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ABSTRACT OF DISSERTATION

RATIONAL APPROXIMATION ON COMPACT NOWHERE DENSE SETS

For a compact, nowhere dense set X in the complex plane, C, define Rp(X) as the
closure of the rational functions with poles off X in Lp(X, dA). It is well known that
for 1 ≤ p < 2, Rp(X) = Lp(X). Although density may not be achieved for p > 2,
there exists a set X so that Rp(X) = Lp(X) for p up to a given number greater than
2 but not after. Additionally, when p > 2 we shall establish that the support of the
annihiliating and representing measures for Rp(X) lies almost everywhere on the set
of bounded point evaluations of X.
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Chapter 1 Introduction

Let X be a compact set in the complex plane C, and let |X| stand for the area (that

is dA or two-dimensional Lebesgue measure). Define C(X) to be the space of all

continuous functions on X endowed with the uniform norm, and let R(X) be the

closure in C(X) of the rational functions with poles off X. It is an old problem to

determine conditions on X so that R(X) = C(X). An obvious necessary condition

is that X have no interior, and so we shall adopt this hypothesis as a standing

assumption.

In 1931, Hartogs and Rosenthal [17] proved that R(X) = C(X) whenever |X| = 0,

leaving open the question as to whether the rational functions are dense in C(X) for

every compact nowhere dense set X. By the end of the decade, Alice Roth [31] (cf.

[8], [14], [16]) settled that question by constructing an example of a compact nowhere

dense set X so that R(X) 6= C(X), the so-called Swiss cheese. However, it wasn’t

until 1958 that Vitushkin (cf. [39]) established necessary and sufficient conditions for

R(X) = C(X) in terms of analytic capacity.

In the 1960’s, more interest developed in a different aspect of rational approxi-

mation. For p ≥ 1, let Lp(X, dA) (or more generally Lp(X)) be the usual space of

functions on X which are p−integrable with respect to the area measure dA. Then

Rp(X, dA) (or more generally Rp(X)) is the closure in the Lp(dA) norm of the rational

functions with poles off X. It is well known that if 1 ≤ p < 2, then Rp(X) = Lp(X)

(see Section 2.2).

Because the uniform norm is more restrictive than the Lp norm, it is clear that

R(X) ⊂ Rp(X). As a result of this containment property of the spaces, it follows

easily that if R(X) = C(X) then Rp(X) = Lp(X) for all p ≥ 1. Again, the questions

arise as to what conditions are necessary in order that Rp(X) = Lp(X), and is it
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possible that Rp(X) = Lp(X) for some p ≥ 1 without having R(X) = C(X).

With regard to the latter question posed above, Sinanjan [33] (cf. [3], [6]) con-

structed a Swiss cheese to show that there exists a compact nowhere dense set X so

that R(X) 6= C(X), but nevertheless Rp(X) = Lp(X) for all p, 1 ≤ p < ∞. So it

is possible to have density in Lp(X) without having density in C(X). This paper

seeks to build on those ideas and to show that it is possible to have density up to

a certain point, but not beyond - more precisely, in certain instances it can happen

that Rp(X) = Lp(X) if 1 ≤ p < p∗ but not if p ≥ p∗.

There is an obvious obstruction to the possibility that Rp(X) = Lp(X). There

may exist a point x0 with the property that

|f(x0)| ≤ C‖f‖Lp(X)

for every rational function f with poles off X and some fixed constant C. Such a

point x0 is referred to as a bounded point evaluation (or bpe) for Rp(X). In that case,

the map f → f(x0) extends from R(X) to a bounded linear functional on Rp(X), and

the Hahn-Banach theorem guarantees the existence of a function k ∈ Lq(X), where

1/p+ 1/q = 1, such that

f(x0) =

∫
X

fk dA

for all f ∈ R(X). Thus, (z − x0)k(z) dA is a nontrivial annihilating measure for

Rp(X) and therefore Rp(X) 6= Lp(X). In this way, when p ≥ 2 it is possible to

construct a compact nowhere dense set X such that Rp(X) 6= Lp(X), but there will

always be density when p < 2 (cf. [3]). In order that Rp(X) = Lp(X) it is both

necessary and sufficient that Rp(X) have no bpe’s if p > 2, but as Fernström [11] has

shown this is not sufficient if p = 2. Hedberg [19] obtained a necessary and sufficient

condition in terms of q−capacity for a point x0 ∈ X to be a bpe for Rp(X) whenever

p > 2. Later, this was extended to cover the case p = 2 by Fernström and Polking

[13]. For a more extensive discussion of the history of these problems, see [27].
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In Chapter 5 it will be shown that the annihilating measures and the representing

measures for Rp(X) where p > 2 are supported almost everywhere on the set of bpe’s,

thereby extending an earlier result of Øksendal [44] to the Lp case. The situation is

much different when p = 2 by virtue of Fernström’s example.

Copyright c© Christopher Mattingly, 2012.
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Chapter 2 Early Results on Rational Approximation

2.1 The Cauchy transform

In order to deal with questions of density, it will be convenient to argue by duality.

If, for example, we wish to prove that R(X) = C(X) it is enough to show that if µ

is any measure of finite total variation supported on X and if µ ⊥ R(X) in the sense

that ∫
X

f dµ = 0

for all f ∈ R(X), then µ = 0 as a measure. That will be the inescapable conclusion

whenever it can be shown that the Cauchy transform

µ̂(z) =

∫
dµζ
ζ − z

vanishes a.e−dA. Similar remarks are valid for approximation in Lp(X) with dµ =

k dA and k ∈ Lq(X) where 1/p+ 1/q = 1.

It is important to note at the outset that the Cauchy integral µ̂(z) exists and is

finite a.e.−dA in the plane. In fact the Newtonian potential

µ̃(z) =

∫
X

d|µζ |
|ζ − z|

is finite a.e.−dA, from which the assertion follows. To see this, choose R > 0 suffi-

ciently large so that for any ζ ∈ X, the disk BR with center ζ and radius R contains

X in its interior. Evidently,∫
BR

µ̃ dAz =

∫
BR

∫
X

d|µζ |
|ζ − z|

dAz =

∫
X

∫
BR

dAz
|ζ − z|

d|µζ | ≤ 2πR |µ|(X) <∞,

where |µ| denotes the total variation of µ. Therefore µ̃ <∞ a.e.−dA on X, and since

µ̃ is also finite off X, the integral µ̃(z) <∞ a.e.−dA.
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Theorem 2.1. Let µ be a measure of finite total variation on X. If µ̂ = 0 a.e.−dA

on C, then µ = 0 as a measure.

Proof. The proof presented here is due to Beurling (cf. [40, p. 75]) and applies

Fubini’s theorem to the Cauchy integral over any rectangle R in C where |µ| = 0 on

∂R: ∫
∂R

µ̂ dz =

∫
∂R

∫
X

dµζ
ζ − z

dz =

∫
X

∫
∂R

dz

ζ − z
dµζ = 0

However, by Cauchy’s theorem

1

2πi

∫
∂R

dz

z − ζ
= χR(ζ)

and so

−1

2πi

∫
X

∫
∂R

dz

ζ − z
dµζ =

∫
X

χR(ζ)dµζ = µ(R ∩X) = 0.

This can be done with enough rectangles to show that µ = 0 as a measure:

Suppose E is any compact subset of X and let U be any neighborhood of E. Cover E

with rectangles {Ri} so that µ places no mass on ∂Ri and ∪Ri ⊂ U . Then |µ(∪Ri)| ≤∑
|µ(Ri)| = 0, since µ(Ri) = 0 for each i. Hence µ(E) = lim

U↓E
µ(∪Ri) = 0.

As a corollary, let us recall a theorem of Hartogs and Rosenthal [17] from 1931 in

which we can illustrate the use of the Cauchy transform.

Corollary 2.2 (Hartogs and Rosenthal). If |X| = 0, then R(X) = C(X).

Proof. Let µ be a measure on X with µ ⊥ R(X). It follows that

µ̂(z) =

∫
X

dµζ
ζ − z

= 0

whenever z ∈ C \X, and so µ̂ = 0 a.e.−dA. Hence µ = 0 as a measure by Theorem

2.1. Thus µ not only annihilates the rational functions, but all continuous functions

as well, and so R(X) = C(X).

5



2.2 Lp approximation

In order to study approximation in Lp(X) we can argue along lines similar to those

outlined above. In this case, let k ∈ Lq(X) where 1/p + 1/q = 1, and assume that∫
X
fk dA = 0 for all f ∈ R(X). Hence,

k̂(z) =

∫
X

k(ζ)

ζ − z
dAζ = 0

whenever z ∈ C \X. Our problem is to determine whether k̂ enjoys sufficient conti-

nuity at points of X to ensure that k̂ = 0 a.e.−dA on X. If so we can conclude that

Rp(X) = Lp(X).

Theorem 2.3. If 1 ≤ p < 2 then Rp(X) = Lp(X) for any compact nowhere dense

set X.

Here the theorem is a consequence of the fact that k̂ is a continuous function

whenever k ∈ Lq(X) for q > 2. That in turn follows easily from the fact that

translation is a continuous operator on Lq (cf. [32, p. 3]). A more precise description

of the degree of continuity enjoyed by k̂ is contained in the following:

Lemma 2.4. If k ∈ Lq(X) for q > 2, then |k̂(z1)− k̂(z2)| ≤ C|z1 − z2|1−2/q.

Proof of lemma. Let k ∈ Lq(X) for q > 2 and let x1, x2 be any pair of points in the

plane. Then ∣∣∣k̂(x1)− k̂(x2)
∣∣∣ ≤ |x1 − x2|

∫
|k(z)|

|z − x1||z − x2|
dA.

Define R = 1
2
|x1 − x2|, and let D1 and D2 be the disks of radius R centered at x1

and x2 respectively. We will proceed in two parts: first by considering z in either D1

or D2, and then by considering z outside D = D1 ∪D2.

6



Case 1: Without loss of generality, assume z ∈ D1. We have |z− x2| ≥ 1
2
|x1− x2|

on D1, and so

|x1 − x2|
∫
D1

|k(z)|
|z − x1||z − x2|

dA ≤ |x1 − x2|
∫
D1

2|k(z)|
|z − x1||x1 − x2|

dA

≤ 2‖k‖q
(∫

D1

1

|z − x1|p
dA

)1/p

.

Using polar coordinates centered at x1 inside the parenthesis,∫
D1

1

|z − x1|p
dA =

∫ 2π

0

∫ R

0

1

rp
r dr dθ =

2π

2− p
R2−p.

Recall that 1/p = 1− 1/q and R = 1
2
|x1 − x2| which gives

|x1 − x2|
∫
D1

|k(z)|
|z − x1||z − x2|

dA ≤ C|x1 − x2|1−2/q,

where C is a constant that depends only on q. Similar reasoning gives the same

bound for the contribution from integrating over D2.

Case 2: Consider what happens when z /∈ D. Since ab ≤ 1
2
(a2 + b2) for all real

numbers a, b, we have:

|x1 − x2|
∫
C\D

|k(z)|
|z − x1||z − x2|

dA ≤ |x1 − x2|
∫
C\D

(
|k(z)|
|z − x1|2

+
|k(z)|
|z − x2|2

)
dA

For the first term, we estimate that∫
C\D

|k(z)|
|z − x1|2

dA ≤
∫
C\D1

|k(z)|
|z − x1|2

dA ≤ ‖k‖q
(∫

C\D1

1

|z − x1|2p
dA

)1/p

.

Again, we can use polar coordinates to estimate the integral inside the parenthesis

yielding ∫
C\D1

1

|z − x1|2p
dA =

∫ 2π

0

∫ ∞
R

1

r2p
r dr =

2π

2p− 2
R2−2p.

Using similar reasoning for the second integral, we obtain

|x1 − x2|
∫
C\D

|k(z)|
|z − x1||z − x2|

dA ≤ 2R(CR2/p−2) = C|x1 − x2|1−2/q,

where C is a constant that depends only on q.

Combining the two cases gives a bound for the integral over the entire plane, and

completes the proof of the lemma.
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If we are to construct a compact nowhere dense set X so that Rp(X) 6= Lp(X),

we must first ensure that R(X) 6= C(X). Consider, therefore, a set X obtained by

removing countably many disjoint open disks Dj from the closed unit disk D in such

a way that:

1. Dj ⊂ int(D) for each j = 1, 2, . . .

2. Dj

⋂
Dk = ∅ when j 6= k

3. X = D \ (
⋃∞
j=1 Dj) has no interior.

4.
∑

j rj <∞ where rj is the radius of Dj.

Such a set X is now known as a Swiss cheese. It was first employed by Alice Roth [31]

in 1938 to produce a compact nowhere dense set with R(X) 6= C(X), and rediscovered

by Mergelyan [28] in a similar context more than a decade later.

Figure 2.1: Alice Roth’s Swiss cheese

By construction, X is compact and has no interior. Setting dµ = dz on ∂D, and

dµ = −dz on ∂Dj for each j, then for any rational function f ,∫
∂X

f dµ = 0

and so dµ is a non-zero annihilating measure for R(X) and R(X) 6= C(X). By

virtue of the Hartogs-Rosenthal theorem, it follows that |X| > 0. Therefore, Rp(X)

is nontrivial for each p <∞ and we can ask if Rp(X) = Lp(X). We know the answer

8



if p < 2, but if p ≥ 2 the problem is more subtle. In order to prove in any instance

that Rp(X) = Lp(X), we must show that if k ∈ Lq(X) and k ⊥ Rp(X) then

k̂(z) =

∫
X

k(ζ)

ζ − z
dAζ = 0

a.e.−dA in C. On the other hand, k̂ ≡ 0 in C\X is clear and if p ≥ 2 (or equivalently

q ≤ 2), we must determine whether k̂ retains sufficient residual continuity to ensure

that k̂ = 0 a.e.−dA on X.

Copyright c© Christopher Mattingly, 2012.
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Chapter 3 Sobolev Spaces and Capacity

3.1 Sobolev Spaces

Throughout this chapter, X will be a compact nowhere dense subset of C. And,

unless otherwise stated, p and q will denote conjugate indices, that is 1/p+ 1/q = 1.

The differential operators ∂ and ∂ are defined as follows:

∂ =
∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)

∂ =
∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
The residual continuity that we seek for k̂ can be found in the inherent properties

of Sobolev spaces. The Sobolev space W q
1 is defined as the space of functions in

Lq whose first-order real partial derivatives are also in Lq. We will present some

background which leads to the importance of Sobolev spaces in this investigation.

The following generalized Cauchy formula apparently first appeared in the work

of Pompeiu in 1912 and 1913 (cf. [30]). It seems to have then lied relatively dor-

mant until it reappeared in the 1950’s in the work of Mergelyan and Vitushkin on

approximation in the plane by analytic functions, and in the work of Dolbeault and

Grothendieck in several variables.

Lemma 3.1. Let Ω ⊂ C be a region bounded by finitely many smooth curves, and let

g be a continuously differentiable function defined in a neighborhood of Ω. Then, for

every z ∈ Ω:

g(z) =
1

2πi

∫
∂Ω

g(ζ)

ζ − z
dζ − 1

π

∫
Ω

∂g(ζ)

ζ − z
dAζ .

Proof. Fix a point z ∈ Ω and choose ε > 0 so that the disk Dε = {ζ : |ζ − z| ≤ ε} is

contained in Ω. Let Ωε = Ω \Dε so that
g(ζ)

ζ − z
dζ is a smooth 1−form on Ωε. By the

10



Gauss-Green theorem

1

2i

∫
∂Ωε

g(ζ)

ζ − z
dζ =

∫
Ωε

∂

(
g(ζ)

ζ − z

)
dAζ =

∫
Ωε

∂g(ζ)

ζ − z
dAζ .

Letting ε→ 0, we conclude by dominated convergence that∫
Ωε

∂g(ζ)

ζ − z
dAζ →

∫
Ω

∂g(ζ)

ζ − z
dAζ ,

since for a suitable constant M∣∣∣∣ ∂g

ζ − z

∣∣∣∣ ≤ M

|ζ − z|
∈ L1(Ω, dA).

Setting ζ = z + εeiθ for 0 ≤ θ ≤ 2π on the portion of ∂Ωε corresponding to the

circle |ζ − z| = ε, we get∫
|ζ−z|=ε

g(z)

ζ − z
dζ = i

∫ 2π

0

g(z + εeiθ) dθ → 2πig(z)

as ε→ 0, from which the lemma follows by collecting terms.

As a consequence of the lemma, we easily obtain a representation formula for

functions of compact support which is particularly useful.

Corollary 3.2. If ϕ is a continuously differentiable function of compact support in

C, then

ϕ(z) = − 1

π

∫
C

∂ϕ(ζ)

ζ − z
dAζ

for all z ∈ C.

To prove the corollary, one only has to apply Lemma 3.1 to ϕ on a large disk.

Suppose that k ∈ L1(X) and extend k to the entire plane by setting k = 0 in

C \X. According to Corollary 3.2, if ϕ is any continously differentiable function of

compact support, then∫
C
k̂(z)∂ϕ(z) dAz =

∫
C

(∫
k(ζ)

ζ − z
dAζ

)
∂ϕ(z) dAz

=

∫ (∫
C

∂ϕ(z)

ζ − z
dAz

)
k(ζ) dAζ

=

∫
−πϕ(ζ)k(ζ) dAζ

11



And so, ∂ k̂ = −πk as a distribution. Assuming further that k ∈ Lq(X) for q > 1,

and that k ⊥ Rp(X), then k̂ has compact support and it follows from the Calderon-

Zygmund theorem on the continuity of singular integral operators that ∂k̂ also exists

as a distribution and is in Lq(X) (cf. [7]; [34, p. 35]; and [37, p. 72, Thm 1.36]). As

a result, the real partial derivatives of k̂ exist as distributions and

‖∇k̂‖q ≤ C‖∂ k̂‖q = Cπ‖k‖q

provided q > 1 and k ⊥ Rp(X). And therefore k̂ belongs to W q
1 .

In Lemma 2.4, it was shown that if k ∈ Lq(X) for q > 2 then k̂ is Hölder contin-

uous. In fact for q > 2, every element f ∈ W q
1 admits a precise Hölder continuous

representative with exponent 1− 2/q (cf. [43, p. 61]). On the other hand, k̂ ∈ Lq for

any q ≥ 1 and is therefore approximately continuous a.e.−dA. That is, for a.e.−dA

point x0 ∈ X there exists an exceptional set E with the property that

|Br(x0) ∩ E|
|Br(x0)|

→ 0

as r → 0 and so that

f(x0) = lim
z→x0, z /∈E

f(z)

(cf. [10]). Here, Br(x0) denotes the disk with center at x0 and radius r. However, we

need a finer measure of the continuity enjoyed by k̂ when q ≤ 2, and that continuity

is best described in terms of capacity. There will be no loss in generality if we assume

that q < 2.

3.2 Sobolev and Potential Theoretic Capacities

For 1 < q < 2, define the Sobolev q-capacity of a compact set X ⊂ C by

Γq(X) = inf

∫
|∇u|q dA,

12



where the infimum is taken over all infinitely differentiable functions u of compact

support with u ≡ 1 on X. For an arbitrary set E, define

Γq(E) = sup Γq(X),

where the supremum is taken over all compact sets X ⊂ E. All Borel sets are

capacitable in the sense that it is also true that

Γq(E) = inf Γq(G),

where the infimum is taken over all open sets G ⊃ E. We say that a property holds

q−quasieverywhere if it holds everywhere except on a set of q−capacity zero.

It is often useful to have a different, but equivalent, definition of capacity. The

potential theoretic q-capacity of a Borel set E is defined by

Cq(E)1/q = sup
ν
ν(E),

where the supremum is taken over all positive measures ν concentrated on E for

which ‖ν̃‖p ≤ 1.

These two capacities are equivalent in that there exists a constant K > 0 so that

K−1Γq(E) ≤ Cq(E) ≤ KΓq(E)

for every E. This (and similar equivalences) will be denoted by writing Cq ≈ Γq.

More information on these capacities, as well of proofs of the following can be found

in the books [1] and [21] (cf. also [4], [5], [18], [20]):

1. if Φ is a contraction, Cq(ΦE) ≤ KCq(E) where K is a constant depending only

on q [1, p. 140]

2. Cq(Br) ≈ Cq(diam Br) ≈ r2−q for any disk Br of radius r and 1 < q < 2

3. Cq is countably subadditive

13



For any λ > 0, we have a weak-type inequality similar to Tchebyschev’s inequality

for L1 functions:

Γq{z ∈ C : |k̂(z)| > λ} ≤ 1

λq

∫
|∇k̂|q dA

and this is key to obtaining the substitute for approximate continuity promised above.

If k̂j = k̂ ∗ χj is a sequence of mollifiers obtained by convolving k̂ with a C∞ approx-

imate identity χj, j = 1, 2, 3, . . . , it is well-known that

‖k̂j − k̂‖q → 0 and ‖∇k̂j −∇k̂‖q → 0.

Passing to a subsequence if necessary, we can arrange that k̂j → k̂ uniformly off open

sets of arbitrarily small q-capacity (cf. [9, p. 354] and [42, p. 124]). Hence, given

any ε > 0 there exists an open set U so that Γq(U) < ε and k̂ is continuous in the

complement of U . Functions with this property are said to be q−quasicontinuous.

Every W q
1 function agrees a.e.−dA with a quasicontinuous representative. If q > 2,

then k̂ is actually continuous as we have seen.

In addition to quasicontinuity, there is a pointwise notion more closely resembling

approximate continuity which is also enjoyed by W q
1 functions, called fine continuity.

A function h that is defined q−q.e. is said to be q−finely continuous at x0 if there

exists a set E that is thin in a potential theoretic sense at x0 and

lim
z→x0, z /∈E

h(z) = h(x0).

The precise sense in which E is understood to be thin is this: If 1 < q < 2 a set E is

q−thin at x0 if and only if∫
0

(
Γq(E ∩Br(z0))

r2−q

)p−1
dr

r
<∞.

If E is not thin at x0, then it is said to be thick there. It can be shown that every

q−quasicontinuous function is q−finely continuous q−q.e. (cf. [1, p. 177]). Because

Cq is countably subadditive ([1, p. 126]) and Γq ≈ Cq, it follows that E is thick at x0

14



whenever

lim sup
r→0

Γq(E ∩Br(x0))

r2−q > 0,

which is more in line with the aforementioned condition describing approximate con-

tinuity.

3.3 Analytic Capacity

Sobolev and potential theoretic q−capacities are set functions designed to measure

the size of the exceptional sets associated with functions in the Sobolev space W q
1 ,

and therefore to measure the size of those associated with the Cauchy integral k̂

for a function k ∈ Lq. For this reason, q−capacity is especially useful in studying

questions of approximation in the Lp(dA) norm. However, in order to be able to

present an accurate picture of the differences between the results in [6] and our work

in Chapter 4 we need to have a corresponding understanding of the exceptional sets

for the Cauchy integral µ̂ of an arbitrary measure µ. And for this, we need to consider

analytic capacity, a concept introduced by Ahlfors in 1947.

The analytic capacity of a compact set X, denoted γ(X) is defined as

γ(X) = sup |f ′(∞)|,

where the supremum is taken over all functions f analytic in Ĉ \X, where ‖f‖∞ =

supĈ\X |f | ≤ 1 and f(∞) = 0. For a general set E, we define γ(E) = sup γ(X)

where this supremum is taken over all compact sets X ⊂ E. There is, however, an

equivalent capacity γ+ which is more directly linked to the Cauchy integral. For a

compact set X, let

γ+(X) = sup
ν
ν(X),

where the supremum is over all positive measures ν supported onX so that ν̂ ∈ L∞(C)

and ‖ν̂‖∞ ≤ 1. Since ν̂ is analytic in Ĉ \X and ν̂ ′(∞) = ν(X), the function ν̂ which
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also vanishes at ∞ is admissible in the definition of γ and so

γ+(X) ≤ γ(X).

Again, if E is an arbitrary set in C, we let

γ+(E) = sup
X
γ+(X),

where X is compact and X ⊂ E. Moreover, Tolsa [35] has shown that there exists

an absolute constant C > 0 such that

γ+(E) ≤ γ(E) ≤ Cγ+(E)

for all planar sets E, and therefore γ ≈ γ+. It follows that γ and γ+ share the

properties:

1. If E1, E2, . . . are Borel sets then

γ

(⋃
n

En

)
≤ C

∑
n

γ(En),

with C being an absolute constant; that is, γ is countably semiadditive.

2. If µ is a complex measure and µ̂(x) is taken in the principal value sense, then

for any λ > 0,

γ{x ∈ C : |µ̂| > λ} ≤ C

λ
|µ|,

where |µ| denotes the total variation of the measure µ.

For an extensive survey of the properties of analytic capacity and its relation to

problems in approximation theory, the reader is referred to [16] and [41] (cf. also

[39]). Two of the more basic properties to be found are these:

(i) γ(Br) = r for every disk Br of radius r

(ii) γ(K) ≤ diam(K) ≤ 4γ(K) if K is compact and connected.
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Perhaps the major difference between analytic capacity and q−capacity, in-so-far

as we are concerned, is that if Φ is a contraction and 1 < q ≤ 2, then

Cq(ΦE) ≤ kCq(E),

where k is a constant depending only on q. But, in the case of analytic capacity

no such constant k exists. In fact, Garnett [15] and Vitushkin [38] have constructed

compact sets X with the property that γ(X) = 0, but γ(ΦX) > 0. This phenomenom

played a key role in [6].

3.4 Instability of Capacity

Let E be an arbitrary Borel measurable subset of the complex plane. It is a well-

known fact and a classic theorem (cf. [10]) that Lebesgue measure is unstable in the

sense that for almost every x ∈ C, either

lim
r→0

|Br(x) ∩ E|
|Br(x)|

= 1 or lim
r→0

|Br(x) ∩ E|
|Br(x)|

= 0.

In the late 1960’s, Vitushkin [39] was able to show that analytic capacity enjoys

a similar instability. He proved that for almost every x ∈ C, either

(i) lim
r→0

γ(Br(x) ∩ E)

r
= 1, or

(ii) lim
r→0

γ(Br(x) ∩ E)

r2
= 0.

Contrasting this with the case of Lebesgue density, one might have expected the

γ−capacitary density to either be 0 or 1. However, since γ(Br) = r, the second

conclusion is a stronger statement.

Around the same time that Vitushkin’s work appeared in [39], Lysenko and

Pisarevskĭı [22] proved that a similar instability holds for harmonic capacity (ie.

2−capacity), although it was in R3. On the other hand, Hedberg [20] discovered that

each of the q−capacities considered here are unstable in the sense that the following

two relations are equivalent for every Borel set E ⊂ C:
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(a) Cq(E ∩ Ω) = Cq(Ω) for every open set Ω

(b) lim sup
r→0

Cq(Br(x) ∩ E)

r2
> 0 for a.e. x ∈ C.

Shortly thereafter, Fernström [12] obtained the correct analogue of Vitushkin’s the-

orem by showing that the limit as r → 0 in (b) actually exists, and by also proving

that for almost every x ∈ C, either

(i) lim
r→0

Cq(Br(x) ∩ E)

r2−q = 1

(ii) lim
r→0

Cq(Br(x) ∩ E)

r2
= 0

Here again, the conclusion in (ii) is stronger than what might be expected. We shall

take full advantage of that fact for the construction in Chapter 4.

3.5 Rational Approximation

Necessary and sufficient conditions for the rational functions to be dense in either

C(X) or in Lp(X) were first obtained by Vitushkin (cf. [39]) in the case of uniform

approximation, and later by Hedberg [20] for Lp approximation. In both cases, the

condition is expressed in terms of an appropriate capacity:

Theorem 3.3 (Vitushkin). For a compact set X, the following are equivalent:

(a) R(X) = C(X)

(b) lim sup
r→0

γ(Br(x) \X)

r
> 0 for almost every x ∈ X.

Theorem 3.4 (Hedberg). For a compact set X and 2 < p < ∞, the following are

equivalent:

(a) Rp(X) = Lp(X)

(b) lim sup
r→0

Cq(Br(x) \X)

r2−q > 0 for almost every x ∈ X.
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In both theorems, the implication (b)⇒ (a) depends largely on the continuity of

the Cauchy transform of an annihilator. In Hedberg’s theorem, for example, suppose

that k ∈ Lq(X) and that k ⊥ Rp(X). By our earlier discussion, k̂ is q−finely

continuous q.e., and by assumption vanishes identically off X. Since (b) ensures that

C \X is q−thick at a.e. point of X, it follows that k̂ = 0 a.e. on X. Thus by Thm.

2.1, k = 0 a.e.−dA and so Rp(X) = Lp(X).

In Vitushkin’s theorem, the implication (b) ⇒ (a) can be obtained from the

following lemma, which gives a kind of lower semicontinuity to the Cauchy transform

µ̂ of a compactly supported measure µ. The proof, which can be found in [5], depends

on Tolsa’s theorem that γ ≈ γ+.

Lemma 3.5 (Brennan). Let µ be a finite, complex, compactly supported measure in

C, and let x0 be any point where µ̃(x0) <∞. Suppose that E is a set with the property

that for each r > 0 there is a relatively large subset Er ⊂ (E ∩Br(x0)) on which µ̃ is

bounded, that is

(1) µ̃ ≤Mr <∞ on Er,

(2) γ(Er) ≥ εγ(E ∩Br(x0)) for some absolute constant ε.

If E is thick at x0 in the sense that

lim sup
r→0

γ(E ∩Br(x0))

r
> 0,

then |µ̂(x0)| ≤ lim sup
z→x0, z∈E

|µ̂(z)|.

Going back to Vitushkin’s theorem, let ν be any measure on X so that ν ⊥ R(X).

Then, ν̂ ≡ 0 in C \X and since (b) gives sufficient thickness, the lemma implies that

for a.e. x0 ∈ X

|ν̂(x0)| ≤ lim sup
z→x0, z∈C\X

|µ̂(z)| = 0.

So ν̂ = 0 a.e.−dA on X, and hence R(X) = C(X).
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In the next chapter, we will present several examples whose constructions depend

on the fact that the capacitary density condition (b) in both the Vitushkin and

Hedberg theorems can be replaced using the instability of capacity by a stronger

condition. In particular, for Hedberg’s theorem, the instability of q−capacity allows

us to conclude that if for a.e. x ∈ C \X

lim sup
r→0

Cq(Br(x) \X)

r2
> 0

then Rp(X) = Lp(X).

Copyright c© Christopher Mattingly, 2012.
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Chapter 4 Construction of Compact Nowhere Dense Sets

From the preceding discussion, there are compact nowhere dense sets X for which

each one of following two possibilities have been realized:

(1) Rp(X) = Lp(X) for 1 ≤ p < 2, but Rp(X) 6= Lp(X) if p ≥ 2

(2) Rp(X) = Lp(X) for 1 ≤ p <∞, but R(X) 6= C(X)

As was shown in Thm. 2.3, for a compact nowhere dense set, density is guaranteed

for 1 ≤ p < 2. To ensure that property (1) is satisfied, it is sufficient to construct a

Swiss cheese X which has a bpe for R2(X) at some point x0 ∈ X (cf. [3, p. 301]). In

the second case, (2), the difficulties are more subtle, but together these two examples

provide motivation for the main theorem of this chapter.

Theorem 4.1. Fix p∗ with 2 < p∗ < ∞. There exists a compact nowhere dense set

X in the plane so that

(i) Rp(X) = Lp(X) for 1 ≤ p < p∗

(ii) Rp(X) 6= Lp(X) if p ≥ p∗.

In their 2011 paper, Brennan and Militzer [6] constructed a set which satisfies

(2). There are some important differences between the construction in [6] and the

construction of the set promised in Theorem 4.1. For example, the argument in [6]

depends in an essential way on the fact that q−capacity Cq and analytic capacity γ

behave in fundamentally different ways under a contraction. In order to provide some

background and to contrast the arguments involved, we shall first recall the line of

reasoning in [6] and later return to the proof of Theorem 4.1.
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The argument in [6] begins with the construction of a planar Cantor set as follows:

Let Q be the closed unit square, split Q into sixteen congruent squares of side length

1/4 and choose the four corner squares, that is those squares which contain a vertex

of Q. Apply the same procedure to each of the four squares obtained in the first

step, and continue in this manner. At the n−th stage, there are 4n closed squares

Qn
j , j = 1, 2, . . . 4n, each having side length 1/4n. For each n, define

En =
4n⋃
j=1

Qn
j

and let

K =
∞⋂
n=1

En.

The set K is known as the corner quarters Cantor set. The orthogonal projection

of K onto the line 2y = x covers an interval of length 3/
√

5, and therefore of length

greater than 1
2
diam(Q). Garnett [15] has shown that γ(K) = 0. A similar, but more

complicated example of this kind was first obtained by Vitushkin [38].

Figure 4.1: The second iteration in the corner quarters Cantor set, and the line 2y = x

Now use the Cantor sets constructed above in a new procedure. Decompose Q into

4 congruent squares S1
j , j = 1, 2, 3, 4. In each square S1

j , construct another Cantor set

K1
j similar to K with a scaling factor of 1/4. Let K1 = ∪jK1

j . Continue the process

by decomposing Q into 4n congruent squares Snj , in each of which a Cantor set Kn
j

similar to K is contructed. Thus we obtain a sequence of Cantor sets K1, K2, . . . with

Kn = ∪jKn
j and
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(i) γ(Kn) = 0

(ii) E = ∪Kn is dense in Q

(iii) Λ(proj(Kn
j )) > 1

2
diam(Snj ).

Where proj(Kn
j ) denotes the orthogonal projection of Kn

j onto the line 2y = x, and

Λ(proj(Kn
j )) denotes the 1−dimensional Hausdorff measure or length of the projec-

tion. It follows from Tolsa’s theorem on the countable semiadditivity of analytic

capacity that γ(E) = 0, and so |E| = 0 also.

Figure 4.2: An iteration of the Cantor sets in K2.

Choose a compact set X0 lying in the interior of Q so that |X0| > 0 and E∩X0 = ∅.

Let r1 be small enough that {z : dist(z,X0) < r1} lies inside Q. Since K1 is a compact

totally disconnected set with γ(K1) = 0, it is possible to cover K1 by finitely many

open rectangles with sides parallel to the coordinate axes, having mutually disjoint

closures, and so that their union Ω1 satisfies γ(Ω1) < 1
2
r1. Next, choose r2 < r1 so

that {z : dist(z,X0) < r2} does not meet Ω1. In a completely analogous fashion,

cover K2 \ Ω1 by open rectangles whose union Ω2 satisfies

(i) γ(Ω2) <
1

22
r2

(ii) γ(Ω1 ∪ Ω2) < C
(r1

2
+
r2

22

)
< Cr1,
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where C is an absolute constant guaranteed by Tolsa’s theorem. Continuing in this

way, we arrive at a sequence of numbers rj ↓ 0 and a sequence of open sets Ω1,Ω2, . . .

so that

(a) E ⊂
⋃
j

Ωj

(b) X0 ⊂ Q \ (
⋃
j

Ωj)

(c) γ(Ωj) <
1

2j
rj

(d) γ(Ω1 ∪ . . . ∪ Ωj) <
C

2j−1
rj for all j = 1, 2, . . .

Setting X = Q \ (∪jΩj) we obtain a compact nowhere dense set with the desired

properties, that is R(X) 6= C(X), but Rp(X) = Lp(X) for all p, 1 ≤ p <∞.

For each point x ∈ X0, we have

γ(Brj(x) \X)

rj
≤ C

2j−1

for all j = 1, 2, . . . with C an absolute constant. Thus, at each point of X0 the lower

capacitary density of C \X is zero. By the instability of capacity,

lim
r→0

γ(Br(x) \X)

r
= 0

at a.e.−dA point of X0, and so by Vitushkin’s theorem (Thm. 3.3), R(X) 6= C(X).

Again, for a.e.−dA point x ∈ X and r sufficiently small,

Λ(proj(Br(x) \X)) ≥ Cr,

where C is an absolute constant. Since q−capacity decreases modulo a multiplicative

constant under a contraction, for a fixed q < 2 this implies that Cq(Br(x) \ X) ≥

Cr2−q. Therefore by Hedberg’s theorem (Thm. 3.4), it follows that Rp(X) = Lp(X)

for all p.
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The preceding discussion highlights the subtleties involved in ensuring that prop-

erty (2) holds. However, as we return to our proof of Theorem 4.1, it should be

pointed out that a different approach is required to cut off the density in Lp at some

specific value greater than 2.

Proof of Theorem 4.1. Begin with a constant p∗ where 2 < p∗ < ∞. Let q∗ be the

dual exponent to p∗, that is q∗ = p∗/(p∗ − 1). We shall construct a compact set X

with the property that either

lim sup
r→0

Cq(Br(x) \X)

r2
> 0 or lim

r→0

Cq(Br(x) \X)

r2
= 0

for a.e. x ∈ X, depending on whether q > q∗ or q ≤ q∗, respectively; or equivalently

whether p < p∗ or p ≥ p∗. The desired result will then be an immediate consequence

of Hedberg’s Theorem 3.4.

Start with the closed unit square Q = [0, 1] × [0, 1]. We shall place a grid of

squares inside of Q consisting of lines parallel to the coordinate axes. Let δ1 be the

side length of a generic square grid in Q. At each vertex of the grid, remove a much

smaller disk ∆α1 of radius δα1
1 , where α1 > 0 has yet to be determined. Form the set

X1 = Q \
⋃

∆α1 ,

where the union is taken over the entire family of deleted disks. Since any disk Bδ1 of

Figure 4.3: A grid of side length δ, with disks of radius δα removed
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radius δ1 meets at least one, and at most four ∆α1 ’s, it follows from the subadditivity

of q−capacity that

Cq(Bδ1 \X1)

δ2
1

≈ (δα1
1 )2−q

δ2
1

= δ
α1(2−q)−2
1 .

If 2 > q1 > q∗ and α1 is chosen so that

2

2− q∗
< α1 <

2

2− q1

,

then we can choose δ1 sufficiently small so that

(1)
Cq1(Bδ1(x) \X1)

δ2
1

> 1/2

(2)
Cq∗(Bδ1(x) \X1)

δ2
1

< ε/2

for an arbitrary, but fixed, ε > 0 and every x ∈ X1.

Now we will iterate the process. Pick a sequence

2 > q1 > q2 > . . . > q∗

so that qj ↓ q∗, or equivalently, pj ↑ p∗. Let r1 > 0 be small enough that {z ∈ X1 :

dist(z, ∂X1) ≤ r1} is the union of mutually disjoint closed annuli surrounding each of

the first generation disks ∆α1 . Choose a second generation grid of side length δ2 and

fix α2 so that

2

2− q∗
< α2 <

2

2− q2

.

We may assume that δ2 is sufficiently small to ensure that by subadditivity the total

q∗−capacity of the union of all disks ∆α2 of radius δα2
2 at points of the new grid does

not exceed

1

δ2
2

(δα2
2 )2−q∗ = δ

α2(2−q∗)−2
2 <

ε

4
δ2

1.

Now remove from X1 those disks ∆α2 which do not meet {z ∈ X1 : dist(z, ∂X1) ≤ r1}

and set

X2 = X1 \
⋃

∆α2 ,
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where again the union is over all deleted disks.

Taking δ2 even smaller if necessary, we can arrange that the inequalities

(3)
Cq2(Bδ2(x) \X2)

δ2
2

> 1/2 and
Cq1(Bδ2(x) \X2)

δ2
2

> 1/2

(4)
Cq∗(Bδ2(x) \X2)

δ2
2

< ε/4

are also satisfied simultaneously for all x ∈ X2. At this stage, inequalities (1) and (2)

are essentially preserved, except that (2) is now replaced by

(2′)
Cq∗(Bδ1(x) \X2)

δ2
1

<
ε

2
+
ε

4
for all x ∈ X2.

Continuing in this manner, we obtain a descending sequence of compact sets

X1 ⊃ X2 ⊃ . . . together with sequences qj ↓ q∗ and δj ↓ 0 so that whenever k ≥ j

(5)
Cqn(Bδj(x) \Xk)

δ2
j

> 1/2, n = 1, 2, . . . , j

(6)
Cq∗(Bδj(x) \Xk)

δ2
j

<
ε

2j
+ . . .+

ε

2k

for all x ∈ Xk. Now, define the set

X =
∞⋂
n=1

Xn.

Since Cq is a capacity in the Choquet sense and (B \Xk) ↑ (B \X) for any disk B,

Cq(B \X) = lim
n→∞

Cq(B \Xn)

for any q, 1 ≤ q < 2 (cf. [29, p. 262] and [1, p. 29]). In particular, it follows that

(7)
Cqn(Bδj(x) \X)

δ2
j

> 1/2 whenever j ≥ n

(8)
Cq∗(Bδj(x) \X)

δ2
j

<
ε

2j
+

ε

2j+1
+ . . . =

ε

2j−1

for all x ∈ X. Letting j →∞ it follows from the instability of capacity that
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(a) lim sup
r→0

Cqn(Br(x) \X)

r2
> 1/2, n = 1, 2, . . .

(b) lim
r→0

Cq∗(Br(x) \X)

r2
= 0

for almost every x ∈ X.

In view of property (a), there is a sequence pn ↑ p∗ for which Rpn(X) = Lpn(X),

n = 1, 2, . . ., and therefore Rp(X) = Lp(X) for all p < p∗. Property (b), on the other

hand, implies that Rp(X) 6= Lp(X) for any p ≥ p∗.

Copyright c© Christopher Mattingly, 2012.
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Chapter 5 Support of Representing Measures

As noted in the introduction, when x0 is a bpe for Rp(X), then the Hahn-Banach

theorem guarantees the existence of a function k ∈ Lq(X) with the property that

f(x0) =

∫
X

fk dA

for all rational functions having no poles on X. In this way, every f ∈ Rp(X)

admits a representative that is precisely defined at all bounded point evaluations. A

measure k dA with the reproducing property indicated above will be referred to as a

representing measure for x0.

Bounded point evaluations play a role in Lp approximation similar to the role

played by peak points in uniform approximation. Recall that a point x0 ∈ X is a

peak point for R(X) if there exists a function f ∈ R(X) so that f(x0) = 1, but

|f(z)| < 1 for all z 6= x0. According to a theorem of Bishop [2], R(X) = C(X) if and

only if almost-every point of X is a peak point for R(X). This is strikingly similar

to Brennan’s criterion (cf. [3]) to the effect that if p > 2, then Rp(X) = Lp(X) if and

only if almost no point of X is a bounded point evaluation for Rp(X). Our goal here

is to describe the support sets of both the annihilating and representing measures for

Rp(X) when p > 2. The results in this chapter were originally motivated by a paper

of Øksendal (cf. [44, Thm. 1.3]), in which he showed that if µ ⊥ R(X) then |µ| = 0

a.e. on the set of peak points for R(X).

Theorem 5.1. If p > 2 and Rp(X) 6= Lp(X) then the supports of both the annihilating

measures and the representing measures for Rp(X) are contained almost everywhere

in the set of bounded point evaluations for Rp(X).

The proof of the theorem will make use of two lemmas:
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Lemma 5.2. If f ∈ Lq(X) and 1 < q < 2, then
f(z)

z − ζ
∈ Lq(X) for a.e.−dA ζ ∈ X.

Proof. Choose R large enough so that f = 0 outside the disk |z| < R. Then for

ζ ∈ X: ∫
X

(∫
X

∣∣∣∣ f(x)

z − ζ

∣∣∣∣q dAζ) dAz =

∫
X

(∫
X

dAz
|z − ζ|q

)
|f(x)|q dAζ

≤
∫
X

(∫
|z|≤R

dAz
|z − ζ|q

)
|f(ζ)|q dAζ

≤
∫
X

(∫
|z−ζ|≤R

dAz
|z|q

)
|f(ζ)|q dAζ

≤
∫
X

(∫
|z|≤2R

|z|−q dAz
)
|f(ζ)|q dAζ

≤ 2π

2− q
(2R)2−q

∫
X

|f(ζ)|q dAζ <∞.

Therefore ∫
X

∣∣∣∣ f(x)

z − ζ

∣∣∣∣q dAζ <∞
for almost every ζ ∈ X.

Lemma 5.3. Each function in W q
1 (Ω) has a representative which is absolutely contin-

uous on almost all lines parallel to the coordinate axes. Moreover, the distributional

gradient of a function in W q
1 coincides almost everywhere with the usual gradient

computed pointwise.

The proof of this lemma can be found in [23, p. 8] (cf. also [43, p. 44]).

Proof of Theorem 5.1. Fix p > 2, and let X be a compact, nowhere dense set in

the plane, and P be the set of non-bounded point evaluations for Rp(X). Take

k ⊥ Rp(X), and let k̂ represent the usual Cauchy transform of k. We showed in

Section 2.1 that k̂ converges absolutely a.e.−dA in X.
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Choose x0 ∈ P and assume that k̂ converges absolutely at x0 and that k̂(x0) 6= 0.

Then for any rational function ϕ, the function
ϕ(z)− ϕ(x0)

z − x0

is also rational, and so

∫
ϕ(z)− ϕ(x0)

z − x0

k(z) dAz = 0.

Then

ϕ(x0)

∫
k(z)

z − x0

dAz =

∫
ϕ(z)

z − x0

k(z) dAz.

And since k̂(x0) 6= 0, we have

ϕ(x0) =
1

k̂(x0)

∫
k(z)

z − x0

ϕ(z) dAz.

But by Lemma 5.2, for a.e. x0, we have
k(z)

z − x0

∈ Lq. This would mean that x0 is a

bpe for Rp(X) as

|ϕ(x0)| ≤ 1

|k̂(x0)|

(∫ ∣∣∣∣ k(z)

z − x0

∣∣∣∣q dAz)1/q (∫
|ϕ(z)|p dAz

)1/p

< C‖ϕ‖p

for some absolute constant C and any rational function ϕ. This is a contradiction,

and so we must have that k̂ = 0 a.e.−dA on P .

Since k̂ ∈ W q
1 , by Lemma 5.3 k̂ is absolutely continuous on almost all lines parallel

to the coordinate axes and its distributional derivatives coincide almost everywhere

with the usual derivatives computed pointwise. Additionally, almost-every point of

Lebesgue area density 1 is a point of positive linear density in the direction of both

coordinate axes. Thus we use the fact that k̂ = 0 almost-everywhere to obtain for

z = x + iy that
∂k̂

∂x
=

∂k̂

∂y
= 0 almost-everywhere. Finally, we can conclude that

∂ k̂ = −πk = 0 almost-everywhere on P . Hence, k = 0 a.e.−dA on P .

This shows that any annihilating measure for Rp(X) has its support almost-

everywhere in the set of bpe’s for Rp(X). However, if f ∈ Lq(dA) and f dA is a

representing measure on Rp(X) for a point x0, then (z − x0)f(z) dA is an annihi-

lating measure for Rp(X), and so the support of f must also be contained almost

everywhere in the set of bounded point evaluations for Rp(X).
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Remark 5.4. Theorem 5.1 cannot be extended to p = 2 due to an example by Fern-

ström (cf. [11]). In this paper, he showed that there exists a compact set X with no

bpe and yet R2(X) 6= L2(X). In light of this example, any annihilating measure on

R2(X) could not have its support on the set of bpe’s.

In [36] Tolsa and Verdera raised a question which is pertinent to the preceding

discussion: If µ is a finite compactly supported Borel measure in the plane, and if µ̂

vanishes µ−a.e. on its support, must µ = 0 as a measure? At that time they were

able to give a positive answer in two important special cases, the most relevant here

being the case µ is absolutely continuous with respect to area; that is, µ = k dA with

k ∈ L1. Their argument will give the corresponding conclusion in the proof of Lemma

5.3, but when k ∈ Lq for q > 1, the reasoning presented here is more transparent.

Subsequently, Mel’nikov, Poltoratski and Vol’berg [26]) showed that there is a

large class of continuous measures for which the conclusion is false; that is, for which

µ̂ = 0 a.e.−dµ, but µ 6= 0. The situation in general is still not fully understood.

Copyright c© Christopher Mattingly, 2012.
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