15, 40, 43, 44]. For instance, they appear frequently in numerical

solutions for both ordinary and partial differential equations. Diagonally dominant

matrices exhibit very nice theoretical properties, as explained in [24, 25]. They are a

class of matrices for which iterative solution methods can be successfully applied.

The structure of diagonally dominant matrices has been exploited to provide

strong relative perturbation bounds. In [44], a perturbation bound is presented for

the eigenvalues of a symmetric positive semi-definite diagonally dominant matrix that

improves upon previous research in that the bound is independent of any condition

number. In [43], an algorithm is presented for computing the singular values of di-

agonally dominant matrices with relative errors on the order of machine precision.

For symmetric positive semi-definite diagonally dominant matrices, i.e. diagonally

dominant matrices with positive diagonal entries, this algorithm also computes the

eigenvalues to the order of machine precision. In [13], a structured perturbation the-

ory for the LDU factorization of diagonally dominant matrices is presented. A = LDU

is an LDU factorization if L is a unit lower triangular matrix, D is a diagonal matrix,

and U is a unit upper triangular matrix. The relative errors for the diagonal matrix

D are bounded componentwise and the relative errors for the factors L and U are

norm-wise. In [16], sharp relative perturbation bounds for solutions to linear systems

are derived using a structured perturbation in a rank revealing factorization such as

the LDU factorization.

In this work we systematically derive relative perturbation bounds for a variety

of linear algebra problems for diagonally dominant matrices. We first generalize the

perturbation bounds presented by Dopico and Koev [13] for the LDU factorization

of diagonally dominant matrices. The bounds presented in [13] require complete di-
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agonal pivoting which does not ensure a well-conditioned factor L. We prove that

by using the so called column diagonal dominance pivoting, we can produce relative

perturbation bounds for the LDU factorization that ensures L is column diagonally

dominant and hence well-conditioned. Specifically, for a row diagonally dominant

matrix A that is not entirely zero, there is at least one k such that akk �= 0 and

column k is column diagonally dominant. The column diagonal dominance pivoting

strategy is to permute row 1 with row k and column 1 with column k, after which

the fist column of the matrix is diagonally dominant. If there are many columns that

are column diagonally dominant, we choose the one with maximal akk. Applying

Gaussian elimination, the first column of L that is produced is column diagonally

dominant. Repeating this strategy, at the end of Gaussian elimination we obtain a

row diagonally dominant U as usual, but now L is column diagonally dominant. Us-

ing [39], we have that the condition numbers of L and U are bounded as κ∞(L) ≤ n2

and κ∞(U) ≤ 2n. Having a well-conditioned L is critical in many applications of

the LDU factorization. We then, for diagonally dominant matrices, obtain relative

perturbation bounds for several other linear algebra problems including inverses, so-

lutions to linear systems, eigenvalues, and singular values. These new results are

being prepared for publication [7, 8].

This thesis is organized as follows: In Chapter 2, we focus on the LDU factor-

ization. We discuss the classical results in literature and present the current relative

perturbation results of Dopico and Koev [13]. We then present the main result of

this thesis that provides a stronger form of the LDU perturbation bounds from [13].

The proof of the new bound involves some significantly new techniques. In Chapter

3 we discuss perturbation theory for the matrix inverse and solution to linear sys-

tems. After presenting the classical results, we present relative perturbation results

for diagonally dominant matrices. The symmetric eigenvalue problem is the focus of

Chapter 4. We present classical additive and relative perturbation bounds for sym-

7



metric matrices, see [26]. We also include in this chapter results for the singular value

problem. In Chapter 5, we consider the nonsymmetric eigenvalue problem.

1.1 Preliminaries and Notation

Rank-revealing decompositions have been a key component to finding high accuracy

singular value decompositions (SVDs). In [10], Demmel et. al produce an algorithm

to compute high accuracy SVDs by first computing any rank revealing decomposi-

tion, i.e. A = XDY T , then the SVD of XDY T is computed using an algorithm of

Jacobi type. In general, we say a decomposition A = XDY T is a rank revealing

decomposition if X and Y are well conditioned and D is diagonal and nonsingular.

The criteria “well conditioned” is dependent on the problem at hand and the desired

error tolerance. The SVD itself and the decomposition that results from Gaussian

Elimination with complete pivoting are examples of rank-revealing decompositions.

Let A = XDY T and Ã = X̃D̃Ỹ T with D = diag(di) and D̃ = diag(d̃i). In [10], it

is shown that if Ã is a perturbation of A satisfying

|d̃i − di| ≤ ε|di|

‖X̃ −X‖2 ≤ ε‖X‖2, ‖Ỹ − Y ‖2 ≤ ε‖Y ‖2

where 0 ≤ ε < 1, then, the singular values of A and Ã satisfy

|σ̃i − σi|
σi

≤ 2η + η2

where η = ε(2+ε)max{κ(X), κ(Y )}, with κ(Z) = ‖Z‖2‖Z−1‖2 the condition number

of Z defined in terms of the Moore-Penrose pseudoinverse.

Note that the error in the singular values is dependent on the condition number of

the factors X and Y , which are assumed to be well-conditioned, and not the condition

number of the matrix A, which could be large. Rank revealing decompositions are

also utilized in [14] and [15] to bound perturbation errors in eigenvalues of symmetric

8



matrices with high relative accuracy. In [16], accurate rank revealing decompositions

are used to compute accurate solutions to structured linear systems.

Recent research has focused on special matrices for which eigenvalues and singu-

lar values can be computed with high relative accuracy. Among these matrices are

diagonally dominant matrices, which we discuss now.

Definition 1.5. A matrix A = [aij] is said to be (row) diagonally dominant if |aii| ≥∑
j �=i

|aij| for all i and is said to be column diagonally dominant if |aii| ≥
∑
j �=i

|aji| for all
i.

An idea that has played a key role in computing eigenvalues of diagonally dominant

matrices is to reparameterize the matrix in terms of its diagonally dominant parts

and off diagonal entries. This reparameterization is introduced in [2, 43] and stated

below.

Definition 1.6. Given an n× n matrix M = [mij] and an n-vector v = [vi], we use

D(M, v) to denote the matrix A = [aij] whose off-diagonal entries are the same as M

and whose ith diagonal entry is aii = vi +
∑

j �=i |mij|. Namely, we write

A = D(M, v)

and call it the representation of A by diagonally dominant parts v if

aij = mij for i �= j; and aii = vi +
∑
j �=i

|mij|

Given a matrix A = [aij], we denote by AD the matrix whose off-diagonal entries

are the same as A and whose diagonal entries are zero. Then, letting vi = aii −∑
j �=i |aij| and v = (v1, v2, . . . , vn)

T , we have

A = D(AD, v)

as the representation of A by diagonally dominant parts.
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Theorem 1.7 ([13]). If A ∈ Rn×n is diagonally dominant, then

1. Every principal submatrix of A is diagonally dominant;

2. PAP T is diagonally dominant for every permutation matrix P ∈ Rn×n;

3. If a11 �= 0 then the Schur complement of a11 in A is diagonally dominant;

4. If detA �= 0 then detA has the same sign as the product a11a22 · · · ann; and

5. | detA(i′, i′)| ≥ | detA(i′, j′)|, for all i = 1, . . . , n and for all j �= i where A(i′, j′)

denotes the submatrix of A formed by deleting row i and column j of A.

Diagonally dominant matrices have several nice properties that can be utilized,

see [13, Theorem 1]. For instance, strictly diagonally dominant matrices (that is,

diagonally dominant matrices as defined in Definition 1.5 with strict inequalities) are

nonsingular and Gaussian elimination can be performed without interchanging rows.

This implies that a strictly diagonally dominant matrix A has an LDU factorization.

That is, that we can write A as A = LDU where L, D, and U are a lower triangular

matrix, diagonal matrix, and upper triangular matrix, respectively.

Notation: In this thesis we consider only real matrices and we denote by Rm×n

the set of m × n real matrices. The entries of matrix A are aij. We use MATLAB

notation for submatrices. We use i : j to denote the index subset from i to j. That

is, A(i : j, k : l) denotes the submatrix of A formed by rows i through j and columns

k through l. We use A(i′, j′) to denote the submatrix of A formed by deleting row i

and column j from A. Let α = [i1, i2, . . . , iq] where 1 ≤ i1 < i2 < · · · < iq ≤ n. Then

A(α, α) denotes the submatrix of A that consists of rows i1, i2, . . . , iq and columns

i1, i2, . . . , iq. We denote by ‖·‖ a general matrix operator norm. We will use five special

matrix norms: the max norm ‖A‖max = maxij |aij|, the maximum absolute column

sum ‖A‖1 = maxj
∑

i |aij|, the maximum absolute row sum ‖A‖∞ = maxi
∑

j |aij|,
the spectral norm ‖A‖2, which is the largest singular value of A, and the Frobenius

10



norm ‖A‖F = (
∑

i,j |aij|2)1/2. The transpose of A is denoted by AT . We denote by A∗

the conjugate transpose of A. The sign of x ∈ R is sign(x), where sign(0) is defined

to be 1.

Copyright c© Megan Dailey, 2013.

11



Chapter 2 LDU factorizations

In this chapter we focus on one of the most important matrix factorizations in nu-

merical analysis. The LU factorizations decomposes a matrix into the product of a

unit lower triangular matrix L and an upper triangular matrix U . The LU factor-

ization is primarily used to solve systems of linear equations, inverting a matrix, and

computing the determinant.

In regards to solving systems of linear systems, the focus is usually on backward

error analysis. Consider computing the LU factorization of A without pivoting. The

computed factors L̃ and Ũ are the exact L and U factors of some matrix A + E.

Backward error analysis provides a bound for the perturbation E.

Theorem 2.1 ([9]). Let A be a matrix and suppose L̃ and Ũ are the computed factors

in the LU decomposition. Then, L̃Ũ = A+ E with

|E| ≤ (nε+O(ε2))|L̃||Ũ |

where ε > 0 is machine precision.

The LU factorization is used to solve the linear system Ax = b, or rather LUx = b,

by first solving Ly = b for y and then Ux = y for x. Each of these can be easily solved

by substitution. From Theorem 2.1 we obtain the following result for the backward

error analysis on the solution to Ax = b.

Corollary 2.2 ([9]). Let x̃ be the computed solution of Ax = b by using the computed

factors L̃ and Ũ . Then, x̃ is the exact solution to (A+ E)x̃ = b with

‖E‖∞ ≤ 3gppn
3ε‖A‖∞

where gpp =
‖Ũ‖max

‖A‖max

.
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From backward error analysis, we can derive forward error bounds using perturba-

tion analysis. For example, to derive forward error bounds for the LU factorization,

we develop a perturbation theory for the L and U factors of a perturbed matrix A.

Barrlund [4] presented a normwise bound and Sun [21] presented a componentwise

bound for the factors of the LU decomposition of a general matrix. Dopico and

Bueno [6] improve these results for the special case of tridiagonal matrices without

pivoting. In Section 2.1, we will examine the strong relative perturbation bounds

of Dopico and Koev [13] for the LDU factorization of diagonally dominant matrices

with nonnegative diagonals under a structured perturbation. We will improve upon

these results by generalizing the structured perturbation in Section 2.2.

Definition 2.3. A matrix A ∈ Rn×n with rank r is said to have LDU factorization if

there exists a unit lower triangular matrix L11 ∈ Rr×r, a unit upper triangular matrix

U11 ∈ Rr×r, and a nonsingular diagonal matrix D11 ∈ Rr×r such that A = LDU

where

L =

⎡⎢⎣ L11 0

L21 In−r

⎤⎥⎦ , D =

⎡⎢⎣ D11 0

0 0n−r

⎤⎥⎦ , U =

⎡⎢⎣ U11 U12

0 In−r

⎤⎥⎦
Note that the LDU factorization is another form of the LU factorization. Namely,

from A = LDU above, A = LU1 with U1 = DU is the standard LU factorization. On

the other hand, from A = LU , A = LDU1 with U1 = D−1U is the LDU factorization

as defined above assuming A is invertible. For a general diagonally dominant matrix,

applying any pivoting scheme with simultaneous row and column permutations leads

to a matrix that has LDU factorization.

Theorem 2.4 ([20]). If A has LDU factorization, then the factorization is unique
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and the nontrivial entries of L, D, and U are given by

lij =
detA([1 : j − 1, i], 1 : j)

detA(1 : j, 1 : j)
, i > j and j = 1, . . . , r, (2.1)

di =
detA(1 : i, 1 : i)

detA(1 : i− 1, 1 : i− 1)
, i = 1, . . . , r, (detA(1 : 0, 1 : 0) := 1) (2.2)

uij =
detA(1 : i, [1 : i− 1, j])

detA(1 : i, 1 : i)
, i < j and i = 1, . . . , r. (2.3)

where [1 : j − 1, i] denotes the index subset containing indices 1 to j − i and i.

2.1 Classical perturbation bounds

The normwise and element-wise bounds of Barrlund [4] and Sun [21] are combined

in [23] and presented below.

Theorem 2.5. Let the nonsingular matrices A ∈ Rn×n and A + ΔA have LU fac-

torizations A = LU and A +ΔA = (L +ΔL)(U +ΔU), and assume that ‖G‖2 < 1

where G = L−1ΔAU−1. Then

max

{‖ΔL‖F
‖L‖2 ,

‖ΔU‖F
‖U‖2

}
≤ ‖G‖F

1− ‖G‖2 ≤ ‖L−1‖2‖U−1‖2‖A‖2
1− ‖L−1‖2‖U−1‖2‖ΔA‖2

‖ΔA‖F
‖A‖F (2.4)

Moreover, if ρ(|G̃|) < 1, where G̃ = (L+ΔL)−1ΔA(U +ΔU)−1, then

|ΔL| ≤ |L+ΔL|stril
(
(I − |G̃|)−1|G̃|

)
,

|ΔU | ≤ triu
(
|G̃|(I − |G̃|)−1

)
|U +ΔU |,

where stril(·) and triu(·) denote, respectively, the strictly lower triangular part and

the upper triangular part of their matrix arguments.

The term χ(A) := ‖L−1‖2‖U−1‖2‖A‖2 in the normwise bounds in Theorem 2.5

serves as an upper bound for the condition number for the LU factorization of A.

Note that χ(A) is larger than the traditional condition number κ(A). A stronger

bound would use κ(A) instead of χ(A). Another disadvantage to the bounds on ΔL

and ΔU in Theorem 2.5 is that they include the factors L and U themselves. Simpler
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bounds can be achieved by focusing on specific structures. In the next chapter we

are able to significantly improve this result for diagonally dominant matrices in two

ways. First, it is independent of any condition number. Second, it is an entrywise

relative bound for D (or the diagonal of U) and is independent of A and the factors L

and U. In fact, it is only dependent upon the size of the matrix and the perturbation.

2.2 Relative perturbation bounds for diagonally dominant matrices

In this section, we will focus on the perturbation results for the LDU factorization

of diagonally dominant matrices with nonnegative diagonals provided by Dopico and

Koev in [13]. Their result is based on a diagonal pivoting scheme.

In general, consider applying the Gaussian elimination to A with a pivoting strat-

egy. Assuming that k steps of elimination have been performed, we let A(k+1) =

[a
(k+1)
ij ] denote the matrix after the k-th Gaussian elimination, and we write A(1) = A.

It is well known that A(k) is diagonally dominant if A is diagonally dominant. We

represent it as A(k) = D(A
(k)
D , v

(k)
D ) where v(k) = [v

(k)
1 , v

(k)
2 , . . . , v

(k)
n ]T with

v
(k)
i = a

(k)
ii −

n∑
j=k,j �=i

|a(k)ij | (2.5)

for i ≥ k and v
(k)
i = v

(k−1)
i for i < k. Let r be the rank of A. Then, we can perform r

steps of Gaussian elimination to produce the matrix A(r+1). Determinantal formulas

for the entries of A(k) will be of interest. From [20], we have

a
(k+1)
ij =

detA([1 : k, i], [1 : k, j])

detA(1 : k, 1 : k)
(2.6)

for k + 1 ≤ i, j ≤ n and 1 ≤ k ≤ min{r, n− 1}.

Definition 2.6. A diagonally dominant matrix A ∈ Rn×n with rank r is said to be

arranged for complete-diagonal pivoting if

|a(k)kk | = max
k≤i≤n

|a(k)ii |, k = 1, . . . ,min{r, n− 1}.
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In general, there exists a permutation P so that PAP T is arranged for complete-

diagonal pivoting.

Theorem 2.7. Let A = D(AD, v) ∈ R
n×n be such that v ≥ 0. Suppose A has LDU

factorization A = LDU as in Definition 2.3. Let Ã = D(ÃD, ṽ) ∈ R
n×n be such that

|ṽ − v| ≤ εv and |ÃD − AD| ≤ ε|AD|, for some 0 ≤ ε < 1. (2.7)

Then,

1. Ã is row diagonally dominant with nonnegative diagonal entries and has LDU

factorization Ã = L̃D̃Ũ where L̃ = [l̃ij], D̃ = [d̃ij], and Ũ = [ũij];

2. For i = 1, . . . , n,

|d̃ii − dii| ≤ 2nε

1− 2nε
|dii|,

3. for i < j,

|ũij − uij| ≤ 3nε,

and

‖Ũ − U‖∞
‖U‖∞ ≤ 3n2ε

4. and, if A is arranged for complete diagonal pivoting, for i > j

|l̃ij − lij| ≤ 3nε

1− 2nε

and

‖L̃− L‖∞
‖L‖∞ ≤ 3n2ε

1− 2nε

Theorem 2.7 states that small perturbations in the diagonally dominant parts and

the off diagonal entries, lead to small relative perturbations in the entries of D, small

absolute perturbations in the entries of U , and if we assume the matrix is arranged

for complete diagonal pivoting, small absolute perturbations in the entries of L which

also imply small normwise relative perturbation bounds in L and U . At each stage of
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Gaussian elimination with complete diagonal pivoting, the same row and column are

exchanged to place in the pivot position the diagonal entry with the largest absolute

value of the corresponding Schur complement.

In the LDU factorization with complete diagonal pivoting, the factor U is row

diagonally dominant, and hence well conditioned. However, the factor L does not in-

herit, in general, any particular property. The following example from [13] illustrates

the necessity of a pivoting scheme to guarantee good behavior in the L factor under

structured perturbation of type (2.7).

Example 2.8. Consider the LDU factorization of the following diagonally dominant

matrix A = LDU without pivoting

A =

⎡⎢⎢⎢⎢⎣
1000 100 500

0 0.1 0.05

100 10 120

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1

0 1

0.1 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1000

0.1

70

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0.1 0.5

1 0.5

1

⎤⎥⎥⎥⎥⎦ .

Observe that the vector of diagonally dominant parts of A is v = [400, 0.05, 10]. Now

consider the LDU factorization of the diagonally dominant matrix Ã = L̃D̃Ũ without

pivoting

Ã =

⎡⎢⎢⎢⎢⎣
1000 101 500

0 0.1 0.05

100 10 120

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
1

0 1

0.1 −1 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1000

0.1

70.05

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0.101 0.5

1 0.5

1

⎤⎥⎥⎥⎥⎦
whose vector of diagonally dominant parts is ṽ = [399, 0.05, 10]. Note that A and Ã

satisfy (2.7) with ε = 10−2 but their L factors are very different since |l̃32 − l32| = 1.

Suppose P is a permutation matrix such that PAP T is arranged for complete
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diagonal pivoting. Let B = PAP T and consider its LDU factorization

B =

⎡⎢⎢⎢⎢⎣
1000 500 100

100 120 10

0 0.05 0.1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1

0.1 1

0 0.05
70

1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1000

70

.1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0.5 0.1

1 0

1

⎤⎥⎥⎥⎥⎦ .

Let B̃ = PÃP T and consider its LDU factorization

B̃ =

⎡⎢⎢⎢⎢⎣
1000 500 100

100 120 10

0 0.05 0.1

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
1

0.1 1

0 0.05
140

1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1000

70

.1(1 + 0.05
70

)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 0.5 0.101

1 −0.1
70

1

⎤⎥⎥⎥⎥⎦ .

Notice that the LDU factorizations for B and B̃ are very close to each other.

In the next section, we introduce a different pivoting strategy that will ensure L is

column diagonally dominant and hence well conditioned. Moreover, it still produces

small relative perturbation in the LDU factorization. For the rest of this section, we

present several results from [13] which will be used in proving new bounds.

The proof of Theorem 2.7 hinges on Theorem 2.4 and several perturbation results

for determinants. It is useful to consider the cofactor expansion of the determinant

of a diagonally dominant matrix, as given in Lemma 2.9 below.

Lemma 2.9 ([13]). Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0. Denote the

algebraic cofactors of A by

Cij := (−1)i+j detA(i′, j′), i, j = 1, . . . , n.

Then

detA = viCii +
∑
j �=i

(|aij|Cii + aijCij), i = 1, . . . , n.

with viCii ≥ 0 and (|aij|Cii + aijCij) ≥ 0 for j �= i.
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In Lemma 2.10, Dopico and Koev present perturbation results for the determi-

nant of diagonally dominant matrices with nonnegative diagonals under structured

perturbations of type (2.7).

Lemma 2.10 ([13]). Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let Ã =

D(ÃD, ṽ) ∈ Rn×n satisfy (2.7). Suppose Ã[i] = D(Ã
[i]
D , ṽ

[i]) ∈ Rn×n is a matrix that

differs from A in only the ith row and whose ith row is the same as the ith row of Ã.

Then

det Ã[i] = (detA)(1 + ηi), where |ηi| ≤ ε. (2.8)

This result is then utilized to provide a perturbation result for principal minors

of diagonally dominant matrices with nonnegative diagonals.

Lemma 2.11 ([13]). Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let Ã =

D(ÃD, ṽ) ∈ Rn×n satisfy (2.7). Suppose Ã[i] = D(Ã
[i]
D , ṽ

[i]) ∈ Rn×n is a matrix that

differs from A in only the ith row and whose ith row is the same as the ith row of

Ã. Let 1 ≤ i1 < i2 < · · · < iq ≤ n and α = [i1, i2, . . . , iq], and denote the principle

submatrix of A that lies in rows and columns indexed by α as A(α, α). Then we have

det Ã[i](α, α) =

⎧⎪⎪⎨⎪⎪⎩
detA(α, α) if i /∈ α

(detA(α, α))(1 + δ
(α)
i ) if i ∈ α

(2.9)

where |δ(α)i | ≤ ε and

det Ã(α, α) = (detA(α, α))(1 + η
(α)
1 ) · · · (1 + η(α)q ) (2.10)

where |η(α)k | ≤ ε for k = 1, . . . , q.

Consider the determinants in Theorem 2.4. In [13], the following notation is

introduced for simplicity

g(k+1)
pq = detA([1 : k, p], [1 : k, q]), (2.11)
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for 1 ≤ k ≤ n − 1 and k − 1 ≤ p, q ≤ n. We denote by
(
g̃[i]

)(k+1)

pq
and g̃

(k+1)
pq the

corresponding minors of the perturbed matrices Ã[i] and Ã as defined in Lemmas 2.10

and 2.11 above, respectively. Lemma 2.12 establishes relationships that are utilized

in Lemma 2.13 to provide perturbation results for nonprinciple minors.

Lemma 2.12 ([13]). Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0. For k =

1, . . . , n − 2, p �= q, and k + 1 ≤ p, q ≤ n, let Gij be the algebraic cofactor of

A([1 : k, p], [1 : k, q]) for the entry aij. Then, for the minors defined in (2.11),

g(k+1)
pq = ap1Gp1 + · · ·+ apkGpk + apqGpq (2.12)

2g(k+1)
pp ≥ |ap1Gp1|+ · · ·+ |apkGpk|+ |apqGpq| (2.13)

and for 1 ≤ i ≤ k,

g(k+1)
pq =

⎛⎝vi +
∑

j /∈{1,...,k,q}
|aij|

⎞⎠Gii +
∑

j∈{1,...,k,q}\{i}
(aijGij + |aij|Gii) (2.14)

2g(k+1)
pp ≥

⎛⎝vi +
∑

j /∈{1,...,k,q}
|aij|

⎞⎠ |Gii|+
∑

j∈{1,...,k,q}\{i}
|aijGij + |aij|Gii| (2.15)

Lemma 2.13 ([13]). Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let 1 ≤ k ≤
n − 2, k + 1 ≤ p, q ≤ n and p �= q.Let Ã = D(ÃD, ṽ) ∈ Rn×n that satisfies (2.7)

with the given p. Suppose Ã[i] = D(Ã
[i]
D , ṽ

[i]) ∈ Rn×n is a matrix that differs from A

in only the ith row and whose ith row parameters are the entries in the ith row of Ã.

Then, the following statements hold

1.
∣∣∣(g̃[i])(k+1)

pq
− g(k+1)

pq

∣∣∣ ≤
⎧⎪⎪⎨⎪⎪⎩
0 if i /∈ [1 : k, p]

2εg
(k+1)
pp if i ∈ [1 : k, p]

2. |g̃(k+1)
pq − g(k+1)

pq | ≤ 2
(
(1 + ε)k+1 − 1

)
g(k+1)
pp .
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2.3 Generalized relative perturbation bounds for diagonally dominant

matrices

The LDU perturbation results of Dopico and Koev [13] require complete diagonal

privoting which does not guarantee a well conditioned factor L. In this section, we

utilize a different pivoting scheme that ensures L is column diagonally dominant. For

many applications of the LDU factorization, it is desirable to have both L and U

well-conditioned. For example, a LDU factorization with well-conditioned L and U

is a rank revealing factorization which can be used to accurately compute singular

values [43], among many other uses. In later chapters, we use the LDU factorization

to derive new relative perturbation bounds for other problems, some of which also

rely on well-conditioned L factor.

In [43], a pivoting strategy, previously suggested by Pena [39], is presented that

produces a column diagonally dominant L. This strategy is referred to as column

diagonal dominance pivoting. At each stage of Gaussian elimination, the same row

and column are exchanged to place in the pivot position the maximal diagonal entry

that is column diagonally dominant. That is, at step k, we exchange the same row

and column such that

a
(k)
kk = max

k≤i≤n
{a(k)ii : a

(k)
ii −

n∑
j=k,j �=i

|a(k)ji | ≥ 0}

Note that for a row diagonally dominant matrix, there is at least one column that is

diagonally dominant and thus the set {a(k)ii : a
(k)
ii −∑n

j=k,j �=i |a(k)ji | ≥ 0} is not empty.

At the end, we obtain a row diagonally dominant U as usual, but now L is column

diagonally dominant. Hence, by [39]

‖L‖∞ ≤ n ‖L−1‖∞ ≤ n (2.16)

‖U‖∞ ≤ 2 ‖U−1‖∞ ≤ n (2.17)

which implies the condition numbers of L and U are bounded as κ∞(L) ≤ n2 and

κ∞(U) ≤ 2n. From here on we will assume the matrix A is already permuted under
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the column diagonal dominance pivoting scheme. In particular, the use of column

diagonal dominance pivoting allows us to bound the column sums of the L factor in

terms of the diagonally dominant part and the diagonal entry of A as seen in the

following theorem.

Theorem 2.14. Let r = rank(A). For k ≤ r, we have

n∑
i=k+1

|a(k)ik |+ v
(k)
i ≤ (n− k)a

(k)
kk

Proof. At step k, define δ
(k)
i = a

(k)
ii −

n∑
j=k,j �=i

|a(k)ji |. Then, we have

a
(k)
kk = max{a(k)ii : δ

(k)
i ≥ 0, i ≥ k}.

If all δ
(k)
i ≥ 0, then

n∑
i=k+1

(
|a(k)ik |+ v

(k)
i

)
≤

n∑
i=k+1

a
(k)
ii

≤
n∑

i=k+1

a
(k)
kk ≤ (n− k)a

(k)
kk

Otherwise, if there is at least one δ
(k)
i < 0, then rearrange (2.5) as,

|a(k)ik | = a
(k)
ii −

n∑
j=k+1,j �=i

|a(k)ij | − v
(k)
i

and sum over i to obtain,

n∑
i=k+1

|a(k)ik | =
n∑

i=k+1

a
(k)
ii −

n∑
i=k+1

n∑
j=k+1,j �=i

|a(k)ij | −
n∑

i=k+1

v
(k)
i

=
n∑

i=k+1

n∑
j=k+1,j �=i

|a(k)ji |+
n∑

i=k+1

δ
(k)
i −

n∑
i=k+1

n∑
j=k+1,j �=i

|a(k)ij | −
n∑

i=k+1

v
(k)
i

=
n∑

i=k+1

|a(k)ki |+
n∑

i=k+1

δ
(k)
i −

n∑
i=k+1

v
(k)
i

≤ a
(k)
kk +

n∑
i=k+1

δ
(k)
i −

n∑
i=k+1

v
(k)
i .
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Rearranging yields

n∑
i=k+1

|a(k)ik |+ v
(k)
i ≤ a

(k)
kk +

n∑
i=k+1,δ

(k)
i ≥0

δ
(k)
i ≤ a

(k)
kk +

n∑
i=k+1

a
(k)
ii

≤ a
(k)
kk +

n∑
i=k+1

a
(k)
kk ≤ a

(k)
kk + (n− k − 1)a

(k)
kk

= (n− k)a
(k)
kk

since for δ
(k)
i ≥ 0, δ

(k)
i ≤ a

(k)
ii ≤ a

(k)
kk .

To prove our improved perturbation bound for the LDU factorization, we need to

consider perturbations that are more general in the pth column, for a fixed p. That

is, we consider perturbations that satisfy

|ṽ − v| ≤ εv, |ãip − aip| ≤ ε(vi + |aip|), and |ãij − aij| ≤ ε|aij|. (2.18)

for i = 1, . . . n, j = 1, . . . , n, and j �= i, p. This generalized perturbation can be

equivalently expressed as

ṽi = vi(1 + ϕi) where |ϕi| ≤ ε < 1 for i = 1, . . . , n (2.19)

ãip = aip(1 + ϕ′
ip) + ϕipvi where |ϕip| ≤ ε < 1 and ϕ′

ip = ϕipsign(aip) (2.20)

ãij = aij(1 + ϕij) where |ϕij| ≤ ε < 1 for j �= i, p and j = 1, . . . , n (2.21)

The following lemma is a generalization of Lemma 2.10

Lemma 2.15. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let Ã = D(ÃD, ṽ) ∈
Rn×n satisfy (2.18). Suppose Ã[i] = D(Ã

[i]
D , ṽ

[i]) ∈ Rn×n is a matrix that differs from

A in only the ith row and whose ith row is the same as the ith row of Ã. Then

det Ã[i] = (detA)(1 + ηi), where |ηi| ≤ 3ε. (2.22)

Proof. We consider the cofactor expansion of det Ã[i] across row i. Let Cij be the

algebraic cofactors of Ã[i] corresponding to ã
[i]
ij and observe that they are also the

algebraic cofactors of A corresponding to entry aij.
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For i = p, use Lemma 2.9, (2.19), and (2.21) to show

det Ã[p] = detA+ ϕpvpCpp +
∑
j �=p

ϕpj(|apj|Cpp + apjCpj).

Rearranging and applying the absolute value yields

| det Ã[p] − detA| =

∣∣∣∣∣ϕpvpCpp +
∑
j �=p

ϕpj(|apj|Cpp + apjCpj)

∣∣∣∣∣
≤ |ϕp|vpCpp +

∑
j �=p

|ϕpj|(|apj|Cpp + apjCpj)

≤ ε|vpCpp +
∑
j �=p

ε(|apj|Cpp + apjCpj)

and hence | det Ã[p] − detA| ≤ ε detA

For i �= p, use Lemma 2.9, (2.19), and (2.21) to obtain

det Ã[i] = ṽiCii +
∑
j �=i

|ãij|Cii + ãijCij

= ṽiCii + |ãip|Cii + ãipCip +
∑
j �=i,p

|ãij|Cii + ãijCij

= viCii + viϕiCii + |ãip|Cii + aipCip + aipϕ
′
ipCip + ϕipviCip

+
∑
j �=i,p

(|aij|Cii + aijCij) +
∑
j �=i,p

ϕij (|aij|Cii + aijCij)

From (2.20) we have

|ãip| ≤ |aip(1 + ϕ′
ip)|+ |ϕip|vi ≤ |aip|(1 + ϕ′

ip) + εvi

and

|ãip| ≥ |aip(1 + ϕ′
ip)| − |ϕipvi| = |aip|(1 + ϕ′

ip)− |ϕip|vi ≥ |aip|(1 + ϕ′
ip)− εvi

That is,

|aip|(1 + ϕ′
ip)− εvi ≤ |ãip| ≤ |aip|(1 + ϕ′

ip) + εvi (2.23)
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and hence

det Ã[i] ≥ viCii + viϕiCii + |aip|Cii + |aip|ϕ′
ipCii − εviCii + aipCip + aipϕ

′
ipCip

+ϕipviCip +
∑
j �=i,p

(|aij|Cii + aijCij) +
∑
j �=i,p

ϕij (|aij|Cii + aijCij)

= detA+ viϕiCii + |aip|ϕ′
ipCii − εviCii + aipϕ

′
ipCip + ϕipviCip

+
∑
j �=i,p

ϕij (|aij|Cii + aijCij) .

Using Theorem 1.7, we have

det Ã[i] ≥ detA− εviCii − ε|aip|Cii − εviCii − εaipCio − εviCii

−ε
∑
j �=i,p

(|aij|Cii + aijCij)

≥ detA− 3εviCii − ε
∑
j �=i

(|aij|Cii + aijCij)

≥ detA− 3ε detA = detA(1− 3ε)

and similarly,

det Ã[i] ≤ viCii + viϕiCii + |aip|Cii + |aip|ϕ′
ipCii + εviCii + aipCip + aipϕ

′
ipCip

+ϕipviCip +
∑
j �=i,p

(|aij|Cii + aijCij) +
∑
j �=i,p

ϕij (|aij|Cii + aijCij)

≤ viCii + εviCii + |aip|Cii + ε|aip|Cii + εviCii + aipCii + εaipCii + εviCip

+
∑
j �=i,p

(|aij|Cii + aijCij) + ε
∑
j �=i,p

(|aij|Cii + aijCij)

≤ detA+ 3εviCii + ε
∑
j �=i

(|aij|Cii + aijCij)

≤ detA+ 3ε detA = detA(1 + 3ε).

Thus,

−3ε detA ≤ det Ã[i] − detA ≤ 3ε detA

or

| det Ã[i] − detA| ≤ 3ε detA
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If detA = 0 then | det Ã[i] − detA| = 0 which implies det Ã[i] = detA = 0. Thus,

det Ã[i] ≤ detA(1 + ηi) for any ηi and in particular, for |ηi| ≤ 3ε.

If detA > 0 then

det Ã[i] = detA(1 + ηi) = detA+ (detA)ηi

which implies

det Ã[i] − detA = (detA)ηi

or

ηi =
det Ã[i] − detA

detA
.

Hence,

|ηi| = | det Ã[i] − detA|
detA

≤ 3ε

Lemma 2.16 uses Lemma 2.15 to present a similar perturbation bound for the

principal minors of a diagonally dominant matrix with nonnegative diagonals under

structured perturbations of type (2.18). As shown in [13, Lemma 4], these results

hold for |η(α)k | ≤ ε for perturbation structures of type (2.7).

Lemma 2.16. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let Ã = D(ÃD, ṽ) ∈
Rn×n satisfy (2.18). Suppose Ã[i] = D(Ã

[i]
D , ṽ

[i]) ∈ Rn×n is a matrix that differs

from A in only the ith row and whose ith row is the same as the ith row of Ã. Let

1 ≤ i1 < i2 < · · · < iq ≤ n and α = {i1, i2, . . . , iq}, and denote the principle submatrix

of A that lies in rows and columns indexed by α as A(α, α). Then we have

det Ã[i](α, α) =

⎧⎪⎪⎨⎪⎪⎩
detA(α, α) if i /∈ α

(detA(α, α))(1 + δ
(α)
i ) if i ∈ α

(2.24)

where |δ(α)i | ≤ 6ε if p /∈ α and |δ(α)i | ≤ 3ε if p ∈ α, and

det Ã(α, α) = (detA(α, α))(1 + η
(α)
1 ) · · · (1 + η(α)q ) (2.25)
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where |η(α)k | ≤ 6ε if p /∈ α and |η(α)k | ≤ 3ε if p ∈ α for k = 1, . . . , q.

Proof. Again, we follow the proof of [13, Lemma 4]. Assume i ∈ α, otherwise result is

trivial. Since A, Ã[i], and Ã are diagonally dominant with nonnegative diagonals, then

so are A(α, α), Ã[i](α, α), and Ã(α, α), see Theorem 1.7. Hence, we can parameterize

them in terms of their diagonally dominant parts and off diagonal entries. Let

A(α, α) = D(AD(α, α), w), Ã[i](α, α) = D(Ã
[i]
D(α, α), w̃

[i]), and

Ã(α, α) = D(ÃD(α, α), w̃)

where w = [wj], w̃
[i] = [w̃

[i]
j ], w̃ = [w̃j] ∈ Rq. Observe that

wi = aii −
∑

j∈α\{i}
|aij| =

(
vi +

∑
j �=i

|aij|
)

−
∑

j∈α\{i}
|aij| = vi +

∑
j /∈α

|aij|

and similarly w̃
[i]
i = ṽ

[i]
i +

∑
j /∈α

|ã[i]ij |. Thus, we have

w̃
[i]
i − wi = ṽ

[i]
i − vi +

∑
j /∈α

|ã[i]ij | − |aij|

and

|w̃[i]
i − wi| ≤

∣∣∣∣∣∣ṽ[i]i − vi +
∑
j /∈α

|ã[i]ij | − |aij|
∣∣∣∣∣∣ ≤ |ṽ[i]i − vi|+

∑
j /∈α

∣∣∣|ã[i]ij | − |aij|
∣∣∣

≤ |ṽ[i]i − vi|+
∑
j /∈α

∣∣∣ã[i]ij − aij

∣∣∣
If p ∈ α, then

|w̃[i]
i − wi| ≤ εvi +

∑
j /∈α

ε|aij| = ε(vi +
∑
j /∈α

|aij|) = εwi.

If p /∈ α, then

|w̃[i]
i − wi| ≤ |ṽ[i]i − vi|+

∑
j /∈α,j �=p

∣∣∣ã[i]ij − aij

∣∣∣+ |ã[i]p − aip|

≤ εvi +
∑

j /∈α,j �=p

ε|aij|+ ε(vi + |aip|)

= 2εvi +
∑
j /∈α

ε|aij| ≤ 2ε(vi +
∑
j /∈α

|aij|) = 2εwi
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Hence, if p ∈ α, then |w̃[i]
k − wk| ≤ εwk for all k ∈ α. In addition, wk ≥ vk and

so, the off-diagonal entries of Ã[i](α, α) and A(α, α) satisfy conditions (2.18) for their

parameters. Therefore, we can apply Lemma 2.15 to A[i](α, α) and A(α, α) to obtain

det Ã[i](α, α) = (detA(α, α))(1 + δ
(α)
i )

with |δ(α)i | ≤ 3ε.

On the other hand, if p /∈ α, then |w̃[i]
k − wk| ≤ 2εwk for all k ∈ α. Again, the

off-diagonal entries of Ã[i](α, α) and A(α, α) satisfy (2.18) for their parameters. So,

we can apply Lemma 2.15 to A[i](α, α) and A(α, α), but this time with ε replaced by

2ε, which requires 2ε < 1, to obtain

det Ã[i](α, α) = (detA(α, α))(1 + δ
(α)
i )

with |δ(α)i | ≤ 6ε.

For detA(α, α), we use the same strategy as in [13, Lemma 3b]. Consider that

the perturbed submatrix Ã(α, α) can be obtained from A(α, α) by a sequence of

“only one row” at a time perturbations. By (2.24), each of these “only one row”

perturbations produces a determinant that is equal to the determinant before the

perturbation times a factor 1 + η, with |η| ≤ 6ε if p /∈ α and |η| ≤ 3ε if p ∈ α.

Lemma 2.17. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let 1 ≤ k ≤ n− 2,

k + 1 ≤ p, q ≤ n and p �= q.Let Ã = D(ÃD, ṽ) ∈ Rn×n that satisfies (2.18) with the

given p. Suppose Ã[i] = D(Ã
[i]
D , ṽ

[i]) ∈ Rn×n is a matrix that differs from A in only

the ith row and whose ith row parameters are the entries in the ith row of Ã. Then,

the following statements hold

1.
∣∣∣(g̃[i])(k+1)

pq
− g(k+1)

pq

∣∣∣ ≤
⎧⎪⎪⎨⎪⎪⎩
0 if i /∈ {1, . . . , k, p}

4εg
(k+1)
pp if i ∈ {1, . . . , k, p}

2. |g̃(k+1)
pq − g(k+1)

pq | ≤ 4

3

(
(1 + 3ε)k+1 − 1

)
g(k+1)
pp .
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Proof. Let Gij be the algebraic cofactor of A([1 : k, p], [1 : k, q]) corresponding to

entry aij and note that these are also the algebraic cofactors of Ã[i]([1 : k, p], [1 : k, q])

corresponding to entry ã
[i]
ij . For 1 ≤ i ≤ k, applying (2.14) yields

(
g̃[i]

)(k+1)

pq
=

⎛⎝ṽ
[i]
i +

∑
j /∈{1,...,k,q}

|ã[i]ij |
⎞⎠Gii +

∑
j∈{1,...,k,q}\{i}

ã
[i]
ijGij + |ã[i]ij |Gii

=

⎛⎝ṽi +
∑

j /∈{1,...,k,p,q}
|ãij|

⎞⎠Gii +
∑

j∈{1,...,k,q}\{i}
(ãijGij + |ãij|Gii) + |ãip|Gii

and then use the discussion following (2.18) to obtain

(
g̃[i]

)(k+1)

pq
=

⎛⎝vi +
∑

j /∈{1,...,k,p,q}
|aij|

⎞⎠Gii +
∑

j∈{1,...,k,q}\{i}
(aijGij + |aij|Gii)

+

⎛⎝viϕi +
∑

j /∈{1,...,k,p,q}
ϕij|aij|

⎞⎠Gii

+
∑

j∈{1,...,k,q}\{i}
ϕij (aijGij + |aij|Gii) + |ãip|Gii

(2.26)

We find an upper bound for
(
g̃[i]

)(k+1)

pq
for 1 ≤ i ≤ k by considering two cases. First,

suppose Gii < 0. We make use of a simple property: Let b ≤ c be real numbers and

Gii < 0. Then cGii ≤ bGii. This means that if a lower bound of |ãip| replaces |ãip|
in (2.26), then an upper bound for

(
g̃[i]

)(k+1)

pq
is obtained. In particular, if we use in

29



(2.26) the lower bound of |ãip| appearing in (2.23) then

(
g̃[i]

)(k+1)

pq
≤ g(k+1)

pq +

⎛⎝viϕi +
∑

j /∈{1,...,k,p,q}
ϕij|aij|

⎞⎠Gii

+
∑

j∈{1,...,k,q}\{i}
ϕij (aijGij + |aij|Gii) + |aip|ϕ′

ipGii − εviGii

≤ g(k+1)
pq + ε

[⎛⎝vi +
∑

j /∈{1,...,k,p,q}
|aij|

⎞⎠ |Gii|

+
∑

j∈{1,...,k,q}\{i}
|aijGij + |aij|Gii|+ |aip||Gii|+ vi|Gii|

]

≤ g(k+1)
pq + 2ε

[⎛⎝vi +
∑

j /∈{1,...,k,q}
|aij|

⎞⎠ |Gii|

+
∑

j∈{1,...,k,q}\{i}
|aijGij + |aij|Gii|

]
.

Applying Lemma 2.12 yields

(
g̃[i]

)(k+1)

pq
≤ g(k+1)

pq + 4εg(k+1)
pp (2.27)

Now suppose Gii ≥ 0 and substitute the upper bound for |ãip| in (2.23) into (2.26)

to get

(
g̃[i]

)(k+1)

pq
≤ g(k+1)

pq +

⎛⎝vaϕi +
∑

j /∈{1,...,k,p,q}
ϕij|aij|

⎞⎠Gii

+
∑

j∈{1,...,k,q}\{i}
ϕij (aijGij + |aijGii) + |aip|ϕ′

ipGii + εviGii

≤ g(k+1)
pq + ε

[⎛⎝vi +
∑

j /∈{1,...,k,p,q}
|aij|

⎞⎠ |Gii|

+
∑

j∈{1,...,k,q}\{i}
|aijGij + |aij|Gii|+ |aip||Gii|+ vi|Gii|

]

≤ g(k+1)
pq + 2ε

[⎛⎝vi +
∑

j /∈{1,...,k,q}
|aij|

⎞⎠ |Gii|

+
∑

j∈{1,...,k,q}\{i}
|aijGij + |aij|Gii|

]
.
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Again, applying Lemma 2.12 gives

(
g̃[i]

)(k+1)

pq
≤ g(k+1)

pq + 4εg(k+1)
pp . (2.28)

We find a lower bound for
(
g̃[i]

)(k+1)

pq
by again considering two cases. Suppose Gii < 0.

We use the upper bound in (2.23) for |ãip| to obtain a lower bound on |ãip|Gii

(
g̃[i]

)(k+1)

pq
≥ g(k+1)

pq +

⎛⎝viϕi +
∑

j /∈{1,...,k,p,q}
ϕij|aij|

⎞⎠Gii

+
∑

j∈{1,...,k,q}\{i}
ϕij(aijGij + |aij|Gii) + |aip|ϕ′

ipGii + εviGii

≥ g(k+1)
pq − ε

⎡⎣⎛⎝vi +
∑

j /∈{1,...,k,p,q}
|aij|

⎞⎠ |Gii|

+
∑

j∈{1,...,k,q}\{i}
|aijGij + |aij|Gii|+ |aip||Gii|+ vi|Gii|

⎤⎦
≥ g(k+1)

pq − 2ε

[(
vi +

∑
j /∈{1,...,k,q}

|aij|
)
|Gii|

+
∑

j∈{1,...,k,q}\{i}
|aijGij + |aij|Gii|

]
.

Applying Lemma 2.12 gives

(
g̃[i]

)(k+1)

pq
≥ g(k+1)

pq − 4εg(k+1)
pp . (2.29)

Now suppose Gii ≥ 0 and use the lower bound in (2.23) for |ãip| to get a lower bound
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for |ãip|Gii:

(
g̃[i]

)(k+1)

pq
≥ g(k+1)

pq +

⎛⎝viϕi +
∑

j /∈{1,...,k,p,q}
ϕij|aij|

⎞⎠Gii

+
∑

j∈{1,...,k,q}\{i}
ϕij (aijGij + |aij|Gii) + |aip|ϕ′

ipGii − εviGii

≥ g(k+1)
pq − ε

⎡⎣⎛⎝vi +
∑

j /∈{1,...,k,p,q}
|aij|

⎞⎠ |Gii|

+
∑

j∈{1,...,k,q}\{i}
|aijGij + |aij|Gii|+ |aip||Gii|+ vi|Gii|

⎤⎦
≥ g(k+1)

pq − 2ε
[(

vi +
∑

j /∈{1,...,k,q}
|aij|

)
|Gii|

+
∑

j∈{1,...,k,q}\{i}
|aijGij + |aij|Gii|

]
.

Apply Lemma 2.12 to obtain

(
g̃[i]

)(k+1)

pq
≥ g(k+1)

pq − 4εg(k+1)
pp . (2.30)

Hence, by (2.27), (2.28), (2.29) and (2.30) we have for 1 ≤ i ≤ k

g(k+1)
pq − 4εg(k+1)

pp ≤ (
g̃[i]

)(k+1)

pq
≤ g(k+1)

pq + 4εg(k+1)
pp

or,

−4εg(k+1)
pp ≤ (

g̃[i]
)(k+1)

pq
− g(k+1)

pq ≤ 4εg(k+1)
pp

which gives

| (g̃[i])(k+1)

pq
− g(k+1)

pq | ≤ 4εg(k+1)
pp .

Now, for i = p, use (2.12) to obtain

(
g̃[p]

)(k+1)

pq
=

∑
j∈{1,...,k,q}

ã
[p]
pjGpj =

∑
j∈{1,...,k,q}

apj(1 + ϕpj)Gpj

=
∑

j∈{1,...,k,q}
apjGpj +

∑
j∈{1,...,k,q}

ϕpjapjGpj = g(k+1)
pq +

∑
j∈{1,...,k,q}

ϕpjapjGpj
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Thus, ∣∣∣(g̃[p])(k+1)

pq
− g(k+1)

pq

∣∣∣ ≤ ε
∑

j∈{1,...,k,q}
|apjGpj|. (2.31)

Applying (2.13) gives ∣∣∣(g̃[p])(k+1)

pq
− g(k+1)

pq

∣∣∣ ≤ ε(2g(k+1)
pp ) (2.32)

and thus ∣∣∣(g̃[i])(k+1)

pq
− g(k+1)

pq

∣∣∣ ≤ 4ε(g(k+1)
pp ) (2.33)

for all i ∈ [1 : k, p].

Part (2). Consider obtaining Ã from A by a sequence of only one row at a time

perturbations. Note that each matrix in this sequence is row diagonally dominant

with nonnegative diagonals. The variation in g
(k+1)
pq is a consequence only of the

perturbations of rows with indices in {1, . . . , k, p}. Let α be a subset of {1, . . . , k, p}
and denote by (g̃α)(k+1)

pq the minor corresponding to a matrix obtained from A through

perturbations in the rows with indices in α only.∣∣g̃(k+1)
pq − g(k+1)

pq

∣∣ =
∣∣∣(g̃{1,...,k,p})(k+1)

pq
− g(k+1)

pq

∣∣∣
≤

∣∣∣(g̃{1,...,k,p})(k+1)

pq
− (

g̃{1,...,k}
)(k+1)

pq

∣∣∣+ · · ·+
∣∣∣(g̃{1})(k+1)

pq
− g(k+1)

pq

∣∣∣ .
Apply Lemma 2.17 to each term in the sum to obtain,∣∣g̃(k+1)

pq − g(k+1)
pq

∣∣ ≤ 4ε
[(
g̃{1,...,k}

)(k+1)

pp
+ · · ·+ g(k+1)

pp

]
and then apply Lemma 2.16 to each term in the sum to obtain∣∣g̃(k+1)

pq − g(k+1)
pq

∣∣ ≤ 4ε
[
(1 + 3ε)k + · · ·+ 1

]
g(k+1)
pp ≤ 4

3

(
(1 + 3ε)k+1 − 1

)
g(k+1)
pp (2.34)

In Theorem 2.20, we present a perturbation bound for the minors of a diagonally

dominant matrix with nonnegative diagonals with structure perturbation of type

(2.7). Our proof depends upon the construction of a new diagonally dominant matrix

with nonnegative diagonals with structured perturbation of type (2.18).
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Lemma 2.18. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let Ã = D(ÃD, ṽ) ∈
Rn×n be a matrix that satisfies

|ṽ − v| ≤ εv and |ÃD − AD| ≤ ε|AD|, for some 0 ≤ ε <
1

3
. (2.35)

Define B = [bij] ∈ R(k+2)×(k+2) by

bij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
aij for i ∈ {1, . . . , k, p, q} and j ∈ {1, . . . , k, q}

aip −
∑

j /∈{1,...,k,p,q}
sjaij for i ∈ {1, . . . , k, p, q} and j = p

(2.36)

and define B̃ = [̃bij] ∈ R(k+2)×(k+2) by

b̃ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ãij for i ∈ {1, . . . , k, p, q} and j ∈ {1, . . . , k, q}

ãip −
∑

j /∈{1,...,k,p,q}
sj ãij for i ∈ {1, . . . , k, p, q} and j = p

(2.37)

where sj = sign(a
(k+1)
pj ). Then B and B̃ are diagonally dominant matrices that can

be parameterized as B = D(BD, w) and B̃ = D(B̃D, w̃) that satisfy

|w̃ − w| ≤ δw, |̃bip − bip| ≤ δ(wi + |bip|), and |̃bij − bij| ≤ δ|bij|

for i ∈ {1, . . . , k, p, q}, j ∈ {1, . . . , k, q}, and j �= i and δ =
2ε

1− ε
.

Proof. Note that we label the k + 2 rows and columns of B using the indices

{1, . . . , k, p, q}. While not traditional, this labeling is useful because we can eas-

ily compare entries in B to entries in A. Note that the (k + 1)th row and column of

B correspond to the pth row and column of A and similarly the (k + 2)nd row and

column of B is the qth row and column of A.
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Using the diagonal dominance of A, for 1 ≤ i ≤ k we have

∑
j∈{1,...,k,p,q}\{i}

|bij| =
∑

j∈{1,...,k,q}\{i}
|bij|+ |bip|

=
∑

j∈{1,...,k,q}\{i}
|aij|+ |aip −

∑
j /∈{1,...,k,p,q}

sjaij|

≤
∑

j∈{1,...,k,q}\{i}
|aij|+ |aip|+

∑
j /∈{1,...,k,p,q}

|aij|

=
∑
j �=i

|aij| ≤ aii = bii

and for i = p

∑
j∈{1,...,k,q}

|bpj| =
∑

j∈{1,...,k,q}
|apj| =

∑
j �=p

|apj| −
∑

j /∈{1,...,k,p,q}
|apj|

≤
∑
j �=p

|apj| −
∑

j /∈{1,...,k,p,q}
sjapj ≤ app −

∑
j /∈{1,...,k,p,q}

sjapj = bpp

Hence, B is diagonally dominant with nonnegative diagonals. Using the same argu-

ment and the diagonally dominance of Ã, we can show B̃ is diagonally dominant with

nonnegative diagonals as well. Thus, we can parameterize B and B̃ in terms of their

diagonally dominant parts and off diagonal entries. Let

B = D(BD, w) and B̃ = D(B̃D, w̃)

where w, w̃ ∈ Rk+2. Now, note for i ∈ {1, . . . , k, p, q}, j ∈ {1, . . . , k, q}, and i �= j we

have

|̃bij − bij| = |ãij − aij| ≤ ε|aij| = ε|bij|
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and for i ∈ {1, . . . , k, p, q}, j = p, and i �= j

|̃bip − bip| =

∣∣∣∣∣∣
⎛⎝ãip −

∑
j /∈{1,...,k,p,q}

sj ãij

⎞⎠−
⎛⎝aip −

∑
j /∈{1,...,k,p,q}

sjaij

⎞⎠∣∣∣∣∣∣
≤ |ãip − aip|+

∑
j /∈{1,...,k,p,q}

|ãij − aij| ≤ ε (|aip|+ vi) + ε
∑

j /∈{1,...,k,p,q}
|aij|

≤ ε

⎛⎝|aip|+
∑

j /∈{1,...,k,p,q}
|aij|+ vi

⎞⎠
= ε

⎛⎝ ∑
j /∈{1,...,k,q}

|aij|+ vi

⎞⎠ = ε

⎛⎝ ∑
j /∈{1,...,k,q}

|aij|+ aii −
∑
j �=p

|aij|
⎞⎠

= ε

⎛⎝aii −
∑

j∈{1,...,k,q}\{i}
|aij|

⎞⎠ = ε

⎛⎝bii −
∑

j∈{1,...,k,q}\{i}
|bij|

⎞⎠
= ε

⎛⎝bii −
∑

j∈{1,...,k,p,q}\{i}
|bij|+ |bip|

⎞⎠ = ε(wi + |bip|).

Thus, the off diagonal entries of B̃ are perturbations of the off diagonal entries of B

of type (2.18). Now we focus on the diagonally dominant parts. Let i ∈ {1, . . . , k, q}
and observe

wi = bii −
∑

j∈{1,...,k,p,q}\{i}
|bij| = bii −

∑
j∈{1,...,k,q}\{i}

|bij| − |bip|

= aii −
∑

j∈{1,...,k,q}\{i}
|aij| −

∣∣∣∣∣∣aip −
∑

j /∈{1,...,k,p,q}
sjaij

∣∣∣∣∣∣
= vi +

∑
j /∈{1,...,k,q}

|aij| −
∣∣∣∣∣∣aip −

∑
j /∈{1,...,k,p,q}

sjaij

∣∣∣∣∣∣
= vi +

∑
j /∈{1,...,k,p,q}

|aij|+ |aip| −
∣∣∣∣∣∣aip −

∑
j /∈{1,...,k,p,q}

sjaij

∣∣∣∣∣∣
Similarly, we have

w̃i = ṽi +
∑

j /∈{1,...,k,p,q}
|ãij|+ |ãip| − |ãip −

∑
j /∈{1,...,k,p,q}

sj ãij|.

Let i ∈ {1, . . . , k, q}. We will consider two cases.
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Case 1: sign

(
aip −

∑
j /∈{1,...,k,p,q}

sjaij

)
= sign

(
ãip −

∑
j /∈{1,...,k,p,q}

sj ãij

)
:= θ. Then,

w̃i = ṽi +
∑

j /∈{1,...,k,p,q}
|ãij|+ |ãip| − θ(ãip −

∑
j /∈{1,...,k,p,q}

sj ãij)

= ṽi +
∑

j /∈{1,...,k,p,q}
|ãij|+ |ãip| − θãip + θ

∑
j /∈{1,...,k,p,q}

sj ãij

= ṽi +
∑

j /∈{1,...,k,p,q}
|ãij|(1 + θsjsign(ãij)) + |ãip|(1− θsign(ãip))

= ṽi +
∑

j /∈{1,...,k,p,q}
|ãij|(1 + θsjsign(aij)) + |ãip|(1− θsign(aip)).

since sign(ãij) = sign(aij) for all j �= i. Similarly, we have

wi = vi +
∑

j /∈{1,...,k,p,q}
|aij|(1 + θsjsign(aij)) + |aip|(1− θsign(aip))

and hence

|w̃i − wi| ≤ |ṽi − vi|+
∑

j /∈{1,...,k,p,q}

∣∣|ãij| − |aij|
∣∣(1 + θsjsign(aij))

+
∣∣|ãip| − |aip|

∣∣(1− θsign(aip))

≤ |ṽi − vi|+
∑

j /∈{1,...,k,p,q}

∣∣ãij − aij
∣∣(1 + θsjsign(aij))

+
∣∣ãip − aip

∣∣(1− θsign(aip))

≤ εvi + ε
∑

j /∈{1,...,k,p,q}
|aij|(1 + θsjsign(aij)) + ε|aip|(1− θsign(aip))

≤ ε

⎛⎝vi +
∑

j /∈{1,...,k,p,q}
|aij|+ |aip| − θaip + θ

∑
j /∈{1,...,k,p,q}

sjaij

⎞⎠
≤ εwi
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Case 2: sign(aip −
∑

j /∈{1,...,k,p,q}
sjaij) �= sign(ãip −

∑
j /∈{1,...,k,p,q}

sj ãij). Note

∣∣∣∣∣∣ãip −
∑

j /∈{1,...,k,p,q}
sj ãij

∣∣∣∣∣∣ +

∣∣∣∣∣∣aip −
∑

j /∈{1,...,k,p,q}
sjaij

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⎛⎝ãip −

∑
j /∈{1,...,k,p,q}

sj ãij

⎞⎠−
⎛⎝aip −

∑
j /∈{1,...,k,p,q}

sjaij

⎞⎠∣∣∣∣∣∣
≤ |ãip − aip|+

∑
j /∈{1,...,k,p,q}

|ãij − aij|

≤ ε|aip|+ ε
∑

j /∈{1,...,k,p,q}
|aij|

That is,∣∣∣∣∣∣ãip −
∑

j /∈{1,...,k,p,q}
sj ãij

∣∣∣∣∣∣+
∣∣∣∣∣∣aip −

∑
j /∈{1,...,k,p,q}

sjaij

∣∣∣∣∣∣ ≤ ε
∑

j /∈{1,...,k,q}
|aij| (2.38)

which yields

|w̃i − wi| =

∣∣∣∣∣∣
⎛⎝ṽi +

∑
j /∈{1,...,k,q}

|ãij| −
∣∣∣∣∣∣ãip −

∑
j /∈{1,...,k,p,q}

sj ãij

∣∣∣∣∣∣
⎞⎠

−
⎛⎝vi +

∑
j /∈{1,...,k,q}

|aij| −
∣∣∣∣∣∣aip −

∑
j /∈{1,...,k,p,q}

sjaij

∣∣∣∣∣∣
⎞⎠∣∣∣∣∣∣

≤ |ṽi − vi|+
∑

j /∈{1,...,k,q}
||ãij| − |aij||

+

∣∣∣∣∣∣
⎛⎝ãip +

∑
j /∈{1,...,k,p,q}

sj ãij

⎞⎠−
⎛⎝aip −

∑
j /∈{1,...,k,p,q}

sjaij

⎞⎠∣∣∣∣∣∣
≤ εvi + ε

∑
j /∈{1,...,k,q}

|aij|+ ε
∑

j /∈{1,...,k,q}
|aij|

≤ 2ε

⎛⎝vi
∑

j /∈{1,...,k,p,q}
|aij|

⎞⎠
From (2.38) we also have∣∣∣∣∣∣aip +

∑
j /∈{1,...,k,p,q}

sjaij

∣∣∣∣∣∣ ≤ ε
∑

j /∈{1,...,k,q}
|aij|
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So,

wi = vi +
∑

j /∈{1,...,k,q}
|aij| − |aip −

∑
j /∈{1,...,k,p,q}

sjaij|

≥ vi +
∑

j /∈{1,...,k,q}
|aij| − ε

∑
j /∈{1,...,k,q}

|aij|

≥ (1− ε)

⎛⎝vi +
∑

j /∈{1,...,k,q}
|aij|

⎞⎠ .

Rearranging gives

vi +
∑

j /∈{1,...,k,q}
|aij| ≤ wi

1− ε

and thus we have

|w̃i − wi| ≤ 2ε

⎡⎣vi + ∑
j /∈{1,...,k,q}

|aij|
⎤⎦ ≤ 2ε

1− ε
wi

for i ∈ {1, . . . , k, q}. Now, we consider i = p. Note that

wp = bpp −
∑

j∈{1,...,k,q}
|bpj| = app −

∑
j /∈{1,...,k,p,q}

sjapj −
∑

j∈{1,...,k,q}
|apj|

= vp +
∑
j �=p

|apj| −
∑

j /∈{1,...,k,p,q}
sjapj −

∑
j∈{1,...,k,q}

|apj|

= vp +
∑

j /∈{1,...,k,p,q}
|apj| −

∑
j /∈{1,...,k,p,q}

sjapj = vp +
∑

j /∈{1,...,k,p,q}
(|apj| − sjapj)

= vp +
∑

j /∈{1,...,k,p,q}
|apj|(1− sjsign(apj))

Similarly, we have

w̃p = ṽp +
∑

j /∈{1,...,k,p,q}
|ãpj|(1− sjsign(ãpj)) = ṽp +

∑
j /∈{1,...,k,p,q}

|ãpj|(1− sjsign(apj))

since sign(ãpj) = sign(apj). Thus,

|w̃p − wp| ≤ |ṽp − vp|+
∑

j /∈{1,...,k,p,q}
|ãpj − apj|(1− sjsign(apj))

≤ εvi + ε
∑

j /∈{1,...,k,p,q}
|apj|(1− sjsign(apj)) = εwp

39



So, we have that |w̃i − wi| ≤ 2ε

1− ε
wi for all i ∈ {1, . . . , k, p, q}. Hence, B̃ is a

perturbation of B that satisfies

|w̃ − w| ≤ δw, |̃bip − bip| ≤ δ(wi + |bip|), and |̃bij − bij| ≤ δ|bij| (2.39)

for i ∈ {1, . . . , k, p, q} and j ∈ [1 : k, q] where δ =
2ε

1− ε
. Note that δ ≥ 0 since

0 ≤ ε < 1 and if ε <
1

3
then δ < 1.

Lemma 2.19. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let B = [bij] ∈
R(k+2)×(k+2) be defined as

bij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
aij for i ∈ {1, . . . , k, p, q} and j ∈ {1, . . . , k, q}

aip −
∑

j /∈{1,...,k,p,q}
sjaij for i ∈ {1, . . . , k, p, q} and j = p

where sj = sign
(
a
(k+1)
pj

)
and row and column indices of B are indexed as

{1, . . . , k, p, q} with k + 1 ≤ p, q ≤ n and p �= q. Let us define

(gB)
(k+1)
pp := detB([1 : k, p], [1 : k, p])

Then:

1. If g
(k)
kk �= 0, then

(gB)
(k+1)
pp = (v(k+1)

p + |a(k+1)
pq |)g(k)kk

2. If g
(k)
kk = 0 then (gB)

(k+1)
pp = 0

Proof. Observe that B([1 : k, p], [1 : k, p]) and A([1 : k, p], [1 : k, p]) have columns 1

through k equal. In fact,

B([1 : k, p], [1 : k, p]) = A([1 : k, p], 1 : k), A([1 : k, p], p)−
∑

j /∈{1,...,k,p,q}
sjA([1 : k, p], j).

Use that the determinant is a linear function of any of its columns, assuming that

the remaining columns are fixed, to obtain

(gB)
(k+1)
pp = detA([1 : k, p], [1 : k, p])−

∑
j /∈{1,...,k,p,q}

sj detA([1 : k, p], [1 : k, j]) (2.40)
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If g
(k)
kk := detA(1 : k, 1 : k) �= 0, then

(gB)
(k+1)
pp = g

(k)
kk

⎛⎝detA([1 : k, p], [1 : k, p])

detA(1 : k, 1 : k)
−

∑
j /∈{1,...,k,p,q}

sj
detA([1 : k, p], [1 : k, j])

detA(1 : k, 1 : k)

⎞⎠
By (2.6)

(gB)
(k+1)
pp = g

(k)
kk

⎛⎝a(k+1)
pp −

∑
j /∈{1,...,k,p,q}

sja
(k+1)
pj

⎞⎠
= g

(k)
kk

⎛⎝a(k+1)
pp −

∑
j /∈{1,...,k,p,q}

|a(k+1)
pj |

⎞⎠

Since, a
(k+1)
pj = 0 for 1 ≤ j ≤ k then

(gB)
(k)
kk = g

(k)
kk

(
a(k+1)
pp −

∑
j �=p

|a(k+1)
pj |+ |a(k+1)

pq |
)

= g
(k)
kk

(
v(k+1)
p + |a(k+1)

pq |)
If g

(k)
kk = 0, then

detA([1 : k, p], [1 : k, p]) = 0. (2.41)

To see this, use that A([1 : k, p], [1 : k, p]) is row diagonally dominant with nonnegative

diagonals, expand detA([1 : k, p], [1 : k, p]) by cofactors across the last row and use

Theorem 1.7 which gives

0 = | detA(1 : k, 1 : k)| ≥ | detA(1 : k, [1 : j − 1, j + 1 : k, p])|

for j = 1, . . . , k.

In addition,

detA([1 : k, p], [1 : k, j]) = 0 (2.42)

for j /∈ {1, . . . , k, p, q}. To see this, apply Theorem 1.7 to the row diagonally dominant

matrix A([1 : k, p, j], [1 : k, p, j]) and get

0 = | detA([1 : k, p], [1 : k, p])| ≥ | detA([1 : k, p], [1 : k, j])|

Combine (2.41) and (2.42) with (2.40) to obtain (gB)
(k+1)
pp = 0.
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Theorem 2.20. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let Ã =

D(ÃD, ṽ) ∈ Rn×n be a matrix that satisfies

|ṽ − v| ≤ εv and |ÃD − AD| ≤ ε|AD| (2.43)

for some ε with 0 ≤ ε <
1

3
. Let 1 ≤ k ≤ n − 2, k + 1 ≤ p, q ≤ n and p �= q, then if

g
(k)
kk �= 0

|g̃(k+1)
pq − g(k+1)

pq | ≤ 4

3

(
(1 + ε0)

k+1 − 1
)
(v(k+1)

p + |a(k+1)
pq |)g(k)kk (2.44)

where ε0 =
6ε

1− ε
. If g

(k)
kk = 0, then

g̃(k+1)
pq = g(k+1)

pq = 0 (2.45)

Proof. Suppose g
(k+1)
pq �= 0. Define B and B̃ as in Lemma 2.18. By the results of 2.18

we can apply Lemma 2.17 to obtain

| (g̃B)(k+1)
pq − (gB)

(k+1)
pq | ≤ 4

3

(
(1 + 3δ)k+1 − 1

)
(gB)

(k+1)
pp

By the construction of B and B̃, we have

(g̃B)
(k+1)
pq = g̃(k+1)

pq and (gB)
(k+1)
pq = g(k+1)

pq

where δ =
2ε

1− ε
and hence

|g̃(k+1)
pq − g(k+1)

pq | ≤ 4

3

(
(1 + 3δ)k+1 − 1

)
(gB)

(k+1)
pp . (2.46)

Apply Lemma 2.19 to obtain

|g̃(k+1)
pq − g(k+1)

pq | ≤ 4

3

(
(1 + 3δ)k+1 − 1

)
(v(k+1)

p + |a(k+1)
pq |)g(k)kk .

We have seen in the proof of Lemma 2.19 that g
(k)
kk = 0 implies detA([1 : k, p], [1 :

k, p)] = 0. That is, g
(k+1)
pp = 0 and thus by Lemma 2.12, g

(k+1)
pq = 0 and by Lemma

2.17, we have g̃
(k+1)
pq = g

(k+1)
pq = 0.
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Theorem 2.21. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0. Suppose A has LDU

factorization A = LDU and assume A is arranged for column diagonal dominance

pivoting, i.e.

a
(k)
kk = max{a(k)ii : a

(k)
ii −

n∑
j=k,j �=i

|a(k)ji | ≥ 0, k ≤ i ≤ n}

Let Ã = D(ÃD, ṽ) ∈ Rn×n be a matrix that satisfies

|ÃD − AD| ≤ ε|AD| and |ṽ − v| ≤ εv

for some ε with 0 ≤ ε < 1
3
. Assume 2nε0 ≤ 1, where ε0 =

6ε

1− ε
. Then, we have

1. Ã is row diagonally dominant with nonnegative diagonal entries and has LDU

factorization Ã = L̃D̃Ũ where L̃ = [l̃ij], D̃ = diag(di), and Ũ = [ũij],

2. |d̃i − di| ≤ 2nε

1− 2nε
|di| for i = 1, . . . , n,

3. |ũij − uij| ≤ 3nε for i = 1, . . . , n, and

4. ‖L̃− L‖1 ≤ n(4n− 1)ε0
3(1− 2nε0)

.

Proof. Parts (1)-(3) are given in Theorem 2.7. For part (4), use Definition 2.3 and

Theorem 2.20 with p = i, q = j and k = j − 1 to show

l̃ij =
g̃
(j)
ij

g̃
(j)
jj

=
g
(j)
ij + 4

3
χ(v

(j)
i + a

(j)
ij )g

(j−1)
j−1,j−1

g
(j)
jj (1 + ξ1) · · · (1 + ξj)

(2.47)

where |ξ1| ≤ ε, . . . , |ξj| ≤ ε, and |χ| ≤ ((1 + ε0)
j − 1). Define

ζ :=
1

(1 + ξ1) · · · (1 + ξj)
− 1

and note |ζ| ≤ 1

(1− ε)j
− 1. Hence,

l̃ij =

(
lij +

4
3
χ(v

(j)
i + a

(j)
ij )

a
(j)
jj

)
(1 + ζ) and l̃ij − lij = ζlij +

4
3
χ(1 + ζ)(v

(j)
i + a

(j)
ij )

a
(j)
jj

.
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Taking the absolute value gives

|l̃ij − lij| ≤ |ζ||lij|+ 4

3
|χ||1 + ζ|(v

(j)
i + |a(j)ij |)

a
(j)
jj

and then summing over i yields

n∑
i=j

|l̃ij − lij| ≤ |ζ|
n∑

i=j

|lij|+ 4

3
|χ||1 + ζ|

n∑
i=j

(v
(j)
i + |a(j)ij |)

a
(j)
jj

.

By assumption that A is arranged for column diagonal dominance pivoting, which

means that the produced matrix L is column diagonally dominant, we have

n∑
i=j

|lij| ≤ 1

for all j. Use Theorem 2.14 to obtain,

n∑
i=j

|l̃ij − lij| ≤ |ζ|+ 4

3
|χ||1 + ζ|

n∑
i=j

(v
(j)
i + |a(j)ij |)

a
(j)
jj

≤ |ζ|+
4
3
|χ||1 + ζ|(n− 1)a

(j)
jj

a
(j)
jj

= |ζ|+ 4

3
(n− 1)|χ||1 + ζ|.

≤
(

1

(1− ε)n
− 1

)
+

4

3
(n− 1) ((1 + ε0)

n − 1)

(
1

(1− ε)n

)
≤ n(4n− 1)ε0

3(1− 2nε0)

if 2nε0 < 1.

Copyright c© Megan Dailey, 2013.
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Chapter 3 Inverses and Solutions to Linear Systems

Recall that two applications of the LDU factorization are inverting a matrix and

solving a system of linear system. In Section 3.2 we will utilize the determinant re-

sults from the previous chapter to improve upon perturbation results for inverses and

solutions to linear systems for diagonally dominant matrices. The classical perturba-

tion bounds are normwise and dependent on the condition number. By focusing on

diagonally dominant matrices, we are able to prove bounds on the inverse that are

entry-wise and independent of any condition number. Similarly, for the solution to

linear systems, the additional structure allows us to present bounds that are depen-

dent on a smaller condition number. We start by presenting classical perturbation

results from the literature in section 3.1.

3.1 Classical perturbation results

Consider an invertible matrix A ∈ Rn×n. Let A+E ∈ Rn×n be a perturbation of A.

Classical perturbations for the inverse are normwise and dependent on the condition

number. From [9], if ‖A−1‖‖E‖ < 1, then

‖(A+ E)−1 − A−1‖
‖A−1‖ ≤

κ(A)‖E‖
‖A‖

1− κ(A)‖E‖
‖A‖

where κ(A) = ‖A‖‖A−1‖ is the condition number of matrix A.

That is, the relative perturbation in the inverse of matrix A depends on the

condition number of A and the relative perturbation in A. Now, suppose we have

the system Ax = b and consider the perturbed system Ãx̃ = b̃. Let Ã = A + δA,

x̃ = x+ δx, and b̃ = b+ δb. Then the error in the perturbed solution satisfies

‖δx‖
‖x‖ ≤ κ(A)

(‖δA‖
‖A‖ +

‖δb‖
‖b‖

)
(3.1)
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This normwise bound expresses the relative error in the solution as a multiple (de-

pendent on the condition number) of the relative errors in the inputs.

3.2 Relative perturbation results for diagonally dominant matrices

Recall that the entries in the inverse of matrix A can be found by computing minors

of A, thus the determinant will play a crucial role in our bounds for the inverse.

The proof of the following theorem, which presents a perturbation bounds for the

inverse of a diagonally dominant matrix, utilizes Lemma 2.15 and Lemma 2.16 under

a perturbation of type (2.7), see [13, Lemma 3 and Lemma 4].

Theorem 3.1. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0. Suppose A is nonsin-

gular. Let Ã = D(ÃD, ṽ) ∈ Rn×n be such that

|ṽ − v| ≤ εv and |ÃD − AD| ≤ ε|AD|, for j �= i and 0 ≤ ε < 1

Then Ã is nonsingular and

|(Ã−1)ij − (A−1)ij| ≤ (3n− 2)ε

1− 2nε

∣∣(A−1)jj
∣∣ .

Proof. From Lemma 2.15, we have

det Ã = detA(1 + η1) · · · (1 + ηn) �= 0

with |ηk| ≤ ε < 1 for all k. Thus, Ã is nonsingular.

Consider j �= i. Without loss of generality suppose i = n − 1 and j = n. Using

Lemma 2.17 with perturbation structure of type (2.7), see [13, Lemma 7], and (2.11)

we have

| det Ã(n′, n− 1′)− detA(n′, n− 1′)| =
∣∣∣g̃(n−1)

n−1,n − g
(n−1)
n−1,n

∣∣∣
≤ 2

(
(1 + ε)n−1 − 1

)
g
(n−1)
n−1,n−1

≤ 2
(
(1 + ε)n−1 − 1

)
detA(n′, n′)
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That is,

| det Ã(j′, i′)− detA(j′, i′)| ≤ 2
(
(1 + ε)n−1 − 1

)
detA(j′, j′) (3.2)

Using Lemma 2.15, we have

(Ã−1)ij − (A−1)ij =
(−1)i+j det Ã(j′, i′)

det Ã
− (−1)i+j detA(j′, i′)

detA

=
(−1)i+j det Ã(j′, i′)

(detA)(1 + η1) . . . (1 + ηn)
− (−1)i+j detA(j′, i′)

detA

where |ηk| ≤ ε. Let χ =
1

(1 + η1) . . . (1 + ηn)
and observe |χ| ≤ 1

(1− ε)n
. Then,

(Ã−1)ij − (A−1)ij =
(−1)i+jχ(det Ã(j′, i′)− detA(j′, i′) + detA(j′, i′))

(detA)

−(−1)i+j detA(j′, i′)
detA

=
(−1)i+jχ(det Ã(j′, i′)− detA(j′, i′))

(detA)

+(χ− 1)
(−1)i+j detA(j′, i′)

(detA)

Taking the absolute value yields,

|(Ã−1)ij − (A−1)ij| = |χ|| det Ã(j′, i′)− detA(j′, i′)|
| detA| + |χ− 1| | detA(j

′, i′)|
| detA|

Now applying 3.2 gives,

|(Ã−1)ij − (A−1)ij| ≤ 2 ((1 + ε)n−1 − 1) |χ|| detA(j′, j′)|
| detA| + |χ− 1| | detA(j

′, i′)|
| detA|

= 2 ((1 + ε)n−1 − 1) |χ||(A−1)jj|+ |χ− 1| |(A−1)ij|

and hence,

|(Ã−1)ij − (A−1)ij| ≤ 2 ((1 + ε)n−1 − 1)

(1− ε)n
|(A−1)jj|+

[
1

(1− ε)n
− 1

]
|(A−1)ij| (3.3)
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Note that

1

(1− ε)n
− 1 ≤ nε

1− nε
(3.4)

and

2((1 + ε)n−1 − 1)

(1− ε)n
≤

2(n−1)ε
1−(n−1)ε

1− nε
1−nε

≤
2(n−1)ε
1−nε

1− nε
1−nε

=
2(n− 1)ε

1− 2nε
.

Thus,

|(Ã−1)ij − (A−1)ij| ≤
(
2(n− 1)ε

1− 2nε

) ∣∣(A−1)jj
∣∣+ (

nε

1− nε

) ∣∣(A−1)ij
∣∣ (3.5)

From [13, Theorem 1e], we have |(A−1)ij| ≤ |(A−1)jj|. Substituting into (3.5) yields

the desired result.

Now consider i = j. Using Lemma 2.16 and Lemma 2.15, we have

(Ã−1)ii =
det Ã(i′, i′)

det Ã
=

(detA(i′, i′))(1 + η
(i)
1 ) · · · (1 + η

(i)
n )

(detA)(1 + η1) · · · (1 + ηn)

= (A−1)ii
(1 + η

(i)
1 ) · · · (1 + η

(i)
n )

(1 + η1) · · · (1 + ηn)
= (A−1)ii(1 + ξ)(1 + χ)

where ξ = (1 + η
(i)
1 ) · · · (1 + η

(i)
n )− 1 and χ = 1

(1+η1)···(1+ηn)
− 1. Observe

|ξ| ≤ (1 + ε)n − 1 and |χ| ≤ 1

(1− ε)n
− 1

Thus, using (3.4) and (3.2) we have∣∣∣(Ã−1)ii − A−1
ii

∣∣∣ ≤ ∣∣(A−1)ii
∣∣ |χ|+ ∣∣(A−1)ii

∣∣ |ξ||1 + χ|

≤ ∣∣(A−1)ii
∣∣ ( 1

(1− ε)n
− 1

)
+
∣∣(A−1)ii

∣∣ ((1 + ε)n − 1)

(
1

(1− ε)n

)
≤ ∣∣(A−1)ii

∣∣ nε

1− nε
+
∣∣(A−1)ii

∣∣ nε

1− nε
=
∣∣(A−1)ii

∣∣ 2nε

1− nε

≤ (3n− 2)ε

1− 2nε

∣∣(A−1)ii
∣∣

if n ≥ 2

Theorem 3.1 gives that small perturbations in the data D(AD, v) results in small

relative perturbations in the diagonal entries of the inverse. Ideally, we would also
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see small relative perturbations in the off diagonal entries, however the perturbations

of the off diagonal entries depend on the corresponding diagonal entry of the inverse.

This is not an artifact of our proof. Consider the matrix A = I2, the 2 × 2 identity

matrix and suppose

Ã =

⎛⎜⎝ 1 + ε ε

ε 1 + ε

⎞⎟⎠
for some ε. Note that the inverse of Ã is

Ã−1 =
1

(1 + ε)2 − ε2

⎛⎜⎝ 1 + ε −ε

−ε 1 + ε

⎞⎟⎠
and observe that the off-diagonal entries,

−ε

1 + 2ε
, which can not be small relative to

the corresponding off-diagonal entry of A−1 but is small relative to the corresponding

diagonal entry.

The bound in Theorem 3.1 leads to some satisfactory relative normwise bounds

for the inverse given below, which shows independence from any condition number.

Corollary 3.2. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0. Suppose A is

nonsingular. Let Ã = D(ÃD, ṽ) ∈ Rn×n be such that

|ṽ − v| ≤ εv and |ÃD − AD| ≤ ε|AD|, for j �= i and 0 ≤ ε < 1

Suppose ‖ · ‖ is either the 1-norm, the infinity norm, or the Frobenius norm. Then

‖Ã−1 − A−1‖
‖A−1‖ ≤ n(3n− 2)ε

1− 2nε

Proof. From [13, Theorem 1e], we have |(A−1)ij| ≤ |(A−1)jj| ≤ max
k,l

|(A−1)kl|. Thus,

Theorem 3.1 gives

|(Ã−1)ij − (A−1)ij| ≤
(
(3n− 2)ε

1− 2nε

)
max
kl

|(A−1)kl| (3.6)

for i �= j. Similarly, from the proof of Theorem 3.1 we have

|(Ã−1)ii − (A−1)ii| ≤
(
(2n− 1)ε

1− 2nε

)
|(A−1)ii| ≤

(
(2n− 1)ε

1− 2nε

)
max
kl

|(A−1)kl|

49



If n ≥ 1 then 3n− 2 ≥ 2n− 1 and hence

|(Ã−1)ii − (A−1)ii| ≤
(
(3n− 2)ε

1− 2nε

)
max
kl

|(A−1)kl|. (3.7)

From (3.6) and (3.7) we have

‖Ã−1 − A−1‖ ≤ n

(
(3n− 2)ε

1− 2nε

)
max
k,l

|(A−1)kl|

≤ n

(
(3n− 2)ε

1− 2nε

)
‖A−1‖

With the results of Theorem 3.1 we can now present perturbation bounds for the

solution to the linear system.

Theorem 3.3. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0. Suppose A is nonsin-

gular. Let Ã = D(ÃD, ṽ) ∈ Rn×n be such that

|ṽ − v| ≤ εv and |ÃD − AD| ≤ ε|AD|, for j �= i and 0 ≤ ε < 1

Suppose b, δb ∈ Rn×n such that ‖δb‖∞ ≤ ε‖b‖∞ and consider the solutions of the

linear systems

Ax = b Ãx̃ = b+ δb (3.8)

Then, if 2nε < 1,

‖x̃− x‖2
‖x‖2 ≤

[
(3n2 − 2n+ 1)ε+ (3n2 − 4n)ε2

1− 2nε

] ‖A−1‖2‖b‖2
‖x‖2 (3.9)

Proof. The solutions of the linear systems (3.8) can be rewritten in terms of the

inverses of A and Ã as

x = A−1b x̃ = Ã−1b+ Ã−1δb

Subtracting them yields,

x̃− x = (Ã−1 − A−1)b+ Ã−1δb.
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Taking the norm and applying Theorem 3.1 gives,

‖x̃− x‖2 ≤ ‖Ã−1 − A−1‖2‖b‖2 + ‖Ã−1‖2‖δb‖2
≤ ‖Ã−1 − A−1‖2‖b‖2 +

[
‖Ã−1 − A−1‖2 + ‖A−1‖2

]
ε‖b‖2

≤ n(3n− 2)ε

1− 2nε
‖A−1‖2‖b‖2 +

[
n(3n− 2)ε

1− 2nε
‖A−1‖2 + ‖A−1‖2

]
ε‖b‖

≤ n(3n− 2)ε

1− 2nε
‖A−1‖2‖b‖2 + ε

[
n(3n− 2)ε

1− 2nε
+ 1

]
‖A−1‖2‖b‖2

≤
[
n(3n− 2)ε

1− 2nε
+ ε

(
n(3n− 2)ε

1− 2nε
+ 1

)]
‖A−1‖2‖b‖2

Simplify and divide by ‖x‖2 to get the desired result.

The following example illustrates how Theorem 3.3 improves the classical bound

in (3.1)

Example 3.4. Let

A =

⎛⎜⎜⎜⎜⎝
30000 −15000 15000

−10000 20020 10000

20000 5000 25000

⎞⎟⎟⎟⎟⎠
and consider the linear system Ax = b where b = [10000, 10000,−10000]T . Let

Ã = A+ E =

⎛⎜⎜⎜⎜⎝
30015 −15015 15000

−10000 20020 10000

20000 5000 25000

⎞⎟⎟⎟⎟⎠
and suppose (A+ E)x̃ = b. The bound in (3.1) gives the relative perturbation bound

‖x̃− x‖2
‖x‖2 ≤ 1351

300
≈ 4.5033

compare this to the bound we presented in Theorem 3.3

‖x̃− x‖2
‖x‖2 ≤ 629

28400
≈ 2.2148× 10−2
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and the actual relative perturbation

‖x̃− x‖2
‖x‖2 ≤ 1802

4055777
≈ 4.4430× 10−4.

In the above, we have used MAPLE to compute x and x̃ exactly.

Theorem 3.3 shows that the sensitivity of the linear system Ax = b to perturba-

tions is mainly dependent upon the term κ(A, b) = ‖A−1‖2‖b‖2/‖x‖2. Observe that

the usual condition number κ(A) can be defined as

κ(A) = lim sup
ε→0

{‖(A+ E)−1 − A−1‖
ε‖A−1‖ : ‖E‖ ≤ ε‖A‖

}
.

In practice, it is of interest to define a condition number of the linear system Ax = b

κ(A, b) = lim sup
ε→0

{‖(A+ E)−1(b+ h)− A−1b‖
ε‖A−1b‖

: (A+ E)x̃ = b+ h,
‖E‖
‖A‖ ≤ ε,

‖h‖
‖b‖ ≤ ε

}
.

The condition number κ(A, b) for the linear system measures the sensitivity of the

solution x to relative perturbations in A and b. If we assume only b is perturbed and

A is unchanged then we have

κ(A, b) = lim sup
ε→0

{‖A−1(b+ h)− A−1b‖
ε‖A−1b‖ : Ax̃ = b+ h, ‖h‖ ≤ ε‖b‖

}
= lim sup

ε→0

{‖x̃− x‖
ε‖x‖ : Ax̃ = b+ h, ‖h‖ ≤ ε‖b‖

}
=

‖A−1‖‖b‖
‖x‖

In general it is obvious that

1 ≤ κ(A, b) ≤ κ(A)

since

κ(A, b) ≤ κ(A) +
‖A−1‖‖‖b‖
‖A−1b‖

In fact, if κ(A) � 1, then κ(A, b) 	 κ(A) for most vectors b. The condition number

κ(A, b) is usually a moderate number and, as discussed in [16], it is only large if b is
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almost orthogonal to the singular vector corresponding to the smallest singular value

of A.

Copyright c© Megan Dailey, 2013.
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Chapter 4 Symmetric eigenvalue problem and singular value problem

Eigenvalues play an important role in problems where the matrix is a transformation

from one vector space onto itself such as in systems of linear ordinary differential

equations. Singular values play an important role in problems where the matrix is a

transformation from one vector space to a different vector space such as in systems

of over- or underdetermined algebraic equations.

In this chapter we will discuss the classical additive perturbation bounds and the

more recent work with multiplicative perturbation bounds for eigenvalues as discussed

in [26]. Then we will narrow our focus to diagonally dominant matrices and discuss

the work of Ye [44] that presents relative perturbation bounds for symmetric positive

semidefinite diagonally dominant matrices. We then generalize this perturbation

bound to all symmetric matrices. Recall that for symmetric positive definite matrices

the eigenvalues and singular values coincide. Hence, we will discuss singular values

of a general diagonally dominant matrix in this chapter as well.

4.1 Classical perturbation results

The classical perturbation result for the eigenvalues of the perturbed matrix A + E

is Weyl’s Theorem given below.

Theorem 4.1 (Weyl’s Theorem [9]). Let A and E by symmetric n × n matrices.

Let λ1 ≤ · · · ≤ λn be the eigenvalues of A and λ̃1 ≤ · · · ≤ λ̃n be the eigenvalues of

Ã = A+ E. Then,

|λi − λ̃i| ≤ ‖E‖2.

This result shows that the absolute error between the eigenvalue of the perturbed

matrix A+E and the corresponding eigenvalue of A is bounded by the two norm of
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the absolute perturbation E. A similar Weyl-type bound is given for singular values

below.

Theorem 4.2 ([9]). Let A and E be any matrices of the same size and let σ1 ≥ · · · ≥
σn be the singular values of A and σ̃1 ≥ · · · ≥ σ̃n be the singular values of Ã = A+E.

Then,

|σ̃i − σi| ≤ ‖E‖.

Both additive perturbation bounds would directly produce relative perturbation

bounds that are dependent on the eigenvalue or singular value itself. As we discussed

in the introduction in Example 1.2 this produces several disadvantages, specifically

that the bound produced for small eigenvalues and singular values could be very

pessimistic. We will now consider one structure perturbation, i.e. multiplicative

perturbations, which produces relative perturbation bounds.

In the rest of this section, consider a symmetric matrix A and its perturbation Ã

that can be written as Ã = D1AD2 where D1 and D2 are nonsingular matrices close

to I. However, for the following bounds, we must assume that the perturbation Ã has

the form Ã = DADT for some nonsingular matrix D so that Ã remains symmetric.

In the following bounds, we will assume A ∈ Rn×n has eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn

and we will assume the perturbed matrix Ã ∈ Rn×n has eigenvalues

λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n

.

Theorem 4.3 (Ostrowski’s Theorem [24]).

λmin[DDT ]λi ≤ λ̃i ≤ λiλmax[DDT ]
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Ostrowski’s theorem bounds the ratio of exact to perturbed eigenvalues in terms

of the smallest and the largest eigenvalues of DDT , which implies the relative per-

turbation bound

λmin[DDT ]− 1 ≤ λ̃i − λi

λi

≤ λmax[DDT ]− 1

We can rephrase Ostrowski’s Theorem in terms of the two norm of DDT .

Theorem 4.4.

|λi|
‖(DDT )−1‖2 ≤ |λ̃i| ≤ |λi|‖DDT‖2

The term DDT measures how close D is to being orthogonal. If DDT = I then

λmin[DD∗] = λmax[DDT ] = 1 and ‖DDT‖2 = 1. Thus, if D is close to orthogonal

then the ratio |λ̃i|/|λi| is close to 1. We use a trianglular matrix to illustrate the

bound in the following example.

Example 4.5. Consider the symmetric tridiagonal matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α1

α1 0 α2

α2 0 α3

α3 0 α4

α4 0 α5

α5 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and the component-wise relative perturbation of a single off diagonal pair

Ã =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 β1α1

β1α1 0 β2α2

β2α2 0 β3α3

β3α3 0 β4α4

β4α4 0 β5α5

β5α5 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where βi �= 0 is close to 1. The perturbed matrix Ã can be represented as a multi-

plicative perturbation Ã = DAD, where

D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1

1

β2

β3

β2

β4β2

β3

β5β3

β4β2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The bound in Theorem 4.3 yields

1

η
|λi| ≤ |λ̃i| ≤ η|λi|

where η =
5∏

j=1

max{|βj|, 1/|βj|}. Thus, the ratio between perturbed and exact eigen-

values is close to 1 if the perturbations |βj| are close to one.

Following from Ostrowski’s theorem, we now examine a Weyl-type bound that

bounds the largest distance between a perturbed eigenvalue and the corresponding

exact eigenvalue. That is, the ith largest perturbed eigenvalue is paired with the ith

largest exact eigenvalue.

Theorem 4.6 ([9]).

|λ̃i − λi| ≤ |λi|‖DDT − I‖2.

If λi �= 0, then we can write

|λ̃i − λi|
|λi| ≤ ‖DDT − I‖2

We can use Ostrowski’s Theorem for eigenvalues to present similar perturbation

results for singular values. In the following bounds, we will let B ∈ Rm×n with

singular values

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0
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and we will assume the perturbed matrix B̃ = D1BD2 has singular values

σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n ≥ 0

We obtain the following result by converting the singular value problem to an

eigenvalue problem and applying the eigenvalue result in Theorem 4.3.

Theorem 4.7.

σi

‖D−1
1 ‖‖D−1

2 ‖ ≤ σ̂i ≤ σi‖D1‖‖D2‖

If D1 and D2 are almost orthogonal, then the norms in Theorem 4.7 are almost

1 and thus the ratio between perturbed and exact singular value is almost 1. We

illustrate the bound in Theorem 4.7 with the following example.

Example 4.8 ([26, 17]). Consider the bidiagonal matrix

B =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α1 β1

α2 β2

α3 β3

α4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and the componentwise perturbation

B̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

γ1α1 γ2β1

γ3α2 γ4β2

γ5α3 γ6β3

γ7α4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where γj �= 0 are close to 1. We can write B̃ = D1BD2 where

D1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

γ1

γ1γ3
γ2

γ1γ3γ5
γ4

γ1γ3γ5γ7
γ6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, D2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

γ2
γ1

γ2γ4
γ3

γ2γ4γ6
γ5

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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Applying Theorem 4.7 gives

1

η
σi ≤ σ̃i ≤ ησi

where η =
∏7

j=1 max{|γi|, 1/|γi|}. Thus, if each perturbation γi is close to 1, then the

ratio of perturbed singular values to exact singular values is close to one.

We can also convert the singular value problem to the eigenvalue problem and

apply the normwise version of Ostrowski’s Theorem.

Theorem 4.9.

|σi − σ̂i| ≤ σi max{‖I −D−1
1 D−T

1 ‖, ‖I −D−T
2 D−1

2 ‖}

The terms ‖I −D−1
1 D−T

1 ‖ and ‖I −D−T
2 D−1

2 ‖ represent the relative deviations of

D1 and D2 from being orthogonal. Hence, if D1 and D2 are close to being orthogonal,

then the relative error in the perturbed singular value is small.

4.2 Relative perturbation results for diagonally dominant matrices

The bounds presented in section 4.1 are only convenient for certain matrix structures.

The examples we used to illustrate the bounds were tridiagonal or bidiagonal matri-

ces. It is very challenging to write perturbations of matrices with other structures

multiplicatively. In the remainder of this chapter, we will focus on symmetric diago-

nally dominant matrices to improve upon these results. In [44], Ye presents a relative

perturbation bound for the eigenvalues of symmetric positive semidefinite diagonally

dominant matrices.

Theorem 4.10 ([44]). Let A = [aij] and Ã = [ãij] be two symmetric positive semidef-

inite diagonally dominant matrices, and let λ1 ≤ λ2 ≤ · · · ≤ λn and λ̃1 ≤ λ̃2 ≤ · · · ≤
λ̃n be their eigenvalues, respectively. If, for some 0 ≤ ε < 1,

|aij − ãij| ≤ ε|aij| for all i �= j
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and

|vi − ṽi| ≤ εvi for all i,

where vi = aii −
∑

j �=i |aij| and ṽi = ãii −
∑

j �=i |ãij| then we have for all i

|λ̃i − λi| ≤ ελi

Theorem 4.10 proves that if the diagonally dominant parts, i.e. vi, and off diagonal

entries of a symmetric positive semidefinite matrix are perturbed with relative error

bounded by ε, then the relative error in the eigenvalues is bounded by ε as well. This

work is significant because the relative perturbation bound is independent of any

condition number and the eigenvalue itself.

Positive semidefinite diagonally dominant matrices are characterized as having

only non-negative diagonals. We can generalize this result by considering diagonally

dominant matrix with negative diagonals. Consider the parameterization of a matrix

A given in Definition 1.6. We generalize this parameterization to allow for negative

diagonals below.

Definition 4.11. Let A = [aij] ∈ Rn×n be any matrix. Define the following terms:

vi = |aii| −
∑
j �=i

|aij|, for i = 1, . . . , n

AD =

⎧⎪⎪⎨⎪⎪⎩
0 for i = j

aij for i �= j

S = diag(sign(a11), . . . , sign(ann))

Then, A = D(AD, v, S) is a paramterization of A by diagonally dominant parts.

With this updated parameterization, we note that row diagonal dominance is

equivalent to v ≥ 0.

We now present perturbation results for the eigenvalues of a symmetric indefinite

diagonally dominant matrix. In our proof we will construct a matrix that is nonsym-
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metric with non-negative entries and apply Theorem 2.7. We also utilize the following

auxiliary result.

Lemma 4.12. Let y ≥ 0 and 0 ≤ δ < 1. Then,(
1 + δ

1− δ

)y

− 1 ≥ 1−
(
1− δ

1 + δ

)y

Proof. Let x =

(
1 + δ

1− δ

)y

and observe x > 0. Thus,

x+
1

x
≥ 2

x− 1 ≥ 1− 1

x

Substitute to obtain the desired result.

Theorem 4.13. Let λ1 ≥ λ2 ≥ . . . ≥ λn be th eigenvalues of the symmetric matrix

A = D(AD, v, S) ∈ Rn×n with v ≥ 0. Let Ã = D(ÃD, ṽ, S) be a symmetric matrix

such that

|ṽ − v| ≤ ε|v| and |ÃD − AD| ≤ ε|AD|

for 0 ≤ ε < 1 and let λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃n be the eigenvalues of Ã. If n3ε < 1/5, then

|λ̃i − λi| ≤ (2ν + ν2)|λi|

for i = 1, . . . , n where ν =
4n3ε

1− nε
.

Proof. Observe that S remains unperturbed. Assume A is nonsingular and has LDU

decomposition A = LDU . Since A is symmetric then U = LT , that is, A = LDLT .

Define the following terms

C = SA, CD = SAD, vC = v

C̃ = SÃ, C̃D = SÃD, ṽC = ṽ
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Thus,

|C̃D − C| ≤ ε|CD| and |ṽC − vC | ≤ ε|vC |

Note,

C = SA = SLDLT = SL(SS)DLT = (SLS)(SD)LT

Thus, C has LDU factorization C = LCDCUC = (SLS)(SD)LT . Also note that C is a

nonsymmetric diagonally dominant matrix with non-negative diagonal entries. Thus,

we can apply Theorem 2.7 (1) and obtain that C̃ is also a nonsingular diagonally

dominant matrix with LDU factorization C̃ = L̃CD̃CŨC . That is,

C̃ = L̃CD̃CŨC = (SL̃S)(SD̃)(L̃T ) = SL̃D̃L̃T

This implies that Ã has LDU factorization Ã = L̃D̃L̃T . Since A is square and

invertible by assumption, then this LDU factorization is unique. Furthermore, from

parts (2) and (3) of Theorem 2.7 we obtain the following bounds.

(D̃C)ii = (DC)ii
(1 + ηi1) · · · (1 + ηii)

(1 + ηi−1,1) · · · (1 + ηi−1,i−1)
, where |ηik| ≤ ε, |ηi−1,p| ≤ ε (4.1)

for k = 1, . . . , i and p = 1, . . . , i− 1, and

|(L̃C)ij − (LC)ij| ≤ 3iε ≤ 3nε (4.2)

From (4.1), we obtain

d̃ii = dii
(1 + ηi1) · · · (1 + ηii)

(1 + ηi−1,1) · · · (1 + ηi−1,i−1)

Set γi =

√
(1 + ηi1) · · · (1 + ηii)

(1 + ηi−1,1) · · · (1 + ηi−1,i−1)
− 1. Then, d̃ii = dii(1 + γi)

2 and we can use

Lemma 4.12 to obtain

|γi| ≤
(
1 + ε

1− ε

)n/2

− 1.

It can be shown by induction that(
1 + ε

1− ε

)n/2

− 1 ≤ nε

1− nε
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Set W = diag(γ1, γ2, . . . , γn). Then, we can write D̃ as

D̃ = (I +W )D(I +W ) with ‖W‖max ≤ nε

1− nε
. (4.3)

Also, note

L̃C − LC = SL̃S − SLS = S(L̃− L)S = L̃− L

and thus, using (4.2) we have

|l̃ij − lij| ≤ 3nε and ‖ΔL‖max ≤ 3nε. (4.4)

Consider

Ã = L̃D̃L̃T = (L+ΔL)(I +W )D(I +W )(L+ΔL)
T

= [L+ΔL + LW +ΔLW ]D [L+ΔL + LW +ΔLW ]T

= (I + F )LWLT (I + F )T

where F = ΔLL
−1 + LWL−1 + ΔLWL−1. Since L is column diagonally dominant,

then ‖L‖max ≤ 1. Moreover, the inverse of a column diagonally dominant matrix is

row diagonally dominant, so ‖L−1‖max ≤ 1. These bounds, combined with (4.3) and

(4.4) yield

‖F‖2 ≤ n‖F‖max = n‖ΔLL
−1 + LWL−1 +ΔLWL−1‖max

≤ n
[‖ΔL‖max‖L−1‖max + ‖LW‖max‖L−1‖max + ‖ΔL‖max‖WL−1‖max

]
≤ n

[
3nε+

nε

1− nε
+ 3nε

(
nε

1− nε

)]
=

4n2ε

1− nε

If we restrict n2δ < 1/5, then ‖F‖ < 1 which implies I+F is nonsingular. Hence, we

can apply [17, Theorem 2.1], which states if Ã = DTAD for some nonsingular matrix

D, then

|λ̃i − λi| ≤ |λi|‖DTD − I‖, (4.5)
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with D = (I + F )T . Note that

‖DTD − I‖ = ‖(I + F )(I + F )T − I‖ = ‖F + F T + FF T‖

≤ ‖F‖+ ‖F‖+ ‖F‖‖F‖ = 2‖F‖+ ‖F‖2

≤ 2

(
4n2ε

1− nε

)
+

(
4n2ε

1− nε

)2

= 2ν + ν2

where ν =

(
4n2ε

1− nε

)
. Hence, from (4.5) becomes

|λ̃i − λi| ≤ |λi|
(
2ν + ν2

)
,

Note that this result holds if the matrix A is singular. To prove, from [13, Theorem

2] there exists a permutation matrix P such thatB = PAP T has an LDU factorization

and we can construct a parameterization of B from the parameterization of A =

D(AD, v, S). From here, we can proceed with the proof using B.

We now consider the singular values for nonsymmetric diagonally dominant ma-

trices with nonnegative diagonals. Recall that for symmetric matrices, the singular

values are the absolute values of the eigenvalues and thus we can use bounds pre-

viously. In the following theorem we show that if a diagonally dominant matrix is

perturbed such that the diagonally dominant parts and off diagonal entries have rel-

ative errors bounded by some ε, then the singular values have relative errors that

depend on only ε and the size of the matrix.

Theorem 4.14. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let Ã =

D(AD, v) ∈ Rn×n be such that

|ṽ − v| ≤ εv and |ÃD − AD| ≤ ε|AD|

for some 0 ≤ ε < 1
3
. Let σ1 ≥ σ2 ≥ · · · ≥ σn and σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n be the singular

values of A and Ã, respectively. Define

ν :=
n3(4n− 1)ε0
1− 2nε0
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where ε0 =
12ε

1− ε
. If 2nε0 < 1 and ν < 1, then

|σ̃i − σi| ≤ (2ν + ν2)σi

for i = 1, . . . , n.

Proof. Without loss of generality, we assume that A is arranged for column diagonal

dominance pivoting. Note that A has LDU factorization A = LDU and apply The-

orem 2.7 to show that Ã has LDU factorization Ã = L̃D̃Ũ such that for 2nε < 1,

d̃i = di(1 + wi) where |wi| ≤ 2nε

1− 2nε
(4.6)

which gives

D̃ = D(I +W ) with W = diag(w1, w2, . . . , wn),

and,

‖ΔU‖max = 3nε where ΔU := Ũ − U (4.7)

From Theorem 2.21 we have

‖ΔL‖2 = n3/2(4n− 1)ε0
3(1− 2nε0

where ΔL := L̃− L (4.8)

Observe

Ã = L̃D̃Ũ = (L+ΔL)D(I +W )(U +ΔU)

= (I +ΔLL
−1)LD(U +ΔU +WU +WΔU)

= (I +ΔLL
−1)LDU(I + U−1ΔU + U−1WU + U−1WΔU)

= (I + E)LDU(I + F )

where

E := ΔLL
−1, and (4.9)

F := U−1ΔU + U−1WU + U−1WΔU . (4.10)
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Since L is column diagonally dominant, then L−1 is row diagonally dominant and

hence,

‖L‖max ≤ 1 and ‖L−1‖max ≤ 1. (4.11)

Similarly, since U is row diagonally dominant, then U−1 is column diagonally domi-

nant. Hence,

‖U‖max ≤ 1 and ‖U−1‖max ≤ 1. (4.12)

From (4.6), we have

‖W‖max ≤ 2nε

1− 2nε

and thus,

‖WU‖max ≤ ‖W‖max‖U‖max ≤ 2nε

1− 2nε
, and (4.13)

‖U−1W‖max ≤ ‖U−1‖max‖W‖max ≤ 2nε

1− 2nε
(4.14)

Combining (4.7), (4.13),(4.14), and (4.12) with (4.10) yields

‖F‖max ≤ ‖U−1‖max‖ΔU‖max + ‖U−1‖max‖WU‖max + ‖U−1W‖max‖ΔU‖max

≤ 3nε+
2nε

1− 2nε
+

2nε

1− 2nε
(3nε)

=
5nε

1− 2nε

Thus, we have

‖F‖2 ≤ n‖F‖max ≤ 5n2ε

1− 2nε
≤ ν

From (4.9) and (4.8)

‖E‖2 ≤ ‖ΔL‖2‖L−1‖2 ≤
(
n3/2(4n− 1)ε0
3(1− 2nε0)

)
(n) = ν

Thus, if ν ≤ 1 then both (I + E) and (I + F ) are nonsingular. Therefore we can

apply [17, Theorem 3.3] to obtain

|σ̃i − σi| ≤ γσi (4.15)

66



for i = 1, 2, . . . , n where γ = max{‖(I +E)(I +E)T − I‖2, ‖(I + F )T (I + F )− I‖2}.
Note that

‖(I + E)(I + E)T − 1‖2 = ‖I + E + ET + EET − I‖2 = ‖E + ET + EET‖2
≤ ‖E‖2 + ‖ET‖2 + ‖E‖‖ET‖2 ≤ 2‖E‖2 + ‖E‖22
≤ 2ν + ν2

Similarly,

‖‖(I + F )(I + F )T − 1‖2 ≤ 2ν + ν2

Thus, γ = 2ν + ν2. Combining with (4.15) yields

|σ̃i − σi| ≤ (2ν + ν2)σi (4.16)

Copyright c© Megan Dailey, 2013.
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Chapter 5 Nonsymmetric Eigenvalue Problem

In the previous chapter we discussed perturbation bounds for symmetric matrices. In

this chapter, we will consider the nonsymmetric case. The nonsymmetric eigenvalue

problem is generally much more complex than the symmetric eigenvalue problem.

Recall that λ is called an eigenvalue of A with corresponding (right) eigenvector x

if Ax = λx. We can also define a left eigenvector of A. That is, λ is an eigenvalue

of A with corresponding left eigenvector y if y∗A = λy∗. In the symmetric case, a

left eigenvector is also a right eigenvector of A. This is not necessarily true for the

nonsymmetric case. Moreover, in the nonsymmetric case the eigenvalues of A can be

complex. Most algorithms that compute the eigenvalues of a nonsymmetric A use a

similarity transformation to transform A into a canonical form for which it is easier

to compute its eigenvalues and eigenvectors of A. Ideally, the canonical form would

be a triangular matrix, since the eigenvalues of a triangular matrix are simply the

diagonal entries. The simplest canonical form under similarity transformation is the

Jordan canonical form.

Theorem 5.1 (Jordan canonical form [9]). Given A, there exists a nonsingular matrix

S such that S−1AS = J , where J is in Jordan canonical form. This means that J is

block diagonal, with J = diag(Jn1(λ1), Jn2(λ2), . . . , Jnk
(λk)) and

Jni
(λi) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λi 1 0

. . . . . .

. . . 1

0 λi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ Cni×ni .

J is unique, up to permutations of its diagonal blocks.

While theoretically useful, the Jordan canonical form is hard to compute in a
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numerically stable fashion. This means that any small perturbation can change it

completely. Consider the following example from [9]

Example 5.2. Let

Jn(0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1

. . . . . .

. . . 1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

For an arbitrarily small ε, adding kε to the (k, k) entry changes the eigenvalues to the

n distinct values k ·ε and so the Jordan form changes from Jn(0) to diag(ε, 2ε, . . . , nε).

For this reason, the Jordan canonical form can not be computed stably. Indeed,

the Jordan canonical form can not be computed in a backward stable manner.

Example 5.3 ([9]). Suppose S−1AS = J exactly where S is ill conditioned, i.e.

κ(S) � 1. Suppose we manage to compute S exactly and J with a tiny error ΔJ ,

where ‖ΔJ‖ ≤ O(ε)‖A‖. Now suppose we try to bound the backward error. That

is, we want to determine how big ΔA must be so that S−1(A + ΔA)S = J + ΔJ .

This gives ΔA = SΔJS−1 and we can only conclude that ‖ΔA‖ ≤ ‖S‖‖ΔJ‖‖S−1‖ =

O(ε)κ(S)‖A‖. Thus, ‖ΔA‖ may be much larger than ε‖A‖, which prevents backward

stability.

Example 5.4 ([9]). Let

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1

. . . . . .

. . . 1

ε 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The characteristic polynomial for A is λn − ε = 0. For ε > 0, one real eigenvalue is

λ = λ(ε) = n
√
ε. Note that

d(λ(ε)− λ(0))

dε
=

ε
1
n
−1

n
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which tends to infinity as ε tends to 0. Thus, the eigenvalue perturbation λ(ε)− λ(0)

may be infinitely larger than a small change ε.

In Section 5.1, we will present classical perturbation bounds from the literature.

These bounds will require A to be digonalizable. That is, there is a similarity trans-

formation X such that A = XΛX−1 where Λ is a diagonal matrix. We will show that

these bounds can be very pessimistic if A is close to having multiple eigenvalues with

Jordan blocks. In section 5.2, we will consider only simple eigenvalues and will use

rank revealing decompositions to improve upon the classical bounds.

5.1 Classical perturbation results

In section 4.1, we presentedWeyl type perturbation bounds for the eigenvalues of sym-

metric matrices. In this section, we will focus on Bauer-Fike type bounds. Bauer-Fike

type bounds are two-norm bounds on the distance between a perturbed eigenvalue

and the closest exact eigenvalue.

Theorem 5.5 (Bauer-Fike Theorem [26]). Let A ∈ Rn×n have eigendecomposition

A = XΛX−1 where Λ = diag(λ1, . . . , λn) and let Ã = A + E be a perturbation of A.

If λ̃ is an eigenvalue of Ã, then

min
i

|λi − λ̃| ≤ κ(X)‖E‖2. (5.1)

If A is nonsingular,

min
i

|λi − λ̃|
|λi| ≤ κ(X)‖A−1E‖2 (5.2)

The bound in (5.1) produces the following relative bound

|λi − λ̂|
|λi| ≤ κ(X)

‖E‖2
|λi| ≤ κ(X)‖A−1‖2‖E‖2 ≤ κ(X)κ(A)

‖E‖2
‖A‖2

which is very close to the relative error bound (5.2). Thus, the relative error in the

eigenvalues depends on how close the eigenvalues are to being multiple eigenvalues
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with a Jordan block as measured by κ(X), how ill-conditioned A is as measured by

κ(A), and in the relative perturbation ‖E‖2/‖A‖2.
One disadvantage to the bounds in Theorem 5.5 is that they can be very pes-

simistic, especially if an eigenvalue is close to being multiple with Jordan block.

Consider the following example.

Example 5.6. Let

A =

⎛⎜⎝ 1 1001

10−3 1

⎞⎟⎠
and the perturbed matrix Ã

Ã = A+ E =

⎛⎜⎝ 1 1001

0 1

⎞⎟⎠ .

The eigenvalues of A are λ = 1±
√
10010
100

≈ 1± 1.0005 with eigenvector matrix

X =

⎛⎜⎝ 10
√
10010 −10

√
10010

1 1

⎞⎟⎠ .

The eigenvalue of Ã is λ = 1. The actual absolute and relative errors are

min
i

|λi − λ̃| =
√
10010

100
≈ 1.0005,

and

min
i

|λi − λ̃|
|λi| = 5.001× 10−1.

However, the bounds in Theorem 5.5 give

min
i

|λi − λ̃| ≤ 1.0015,

and

min
i

|λi − λ̃|
|λi| ≤ 1.0025× 106
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Now, suppose the perturbation of A can be written multiplicatively. That is,

suppose Ã has the form Ã = D1AD2 where D1, D2 are non-singular matrices close to

I. Note that if D2 = D−1
1 then Ã is a similarity transformation of A and thus has

the same eigenvalues as A. If A is Hermitian and D2 = D∗
1, then Ã is a congruency

transformation of A, and thus has the same inertia as A. That is, A and Ã have the

same number of positive, negative, and zero eigenvalues.

Theorem 5.7. If A is diagonalizable and Ã = D1AD2 where D1 and D2 are nonsin-

gular, then

min
i

|λi − λ̂| ≤ |λ̂|κ(X)‖I −D−1
1 D−1

2 ‖

The term ‖I −D−1
1 D−1

2 ‖2 represents a relative deviation from similarity, that is,

the relative perturbation of eigenvalues is small when Â is close to being a similarity

transformation of A. This bound is tight if D2 = D−1
1 or if λ̂ = 0.

As in the Bauer-Fike type bounds, the terms ‖D1−D−1
2 ‖ and ‖D2−D−1

1 ‖ represent
a relative deviation from similarity. That is, the relative error bound is small only if

D1 and D2 are close to a similarity transformation.

The above theorems bound all the eigenvalues together. It turns out for non-

symmetric matrices, different eigenvalues may have different perturbation properties.

The following perturbation analysis more precisely describes the perturbation for each

eigenvalue.

Theorem 5.8 ([9]). Let λ be a simple eigenvalue of A ∈ Rn×n with right eigenvector

x and left eigenvector y. Let λ̃ be the eigenvalue of Ã = A + E that is closest to λ,

where E ∈ Rn×n. Then

λ̃− λ =
y∗Ex

y∗x
+O (‖E‖22

)
(5.3)

or,

|λ̃− λ| ≤ sec θ(y, x)‖E‖2 +O (‖E‖22
)

(5.4)
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where θ(y, x) is the acute angle between x and y.

The term sec θ(y, x) =
‖y∗‖2‖x‖2

|y∗x| is the condition number of the eigenvalue λ. It

describes the sensitivity of λ to perturbation. The perturbation bound in Theorem

5.8 leads to the relative perturbation bound

|λ̃− λ|
|λ| ≤ sec θ(y, x)‖E‖2

|λ| . (5.5)

5.2 Relative perturbation bounds

The relative perturbation bound in (5.5) depends on both the condition number of

the eigenvalue and the eigenvalue itself. For diagonally dominant matrices, present

in this section a new bound that removes the dependence on the eigenvalue.

We will first use a rank-revealing decomposition and then, more specifically, the

LDU factorization to derive relative perturbation bounds. Theorem 5.8 provides

an absolute error bound for a perturbed eigenvalue. Suppose we have any matrix

A and we perturb it slightly to form Ã = A + E. Then the error between the

corresponding eigenvalues of A and Ã can be bounded in terms of the perturbation

in A and the condition number of the eigenvalue. This result depends on the left and

right eigenvectors of A. We first present a variation of Theorem 5.8

Lemma 5.9. Let λ be a simple eigenvalue of A ∈ Rn×n with right eigenvector x.

Let λ̃ be the corresponding eigenvalue of Ã = A + E, where E ∈ Rn×n, with left

eigenvector ỹ. Then,

λ̃− λ =
ỹ∗Ex

ỹ∗x
(5.6)

or

|λ̃− λ| ≤ sec θ(ỹ∗, x)‖E‖2. (5.7)

Proof. Since E = Ã− A, then using the definition of eigenvalue we have

ỹ∗Ex = ỹ∗
(
Ã− A

)
x = ỹ∗Ãx− ỹ∗Ax =

(
ỹ∗λ̃

)
x− ỹ∗ (λx) =

(
λ̃− λ

)
ỹ∗x.
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from which (5.6) follows.

Notice the result in (5.7) is very similar to the result in (5.4), however one ad-

vantage is the lack of higher order terms. On the other hand, it depends on the left

eigenvector ỹ of Ã, which is less desirable in general. However, this is advantageous

for our purpose as it will become evident in the proof of the following theorem, in

which we show that given a matrix A, we can compute its eigenvalues with high

relative accuracy provided we can find an accurate rank revealing decomposition.

Theorem 5.10. Let A = XDY T ∈ Rn×n be a rank revealing decomposition and let

Ã = X̃D̃Ỹ T ∈ Rn×n where X̃, D̃, and Ỹ are defined as follows:

X̃ = X +ΔX , D̃ = D +ΔD, Ỹ = Y +ΔY (5.8)

where

|(ΔD)ii| ≤ ε|Dii|, ‖ΔX‖2 ≤ ε‖X‖2, and ‖ΔY ‖2 ≤ ε‖Y ‖2

with 0 ≤ κε < 1 where κ = max{κ2(X), κ2(Y )}. Let λ be a simple eigenvalue of A

and λ̃ be the corresponding eigenvalue of Ã. Then,

|λ̃− λ|
|λ| ≤ εκ sec θ(ỹ, x)

1 + (1 + ε)

1− εκ sec θ(ỹ, x)γ
(5.9)

where γ =
1 + ε

(1− ε)(1− εκ)
= 1 +O(ε)

Proof. Observe

Ã− A = X̃D̃Ỹ T − A = X̃(D +ΔD)(Y
T +ΔY T )− A

= X̃DY T + X̃DΔY T + X̃ΔDY
T + X̃ΔDΔY T − A

= (X +ΔX)DY T + X̃DΔY T + X̃ΔDY
T + X̃ΔDΔY T −XDY T

= ΔXDY T + X̃DΔY T + X̃ΔDY
T + X̃ΔDΔY T

Applying (5.6) yields

(ỹ∗x)
(
λ̃− λ

)
= ỹ∗ΔXDY Tx+ ỹ∗X̃ΔDUx+ ỹ∗X̃DΔY Tx+ ỹ∗X̃ΔDΔY Tx
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Taking the absolute value, we have

|ỹ∗x|
∣∣∣λ̃− λ

∣∣∣ ≤|λ|‖ỹ∗‖2‖ΔX‖2‖X−1‖2‖x‖2 + |λ|‖ỹ∗‖2‖X̃‖2‖ΔDD
−1‖2‖X−1‖2‖x‖2

+ |λ̃|‖ỹ∗‖2‖Ỹ −T‖2‖D̃−1D‖2‖ΔY T ‖2‖x‖2
+ |λ̃|‖ỹ∗‖2‖Ỹ −T‖2‖D̃−1ΔD‖2‖ΔY T ‖2‖x‖2

(5.10)

Since |(ΔDD
−1)ii| ≤ |(ΔD)ii||D−1

ii | ≤ ε then

‖ΔDD
−1‖2 ≤ ε (5.11)

from which it follows

‖D̃−1D‖2 = ‖(I +D−1ΔD)
−1‖2 ≤ 1

1− ε
(5.12)

and

‖D̃−1ΔD‖2 = ‖(I +D−1ΔD)
−1D−1ΔD‖2 ≤ ε

1− ε
. (5.13)

By assumption, we have

‖ΔX‖2‖X−1‖2 ≤ ε‖X‖2‖X−1‖2 = εκ2(X) ≤ εκ (5.14)

which yields

‖X̃‖2‖X−1‖2 ≤ (‖X‖2 + ‖ΔX‖2)‖X−1‖2 = ‖X‖2‖X−1‖2 + ‖ΔX‖2‖X−1‖2
≤ κ2(X) + εκ2(X) = (1 + ε)κ2(X) ≤ (1 + ε)κ.

(5.15)

Also, by assumption, we have

‖ΔY ‖2‖Y −T‖2 ≤ ε‖Y ‖2‖Y −1‖2 ≤ εκ2(Y ) ≤ εκ (5.16)

and thus

‖Ỹ −T‖2‖ΔY ‖2 ≤ ‖(I + Y −1ΔY )
−1Y −1‖2‖ΔY ‖2

≤ 1

1− εκ2(Y )
‖Y −1‖2ε‖Y ‖2 = εκ2(Y )

1− εκ2(Y )
≤ εκ

1− εκ

(5.17)
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Substituting the bounds (5.11), (5.12), (5.13), (5.14), (5.15), and (5.17) into (5.10)

gives

|ỹ∗x|
∣∣∣λ̃− λ

∣∣∣ ≤ |λ|‖ỹ∗‖2εκ‖x‖2 + |λ|‖ỹ∗‖2ε(1 + ε)κ‖x‖2

+|λ̃|‖ỹ∗‖2
(

εκ

1− εκ

)(
1

1− ε

)
‖x‖2

+|λ̃|‖ỹ∗‖2
(

εκ

1− εκ

)(
ε

1− ε

)
‖x‖2

Rearranging yields

|λ̃− λ| ≤ |λ| (εκ(1 + (1 + ε)) sec θ(ỹ, x)) + |λ̃| εκ

(1− ε)(1− εκ)
sec θ(ỹ, x)ε.

Replace |λ̃| with |λ̃ − λ + λ| and use the triangle inequality to obtain the desired

result.

Notice that our bound presented in Theorem 5.10 still depends on the condition

number of the eigenvalue λ, sec θ(ỹ, x), but it is independent of the eigenvalue itself.

Traditional eigenvalue perturbation bounds are dependent upon the eigenvalues. In

the following sections we will utilize the structure of diagonally dominant matrices to

provide a similar perturbation bound.

Now consider the LDU factorization of a diagonally dominant matrix. In the

following theorem, the bounds presented in Theorem 2.21 are used to obtain a relative

perturbation bound for the eigenvalues.

Theorem 5.11. Let λ be a simple eigenvalue of A = D(AD, v) ∈ R
n×n where v ≥ 0

with right eigenvector x. Let λ̃ be an eigenvalue of Ã = D(ÃD, ṽ) ∈ R
n×n with left

eigenvector ỹ such that ỹ∗x �= 0 and

|ṽ − v| ≤ εv and |ÃD − AD| ≤ ε|AD|, for some 0 ≤ ε <
1

3
. (5.18)

Then, if 7n3ε0 ≤ 1, we have

|λ̃− λ|
|λ| ≤ sec θ(ỹ, x)

(13n4ε0 − n3ε0 − 12n5ε2 − 3n4ε2)γ

1 + ε sec θ(y, x)3n3γ
(5.19)
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where γ =
1

1− 7n3ε0
, ε0 =

6ε

1− ε
, and sec θ(ỹ, x) =

‖ỹ∗‖2‖x‖2
|ỹ∗x| .

Proof. Suppose A is arranged for column diagonal dominance pivoting and has LDU

factorization A = LDU . From Theorem 2.21(1) we have Ã = L̃D̃Ũ . Define ΔL, ΔD,

and ΔU such that

L̃ = L+ΔL, D̃ = D +ΔD, Ũ = U +ΔU

Then, we can write E = Ã− A as

E = ΔLDU + L̃ΔDU + L̃DΔU + L̃ΔDΔU

as done in the proof of Theorem 5.10. Use Lemma 5.9, to obtain

(λ̃− λ)(ỹ∗x) =λỹ∗ΔLL
−1x+ λỹ∗L̃ΔDD

−1L−1x

+ λ̃ỹ∗Ũ−1D̃−1DΔUx+ λ̃ỹ∗Ũ−1D̃−1ΔDΔUx.

(5.20)

From Theorem 2.21 we have

‖ΔDD
−1‖2 ≤ 2nε

1− 2nε
(5.21)

from which follows

‖D̃−1D‖2 = ‖(I +D−1ΔD)
−1 2| ≤ 1− 2nε

1− 4nε
(5.22)

and

‖D̃−1ΔD‖2 = ‖(I +D−1ΔD)
−1D−1ΔD‖2 ≤ nε

1− 4nε
. (5.23)

From Theorem 2.21, ‖ΔU‖ ≤ 3n3/2ε, and it follows that

‖U−1ΔU‖2 ≤ ‖U−1‖2‖ΔU‖2 ≤ 3n3ε (5.24)

and thus

‖Ũ−1ΔU‖2 ≤ ‖Ũ−1‖2‖ΔU‖2 ≤ ‖(I + U−1ΔU)
−1‖2‖U−1‖2‖U‖2 ≤ 3n3ε

1− 3n3ε
(5.25)
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From Theorem 2.21 we have

‖ΔL‖2 ≤ n1/2‖ΔL‖1 ≤ n3/2(4n− 1)ε0
3(1− 2nε0)

where ε0 =
6ε

1− ε
. With (2.16) this gives

‖ΔLL
−1‖2 ≤ ‖ΔL‖2‖L−1‖2 ≤ n3(4n− 1)ε0

3(1− 2nε0)
(5.25)

and

‖L̃‖2‖L−1‖2 ≤ ‖L‖2‖L−1‖2 + ‖ΔL‖2‖L−1‖2 ≤ n3 +
n3(4n− 1)ε0
3(1− 2nε0)

(5.26)

Taking the absolute value of equation (5.20) and substituting the bounds (5.21),

(5.22), (5.23), (5.25), (5.25), and (5.26) gives

|λ̃− λ||ỹ∗x| ≤ |λ|‖ỹ∗‖2‖x‖2
(
n3(4n− 1)ε0
3(1− 2nε0)

)
+|λ|‖ỹ∗‖2‖x‖2

(
n3 +

n3(4n− 1)ε0
3(1− 2nε0)

)(
2nε

1− 2nε

)
+|λ̃|‖ỹ∗‖2‖x‖2

(
3n3ε

1− 3n3ε

)(
1− 2nε

1− 4nε

)
+|λ̃|‖ỹ∗‖2‖x‖2

(
3n3ε

1− 3n3ε

)(
nε

1− 4nε

)
and thus

|λ̃− λ| ≤ |λ|
(
10n4ε0 − n3ε0 − 12n5ε2

3(1− 2nε0)2

)
sec θ(ỹ, x)

+ |λ̃|
(

3n3ε

1− 3n3ε

)(
1− nε

1− 4nε

)
sec θ(ỹ, x)

Use |λ̃| ≤ |λ̃− λ|+ |λ| and rearrange to produce the desired result.

Thus, small perturbations in the diagonal dominant parts and the off diagonal

entries lead to perturbations in the eigenvalues that are small multiples of a condition

number of the eigenvalue. In Theorem 5.11, λ̃ can be any eigenvalue of Ã, but if λ̃

is not a good approximation of λ, then ỹ∗x will be small because y∗x = 0 if y a left

eigenvector of A corresponding to some eigenvalue different from λ.
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Chapter 6 Conclusions

We have systematically developed relative perturbation bounds for various linear al-

gebra problems for diagonally dominant matrices. We have proved that small relative

perturbations in the diagonally dominant parts and off diagonal entries of diagonally

dominant matrices with nonnegative diagonals produce small relative perturbations

in the LDU factorization. By using column diagonal dominance pivoting we ensure

the L factor is column diagonally dominant, and thus well-conditioned. This allowed

us to then prove similar perturbation bounds for the eigenvalues of nonsymmetric

diagonally dominant matrices with nonnegative diagonals and for the singular val-

ues for general diagonally dominant matrices. The results relied upon perturbation

results for the determinant which also led to relative perturbation for the inverse

and solutions of linear systems involving diagonally dominant matrices and for the

eigenvalues of symmetric indefinite diagonally dominant matrices.

In [43], an algorithm is presented that accurately computes all singular values

with small relative error for diagonally dominant matrices. It is shown in [13, 43]

that this algorithm also computes the L, D, and U factors of the LDU factorization

of diagonally dominant matrices with small relative errors. Our results show that

it is also possible to more accurately compute the inverse of a diagonally dominant

matrix and eigenvalues of a nonsymmetric diagonally dominant matrix. For future

works, we shall study algorithms for these problems.

Copyright c© Megan Dailey, 2013.
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