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ABSTRACT 

 

Edwardsiella ictaluri encodes a urease operon and an arginine decarboxylase (AdiA) that 

are required for virulence in head kidney derived macrophages (HKDM). The urease produces 

ammonia in amounts sufficient to alter environmental pH from acid to neutral. A hypothetical 

model was proposed, involving arginine metabolism in E. ictaluri infected HKDM, focusing on 

bacterial urease, AdiA, a second arginine decarboxylase (SpeA), and agmatinase (SpeB). Using 

fluorescence based ratiometric pH determination of E. ictaluri in live HKDM, it was shown that 

E. ictaluri modulates HKDM phagosome pH to above six. Urease and AdiA mutants failed to 

up-regulate vacuole pH, while vacuole pH for the SpeA and SpeB mutants was similar to the 

wild-type. These mutants could also replicate in HKDM similar to wild type E. ictaluri. These 

data show that urease and AdiA are required for phagosome pH neutralization. To determine the 

source of urea for E. ictaluri’s urease, an arginase inhibitor, L-norvaline, was used to partially 

block HKDM urea production. In arginase inhibited HKDM, E. ictaluri could not neutralize 

phagosome pH, nor could it replicate. Nitric oxide production in HKDM was not significantly 

different between controls and experimental groups. This indicates that HKDM have limited 

capacity to produce NO. Levels of urea produced in infected and control HKDM were at the 

lowest limit of assay detection and were not significantly different from one another. Together, 

these data show that E. ictaluri uses its urease and AdiA to neutralize phagosome pH, and that it 

uses urea derived from HKDM arginase to do so. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

 

The genus Edwardsiella was so named in 1965 for Philip R. Edwards (a CDC 

microbiologist), which contained only the type species E. tarda until 1980, when E. hoshinae 

and E. ictaluri were added. Edwardsiellae are members of subgroup 3 of the γ subclass of Gram-

negative Proteobacteria and are distantly related to other core members of the family 

Enterobacteriaceae. They are primarily found in aquatic environments and are often isolated 

from fish, but many species of vertebrate and invertebrate animals carry these organisms. Both 

E. tarda and E. ictaluri are known vertebrate pathogens (Abbott and Janda 2006).  Edwardsiella 

ictaluri has been one of the most economically significant pathogens of farmed channel catfish, 

Ictalurus punctatus (Rafinesque, 1818) over past 30 years in the United States of America 

(Hawke 1979; Thune, et al. 2007; USDA 2009a; USDA 2009b). Disease caused by E. ictaluri, 

known as enteric septicemia of catfish (ESC), is typically described as having 2 distinct forms: a 

fulminant septicemia with high mortality, and a less common chronic presentation  most notably 

characterized by meningoencephalitis with necrotizing extension through the integument of the 

fontanelles associated with the frontal bones of the cranium (so called “hole in the head” lesion) 

(Shotts, et al. 1986; Thune, et al. 1993).  

Although the channel catfish is most susceptible E. ictaluri infection, other ictalurids 

such as the white catfish (Ameiurus catus Linnaeus, 1758), brown bullhead (Ameiurus nebulosus 

Lesueur, 1819), and walking catfish (Clarias batrachus Linnaeus, 1758) can be infected (Hawke, 

et al. 1998). Recently, the laboratory zebrafish, Danio rerio (Hamilton, 1822) has been found to 

be susceptible to E. ictaluri infection as well (Petrie-Hanson, et al. 2007). Infected catfish often 

exhibit erratic swimming, abnormal posture in the water column, and anorexia. Externally fish 
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have widespread petechiation, most easily seen on the ventrum, as well multifocal, disseminated 

skin erosions and ulcers (“buckshot” lesions). Internally, fish have abundant yellow to pink 

ascitic fluid, livers have multiple necrotic foci, and the intestine is hyperemic and distended with 

loose bloody feces (Hawke, et al. 1998). The head kidney (pronephros) becomes swollen, pale 

pink, and friable. In populations where an acute outbreak has passed, a small number of fish will 

develop the hole-in-the-head lesion, which grossly is first seen as a focal depigmentation over 

the cranial fontanelles. With time, this focus will become hyperemic and ulcerated with 

progressive recession and necrosis of the integument, in many cases leading to marked exposure 

of the bones of the skull. 

ESC can occur in healthy fish and in wild populations, but is most commonly associated 

with intensive farming practices at times of increased stress from handling, confinement, poor 

diet, substandard water quality, and other pond pathogens. The admixture of fingerlings with 

adults in ponds is particularly important for the persistence and recurrence of ESC, since 

survivors can occultly carry E. ictaluri for up to 200 days. Originally thought to be an obligate 

fish pathogen, E. ictaluri is now known to persist in pond sediment for months (Hawke, et al. 

1998). The major route of fish infection is not resolved; the intestine, nares, and gills have been 

proposed and may all be important routes of infection (Baldwin and Newton 1993; Morrison and 

Plumb 1994; Nusbaum and Morrison 1996; Thune, et al. 1993). Transmission is commonly 

fecal-oral during feeding sessions, but cannibalism of infected carcasses is also common. The 

optimal temperature range for outbreaks in ponds is between 20°C and 28°C (Hawke, et al. 

1998). 

Histologically, ESC is characterized by multiorgan necrosis and granulomatous disease, 

often involving the liver, spleen, and intestine (Blazer, et al. 1985; Shotts, et al. 1986). Discrete 
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granulomas like those seen in mycobacteriosis are not characteristic; instead, sheets of 

macrophages contain uncommon bacterial rods.  E. ictaluri can be recovered from pronephros 

tissue as early as 30 minutes post infection following an immersion challenge (Thune, et al. 

2007). Recently it was shown that E. ictaluri is able to invade, survive, and replicate in naive 

pronephros derived macrophages (HKDM) from I. punctatus (Booth, et al. 2006). This is of 

particular interest, since E. ictaluri does not survive well within activated macrophages 

(Shoemaker, et al. 1997). As a pathogen of professional phagocytes, E. ictaluri joins the 

company of such infamous organisms as Salmonella, Legionella, and Shigella (Russell and 

Gordon 2009).  Significant progress in understanding the pathogenesis of ESC stemmed from a 

signature tagged mutagenesis study (STM) in which numerous potential virulence factors were 

identified (Thune, et al. 2007), including a type 3 secretion system similar to that found in 

Salmonella, and a urease operon similar to an acid activated urease found in Yersinia 

enterocolitica (Young, et al. 1996).  Investigations into the role of bacterial urease in the 

pathogenesis of E. ictaluri found that while it is not important for the invasion of the catfish or 

catfish macrophage, it is required in order to maintain high virulence and replication in the 

catfish and its macrophages (Booth, et al. 2009). Although not required for acid tolerance, this 

urease is upregulated at acid pH and, in the presence of urea, is capable of producing sufficient 

ammonia to adjust acidic media pH above 7 (Booth 2006).  The presence of both an ammonia 

and a urea transporter in close association with the urease operon, as well as an arginine 

decarboxylase (AdiA) being identified as a possible virulence factor (Booth, et al. 2009; Thune, 

et al. 2007), all indicate that arginine (L-arginine) metabolism is of great importance in this 

macrophage-bacterium dynamic. Consequently, a hypothetical model is proposed that 

encompasses the major metabolic routes for arginine in this context (Figure 1.1).  
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Figure 1.1. Hypothetical model for the interaction of E. ictaluri with the catfish macrophage. 

Arginine may be utilized by nitric oxide synthase, arginase, or arginine decarboxylase (AdiA or 

SpeA). The metabolites of arginase and arginine decarboxylase may be utilized to promote E. 

ictaluri survival. The nitric oxide produced by nitric oxide synthase has antimicrobial properties. 
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Briefly, the model, and the discussion, begins with arginine. Arginine is utilized by 

macrophages for 3 main activities: conversion to nitric oxide (NO) by nitric oxide synthase 

(NOS), conversion to agmatine by arginine decarboxylase (AdiA or SpeA), or conversion to urea 

by arginase. If NO is produced, it is used by the macrophage to form reactive nitrogen 

intermediates (RNI) that combine with oxygen radicals to form potent antimicrobial molecules. 

If arginine is converted directly to urea by arginase, the E. ictaluri urease can use it to produce 

ammonia (NH3), either preventing a drop in phagosomal pH or acting to increase pH following 

acidification. A neutral phagosomal pH is essential for E. ictaluri to replicate intracellularly 

(Booth, et al. 2006). Finally, if arginine is converted to agmatine by the bacterium, agmatine can 

be converted to either urea or NH3, which has a similar potential effect on phagosomal pH. 

Additionally, arginine decarboxylase can function as an acid resistance mechanism. An 

important secondary benefit for E. ictaluri if arginine decarboxylase or arginase is active is the 

deprivation of arginine to the macrophage, preventing NO production.  

MACROPHAGE PHYSIOLOGY AND ARGININE METABOLISM 

Macrophages are immunocytes derived from hematopoietic progenitors in the bone 

marrow of mammals and in the pronephros of fish (Rieger, et al. 2010; Zhang and Mosser 2009). 

They are of primary importance to immune function in animals in that they respond to various 

stimuli, both chemotactic and inflammatory, and modulate/direct innate and adaptive immune 

responses (Vinh and Holland 2009). The range of macrophage physiological function is 

remarkably wide, involving homeostatic, microbicidal, and inflammatory functions in various 

tissue environments (Yates, et al. 2009). In order to perform these functions optimally, 

macrophages must first be activated, which is to say that they exhibit enhanced antimicrobial and 

antineoplastic capacities. Macrophages are highly adaptive and exhibit different activation states, 
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the best known of which are classical and alternative activation, which are associated with 

distinct cytokine and phenotypic profiles (Yeramian, et al. 2006a).  

Classically, macrophage activation requires both a priming signal and a triggering signal 

to achieve full cytolytic activity, which in vivo are provided by cytokines and inflammatory 

stimuli in tissues (Zhang and Mosser 2009). A priming signal enhances the responsiveness of the 

macrophage to a trigger; the prototypical primer is interferon gamma (IFN-γ). The traditional 

trigger is lipopolysaccharide (LPS), which is a component of the outer membrane of Gram-

negative bacteria. Thus the classical type of activation is often defined as an IFN-γ mediated pro-

inflammatory response for enhanced microbicidal activity and cytokine production; however 

other substances can act as primers and triggers (Vinh and Holland 2009). Certain cytokines are 

associated with classical activation of macrophages, including interleukin (IL) 12, tumor necrosis 

factor alpha (TNF-α), and IL-1. Interleukin 12 is important in T cell activation and T helper cell 

type 1 (Th1) differentiation for cell mediated immunity. Another hallmark of classically 

activated macrophages is the production of abundant NO and reactive oxygen species (ROS) 

(Zhang and Mosser 2009). Murine macrophages activated with LPS and IFN-γ exhibit an 

increase in both arginine uptake and nitrite synthesis (indicative of increased NO production), the 

latter of which is dependent on extracellular rather than intracellular arginine concentrations 

(Bogle, et al. 1992; Hammermann, et al. 1998; Hammermann, et al. 1999). 

In contradistinction to classical activation, macrophages that are activated by the T helper 

cell type 2 (Th2) cytokines IL-4 or IL-13 produce large amounts of IL-10, have increased surface 

expression of innate recognition receptors (macrophage mannose receptor for instance), and are 

considered to be alternatively activated. Interleukin 10 is a potent immunosuppressive cytokine 

whose actions include suppression of macrophage pro-inflammatory functions and the 
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expression of major histocompatibility complex type 2 (MHCII) and costimulatory molecules. 

The production of high IL-10 levels inhibits IL-12 production in macrophages, leading to Th1 

response inhibition and reduced IFN-γ levels, which are vital to immune reactions against 

intracellular pathogens (Kaiser and O'Garra 2009). Importantly, these macrophages also down-

regulate NO production and shift arginine metabolism to the arginase pathway. This type of 

down-regulation markedly inhibits the macrophage’s ability to kill microbes and is most 

commonly associated with parasite infections and allergic responses (Zhang and Mosser 2009).  

As professional phagocytes, macrophages are recruited to sites of infection where they 

bind and engulf a tremendous variety and amount of biological matter including microbes in a 

process referred to as phagocytosis. Phagocytosis is a critical function of the immune system and 

is defined as a receptor mediated engulfment of particles over 0.5 µm wide (Steinberg, et al. 

2007). This process is conceptually split into phagosome formation and phagosome maturation. 

Formation involves the progressive wrapping of cytoplasmic extensions around extracellular 

particles, initiated and promoted by cell receptor-ligand interactions. Once a new intracellular 

organelle (phagosome) is formed by this process, maturation begins within minutes (Swanson 

2009). Phagosome maturation is a progressive remodeling of the phagosome membranes and 

content to form a microbicidal organelle (Vinh and Holland 2009). Functionally, this consists of 

a cadre of hydrolytic enzymes, cationic peptides, ROS, and RNS present in a highly acidified 

lumen that provide an optimally hostile environment for ingested microbes (Steinberg, et al. 

2007). 

The acidification process in the macrophage phagosome is of primary importance to its 

function and heavily influences phagosome-endosome and phagosome-lysosome interactions 

throughout maturation. Acidification is achieved mainly by vacuolar-type ATPases that pump 
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protons unidirectionally without regard to electro-neutrality, eventually generating a steady state 

whereby proton entry matches proton leakage (Steinberg, et al. 2007). This pH change occurs 

incrementally, beginning with sorting endosomes at pH 6 and ending with phagolysosomes at 

less than pH 5. Along the way, minor changes in pH (as little as 0.5 pH units) cause various 

endosome ligands to release from receptors and traffic to later endosomes and other cellular 

recycling compartments. In addition acidification activates the degradative enzymes in 

lysosomes, which serves 2 purposes; first, their lytic activity aids in killing ingested microbes 

and secondly, it enables enzymatic degradation of material, removal of waste, recycling of 

metabolites, and generation of antigens for immune functions (Mukherjee and Maxfield 2009).  

The rate of acidification of ingested material varies from 5-30 minutes, and phagolysosomal 

maturity can occur in 40-90 minutes (Blanchette, et al. 2009; Fairn, et al. 2009; Yates, et al. 

2009).  

Despite the obvious utility of acidification as an aid to microbe destruction, acidification 

does not always lead to killing. Salmonella enterica, for example requires phagosomal 

acidification to survive in macrophages, in part through the acid mediated upregulation of 

virulence factors (Thompson and Holden 2009). In contrast, for pathogens such as Legionella 

pneumophila and Mycobacterium tuberculosis, the prevention of phagosome acidification is 

necessary for bacterial survival (Clemens and Horwitz 1995; Sturgill-Koszycki and Swanson 

2000). 

Within the phagosomal maturation/acidification process of the macrophage, arginine 

utilization is an important and highly regulated function. Arginine is a dibasic semi-essential 

amino acid formed from glutamate or proline and is best known for its role in the urea cycle in 

most mammals.  It is also indirectly involved in the regeneration of adenosine triphosphate 
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(ATP), cell proliferation, neurotransmission, vasodilation, calcium release, and ultimately in 

immunity (Nieves Jr. and Langkamp-Henken 2002).  The potential beneficial effects of arginine 

on immune stimulation and cardiovascular function even led to its use in disease management 

(Nieves Jr. and Langkamp-Henken 2002; Tapiero, et al. 2002). In the context of immunity, 

inflammation, and immunopathology, arginine has a role as a precursor of both NO and 

polyamines (putrescine, spermidine, spermine, cadaverine), making it an amino acid of 

considerable research interest (Peranzoni, et al. 2008). Arginine and NO metabolism play vital 

roles in macrophage phenotypic change, cell activation, and progression to apoptosis or necrosis 

in the context of a bacterial infection (Peranzoni, et al. 2008). As a component of the urea cycle 

and multiple cellular activities, arginine concentrations are highly regulated at the level of cell 

membrane transport and in catabolism, the latter most notably by arginase and NOS.  

Macrophages require arginine for protein synthesis and for NO and polyamine 

elaboration. These cells are highly sensitive to extracellular arginine concentrations, which can 

up or down regulate macrophage functions depending on their activation state (Albina, et al. 

1989). Surprisingly, arginine deprivation or low (6 µM) concentrations do not seem to inhibit 

macrophage activation or immunobiological function, but may actually enhance it (Albina, et al. 

1989; Choi, et al. 2009). Macrophages cultured in arginine-free media showed no change in 

phagocytic capacity, expression of activation markers (CD69,CD40,CD80,CD86,CD206, 

MHCII,TNF-α), production of cytokines (IL-6, IL-10, IL-12p70), NOS protein expression in 

classically activated cells, or arginase protein expression in alternatively activated cells (Choi, et 

al. 2009). However, the lack of arginine substrate for NOS and arginase in macrophages does 

inhibit production of NO and ornithine/urea, respectively (Yeramian, et al. 2006b).  
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Arginine can cross cell membranes through several transport mechanisms, the most 

relevant of which is the cationic amino acid transporter (CAT) system y
+
, an inducible sodium 

and pH independent, high affinity transporter family for arginine, lysine, and ornithine 

(Peranzoni, et al. 2008; Verrey, et al. 2004). These transporters are comprised of 14 glycosylated 

transmembrane domains, a conserved and essential Glu
107

 residue in domain 3 and an 80 amino 

acid region in domain ten responsible for substrate affinity (Verrey, et al. 2004). Cationic amino 

acid transporters are part of the SLC7 family of amino acid transporters, which is divided into 2 

groups: SLC7A1-4 (CATs) and SLC7A5-11, which are heterodimeric amino acid transporters. 

SLC7A1 and SLC7A2 correspond to CAT1 and CAT2, which are important transporters in 

activated macrophages. Interestingly, expression of CAT2 is upregulated by IFN-γ and LPS or 

IL-4 and IL-10, which are activating cytokines for classically and alternatively activated 

macrophages, respectively (Peteroy-Kelly, et al. 2001; Yeramian, et al. 2006b). Differentiated or 

activated murine macrophages have 2 intracellular pools of arginine, one of which is freely 

exchangeable with extracellular arginine and is accessible to NOS. This exchangeable pool is 

regulated by both CAT1 and CAT2, but only CAT2 has a role in NOS substrate supply (Closs, et 

al. 2000; Verrey, et al. 2004). The relationship between NOS expression and arginine transport is 

not fully understood, partly due to variations in macrophage populations used by various studies 

(Baydoun, et al. 1993; Hammermann, et al. 2001; Venketaraman, et al. 2003). In murine bone 

marrow derived macrophages for instance, NOS or arginase blocking did not alter CAT2 

expression or arginine transport in classically or alternatively activated cells (Yeramian, et al. 

2006b).  However, in murine activated alveolar macrophages, NOS inhibition prevented LPS 

induced arginine uptake (Hammermann, et al. 2001). Under basal conditions, non-activated 

macrophages can use CAT1, or a secondary transporter from the y
+
L HAT family to maintain 

arginine levels (Baydoun, et al. 2006; Martín, et al. 2006; Yeramian, et al. 2006b).   
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The potential for a bacterial pathogen to alter arginine metabolism in the macrophage is a 

phenomenon of which we know little. A M. bovis Bacillus Calmette-Guérin  (BCG) arginine 

transporter mutant strain (AS1) was found to have severely limited arginine transport capabilities 

in culture, but intracellularly could increase arginine uptake 4 fold in unstimulated macrophages 

due to the upregulation of CAT1 and CAT2. In this model, infected macrophage NO production 

was comparable to controls, but urea production and bacterial intracellular survival were 

increased significantly over controls. Although arginase was assumed to be the source of the 

urea, inhibition of arginase led to significant improvement of AS1 survival in macrophages. The 

authors concluded that arginine was more important for AS1 survival than urea and ornithine 

(Talaue, et al. 2006). However, they did not investigate other possible metabolic pathways for 

arginine which may produce urea or ammonia. Such metabolic pathways may be upregulated to 

account for increased arginine utilization and urea production.  Similarly, S. enterica infection of 

unstimulated murine bone marrow macrophages leads to increased arginine uptake by cells and 

increased CAT1 and CAT2 expression (Das, et al. 2010b). When a S. enterica arginine 

transporter (ArgT) is knocked out, bacterial survival in macrophages and in vivo was 

significantly decreased and NO production was significantly increased. Interestingly, the 

macrophage CAT1 is colocalized to the Salmonella containing vacuole (SCV) in 75% of bacteria 

by 12 hours, indicating that host arginine transporters are actively recruited to the SCV by S. 

enterica (Das, et al. 2010b). In L. pneumophila, intra-amoebic replication and growth in 

Legionella containing vacuoles (LCV) is in part regulated by LCV arginine concentrations 

through argR. ArgR is an arginine biosynthesis regulon repressor that functions as an arginine 

sensor and in the case of L. pneumophila may be involved in the regulation and expression of a 

type IVB secretion system vital to the prevention of phagosome acidification (Hovel-Miner, et 

al. 2010). 
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Within cells, arginine can be hydrolyzed to urea and ornithine by arginase, a trimeric 

manganese metalloenzyme with 2 recognized vertebrate isoforms, type I and type II. These 

isoforms share 60% amino acid sequence identity but exhibit distinct isoform and species 

specific cellular and tissue localization, subcellular regulation, and immunologic activity 

depending on the vertebrate model under investigation (Peranzoni, et al. 2008). Type I arginase 

(ARG1, liver type) is highly expressed in macrophages and in the liver as a component of the 

urea cycle. Type II arginase (ARG2) is a mitochondrial enzyme also expressed in monocytes and 

macrophages, among other tissues.  Depending on the species and type of macrophage 

(histiocytes, Kupffer cells, microglia, osteoclasts, etc.), ARG1 or ARG2 may be the 

predominantly induced isoform in inflammation (Bogdan 2009; Joerink, et al. 2006; Lewis, et al. 

2011). In mammalian macrophages, ARG1 is induced by Th2 cytokines, LPS, and pathogen 

associated molecular patterns to modulate various aspects of inflammation, resulting in tissue 

regeneration, cell proliferation, and the reduction of inflammation (Grillo and Colombatto 2004; 

Munder 2009).  It is the production of the polyamines spermine, spermidine, and putrescine 

(from ornithine) from ARG1 expressing myeloid cells that has such direct and potent effects for 

the outcome and severity of infection (Das, et al. 2010a; Munder 2009). Polyamines, as 

discussed later, are cationic molecules that function in a wide variety of fundamental cell 

processes (Munder 2009). Cellular arginases compete with NOS for arginine in infected 

macrophages (Figure 1.2), enabling arginase to regulate levels of, or even counteract the effects 

of NO (Chang, et al. 1998; Gobert, et al. 2001). Macrophage activation leads to increased 

arginine consumption, which results in extracellular arginine depletion in sites of inflammation.  

This has been shown to have important immunoregulatory effects, particularly in the down 

regulation of activated T cell receptor zeta chains (CD3δ), which leads to T cell 

hyporesponsiveness and immunosuppression (Munder 2009; Peranzoni, et al. 2008).  
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Figure 1.2. Reciprocal regulation of arginase and inducible nitric oxide synthase (iNOS) in 

murine myeloid cells. Downstream metabolic products of arginase and their association with 

components of inflammatory responses. OAT, ornithine aminotransferase; ODC, ornithine 

decarboxylase. (Munder, 2009). 
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Bacterial arginases have been characterized in relatively few species compared to their 

mammalian counterparts. The best known arginase pathways are from Helicobacter pylori, 

Bacillus subtilis, and Agrobacterium tumefaciens (Lu 2006). Arginase is the first enzyme in the 

arginine utilization pathway, which ultimately produces 2-ketoglutarate and urea, both of which 

can be used as nitrogen sources. It is a thermostable binuclear metalloenzyme that has optimal 

activity with manganese, typically in a pH range above nine (McGee, et al. 2004). In B. subtilis, 

arginase (RocF) is encoded by the rocDEF operon, which is complemented by a rocABC operon. 

Expression of the rocABC operon is induced by arginine through RocR, a positive regulator. 

Overall this genetic organization is not conserved amongst bacilli nor is it similar to A. 

tumefaciens, a plant pathogen (Calogero, et al. 1994; Gardan, et al. 1995; Lu 2006). The H. 

pylori arginase, RocF, has some unique qualities; optimal activity occurs with cobalt instead of 

manganese and enzyme activity is best at pH 6.1, possibly to aid in gastric survival (McGee, et 

al. 2004). At the post-translational level, RocF is modulated by thioredoxin 1, a chaperone with 

the capacity to protect against oxidative and nitrosative stress and damage (McGee, et al. 2006). 

At the gene level, H. pylori rocF exhibits extensive variation that is strain specific, possibly due 

to hypervariability in the upstream sequence including the Shine-Dalgarno site. Phenotypic 

activity was also highly varied (>100 fold), including variation due to in vitro passage and when 

rocF was cloned into Escherichia coli, giving evidence for trans-acting elements in arginase 

regulation (Hovey, et al. 2007). Investigations in our lab for an E. ictaluri arginase in the genome 

database found no promising candidates. 

For intracellular pathogens, either the microbial or macrophage arginase can be used for a 

survival advantage.  The H. pylori arginase RocF is constitutively expressed and can effectively 

consume extracellular arginine, preventing NO production in co-cultured macrophages, allowing 
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bacterial survival (Gobert, et al. 2001). Furthermore, RocF has a role in acid resistance and in 

reducing the expression of CD3δ in T cells (McGee, et al. 1999; McGee, et al. 2004). In a H. 

pylori infection model, macrophage ARG2 was upregulated by H. pylori via nuclear factor kappa 

beta (NF-κB), resulting in the inhibition of NOS translation and the induction of macrophage 

apoptosis through polyamine production (Gobert, et al. 2002). In an ARG2 knockout mouse 

model, infection with  H. pylori led to increased gastric inflammation, with a lower bacterial 

load, decreased macrophage apoptosis, increased NO production in tissues, and enhanced Th1 

cytokine levels versus wild type (Lewis, et al. 2011). Salmonella serovar Typhimurium can also 

upregulate host macrophage arginase for survival, antagonism of NOS, and reduction in NO 

production which can be reversed by arginase blocking. Furthermore, treatment of infected mice 

with nor-NOHA (an arginase inhibitor) led to significantly reduced bacterial burdens in the 

spleen, liver, and mesenteric lymph nodes. This therapy also delayed, but did not prevent, 

progressive disease (Lahiri, et al. 2008).  These findings demonstrate that the induction of host or 

bacterial arginase can be used by a pathogen to enhance virulence at the cellular and animal 

level.  Remarkably, the intermediates and products of the ARG-ornithine decarboxylase 

pathways (agmatine, polyamines) are NOS inhibitors, and NO itself is an inhibitor of ornithine 

decarboxylase (ODC), further solidifying the concept that ARG and NOS function in an 

antagonistic and reciprocal fashion (Grillo and Colombatto 2004; Peranzoni, et al. 2008; Satriano 

2004). 

As part of the classically activated macrophage arsenal, the production of RNS starts with 

the conversion of arginine to NO, which is a free radical gas and antimicrobial agent synthesized 

in all mammalian cells from arginine by NOS (Tapiero, et al. 2002). NOS is homodimer with an 
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incorporated heme that is complexed to (6R)-tetrahydrobiopterin. Multiple cofactors and 

substrates are involved in an oxidoreductase reaction according to the following formula: 

3 NADPH + 2 L-arginine + 3 O2 + H
+
 → 3 NADP

+
 + 2 NO + 2 OH¯+ 2 citrulline (Vinh and 

Holland 2009) 

Three NOS isoenzymes are known: NOS1 (neuronal NOS, nNOS), NOS2 (inducible 

NOS, iNOS), and NOS3 (endothelial NOS, eNOS), which differ in their distribution, regulation, 

and degree of NO production (Bogdan 2001; Peranzoni, et al. 2008). While nNOS and eNOS are 

constitutively expressed at low levels in many cells types, iNOS (referred to throughout as NOS) 

is a high output isoform in macrophages, hepatocytes, and endothelium activated by endotoxin 

and Th1 cytokines (Peranzoni, et al. 2008; Tapiero, et al. 2002). In nonstimulated macrophages, 

NOS mRNA and protein are not easily detectable, but expression is quick and marked due to 

promoter activation in one of 3 ways: IFN-γ activation, Toll-like receptor (TLR) activation via 

myeloid differentiation primary-response protein 88 (MyD88), and TLR activation independent 

of MyD88 (Bogdan 2009). A variety of substances are known inducers of NOS, including IFN-γ, 

LPS, flagellin, bacterial DNA, and TNF (Bogdan 2004). NO production is mainly regulated by 

NOS expression at the transcriptional and post-transcriptional level. As mentioned previously, 

NOS activity depends on arginine concentration, arginine transport into cells, and consumption 

of arginine by other metabolic pathways. Studies in human and murine models show marked 

cell-specific and species-specific variation in signal transduction pathways for NOS expression. 

However, NF-κB seems to be a central target for activators and repressors of NOS expression. 

Nitric oxide synthase mRNA stability and translation are influenced by the cytokine milieu; IFN-

γ stabilizes mRNA while transforming growth factor beta (TGF-β) destabilizes it (Pautz, et al. 

2010).  Additionally, NOS protein stability in intracellular pathogen models can be decreased 
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due to IL-4 or TGF-β (Bogdan 2004). In most cases, NOS protein produces NO until the enzyme 

is degraded. In nonstimulated macrophages NOS is diffusely present, but will localize to 

phagosomal membranes in activated cells. This recruitment requires a functional actin 

cytoskeleton with complementary proteins, which can be exploited for the benefit of phagocyte 

pathogens such as the Mycobacteriae (Bogdan 2009).  

 In terms of infectious disease, NO exhibits a wide range of activity and has been 

implicated in antimicrobial, proinflammatory, anti-inflammatory, cytotoxic, and cytoprotective 

effects (Bogdan 2001). Nitric oxide may also exert antimicrobial effects through various means. 

Perhaps the best known is that of directly toxic effects to DNA, structural proteins, enzymes and 

membrane lipids, along with the formation of the RNS peroxynitrite (ONOO
-
).  Peroxynitrite can 

form peroxynitrous acid (ONOOH) that spontaneously decomposes at physiological pH to the 

hydroxyl radical (OH
°
) and nitrogen dioxide (

°
NO2) (Bogdan 2004). In addition, NOS is able to 

deplete cellular arginine levels which can impede intracellular pathogen growth and can produce 

N
ω
-hydroxy-L-arginine which can block arginase function, leading to a lack of microbe-

beneficial polyamines (Bogdan 2009). Furthermore, NO has been reported to overcome 

phagosome maturation inhibition by Leishmania donovani, inhibit the escape of Listeria 

monocytogenes from phagolysosomes, and inhibit type III secretion system gene expression in 

Salmonella serovar Typhimurium (McCollister, et al. 2005; Myers, et al. 2003; Winberg, et al. 

2007). 

In fish as in mammals, macrophages function as professional phagocytes and share many 

of the same characteristics, including classical and alternative activation, ROS production, and 

RNS production (Chadzinska, et al. 2008; Chettri, et al. 2010; Joerink, et al. 2006; Plouffe, et al. 

2005; Rieger, et al. 2010). Such studies involving macrophage activation use well known 
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activators and triggers, like IFN-γ and LPS in addition to various other substances such as 

squalene (peritoneal irritant) and macrophage activating factor (MAF) of goldfish to induce 

activation (Joerink, et al. 2006; Rieger, et al. 2010). Results of recent experiments into the 

differential aspects of goldfish (Carassius auratus auratus, Linnaeus 1758) pronephros 

macrophage cultures have provided some important insights for our model in channel catfish. 

The pronephros contains myeloid progenitors, monocytes, and mature macrophages, all of which 

have distinct morphologies, gene expression profiles, and functional capabilities (Belosevic, et 

al. 2006). From pronephros derived in vitro primary cultures, these 3 myeloid cell types remain 

viable for at least nine days. While progenitor cells exhibit minimal phagocytic and respiratory 

burst capabilities, monocytes and mature macrophages show increased phagocytic, respiratory 

burst, and phagolysosomal fusion capability when activated with LPS and MAF. Interestingly, 

unactivated macrophages had high phagocytic capacity but low ROI production and 

phagolysosome formation compared to unstimulated monocytes. The authors speculate that in 

unstimulated fish monocytes and macrophages, phagocytosis is uncoupled from degradative or 

killing responses. In cases where pathogens can rapidly infect unactivated macrophages in the 

pronephros, the advantage is to the microbe (Rieger, et al. 2010).  Only until recently have 

cytokine measurements in fish cells become available in order to better characterize the 

molecular details of activation (Chadzinska, et al. 2008).  

Another important consideration when using a fish macrophage model is the difference in 

elicited responses from different macrophage cell populations. Pronephros derived macrophages 

in the barramundi (Lates calcarifer Bloch 1790) have markedly different functional capabilities 

(ROI and RNI production) compared to peritoneal derived, activated macrophages (Tumbol, et 

al. 2009). Relatively little is currently known about the molecular characteristics of channel 
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catfish macrophage activation and functional physiology. In one study, activated (LPS injection) 

peritoneal lavage macrophages from I. punctatus were pooled and activated in vitro with LPS to 

measure NO activity via nitrite and nitrate assays. Nitrite production was measured after 96 

hours and was found to be greatest when cells were incubated with 0.5 mM arginine and 

glutamine but was inhibited when N
G
-monomethyl-L-arginine was used (competitive inhibitor 

for NOS). Thus, there is an arginine dependent NO production pathway in catfish macrophages 

that can be stimulated with LPS (Buentello and Gatlin III 1999). Finally, it is important to bear in 

mind that there are marked differences in macrophage NO production and functional capacity in 

domestic mammal species; it is safe to say that with regards to fish, such differences also exist 

(Schneemann, et al. 2002). 

BACTERIAL ARGININE METABOLISM 

There are at least 5 arginine utilization pathways in bacteria: arginine decarboxylase, 

arginase, arginine deiminase, arginine transaminase/oxidase/dehydrogenase and arginine 

succinyltransferase. Arginine is important for microorganisms as it is a source of carbon, 

nitrogen, and energy; it is synthesized and catabolized by many species (Lu 2006).  In addition, 

arginine has a well known role in acid resistance in Enterobacteriaceae through arginine 

decarboxylase (Kieboom and Abee 2006). Biosynthetic arginine decarboxylases that function at 

neutral pH are to be distinguished from those induced by acid pH (AdiA), which are inducible or 

biodegradative (Viala, et al. 2011). In the acid induced Enterobacteriaceae system, arginine is 

converted to agmatine by AdiA, which is subsequently either converted to urea and putrescine by 

agmatinase, or to putrescine and ammonia by agmatine deiminase (Liu, et al. 2009; Rhee, et al. 

2007). In E. coli, 5 acid resistance (AR) pathways are known, 3 of which are amino acid 

decarboxylases (glutamate, arginine, lysine). The AdiA system (AR3) consists of AdiA and the 
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arginine-agmatine exchange transporter AdiC, along with an AraC-like regulator AdiY. This 

system functions to consume arginine and protons, which can increase intracellular pH in 

extreme acid stress; in the case of E. coli, from that of internal pH 3.5 to 4.5. The diamine or 

triamine product of this reaction can function as an environmental buffer. Inducible amino acid 

decarboxylases consume protons according to the following formula: 

NH3
+
-RCH-COO¯ + H

+
→ NH3

+
-RCH2 + CO2  

Amongst enteropathogenic gammaproteobacteria, only Salmonella serovar Typhimurium 

has an AR3 similar to E. coli; however, this is induced only in anoxic conditions (Iyer, et al. 

2003; Richard and Foster 2004; Wortham, et al. 2007; Zhao and Houry 2010). S. enterica also 

has 2 other acid inducible decarboxylases for lysine (CadA) and ornithine (SpeF), which function 

in a similar manner to AR3, albeit with a different substrate. All 3 were able to improve survival 

and growth at pH 2.3, although AdiA was the most efficient at this pH. At moderate pH (4.5), 

CadA and SpeF were able to improve in vitro growth and increase media pH. In the murine 

macrophage SCV, CadA and SpeF activity could delay SCV acidification; AdiA activity in this 

assay was not examined. Importantly, individual gene knockouts for all 3 decarboxylases were 

not significantly attenuated in vivo (Viala, et al. 2011). Recently, E. ictaluri has been shown to 

have an AdiA that is involved in virulence. Two AdiA knockout mutants were found to have low 

in vivo competitive indices compared to wild type E. ictaluri, indicating that AdiA has an 

important pathogenic role (Thune, et al. 2007). Similar to E. coli AR3, E. ictaluri has a putative 

AdiY, but also an arginine/agmatine transporter associated with AdiA.  Additionally, a second 

arginine decarboxylase, SpeA, is associated with agmatinase in E. ictaluri, which is a potential 

source of urea. With reference to the model, urea produced by the AdiA/SpeA/agmatinase 

pathway could be shuttled to the bacterial urease for ammonia production; such a situation seems 
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both elegant and efficient (Booth, et al. 2009). Despite these findings, arginine decarboxylase is 

widely considered to be of minor importance in the arginine regulation of infectious disease 

(Bogdan 2009).   

  In addition to the functions of arginine in the preceding discussion, it is also a major 

source of polyamines. Arginine is first converted to ornithine and urea by arginase in eukaryotes, 

which is then converted by ODC to putrescine. Plants and bacteria however, synthesize 

putrescine by an alternate mechanism, where AdiA converts arginine to agmatine, which is 

converted by agmatinase to urea and putrescine (agmatine urohydrolase) (Rhee, et al. 2007).  

Alternatively there is another bacterial pathway, seen in Yersinia pestis, H. pylori, and 

Pseudomonas aeruginosa, where agmatine is converted to putrescine and ammonia by agmatine 

deiminase (ADI) and N-carbamoylputrescine amidohydrolase (Jones, et al. 2010; Nakada, et al. 

2001; Wortham, et al. 2007).  

Agmatine, a metabolite of arginine via arginine decarboxylase, is considered to merely be 

a precursor of polyamines in bacteria, but has important regulatory effects in mammals in regard 

to polyamine and NO suppression (Satriano 2003). It is present in almost all organs of the rat, 

including plasma, and has an equally wide range of biological activity (Aricioglu and 

Regunathan 2005). At physiologic pH agmatine carries a positive charge and probably doesn’t 

cross cell membranes by diffusion, but agmatine transporters and nicotinic acetylcholine receptor 

channels facilitate entry into cells (Berkels, et al. 2004; Molderings, et al. 1999). Agmatine can 

inhibit all isoforms of NOS due to the formation of the active aldehyde, guanidinobutyraldehyde, 

which can aid in the transition from the acute inflammatory phase to the reparative/proliferative 

tissue phase  (Sastre, et al. 1998; Satriano 2004). In a murine macrophage cell line, LPS 

stimulation leads to increased agmatinase and NOS function while decreasing AdiA function.  
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Thus, when classically activated by LPS, macrophages can upregulate arginine uptake and NO 

production while inhibiting other arginine degradation pathways and stimulating the hydrolysis 

of NOS inhibitors (agmatine). Conversely, IL-10 and TGF-β inhibit agmatinase and NOS 

(Sastre, et al. 1998).  

Agmatine is also able to suppress eukaryotic ODC mediated polyamine biosynthesis. 

Normally, polyamines are able to autoregulate their intracellular concentrations by the 

upregulation of antizyme, which is able to block ODC and polyamine transport (Berkels, et al. 

2004). However, agmatine, in a dose dependent fashion, can directly induce antizyme by a +1 

translational frameshift in the ribosome, leading to cellular polyamine depletion (Satriano, et al. 

1998). The agmatine regulated reduction in polyamines has several interesting and pertinent 

effects in eukaryotic cells. In leukemia cell lines, agmatine has a dose dependent antiproliferative 

effect that may be due to ODC regulation at the translational level, rather than due to antizyme 

production (Haenisch, et al. 2011). Furthermore, agmatine exhibits a protective, anti-apoptotic 

effect, evidenced by mitochondrial membrane stabilization and decreased Bcl-2 and caspase 3 

expression in mouse fibroblasts (Arndt, et al. 2009). In the context of pathogenic microbes, 

agmatine can be considered a virulence factor in some cases; H. pylori is able to secrete 

sufficient agmatine to cause increased gastric acid secretion in vivo, leading to gastroduodenal 

ulcers in humans (Molderings, et al. 1999). The vital function of AdiA in ESC pathogenesis 

indicates that agmatine is produced in physiologically relevant amounts, which could directly 

affect infected catfish at the cell, tissue, and organism levels. If agmatine is produced by E. 

ictaluri intraphagosomally, it could then disrupt macrophage NOS and polyamine balance, 

leading to reduction in microbicidal NO and cell protective polyamines. In addition, E. ictaluri 
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derived agmatine could confer antiproliferative and anti-apoptotic effects in the pronephros, a 

site of lymphocyte and macrophage immunoregulation and immunostimulation. 

Agmatine metabolism in bacteria also occurs through ADI operons, where putrescine, 

ATP, ammonia, and carbon dioxide are produced (Griswold, et al. 2006; Jones, et al. 2010; 

Nakada, et al. 2001).  In Streptococcus mutans, the etiological agent of dental caries in humans, 

an aguBDAC ADI operon contains an agmatine-putrescine antiporter (AguD), agmatine 

deiminase, putrescine carbamoyltransferase, and a carbamate kinase which are upregulated by 

the transcriptional activator AguR in the presence of agmatine and acidic pH (5.5) (Liu, et al. 

2009). With 4 ammonia molecules produced for every agmatine consumed, there is potential for 

ADI to contribute to acid resistance and disease pathogenesis (Griswold, et al. 2006; Jones, et al. 

2010). Interestingly, in S. mutans a proposed role for ADI in virulence associated with acidic oral 

biofilms has been proposed. First, acidic conditions upregulate AdiA in biofilm mixed-bacterial 

populations to produce agmatine, which is inhibitory to S. mutans growth. The S. mutans ADI is 

then upregulated to remove agmatine and produce putrescine, ammonia (which consumes 

protons), and ATP (to power proton pumps), which function to increase environmental pH, 

allowing survival (Griswold, et al. 2006). Investigations for an E. ictaluri ADI in the genome 

database have found no promising candidates. 

Polyamines themselves are important for prokaryotic and eukaryotic cell growth, cell 

signaling, and homeostasis, but are also involved in immunomodulation (Rhee, et al. 2007; 

Satriano 2004).  They are small aliphatic hydrocarbons which promote efficient DNA 

replication, transcription, and translation and have a net positive charge at physiological pH. 

Bacterial regulation of polyamine uptake, production, and catabolism in highly regulated (Shah 

and Swiatlo 2008). Polyamine uptake systems are best characterized in the E. coli ATP binding 
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cassette (ABC) transporters potABCD (spermidine) and ptFGHI (putrescine).  Both transporters 

consist of an ATPase, a periplasmic binding protein, and 2 proteins to form the cell membrane 

channel. PotE acts as a putrescine-ornithine antiporter and is present in an acid-inducible operon 

with ODC (Wortham, et al. 2007). The biosynthetic pathways for polyamines typically convert 

amino acids via decarboxylation first to putrescine, and then to spermidine, which is often the 

predominant polyamine in bacteria. The 2 best known pathways are: (i) arginine decarboxylation 

to agmatine by speA/adiA, with subsequent conversion to putrescine and urea by agmatinase 

(speB), and (ii) decarboxylation of ornithine directly to putrescine by ODC (speC). Ornithine 

decarboxylase is the key enzyme for putrescine production in E. coli and, along with arginine 

decarboxylase, is inhibited by increased putrescine or spermidine. Spermidine synthesis genes 

speE and speD are in a separate operon from speABC (Shah and Swiatlo 2008; Tabor and Tabor 

1984). Polyamines can activate multiple stress regulons in response to acid, osmolarity change, 

ultraviolet light exposure, ROS, and heat in many organisms. They may also function as free 

radical scavengers and are important mediators for acid resistance in bacteria. In E. coli 

polyamines can bind and stabilize bent DNA, and 90% of spermidine is bound to RNA, giving 

polyamines a potential role in gene transcription and translation regulation (Wortham, et al. 

2007). Polyamines in E. coli also alter outer membrane function by blocking porins, contributing 

to acid resistance (Shah and Swiatlo 2008; Yohannes, et al. 2005).  

In the context of infectious disease, polyamines secreted by bacteria can negatively affect 

host macrophages. H. pylori infection leads to an ineffective macrophage response in part 

through its ability to upregulate macrophage arginase and ODC, leading to increased spermine. 

High spermine levels inhibit macrophage arginine uptake, NOS, and NO production (Bussière, et 

al. 2005; Chaturvedi, et al. 2010). In addition, H. pylori upregulates expression of polyamine 
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oxidase in macrophages, causing increased spermine oxidation and the subsequent formation of 

hydrogen peroxide which leads to mitochondrial damage and apoptosis. The upregulation of  

polyamines has been shown to upregulate virulence factors in Salmonella spp., Shigella flexneri, 

and Streptococcus pneumonia (Shah, et al. 2008; Shah and Swiatlo 2008).   

BACTERIAL UREASE 

Urea is an important nitrogenous waste compound produced in abundance by most 

terrestrial vertebrates and some species of fish. The majority of teleosts are ammoniotelic 

however, meaning they primarily excrete ammonia and relatively little urea due in part to 

ammonia’s lower metabolic cost and high water solubility (Saha and Ratha 2007).  Urea is a 

small, polar, relatively lipid-insoluble compound that is produced by fish through arginine 

breakdown, purine degradation, or synthesis by an ornithine urea cycle (OU-C). The OU-C is 

lacking in most adult fish, including channel catfish, which are ammoniotelic (McDonald, et al. 

2006; Walsh 1998). Despite lacking an OU-C as adults, ammonioteles do have a functional OU-

C during early life stages that is eventually lost, but urea transporters are retained and are 

functional. For many species, the gill and kidney tubules are the primary sites for urea transport 

and excretion (McDonald, et al. 2006). Channel catfish have recently been shown to excrete 

approximately 18% of their nitrogenous waste as urea when housed in freshwater (Altinok and 

Grizzle 2004). 

The regulation of urea transporter expression in fish is not well characterized, but they 

likely share much similarity to mammalian urea transport mechanisms (Bagnasco 2005). 

Although there are virtually no data indicating the presence of urea transporters in macrophages, 

urea can be transported nonspecifically by aquaporin nine, found in leukocytes and in monocyte 

lineage cells (Aharon and Bar-Shavit 2006; Litman, et al. 2009). Interestingly, aquaporin one 
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(AQP1) has been shown to modulate the integrity of pathogen containing vacuoles in mouse 

fibroblast cell lines and HeLa cells infected with S. enterica. Aquaporin one was found to be 

colocalized with pathogen containing vacuoles and when overexpressed in cells, Salmonella 

could proliferate significantly (Radtke and O'Riordan 2008).  

Urea itself can enter cells slowly by diffusion when in high concentrations, but active 

urea transporters function at times of low availability or increased need. In bacteria there are 3 

urea uptake systems in neutralophiles, all of which contribute to acid tolerance; an ABC type 

transporter which requires ATP, and 2 energy independent transporters (Yut and UreI) which 

form membrane channels (Sachs, et al. 2006). The E. ictaluri UreI, present in the urease operon, 

has 53.6% identity to Yut at the protein level, and shares the same tandem sequence signature 

repeats that characterize Yut (Booth 2006). The Yut permease is a 35 kD protein with ten 

predicted transmembrane segments and no homology to other bacterial permeases, but has 21% 

homology to human urea transporter one (Sands, et al. 1997). It is not pH regulated and functions 

as a channel, allowing unrestricted urea entry.  In order to prevent excessive and lethal ammonia 

and carbon dioxide production by urea hydrolysis, Yersinia, as opposed to H. pylori, has a urease 

with an acidic pH optimum like that in E. ictaluri (Booth, et al. 2009). Conversely, the UreI of H. 

pylori is an acid activated permease that functions as a proton gated urea channel that is directly 

regulated by the periplasmic pH.  (Sachs, et al. 2006).  

For many species of medically relevant bacteria (H. pylori, Proteus mirabilis, Klebsiella 

pneumonia, Yersinia spp.) urea is important as a substrate for the enzyme urease (urea 

amidohydrolase), which is a known virulence factor. Bacterial ureases are multiprotein 

complexes encoded by operons. For E. ictaluri the urease operon is organized comparably to E. 

coli and H. pylori, but is most similar to Y.  enterocolitica, being arranged as ureABCEFGD, 
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with separately regulated downstream urea and ammonia transporters (Booth 2006). In 

Klebsiella aerogenes and E. coli, the functional urease apoprotein UreABC assembles into a 

trimer, then complexes with 3 UreDFG accessory protein complexes to enable UreE to deliver 

nickel ions (Ni
2+

) to the enzymatic metallocenter; dissociation of accessory proteins produces the 

active cytoplasmic enzyme (Boer, et al. 2010; Booth 2006; Burne and Chen 2000; Mobley, et al. 

1995). Once activated, urease hydrolyzes urea into ammonia and carbamate; the latter then 

spontaneously decomposes to produce ammonia, bicarbonate, hydroxide ions, and carbon 

dioxide in a process known as the urease reaction (Burne and Chen 2000; Huynh and Grinstein 

2007; Mobley, et al. 1995). Urease in many bacterial species is constitutively  expressed, while 

in others it is synthesized in response to environmental conditions, including nitrogen starvation, 

the presence of urea, or environmental acidity (De Koning-Ward and Robins-Browne 1995; 

Mobley, et al. 1995). 

Urease expression may be tightly regulated in various ways; positive transcriptional 

regulators, two-component signal transduction, and sigma 70 type promoters are described in 

different species (Burne and Chen 2000). In H. pylori, where this is best understood, acid pH is 

sensed by the histidine kinase ArsS, which phosphorylates the response regulator ArsR, an 

OmpR family protein. ArsR binds to the promoters of both transcriptional units of the urease 

operon, ureAB and ureIEFGH (Pflock, et al. 2006). A second sensor kinase, HP0244, responds 

to cytoplasmic acidity by precipitating inner membrane assembly of the active urease. HP0244 

functions in this manner without need of its response regulator HP0703, and without the 

regulation of transcription (Scott, et al. 2010). Additionally, transcription of ureAB is regulated 

by NikR in response to increased Ni
2+

 and acid pH (Pflock, et al. 2006). In Y. 

pseudotuberculosis, OmpR binds to the promoters of the 3 urease transcriptional units, ureABC, 
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ureEF, and ureGD, positively regulates gene expression, and controls urease in a pH dependent 

fashion (Hu, et al. 2009). The expression regulation of urease in E. ictaluri is largely unknown; 

no NikR has been found and there is limited identity to an AraC-type regulator found in E. coli. 

Furthermore, it is still unclear how many transcriptional units are present in the operon (Booth 

2006). 

The contribution of urease to bacterial acid resistance and virulence is potentially broad, 

in that bacteria often find themselves in acidic and hazardous conditions both extracellularly and 

intracellularly, where pH regulation is necessary for survival. Firstly, the ammonia that is 

produced sequesters protons by forming ammonium in biological systems, functioning as a 

powerful acid neutralizer. Secondly, carbon dioxide produced by urease can be converted to 

bicarbonate (HCO
-
3), which is an important cytoplasmic and periplasmic buffer (Huynh and 

Grinstein 2007). Thus, within phagosomes, alteration of pH (prevention of acidification) by the 

bacterial urease products can prevent optimal microbicidal activity, phagosome maturation, and 

ultimately may prevent phagolysosome formation (Huynh and Grinstein 2007).  

In H. pylori a model (Figure 1.3) has been proposed to explain its acid acclimation 

ability, so called because H. pylori can maintain periplasmic pH at 6.1 and cytoplasmic pH near 

neutral, enabling not only survival, but growth in pH 2.5 stomach acid. Acid tolerance or 

resistance mechanisms in other neutralophiles (AR systems) are only able to maintain 

cytoplasmic pH between 4 and 5 and cannot alter periplasmic pH (Marcus, et al. 2005; Scott, et 

al. 2010). In this model, urea diffuses through an outer membrane porin and through the inner 

membrane channel, UreI, in acidic periplasmic conditions (pH < 6.2). Urease is assembled by 

HP0244 on the cytoplasmic side of the inner membrane during cytoplasmic acidity, and converts 

urea to ammonia and H2CO3 (carbonic acid). The former combines with protons in the cytoplasm 
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Figure 1.3. Model of the mechanism of action of UreI and HP0244 in H. pylori. UreI transports 

urea at acidic periplasmic pH (pH < 6.2) and increasing urease activity, forming H2CO3 and 2 

ammonia. Carbonic acid is converted to CO2 in the cytoplasm by β-carbonic anhydrase and 

enters the periplasm, where it is converted by -carbonic anhydrase to HCO3
+
, enabling 

maintenance of periplasmic pH at 6.1. Ammonia exits via the bilayer and UreI, and NH4
+
 is 

formed from the H
+
 generated by -carbonic anhydrase and from protons entering from the 

medium. The NH4
+
 generated in the cytoplasm exits via UreI, or perhaps via NH3 + H

+
 exit. 

Acidification of the cytoplasm activates HP0244, which in turn allows assembly of the 

apoenzyme UreA/UreB with the nickel insertion pairs, UreE/UreG and UreF/UreH, activating 

urease at the membrane, providing local generation of carbonic acid and ammonia. (Scott, et al. 

2010). 
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to form NH4
+
 (ammonium), and the latter is converted to CO2 by β-carbonic anhydrase. 

Ammonium, carbon dioxide, and ammonia can then exit through UreI to the periplasm. In the 

periplasm, carbon dioxide is converted to bicarbonate by α-carbonic anhydrase where it 

functions as a periplasmic buffer (Scott, et al. 2010). 

Such a situation may occur in murine macrophages infected with H. pylori, which evades 

killing by altering phagosome maturation through megasome formation, which is dependent on 

urease expression (Schwartz and Allen 2006). Along these same lines, M. bovis BCG uses urease 

mediated phagosome pH neutralization to disrupt MHC-II endocytic trafficking in macrophages, 

thereby disrupting an important aspect of adaptive immunity (Sendide, et al. 2004).   

The urease operon of E. ictaluri was discovered during an STM study in channel catfish, 

where a UreG and UreF mutant were found to be highly attenuated (Thune, et al. 2007). 

UreABCEFGD and both downstream transporters each have sigma 70 promoters, suggesting that 

UreA is translationally coupled to UreBCEFGD while the transporters are single gene 

transcripts. UreC contains 8 conserved histidine residues that form the essential nickel binding 

metallocenter at position 320, marking the active site. Additionally, E. ictaluri has a 

phenylalanine residue 7 sites upstream from histidine 320, followed by asparagine; both of which 

are associated with optimal activity at low pH like that seen in Y. enterocolitica (Booth 2006).  

UreG is a highly conserved accessory protein and its role is generally thought to be GTP 

hydrolysis in concert with urease activation, involving the insertion of 2 nickel ions into the 

active site of UreC (Mobley, et al. 1995; Zambelli, et al. 2009). Purified UreG proteins in other 

bacteria (K. aerogenes, M. tuberculosis, H. pylori) contain motifs found in GTPases, in particular 

a P-loop motif (GXGKT) which is also present in E. ictaluri. This region is vital for in vitro 

activation of the urease complex. UreG binds both nickel and UreE, suggesting that nickel ions 
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are transferred from UreE to UreG to UreD to the active site (Boer, et al. 2010). The ureG E. 

ictaluri mutant was characterized further in a series of in vitro and in vivo experiments (Booth 

2006). In wild type lysates, the presence of E. ictaluri UreA, UreC, and UreG at neutral pH 

suggests that expression is neither transcriptionally nor translationally regulated. In broth 

cultures, E. ictaluri ΔureG was able to survive at pH 3 for 2 hours, similar to wild type, 

indicating that E. ictaluri uses other metabolic pathways for acid resistance. However at pH 5 in 

the presence of urea, wild type E. ictaluri is able to grow and can produce significant amounts of 

ammonia such that environmental pH is elevated to over 7. This effect is absent in the ΔureG 

strain. Based on ammonia production the pH optimum of the E. ictaluri urease is between 2 and 

3, while expression begins at pH 5. In HKDM, the ΔureG strain was able to invade cells in 

similar numbers to the wild type, but could not replicate. Similarly, in vivo the ΔureG strain 

could invade the pronephros like wild type, but could not replicate nor persist (Booth, et al. 

2009). 

Aside from its properties in pH regulation, ammonia can also contribute to bacterial 

pathogenicity directly, or via highly toxic derivatives. Ammonia is a highly water soluble gas 

which is protonated to form ammonium and has a NH3/NH4
+
 pKa of 9.2, which means that at 

physiologic pH the ratio of NH3/NH4
+
  is one to 100; this has biological relevance where 

ammonia is thought to contribute as a buffer.  Adverse effects of ammonia accumulation include 

the alteration of various biochemical reactions by mass-action effects and the competition of 

ammonium with K
+
 and Na

+
 transmembrane transport pathways. Ammonia is highly soluble in 

biological systems and is thought to travel via aqueous channels across cell membranes (Walsh 

1998).  The interaction of H. pylori’s urease, urea, and leukocyte myeloperoxidase can lead to 

monochloramine production, which is able to induce DNA damage. Additionally, ammonia and 
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ammonium hydroxide are directly cytotoxic and are inhibitory to normal immune function 

(Burne and Chen 2000).  

In the model for E. ictaluri in the channel catfish, the naive monocyte or non-activated 

macrophage of the pronephros is the assay model for important reasons. Firstly, the pronephros 

is one of the first organs to be infected by E. ictaluri, where bacteria multiply rapidly in spite of 

the fact that the organ is almost entirely hematopoietic and has a very high myeloid cell 

population (Grizzle and Rogers 1976). Secondly, it is known that mature activated macrophages, 

like those elicited from the standard peritoneal lavage, are highly capable of phagocytosing and 

eliminating E. ictaluri (Shoemaker, et al. 1997). Given the fact that E. ictaluri can survive and 

replicate in naive HKDM, it is likely that E. ictaluri has found a replicative niche where 

exploitation of the macrophage is optimal. The use of naive macrophages, or those that are not 

previously exposed to the typical molecules (LPS, IFN-γ) known to activate macrophages, is 

standard in the following chapters.  

From the preceding discussion, it should be understood that at present, the understanding 

of the molecular mechanisms regarding channel catfish (and almost all fish for that matter) 

monocytes and macrophages in the context of intracellular bacterial pathogens lags behind that 

of murine models by a substantial margin. With this in mind, the investigation of the model must 

begin at its foundations, being careful not to assume too much from investigations on the 

activation stages of macrophages in other species. Aside from the understanding that E. ictaluri 

has an acid activated urease that is of the utmost importance to intracellular survival and an AdiA 

that is of similar overall necessity to virulence, important gaps in the knowledge must be filled 

in.  
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HYPOTHESES 

 The following chapters follow a course of investigation aimed at the validation of several 

primary model assumptions. Of primary importance is the concept that E. ictaluri is able to alter 

the phagosomal pH to a less acidic or non-acidic range to facilitate replication. Of no less 

importance is the idea that there is an active interaction between the bacterium and the 

macrophage over the fate of intracellular arginine, culminating in the success or failure of the 

macrophage to eliminate E. ictaluri. The overall hypothesis is that E. ictaluri utilizes arginine 

and its metabolites for virulence in HKDM. The subhypotheses are these: 1) E. ictaluri is able to 

alter the HKDM phagosomal pH; 2) the E. ictaluri urease, at least one of the arginine 

decarboxylases, whether AdiA or SpeA, and possibly agmatinase are vital to this pH alteration; 

3) channel catfish HKDM NO production, arginase function, and urea production are important 

for E. ictaluri pathogenesis. 

 The second chapter will describe the development of methods to assess intraphagosomal 

pH in E. ictaluri infected HKDM and the application of this method to E. ictaluri mutants that 

lack urease, AdiA, SpeA, or agmatinase function. This is the first study to show definitive 

evidence that E. ictaluri is able to maintain a neutral phagosome pH by using its urease and 

AdiA. The third chapter will focus on measuring NO production, urea production and arginase 

function in E. ictaluri infected HKDM.  
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CHAPTER 2 

MODIFICATION OF CHANNEL CATFISH (ICTALURUS PUNCTATUS) 

MACROPHAGE PHAGOSOMAL PH BY EDWARDSIELLA ICTALURI 

INTRODUCTION 

Edwardsiella ictaluri is a Gram-negative rod-shaped bacterium and is the etiological 

agent of enteric septicemia of channel catfish (Ictalurus punctatus Rafinesque, 1818), otherwise 

known as ESC (Hawke 1979). This disease occurs commonly throughout channel catfish 

production areas and is a leading cause of mortality with substantial negative economic impact 

throughout the industry (USDA 2009a; USDA 2009b). ESC presents most commonly as an acute 

septicemia with a propensity for bacteria to infect the pronephros (head kidney), but also the 

liver, spleen, and intestine (Baldwin and Newton 1993; Hawke, et al. 1998). This is of particular 

relevance because E. ictaluri can enter, survive, and replicate in the phagosomes of pronephros 

derived macrophage (HKDM) primary cell cultures, making it a facultative pathogen of 

professional phagocytes (Booth, et al. 2006).  

Using signature tagged mutagenesis (STM), (Thune, et al. 2007) recently identified 

several E. ictaluri virulence related genes using a live catfish challenge model. Of interest was 

the discovery of a urease operon and an arginine decarboxylase (AdiA) that were involved in 

virulence in vivo, suggesting that arginine metabolism is a vital aspect of this disease’s 

pathogenesis in catfish. E. ictaluri, however, is not known to be urease positive in standard 

biochemical tests, so the nature and function of this urease was uncertain. Further investigation 

found that this urease is acid activated, has optimal activity at pH 2-3, can alter environmental 

pH from acid to neutral through ammonia production, and is necessary for bacterial replication in 

HKDM, but not for infection or survival (Booth, et al. 2009).  
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The utilization of urea produced from arginine for urease function in microbial 

pathogenesis is typified by Helicobacter pylori, a major cause of chronic gastritis, peptic ulcers, 

and gastric cancer worldwide. It is an impressively adapted pathogen that normally inhabits what 

was once thought uninhabitable; the human stomach, where daily pH ranges from 1 to 5 (Pflock, 

et al. 2006). Arginine is an essential amino acid for H. pylori, which uses bacterial arginase 

(RocF) to convert arginine into urea. Subsequently, the H. pylori urease converts urea into 

ammonia, which is required for successful macrophage infection (Allen 2007; Schwartz and 

Allen 2006). Edwardsiella ictaluri may utilize arginine in a similar fashion, using AdiA rather 

than arginase. Arginine decarboxylases can convert arginine to agmatine, which in turn can be 

converted to putrescine and urea by agmatinase.  

Urea is utilized by urease to produce ammonia, bicarbonate, and carbon dioxide via the urease 

reaction (Burne and Chen 2000). Ammonia itself can act as a proton sink and bicarbonate is a 

cytoplasmic/periplasmic buffer; both of which can be utilized by bacteria for acid resistance. 

This has important implications to bacteria within the normally acidic macrophage phagosomal 

environment, where the ability of pathogens to alter pH can permit survival, intracellular 

replication, and disease progression (Huynh and Grinstein 2007). It has been suggested that E. 

ictaluri may use urease to alter phagosomal pH by ammonia production, thus preventing 

digestion and the activation of acid hydrolases, resulting in an environment conducive to 

replication (Booth, et al. 2009). In addition to AdiA, E. ictaluri has a second arginine 

decarboxylase, SpeA, and an agmatinase (SpeB). These data allowed development of a 

hypothetical model, where neutralization of phagosomal pH in HKDM by E. ictaluri occurs 

through the metabolism of arginine to urea, agmatine, and ammonia by bacterial arginine 

decarboxylase, SpeB, and urease (Fig 2.1). While it is known that E. ictaluri can use urease to  
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Figure 2.1.  Proposed model for arginine utilization by E. ictaluri in HKDM phagosomes. 

Arginine is utilized by arginine decarboxylase (AdiA or SpeA) to produce agmatine. Agmatine is 

consumed by agmatinase (SpeB), providing urea to urease. Urease converts urea to ammonia, 

which consumes protons and alkalinizes E. ictaluri cell membranes and phagosome pH. 
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produce quantities of ammonia sufficient to increase environmental pH, and that this urease is 

necessary for replication in HKDM (Booth, et al. 2009), it has not been definitively shown that 

E. ictaluri uses its urease to alter phagosomal pH in HKDM.  Furthermore, although an arginine 

decarboxylase mutant (ΔAdiA) was attenuated in vivo (Thune, et al. 2007) it has not been 

determined that AdiA is involved in regulation of phagosome pH. Consequently, the primary 

objectives of this study were to develop methods to evaluate the intraphagosomal pH of wild 

type E. ictaluri in HKDM and to use urease, AdiA, SpeA, and SpeB gene mutants to investigate 

their role in the model. 

MATERIALS & METHODS 

Bacterial Strains and Growth Conditions. Bacterial strains and plasmids are listed in Table 

2.1. Unless otherwise noted, Escherichia coli was grown in Luria-Bertani broth (LB) at 37°C and 

E. ictaluri  strains were grown in porcine brain heart infusion broth or LB-0.35% Mannitol (LB-

Man) at 28°C. A defined minimal medium for E. ictaluri was used with minor modifications 

stated where pertinent (Collins and Thune 1996). Strain CC118λpir of E. coli was used to 

maintain the delivery plasmids and to isolate plasmid DNA prior to introduction into E. coli 

SM10λpir, the conjugation strain. Antibiotics were used in the following concentrations as 

needed: kanamycin (Km) at 50 μg ml
-1

, colistin (Col) at 10 μg ml
-1

, and ampicillin (Amp) at 200 

10 μg ml
-1

. When necessary, E. ictaluri CFU numbers were determined by making triplicate 10-

fold serial dilutions in sterile phosphate buffered saline and drop plating 20μl aliquots on 

Trypticase soy agar plates supplemented with 5% defibrinated sheep blood for colony counting.  
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 TABLE 2.1. Bacterial strains and plasmids used in Chapter 2  

Strain or plasmid Description Source or reference 

Escherichia coli   

XL1-Blue MRF  (ΔmcrA)183 Δ(mcrCB-hsdSMR-mrr)173 end A1 supE44 thi-1 recA1 gyrA96 relA1 

lac [F’ proAB lacIqZ M15 Tn5 (Kanr)] 

 

Stratagene, La Jolla 

CA 

CC118 λpir Δ(ara-leu) araD ΔlacX74 galE galK phoA20 thi-1 rpsE rpoB argE (Am) recA λpir 

lysogen 

De Lorenzo 1990 

SM10 λpir (aka Cold Spring Harbor TSM40) C600 derivative thi1 thr1 leuB6 supE44 tonA21 

lacY1 recA-::RP4-2Mu KanR 

De Lorenzo 1994 

   

Edwardsiella ictaluri   

93-146 WT E.ictaluri strain isolated in 1993 from moribund channel catfish in a natural 

outbreak  of ESC on a commercial farm 

Louisiana Aquatic 

Diagnostic 

Laboratory 

ΔspeA::km mutant 93-146 strain with nucleotides 585-1505 of speA deleted and a kanamycin resistance 

cassette inserted 

This paper 

ΔspeB::km mutant 93-146 strain with nucleotides 55- 779 of speB (agmatinase) deleted and a kanamycin 

resistance cassette inserted 

This paper 

ΔureG::km mutant 93-146 strain with an STM tag L/M insertion in the ureG gene Thune et al. 2007 

ΔadiA::km mutant 93-146 strain with an STM tag L/M insertion in the adiaA gene Thune et al. 2007 

   

Plasmids   

pBluescript SK (-) Phagemid cloning vector Stratagene, La Jolla 

CA 

pBBR1-MCS4 Plasmid cloning vector Kovach 1995 

pUT-miniTn5Km-

MCS 

pUT-miniTn5Km2 with multiple cloning site containing EcoRV, XbaI, and ApaI 

restriction enzyme sites 

Thune et al. 2007 

pRE107 Plasmid suicide vector, pGP704 derivative Edwards 1998 
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SPF Channel Catfish. Channel catfish egg masses were obtained from a commercial producer 

with no history of ESC outbreaks. The eggs were disinfected with 100 ppm free iodine and 

hatched in closed recirculating systems in the specific pathogen free laboratory at the Louisiana 

State University School of Veterinary Medicine.  Holding systems consist of four 350 liter round 

fiberglass tanks connected to a 45 liter biological bead filter (Aquaculture Systems Technologies, 

New Orleans, LA, USA). Water temperature was maintained at 28 ± 2°C, and water quality 

parameters (including total ammonia nitrogen, total nitrate, pH, hardness, and alkalinity) were 

determined 3 times per week using a Hach kit (Hach company, Loveland, CO, USA). Water 

quality was adjusted to maintain optimal conditions. Fish were reared on commercial catfish feed 

at 2% body weight per day until used for HKDM harvest at one to 1.5 kg. 

Generation and Edentification of E.ictaluri Mutants. The procedure used to produce 

insertion/deletion mutations of the genes of interest is depicted in figure 2.2 using the primers 

listed in table 2.2. Briefly, 5’ and 3’ target sequences were amplified with primers P1-P4, using 

primer linkers to add EcoRI cut sites in P3 and P4. Amplicons were digested with EcoRI and 

ligated to one another. This product was used as a template for primers P1 and P2 to produce a 

gene deletion with an internal EcoRI site. This construct was digested and ligated into 

pBluescript using SalI and SacI sites in the P1 and P2 primers. A Tn5 Km resistance cassette 

(km) was cloned from pUT-miniTn5Km-MCS and inserted into the EcoRI site of the ΔureG::km, 

ΔadiA::km, ΔspeA::km, and ΔspeB::km constructs. These were excised from pBluescript using 

SalI and SacI and the constructs were ligated into pRE107, a suicide vector for E. ictaluri 

encoding the sacB1 gene, which is lethal to Gram-negative bacteria in the presence of sucrose 

(Edwards, et al. 1998). The vectors were conjugated into E. ictaluri and mutagenesis proceeded  
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Figure 2.2. Outline of construction of gene knockouts with a kanamycin resistance cassette 

insertion. 
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 TABLE 2.2. Primers used for mutagenesis in Chapter 2  

Name Primer Sequence 5’-3’ Description 

Kan757 5’-TATATAGAATTCGAAGCCCTGCAAAGTAAA-3’ Primers for kanamycin 

Kan 1635 5’-TATATAGAATTCGCTCAGAAGAACTCGTCAA-3’ 
resistance cassette with 

EcoRI sites 

   

SpeB P1 5’-ATATATGTCGACTGGGCAACATGCATAACCTGTTCG-3’ ΔspeB::km mutant 

SpeB P2 5’-ATATATGAGCTCAGAACTCTACGACCTGCAACAGGA-3’  

SpeB P3 5’-ATATATGAATTCACCAAAGGCGTTGGATACCAGAGA-3’  

SpeB P4 5’-ATATATGAATTCTGGCCTGCAGGATCTGGATATTGT-3’  

   

SpeB shoulder FW 5’-ATTCGGATGGCACCATCGATCACT-3’ Primers for verification 

SpeB shoulder RV 5’-GTCATTACCCAGTGGAACACCGAT-3’ of construct 

   

SpeA P1 5’-ATATATGTCGACGCCCGTGTCTGATTTGATTGCACA-3’ ΔspeA::km mutant 

SpeA P2 5’-ATATATGAGCTCAGTTCGTTTGGCAGTGCATTTCGC-3’  

SpeA P3 5’-ATATATGAATTCTAGCCATTGCAGACGATCACGCTA-3’  

SpeA P4 5’-ATATATGAATTCTGGCCGATAAGCTGTACGTGAACT-3’  

   

SpeA shoulder FW 5’-ATGGCTTGGGTGTACCTCAGGATT-3’ Primers for verification 

SpeA shoulder RV 5’-ACCAAAGGCGTTGGATACCAGAGA-3’ of construct 

Underlined sequences are linkers incorporated into the primers used for cloning. 
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by allelic exchange. Conjugation cultures were plated onto LB-Man–Amp-Col agar to select for 

single crossover events (integration of the pRE107- Δ::km constructs), and resultant colonies 

were grown on LB-Man-Col agar and then LB-Man-Col-sucrose (5%) agar to select for a second 

crossover and removal of the pRE107 backbone. Appropriate recombinants were selected for an 

Amp
s
 phenotype and verified by PCR and DNA sequencing. The ΔureG::kan and ΔadiA::kan 

mutants (234AB and 84LM) were generated by STM and verified in a previous study (Thune, et 

al. 2007). 

Labeling Bacteria/ Oregon Green/LysoTracker Red.  Oregon Green 514 carboxylic acid 

succinimidyl ester (OG) and LysoTracker Red DND-99 1mM (LTR) were acquired from 

Invitrogen, Carlsbad, CA, USA. Staining of bacteria by OG was according to a previously 

described protocol (Porte, et al. 1999).   Briefly, late log phase cultures (10
9
 bacteria/ml) were 

washed twice in sterile saline and suspended in 1 ml of saline with 0.05% Tween 80. Ten 

microliters of 10 mg/ml OG (reconstituted in dimethylsulfoxide) was added and the sample was 

vortexed briefly. Incubation for 30 minutes at 4°C in the dark was followed by centrifugation 

and the addition of Tris-HCl (pH 8.3) to 100 mM final concentration. Resuspension of bacteria 

and a second 4°C incubation for 15 minutes was followed by 2 washes in saline prior to 

opsonization with autologous channel catfish serum for 30 minutes at room temperature. 

Opsonized bacteria were then used for infection experiments. Killed bacteria were produced by 

washing bacteria twice in saline, followed by incubation at 70°C for 30 minutes; killing was 

verified by plating on blood agar.  LysoTracker Red was diluted according to manufacturer’s 

directions and added to HKDM media at a 30 nM concentration 30 minutes prior to infection. .  

LysoTracker Red at this concentration was maintained in the culture media until it was changed 

to saline for microscopy. 
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Infection and Intracellular Viability of Mutant and OG Stained E.ictaluri in HKDM. A 

standard gentamicin survival assay using HKDM was used as described by (Booth 2006) to 

evaluate the ability of wild type E. ictaluri (WT), ΔadiA::km, ΔspeA::km, and ΔspeB::km 

mutants, or OG stained WT to enter, survive, and replicate in HKDM . Briefly, adult channel 

catfish were euthanized via overdose with tricaine methanesulfonate (200 mg/liter) and bled via 

phlebotomy to exsanguination. The pronephros was removed using sterile procedure and 

macerated in a tissue sieve (stainless steel mesh 280 and 140 µm) to collect free cells. Cell 

viability was determined by Trypan blue exclusion (Booth 2006). Dissociated cells were 

suspended to a final concentration of 1x10
7
 live cells/ml in channel catfish macrophage medium 

(CCMM) consisting of catfish RPMI [(RPMI 1640 sans phenol red & L-glutamine, Lonza, 

Walkersville, MD, USA) containing 1x glutamine substitute (GlutaMAX –I CTS, Gibco, 

Invitrogen Corporation, Carlsbad, CA,USA)], 15 mM HEPES buffer (GIBCO)], with 0.18% 

sodium bicarbonate solution (GIBCO), 0.05 mM 2-beta-mercaptoethanol (Sigma Chemical Co., 

St.Louis, MO, USA), and 5% heat inactivated pooled channel catfish serum. Media was diluted 

to a tonicity of 240 mosmol/kg H2O by adding 1 part sterile deionized/distilled water.  One ml of 

cell suspension was added to each well of a 24 well plate (Biocoat poly-d-lysine plates, Becton 

Dickinson Labware, Bedford, MA, USA), allowed to adhere for 16 hours (overnight) at 28°C 

with 5% CO2, and washed 3x with catfish RPMI before returning to fresh CCMM for infection. 

HKDM wells were infected at a multiplicity of infection (MOI) of 1 bacterium: 10 HKDM using 

bacteria previously opsonized for 30 minutes in autologous serum. Wells were then centrifuged 

(400 g for 5 minutes) to synchronize infection and incubated for 30 minutes. One hundred μg/ml 

gentamicin was added for one hour to kill extracellular bacteria. Cells were washed once in 

catfish RPMI and placed in CCMM with a static dose of  0.5 μg/ml gentamicin. After 0, 4, 8, and 
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10 hours post infection at 28°C with 5% CO2, HKDM were washed with RPMI and lysed by 

adding 100 μl of 1% Triton X-100 (Fisher Scientific, Fair Lawn, NJ,USA). Media was serially 

diluted and plated on blood agar to determine increase from timepoint zero. 

Fluorescent Microscopy for Vacuolar pH Determination. The pH sensitivity of OG 

fluorescence in the weakly acidic range coupled with its fluorescence characteristics (λex=510 

peak excitation, λex=450 insensitive) allows ratiometric pH estimation in cellular vacuoles 

(Invitrogen).  When exposed to 510 nm light, OG fluorescent brightness varies with pH, while at 

450 nm it is relatively nonreactive. The microscope used exposes OG stained bacteria to 510 nm 

and 450 nm ultraviolet light in rapid succession and a ratio of the measured fluorescence for any 

specified object at 510 nm to that at 450 nm can be generated by the software package. Such 

ratios can then be used for comparative purposes. HKDM were harvested and cultured as 

described above for the gentamicin assay, except 1x10
7 

cells were plated onto 35 mm poly-d-

lysine coated, No.1.5 borosilicate German glass bottom dishes, (MatTek, Ashland, MA, USA). 

HKDM were infected with bacteria at a 10:1 MOI, centrifuged, allowed to settle for 10 minutes, 

then washed in catfish RPMI 3 times and placed in CCMM with a static gentamicin dose (0.5 

μg/ml). Cells used to determine pH calibration data with live imaging were incubated in 

ionophore calibration solutions while cells used to measure experimental data were incubated in 

saline for microscopic examination. For calibration, infected HKDM were incubated in 140 mM 

KCl, 1 mM MgCl2, 0.2 mM EGTA, 20 mM MES, adjusted to pH 4, 5, and 6 with NaOH and 

containing 5 μg/ml nigericin and 5 μM monensin to collapse pH gradients across membranes 

(Demaurex and Grinstein 2006). In situ calibration curves were made for each bacterial strain 

experiment for each day and each experiment was repeated 3 times, each on different days with 

different fish and bacterial cultures. Using the same dish for all pH calibrations, HKDM were 
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bathed for 8 minutes in each solution and multiple images were acquired using a dual exciter 

filter (Chroma) to generate ratiometric data before changing to the next pH solution. For 

experimental data a separate cell dish was incubated in saline and was imaged similarly, 60-80 

minutes post infection. For each image, background was identified as the grey/black level 

corresponding to areas devoid of cells and biological material and was subtracted from the image 

prior to ratio data gathering. Individual bacteria were chosen manually from images according to 

proximity within the confines of the HKDM cell membranes, identifiability as bacteria (shape, 

size), being separate from other highly reactive cellular fluorescent material (including tightly 

clustered bacteria or superimposed structures), and being in relative focus. A ratio was thus 

generated for each bacterium by the computer software.  Approximately 50-100 bacteria were 

chosen for each group for each experiment (pH 4, 5, 6 and experimental groups).  

For LTR, cells were processed as for OG, except 30 nM LTR was added to the dish 60 

minutes prior to infection and remained until immediately prior to imaging. An additional filter 

(Zeiss 64 HE) was used for the appropriate ultraviolet range. One hundred bacteria were counted 

from images taken at 60 minutes post infection, and the proportion of those stained red was 

assessed by contrast and brightness adjustments for the appropriate channel. 

 Cells were visualized with a Zeiss Observer.Z1 microscope with CO2Module S and 

TempModule S (Carl Zeiss MicroImaging GmbH, Jena, Germany) using a 63X oil objective in a 

stage insert (Heating Insert P, PeCon GmbH, Erbach, Germany) equipped to supply humidified 

CO2 and maintain temperature at 5% and 28°C, respectively. Illumination was provided by a 

Lambda DG-4, 175 Watt Xenon arc lamp (Sutter Instrument Co., Novato, CA, USA). Cubes 

used are as follows: Chroma 71001 dual exciter (green: 440/20, 495/10), 535/25 emitter (Chroma 

Technology Corporation, Bellows Falls, VT, USA) and Zeiss filter set 64 HE exciter 587/25, 
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emitter 647/70 (red: Carl Zeiss, Germany).  Digital images were captured using Zeiss 

AxioVision software version 4.8.1  and analyzed with the Physiology Acquisition Module (Carl 

Zeiss, Germany).  

Statistical Analysis. Data for gentamycin survival assays in HKDM were determined by 

analysis of variance (ANOVA) using the General Linear Methods Procedure (Proc GLM; SAS 

9.3, SAS Institute Inc. 2011). Fold increase was determined by dividing the CFU/well from 

timepoints past time zero by the mean CFU/well at time zero for each strain. Mean fold 

replication was then calculated with standard errors of the means. When the model indicated 

significance at P≤0.05, a least square means procedure was used for pairwise comparison of 

interaction effects. 

RESULTS 

Generation of ΔspeA::km and ΔspeB::km Mutants. Mutations in E. ictaluri ΔspeA::km and 

ΔspeB::km were made by allelic exchange (Figure 2.2). An internal portion was deleted and a 

kanamycin (Km) resistance gene cassette was inserted, yielding ΔspeA::km and ΔspeB::km E. 

ictaluri. Both speA and speB are present sequentially on the same DNA strand, separated by 210 

bases, and are oriented in the same direction with separate -10 and -35 putative promoter sites. 

There are no known genes associated with them on either strand, so mutation does not cause 

polarity issues. Mutation of speA resulted in removal of amino acids 195-502 from the sequence, 

producing a truncated protein of 673 amino acids, with the central 307 amino acids replaced by a 

299 amino acid Km cassette, leaving native shoulders of 195 and 179 amino acids. Mutation of 

speB resulted in removal of amino acids 18-260 from the sequence, producing a 366 amino acid 
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protein with the central 242 amino acids removed and replaced by a 303 amino acid Km cassette, 

leaving native shoulders of 18 and 45 amino acids. 

Intracellular Replication in Channel Catfish Macrophages. Survival and replication of OG 

stained WT, ΔadiA::km, ΔspeA::km, and ΔspeB::km versus WT in channel catfish HKDM,  as 

determined by the gentamycin survival assay, are presented in Figures 2.3, 2.4, and 2.5, 

respectively. The WT strain and OG stained WT increased similarly at 4, 8 and 10 h 

postinfection and fold increase in replication was not significantly different at any timepoint 

(Figure 2.3). The ΔadiA::km mutant showed significantly attenuated replication in HKDM 

compared to WT at 8 and 12 hours (Figure 2.4). Disruption of speA or speB, like OG stained 

WT, did not have a significant effect on initial uptake or replication of E. ictaluri in HKDM 

compared to WT (Figure 2.5). 

In vivo Determination of Bacterial Membrane pH in HKDM. Staining of bacteria enabled 

visualization within macrophages (Figure 2.6). OG staining clearly outlined bacterial 

membranes. In addition, multifocally, OG staining was diffuse within irregular vacuoles and 

phagosomes; such organelles often contained bacteria or bacterial remnants. In LTR stained 

HKDM, bacteria that experienced environmental acidification were red/pink (Figure 2.7). These 

data show acidification and degradation/killing of E. ictaluri in HKDM phagosomes. 

WT (E. ictaluri). The pH of vacuoles containing WT at 1 hour post-infection is represented in 

Figures 2.8 and 2.9. For the majority of WT, pH was significantly higher than pH 6. In figure 

2.8, it can be seen that there is a relatively wide spread of data in the Exp group, indicating that 

WT in HKDM experience a very broad pH range, in some cases well above pH 6 but also equal 

to pH 4. Because infection was synchronized, this suggests that there is marked heterogeneity in  
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Figure 2.3. Intracellular survival and replication of WT and OG stained WT (OG) in channel 

catfish HKDM. WT and OG increased approximately 20 fold by 10 hours post infection. Results 

for WT and OG were not significantly different from one another at any timepoint (P ≤ 0.05). 

Results are presented as means and standard errors of the means for 3 wells per treatment and are 

representative of 3 replicate experiments. 

 

Figure 2.4. Intracellular survival and replication of WT and ΔadiA::km in channel catfish 

HKDM. WT increased approximately 10 fold by 8 and 12 hours post infection while ΔadiA::km 

replication did not increase significantly. (*) indicates P ≤ 0.01 versus WT 4 hour and all 

ΔadiA::km timepoints. Results are presented as means and standard errors of the means for 3 

wells per treatment and are representative of 2 replicate experiments. 
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Figure 2.5. Intracellular survival and replication of WT and ΔspeA::km and ΔspeB::km in 

channel catfish HKDM. WT and mutants increased approximately 7-10 fold by 10 hours post 

infection. Results for WT and mutants were not significantly different from one another at any 

timepoint (P ≤ 0.05). Results are presented as means and standard errors of the means for 3 wells 

per treatment and are representative of 3 replicate experiments. 
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Figure 2.6. Photomicrographs of live HKDM infected with WT E. ictaluri, 1 hour post infection 

stained with Oregon green and LysoTracker Red. (A) Individual macrophages (red arrow) 

contain numerous OG stained bacteria. In close association, but distinct from WT, are multiple 

pink vacuoles containing LTR, which indicates acidification. Three light channels were used; 

Nomarski (white), green, and red. (B) Same image as A, with only the green channel. White 

arrow shows individual bacteria outlined by the OG staining procedure. 
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Figure 2.7. Photomicrograph of live HKDM infected with WT E. ictaluri, 1 hour post infection 

stained with LTR. Two macrophages are present, each containing bacteria. LTR fluoresces red 

when acidified. White arrows show bacteria in acidified environments. Additionally, several 

varisized irregular vacuoles show acidification. 
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Figure 2.8. Intracellular determination of vacuolar pH in E. ictaluri infected channel catfish 

HKDM one hour post infection using fluorescent bacterial cell membrane staining (box-whisker 

plots). Infecting strains are designated as: wild type (WT), heat killed WT (WTD), ΔureG::km, 

ΔadiA::km, ΔspeA::km, and ΔspeB::km. The box-whisker plots showing data range (whiskers), 

interquartile range (the mid 50% of data points, in blue), and the mean (designated +). Vacuolar 

pH at 4, 5, and 6 represents the artificial manipulation of phagosome pH by using ionophore 

calibration solutions to generate fluorescent ratio values of intraphagosomal bacteria at pH 4, 5, 

and 6. “Exp” represents the measurement of fluorescent ratios of bacterial cell membranes when 

macrophages are bathed in saline and phagosomal pH is not artificially altered. Ratio is 

generated by microscope software for relative comparisons and is based on the fluorescence 

characteristics of OG 514. Results are combined from 3 replicate studies. 
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Figure 2.9. Intracellular determination of vacuolar pH in E. ictaluri infected channel catfish 

HKDM one hour post infection using fluorescent bacterial cell membrane staining (bar graphs). 

Infecting strains are designated as: wild type (WT), heat killed WT (WTD), ΔureG::km, 

ΔadiA::km, ΔspeA::km, and ΔspeB::km. The same data as figure 6, presented as means and 

standard errors of the means (bars). Different letters atop columns designate significant 

differences in means. Vacuolar pH at 4, 5, and 6 represents the artificial manipulation of 

phagosome pH by using ionophore calibration solutions to generate fluorescent ratio values of 

intraphagosomal bacteria at pH 4, 5, and 6. “Exp” represents the measurement of fluorescent 

ratios of bacterial cell membranes when macrophages are bathed in saline and phagosomal pH is 

not artificially altered. Ratio is generated by microscope software for relative comparisons and is 

based on the fluorescence characteristics of OG 514. Results are combined from 3 replicate 

studies. 
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successful phagosome pH regulation by E. ictaluri, possibly based on the relative maturation of 

the macrophage. LTR staining of bacteria supported OG data, finding that only 22% had 

acidified (Table 2.3). 

Dead WT E. ictaluri. By one hour post infection, the majority of bacteria had been digested, 

based on the abundant presence of varisized diffusely stained OG filled vacuoles and irregular 

OG stained bacteria remnants. Of the dead bacteria that were readily recognizable, they were 

often closely aggregated into large bundles within phagosomes. The majority of vacuoles 

containing dead bacteria had a pH between 4 and 5, which is in agreement with other studies 

concerning typical phagolysosome acidity (Mukherjee and Maxfield 2009). Likewise, LTR 

staining found that the vacuoles containing dead bacteria were acidified (Table 2.3). Bacterial 

killing was verified by plating bacterial stock. 

E. ictaluri mutants. The pH experienced by ΔureG::km in macrophages at 1 hour post infection 

is represented in Figures 2.8 and 2.9. Unlike WT, the pH of vacuoles containing ΔureG::km was 

not significantly different than pH 4. From the box whisker plots in A, it can be seen that there 

are multiple vacuoles with ratios that are consistent with pH 5 and 6. This suggests that while 

many vacuoles are highly acidified, other vacuoles maintain a pH that is only moderately 

acidified.  LTR data showed that almost all bacteria were in acidified vacuoles by 1 hour post 

infection.  

The vacuolar pH for ΔadiA::km is similar to that of ΔureG::km. Not only were the 

ΔadiA::km pH ratios not significantly different from pH 4, but the whisker range also indicates 

that multiple bacteria containing vacuoles had neutral pH levels. LTR data also indicates the  
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TABLE 2.3. LysoTracker Red Assay for Acidification Results 

Name %  Bacteria Acidified 

93-146 wild type E. ictaluri 22 

93-146 wild type E. ictaluri heat killed 100 

ΔureG::km 99 

ΔadiA::km 100 

ΔspeA::km 12 

ΔspeB::km 18 
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vacuoles of almost all ΔadiA::km bacteria were acidified. Vacuolar pH for ΔspeA::km is not 

significantly different than pH6. 

DISCUSSION 

 The maintenance of appropriate phagosomal pH is vital throughout phagosome 

maturation in order to properly assemble a functional microbicidal organelle (Mukherjee and 

Maxfield 2009). Some pathogens have the ability survive in macrophages by circumventing their 

normal microbicidal responses and are termed intracellular pathogens. Various strategies to 

achieve this effect are found, including phagosomal escape, phagosome maturation inhibition, 

misdirection of phagosome maturation, and survival within acidified phagolysosomes (Huynh 

and Grinstein 2007; Stavru, et al. 2011; Thompson and Holden 2009). Modulation of 

phagosomal pH is a tactic employed by H. pylori, Mycobacterium tuberculosis, and Legionella 

pneumophila to inhibit or alter phagosome maturation for the pathogen’s benefit (Huynh and 

Grinstein 2007; Stavru, et al. 2011).  

  Of these, H. pylori is known to have extracellular and intracellular acid 

survival/acclimation mechanisms where urease function is a vital feature. Bacterial ureases are 

operon encoded, multiprotein enzymes that hydrolyze urea to ammonia and carbamate, the latter 

of which spontaneously decomposes into more ammonia and carbonic acid. In H. pylori the 

cytoplasmic urease, in conjunction with an inner membrane histidine kinase, an acid activated 

urea channel, and 2 carbonic anhydrases, allow the bacterium to maintain a neutral cytoplasmic 

pH and near neutral periplasmic pH in 2 main ways: (i) the ammonia produced rapidly consumes 

protons in the cytoplasm and periplasm, and (ii) the carbonic acid is converted to bicarbonate in 

the periplasm (Scott, et al. 2010). In this way, H. pylori not only can thrive in stomach acid, but 
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also within altered macrophage phagosomes called megasomes, which are dependent on urease 

expression. It is estimated, however, that only 1% of the bacteria enter the lamina propria and 

become intracellular (Schwartz and Allen 2006).  

 Edwardsiella ictaluri is a natural pathogen of channel catfish and is able to replicate in 

channel catfish macrophages (Booth, et al. 2006). E. ictaluri also encodes an acid activated 

urease that is necessary for replication in HKDM and for virulence in vivo (Booth, et al. 2009). 

This urease is able to generate ammonia sufficient to increase environmental pH from 5 to over 7 

in broth cultures. Based on these data, it was hypothesized that the E. ictaluri urease functions to 

neutralize phagosomal pH in catfish macrophages in a similar fashion (Booth, et al. 2009). The 

data in this study confirms a role for urease in regulation of phagosomal pH. Wild type E. 

ictaluri is able to maintain an intraphagosomal pH above 6 for at least an hour post infection, 

while phagosomes containing a urease mutant or heat killed WT bacteria acidified to below 5. 

These findings are in accordance with previous data reporting the ability of E. ictaluri to 

replicate within macrophages and the necessity of urease for intracellular replication. 

Measurements also show that some vacuoles containing urease mutants maintain a pH in the 5-6 

range (Figure 2.7), possibly explaining the low grade replication of the urease mutant in HKDM  

(Booth, et al. 2009). 

While it is known that some pathogens, such as Salmonella and Legionella 

monocytogenes, require phagosome acidification for optimal upregulation of virulence 

mechanisms, whether or not this occurs in E. ictaluri it is not yet clear (Beauregard, et al. 1997; 

Mukherjee and Maxfield 2009). Based on the acid mediated upregulation of the E. ictaluri type 

III secretion system (T3SS), and the type VI secretion system, as well as the acid activation of 

the urease at low pH, it is likely that an initial acidification occurs in order to initiate activity of 
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these virulence factors (Booth, et al. 2009; Rogge and Thune 2011). Further studies are needed to 

determine if initial acidification is required for E. ictaluri HKDM replication, and to understand 

the progression of phagosomal pH change over time. 

Similar to urease, our experiments indicate that AdiA is also important for E. ictaluri 

phagosome pH regulation. The ΔadiA::km mutant failed to prevent phagosome acidification 

(Figure 2.9) and like the urease mutant can survive, but cannot replicate, in HKDM.  This may 

be due to the ability of AdiA to function in acid resistance by the removal of carboxyl groups 

from arginine in a reaction that consumes protons and produces carbon dioxide (which can be 

converted to bicarbonate) as a byproduct (Viala, et al. 2011). In Salmonella serovar 

Typhimurium, AdiA promotes acid survival most efficiently at pH 2.3, but confers little 

advantage at pH 4.5 where ornithine and lysine decarboxylases are more efficient (Viala, et al. 

2011). In E. ictaluri, the role AdiA may have in acid resistance is not clear, but the acid activated 

urease is upregulated at pH 5 and can produce ammonia to neutralize acidity at pH 5 exposure, 

but not 4.5. By using urease and AdiA in tandem E. ictaluri may, like H. pylori, have 2 different 

acid resistance mechanisms to respond to differing degrees of acidity (Scott, et al. 2010).  

SpeA is the second arginine decarboxylase in E. ictaluri and genetic deletion showed 

little evidence that HKDM replication or phagosome pH regulation was affected. The 

phagosomal pH measured by OG in Figure 2.9 shows bacterial pH is not significantly different 

than pH 6, which indicates that SpeA does not contribute to the regulation of vacuolar pH. The 

ΔspeA::km mutant can also replicate in catfish HKDM like WT (Figure 2.4) and LTR staining 

indicates acidification similar to WT. Therefore it is likely that SpeA is a biosynthetic 

decarboxylase that functions at a more neutral pH, while AdiA is an acid upregulated 
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decarboxylase, similar to Salmonella serovar Typhimurium, E. coli, and others (Viala, et al. 

2011). Therefore, loss of SpeA would not be expected to affect intracellular replication.  

Agmatinase, like SpeA, was not found to be involved in intracellular virulence in these 

experiments. The intracellular pH of the ΔspeB::km mutant was significantly higher than pH 6 

and replication in catfish macrophages was similar to WT (Figure 2.10). This indicates that the 

source of urea for E. ictaluri’s urease is elsewhere and the most likely source is the catfish 

encoded arginase (Booth, et al. 2009). Arginases are trimeric manganese metalloenzymes found 

in prokaryotes and eukaryotes that consume arginine to produce urea and ornithine (Peranzoni, et 

al. 2008). Helicobacter pylori can utilize its own encoded arginase to produce urea, but arginase 

is not present in the E. ictaluri genome, so macrophage arginase would be the most likely source 

of urea. In macrophages, arginase upregulation and function are associated with alternative 

macrophage activation, a state in which tissue regeneration, cell proliferation, and a reduction in 

inflammation are enhanced (Grillo and Colombatto 2004; Munder 2009). In terms of microbe-

macrophage interaction after phagocytosis, arginase and nitric oxide synthase (NOS) compete for 

available arginine. This competition can result in the dysregulation of phagocyte antimicrobial 

mechanisms, most directly through a reduction in NO production (Gobert, et al. 2001). While H. 

pylori produces urea for itself via its own arginase, in the case of E. ictaluri the upregulation of 

macrophage arginase would serve this purpose; providing substrate for a phagosome neutralizing 

urease as well as preventing macrophage NO formation. This situation has been hypothesized to 

occur with Mycobacterium bovis BCG and H. pylori (Schwartz and Allen 2006; Sendide, et al. 

2004). 

In conclusion, E. ictaluri utilizes urease and AdiA to neutralize phagosomal pH and 

enable replication in channel catfish HKDM (Collins and Thune 1996). Furthermore, a 
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secondary arginine decarboxylase (SpeA) and agmatinase (SpeB) are not associated with 

phagosome pH neutralization and are not required for replication or survival in HKDM. 

Therefore it is likely that the macrophage arginase is the source of the urea utilized by E. ictaluri 

for vacuolar pH regulation and intracellular replication (Figure 2.10).  
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Figure 2.10. Revised model for arginine utilization by E. ictaluri in HKDM phagosomes. 

Arginine is utilized by AdiA to produce agmatine and carbon dioxide. Macrophage arginase 

converts arginine to urea. Urease converts urea to ammonia, which consumes protons and 

neutralizes E. ictaluri phagosomal pH. 
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CHAPTER 3 

THE METABOLISM OF ARGININE IN EDWARDSIELLA ICTALURI INFECTED 

CHANNEL CATFISH (ICTALURUS PUNCTATUS) MACROPHAGES 

 

INTRODUCTION 

 Edwardsiella ictaluri is a Gram-negative bacterium and the etiological agent of enteric 

septicemia of catfish (ESC), arguably the most important disease of farmed channel catfish 

(Ictalurus punctatus Rafinesque, 1818) since its first report from diseased fish in 1976 (Hawke 

1979). The fulminant form of ESC is a septicemia characterized by rapid infection of internal 

organs such as the liver, spleen, metanephros (kidney), and pronephros (head kidney) by 

invasion through the gut or gills (Baldwin and Newton 1993; Nusbaum and Morrison 1996; 

Thune, et al. 1993; USDA 2009a; USDA 2009b) . By the time clinical and gross signs are 

evident, there is widespread granulomatous inflammation characterized by coalescing to diffuse 

macrophage infiltration in multiple organs, particularly the liver, spleen, and kidneys (Blazer, et 

al. 1985; Shotts, et al. 1986).  The pronephros is one of the first organs infected by E. ictaluri and 

can be infected as early as 15 minutes postinoculation and remain infected throughout the course 

of the disease (Baldwin and Newton 1993). This organ is the functional equivalent of 

mammalian bone marrow where myeloid progenitors, monocytes, and mature macrophages  

exhibit varying levels of phagocytic and microbicidal capabilities (Belosevic, et al. 2006). Since 

E. ictaluri is able to infect, survive, and replicate in pronephros derived macrophages (HKDM) 

harvested from naive I. punctatus, this cell type may serve as a replicative niche in vivo (Booth, 

et al. 2006). 

 Edwardsiella ictaluri is known to have an acid activated urease that is necessary for 

HKDM replication and phagosome pH neutralization (Booth, et al. 2009, this work). In vitro, 
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this urease is able to produce sufficient ammonia to alter environmental pH from 5 to 7 (Booth, 

et al. 2009). Furthermore, E. ictaluri encodes an arginine decarboxylase (AdiA) that is also 

required for HKDM replication and for phagosome pH neutralization (this work). AdiA acts to 

produce agmatine and carbon dioxide from arginine, and agmatine can be further broken down to 

urea and putrescine by agmatinase (Lu 2006). Previous work, however, indicates that agmatinase 

is not involved in HKDM replication and is therefore not an important source of urea for E. 

ictaluri urease function in HKDM. Although agmatine deiminase (aguA) is a potential source of 

ammonia that may contribute to pH regulation, BLAST analysis with AguA protein sequences 

from Aeromonas hydrophila subsp. hydrophila (GenBank: ABK36295.1), Yersinia 

enterocolitica subsp. enterocolitica (NCBI ref. YP_001007597.2), Francisella novicida 

(GenBank: AEB28349.1), and Serratia proteamaculans (GenBank: ABV41583.1) indicates that 

it is not present in the E. ictaluri genome. Since E. ictaluri doesn’t encode arginase, the most 

likely source of urea is the macrophage arginase (Booth, et al. 2009).   

Arginase is a trimeric manganese metalloenzyme that hydrolyzes arginine to urea and 

ornithine (Peranzoni, et al. 2008). In myeloid cells the main enzyme competing for available 

arginine is nitric oxide synthase (NOS), which converts arginine to nitric oxide (NO) and L-

citrulline (Munder 2009). Nitric oxide synthase is a high output enzyme that has 4 major 

antimicrobial functions; toxic effects directly attributable to NO, negation/frustration of 

microbial virulence mechanisms, NOS dependent effects aside from NO, and immunostimulation 

by NO (Bogdan 2009). Nitric oxide synthase activity also depends on arginine availability; 

deficiency leads to decreased NO through substrate depletion but also leads to reduced protein 

expression (Bogdan 2009; Chaturvedi, et al. 2007; Pautz, et al. 2010). 



75 
 

The interplay between arginase and NOS may partly regulate the outcome of microbial 

infections due to their association with different macrophage activation states and inflammatory 

responses. For optimal function, macrophages must be activated, which is to say that they exhibit 

enhanced antimicrobial and antineoplastic capacities. This activation is conceptually split into 2 

possible pathways, namely classical and alternative (Zhang and Mosser 2009). Classically 

activated macrophages exhibit increased microbicidal and pro-inflammatory capacities that are 

associated with interferon gamma (IFN-γ),  interleukins (IL) 1, 12, and 23, and tumor necrosis 

factor alpha (TNF-α). They are also associated more broadly with a T cell helper type 1 (Th1) 

immune response, which is involved with cell-mediated immunity and antimicrobial responses 

like increased NO production (Gaffen and Hajishengallis 2008; Zhang and Mosser 2009). 

Alternatively activated macrophages are associated with a different cytokine subset which 

includes IL-4, IL-5, IL-10, and IL-13. This activation status is correlated with a Th2 immune 

response, characterized by increased arginase activity, weak NO production, strong antibody 

production, antiparasitic inflammatory reactions, and inhibition of certain microbicidal functions 

(Grillo and Colombatto 2004; Munder 2009; Zhang and Mosser 2009). This polarization of 

arginine utilization by NOS and arginase within macrophages leads to substrate limitation, 

altered NO production, and pro-inflammatory or anti-inflammatory tissue environments (Chang, 

et al. 1998; Munder 2009).  

Pathogenic microbes can take advantage of this situation primarily through arginase 

modulation to regulate or counteract the antimicrobial effects of NO (Bogdan 2009; Chang, et al. 

1998; Gobert, et al. 2001). Helicobacter pylori can use its own arginase, RocF, to deplete 

extracellular arginine, leading to reduced NO production by co-cultured macrophages 

(Chaturvedi, et al. 2007; Gobert, et al. 2001). Alternatively, H. pylori can upregulate macrophage 
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arginase  to induce apoptosis (Gobert, et al. 2002). Salmonella serovar Typhimurium can also 

upregulate host macrophage arginase, leading to antagonism of NOS,  reduction of NO, and 

maintenance of virulence in vivo (Lahiri, et al. 2008). 

 Since E. ictaluri requires urease activity for intracellular replication, there must be a 

source of urea for E. ictaluri in the phagosome. Possibilities include the production of urea from 

arginine via the activity of bacterial arginine decarboxylase and agmatinase, or from the activity 

of arginase encoded by HKDM. In either situation, arginine is the source of urea production. 

Examination of arginine metabolism in infected HKDM led to the identification of 3 possible 

enzymes involved in arginine metabolism; macrophage NOS, macrophage arginase, and E. 

ictaluri AdiA (Figure 3.1). Depending on the modulation of arginine catabolism by E. ictaluri 

and the activation status of the macrophage, the majority of arginine may be diverted to NOS or 

arginase. If arginine is primarily made available to NOS then NO production increases, leading 

to reactive nitrogen species production and antimicrobial activity. Contrariwise, if arginine is 

primarily made available to arginase, urea and ornithine production increases, leading to 

increased polyamine (anti-inflammatory molecules) production and urea for the E. ictaluri 

urease. 

 Consequently, primary objectives of this study were to better understand the overall 

regulation of arginine in this model by examining NO production, urea production, and the 

contribution of arginase to the pathogenesis of E. ictaluri in HKDM. 

MATERIALS & METHODS 

Bacterial Strains and Growth Conditions. Bacterial strains and plasmids are listed in Table 

3.1. Unless otherwise noted, Escherichia coli was grown in Luria-Bertani broth (LB) at 37°C 
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Figure 3.1. Hypothetical model for the interaction of E. ictaluri with catfish macrophages. 

Arginine can be utilized by HKDM nitric oxide synthase and arginase, or the bacterial arginine 

decarboxylase (AdiA).  
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 TABLE 3.1. Bacterial strains used in Chapter 3  

Strain or plasmid Description Source or reference 

Escherichia coli   

QC779 F-, Δ(argF-lac)169, λ-, φ(sodB-kan)1(-Δ2), IN(rrnD-rrnE)1, rpsL179(strR), 

sodA25::MudPR13 

 

Carlioz and Touati 

1986 

Edwardsiella 

ictaluri 
 

 

93-146 WT E.ictaluri strain isolated in 1993 from moribund channel catfish in a natural outbreak  

of ESC on a commercial farm 

Louisiana Aquatic 

Diagnostic 

Laboratory 

ΔureG::km 93-146 strain with an STM tag L/M insertion in the ureG gene Thune et al. 2007 

ΔadiA::km 93-146 strain with an STM tag L/M insertion in the adiaA gene Thune et al. 2007 
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and E. ictaluri strains were grown in porcine brain heart infusion broth or LB-0.35% Mannitol 

(LB-Man) at 28°C. An E. coli superoxide dismutase (SOD) double mutant, QC779, was used as 

a killing control (Carlioz and Touati 1986). A defined minimal media for E. ictaluri was used 

with minor modifications stated where pertinent (Collins and Thune 1996). Antibiotics were 

used in the following concentrations: kanamycin (Km) at 50 μg ml
-1

, colistin (Col) at 10 μg ml
-1

, 

and ampicillin (Amp) at 200 μg ml
-1

. When necessary, E. ictaluri colony forming (CFU) unit 

numbers were determined by making triplicate 10-fold serial dilutions in sterile phosphate 

buffered saline (PBS) and drop plating 20 μl aliquots on Trypticase soy agar plates supplemented 

with 5% defibrinated sheep blood for colony counting.  

SPF Channel Catfish. Channel catfish egg masses were obtained from a commercial producer 

with no history of ESC outbreaks. The eggs were disinfected with 100 ppm free iodine and 

hatched in closed recirculating systems in the specific pathogen free laboratory at the Louisiana 

State University School of Veterinary Medicine.  Holding systems consist of 350 liter round 

fiberglass tanks connected to a 45 liter biological bead filter (Aquaculture Systems Technologies, 

New Orleans, LA, USA). Water temperature was maintained at 28 ± 2°C, and water quality 

parameters (including total ammonia nitrogen, nitrite, total nitrate, pH, hardness, and alkalinity) 

were determined 3 times per week using a Hach kit (Hach company, Loveland, CO, USA). 

Water quality was adjusted to maintain optimal conditions. The fish were reared on commercial 

catfish feed at 2-3% body weight per day until used for HKDM harvest at 1 to 1.5 kg. 

Labeling Bacteria/ Oregon Green/LysoTracker Red.  Oregon Green 514 carboxylic acid 

succinimidyl ester (OG) was acquired from Invitrogen, Carlsbad, CA, USA. Staining of bacteria 

by OG was according to Porte et al. (Porte, et al. 1999).   Briefly, log phase cultures (10
9
 

bacteria/ml) were washed twice in sterile saline and suspended in 1 ml of saline with 0.05% 
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Tween 80. Ten microliters of 10 mg/ml OG was added and the sample was briefly vortexed. 

Incubation for 30 minutes at 4°C in the dark was followed by centrifugation and addition of Tris-

HCl (pH 8.3) to a 100 mM final concentration. Resuspension of bacteria and a second 4°C 

incubation for 15 minutes was followed by 2 washes in saline prior to opsonization with 

autologous channel catfish serum for 30 minutes at room temperature. Opsonized bacteria were 

then used for infection experiments. Killed bacteria were produced by washing bacteria twice in 

saline, then incubation at 70°C for 30 minutes. Killing was verified by plating aliquots on blood 

agar. 

Infection and Intracellular Viability of Mutant and OG Stained  E. ictaluri in HKDM. A 

standard gentamicin survival assay using HKDM was used to evaluate the ability of OG stained 

E.ictaluri to enter, survive, and replicate in norvaline treated HKDM (Booth, et al. 2009). 

Briefly, adult channel catfish were euthanized via overdose with tricaine methanesulfonate (200 

mg/liter) and then bled via phlebotomy to exsanguination. The pronephros was removed using 

sterile procedure and macerated in a tissue sieve (stainless steel mesh 280 and 140 µm) to collect 

free cells. Cell viability was determined by Trypan blue exclusion.  Dissociated cells were 

suspended to a final concentration of 1x10
7
 live cells/ml in channel catfish macrophage medium 

(CCMM) consisting of: catfish RPMI [(RPMI 1640 sans phenol red & L-glutamine, Lonza, 

Walkersville, MD, USA) diluted to a tonicity of 240 mosmol/kg H2O by adding 1 part sterile 

deionized/distilled water, 1x glutamine substitute (GlutaMAX –I CTS, Gibco, Invitrogen 

Corporation, Carlsbad, CA,USA)], 15 mM HEPES buffer (GIBCO)], with 0.18% sodium 

bicarbonate solution (GIBCO), 0.05 mM 2-beta-mercaptoethanol (Sigma Chemical Co., St. 

Louis, MO, USA), and 5% heat inactivated pooled channel catfish serum. One ml of cell 

suspension was added to each well of a 24 well plate (Biocoat poly-d-lysine plates, Becton 
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Dickinson Labware, Bedford, MA, USA) and allowed to adhere for 16 hours at 28°C with 5% 

carbon dioxide, then washed 3 times with catfish RPMI before returning to fresh CCMM for 

infection. HKDM wells were infected at a 1:10 MOI (bacteria: macrophage multiplicity of 

infection) with bacteria opsonized previously for 30 minutes in autologous serum. Wells were 

then centrifuged (400 g for 5 minutes) to synchronize infection and incubated for 30 minutes. 

One hundred μg/ml gentamicin was then added for 1 hour to kill extracellular bacteria. Cells 

were then washed once in catfish RPMI and placed in CCMM with 0.5 μg/ml gentamicin (static 

dose). After 0, 4, and 10 hours at 28°C with 5% CO2, HKDM were washed with RPMI and lysed 

by adding 100 μl of 1% Triton X-100 (Fisher Scientific, Fair Lawn, NJ,USA). Media was 

serially diluted and plated on blood agar to determine increase from timepoint zero. 

Fluorescent Microscopy for Vacuolar pH Determination. The pH sensitivity of OG 

fluorescence in the weakly acidic range coupled with its fluorescence characteristics (λex=510 

peak excitation, λex=450 insensitive) allows ratiometric pH estimation in cellular vacuoles 

(Invitrogen). When exposed to 510 nm light, OG fluorescent brightness varies with pH, while at 

450 nm it is relatively nonreactive. The microscope used exposes OG stained bacteria to 510 nm 

and 450 nm ultraviolet light in rapid succession and a ratio of the measured fluorescence for any 

specified object at 510 nm to that at 450 nm can be generated by the software package. Such 

ratios can then be used for comparative purposes.  HKDM were harvested and cultured as 

described above for the gentamicin assay, except cells were plated onto 35 mm glass bottom 

dishes (poly-d-lysine coated, No.1.5 glass, MatTek, Ashland, MA,USA) and were incubated 

overnight in 10 mM norvaline (Sigma, St. Louis MO). HKDM were infected with bacteria at a 

10:1 MOI, centrifuged, allowed to settle for 10 minutes, then washed in saline 3 times and placed 

in CCMM with a static gentamicin dose (0.35 μg/ml) and 10 mM norvaline. Cells used to 
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determine pH calibration data with live imaging were incubated in ionophore calibration 

solutions while cells used to measure experimental data were incubated in saline with 10 mM 

norvaline. For calibration, infected HKDM were incubated for 8 minutes in progressively more 

acidic solutions of defined pH (140 mM KCl, 1 mM MgCl2, 0.2 mM EGTA, 20 mM MES, 10 

mM norvaline, adjusted to pH 4, 5, and 6 with NaOH) containing 5 μg/ml nigericin and 5 μM 

monensin to collapse pH gradients across membranes (Demaurex and Grinstein 2006). In situ 

calibration curves were made for each bacterial strain experiment for each day. After 8 minutes 

in each pH solution, several images were acquired using a dual exciter filter (Chroma) to 

generate ratiometric data before changing pH solution. For experimental data, cells incubated in 

saline were imaged similarly after 60-80 minutes post-infection. For each image, background 

was identified as the grey/black level corresponding to areas devoid of cells and was subtracted 

from the image prior to ratio data gathering. Individual bacteria were chosen manually from 

images according to: proximity within the confines of the HKDM cell membranes, identifiability 

as bacteria (shape, size), being separate from other highly reactive cellular fluorescent material 

(including tightly clustered bacteria or superimposed structures), and being in relative focus. A 

ratio was thus generated for each bacterium. Approximately 50-100 bacteria were chosen for 

each group (pH 4, 5, 6, and experimental groups).  

Cells were visualized with a Zeiss Observer.Z1 microscope with CO2Module S and 

TempModule S (Carl Zeiss MicroImaging GmbH, Jena, Germany) using a 63x oil objective in a 

stage insert (Heating Insert P, PeCon GmbH, Erbach, Germany) equipped to supply humidified 

carbon dioxide and maintain temperature at 5% and 28°C, respectively. Illumination was 

provided by a Lambda DG-4, 175 Watt Xenon arc lamp (Sutter Instrument Co., Novato, CA, 

USA). Cubes used are as follows: Chroma 71001 dual exciter (440/20, 495/10), 535/25 emitter 



83 
 

(Chroma Technology Corporation, Bellows Falls, VT, USA) and Zeiss filter set 64 HE exciter 

587/25, emitter 647/70 (Carl Zeiss, Germany).  Digital images were captured using Zeiss 

AxioVision software version 4.8.1 and analyzed with Physiology Acquisition Module (Carl 

Zeiss, Germany).  

Nitric Oxide Assay. The stable breakdown products of nitric oxide (NO), nitrite (
-
NO2) and 

nitrate (
-
NO3), were measured using a standardized kit for colorimetric determination of nitrite 

and nitrate (enzymatic reduction) in biological samples based on the Griess reaction (DetectX 

Nitric Oxide colorimetric detection kit, Arbor Assays, Ann Arbor, MI, USA). HKDM were 

harvested and were incubated overnight as previously described. The next day, cells were 

washed twice in catfish RPMI and once in Krebs-Ringer bicarbonate buffer (KRBB; 119 mM 

NaCL, 4.8 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, 1.2 mM KH2PO4, 25 mM NaHCO3, 0.5 

mM L-arginine, 0.5 mM L-glutamine, 5 mM D-glucose, 20 mM HEPES, 5% BSA, pH 7.4) 

before incubation in KRBB. HKDM were infected with wild type E. ictaluri (WT) and mutant 

strains as well as superoxide dismutase (QC779) mutant E. coli to serve as a control in addition 

to non-infected HKDM. Media was recovered from infected wells after 24 hours, filtered 

through a 10 K molecular weight cut-off filter (Amicon Ultra 0.5 ml 10K centrifugal filter, 

Millipore, Billerica, MA, USA), and stored at -29°C until tested. Samples were analyzed 

according to kit protocol, with enzymatic reduction of nitrate to nitrite. Samples were read at 543 

nm on a SpectraMax M2 microplate reader using SoftMax Pro software version 4.8 (Molecular 

Devices, Sunnyvale, CA, USA). 

Urea Assay. HKDM were harvested and incubated as described previously. HKDM were 

infected with WT and ΔureG::km, in addition to non-infected HKDM. Cells were incubated for 

24 hours prior to supernatant and cell lysate collection. Media samples were frozen at -70°C until 
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testing. Urea levels were quantitatively measured by using a standardized kit for colorimetric 

determination of urea in biological samples (DetectX Urea Nitrogen colorimetric detection kit, 

Arbor Assays, Ann Arbor, MI, USA). Samples were analyzed according to kit protocol and read 

at 450 nm on a SpectraMax M2 microplate reader using SoftMax Pro software version 4.8 

(Molecular Devices, Sunnyvale, CA, USA). 

Norvaline Mediated for HKDM Arginase Inhibition, Gentamycin Exclusion Assay. HKDM 

were harvested as previously described. Cells were incubated overnight in 10 mM norvaline 

(Sigma, St. Louis MO) and were infected with WT. After infection cells were returned to media 

with norvaline until lysis at timepoints 0, 4, and 10 hours postinfection for bacterial enumeration. 

HKDM infected cells without norvaline served as negative controls for comparison. 

Statistical Methods. For nitrate/nitrite and urea assays, the data were analyzed using the General 

Linear Methods Procedure for least means (Proc GLM; SAS 9.3, SAS Institute Inc. 2011). 

Tukey’s Studentized Range (HSD) test was used for pairwise comparisons. For HKDM 

gentamycin exclusion assays, fold increase was determined by dividing the colony forming 

units/well from timepoints past time zero, by the mean colony forming units /well at time zero 

for each strain. Mean fold replication was then calculated with standard errors of the means. Data 

were then analyzed by analysis of variance (ANOVA). In addition, individual colony forming 

units counts were log transformed and analyzed by Proc GLM and Tukey’s HSD for pairwise 

comparisons. For pH measurement data in OG stained E. ictaluri, Proc GLM and ANOVA were 

used. When the model indicated significance at P≤0.05, a least square means procedure was used 

for pairwise comparison of interaction effects. 
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RESULTS 

NO Measurement in E. ictaluri Infected HKDM. Nitric oxide production was determined by 

measuring the NO breakdown products nitrite and nitrate. Total nitric oxide (nitrate plus nitrate) 

levels were not significantly different between positive (QC779) controls, negative (HKDM 

only) controls, and bacterial strains (wild type E. ictaluri, ΔureG::km, ΔadiA::km) at 24 hours 

post infection.  In all tests nitrite levels were at the low end of the test detection range. Levels 

detected in positive and negative controls were not significantly different from one another. 

Nitrite levels in E. ictaluri infected HKDM were not significantly different from uninfected 

HKDM. 

Urea Production in E. ictaluri Infected HKDM. Urea production was determined by direct 

assay for urea nitrogen. Urea levels were at the low end (~0.15 mg/dL) of assay detection range. 

Measurements from bacterial strains (wild type E. ictaluri, ΔureG::km, ΔadiA::km, QC779) and 

controls (HKDM only) were not significantly different from one another. 

Effect of Arginase Blocking by Norvaline on E. ictaluri Replication in HKDM. The results 

on the ability of E. ictaluri to replicate in norvaline treated HKDM (arginase blocking) are 

presented in Figure 3.2. The inhibition of HKDM arginase prevented E. ictaluri replication at 10 

hours post infection (p ≤ 0.0001), while WT increased 15-20 times in that period. 

Measurement of E. ictaluri Intracellular pH in Norvaline Treated HKDM. When HKDM 

were treated with norvaline to inhibit arginase, WT pH was not significantly different from pH 4 

(Figure 3.3). There are multiple bacteria with ratios comparable to those seen in the pH 5 to 6 

range, which is consistent with WT survival data (Figure 3.2). This indicates that arginase  

 



86 
 

 

 

 

Figure 3.2. Intracellular survival and replication of E. ictaluri in HKDM and norvaline treated 

HKDM. WT E. ictaluri increased over 15 fold after 10 hours, while norvaline treatment to block 

arginase function prevented WT replication. (*) indicates P ≤ 0.0001 versus all other time points 

and treatments. Norvaline treatment did not prevent WT survival. Results are presented as means 

and standard errors of the means for 3 wells per treatment per time point and are representative 

of 3 replicate studies. 
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Figure 3.3. Intracellular (phagosome) determination of WT vacuole pH in channel catfish 

HKDM treated with 10 mM L-norvaline 1 hour post infection using fluorescent bacterial cell 

membrane staining. (A) The box-whisker plots showing data range (whiskers), interquartile 

range (the mid 50% of data points, in blue), and the mean (designated +). (B) The same data as 

A, presented as means and standard errors of the means (bars). Different letters atop columns 

designate significant differences in means. Vacuolar pH at 4, 5, and 6 represents the artificial 

manipulation of phagosome pH by ionophore calibration solutions to generate fluorescent ratio 

values of intraphagosomal bacteria at pH 4, 5, and 6. “Exp” represents the measurement of 

fluorescent ratios of bacterial cell membranes when macrophages are bathed in saline with 

norvaline and phagosomal pH is not artificially altered. Ratio is generated by microscope 

software for relative comparisons and is based on the fluorescence characteristics of OG 514. 

Results are combined from 2 replicate studies. 



88 
 

function is vital to WT HKDM phagosome pH neutralization, which is typically above pH 6 (this 

work).  

DISCUSSION   

Macrophages have the ability to differentially regulate arginine metabolism via NOS and 

arginase in association with different activation states, which has important implications for cells 

and intracellular pathogens. The NOS pathway, associated with a Th1 immune response, leads to 

increased bacterial killing and disruption of virulence mechanisms employed by intracellular 

pathogens (Bogdan 2009). The arginase pathway leads to cell proliferation, anti-inflammation 

responses, and is associated with a Th2 immune response (Munder 2009). 

NOS is a high output enzyme found in macrophages and has 4 major antimicrobial 

functions; toxic effects directly attributable to NO, negation/frustration of microbial virulence 

mechanisms, NOS dependent effects aside from NO, and immunostimulation by NO (Bogdan 

2009). In resting murine macrophages, arginase was found to consume 96% of available 

arginine, while NOS consumed 0.7%. Upon activation, NOS consumption of arginine increased 

to 29% (Granger, et al. 1990). Similarly, in freshly isolated carp pronephros macrophages, 

stimulation with lipopolysaccharide (LPS) led to a significant increase in NO production 

(Joerink, et al. 2006). Using freshly isolated channel catfish HKDM, we found no evidence for 

NOS upregulation/NO production, probably due to the use of non-stimulated macrophages in our 

model, which specifically studies the effects of intracellular E. ictaluri in naive macrophage 

populations. Minimal NO production in non-stimulated macrophages is a common finding in 

murine and fish macrophage studies, using both cell lines and primary cultures (Arts, et al. 2010; 

Chaturvedi, et al. 2007; Grayfer, et al. 2011). In addition, the degree of HKDM maturity may 
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also hamper NO production as immature goldfish monocytes cannot produce significant amounts 

of NO even when stimulated (Plouffe, et al. 2005). In channel catfish, the capacity for naive 

HKDM to produce NO has not been reported, but LPS-activated peritoneal wash macrophages 

were able to produce NO, which increased significantly with arginine supplementation 

(Buentello and Gatlin III 1999). Additionally, in pronephros homogenates from E. ictaluri 

infected catfish 5 days post-infection, NO production was increased almost 100 fold versus 

control (Schoor and Plumb 1994). These results show the capacity for remarkable NOS 

upregulation in the cells of the pronephros. However, it is important to keep in mind that small, 

but biologically relevant, amounts of NO may be below the detection limit of the Griess reaction 

(Gantt, et al. 2001).  

 Arginase is a manganese metalloenzyme that hydrolyzes arginine to urea and ornithine. 

In order to assess the contribution of HKDM arginase to E. ictaluri pathogenesis, we used the 

arginase inhibitor, norvaline, to inhibit urea production. Norvaline is able to inhibit arginase 

activity in J774.1 murine macrophages by 55% due to norvaline’s structural similarity to 

ornithine, a natural arginase inhibitor (Chang, et al. 1998). Treatment of E. ictaluri infected 

HKDM with norvaline prevented intracellular replication, while WT could replicate over 15 fold 

in 10 hours (Figure 3.2). In addition, using fluorescence based pH measurements, norvaline 

treatment resulted in acidification of the E. ictaluri containing phagosome to pH 4, whereas 

under standard conditions pH would be above 6 (previous chapter). These data show that cellular 

arginase is required for E. ictaluri replication and phagosome pH regulation in HKDM. Similar 

data were seen using a urease deficient strain (ΔureG::km), indicating that the urea produced by 

HKDM arginase is the primary source of urea that the E. ictaluri urease uses to produce 

ammonia and neutralize phagosome pH. In addition, we measured total urea production by 
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HKDM to further assess arginase activity. After 24 hours post infection, urea levels in infected 

HKDM were not different from controls and urea levels were low. Similar data were seen in 

unstimulated J774.1 cells infected with Mycobacterium bovis BCG and in controls. When cells 

were then activated with LPS and IFN-γ,  increased arginase expression and significant increases 

in urea production were found (Talaue, et al. 2006). The urea present in HKDM is biologically 

relevant, however, because arginase inhibition and urease mutation both lead to the same E. 

ictaluri phenotype, with a highly acidified vacuole an inability to replicate. 

 In conclusion, intracellular E. ictaluri requires HKDM arginase to generate the urea 

needed for pH neutralization and replication in the E. ictaluri containing vacuole. Within naive 

channel catfish macrophages, E. ictaluri may upregulate cellular arginase in a manner similar to 

Salmonella serovar Typhimurium, which deprives the macrophage of substrate for antimicrobial 

activity (Lahiri, et al. 2008). Alternatively, E. ictaluri may take advantage of an intracellular 

niche in immature macrophages where arginase activity prevails and NOS activity is low. Such 

cells would have reduced or inefficient capacity for degradation and killing. In figure 3.4, the 

model has been amended to represent the current understanding of arginine regulation in the E. 

ictaluri-HKDM phagosome dynamic based on the data presented here. 
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Figure 3.4. Model for the metabolism of arginine in channel catfish HKDM. Arginine is used 

primarily by HKDM arginase to produce urea and ornithine. The urea produced is used by the E. 

ictaluri urease for the generation of ammonia. Arginine decarboxylase (AdiA) converts arginine 

to agmatine, consuming protons in the process.  
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CHAPTER 4 

CONCLUSIONS 

 Edwardsiella ictaluri is an interesting bacterium. It belongs to a rather short list of known 

macrophage pathogens and is able to neutralize phagosome pH, permitting intracellular 

replication that eventually leads to macrophage death (Booth, et al. 2006). The host of choice is 

the channel catfish, an ectothermic poikilotherm whose immune response varies with 

environmental temperature (Lorenzen, et al. 2009). When E. ictaluri enters the fish bloodstream, 

numerous organs are infected within minutes of exposure (Baldwin and Newton 1993). In 

particular the pronephros, or head kidney, is situated almost immediately downstream from the 

gills (a likely route of infection) and receives abundant blood from the dorsal aorta and the 

common cardinal veins. The pronephric parenchyma itself contains islands of erythroid and 

myeloid cells in all stages of maturity surrounded by blood filled sinuses (Grizzle and Rogers 

1976). Thus, E. ictaluri is able to rapidly gain access to the widest possible variety of myeloid 

cell types and stages, especially that of the monocyte/macrophage line, which acquire phagocytic 

and antimicrobial capabilities both incrementally and to varying degrees as they mature.  

The Edwardsiella ictaluri urease and arginine decarboxylase (AdiA) are required for 

replication in channel catfish head kidney derived macrophages (HKDM) (Figure 4.1). These 

enzymes provide E. ictaluri with the capacity to neutralize phagosome pH to over 6, which is 

permissive for bacterial replication and would indicate that a source of arginine and a source of 

urea are required for E. ictaluri replication in HKDM. Arginine enters macrophages through the 

cationic amino acid transporters (CAT)1 and CAT2, providing a pool of substrate for nitric oxide  
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Figure 4.1. Model for the role of arginine in the pathogenesis of E. ictaluri infected HKDM 

based on findings in this study. Pathways highlighted in blue are supported by data, while the 

data indicates that pathways highlighted by red are not involved. 
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synthase and arginase. In phagosomes, E. ictaluri could also utilize the macrophage CAT system 

for arginine import, as happens with Salmonella enterica, where macrophage CAT is diverted to 

the Salmonella containing vacuole (Das, et al. 2010).  

There are 3 potential sources of urea for HKDM and E. ictaluri in vivo. The first is from 

nitrogenous waste metabolism exogenous to HKDM, the second is from macrophage (arginase), 

and the third from bacterial sources (agmatinase) (Lu 2006; McDonald, et al. 2006). It is likely 

that exogenous urea is insufficient for E. ictaluri’s needs in HKDM in vivo. Ammonia and urea 

are metabolites derived from protein degradation mechanisms in the liver. Ammonia is highly 

toxic but easily and rapidly excreted in water through the gills and is thus preferred. Urea is less 

toxic, but it requires more energy to produce, and cell membranes are relatively impermeable to 

urea. Urea is primarily excreted through the skin and gills by poorly understood mechanisms and 

is retained at relatively low levels in the body, 0.93 mM for I. punctatus blood (Francis-Floyd 

1993; Walsh 1998). Significant data indicates that the E. ictaluri agmatinase, SpeB, is not 

associated with HKDM replication or phagosome pH modulation, indicating it is not an 

important source of urea, and, E. ictaluri has no encoded arginase. These data indicate that the 

macrophage arginase activity provides a likely source of urea for E. ictaluri and the norvaline 

experiments confirm that this is the case. 

The pathway for urea entry into E. ictaluri within the HKDM phagosome is unknown, 

but may be surmised. Macrophages have no known urea specific transporters, but they do have 

aquaporins, which can nonspecifically transport urea (Aharon and Bar-Shavit 2006; Litman, et 

al. 2009). Furthermore, aquaporins are known to integrate into Salmonella containing vacuoles in 

macrophages (Radtke and O'Riordan 2008) and a similar situation is possible for E. ictaluri in 

HKDM. Once in the phagosome, urea can be internalized by E. ictaluri through its encoded urea 
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transporter, UreI, which is part of the urease operon (Booth, et al. 2009). Urease contributes to 

phagosome pH neutralization first through the production of ammonia, which sequesters protons 

by ammonium formation. Secondly, carbon dioxide is produced which, under permissive pH 

conditions, can be converted to bicarbonate, a powerful buffer (Huynh and Grinstein 2007).  

Two potential purposes for AdiA are evident; as an acid resistance pathway enzyme and 

as a source of agmatine. The conversion of arginine to agmatine and carbon dioxide by AdiA 

consumes protons. Although the function of carbon dioxide as a buffer was already mentioned 

(Viala, et al. 2011), the function of agmatine in the model is uncertain. It has little known use in 

bacteria, save as a precursor to polyamine synthesis (Satriano 2003). However, it still may be of 

use to E. ictaluri in HKDM, due to the important regulatory effects this molecule has in 

eukaryotic cells. Agmatine can inhibit NOS and suppress the production of polyamines which 

are cytoprotective, antiproliferative, and antiapoptotic (Sastre, et al. 1998; Satriano 2004). For 

intracellular pathogens like E. ictaluri, agmatine may serve as a virulence factor in a somewhat 

similar manner to H. pylori in the stomach (Molderings, et al. 1999). If agmatinase does function 

in putrescine production in HDKM, the overall contribution of polyamines to pathogenesis is 

uncertain. 

 No evidence for NO production was found in HKDM. As discussed in chapter 3, this 

may be due to the inability of non-stimulated HKDM to produce NO. In goldfish pronephros 

macrophages, immature monocytes have phagocytic capacities similar to mature macrophages, 

but have a low capacity for phagolysosome formation and reaction oxygen intermediate 

production (Rieger, et al. 2010). Mature macrophages, in the absence of activation, showed a 

similar uncoupling of phagocytosis from killing/degradation mechanisms. A comparable 

situation may be present in channel catfish HKDM, accounting for the lack of NO production. 
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Once inside a non-activated HKDM phagosome, E. ictaluri may find itself in a cell where 

arginine metabolism is monopolized by arginase, like that found in murine models (Granger, et 

al. 1990). If the infected HKDM also have uncoupled phagocytosis and killing mechanisms, E. 

ictaluri has a clear advantage over the macrophage for survival. 

We began with 3 hypotheses: that E. ictaluri is able to alter the HKDM phagosome pH, 

that E. ictaluri urease uses AdiA, SpeA or SpeB for phagosome pH alteration, and that HKDM 

NO production, arginase function, and urea production are important for E. ictaluri intracellular 

pathogenesis. In all 3, the null hypothesis is rejected in part or in whole. E. ictaluri can alter 

HKDM phagosome pH using urease and AdiA, and HKDM arginase is required as a source for 

urea.  

What does all this mean in a practical sense? Currently, ESC affects over a third of all 

channel catfish production operations in the United States of America, causing mortality events 

in all ranges of severity in fry and foodsize fish (USDA 2009b). More than 20% of catfish fry are 

lost to ESC yearly, making it an important disease for farm management. However, 

approximately only 12% of all fry are vaccinated for ESC, and the overall impression of efficacy 

by producers is equivocal (USDA 2009a). As candidate vaccine strains are still desirable for 

ESC, arguably the ideal bacterium would be an infectious, nonvirulent strain that retains the 

phenotypic characteristics of highly virulent strains with regards to persistence and sustained 

interaction with the adaptive immune response, but lacks the capacity to exploit the niche it 

normally inhabits during disease. By directed and investigative research such as the work 

presented here, a highly specific approach to vaccine strain development based on pathogenesis 

at the molecular level can be achieved. It is to these ends that the most fruitful inroads into the 

control of ESC will be made. 
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APPENDIX 

ABBREVIATIONS COMMONLY USED IN THIS DISSERTATION 

ADI - Agmatine Deiminase 

AdiA - E. ictaluri arginine decarboxylase 

AQP - Aquaporin 

AR - Acid resistance 

ARG - Arginase 

CAT - Cationic amino acid transporters 

CD - Cluster of differentiation 

CFU - Colony forming units 

ESC - Enteric Septicemia of catfish 

HKDM - Head kidney derived macrophages 

IFN-γ - Interferon gamma 

IL - Interleukin 

LB - Luria-Bertani Broth 

LPS - Lipopolysaccharide 

LTR - LysoTracker Red DND-99 
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NO - Nitric oxide 

NOS - Nitric oxide synthase 

ODC - Ornithine decarboxylase 

OG - Oregon green 514 succinimidyl ester 

OU-C - Ornithine urea cycle 

RNI - Reactive nitrogen intermediates 

ROS - Reactive oxygen species 

SOD - Superoxide dismutase 

SpeA - E. ictaluri arginine decarboxylase 

SpeB - E. ictaluri agmatinase 

STM - Signature tagged mutagenesis 

TGF-β - Transforming growth factor beta  

Th1(2) - T helper cell type 1(2) 

TLR - Toll-like receptor  

TNF-α - Tumor necrosis factor alpha 

WT - Wild type E. ictaluri 
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