
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

University of Kentucky Doctoral Dissertations Graduate School 

2010 

LLpp  Bounded Point Evaluations for Polynomials and Uniform Bounded Point Evaluations for Polynomials and Uniform 

Rational Approximation Rational Approximation 

Erin Militzer 
University of Kentucky, ermilitzer@gmail.com 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 

Militzer, Erin, "Lp Bounded Point Evaluations for Polynomials and Uniform Rational Approximation" (2010). 
University of Kentucky Doctoral Dissertations. 106. 
https://uknowledge.uky.edu/gradschool_diss/106 

This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been 
accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_diss
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


ABSTRACT OF DISSERTATION

Erin Militzer

The Graduate School
University of Kentucky

2010



Lp Bounded Point Evaluations for Polynomials and Uniform Rational
Approximation

ABSTRACT OF DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Arts and Sciences

at the University of Kentucky

By
Erin Militzer

Lexington, Kentucky

Director: Dr. James E. Brennan, Professor of Mathematics
Lexington, Kentucky 2010

Copyright c© Erin Militzer 2010



ABSTRACT OF DISSERTATION

Lp Bounded Point Evaluations for Polynomials and Uniform Rational
Approximation

A connection is established between uniform rational approximation, and approxi-
mation in the mean by polynomials on compact nowhere dense subsets of the com-
plex plane C. Peak points for R(X) and bounded point evaluations for Hp(X, dA),
1 ≤ p < ∞, play a fundamental role.

KEYWORDS: polynomial and rational approximation, analytic capacity, peak points,
point evaluations.

Author’s signature: Erin Militzer

Date: May 4, 2010



Lp Bounded Point Evaluations for Polynomials and Uniform Rational
Approximation

By
Erin Militzer

Director of Dissertation: James E. Brennan

Director of Graduate Studies: Qiang Ye

Date: May 4, 2010



RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the
University of Kentucky Library are as a rule open for inspection, but are to be used
only with due regard to the rights of the authors. Bibliographical references may
be noted, but quotations or summaries of parts may be published only with the
permission of the author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the dissertation in whole or in part also re-
quires the consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to secure
the signature of each user.

Name Date



DISSERTATION

Erin Militzer

The Graduate School
University of Kentucky

2010



Lp Bounded Point Evaluations for Polynomials and Uniform Rational
Approximation

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Arts and Sciences

at the University of Kentucky

By
Erin Militzer

Lexington, Kentucky

Director: Dr. James E. Brennan, Professor of Mathematics
Lexington, Kentucky 2010

Copyright c© Erin Militzer 2010



ACKNOWLEDGMENTS

First, I want to acknowledge all the people in my life that have helped me to

this point: my family, of course, who have been nothing but supportive and loving

throughout my academic career; my mom, who home schooled me early in life and

gave me the gifts of mathematics, reading, and writing; my dad, who always listened

to me no matter whether I was complaining or celebrating and who was always there

whenever I needed him, my brothers and sister, who always make me laugh and who

I could not imagine my life without-I hope we are always close and continue to share

our lives.

All of my past teachers, to those who believed in me, thanks for that help! To those

who didn’t, thanks for the motivation! I couldn’t have reached to this point without

all of the teachers in my life. In particular, Mr.Granlund, one of my believers, thanks

for encouraging me to make anything happen, rest in peace. To Dr. Ken Smith,

thanks for helping me to find out that I can do math and make money! All those

summer research scholarships gave me the tools I needed for graduate school. To my

high school math teachers, although you were not my inspiration, your dedication to

your students was apparent, and I will always remember what I learned from you.

To my friends, my professors, and my EDGE family who I found in graduate

school: Michelle Craddock, Maria Osorio, Emily, Eric, Tricia, Matt, Jessie, Joey,

Kelly and Josh, the friendships we have are those of a lifetime. Thank you yesterday,

today, and in the future. Maria Clark, thanks for your help with revisions on all

my cover letters, which I am sure helped me get my dream job. Nick Kirby, thanks

for always being the person I could turn to with any question and for asking those

questions that led to a successful research finding. To my EDGE family, whom I

love dearly, all of the professors, participants, and mentors, I would not have been

iii



convinced I could stay in graduate school without you. To my University of Kentucky

professors, for doing your job well and never failing me. Dr. Marion Anton, thank

you for your patience and kindness. I would have not continued in graduate school if

it were not for your influence.

To my advisor, Dr. James Brennan, who put up with me the most! Dr. Brennan,

this thesis exists because you believed in me and never doubted my ability to do

mathematics. Our meetings were always insightful and fun. You have a great ability

to explain mathematics without giving too much away and always kept me on my

toes.

To my future husband, Matthew Benander: I never thought I would meet another

math person, but I did, and I am happy to know we will be together. Thanks for

letting me cry on your shoulder, for the beautiful sunflowers you sent me the day I

passed my first prelim, for always making me laugh, for dancing with me, and for

just being you.

iv



Dedicated to those who wanted to go to college but couldn’t pay, to those who

wanted to move on to graduate school, but didn’t think they could do it, and to

anyone who is currently struggling with school. At one point I thought all of these

were true for me, but in the end you have to remember to believe not only in

yourself but also in those who love you. I truly feel that this dissertation proves

that no matter the odds, anything is possible.



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Approximation by Analytic Functions: Background . . . . . . . . . . 3

2.2 The Cauchy Transform and Annihilating Measures . . . . . . . . . . 5

2.3 The Swiss Cheese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 3 Capacities, Peak Points and Barriers . . . . . . . . . . . . . . . . 11

3.1 Analytic Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Lq Capacities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Peak Points and Bishop’s Theorem . . . . . . . . . . . . . . . . . . . 17

3.4 Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 4 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Bounded Point Evaluations for Hp(dA) . . . . . . . . . . . . . . . . . 23

4.2 A Counterexample for Rp(dA) . . . . . . . . . . . . . . . . . . . . . . 25

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

v



Chapter 1 Introduction

Let µ be a finite positive compactly supported regular Borel measure in the complex

plane C having no point masses. For each p, 1 ≤ p < ∞, let Hp(µ) be the closed

subspace of Lp(µ) that is spanned by the complex analytic polynomials. Over the

years considerable attention has been directed to understanding the conditions under

which Hp(µ) = Lp(µ), due in part to its connection with the invariant subspace

problem for subnormal operators on a Hilbert space when p = 2. On the other

hand, equality evidently fails whenever there exists a point z0 ∈ C such that the map

P → P (z0) can be extended from the polynomials to a bounded linear functional on

Hp(µ); that is, if

|P (z0)| ≤ C ||P ||Lp(µ) (1.1)

for every polynomial P and some absolute constant C > 0. Such a point z0 is said

to be a bounded point evaluation or bpe for Hp(µ), and the question arises: Is it true

that either

(1) Hp(µ) has a bpe or,

(2) Hp(µ) = Lp(µ) ?

The initial step in dealing with the proposed alternative was taken by Wermer

[40] in 1955. At that time he was able to show that if µ is carried on a compact set X

having planar measure zero (i.e. if |X| = 0) then the alternative is indeed valid. His

argument is roughly this; Let R(X) be the class of functions that can be uniformly

approximated on X by rational functions whose poles lie outside of X, and let C(X)

be the space of all continuous functions on X. If Hp(µ) has no bpe’s then it must

contain every rational function analytic on X, and so also R(X) (cf. [7], p. 218). On

the other hand, since |X| = 0 it follows from a theorem of Hartogs and Rosenthal

[17] that R(X) = C(X), and the latter is dense in Lp(µ). Therefore, if (1) fails then

(2) holds .

Although the alternative embodied in (1) and (2) above is now known to be

valid for all measures µ (cf. Thomson [33]), we are nevertheless led to consider the

relationship between polynomial and rational approximation. Following Wermer’s

early success the natural question was this: Does the suggested alternative persist if

dµ << dA? In particular does it remain in force if dµ = dA restricted to a compact

set X having positive area, but no interior? In an attempt to answer these and similar
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questions Brennan was led in 1973 to ask: Does there exist a compact set X such

that Hp(X, dA) = Lp(X, dA) for all p, 1 ≤ p < ∞, but R(X) 6= C(X) (cf. [4], p.

174). Several years later in a major survey article Mel’nikov and Sinanjan [26] made

further reference to the problem just stated, and it has remained open throughout the

intervening years. Our goal here in Section 4.1 is to settle the matter in the negative.

Almost a decade prior to the publication of [26] Sinanjan [32] had considered, and

answered, the corresponding question for Rp(X, dA), the closed subspace of Lp(X, dA)

that is spanned by the rational functions having no poles on X. He showed that

there exists a compact set X such that R(X) 6= C(X), but nevertheless Rp(X, dA) =

Lp(X, dA) for all p, 1 ≤ p < ∞. In Section 4.2 we present another example of this

kind, motivated by an as yet unsolved problem concerning the possible underlying

structure of a compact set X where R(X) 6= C(X).

In the sequel P (X) will stand for the closed subspace of C(X) spanned by the

polynomials.

Copyright c© Erin Militzer, 2010.
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Chapter 2 Preliminaries

2.1 Approximation by Analytic Functions: Background

Questions concerning uniform approximation by analytic functions have a long

history, dating back at least to 1885 and the papers of Weierstrass [39] and Runge

[30]. Of these two works that of Weierstrass is perhaps the more widely known. Here,

for the first time, it was shown that every continuous function on a closed bounded

interval X on the real line can be approximated arbitrarily closely on X by a sequence

of polynomials. Put more succinctly, in this context P (X) = C(X). The earliest

generalization of Weierstrass’ theorem was obtained by Walsh in 1928 (cf. [38], p.

39). He showed that the same conclusion is valid for polynomial approximation on

an arbitrary closed bounded simple Jordan arc lying in C. Evident in these early

results are two necessary conditions in order that P (X) = C(X) for any compact set

X. They are:

(1) X has no interior,

(2) The complement of X is connected.

If (1) is violated, then clearly the uniform limit on X of any sequence of polyno-

mials must be analytic in the interior of X. Hence P (X) 6= C(X). If on the other

hand, (2) is violated let Ω be any bounded component of C\X and fix a point a ∈ Ω.

Thus, (z − a)−1 is continuous on X, and if a sequence of polynomials

pn →
1

z − a
uniformly on X,

then (z − a)pn → 1 uniformly on X, and by the maximum principle uniformly on

Ω. But, this contradicts the fact that (z − a)pn = 0 at a for all n = 1, 2, 3, ...

Therefore, we must again conclude that P (X) 6= C(X). Eventually, Lavrentiev

[23](cf. also [27] p. 297) showed that conditions (1) and (2) are also sufficient to

ensure that P (X) = C(X), thereby establishing a purely topological criterion for

uniform polynomial approximation on compact subsets of the plane. It is now known

that Lavrentiev’s theorem can be obtained by taking advantage of a certain residual

continuity enjoyed by the Cauchy transform of a finite compactly supported measure

in C; a property that will play an essential role in this investigation (cf. Lemma 3.2).

In the second of the two articles referenced above Runge [30] initiated the study

of rational approximation on compact subsets of C. In particular, he proved that if X
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is compact, then any function analytic in a neighborhood of X can be approximated

uniformly on X by a sequence of rational functions with poles off X. That, however,

left open the question: For which compact sets X is R(X) = C(X)? In time it

would become clear that there could be no simple geometric criterion as in the case

of Lavrentiev’s theorem. An early indication of the complexity of the situation was

manifested in the theorem of Hartogs and Rosenthal [17] to the effect that R(X) =

C(X) whenever |X| = 0. Only much later in 1958 did Vitushkin (cf. [37]) establish a

necessary and sufficient condition in terms of analytic capacity in order that R(X) =

C(X). Nevertheless, there remains considerable debate as to whether such criterion

can be considered truly geometric.

Beginning with the work of Carleman in the early 1920’s attention shifted to

questions concerning approximation in the Lp(dA)-norm, particularly on sets with

interior points (cf. [28] or [6]). But, it would be more than thirty years before the

problem of determining necessary and sufficient conditions under which the polyno-

mials are dense in an arbitrary Lp(µ) would receive added stimulus from a seemingly

unrelated problem in operator theory; namely, from the invariant subspace problem

for subnormal operators on a Hilbert Space. A bounded linear operator T on an

infinite dimensional Hilbert space H is subnormal if it has a normal extension to a

larger Hilbert space; or equivalently, if T is the restriction of a normal operator to a

closed invariant subspace. In general, the invariant subspace problem is to determine

whether a bounded operator T : H −→ H has a nontrivial closed invariant subspace.

It can therefore be assumed from the outset that T has a cyclic vector x; that is, a

vector x for which the linear span x, Tx, T 2x, ... is dense in H. Otherwise, invariant

subspaces abound and there is nothing to prove. If, in addition, T is subnormal the

spectral theorem guarantees that there is a positive measure µ carried on the spec-

trum of T such that the given operator T is unitarily equivalent to multiplication by

the complex identity function z on H2(dµ). Thus, the study of subnormal operators

leads directly to questions concerning approximation by polynomials in L2(dµ) (cf

Bram [3], pp. 83-86).

In 1991 Thomson [33] finally established, as a general principle, the alternative

described in the first paragraph of the introduction:

Theorem 2.1.1 (Thomson). For any positive measure µ of compact support, having

no point masses, Hp(dµ) = Lp(dµ) for 1 ≤ p < ∞ if and only Hp(dµ) has no bpe.

Thomson’s result, however, leaves unanswered certain questions that had arisen

concerning the relation between uniform rational approximation on a compact set X

4



and the density of the polynomials in Lp(X, dA). These questions are addressed here

in Section 4.

2.2 The Cauchy Transform and Annihilating Measures

Let ν be a complex regular Borel measure with compact support X and define

ν̂(z) =

∫
X

dν(ζ)

ζ − z

to be the Cauchy transform of ν. Notice that ν̂(z) is defined whenever the Newtonian

Potential, ν̃(z) =
∫

X
d|ν|(ζ)
|ζ−z| , converges. Denote by |ν| the total variation of ν. To gain

a clear understanding of how the Cauchy transform will be utilized throughout our

discussion, we first indicate a few important properties. We begin by verifying, that

the Cauchy transform converges almost everywhere in the plane with respect to area.

It is clear that if z off the set X, that is z ∈ C \ X, then ν̃(z) < ∞. Choose

a square Q in the plane such that X ⊂ Q and R sufficiently large so that for any

ζ ∈ X, the square Q is contained in the disk Br(ζ) = {z : |ζ − z| < R}. This implies

the following: ∫
Q

dAz

|ζ − z|
≤
∫ 2π

0

∫ R

0

1

r
rdrdθ = 2πR < ∞

and therefore by Fubini’s theorem∫
Q

∫
X

d|ν|(ζ)

|ζ − z|
dAz < ∞ =

∫
X

∫
Q

dAz

|ζ − z|
d|ν|(ζ) < 2πR|ν|(X)

which implies that ν̃(z) < ∞ a.e.-dA.

The Cauchy transform is also continuous and analytic in C\X. To show continuity,

choose z0 in C\X and z in a neighborhood U of z0 such that U ∩ X = ∅, then we

have that ∣∣∣∣∫
X

dν(ζ)

ζ − z0

−
∫

X

dν(ζ)

ζ − z

∣∣∣∣ ≤ |z0 − z|
∫

X

d|ν|(ζ)

|ζ − z0||ζ − z|
≤ C|z0 − z|.

Where the constant C depends on the distance between z0 and X.

Choose Γ be a closed curve that lies in C\X which does not surround X and z0

as before. Since 1
ζ−z0

is analytic,
∫

Γ
1

ζ−z0
= 0 and therefore∫

Γ

(∫
X

dν(ζ)

ζ − z0

)
dz =

∫
X

(∫
Γ

dz

ζ − z0

)
dν(ζ) = 0.

Since ν̂(z) is continuous and
∫

Γ
ν̂(z) = 0 over any closed curve Γ off X, we have

by Morera’s theorem that ν̂(z) is analytic.

5



One of the most important properties of the Cauchy transform properties is stated

in the following theorem:

Theorem 2.2.1. Let ν be defined as before. If ν̂ = 0 a.e.-dA then ν = 0.

Proof. We present a proof due to Beurling (cf. [ ], p. and p). First we note that

|ν| = 0 is zero on a.e. line parallel to the coordinate axes. If not then |ν| > C > 0

on some infinite set of disjoint lines which would imply that |ν|(X) = ∞. This

contradicts the assumption that ν is finite. Now let E be any rectangle in the plane

such that |ν| = 0 on ∂E. Assuming that following integral exists and change in

integration is permitted we have:

−1

2πi

∫
∂E

∫
X

dν(ζ)

ζ − z
dz =

1

2πi

∫
X

∫
∂E

dz

ζ − z
dν(ζ) = 0

On the other hand, by Cauchy’s theorem

1

2πi

∫
∂E

dz

ζ − z
= χE(ζ) =

{
1 z ∈ int(E)

0 z /∈ int(E)

and therefore

1

2πi

∫
X

∫
∂E

dz

ζ − z
dµ(ζ) =

∫
X

χE(ζ)dµ(ζ) = µ(int(E) ∩X) = 0.

We can carry this out for enough rectangles to conclude that µ = 0.

Suppose A is any compact subset of X and let U be any neighborhood of A. Cover

A with rectangles {Ej} that have the following properties:

(1.) ν places no mass on ∂Ej.

(2.) ∪jEj ⊂ U

It is clear that |ν(∪Ej)| ≤
∑

j |ν(Ej)| = 0. Since µ(Ej) = 0 for all j and ν(A) =

lim
U↓A

ν(U) for all A ⊂ U , we have ν(A) = 0.

Corollary 2.2.2 (Hartogs-Rosenthal). If |X| = 0 then R(X) = C(X).

To prove this corollary we will argue by duality. We are reminded of some use-

ful results from functional analysis. Take V be any normed vector space and V0 a

subspace of V . Designate V ∗ to be the dual space of V . The Hahn-Banach theorem

states that if L0 is a bounded linear functional on V0, that is ||L0|| < ∞, then there

exists a linear functional L in V ∗ such that

6



(i) L ≡ L0 on V0

(ii) ||L||V ∗ = ||L0||V ∗0

where ||L|| = sup{C : |L(f)| ≤ C||f ||}. A consequence is the following:

Theorem 2.2.3 (Closure Theorem). Let V be a normed vector space and V0 a sub-

space and x ∈ V . Then x ∈ V0 if and only if L ∈ V ∗ and L ≡ 0 on V0 implies that

L(x) = 0.

In our case we are looking at the vector space C(X). The Riesz representation

theorem states the following: for every continuous linear functional L on C(X), there

exists a uniquely determined measure µ on X such that

L(g) =

∫
g dµ

for every g ∈ C(X) and ||µ|| = ||L||. This holds true for linear subspaces of C(X)

such as R(X).

Lastly, we define the following: We say µ is an annihilating measure for the rational

functions analytic on X if for each rational function,
∫

X
f dµ = 0. We will use the

notation µ ⊥ R(X). Collecting the information up to the point, we are now able to

demonstrate a technique to show R(X) = C(X).

Proof of Corollary. Let µ ⊥ R(X) with |X| = 0, then µ̂(z) =
∫

X
dµ(ζ)
ζ−z

= 0 a.e.-dA

and hence µ = 0. We have a measure which annihilates not only the rationals, but

everything, therefore R(X) = C(X).

Here we present a more detailed proof of Wermer’s result which demonstrates the

use of the Cauchy transform.

Suppose g ∈ L2(X, dµ) which is orthogonal to the polynomials in the sense that∫
Pgdµ = for every polynomial P , and form the cauchy transform

ĝµ(z) =

∫
g(ζ)

ζ − z
dµ(ζ)

then by Cauchy we find that

P (z) =
1

ĝµ(z)

∫
P (ζ)g(ζ)

ζ − z
dµ(ζ) (2.3.1)

7



at every point z ∈ C where ĝµ(z) =
∫ g(ζ)

ζ−z
dµ(ζ) is defined and ĝµ(z) 6= 0. In

particular, if z ∈ C \ X and ĝµ(z) 6= 0 then (2.3.1) holds and since the kernel

(ζ − z)−1 is bounded on X,

|P (z)| ≤ C

∫
|P ||g|dµ

for all polynomials P and a suitable constant C. Hence the inequality (1.1) is also

satisfied and H2(dµ) has a bpe at z. If therefore H2(dµ) has no bpe’s it follows that

ĝµ(z) = 0 in C \ X; that is, ĝµ(z) = 0 a.e.-dA in C, since X has area zero. Thus,

gµ = 0 as a measure and hence H2(dµ) = L2(dµ).

2.3 The Swiss Cheese

In order to develop a greater appreciation for what might be valid in the most general

situation let us consider initially a special class of compact nowhere dense sets, a

typical member of which is often referred to as the Swiss cheese. Such sets were

first studied in connection with rational approximation by Alice Roth [29] in 1938,

rediscovered in a similar context by Mergeljan [27] in 1952, and are constructed as

follows: Remove from the closed unit disk D countably many disjoint open disks Dj,

j = 1, 2, 3..., having radii rj in such a way that

1. Dj ⊂ int(D) for each j = 1, 2, 3...

2. Dj ∩Dk = ∅ whenever j 6= k

3. D\∪∞j=1Dj has no interior

4.
∑

j rj < ∞.

The resulting set E = D\∪∞j=1Dj is compact and nowhere dense. Letting dµ be dz

on ∂D and −dz on the remaining circles Γj = ∂Dj, j = 1, 2, 3... we obtain a nonzero

measure of finite total variation on E such that∫
E

fdµ =

∫
∂D

fdz −
∑

j

∫
Γj

fdz = 0

for all f ∈ R(E). Thus, R(E) 6= C(E) and so by the Hartogs-Rosenthal theorem

E has positive area. The space Hp(E, dA) is therefore nonempty, and we can ask

whether Hp(E, dA) = Lp(E, dA).

Although the Hartogs-Rosenthal theorem allows us to conclude indirectly that

|E| > 0, it fails to provide any additional information on the specific geometric

8



structure of the Swiss cheese. For this reason it is important here to recall an argument

due to W.K. Allard (cf.[9],p.163) which is considerably more informative on that

point. For each x ∈ [−1, 1] let Ex = {z ∈ E : Rez = x}, and for each n = 1, 2, 3, ...

let In(x) the number of points in Ex ∩ Γn. Evidently, In(x) = 0, 1 or 2. By the

monotone convergence theorem we have∫ 1

−1

∞∑
n=1

In(x)dx =
∞∑

n=1

∫ 1

−1

In(x)dx = 4
∞∑

n=1

rn < ∞.

Hence,
∑

In(x) < ∞ for almost every x ∈ [−1, 1]. For any such x all but finitely

many In(x) must be zero, and the corresponding set Ex consists of a finite number

of non-degenerate intervals. Consequently |E| > 0 by Fubini’s Theorem.

An equally important implication for the question raised in the introduction is

the following:

Lemma 2.3.1. Let E be a Swiss cheese and for each z ∈ E let Fz denote the union

of all circles centered at z and lying entirely in E. Then, there exists at least one

point z ∈ E where |Fz| > 0.

Proof. Let Ex be as above, denote by l(Ex) its total length or linear measure, and

set Γ = ∪∞j=1Γj. Since there are uncountably many x ∈ [−1, 1] where Ex consists of

a finite number of non-degenerate intervals we can choose a sequence of such points

xn in a manner that l(Exn) ≥ C > 0 for some constant C and all n = 1, 2, 3, ...

Moreover, we can assume with no loss of generality that xn < xn+1. Now select a

finite collection of disjoint open disks ∆j1 = ∆(zj1 , rj1) with centers zj1 ∈ Ex1 so that

rj1 <
1

2
(x2 − x1) and

∑
rj1 >

C

2
. Next, choose another finite collection of disjoint

open disks ∆j2 = ∆(zj2 , rj2) with centers zj2 ∈ Ex2 so that rj2 <
1

2
min(x3−x2, x2−x1)

and
∑

rj2 >
C

2
. The disks ∆j2 are clearly disjoint from any of the ∆j1 . Continuing

in this way we obtain a collection of disjoint open disks which we re-designate as ∆j

with centers zj ∈ E and radii rj such that
∑

rj = ∞.

If we assume that |Fzj
| = 0 for all j = 1, 2, 3, ..., then a.e. circle in each ∆j with

center at zj will meet Γ and we will be forced to conclude that

l(Γ) ≥
∞∑

j=1

l(Γ ∩∆j) ≥
∞∑

j=1

rj = ∞,

contradicting our construction ensuring that l(Γ) < ∞. Thus |Fzj
| > 0 for, not only

one, but many zj.
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Theorem 2.3.2. If E is an arbitrary Swiss cheese there exists a point x0 ∈ E which

is a bpe for Hp(E, dA), for 1 ≤ p < ∞. In particular, Hp(E, dA) 6= Lp(E, dA) for

any p ≥ 1.

Proof. Choose a point x0 ∈ E for which |Fx0| > 0. Assume for convenience that

x0 = 0 and let X = Fx0 ∩ [0, 1]. For any polynomial P ,

∫
Fx0

PdA =

∫ 2π

0

∫
X

P (reiθ)rdrdθ =

∫
X

(∫ 2π

0

P (reiθ)dθ

)
rdr = 2πCP (0),

where C =
∫

X
rdr. It follows that

|P (0)| ≤ 1

2πC
||P ||L1(E,dA),

and so by Hölder’s inequality, x0 = 0 is a bpe for Hp(E, dA) whenever 1 ≤ p < ∞.

In addition to what has been established it can be shown that whenever |Fx0 | > 0

every function f ∈ Hp(E, dA) actually admits an analytic continuation to a fixed

neighborhood of x0. To that end, choose ε > 0 and small enough to ensure that the

portion of Fx0 lying outside of Dε = {z : |z − x0| < ε} has positive dA-measure. By

the argument in the proof of the preceding theorem, there exists a function h ∈ L∞

with support in E \Dε such that

P (x0) =

∫
P h dA

for all polynomials P . Thus kdA = (z − x0)hdA is an annihilating measure and so

for any polynomial P and ζ ∈ C, it follows as in the proof of Corollary 2.3 that

P (ζ) =
1

k̂(ζ)

∫
P (z)

z − ζ
k dA

at any point where k̂(ζ) =
∫ k(z)

z−ζ
dA is defined and not equal to zero. Since k̂ is

analytic in Dε and k̂(x0) = 1 it follows that |k̂(ζ)| ≥ C > 0 in a neighborhood U

of x0. Since the kernel (z − ζ)−1 is bounded on the support of the measure dA we

conclude that

P (ζ) ≤ K||P ||L1(E,dA)

for some suitable constant K, and therefore ζ is a bpe for H1(E, dA).

Copyright c© Erin Militzer, 2010.
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Chapter 3 Capacities, Peak Points and Barriers

3.1 Analytic Capacity

The notion of analytic capacity was introduced by Ahlfors in 1947 in connection with

the problem of characterizing sets of removable singularities for bounded analytic

functions. In subsequent years others, and Vitushkin in particular, further devel-

oped the concept and used it to settle a number of questions concerning uniform

approximation by rational functions on compact subsets of the plane.

As initially conceived, the analytic capacity of a compact set X, denoted γ(X),

is defined as follows:

γ(X) = sup |f ′(∞)|,

where the supremum is extended over all functions f analytic in Ĉ\X and normalized

so that

(a) ||f ||∞ = sup
Ĉ\X

|f | ≤ 1

(b) f(∞) = 0,

where f ′(∞) = limz→∞ z(f(z) − f(∞)) and Ĉ is the extended complex plane or

Riemann sphere. In this case f is called an admissible function for γ(X). A normal

families argument involving Montel’s Theorem establishes the existence of an extremal

function g, such that g′(∞) = γ(X); this function is in fact unique and is called the

Ahlfors function for X (cf. [14], p. 197).

For an arbitrary planar set X we let γ(E) = sup γ(X), the supremum now being

taken over all compact sets X ⊆ E. For a more thorough discussion of analytic

capacity and its properties see [14] and [42] where it is shown that

(1) If E and F are compact sets in C with E ⊂ F then γ(E) ≤ γ(F ).

(2) γ(Br) = r for every disk Br of radius r;

(3) γ(X) ≈ diam(X) whenever X is compact and connected; in particular, γ(X) ≤
diam(X) ≤ 4γ(X).

From the outset it was not known and is still not known whether γ is subadditive,

and so possibly not a capacity in the usual sense. We now know, however, that γ is

at least semiadditive in that

11



γ(E ∪ F ) ≤ C (γ(E) + γ(F ))

for all compact (and even Borel) sets E, F ⊆ C and some absolute constant C. The

key point is that γ is equivalent to a second auxiliary capacity γ+ defined as follows:

For a compact set X and positive measure ν supported on X we form the Cauchy

integral

ν̂(z) =

∫
dν(ζ)

ζ − z
(3.1)

and we define

γ+(X) = sup
ν

ν(X)

to be the supremum over all positive measures ν such that ν̂ ∈ L∞(C) and ||ν̂||∞ ≤ 1.

Since ν̂ is analytic in Ĉ\X and |ν̂ ′(∞)| = ν(X), the function ν̂ is admissible for γ

and so

γ+(X) ≤ γ(X).

As before, if E is an arbitrary planar set we let γ+(E) = sup γ+(X) where X is

compact and X ⊂ E.

The essential equivalence of γ and γ+ was established by Tolsa [34]. Here is what

he proved: There exists an absolute constant C > 0 so that

(4) γ+(E) ≤ γ(E) ≤ Cγ+(E) for all sets E ⊆ C

(5) If En, n = 1, 2, 3, ..., are Borel sets, then γ(∪nEn) ≤ C
∑

n γ(En).

Since Tolsa had previously shown that γ+ is itself countably semiadditive, (4) implies

(5).

Because γ+ is defined directly in terms of the Cauchy integral, it can be used

to establish a certain lower semi-continuity enjoyed by such integrals. Proofs of the

following two lemmas can be found in [7]. For the sake of completeness, however,

we have included a sketch of the proof of the second lemma since it will be used

repeatedly. The argument here can be viewed as a modification of ideas in [7], Lemma

2 and [10], Lemma 1.

Lemma 3.1.1. Let ν be a finite positive Borel measure of compact support in the

complex plane C with the property that |ν̂(z)| ≤ C a.e.-dA for some constant C.

Then |ν̂(x0)| ≤ C at every point x0 where ν̃(x0) =
∫ dν(ζ)
|ζ−x0| < ∞.
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Lemma 3.1.2. Let µ be a finite complex, compactly supported, Borel measure in C,

and let x0 be any point where µ̃(x0) < ∞. For each r > 0 let Br = Br(x0) be the disk

with center at x0 and radius r, and let E be a set with the property that for every

r > 0 there is a relatively large subset Er ⊆ (E ∩Br) on which µ̃ is bounded; that is,

(1) µ̃ ≤ Mr < ∞ on Er,

(2) γ(Er) ≥ εγ(E ∩Br) for some absolute constant ε.

If, moreover, E is thick at x0 in the sense that

lim sup
r→0

γ(E ∩Br)

r
> 0 (3.2)

then

|µ̂(x0)| ≤ lim sup
z→x0, z∈ E

|µ̂(z)|.

An immediate consequence is Lavrentiev’s theorem on uniform polynomial approxi-

mation.

Theorem 3.1.3 (Lavrentiev). If X is a compact subset of C, then P (X) = C(X) if

and only if X has no interior and the complement C\X is connected.

Proof. Suppose that C\X is connected. By the argument in the proof of the Hartogs-

Rosenthal theorem we may also assume that |X| > 0.

Let ν be any measure on X such that ν ⊥ P (X). Since the Cauchy transform ν̂

is analytic in the connected region C\X and ν̂ ≡ 0 in a neighborhood of ∞, it follows

that ν̂ ≡ 0 in C\X. Fix a point x0 ∈ X where ν̃(x0) < ∞ and let Br = Br(x0) be

the disk of radius r with center at x0. Because C\X is connected we can find an

arc Er ⊂ (Br\X) with diam Er ≥ r
2
, and so that for each r > 0, ν̂ is bounded by a

constant Mr on Er. Thus, γ(Er) ≥ r
8

for all r > 0 and

lim sup
r→0

γ(Br\X)

r
> 0.

According to the lemma, then

|ν̂(x0)| ≤ lim sup
z→x0, z∈ Br\X

|ν̂(z)| = 0.

Since ν̃(x) < ∞ a.e-dA on X, it follows that ν̂ = 0 a.e-dA, and therefore P (X) =

C(X).
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Proof of Lemma 3.2. For convenience assume that x0 = 0. Using the fact that γ ≈ γ+

yields:

lim sup
r→0

γ+(E ∩Br)

r
> 0.

.

This implies there is a constant C > 0 and a sequence of r → 0 such that γ+(Er) > C r

for each corresponding r. Consistent with the definition of γ+, we can select a positive

measure σr on Er with

(1) ||σr|| = σr(Er) ≥ C r,

(2) |σ̂r| ≤ 1 a.e.-dA.

Setting νr = σr

||σr|| we obtain a probability measure on Er ⊂ (E ∩ Br), and |ν̃r| ≤ C
r

a.e.-dA for some absolute constant C. It is easy to check that

(i)

∫
dνr(ζ)

z − ζ
→ 1

z
for every z 6= 0 as r → 0,

(ii)

∫
dνr(ζ)

|z − ζ|
≤ 2

|z|
for |z| ≥ 2r.

Because µ̃ ≤ Mr on Er, it follows from Fubini’s theorem that∫ (∫
dνr(ζ)

|z − ζ|

)
d|µ|(z) =

∫ (∫
d|µ|(z)

|z − ζ|

)
dνr(ζ) ≤ Mr,

and hence ν̃r < ∞ a.e. - d|µ|. Therefore, by Lemma 3.1, |ν̂r(z)| ≤ C

r
a.e. - d|µ|.

By an interchange in the order of integration,∫
µ̂(ζ) dνr(ζ) =

∫
|z|<2r

+

∫
|z|≥2r

{∫
dνr(ζ)

z − ζ

}
dµ(z).

As a consequence of (i) and (ii) we have

lim
r→0

∫
|z|≥2r

{∫
dνr(ζ)

z − ζ

}
dµ(z) =

∫
dµ(z)

z
= µ̂(0).

For the remaining integral over |z| < 2r we have the estimate∣∣∣∣∫
|z|<2r

{∫
dνr(ζ)

z − ζ

}
dµ(z)

∣∣∣∣ ≤ ∫
|z|<2r

C

r
d|µ|(z) ≤ 2C

∫
|z|<2r

d|µ|(z)

|z|
,

and the last integral tends to zero as r → 0 by our assumption that µ̃(0) < ∞. This

establishes property

lim
r→0

∫
µ̂ dνr = µ̂(0),
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and the desired conclusion is immediate; that is,

|µ̂(x0)| ≤ lim sup
z→x0, z∈ E

|µ̂(z)|.

Equally important to us, of course, is Vitushkin’s criterion for rational approxi-

mation (cf. [37] and [14], p. 207).

Theorem 3.1.4 (Vitushkin). R(X) = C(X) if and only if for dA almost all points

x ∈ X

lim sup
r→0

γ(Br(x)\X)

r
> 0. (3.3)

Proof of sufficiency. Let ν be a measure on X with ν ⊥ R(X). Then, ν̂ ≡ 0 in

C\X and by Lemma 3.2 the capacitary density assumption on the complement of X

implies that ν̂ = 0 a.e.-dA on X. Hence, R(X) = C(X). For a proof of necessity see

[37] or [14], p. 207.

Vitushkin [37] also shows that for any compact set X, and for almost all z ∈ C
either

lim
r→0

γ(Br(z)\X)

r
= 1

or

lim
r→0

γ(Br(z)\X)

r2
= 0,

which is often referred to as the instability of capacity. The instability phenomenon

will be of critical importance in the construction of the counterexample in Section

4.2. Moreover, the validity of the condition

lim sup
r→0

γ(Br(x)\X)

r2
> 0

at almost all points x ∈ X is sufficient to ensure that R(X) = C(X). In a very real

sense, the instability of capacity is analogous to a well-known property of Lebesgue

measure: In this case, if E ⊂ R2 is a Borel set then either

lim
r→0

|Br(x) ∩ E|
|Br(x)|

= 1 or lim
r→0

|Br(x) ∩ E|
|Br(x)|

= 0

at almost every point x ∈ E.
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3.2 Lq Capacities

In order to deal with questions concerning rational approximation in the Lp(X, dA)

norm we can proceed more or less in the manner outlined above. In this case, however,

the relevant dual space is Lq(X, dA) where 1
p

+ 1
q

= 1. And again, it will be essential

to take advantage of any underlying continuity associated with Cauchy potentials of

the form

k̂(z) =

∫
k(ζ)

ζ − z
dAζ

with k ∈ Lq(X, dA).

If q > 2 then k̂ is actually continuous in the entire plane, and no more needs to be

said. If, on the other hand, 1 < q < 2 then in order to describe the exceptional sets

for the corresponding Cauchy potential k̂ it is necessary to introduce appropriate Lq

capacities.

By definition, for any Borel set E and 1 < q ≤ 2,

Cq(E)1/q = sup
ν

ν(E),

the supremum being taken over all positive measures ν concentrated on E for which

||ν̃||Lp(dA) ≤ 1. For additional information and background material on these nonlin-

ear capacities the reader is referred to the books [1] , [22], and articles [5], [13], [24]

where proofs of the following can be found:

(i) if Φ is a contraction Cq(ΦE) ≤ k Cq(E), were k is a constant depending only

on q.

(ii) Cq(Br) ≈ Cq(diamBr) ≈ r2−q, 1 < q < 2, and C2(Br) ≈ (log(1
r
))−1 for any disk

Br of radius r.

Concerning property (i) see, in particular, [1], p. 140 and [5], p. 411.

A property is said to hold q-quasieverywhere if the set where it fails has q-capacity

zero. As an element of W q
1 the transform k̂ is q-quasicontinuous in the sense that:

Given any ε > 0 there exists an open set U such that Cq(U) < ε and k̂ is continuous

in the complement of U . In addition there is a much subtler pointwise notion of

continuity associated with functions in W q
1 , called fine continuity. A function h ∈ W q

1 ,

which we can assume to be defined q-quasieverywhere, is said to be q-finely continuous

at a point x0 if there exists a set E that is thin, or sparse, in a potential theoretic

sense at x0 and

lim
x→x0, x∈C\E

h(x) = h(x0).
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If E is not thin at x0 it is said to be thick at that point. In our case it is sufficient to

know that E is thick at x0 if

lim inf
r→0

Cq(E ∩Br)

Cq(Br)
> 0, (3.4)

where Br = Br(x0) is the disk with center at x0 and radius r (cf [7], p. 221).

The following is due to Hedberg [19], p. 161 and [20], p. 316, and can be viewed

as an Lp-analogue of Vitushkin’s theorem on uniform rational approximation. For

p = 2 the result goes back to Havin [18].

Theorem 3.2.1 (Hedberg). Let X be a compact set having no interior, and let

2 ≤ p < ∞. Then, Rp(X, dA) = Lp(X, dA) if and only if

lim sup
r→0

Cq(Br(x)\X)

Cq(Br(x))
> 0

for almost every x ∈ X.

Proof of sufficiency. Let k ∈ Lq(X, dA) with k ⊥ Rp(X, dA). Then, k̂ ≡ 0 in C\X
and the argument in Lemma 3.2 can be modified to show that k̂(z) = 0 at every point

z ∈ X where

∫
|k(ζ)|
|ζ − z|

dAζ < ∞. Hence, k̂ = 0 a.e.-dA.

The Lq-capacities are also known to be subject to the same sort of instability as

analytic capacity; that is, either

lim
r→0

Cq(Br(x)\X)

Cq(Br(x))
= 1

or

lim
r→0

Cq(Br(x)\X)

r2
> 0

(cf. Fernstrom [12], p. 245). Consequently, if the condition

lim
r→0

Cq(Br(x)\X)

r2
> 0

is satisfied at almost all points x ∈ X, then Rp(X, dA) = Lp(X, dA).

3.3 Peak Points and Bishop’s Theorem

Peak points play a key role in the theory of uniform rational approximation. By

definition, x ∈ X is a peak point for R(X) if there exists a f ∈ R(X) such that

(1) ||f ||∞ = 1
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(2) f(x) = 1

(3) |f(y)| < 1 whenever y 6= x.

A representing measure for a point x is a finite positive Borel measure µ supported

on X, of total mass 1, such that

f(x) =

∫
X

fdµ

for every f ∈ R(X). Any complex measure µ having the same reproducing property

is said to be a complex representing measure. In general, a given point can have many

different representing measures. It can be shown, however, that x is a peak point for

R(X) if and only if the unit point mass at x is the only representing measure for x,

and this occurs if and only if µ({x}) = 1 for every complex representing measure for

x (cf. [14], p. 54). The following establishes an important connection between peak

points and annihilating measures:

Theorem 3.3.1. The point x0 ∈ X is a peak point for R(X) if and only if the Cauchy

transform, ν̂(x) = 0 whenever ν ⊥ R(X) and ν̃(x) < ∞.

Proof. If x is not a peak point then there exists a representing measure ρ for x with

ρ({x}) = 0. Then ν = (z − x)ρ ⊥ R(X) and ν̂(x) = ν̃(x) = 1.

If there exists a measure ν such that ν ⊥ R(X) with ν̂(x) 6= 0 and ν̃(x) < ∞,

then there exists a complex measure µ representing x with µ({x}) = 0 and therefore

x is not a peak point.

Bishop’s peak point criterion for rational density is key in our main results (cf [9],

p. 172 or [14], p. 54) and follows from theorem 3.4.

Theorem 3.3.2 (Bishop). R(X) = C(X) if and only if almost every (dA) point of

X is a peak point for R(X).

3.4 Barriers

In order to extend Theorem 2.6 to the most general setting where R(X) 6= C(X) it is

essential that we have a way to decide whether a point x0 ∈ X is a bpe for Hp(X, dA)

or not. With this in mind we shall adopt a scheme due, in broad outline, to Thomson

[33] and having its roots in the work of Mel’nikov [25]. Throughout the discussion ν

will be a measure on X, not necessarily absolutely continuous with respect to area.

For each λ > 0 the sets Eλ = {z : |ν̂(z)| < λ} will play a critical role.
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Let x0 ∈ X be a point where ν̃(x0) < ∞ and fix λ > 0. For each positive integer

n form a grid in the plane consisting of lines parallel to the coordinate axes, and

intersecting at those points whose coordinates are both integral multiples of 2−n.

The resulting collection of squares Gn = {Sj}∞j=1 of side length 2−n is an edge-to-edge

tiling of the plane; its members will be referred to as squares of the n-th generation.

Beginning with a fixed generation, the n-th say, choose a square S∗ ∈ Gn with

x0 ∈ S∗. Denote by Gλ
n the collection of all squares in Gn for which

|Eλ ∩ S| > 1

100
|S|. (3.5)

Kn will denote the union of those squares in Gλ
n that can be joined to S∗ by a finite

chain of squares lying in Gλ
n . If Kn is bounded, or empty, there exists a closed corridor

or barrier, Qn = ∪jSnj composed of squares Snj from Gn abutting S∗∪Kn, separating

the latter from ∞, adjacent to one another along their sides, and such that

|Eλ ∩ Snj| ≤
1

100
|Snj| (3.6)

for each j. The polynomial convex hull of Qn is a polygon Πn with its boundary

Γn lying along sides of squares for which (3.6) is satisfied. Thus |ν̂| ≥ λ on a large

portion of every square from Snj meeting Γn. By adjoining to Πn additional squares

from Gn we obtain another polygon Π∗
n with boundary Γ∗n in such a way that

(i) Γ∗n ⊇ Γn,

(ii) n22−n ≤ dist(Γ∗n, Γn) ≤ 3n22−n.

This can be done by simply adjoining to Πn additional squares from Gn.

At this point let Kn+1 denote the union of all squares in Gλ
n+1 that can be joined

to Π∗
n by a chain of squares in Gλ

n+1. Again, if Kn+1 is bounded, or empty, there is a

second barrier Qn+1 abutting Π∗
n ∪Kn+1 and

|Eλ ∩ S| ≤ 1

100
|S|

for every square S in Qn+1. The polygon Πn+1 is defined to be the polynomial convex

hull of Qn+1, and the process continues. In this way we obtain a nested sequence of

polygons

Πn ⊆ Πn+1 ⊆ ... ⊆ Πn+l ⊆ ...

and compact sets Kj ⊆ Πj\Πj−1, some of which may be empty, such that if Kj 6= ∅

(a) Kj is the union of squares in Gj and connects Γ∗j−1 to Qj;
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(b) |Eλ ∩ S| > 1
100
|S| for each S ⊆ Kj;

(c) dist(Kj, Γ
∗
j) ≤ dist(Kj, Γj) + dist(Γj, Γ

∗
j) < 4j22−j.

Given an arbitrary disk Br = B(x0, r) with center at x0 there are two mutually

exclusive possibilities:

(A) the sets Kj eventually exit Br;

(B) there exists an infinite sequence of barriers Qj, j = n, n + 1, n + 2, ... extending

outward from x0 and lying entirely in Br.

Should the first alternative (A) be the case for all r > 0 it can be shown (cf [7], p.

233) that the set Eλ satisfies all the hypothesis of Lemma 3.1, and therefore

lim sup
r→0

γ(Eλ ∩Br)

r
> 0.

The second alternative (B) implies that Eλ surrounds x0 and contains sufficient mass

to ensure that H1(X, dA) admits a bpe at x0. This phenomenon replaces the collection

of circles lying inside a Swiss cheese as discussed in Chapter 2. It is the subject of

our next lemma.

Lemma 3.4.1. If there exists an infinite sequence of barriers Qj, j = n, n+1, n+2, ...

surrounding a point x0, then H1(X, dA) admits a bpe at x0.

Proof. Because Qn is a barrier, Γn is the union of certain specified sides of n-th

generation squares S such that |Eλ ∩ S| ≤ 1
100
|S|; or, setting Fλ = {z : |ν̂(z)| ≥ λ},

squares S for which

|Fλ ∩ S| ≥ 99

100
|S|.

We can assume for the purpose of argument that λ = 1, and we set F = F1 and

E = E1.

The map L : P → P (x0) can be viewed as a bounded linear functional on the space

of polynomials when the latter is endowed with the norm ||P ||L∞(Γn) = supΓn
|P |.

As such, L can be extended in a norm preserving way to C(Γn), the full space of

continuous functions on Γn likewise endowed with the uniform norm. Hence, there

exists a measure ω of finite total variation on Γn such that ||ω|| = ||L|| and

P (x0) =

∫
Γn

P dω

for all polynomials P . The first step in the proof of the Lemma is to replace
∫

Γn
P dω

by an area integral over F ∩Qn, committing only a small error.
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Assume for the moment that P is a fixed polynomial. Take ε > 0 and let Γn = ∪Ij

be the union of finitely many closed intervals Ij with mutually disjoint interiors chosen

so that ∣∣∣∣∣
∫

Γn

P dω −
∑

j

P (ξj)ωj

∣∣∣∣∣ < ε, (3.7)

whenever ξj ∈ Ij and ωj = ω(Ij). We can arrange that each Ij is contained entirely in

the side of a single square S in the barrier Qn. Moreover, ω can have no point masses

and so there is no ambiguity associated with the approximating sums for
∫

Γn
Pdω in

(3.5).

For a fixed barrier square S ⊆ Qn with one or more of its sides in Γn, let xS

denote its center, and let ξj be one of the points in (3.7) situated on ∂ S. Since by

construction dist(Γn, Γn+1) ≥ n22−n, a form of Schwarz’s lemma implies that

|P (ξj)− P (xS)| ≤ 2n+1

n2
| ξj − xS| ||P ||L∞(Γn+1) ≤

√
2

n2
||P ||L∞(Γn+1).

If S1, S2, ..., Sk represent the totality of squares in Qn with sides along Γn and B1, ..., Bk

are the corresponding inscribed disks, it follows by summing on j and the fact that

Γn lies entirely inside the region bounded by Γn+1 that

∣∣∣∣P (x0)−
∫

F∩Qn

P hn dA

∣∣∣∣ ≤ ε +

(√
2

n2
+

2

100

)
||ω|| ||P ||L∞(Γn+1),

where hn =
k∑

j=1

4

π
22nω(Sj)χF∩Bj

and χF∩Bj
is the characteristic function of F ∩ Bj.

Since ε > 0 is arbitrary it can now be dropped from the inequality, and by choosing

n sufficiently large we can arrange that∣∣∣∣P (x0)−
∫

F∩Qn

P hn dA

∣∣∣∣ ≤ 3

100
||ω|| ||P ||L∞(Γn+1)

for all polynomials P , and ||hn||∞ ≤ 22n+2

π
||ω||. Now repeat the process noting that

the map

Ln+1 : P −→ P (x0)−
∫

F∩Qn

P hn dA

can be extended from the space of polynomials and viewed as a bounded linear

functional on C(Γn+1) with ||Ln+1|| ≤ 3
100
||L||, where L = Ln and ||L|| = ||ω||. Since

all squares adjacent to Γn+1 are barrier squares from Qn+1, the argument above gives

a function hn+1 with support in F ∩Qn+1 so that∣∣∣∣P (x0)−
∫

P hn dA−
∫

P hn+1 dA

∣∣∣∣ ≤ ( 3

100

)2

||L|| ||P ||L∞(Γn+2),
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for all polynomials P , and ||hn+1||∞ ≤ 4
π
22(n+1) 3

100
||L||. Continuing in this way we

obtain an infinite sequence of functions hn, hn+1, ... such that for any k > 0,∣∣∣∣P (x0)−
∫

P (hn + ... + hn+k)dA

∣∣∣∣ ≤ ( 3

100

)k+1

||L|| ||P ||L∞(Γn+k+1).

For a given polynomial P the right side tends to zero as k → ∞, since the curves

Γn+k all lie in a bounded portion of the plane. Setting h =
∑∞

k=0 hn+k it follows that

P (x0) =

∫
P h dA

for all polynomials P . Moreover, h ∈ L∞ because the individual hj’s have disjoint

supports and ||hn+k||∞ ≤ ||hn||∞ for all k > 0; hence, ||h|| = ||hn||∞.

Copyright c© Erin Militzer, 2010.
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Chapter 4 Main Results

4.1 Bounded Point Evaluations for Hp(dA)

We have now reached the point where we can address the question raised in the

introduction concerning the relation between uniform rational approximation and

the existence of Lp-bounded point evaluations for the polynomials. Even in the most

general situation, however, bpe’s arise for essentially the same reason as in the case

of the Swiss cheese. That is, a point x0 ∈ X is a bpe if it is surrounded by a portion

of X having sufficient mass to ensure that the inequality (1.1) is satisfied at x0.

From our reasoning it would appear that in some cases the local geometry of X in a

neighborhood of a bpe x0 must be quite complicated, but we have not been able to

rule out the possibility that there is a collection of concentric circles about x0, lying

entirely in X and having positive dA measure.

Theorem 4.1.1. Let X be a compact subset of C with empty interior. If R(X) 6=
C(X), then there exists at least one point x0 that yields a bpe for every Hp(X, dA),

1 ≤ p < ∞. Moreover, every function f ∈ Hp(X, dA) admits an analytic extension

to a fixed neighborhood of x0.

Proof. By assumption there exists a nonzero measure ν such that ν ⊥ R(X). Since

ν 6= 0 as a measure there is at least one point x0 such that

(a) ν̃(x0) < ∞;

(b) ν̂(x0) 6= 0.

We can conclude, therefore, that there exists an infinite sequence of barriers relative

to the set where |ν̂| is bounded away from zero, and surrounding the point x0 as

described in Section 3. Such a collection of barriers must, of course, lie entirely in X

since ν̂ ≡ 0 in C\X.

Suppose for the moment that no such sequence of barriers exists. For an arbitrary,

but fixed, λ > 0 consider the set Eλ = {z : |ν̂(z)| < λ}. By assumption Eλ must in

a sense escape from x0 to ∞. More precisely, we can find a connected set X linking

x0 to ∞ such that X is the union of squares from some generation, the n-th say, and

higher, and certain narrow rectangles Rj, j > n, where

(1) |Eλ ∩ S| > 1
100
|S| for each square S ⊆ X,
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(2) diam(Rj) ≈ j22−j.

Given r > 0, let Br = B(x0, r). By discarding certain superfluous pieces we can

assume that X ∩Br is connected and joins x0 to ∂Br. Thus,

γ(X ∩Br) ≥
1

4
diam (X ∩Br) ≥

r

8
.

On the other hand, it follows from the countable semiadditivity of analytic capacity

that
r

16
≤ γ(X ∩Br/2) ≤ C

(
γ(K) +

∞∑
j=n

j22−j

)
,

where K is the union of squares in X for which (1) is satisfied, and C is an absolute

constant. Since we are free to begin with an arbitrary generation, we can let n →∞
and conclude that

γ(Eλ ∩Br) ≥ Cr

(cf. [7] p.233 for details). In particular,

lim sup
r→0

γ(Eλ ∩Br)

r
> 0,

and so Lemma 3.2 implies that

|ν̂(x0)| ≤ lim sup
z→x0, z ∈Eλ

|ν̂(z)| ≤ λ.

Since this is valid for all λ > 0, we are led to infer, contrary to assumption, that

ν̂(x0) = 0. Consequently, for some λ > 0 there exists an infinite sequence of barriers

surrounding x0 that correspond to a set where |ν̂| > λ.

Lemma 3.7 now implies that the point x0 yields a bpe for H1(X, dA) and so a bpe

for all Hp(X, dA), 1 ≤ p < ∞. From the discussion following Theorem 2.6 it follows

that there is a fixed neighborhood U of x0 such that every function f ∈ Hp(X, dA)

extends analytically to U .

That fact in itself suggests that the conclusion of Theorem 4.1 is linked in a funda-

mental way to the presence of non-peak points, and that is indeed the case.

Corollary 4.1.2. If x0 ∈ X is not a peak point for R(X), then x0 yields a bpe for

Hp(X, dA), 1 ≤ p < ∞; that is,

|P (x0)| ≤ Cp ||P ||Lp(X, dA)

for every polynomial P , and some constant Cp depending only on p.
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The proof of this corollary is a direct consequence of Theorem 3.5

The argument in the proof of Theorem 4.1 can therefore proceed exactly as before.

It would be remiss, however, if we did not mention that Aleman, Richter and Sundberg

[2] have also shown that almost every point where (a) and (b) are both satisfied

corresponds to a bpe for Hp(X, dA). That is sufficient for the proof of Theorem 4.1,

but not for the corollary. The underlying feature here is that Lemma 3.2 applies at

every point x0 where (a) and (b) are satisfied simultaneously.

4.2 A Counterexample for Rp(dA)

In 1966 Sinanjan [32] announced the following result which now stands in striking

contrast to Theorem 4.1:

Theorem 4.2.1 (Sinanjan). There exists a compact nowhere dense set X such that

R(X) 6= C(X), but nevertheless Rp(X, dA) = Lp(X, dA) for all p, 1 ≤ p < ∞.

His proof depends on a construction of Mergeljan [27], p. 315 and actually pro-

duces a Swiss cheese X with the desired properties. The reader, however, is referred

to an earlier paper [31] for many of the computational details. Here we shall describe

an entire family of compact nowhere dense sets X having a locally non-rectifiable

perimeter such that R(X) 6= C(X), and still Rp(X, dA) = Lp(X, dA) for all p < ∞.

Proof of Theorem 4.3. We begin with the construction of a planar Cantor set as

follows: Let Q0 = [0, 1]x[0, 1] be the closed unit square. Choose 4 closed squares

inside Q0 with side length 1/4, having sides parallel to the coordinate axes, and so

that each square contains a vertex of Q0. Next, apply the same procedure to each

of the four squares obtained in the first step. In this way we obtain 16 squares each

having side length 1/16. Continuing in this way, at the n-th stage we obtain 4n closed

squares Qn
j , j = 1, 2, 3, ..., 4n each having side length 1/4n. For each n let

En =
4n⋃

j=1

Qn
j

and define

K =
∞⋂

n=1

En.

The set K is most commonly referred to as the corner quarters Cantor set. It can

easily be checked that the orthogonal projection of K onto the line 2y = x cov-

ers an interval of length 3/
√

5; in particular, a line segment of length greater then
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1
2
diam(Q0). Not quite as obvious, however, is the fact that γ(K) = 0. Cantor sets

with these properties were first produced by Vitushkin [36], and his construction was

later simplified by Garnett [15] and Ivanov [21], pp 346-348.

Now iterate the procedure outlined above. Decompose Q0 into 4 congruent squares

S1
j , j = 1, 2, 3, 4 by lines through midpoints of the opposite sides. In each square S1

j

construct a Cantor set K1
j similar to K and differing only by a scaling factor of 1/4.

Let K1 = ∪jK
1
j be the union of the four scaled down Cantor sets, and continue the

bisection process in the same manner, thereby obtaining a sequence of Cantor sets

K1, K2, K3, ... having these properties:

(1) γ(Kn) = 0 for all n = 1, 2, 3, ...

(2) E = ∪nKn is dense in Q0

(3) Λ(proj(Kn
j )) > 1

2
diam(Sn

j ).

Here Kn = ∪jK
n
j , proj(Kn

j ) denotes the orthogonal projection of Kn
j onto the line

2y = x, and Λ(proj(Kn
j )) denotes the 1-dimensional Hausdorff measure or length of

this projection. It follows from Tolsa’s theorem on the countable semiadditivity of

analytic capacity that γ(E) = 0. In this case, however, where E is the countable

union of compact sets of capacity zero the full force of Tolsa’s theorem is not needed

(cf. [14], p. 237 or [16], p. 12).

Because γ(E) = 0, and therefore |E| = 0, we are able to select a compact set X0

lying in the interior of Q = Q0, and so that |X0| > 0 and E ∩X0 = ∅. Pick r1 > 0,

but small enough to ensure that {z : dist(z, X0) < r1} lies entirely inside Q. Since

K1 is a compact totally disconnected set with γ(K1) = 0, we can cover K1 by finitely

many open rectangles, having mutually disjoint closures with sides parallel to the

coordinate axes, and so that the union Ω1 of the open pieces satisfies γ(Ω1) < 1
2
r1.

Next, choose r2 < r1, but small enough that {z : dist(z, X0) < r2} does not meet Ω1.

Proceed as above to cover K2\Ω1 by finitely many open rectangles, with mutually

disjoint closures, in such a way that

(i) γ(Ω2) <
1

22
r2

(ii) γ(Ω1 ∪ Ω2) < C
(r1

2
+

r2

22

)
< Cr1,

where C is the absolute constant guaranteed by Tolsa’s theorem. Continuing in this

way we obtain a decreasing sequence of numbers rj ↓ 0 and a sequence of open sets

Ω1, Ω2, Ω3, ... with these properties:
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(a) E ⊂ ∪j Ωj

(b) X0 ⊆ Q\ ∪j Ωj

(c) γ(Ωj) <
1

2j
rj

(d) γ(Ωj ∪ ... ∪ Ωk) <
C

2j−1
rj for all j = 1, 2, 3, ...

Setting X = Q\ ∪j Ωj we obtain a compact nowhere dense set with X0 ⊆ X, and we

must prove that R(X) 6= C(X), but Rp(X, dA) = Lp(X, dA) for all p ≥ 2.

By construction, for each point x ∈ X0 the inequality

γ(B(x, rj)\X)

rj

≤ C

2j−1

is satisfied for all j = 1, 2, 3, ..., where C is an absolute constant throughout. Hence,

at each point of X0 the lower capacitary density of the complement C\X is zero. It

follows from the instability of analytic capacity that

lim
r→0

γ(B(x, r)\X)

r
= 0

at a.e.-dA point x ∈ X0 (cf. also [14], p. 207). By Vitushkin’s Theorem 3.4 it follows

that R(X) 6= C(X).

Again by construction, for a.e.-dA point x ∈ X, and r sufficiently small depending

on x, we have

Λ(proj(B(x, r) \X) ≥ Cr,

where C is an absolute constant independent of r. For a fixed q < 2 this implies that

Cq(B(x, r) \X) ≥ Cr2−q,

since q-capacity decreases modulo a constant under a contraction. Hence, at a.e.-dA

point x ∈ X the complement C \ X is thick in the sense of q-capacity. Suppose

then that k ∈ Lq(X, dA) and that k ⊥ Rp(X, dA). Then k̂ ≡ 0 in C \ X and

by fine continuity k̂ = 0 a.e.-dA on X. Therefore, k = 0 a.e. and it follows that

Rp(X, dA) = Lp(X, dA), and this holds for all p > 2.

As indicated at the beginning of Section 4 we do not know of a single example

of a compact nowhere dense set X such that R(X) 6= C(X), and for which no point

x0 ∈ X admits a collection of concentric circles Fx0 having positive dA measure

and lying entirely inside X. The construction in the proof of Theorem 4.3, however,
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precludes the corresponding phenomenon for rectangles oriented so as to have two of

its sides orthogonal to the line 2y = x. The projection properties of irregular sets

such as those that underlie the entire construction here are studied extensively in [11],

chapt. 7. If X happens to be a set of finite perimeter in the sense of DeGiorgi, it can

then be shown that there exist sufficiently many rectangles contained entirely in X

to ensure that Hp(X, dA) has a bounded point evaluation in X, thereby extending

Theorem 2.2 to this more general situation (cf Trent [35]).

Copyright c© Erin Militzer, 2010.
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