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Abstract 

Laminitis is an often fatal condition in horses with few available and only moderately effective 

treatment options.  Separation of laminar dermis and epidermis lead to rotation or ventral 

deviation of the third phalanx inside the hoof capsule.  Despite being a modified skin, equine 

laminar tissue does not completely return to normal after laminitis.  The hypothesis tested was 

that adult progenitor cells in the equine laminar tissue are irreversibly damaged by laminitis.  A 

method to harvest and culture cells in vitro from the equine lamina was established; and 

progenitor cells from unaffected and laminitic hooves were characterized and compared.   

Laminar tissue was harvested from horses with and without evidence of laminitis.  Cells were 

isolated from each tissue type, unaffected (UC) and laminitic (LC).  Cell doublings (CD) and 

doubling times (DT) were quantified for passage (P) 0-5 cells.  For P0, 2, and 5, fibroblastic 

colony forming units (CFU-F), progenitor (OCT4, SOX-2, CD29, CD44, and CD105) and 

keratin (K14, K15, and K19) target gene mRNA levels (qRT-PCR) and protein expression (flow 

cytometry) as well as multipotentiality were assessed.  Keratins were localized with 

immunohistochemistry. 

Overall LC CD was significantly higher than UC.  Progenitor gene mRNA levels were 

significantly higher in P0 LC versus UC. K14 and K15 mRNA levels in P0 were lower in LC 

when compared to UC.  Keratins were localized to secondary epidermal lamina.  Osteogenic, 

adipogenic and chondrogenic differentiation was confirmed in both cell types 

Increases in progenitor mRNA in UC over passages is consistent with selection of progenitor 

cells by plastic affinity and confirms maintenance of progenitor cell characteristics through 

multiple passages.  Results of this study highlight specific progenitor cell changes in laminitic 

hooves that result in a constant state of hyperproliferation without cell maturation.  These 
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changes may explain the abnormal tissue organization and function that result from laminitic 

episodes.  The procedures developed in this study provide a unique and consistent model to study 

the intricacies of equine laminitis in the horse.  Future studies using the model designed here will 

be used for in vitro investigations aimed at identifying specific mechanisms to reverse or prevent 

the cellular changes from laminitis.  
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1. Introduction 

Laminitis occurs in approximately 15% of horses in the United States yearly, and, 75% of those 

affected, more than 8,000, are euthanatized.  The cost of laminitis diagnosis and treatment is over 

$10 million per year in the US.  Laminitis was originally described by Aristotle in 30BC.  In the 

16th century, it was called founder, and in the 18th century given the modern title of laminitis [1].  

Despite decades of research focused on this devastating disorder there has been relatively little 

progress to prevent or treat it. 

Multiple conditions and factors result in laminitis including, but not limited to, intestinal 

obstruction, retained fetal membranes, pleura-pneumonia, supporting limb (from orthopedic 

injuries), and endocrine/metabolic diseases [2].  Dietary insults, such as grain engorgement 

(overload) or overfeeding grain and grass, and obesity, can lead to laminitis.  Equine metabolic 

syndrome is characterized by insulin resistance, regional or generalized adiposity, and current or 

a history laminitis.[3]  

Supporting limb laminitis is a common complication of severe orthopedic injuries, and the 

incidence increases with duration of lameness [4].  Based on a retrospective study, horses 

requiring full limb or transfixation pin casts following surgery have a 10% higher incidence of 

supporting limb laminitis than horses with half limb casts [5].  

Conditions requiring laparotomies such as colic or hernia predispose to laminitis, which occurs 

in 3.4% of the 45.8% of horses that have post-surgery complications, highest during the summer 

months [6].  Regardless of the inciting cause, laminar tissue within a hoof affected by laminitis 

does not return to normal growth and morphology, and must be permanently managed to 

maintain comfort and function [7].  
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Adult multipotent stromal cells (MSCs) found in most mammalian tissues including bone 

marrow, adipose tissue, muscle, brain, liver, synovium and periosteum, among others may offer 

a potential new therapy for laminitis [8-13].  Stromal cells have promise for tissue regeneration 

because of their ability to differentiate into diverse cell lineages and their characteristics of self-

renewal and immune privilege [14-17].  The majority of work on adult equine MSCs has focused 

on isolation and characterization of mesenchymal cells from bone marrow and fat and 

therapeutic application in tendon and/or cartilage [4, 18-20].  Equine lamina is a specialized 

epithelial structure similar to human skin, which contains epidermal progenitor cells [21].  

Laminar progenitor cells, however, are largely unexplored [22, 23].  Scientific evidence shows 

that laminar tissue formed after severe laminitis contains dyskeratinized (abnormal and 

premature keratinization) epidermal cells, suggesting abnormal formation and/or maturation of 

native progenitor cells [24].   

The majority of research to elucidate events occurring within the laminitic hoof capsule relies on 

induction of laminitis in otherwise normal horses by administration of toxins or an overdose of 

carbohydrate which leads to and requires humane euthanasia [25-28].  Other models are limited 

by mechanical injury of otherwise hoof to evaluate healing potential within a relatively small 

region of the hoof. It is possible that currently available models do not recreate the complex 

systemic and cellular physiology of laminitis.  Understanding of progenitor cells within the 

laminae may contribute vital information for prevention and treatment of laminitis.  Increased 

awareness of and application of novel approaches to prevent and treat laminitis will significantly 

augment the current armamentarium against this devastating condition.    
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2. Literature Review 

2.1. Structure of the Equine Hoof Capsule 

The equine hoof capsule is a cornified modified epidermis that covers the tip of the digit. It is 

composed of five regions: the periople, the wall, the white line, sole, and the frog.  The wall 

itself is composed of three strata.  From outside to inside they include the stratum 

externum/tectorium, medium and internum/lamellatum.  The stratum externum consists of a few 

millimeters of cornified tissue, and it is formed by multiplication of germinal cells at the 

perioplic corium, it is proximally covered by the periople and lays on the coronary corium, 

which produces the stratum medium [29].  The stratum medium, the thickest layer of the hoof, is 

composed of pigmented tubular and intertubular horn, crucial for hoof mechanical stability and 

protects the sensitive hoof layers against harmful substances and microorganisms.  The tubular 

and intertubular horns are formed by proliferation of basal epidermal cells on the papillae of the 

coronary corium.  As new cells are formed, older cells advance distally for hoof wall growth.  As 

the cells move distally, they keratinize and eventually become cornified.  The focus of this 

research is on the innermost layer, the stratum internum (lamellatum). 

The nonpigmented stratum internum has two main, interdigitated components, the epidermal and 

dermal laminae, which are continuous with the tubular horns of the stratum medium and the 

periosteum of the distal phalanx, respectively.  The epidermis is non-sensitive and avascular 

while the dermis is sensitive and vascular [30].  It is composed of arteries, veins, capillaries and 

sensory and vasomotor nerves within a dense matrix of tough connective tissue.  The inner 

surface of the epidermal layer and the outer surface of the dermal layer have frond-like shapes, 

primary laminae, which are interdigitated with each other.  Upon each primary lamina are 

smaller secondary lamina, which have frond like structures.  Each primary laminar frond has 
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approximately 200 secondary laminar fronds.  Between the secondary fronds is the basement 

membrane which contains hemidesmosomes and collagenous fibril anchors that connects basal 

cells of the secondary epidermal lamina (SEL) to the secondary dermal lamina (SDL).  The 

basement membrane facilitates nutrient and growth factor exchange between the two structures 

and forms the natural scaffold that stabilizes the hoof and orientates the proper development, 

maturation and maintenance of the hoof epidermis [30].   

The avascular and non-sensitive laminar epidermis is intimately attached to the vascular and 

sensitive dermis [30].  The dermis is a dense matrix of tough connective tissue with arteries, 

veins and capillaries and sensory and vasomotor nerves, plays a suspensory role within the hoof.  

The epidermis basal cells are intimately connected the dermis by the basement membrane.  The 

basement membrane between dermis and epidermis is composed of ultramicroscopic 

hemidesmosomes and anchoring collagenous fibril structures, and it facilitates nutrient and 

growth factor exchange between the two structures [30].  The laminae themselves consist of 

primary (PDL) and secondary (SDL) dermal and primary (PEL) and secondary (SEL) epidermal 

laminae.  To increase the surface area and resistance of weight bearing there are 555-600 PELs 

and 200 SEL of off each PEL. SDL branches from PDL which connects with SEL branching 

from PEL.  The integrity of the basement membrane, PEL, SEL, PDL, SDL is important since it 

forms the natural scaffold that stabilizes the hoof and orientates the proper development, 

maturation and maintenance of the hoof epidermis.  

To date the stratum internum cell renewal is largely unexplored.  The tubular horns, while 

growing, tension the epidermal and dermal structures, which keep the orientation of the hoof 

growth.  The length and thickness of the PEL slight increase from the proximal to the distal parts 

of the hoof.  Also the number of cornified cells is higher towards the toe region. It is unknown 
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whether the laminar epidermal cells proliferate from progenitor cells in the coronary band region 

and grow continuously with the tubular horns, or whether the renewal occurs from progenitor 

cells present in the axial epidermal laminar cells.    

Structures within the hoof capsule change throughout the horse’s life, with major transformation 

occurring during the first year.  The epidermal laminae within the stratum internum start to 

change after birth to become more dense and elongated by one year of age [31, 32].  Studies of 

the microstructure of the laminae have evaluated and classified patterns in the laminar tissue, 

besides the ones observed during development from newborn to adult.  Morphology of the PEL, 

SEL and PEL tip has been described and classified into several patterns or types considering 

length, width,  branching, symmetry, and tip morphology of PEL [33].  Age and mechanical 

stimulation can lead to alterations that may or may not result in clinical and subclinical laminitis.  

The laminar morphology diversity explains how challenging is to determine what is normal and 

what is abnormal in the laminar tissue. 

2.2. Keratins and the Hoof Capsule 
 
Keratins are non-soluble proteins specific of epithelial tissues that are crucial to the structure and 

development of healthy hoof and are a major component of epidermal tissues [34].  Disulfide 

bonds, within the keratin molecules convey strength and hardness.  The more disulfide bones, the 

harder the tissue.  Hard keratins are present in tissues such as hair, feathers, nails and hoof walls 

[35].  Soft keratins are found in tissues such as skin, cuticle and periople.  Recently, 30 keratins 

along with vemetin, desmin, peripherin, internexin, 2 laminin filament proteins and 6 

microtubule proteins were identify in the laminar tissue. [36].  These findings are important as 

keratin protein profiles may change in disease and affects the hoof wall and correlates with loss 

of laminar tissue function as with laminitis. 
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Keratins are produced by keratohyaline granules in the specialized basal cells of the epidermal 

layers called keratinocytes [35].  Keratinocytes are one of the specialized cell lineage derived 

from the epidermal progenitor cells.  Progenitor cells from the epidermis differentiate into stem 

cells, transient amplifying cells and keratinocytes.  Stem cells keep continuously dividing into 

stem cells, transient amplifying cells and keratinocytes.  Transient amplifying cells and 

keratinocytes migrate and undergo final differentiation and keratinization depending on the 

tissue they are localized, hair follicle, sebaceous glands, basal epidermal cells [37, 38]. 

Keratinocytes are crucial to epidermal tissue growth and regrowth after injuries and either 

establish or reestablish structure for proper tissue function [21, 39].  Keratinocytes are important 

to normal epidermal tissue health, such as the hoof capsule and epidermal growth factor and 

fibroblast growth factor stimulate the modification and differentiation of epidermal tissues [39, 

40].  They are the earliest stage of differentiation of basal epidermal laminar cells.  Failure of the 

cells to differentiate into mature keratinocytes or keratinocytes that do not produce specific 

keratins for their specific tissue may cause laminitis. Studies have reported that specific keratins, 

K6, K16, and K17 are expressed locally in the wound center, while K10 expressed on suprabasal 

cells on wound edge.  This cellular keratin expression defines cell function in the tissue 

according to the required repair, e.g. proliferation, differentiation or maturation [41]. 

Keratinocytes from human skin can be induced to epidermal tissue with similar morphology to 

the human skin [40].  Epidermal morphogenesis in vitro depends on various growth factors, such 

as keratinocyte growth factor, epidermal growth factor and insulin-like growth factor, especially 

when a non-cellular substrate is used to cultivate the progenitor cells.  This suggests that in the 

right environment epithelial cells, such as laminae, can be successfully regenerated in vitro.  
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The equine hoof lamina is a dynamic tissue that is in constant transition and formation from birth 

throughout the life of the horse.  Some transitions and modifications of hoof lamina are normal 

and occur with aging and/or the result of weight bearing while others occur in response to local 

or systemic pathological conditions.  However, tissue damage is characterized by inflammation 

and edema of the lamina (laminitis) and ventral deviation or sinking of the third phalanx in the 

hoof capsule.  

2.3. Experimental Laminitis Models 

Laminitis can be divided into phases based on its progression: developmental, acute, subacute 

and chronic.  The developmental phase occurs between the first insult and the appearance of 

initial clinical signs, and its duration depends on the initiating factor.  The acute phase is defined 

as the time when first clinical signs occur until mechanical movement of the third phalanx occurs 

which is usually within 72 hours.  If sinking or ventral deviation of the third phalanx, does not 

occur within 72 hours laminitis is classified as the subacute stage and if failure of the third 

phalanx occurs after the subacute stage then it is considered the chronic phase [42].  

Over the past 40 years experimental models, such as endotoxemia, CHO and BWE, have been 

used to study laminitis [25-28].  In these laboratory models, horses develop similar clinical signs 

as in naturally acquired laminitis, such as increased heart rate, hypotension, increased rectal 

temperature, leukocytosis or leukopenia, hyperproteinemia.  Increased packed cell volume, 

decrease laminar perfusion and capillary collapse within the hoof lead to increased vascular 

resistance and increased capillary pressure, resulting in laminar ischemia and edema [43, 44].  

Models to induce laminitis are based on known causes of laminitis; however pathologic changes 

in the hoof and clinical signs vary among horses given the same dose of toxicant.  
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Since endotoxemia is one of the causes of laminitis, the endotoxemia model was based on 

intravenous administration of exogenous endotoxin to horses which resulted in systemic 

hypotension, release of cellular cytokine and a direct effect on capillary endothelial function and 

palmar digital artery constriction [45].  This method is based in natural occurring endotoxemia  

secondary to enteritis, pneumonia, retained fetal membranes and peritonitis which are associated 

with a risk of laminitis [46].  Endotoxin administration results in release and activation of 

inflammatory mediators, alteration in endothelial permeability and activation of the coagulation 

cascade.  Typically, clinical signs seen after endotoxin administration include fever, increased 

heart rate and respiratory rate [47, 48].  Despite naturally occurring endotoxemia being a risk 

factor of developing laminitis, the administration of pure endotoxin intravenously did not cause 

laminitis in horses.  For instance administration of E. coli (0.03g/kg, IV) endotoxin resulted in 

vascular changes, including arterial vasoconstriction and digital hypoperfusion; however horses 

did not develop clinical laminitis [25].  Therefore other models were developed to induce 

naturally occurring laminitis. 

The carbohydrate overload laminitis model (CHO) was first described in 1975 by Garner et al 

(1975) and is based on administration of corn starch and wood cellulose flour via nasal-gastric 

tube [26].  The CHO administration results in alteration in the cecal microflora, production of  

lactic acidosis and endotoxemia [26].  Histopathological sections of  hooves from affected 

horses, following the onset of the lameness show swelling of endothelial cells and mild laminar 

edema [49].  Also, there is erythrocytes and leukocytes accumulation in laminar capillaries and 

leukocytes infiltration in epidermal layers [50].  Furthermore, in one study 8 to 12 hours after 

CHO administration, arteriolar endothelial cells were deformed [51].  Hoof laminar tissue is thin 

and lengthened from its original structures and epithelial cells are reduced in number.  After 24 
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hours, there was disintegration (necrosis) of the basement membrane; which is the structure that 

keeps epidermis-dermis interdigitated [30]. 

The Black Walnut extract (BWE) model was first described by Minnick et al in 1987 [27]. 

Shavings of the Black Walnut tree heartwood are soaked in water and the straining resulted in a 

dark tea which is administrated to the horses via nasogastric tube.  Depression, coronary band 

edema, leucopenia, and foot pain, all signs of laminitis, are detected 12 hours after 

administration.  However, diarrhea or endotoxemia do not occur as with the CHO model. In this 

model histological section of laminae showed vacuolization of the SEL and PEL tips loss of 

cellular definition and necrosis.  Blood flow within the hoof, as measured by Doppler flow,  

decreased within the hoof capsule during the two hours after BWE administration, leading to a 

decrease in hoof wall temperature [44]. 

The oligofructose model was developed to induce laminitis and causes less morbidity when 

compared to CHO model [52].  Fructan is short chain sugar containing fructose molecules. It is 

derived from chicory root and when administrated to horses via nasogastric tube results in 

reproducible clinical signs of laminitis.  The dose of oligofructose can be tittered to produce 

consistent signs of laminitis than the methods described above [28].  Horses consistently develop 

pyrexia, increased heart rate, hematological alteration and diarrhea.  French and Pollit (2004) 

also showed that hemidesmosomes are lost in the SEL after oligofructose administration.  The 

number of SEL lost correlates with the dose of oligofructose administrated [53]. 

2.4. Circulatory, Endocrine and Inflammatory Contributors to Laminitis 

All alterations that occur in the laminar tissue during laminitis have been related ultimately to 

decrease of blood flow once an inflammatory response takes place, independently of the primary 

insult.  There is a vasoconstriction of the laminar capillaries, resulting in hypoxia, at the onset of 
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laminitis, however this event by itself it is not sufficient to explain all the mechanisms that result 

results in laminar changes and clinical laminitis.   

The blood vessels in the equine hoof are very sensitive to vasoactive substances such as 

norepinephrine and endothelin, and blood flow changes are seen in normal horse during weight 

shifts or normal activity [54, 55].  There remains a finally regulated balance of blood flow to and 

within the laminae of the hoof which is susceptible to alterations during disease states.  

Furthermore the lamina is located between the distal phalanx (bony tissue) and the hoof wall, and 

does not provide an opportunity to swell during conditions that increase peripheral venous 

pressure in the hoof.  This predisposes the lamina to edema and compression injury, oxygenation 

deficit and that may eventually result in detachment of dermis from the epidermis.  Without 

dermis and epidermis attachment, the tension of the deep digital flexor tendon (which is attached 

to the extensor process (ventral) of the third phalanx) functions to pull the third phalanx ventral 

resulting in the  characteristic “coffin” rotation seen in laminitis [56].  

Endocrine related laminitis has been investigated, and can also be related to inflammatory 

response.  It is characterized by laminitis occurring in horses due equine metabolic syndrome 

(obesity, insulin resistance), pituitary pars intermedia dysfunction (equine Cushing’s syndrome), 

and excess endogenous glucocorticoid release (endogenous) or administration (exogenous) [3, 

57].  Although in humans all those factors are related to metabolic syndrome, the same 

relationships in horses are not well understood [58].  Obesity’s relationship with laminitis can be 

explained by the fact that adipose tissue secretes TNF-α, IL-1β IL-6, which are an inflammatory 

cytokine that inhibits insulin receptor signaling, decreasing insulin sensitivity [59, 60].  It has 

been already shown that ponies with laminitis have a higher concentration of TNF-α than healthy 

ponies [60]. Omental obesity is associated with overexpression of 11β-hydroxysteroid 
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dehydrogenase-1 (11β-HSD1) which converts cortisone in active cortisol.  Cortisol is a 

secretagogue of leptin, which is produced by adipocytes and is elevated in obese patients with 

insulin resistance, type 2 diabetes, and hyperlipidemia [57].  Increased inflammatory cytokines 

and endocrine changes due to obesity have been related to disturbed homeostasis within the hoof 

[59].     

Systemic inflammation may be present in horses with laminitis, and may be the trigger that 

initiates the development of clinical signs. Studies have shown that mRNA expression of 

cytokines (e.g. interleukin [IL]-1β, cyclooxygenase [COX] 2) increases in the early stages of the 

disease [61]. In laminitis induced by BWE, increased interleukin [IL]-8 expression is probably 

associated with the neutrophil infiltration into laminar tissue and occurs within the first 3 hours 

after administration, which then is followed by an increased expression of IL-1β and IL-6 and a 

decreased expression of IL-10, an anti-inflammatory cytokine [61].  On the other hand 

oligofructose administration showed innate and helper T cell 1 adaptive immune response, 

cytokine such as  IL-2, IL-6, IL-8 and interferon, which also is observed when systemic 

inflammation is induced by Escherichia coli [61].  These observations confirm that inflammatory 

response plays an important role in laminitis pathogenesis. 

Naturally or experimentally the precise equilibrium controlling laminar hoof growth and 

regeneration is disrupted during laminitis.  This equilibrium is maintained by synthesis and 

degradation of the extracellular matrix (ECM) in endothelial cells as normal process.  This 

process is regulated and controlled by tissue inhibitors of metalloproteinases (TIMPs), slightest 

alteration in the balance may result in irreversible tissue loss due to degradation of ECM by 

metalloproteinases (MMPs) [62].  Pro-inflammatory cytokines (IL-1β and IL-8) also are related 

to up-regulation of MMPs in some tissues [63].  MMPs are also released by neutrophils, which 
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are attracted by IL-8 during laminitis [64].  Proteins are the substrate for enzymes, such as 

MMPs, in the laminar tissue laminin is a protein that functions to anchor the epidermis to the 

dermis within the hoof, and is a MMPs substrate easily metabolized [65].  It has been shown that 

laminitic tissue contains higher levels of specific MMPs (MMP-2 and -9), which explains 

degradation of ECM and epidermis-dermis separation during laminitis [66]. 

Laminitis is a severe manifestation resulting in several clinical local and systemic conditions.  

The final outcome is a failure of dermis-epidermis cement and detachment followed by ventral 

deviation or rotation of the third phalanx.  In order to understand and relate all the factors and the 

respective effects inside the hoof capsule, further research is needed to determine what are 

normal and abnormal structure and function, and the cell signaling pathways that ultimately are 

irreversibly compromised. 

2.5. Multipotent Stem/Stromal Cells Characteristics  

Multipotent cells are capable of becoming different cells of distinct tissues, they are also known 

for their self-renewing and immune privilege capacity, making them interesting tools in 

regenerative medicine therapies [14, 15].  These cells are found in embryonic and adult tissue. 

Adult mesenchymal stromal cells are found in most of the tissues in the body and have been 

isolated from bone marrow, adipose tissue, muscles, brain, liver, synovium and periosteum in 

different species [8-13, 17, 67]. 

Stem cells are present among the stromal mesenchymal cells and can divide many times without 

differentiating.  Stem cells can be totipotent, pluripotent, multipotent or unipotent depending on 

the tissues they differentiate into.  Totipotent cells are able to differentiate into any cells found in 

the organism, such as a fertilized egg.  Pluripotent stem cells are able to differentiate into several 

cell types within the same embryonic layer, endoderm (e.g. lung cells); mesoderm (e.g. muscle 
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and bone); or ectoderm, (e.g. skin and neurons).  Multipotent cells (e.g. mesenchymal stromal 

cells) can differentiate in different tissues within the same germ layer. Finally, unipotent stem 

cells can only become one cell type. [68] 

In order to unify the characteristics that define multipotent mesenchymal stem cells derived from 

adult human tissues, the International Society of Cellular Therapy (ISCT) stated that stem cells 

must be plastic-adherent, express specific cell surface markers, such as CD73, CD90 and CD105 

and lack the expression of CD14 or CD11b, CD34, CD45, CD79α or CD19 and MHC-II [69].  

Also it has been reported that stem cells express CD29, CD44, CD106 and CD166 [70]. In 

addition to immunophenotype, these cells must be capable of differentiating into osteocytes, 

adipocytes and chondrocytes under specific culture conditions.  The ISTC recommends the term 

stem cells to be reserved just for the cells that show all the characteristics specified above and 

also cells with long-term life in vivo with self-renewal capabilities [71]. 

The ability to isolate multipotent cells, as well as expand and differentiate them in vitro gives a 

new clinical perspective in medical research and raises new therapeutic possibilities.  In equine 

veterinary practice, since fractures and laminitis have poor recovery rate, stem cells provide a 

new approach towards regenerative therapies.  Equine stem cells have been isolated from adult 

tissue such as bone-marrow and adipose, and embryonic tissue such as umbilical cord blood.  

Plastic adherence, immunophenotype, and successfully differentiation into different cell lineages 

were studied and confirmed by several investigators, which verifies their stem cell profile is 

similar to the human established patterns [16, 19, 72].   

Stromal cell therapy is promising for injuries and diseases, such as tendinitis, arthritis and 

laminitis, however little work has been done in this area.  Recently it was reported that an 

injection of autologous stem cells into a laminitic hoof proved successful for tissue recover [73]. 
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Furthermore in horses, bone marrow derived mesenchymal cells have been injected into tendons 

to repair tendon injuries, but the efficacy of the therapy is difficult to determine since control 

groups are rarely reported and frequently therapy is mixed with other cells and biological factors 

(e.g. serum and/or platelet) [15, 74].  New studies are still needed to determine how stromal cells 

can be efficiently used in regenerative therapies.  

2.6. Epidermal Stem/Stromal Cells 

A distinct stem cell population is found in the epidermis.  These cells are important in 

maintaining and renewing the skin integrity.  Depending on the stimuli, stem cells in the 

epidermis will differentiate into sebaceous gland, hair follicle, keratinocytes, transit-amplifying 

cells and stromal cells [75-77].  In the epidermis, cells from the basal layer are responsible for 

the normal cyclic tissue renewal. These basal cells are progenitor cells and divide into new 

progenitor cells, also known as kerationocytes, or terminate into differentiated epidermal cells 

[78].  During epidermal tissue repair the epidermis recruits a pool of progenitor cells, in order to 

repair the wound [79].  In this process keratinocytes are important for inter- and intracellular 

interactions within the skin. They coordinate the signals from various growth factors, cytokines, 

ions and adhesion molecules, and direct the epidermis renewal.  

Keratinocytes and keratinoblasts are the progenitor cells in the epidermis basal layer of the 

stratified epithelia, and produce all cell types. The expression of keratins 5, 14, 15 and 19 by 

these cells indicate they are non-differentiated [80].  As they differentiate the keratin expression 

changes, which characterize each cell lineage. For example, stem cells initially express keratins 

7, 8, 17, 18 and 20; transient amplifying cells express keratin 6 and 16, and primordial 

keratinocytes, that terminate in cornified epithelium express keratin 1 and 10 initially, then later 

keratins 2 and 9 [21, 81, 82].  Keratins 15 (K15) and 19 (K19) expression on basal keratinocytes 
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decrease with age.  A combined expression of those two keratins indicates cells capable of self-

renewing and lateral expansion of growing skin [70, 83, 84].  Keratinocytes isolated from canine 

hair-follicle showed a high cell proliferation rate, as stem cells, and were also positive for K15 

and CD34 [85].  Therefore, the expression of specific keratin markers by epidermal cells 

indicates a specific level of cell differentiation.  

Being able to characterize the heterogeneous cell population within the epidermis and distinguish 

each type of cell is also very important for understanding this dynamic tissue [86]. Using specific 

markers, these cells can be sorted and studied.  

Epidermal stem cells, which express integrin β-1 (CD29) and Keratin 19 have been isolated from 

human, mice and porcine skin and differentiated into different cell lines of the epidermis [37, 38, 

87, 88].  Stem cells from the porcine skin can give rise in vitro to neuro-muscular cells, 

fibroblast-like stem cells derived from human fore-skin (FDSCs) express CD90, CD105, CD166, 

CD73, SH3 and SH4 which are similar markers as bone marrow derived stromal cells. The skin 

stem cells have been also proven to be multipotent by induction to different lineages and 

successfully differentiation into osteocytes, adipocytes, neural cells, smooth muscles, Schwann-

like cells and hepatocyte-like cells [89, 90]. Cells harvested from epidermal tissues have a 

stromal cell population capable of differentiating into diverse cell lineages from ectodermal, 

endodermic and mesodermic tissues. 

2.7. Stem/Stromal Cells Therapy 

Using stem cells as a therapeutic alternative has been the objective of regenerative medicine 

research. Prior to medical and veterinary clinical application, animal models are used to study 

cell effect and fate once in vivo. Several rat and mouse models have been used to investigate 

human diseases. One successful application of stem cells was achieved to treat a fatal 
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neurodegenerative disease mice model, which cause neural dysfunction leading to paralysis 

(Amyotrophic Lateral Sclerosis [ALS]), where intra-muscular transplantation of human 

mesenchymal stem cells proved to ameliorate damaged site with cellular regeneration in treated 

animals confirming their potential to regenerate tissue and improve patient condition [91].  

A pilot study conducted with patients that had suffered and survived from myocardial infarction, 

and presented irreversible tissue damage showed the therapy potential of MSCs. Cells were 

isolated from all 10 patients that participated in the study and infused with a cardiac 

catheterization suite to the proximal part of the coronary vessel. After 8 weeks all patients had 

infarcted size decreased by 5.84% with left ventricle geometry and function preserved [92]. 

Assisting regeneration of epithelial cells after diseases and injuries is also another goal of stem 

cell therapies. The body faces a challenge when regenerating a loss of large tissue volume, such 

as skin loss in burnt patients; or in lung diseases, as cancer, when pulmonary tissue is replaced 

by fibrosis. In both cases the original tissue is replaced with a scar tissue that is not functioning, 

in the lungs for example the fibrosis are breathless. Studies have been done to verify the stem 

cell potential to regenerate epithelial cells. Mesenchymal stem cells were used as a therapeutic 

option in a murine model of bleomycin lung injury and an emphysema model with the 

improvement of the condition suggesting stem cells potential to regenerate epithelial injured 

tissue [93, 94]. 

Recessive dystrophic epidermolysis bullosa a is an inherited skin disorder in humans that disturb 

the homeostasis of the epidermis and dermis resulting in blistering and depleting of stem cell 

pool in the skin [95]. The pathology of the disease evolves lack of anchoring fibrin and collage 

VII at the dermal-epidermal junction [96].  Both fibroblast and keratinocytes secrete collagen VII 

and can be used as an alternative to restore the basement membrane [97]. Conget et al (2010)  
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reported the intradermal injection of allogeneic BMSCs in two patients, which resulted in an 

increase in collagen VII in the dermal-epidermal junction in chronic ulcerated skin [98].  Also 

intradermic injection of fibroblasts from the patient's skin was proven to restore the basement 

membrane structure [99].   

In equine veterinary medicine the regenerative capacity of stem cells was also studied. Most 

applications of stem cell involve injection into tendons for tendonitis and into ligament for 

desmitis [100-102].  In a collagenase tissue induced tendonitis model, bone marrow derived 

mesenchymal stem cells were injected at the same site after three weeks of injury.  The horses 

were maintained on rest for 21 weeks and the tendon healing was examined using an ultrasound 

during this period.  Histology and immunohistochemistry revealed presence of collagen types I 

and III, fiber orientation and cartilage matrix protein (COMP) after treatment showing 

effectiveness in tissue regeneration on treated animals [103]. In the same study horse with 

spontaneous lesions on the flexor tendon or suspensory ligament were treated with autologous 

BMSC injections and went back to racing after approximately 30 weeks [103].  Thus, the 

potential of stem cells to regenerate tissues was demonstrated raising the expectations to 

investigate new applications and therapies. 

2.8.  Flow Cytometry as a Characterization Tool 

Flow cytometry has been used to identify and sort different types of cells in a heterogeneous cell 

population based on surface markers.  Fluorescence activated cell sorting (FACS) works under 

the same principle as flow cytometry but the cells can be separated. It has been used to separate 

different cell populations from the same source. Sivamani et al labeled keratinocytes with cell 

tracker blue (CTB, 7-amino-4-chloromethylcoumarin) and used FACS to separate them from 

human bone-marrow stem cells after co-culture.  In that study they showed that stem cells 
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differentiate into epithelial phenotype when cultured with neonatal keratinocytes.  In another 

study, Trempus et al (2003), isolated murine keratinocytes from the hair follicle using flow 

cytometry direct at CD34.  Also real-time PCR confirmed its gene expression, demonstrating the 

specificity of CD34 for keratinocytes [104]. 

Epidermal adult stem cells were also identified and quantitated in a human bald and hairy scalp. 

This study used flow cytometry to identify cell surface markers cytokeratin 15, CD200, CD34 

and integrin α-6 in cells with stem cells properties in the hair follicle bulge. Bald scalp had no 

depletion of K15, showing that the absence of hair is not directly related with the stem cell 

number in the hair follicle. The presence of cells high positive for CD200 and CD34, in the other 

hand, was diminished on the bald scalp in comparison with the hairy scalp. This study shows that 

the stem cell population may not change in certain diseases, but their differentiation potential or 

pathway that the cells undergo may be the reason for tissue malfunction [105].  

Keratinocytes isolated from the epidermis exhibits two major cell subpopulations, stem cells and 

transient amplifying cells. Epidermal stem cells candidates were characterized as integrin-1β 

positive and Rh123 low accumulation (negative); transient amplifying cells were identified by 

medium expression of integrin-1β and high accumulation of Rh 123 [106]. This same study also 

showed that the epidermal stem cells candidates had longer telomeres length that the integrin 

negative cells, which is a characteristic of undifferentiated cells 

In Veterinary Medicine flow cytometry has been used to characterize equine adipose derived 

stromal cells.  Although adipose derived cells are mesenchymal cells and not ectodermal cells, 

these antibodies have been used to identify multipotent cells from different embryo layers.  

CD90 and CD44 have been used in flow cytometry as stromal cells markers for MSCs.  In a 

recent study, an anti-rat CD90 monoclonal antibody cross reacted with equine tissue and mouse 
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anti-horse CD44 was also positive from the adipose derived MSCs [107].  These findings 

strongly suggest that equine multipotent cells express these cell surface markers.  

Equine umbilical cord matrix derived cells were characterized by flow cytometry, which 

confirmed expression of stem cell markers, such as Oct-4, SSEA-3, SSEA-4 and TRA-1-60.  In 

that study the antibodies were from mouse, rat or rabbit, again confirming cross reactivity with 

equine. [108]  

2.9. Regenerative Medicine-Scaffolds 

Scaffolds are vital for regenerative medicine because they provide a favorable environment, 

nutrients, structural support and organized cell proliferation in order to form new tissue [109].  

Different biomaterials have been used to build scaffolds; there are categories such as ceramics, 

natural polymers and synthetic polymers.  The materials determine stiffness, biodegradability, 

biocompatibility and interaction with different tissues [110].  Depending on the tissue to be 

repaired, bone, ligament, tendon or skin a specific scaffold material must be chosen [111-114]. 

Severe skin wounding usually requires a skin substitute and dermal layer to achieve successful 

healing.  The re-epithelization of keratinocytes, essential for skin regeneration, depends on large 

scale on the interaction between dermis and epidermis.  To restore the dermis, a tissue scaffold is 

crucial to guide and give structure for the new layer of cells, which will support the new 

epidermis formation [115, 116].  In a burned-skin model in pigs, Liu et al (2008) used a 

collagen-glycosaminoglycan scaffold loaded with MSCs to treat the wounds.  Animals treated 

with scaffold loaded with MSCs showed a significantly better skin healing than the one treated 

just with a scaffold (no cells) or without a scaffold [114]. 

Tissue engineering for artificial skin requires a scaffold that provides biocompatibility, non-

immunogenity and biodegradability.  Also, the cells have to form extracellular matrix which 
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determines tissue structure and proper functionality [117]. Epithelial tissue reconstruction relies 

on building the epithelial layer and the stromal layer that will program cell proliferation and 

differentiation. Skin equivalents have been the most efficient way to reconstruct skin. These skin 

equivalents are made by keratinocytes cultured in an air-liquid surface and conditions that 

resemble the in vivo environment [118]. Collagen has been shown as the most efficient polymer 

for dermal substitutes. [119]  Together, keratinocytes and collagen, they are an important model 

to reconstruct and study epithelial tissue. 

Identifying proper epidermis-dermis development is an important step to determine new 

therapeutic models to study and reconstruct this tissue. One important way to classify health and 

differentiation level of epithelial tissue is the characterization and analysis of the keratin 

expression in tissues [120, 121]. Keratins can be acidic or basic, usually are found in pairs in 

vivo, one acidic and one basic [120]. Under in vitro conditions acidic keratins can be paired with 

any basic polymer. There are various types of keratins present in different layers of the epithelial 

tissue according to the cell differentiation stage. K5/K14 are found in the basal stratified 

squamous epithelia; K1/K10 are found one the suprabasal layer of the skin and are a 

differentiation-related pair and K6/K16 are found in hyperproliferative keratinocytes. [122]  

Thus, identifying which keratins are present in keratinocyte cultures could give us a clear idea 

about the differentiation stage of cells, which would be crucial to developing a therapeutic model 

to be applied for tissue engineering. 

In the equine laminae, besides the keratins, other proteins involved in the proper tissue function 

can be identified to indicate tissue health and proliferation. Kuwano et al (2005), analyzed the 

modifications that occurred in different stages of recovering chronic laminitic hooves. The basal 

membrane zone of the laminar tissue showed alternated keratinocytes proliferation; laminin, 
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collagen IV and VII low expression; absence of hemidesmosomes and fibrils.  These, also would 

be parameters to evaluate laminar keratinocytes and epidermis-dermis differentiation in the 

equine laminar tissue once the cells are loaded and cultured in a scaffold. [123] 

2.10. Conclusion  

Little is known about the presence of primordial multipotent cells in equine laminar tissue.  

Resources now available make it possible to identify cell population in equine laminae and 

clarify events and changes that occur during clinical and subclinical laminitis.  In addition, 

techniques used to investigate multipotent cells from ectodermal derived tissues in humans may 

provide specific ways to characterize laminar derived cells.  The isolation and characterization of 

progenitor cells from equine laminar tissue in health and disease may provide a key to the causes 

of this devastating condition.  
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3. Materials and Methods 

3.1. Study Population 

The study population consisted of 20 horses, 13 unaffected and 7 with laminitis, 12 geldings, 8 

mares,  2 to 19 years of age, 8 thoroughbreds,  7 quarter horses, 1 tennessee walker, 1 arabian, 1, 

palomino and 2 paint horse (Table 1).  Laminitic horses were defined as those with a clinical 

diagnosis of laminitis longer than three weeks and a white line thickness of greater than 1 cm on 

sagittal section (Fig. 1) 

Table 1. Horse information (CD/DT: cell doubling/doubling time; PCR; FC: flow 

cytometry; IHC:immunohistochemistry; CFU) 
 

Horse ID Age 
(years) Condition Gender Breed Outcomes 

CD/DT PCR FC IHC CFU 
449 3 UC gelding Thoroughbred X    X 
451 8 UC mare Thoroughbred X    X 
422 2 UC mare Thoroughbred X    X 
451A 4 UC gelding Thoroughbred X    X 
519 13 UC mare Quarter Horse X     
007  3 UC gelding Thoroughbred 

 
X X   

289 14 UC mare Quarter Horse 
 

 X   
786 9 UC gelding Tennessee Walker 

 
X X   

333B 7 UC mare Arabian 
 

X X X  
333 7 UC gelding Paint Horse 

 
X X   

460 22 UC gelding Palomino   X   
103B 17 UC mare Paint Horse   X   
404 10 UC mare Quarter Horse 

 
X X   

719 17 LC gelding Quarter Horse X X X   
464 4 LC gelding Thoroughbred X X X X  
465 4 LC gelding Thoroughbred X X X  X 
101 19 LC gelding Thoroughbred X  X   
103 13 LC mare Quarter Horse X X X  X 
294A 7 LC gelding Quarter Horse X X X   
108B  17 LC mare Quarter Horse 

 
 X  X 
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Figure 1.  Medial section of two hooves,  healthy (A) and with laminitis (B), showing the 

increased thickness of the laminar tissue and the  phalanx characterized by the rotation of 

the third phalanx 

Cell Isolation 

Immediately following euthanasia for reasons unrelated to this study, hooves (unaffected (UC) 

and laminitic (LC) were disarticulated at the metacarpophalangeal joint.  Hooves were cleaned 

with a brush and bacteriostatic soap and then soaked in 10% bleach (HCl) for 60 seconds, 

followed by 0.01% chlorhexidine for 30 seconds.  With hooves gripped by a vice on the lateral 

surfaces, a reciprocating saw with sterile blades (DeWALT, DC385, Fire&Rescue blades, 

DW4865, Baltimore, MD) was used to make three 3 cuts in the hoof wall 2-3 cm apart to the 

level of the third phalanx and extending from the coronary band to the toe edge, perpendicular to 

the sole.  The toe was then excised transversely through the tip of the third phalanx (P3).  From 

the cut edge at the toe, the wall was elevated with a hoof clipper to expose the laminae (Fig.1 and 

2).  A #10 scalpel blade was used to incise the laminar tissue to the level of P3 in a 2x3 

rectangle.  The tissue was undermined with the scalpel blade at the bone-lamina interface and 

excised (Fig.3).  The excised tissue was soaked in 0.01% chlorhexidine for 5 minutes and then 

rinsed with 1X PBS with 2% antibiotic/antimycotic (Penicillin 300IU/ML, Streptomycin 

300MCG/ML and Amphotericin 0.75MCG/ML(MP Biomedical, Irvine, CA)) (Fig.4).  A 5 mm 

section on the medial edge of the rectangle was preserved in 4% neutral buffered formalin for 

A B 
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immunohistochemistry.  The remaining tissue was weighed, minced and transferred to a 15ml 

tube containing collagenase digest (1%g Bovine Serum Albumin (BSA) and 0.1% collagenase 

type-1 in 50ml DMEM-Ham’s F12 (Hyclone, Logan, UT)) with 2% antibiotic/antimycotic 

(Fig.4).  Tubes were placed on a homogenizer  (GyroTwister™ GX-1000, Labnet, Inc., Edison, 

NJ), 55 RPM,  and incubated  at 37˚C for two hours.  The cell solution was equally distributed 

into two wells of a 6-well plate (Cell Star, Monroe, NC).  The process was repeated for the 

second digest, and the resulting cell pellet was resuspended in 4 ml  of stromal medium (DMEM-

Ham’s F12, 10% Fetal Bovine Serum, 1% antibiotic/ antimycotic solution) and distributed among the 

remaining 4 wells of the plate.  Cells were incubated over night (37C, 5% CO2).  Medium was 

refreshed the following day and subsequently every 2-3 days until 80% confluence (7 to10 days).  

The cells were then pooled and seeded at 5 x 103 cells/cm2  in a six well plate (P0).  

 

.   

Figure 2. Tools used for hoof removal (hammer, clipper and chisel, top to bottom) and 

laminae harvest (petri dishes-a, scalpel handle and scalpel blade-b, forceps-c antibiotic and 

chlorhexidine washes-d).  
 

a 

c d 

b 
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Figure 3. Hoof wall cleaning, removal before laminar harvest.  

3.2. Cell Doubling (CD) and Doubling Time (DT) 

Cells were cultured in duplicate in 12-well culture plates (Nunclon, Rochester, NY) up to P5 in 

stromal medium with initial seeding densities of 5 x 103 cells/cm2.  Cell numbers were quantified 

in P0-P5 after 2, 4, and 6 days of culture.  Cell doubling times (DT) and cell doublings (CD) 

were calculated using the formulae [17]:  1. CD= ln(Nf /Ni)/ln(2) and 2.  DT= CT/CD. 

CT=culture time. 

3.3. Colony Forming Unit Frequencies-Limiting Dilution Assays  

Fibroblastic colony forming unit (CFU-F) frequency was determined for P0, 2 and 5 using 

limiting dilution assays [22].  Cells were added to a 96-well plate at 5 x 103, 2.5 x 102, 1.25 x 

102, 6.25 x 10, and 3.12 x 10. 1.56 x 10, 7.8 x 10 and 3.9 x 10 cells/well, one concentration per 
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column.  CFU-Fs of cells from laminitic hooves were determined in fresh and cryopreserved 

cells. 

Following seven days of culture, wells were rinsed twice with PBS and fixed for 20 minutes in 

1% paraformaldehyde in PBS at room temperature.  Fixed cells were stained for 1 hour with 

0.1% toluidine blue.  Plates were then rinsed with tap water and colonies counted under 10x 

magnification.  A colony was defined as 10 cells or more.  A total of ≥5 toluidine blue stained 

colonies within a well was considered positive.  The CFU-F frequency was calculated based on 

Poisson’s principle using the formula F=e‾ x, where F = the fraction of negative wells, e = 

natural logarithm constant 2.71, and x = colonies per well.  Based on Poisson’s distribution of 

clonal cell lineage, the value F0 = 0.37 occurs when the total number of cells in a well contains a 

single CFU. 

  

  

Figure 4. Laminar harvest. 
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Figure 5. Lamina in chlorhexidine wash and in 50 ml tubes before digestion.  
 

3.4. Semi-Quantitative RT-PCR (qRT-PCR) for Target Gene mRNA Levels 

P0, 2, and 5 UC and LC (n=5 horses/cohort) were used for mRNA analysis.  Cells  were 

detached from well culture ware with 0.05% Trypsin (Hyclone, Logan, UT), rinsed with 1X PBS 

and maintained in 100µL of lysis solution from RNAqueous Micro Kit (RNAqueous Micro Kit 

Ambion, Inc., Austin, TX) at -80◦C until mRNA extraction.  The mRNA was isolated according 

to manufacturer’s instruction: added 50 µL of 100% ethanol, vortex, passed through the micro 

column, centrifuged (13,000g, 10 seconds), washed twice (solutions with different ethanol 

percentages provided in the kit) and eluted in 75C elution solution (kit).  Potential DNA 

contamination was removed by DNAse I (Turbo DNA free, Ambion, Inc., Austin, TX) digestion.  

DNAse-treated RNA samples were reverse transcribed into cDNA using oligo(dT) primers and 

Moloney Murine Leukemia Virus (M-MLV) reverse transcriptase (Sigma Aldrich, St. Louis, 

MO).  Complementary DNA (cDNA) was synthesized from 1-2μg of mRNA in all samples. 

Primers for OCT4 and SOX-2, Keratins 14, 15 and 19, CD29 (integrin β1), CD44 (hyaluronic 

receptor) and CD 105 (endoglin) were designed according to NCBI and checked for congruency 

with the Equus caballus predicted sequence (Table 2).  Target gene mRNA concentration levels 

were quantified with qRT-PCR using SYBR Green technology (MJ Research Chromo4 Detector, 
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Bio-Rad Laboratories).  Amplicons were sequenced to confirm target sequence amplification. 

The CT values were normalized to GAPDH (Glyceraldehyde 3-phosphate dehydrogenase).  

Table 2. Primers sequences 
 

Gene NML PubMed Forward and Reverse Primers Protein and Relevance 
 

GAPDH XR_131668 
 

CAA TGA CCC CTT CAT TGA CC 
GAA GAT GGT GAT GGC CTT TC 

Glyceraldehyde 3-phosphate dehydrogenase. 
Housekeeping gene. 

OCT4 XM_001490108 
 

TCG TTG CGA ATA GTC ACT GC 
AGT GAGA GGC AAC CTG GAG A 

Octamer-binding transcription factor 4- Oct-4. Self-
renewal of undifferentiated embryonic stem cells 

SOX-2 XM_003363345 
 

CAG CTC GCA GAC CTA CAT GA 
TGG AGTG GGA GGA AGA GGT A 

Sex determining region Y-box 2 - SOX-2 Self-
renewal of undifferentiated embryonic stem cells 

CD29 XM_003364340 
 

CCA TTG TTC ACG TTG TGG AG 
TTG GCA AAT TCC CTT CTG TC 

Integrin β1Attachment of cells to the ECM and 
important role in cell signaling  

CD44 NM_001085435 CAG CAC CCC TGC GGA TGA CG 
TGG TCT TGG GTG GGG CGA GT 

Hyaluronic acid receptor. Receptor hyaluronic acid,  
healing process and reepithelization of extracellular 
matrix  

CD105 XM_003364145 
 

CCC CAA GAG TCA ACA CCA CT 
GTT CGA GAC TGC AGG AGG AC 

Endoglin. Part of the TGF-β receptor complex. 
Affecting cytoskeleton morphology and cell 
migration. 

Keratin 
14 

XM_001496937 
 

TAC GAG ACG GAG CTG AAC CT 
TGG CCT CTC AGG CTA TTC AT 

Type-II keratin. Cytoskeletal component role at the 
epidermis-dermis junction. 

Keratin 
15 

XM_001496858 
 

GTG GCT TTG GTG ACT TTG GT 
GTC TCG GAT CTT CAC CTC CA 

Type-I keratin. Present in the progenitor basal cells of 
the epidermis. 

Keratin 
19 

XM_001917408 GAA CCA GGA GGA AAT CA 
GCT TCA GCA TCC CTG TT 

Type-I keratin. Responsible for the structural integrity 
of epithelial cells.  

 

3.5. Flow Cytometry 

At 80%confluence, P0, 2, and 5 cells from 8 horses (5 UC and 5 LC) were evaluated with flow 

cytometry using fluorescein isothiocyanate (FITC) or perierithrin (PE) labeled antibodies.  Cell 

aliquots of 1x 106 cells were incubated for 20 minutes with CD29, CD44 and CD105 antibodies 

(Table 3).  Aliquots were then centrifuged (1,200 RPM, 4 minutes, RT), washed with 2 ml of 1 X 

PBS, centrifuged again, and then fixed with  30 µL 1-2% formaldehyde-PBS.  Since CD29 was 

unconjugated, cells were incubated with a secondary anti-mouse IgG FITC labeled antibody 

(Sigma Aldrich, St Louis, MO) for 15 minutes followed by rinse with 1 X PBS and 1-2% 

formaldehyde-PBS fixation.  
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For intracellular antigens (keratins, table 3), cells (3 UC and 3 LC) were first permeabilized with 

the Cytofix/Cytoperm kit (BD Biosciences, San Jose, CA) according to manufacturer’s 

instruction.  Briefly, cells were washed with 2ml of 1X PBS, centrifuged at 1200 RPM for 4 

minutes and then incubated with Fixation/Permeabilization (100 µL/1 x 105 cells) solution for 20 

minutes at 4˚C.  Cells were then washed with 1ml of 1X BD Perm/Wash TM buffer, and 

centrifuged (1200 RPM, 4 minutes).  After the supernatant was decanted, cell pellet was 

resuspended in 1X BD Perm/Wash TM buffer (200 µL x number of antibodies to be tested) and 

aliquoted to separated tubes (one/antibody).  Subsequently, 1 µL of each primary antibody was 

added to one of the tubes and incubated for 20 minutes at 4˚C in the dark. Cells were then 

washed one more time with 1 ml of 1X BD Perm/Wash TM buffer and centrifuged as before.  The 

supernatant was decanted, and 0.5 µL of secondary antibody, anti-mouse IgG FITC labeled 

antibody (Sigma Aldrich, St Louis, MO), was added followed by additional incubation for 20 

minutes at 4˚C in the dark.  Cells are washed one more time as described above and 150 µL of 

2% FBS in PBS is added in each tube.  Flow cytometry assays were performed on FACS Calibur 

flow cytometer (BD Biosciences).  Data was analysed with the Cellquest Pro software (BD 

Biosciences). 

Table 3. Antibodies Information 
 

Antibody Description Label Species Host Manufacture 
CD29 integrin β-1 N/A Mus Musculus 

(mouse) 
mouse BD Biosciences 

 San Jose, CA 
CD44 hyaluronic acid 

receptor 
FITC Canis familiaris (dog) mouse eBiosciences  

San Diego, CA. 
CD105 endoglin PE Homo sapiens 

(human) 
mouse eBiosciences  

San Diego, CA 
K14 Keratin 14 N/A Homo sapiens 

(human) 
mouse Abcam Inc 

Cambridge, MA 

K15 Keratin 15 N/A Homo sapiens 
(human) 

mouse Abcam Inc 

Cambridge, MA 

K19 Keratin 19 N/A Homo sapiens 
(human) 

mouse Abcam Inc 

Cambridge, MA 

 



 
 

30 
 

3.6. Immunohistochemistry 

Formalin fixed sections of lamina (1 x 0.5 x 0.5 cm) were paraffin embedded and sectioned (5 

microns).  Anti-keratin antibodies (table 3) were used to localize the proteins in situ.  The slides 

were incubated with the primary antibody (1:100) overnight at RT.  After rinsing in 1x PBS three 

times, the slides were incubated with the horse radish-peroxidase (HRP) conjugated secondary 

antibody (1:1000) for 1 hour at RT.  Color was exposed with diaminobenzidine/H2O2 (3 minutes, 

RT).  Human skin and fingernail were used as positive controls and no primary antibody 

incubation was used as negative control. 

3.7. Cell differentiation 

3.7.1. Osteogenesis 

Passage 2 cells were grown to 70% confluence in stromal medium.  They were then cultured in 

osteogenic induction medium (DMEM-Ham’s F12, 10% FBS, 1% antibiotic/antimycotic 

solution, β-glycerophosphate (10 µmol/L), dexamethasone (20 nmol/L), and sodium 2-phosphate 

ascorbate (50µg/mL) for 15 more days, with media refreshed every 3 days.  Cells were rinsed 

with 150mM NaCl 3 times and fixed in 70% ETOH for 1 hour at 4 ˚C.  After fixation, cells were 

stained with a 2% Alizarin Red solution in distilled water (pH 4.1-4.3 with NaCl) for 10 minutes 

at room temperature.  The cells were rinsed 5 times with distilled water for light microscopic 

evaluation (10X).   

3.7.2. Adipogenesis 

Cells were initially cultured as described above.  Cells were cultured in adipogenic induction 

media (DMEM-Ham’s F12, 3%FBS, 1% antibiotic/antimycotic solution, biotin (33 µmol/L), 

pantothenate (17 µmol/L), insulin (1 µmol/L), isobutylmethylxanthanine (IMBX) (0.5mmol/L), 

and rosiglitazone (5 µmol/L) [124] for 14 days with media refreshed as above.  Cells were then 
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fixed in 10% paraformaldehyde in PBS for 1 hour at 4˚C.  After fixation, cells were stained with 

Oil Red O for 20 minutes, rinsed with distilled water 3X and then evaluated with light 

microscopy (10x).  Adipogenesis was further confirmed in one sample with RT-PCR to quantify 

adipogenic specific genes after seven days of culture (Table 2). 

Table 4.  Adipogenesis Target Gene Primer Sequences 
 

Gene NML PubMed Forward and Reverse Primer Protein and Relevance 
Leptin NM_001163980 

 
GGC TTT GGC CCT ATC TGT TC 
ACC AGT GAC CCT CTG TTT GG 

Leptin:  hormone expressed 
proportionally to body fat-adipocytes 

LPL XM_001489577 GAG GAC ACT TGC CAC CTC AT 
TAC ATT CCT GTC ACC GTC CA 

Lepoprotein lipase; Gene 
overexpressed in adipose tissue 

PPRγ XM_001492411 AAG GAG AAG CTG TTG GCA GA 
GGT CAG TGG GAA GGA CTT GA 

Peroxisome proliferator-activated 
receptor gama: transcriptor factor.  

 
 

3.7.3. Chondrogenesis 

Cells (P2) aliquots (2.5 x 105 cells) and placed in 15 mL tubes and centrifuged at 1200 RPM for 

5 minutes to form pellets.  Pellets were cultured in chondrogenic medium (DMEM, 10% FBS, 

ascorbate phosphate (50µg/mL), dexamethasone (100nM), proline (40µg/ml), sodium pyruvate 

(2mM), TGF-β 3 (10ng/mL) and 1% ITS (6.25 µg/mL of insulin, transferin and selenious acid; 

5.33 µg/mL linoleic acid, 1.25 mg/mL BSA) at 37C with 5% CO2 for 21 days with medium 

refreshed every 2-3 days.  Pellets were formalin-fixed, paraffin-embedded, and stained with 

Alcian blue (5 μm sections). 
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4. Statistical Analysis 

All data is presented as mean ± standard error of the mean (SEM).  CD, DT data and limit 

dilution analysis were analyzed by two-way ANOVA with independent variables of passage.  

Tukey’s post hoc tests were performed to assess multiple group comparisons.  PCR data were 

analyzed with one-way ANOVA with independent variables of passage. Unpaired t-test was used 

to analyze data between cell types within passage.  A value of P <0.05 was considered 

significant.  Statistical analyses were evaluated using GraphPad Inc., statistical software package 

(San Diego, CA). 
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5. Results 

5.1. Laminar Cell Isolation and Culture 

Laminar harvests yielded an average of 2.83 grams of tissue.  After digestion, cells were not 

counted because the amount of debris that was plated with cells made counting difficult and 

inaccurate.  After 2 days the adherent heterogeneous population of cells could be seen, in which 

different shaped cells with fibroblast-like, cobblestone-like, polygonal flattened-cells and a web-

like colony of cells were observed (Fig. 6 A and B).  Cells reached 80-90% confluence within 7 

to 10 days, about 250,000 cells per well.  Cells of P0-P5, were mostly spindle-shaped than cell 

from stromal vascular fraction (Fig. 6 C and D). 

 

 
 
Figure 6. Stromal vascular fraction after 2-3 days culture (A, B).  First passage (P0) cells 

after 5 (C) and 10 (D) days of culture. 
 

B 
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5.2. Laminar Cells Proliferation 

Day 2 cell number was used as the initial cell number to calculate DTs and CDs for days 4 and 6 

from P0 to P5.  Cell doublings and doubling times were not significantly different among 

passages within cell types or between cell types within passages. (Figs. 7, 8).  Overall cell 

doubling was significantly higher in LC, with CD 1.44 ± 0.09, and UC 1.04 ± 0.06.  Mean ± 

SEM CDs, P1 1.25±0.19, P2 0.91±0.10, P3 1.05±0.15, P4 0.94± 0.11, P5 1.22±0.10 and P6 

0.87±0.16. DT were P1 1.02±0.15, P2 1.43±0.32, P3 1.19±0.17, P4 1.24± 0.16, P5 0.89±0.09 

and P6 1.69±0.31.  Cells proliferation rate was not significant different over passages. The 

average ± SEM for CD at the different passages of cells harvested for 6 laminitic hooves were, 

P1 1.60±0.27, P2 1.82±0.34, P3 1.32±0.22, P4 1.23±0.18, P5 1.48±0.16 and, P6 1.21±0.16. DT 

were P1 1.0± 0.22, P2 0.92± 0.23, P3 1.35± 0.37, P4 1.34± 0.38, P5 1.12± 0.46 and, P6 0.99± 

0.13.  There was no significant difference in the expansion rate of cells isolated from laminitic 

hooves.  Between cells from healthy hooves and laminitic hooves there was also no significant 

difference.  Ages of the horses used for these experiments were not significant different between 

healthy and laminitic. 

 
Figure 7. Mean + SEM cell doublings (left) and doubling times (right) of unaffected (UC) 

adult progenitor cells harvested from unaffected hooves (n=6). 
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Figure 8. Mean + SEM cell doublings (left) and doubling times (right) of laminitic (LC) 

adult progenitor cells harvested from laminitic hooves (n=6). 

        
  

Figure 9. Cell doublings (left) and doubling times (right) comparison between unaffected 

(UC) and laminitic (LC) cells.   
 

 
 

Figure 10. Overall cell doubling and doubling time. Overall cell doubling was significant 

higher in LC than in UC. Columns with different letters within graphs are significantly 

different from each other (p<.05). 
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5.3. Limiting Dilution Assays for Colony Forming Unit Frequencies  

The UC CFU-F was 1: 3,628, 1: 1,085, and 1: 6,260 for passages P1, 3 and 6, respectively (Fig. 

11 A-B).  The LC CFU-F fresh was 1: 1,127, 1: 2,979, and 1: 1:53 for P0, 2 and 5, respectively.  

The LC CFU-F revitalized was 1: 1,386, 1: 4,688, and 1: 1: 518 for P1, 2 and 6, respectively (Fig 

11 C-D). 

 

Figure 11. Cell colonies stained with toluidine blue (A). Colony forming unit frequencies 

(mean +/- SEM) for P0, 2, and 5 of UC (B). Colony forming unit frequencies (mean +/- 

SEM) for P0, 2, and 5 of fresh LC (C) and revitalized LC (D) P1, P3 and P6. 
 

5.4. Quantitative PCR 

The OCT4 mRNA levels were significantly higher in P2 and P5 UC compared to P0 (Fig. 12).  

Notably, OCT4 mRNA levels were higher in P0 LC versus UC and significantly lower in P5 LC 

compared to UC.  The SOX-2 mRNA levels were significantly higher in P5 compared to P0 and 

P2 in UC (Fig. 13).  The P1 SOX2 levels were significantly higher in LC compared to UC.  
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Relative CD29 levels (Fig. 14) were significantly higher in P5 compared to P0 and P2 in UC.  

Additionally, P5 UC CD29 mRNA levels were significantly higher than LC.  Expression of 

CD44 levels were increased significantly with increasing passages in both UC and LC (Fig. 15).  

Specifically, it was significantly higher in P5 compared to P0 and P2 LC, and significantly lower 

in P0 UC compared to P2 UC which was in turn lower than P5 UC.  Within passages, CD 44 was 

significantly higher in LC than UC for all passages evaluated.  Expression of CD105 levels were 

increased significantly with increasing passages in UC, and in P5, CD105 levels were 

significantly higher in UC then in LC (Fig. 16).  K14 expression levels were significantly lower 

in UC P5, than in P0.  There was no significant difference on K14 expression between cell types 

within passages (Fig. 17).  Relative expression levels of K15 was not significantly different 

within UC but it was significant lower at P2 and P5 when compared to P0 in LC. K15 levels 

were significantly higher in LC at P2 and P5 compared to UC (Fig18).  K19 expression levels 

were significant higher in LC in P5 versus P0.  LC expression levels of K19 was significantly 

higher in P5 when compared to P5 UC (Fig.19).  

 
 

  
Figure 12. Relative OCT4 mRNA (mean ± SEM) levels in P0, 3, and 5 UC (A), LC (B), and 

UC and LC together.  Columns with different lower cases letters within graphs A,B or 

within passage (C) are significantly different from each other (p<.05).   
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Figure 13. Relative SOX-2 mRNA (mean ± SEM) levels in P0, 3, and 5 UC (A), LC (B), and 

UC and LC together.  Columns with different lower cases letters within graphs A, B or 

passage within graphs (C) are significantly different from each other (p<.05).   

  
 

 
 
 
Figure 14. Relative CD29 mRNA (mean ± SEM) levels in P0, 3, and 5 UC (A), LC (B), and 

UC and LC together.  Columns with different lower cases letters within graphs A, B or 

passage within graphs (C) are significantly different from each other (p<.05).   
 

  
 
Figure 15. Relative CD44 mRNA (mean ± SEM) levels in P0, 3, and 5 UC (A), LC (B), and 

UC and LC together.  Columns with different lower cases letters within graphs A, B or 

passage within graphs (C) are significantly different from each other (p<.05).   
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Figure 16 . Relative CD105 mRNA (mean ± SEM) levels in P0, 3, and 5 UC (A), LC (B), 

and UC and LC together.  Columns with different lower cases letters within graphs A, B or 

passage within graphs (C) are significantly different from each other (p<.05).  

   
Figure 17. Relative K14 mRNA (mean ± SEM) levels in P0, 3, and 5 UC (A), LC (B), and 

UC and LC together.  Columns with different letters lower cases within graphs A, B or 

passage within graphs (C) are significantly different from each other (p<.05).   

   
Figure 18. Relative K15 mRNA (mean ± SEM) levels in P0, 3, and 5 UC (A), LC (B), and 

UC and LC together.  Columns with different lower cases letters within graphs A, B or 

passage within graphs (C) are significantly different from each other (p<.05). 

 
Figure 19. Relative K15 mRNA (mean ± SEM) levels in P0, 3, and 5 UC (A), LC (B), and 

UC and LC together.  Columns with different lower cases letters within graphs A, B or 

passage within graphs (C) are significantly different from each other (p<.05). 
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5.5. Flow Cytometry 

Flow cytometry showed UC and LC express CD29, CD44 and CD105, in P0-P5 (Fi.20).  Overall 

a progressive decrease in the percentage of stained cells was observed from passage 0 to 5 (Fig. 

21).  CD44 percentage of stained cells was significant higher in LC of P0 versus P5.  In UC, 

CD105 percentage of stained cells was significant higher in P0 compared to P5. K14, K15 and 

K19 staining was not significant different among passages in the two cell types. 

 
Figure 20. Representative histograms of cells positive for the indicated cell surface markers 

(A-C) and keratins (D-F) (black) versus autofluorescence (green).  

 

Figure 21. Percentage (mean ± SEM) of cells expressing the indicated antigens.  Within cell 

types, columns with different letters are significantly different from each other (p<.05).        
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5.6. Immunohistochemistry 

K14, K15 and K19 were localized to the SDL-SEL junction in laminar tissue from unaffected 

and laminitic hooves (Fig. 23).  

 

Figure 22. Immunohistochemistry of laminar tissue  from unaffected (A-C) and laminitic 

(D-F)  hooves confirming the presence and location of K14, K15 and K19. 

5.7. Cell Differentiation 

5.7.1. Osteogenesis 

After 21 days of culture in osteogenic medium the cells formed aggregates that stained positive 

for Alizarin Red, indicating calcification and osteogenic differentiation of the primordial cells.  

Control cells did not get stained and kept the spindle morphology (Fig.24). 

   
 

Figure 23. Equine laminar cells osteogenesis. Alizarin Red staining accumulation of 

calcium (A). Control cells (B).  

A B 
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5.7.2. Adipogenesis 

After testing different concentration of reagents, we concluded that 5 and 10 times of all the 

ingredients were toxic and killed all the cells in the plate.  Medium with 2 times concentration 

killed the majority of cells, but the remaining cells differentiated into adipocytes after 21 days of 

culture.  The regular medium induced cells to adipogenesis, but it required longer time of culture.  

Because TGF- β has been reported to be involved in the mesenchymal/ectodermal switch we 

added 10ng/ml in the culture medium.  When comparing 1x and 2x medium, with and without 

TGF-β, with the regular medium the cells were the same.  Cells in adipogenesis induction 

medium became round shaped.  Intracellular adipose droplets were stained with Oil Red O.  

Control cells did not get stained and kept the spindle morphology.  Quantitative PCR showed 

increased expression of early adipogenic genes, LPL, Leptin and PPR-γ (Fig.25).  

    
 

   
 
Figure 24. Equine laminar cells adipogenesis. Cells morphology changing (A).  Oil Red O 

staining of lipid droplets after differentiation (B). Control cells (C). Expression of Leptin, 

LPL and PPRγ in cells cultured 7 days in adipogenesis medium (D). 

 

A B 

C D 
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5.7.3. Chondrogenesis 

After 21 days of culture in chondrogenesis induction medium the cell formed a pellet that was 

paraffin embedded and stained with Alcian Blue for collagen I (Fig. 26). 

   

Figure 25. Equine laminar cells chondrogenesis. Cell pellet stained with Alcian Blue and 

H&E (A and B). Control (C).  
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6. Discussion  

Laminitis has been, for uncountable years, a major reason for loss of horses.  Because the 

pathophysiology of the disease is not completely understood, therapies available are usually not 

successful.  Laminitis is the consequence of multiple insults making it challenging to fully 

reproduce it with experimental models.  This study is the first to evaluate a subculture of dermal 

and epidermal cells isolated from the equine laminae, and determine their physiology in normal 

and laminitic hooves.  Knowledge of dermal and epidermal cell behavior in vitro provides a 

unique approach to studying this devastating disease in naturally occurring laminitis in horses 

without sacrificing horses undergoing exposure to toxic substance.  

The lamina is an epidermis and dermis tissue, like the human skin, however the latter heals 

injuries and wounds without complication (excluding cases with massive skin loss), while the 

former no so much [125].  This is because of the unique encapsulated structure of the laminae, 

healing and regeneration do not occur, and the tissue function, once disturbed, is permanently 

compromised [42].  Based on our results, progenitor cells are present in the equine laminae but 

are not able to regenerate the tissue after lamintis.  This may be the result of a change in cell 

signaling within the hoof due to different mechanical and biochemical stimuli.  

Overall higher cell doubling of cells from laminitic hooves is congruent with the 

hyperproliferation of the epidermal basal cells during laminitis. Identified progenitor cell surface 

markers and target genes, such as OCT-4, SOX-2, CD105, CD29 and CD44, in all subcultures of 

both types of laminar cells (UC and LC), were consistent with stromal cells derived from equine 

adipose and bone marrow in our laboratory, confirming the isolates were progenitor cells.  The 

fact that cells could be cryopreserved and form colonies after being revitalized also adds to their 

progenitor characteristics. 
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Interestingly, OCT4 and SOX-2 expression was significantly higher in cells from laminitic 

hooves.  Both genes are related to cell self-renewal, indicating that the laminitic tissue may be 

working toward healing and replacing the damaged tissue.  Cells also may not be undergoing 

proper differentiation due to inflammatory and mechanical stimuli present in chronic laminitis. 

In addition, laminitis is also characterized by hyperproliferation of basal epidermal laminar cells.  

The hyperproliferation of cells in tumors is attributed OCT4 and SOX2 [126, 127].  In UC the 

fact that these two genes expression were significantly higher in passage 5, when compared to 

passage 0, indicates cells keep progenitor properties in vitro.  Higher expression of these two in 

LC indicates that cells within the hoof do not lose their progenitor properties during laminitis. 

Cells surface markers CD29, CD44 and CD105 mRNA expression showed a variation between 

different cells sources or through passages. CD29, or integrin β-1, has been identified on 

epidermal stromal cells [106].  Expression of CD29 was slightly higher in cells from unaffected 

hooves, which can be interpreted in two ways, 1) there are enough progenitor cells in laminitic 

hooves, but because the insult (e.g. inflammatory cytokines), are not able to promote healing 2) 

progenitor cells in laminitic hooves may be undergoing early or not suitable differentiation.  In 

vitro, increased CD29 mRNA expression suggests these cells maintain progenitor properties after 

multiple passages.   

CD44 is the receptor for the hyaluronic acid, and it is involved in cell migration and adhesion. It 

is a cell membrane ligant for many proteins such as metalloproteinases (MMPs).  In laminitis 

MMP-2 and MMP-9 have been reported to be present in higher levels, which is intimately 

related to the ECM degradation [66].  Malignant epithelial tumors, such as ovarian and breast, 

overexpress CD44, MMP-2, and MMP-9.  Upregulation of CD44 is related to elevated cell 

growth, inflammatory response and metastases [128, 129].  Metastasis occurs following cell 
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migration due to ECM degradation.  Significantly higher expression of CD44 mRNA in cells 

from laminitic hooves may be related to signaling and functioning MMPs in the laminar tissue 

contributing to the ECM degradation and dermis-epidermis separation [130].  There is also 

distinct exon usage for CD44 as a function of tissue and tumor type.  This could also be a 

mechanism of action for relative CD44 expression levels between UC and LC. 

Endoglin or CD105 is part of the TGF-β receptor complex. It is involved in cytoskeleton 

organization affecting cell morphology and migration [131].  Endoglin is critical to maintain 

vascular development and homeostasis [132].  The higher expression of CD105 in LC, may be 

related to tissue action to compensate with new angiogenesis vascular structures that are 

damaged due to laminitis [43].  CD105 has also been described in epithelial cancers, such as 

prostate, and its expression is directly proportional to the vascularization and metastatic 

characteristics of tumors, therefore is related to the tumor growth capacity [133, 134].  In 

laminitis stimulation of vascularization may be related to the hyperproliferation of the basal 

epidermal cells and an attempt to vascularize the new tissue. 

Specific keratins are present in different epithelial tissues.  Lower keratin 14 expression level in 

cells harvested from laminitic hooves may be because hooves have fewer keratinoblasts.  Keratin 

14 mutation in humans is related to patients who develop epidermolysis bullosa, which, like 

laminitis, is a disease caused by the separation of layers of the skin (dermis and epidermis) 

resulting in blistering [135].  Decreased number of cells expressing K14 may be contributing to 

lamintis.  Significantly decreased keratin 14 expression in UC in passage 0 versus 5, which is not 

observed in cells from laminitic hooves, may indicate that some cells undergo apoptosis in vitro 

or passaging is selecting for cells that do not express K14.  Laminar subcultured cells change 

their properties in a different manor depending on the cell source.  
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Keratin 15 has been described in basal epithelial progenitor cells in humans.  Lower expression 

of keratin 15 occurs in activated keratinocytes, a condition seen in hyperproliferating diseases 

such as psoriasis and hypertrophic scars [136].  Considering that, in laminitis, there is a 

histopathologic evidence of tissue hyperproliferation and formation of fibrous tissue, lower 

expression of K15 in our results indicates that may be a higher activation of keratinocytes during 

laminitis and this may be affecting cell proliferation in the tissue. Recently keratin 15 expression 

has been shown in injured mature epidermis reflecting activity and responsiveness of basal cells 

to loss of tissue homeostasis of the epidermal differentiation program [137]. Hyperproliferation 

of epidermal basal cells in laminitis may be related to the keratin 15 expression levels.   

Keratin 19 has been described as an epidermal stem cell marker [138].  In this study there was no 

significant difference between its expression in cells derived from unaffected or laminitic 

hooves.  This suggests that, in laminitis, the number of progenitor cell may not decrease, but 

instead, the cell signaling cause changes in the fate of the progenitor cells and their 

differentiation capability. Significantly increase keratin 19 expression over passages in LC 

indicate that cell passaging may be selecting for less epithelial differentiated cells.  

The percentage of positive stained cells over passages by flow cytometry was not congruent to 

mRNA levels for all cohorts, which could be explained by translation and post-translation 

modifications.  The location of progenitor epidermal proteins K14, K15 and K19, determined by 

immunohistochemistry, corresponds to the region of laminar failure, indicating that the changes 

in the expression of these proteins may be directly involved in laminitis.  Both results confirm 

the progenitor characteristic of cells from the laminar tissue and indicate specific differences 

between healthy and laminitic tissue.  
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The multipotentiality of these cells indicate that cells harvested from the equine laminae are able 

to undergo early differentiation stages of osteogenesis, adipogenesis and chondrogenesis in vitro, 

which confirms the cells progenitor properties.  

Overall the mRNA expression of all the genes studied had a similar pattern over passages in cells 

from unaffected hooves and the opposite pattern in cells from laminitic hooves.  Some genes 

associated with “progenitor”, such as OCT4, SOX-2, CD29, CD44 and CD105, had an increased 

expression from P0 versus P5 in cells from healthy hooves.  The opposite was observed only for 

K14 and K15.  This indicates that passaging cells from the unaffected hooves is either selecting 

for progenitor cells or somehow de-differentiating the cells, since the epithelial signals are no 

longer present in vitro.  Interestingly cells of passage 0 from laminitic hooves compared to cells 

from unaffected hooves had higher expression of the same genes.  This may be because 

progenitor cells from laminitic hooves are changed and may not differentiate into the proper cell 

lineage and therefore still express higher levels of progenitor genes.  These results give a novel 

clue of the pathophysiology of laminitis and the events that occur at the cellular level.  

Progenitor cells from the unique niche of the equine laminar tissue can be then expanded, studied 

and possibly used as a therapeutic tool.  

On the other hand, over passages, cells from laminitic hooves showed decreased expression of 

OCT4, SOX-2 and CD105, but increased expression of CD44, CD29, K15 and K19 may indicate 

that progenitor cells harvested from laminitic hooves, once no longer exposed to the laminitis 

causes tend to adjust to their programmed fate, increasing expression of some specific epithelial 

genes.  The fact that cells have a significant change of several genes expression in vitro shows 

that in order to study cells from the equine laminae must be done in earlier passages because 

later passages no longer represent accurately the tissue of origin.   
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Specific niche progenitor cells such as keratinocytes have been successfully used to generate 

human skin equivalents (HSE) under specific conditions [40].  Cells derived from equine 

laminae can be a source of a specific stem cell niche that can be expanded in vitro and later be 

applied clinically.  The capability of equine laminar cells to differentiate into different cell 

lineages is one of the first ones and suggests the possibility of inducing these cells into ones 

similar to epidermal and dermal those are encountered in the laminae.  The differences in gene 

expression, cell surface markers and keratins of cells from healthy and laminitic hooves, and 

their modifications along passages has the potential to provide novel insights into the 

pathogenesis of the diseases at a cellular level.  
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7. Summary and Conclusion 

 
Cells from equine laminar tissue, healthy and with laminitis were harvested and subcultured in 

vitro.  Overall cell doubling (CD) was significant different between cell type and doubling time 

(DT) was not different between cells from the different sources.  Passages did not influence 

significantly CD or DT.  

Specific genes and cell surface markers, such as OCT4, SOX-2, CD44, CD29, CD105, K14, K15 

and K19, were identified and quantified.  A gene expression variation was detected when 

comparing cells from different sources; cells derived from laminitic hooves had higher 

expression levels at passage 0, indicating laminitis have an effect on the differentiation of 

laminar cells.  Over passages (from 0 to 5) the expression of most of these genes in vitro 

followed a changing pattern.  That is, cells from unaffected hooves showed an increase in 

expression of most of the genes studied from passage 0 to 5, while cells from laminitic hooves 

showed a decrease in expression of the same genes.  The differences observed on cells from the 

difference sources were either maintained or accentuated over passage.  

In the present study we developed a method to harvest cells from the equine laminae providing a 

new approach to investigate cells affected by laminitis.  We were able to localize keratins and 

other cell proteins within laminar tissues by using antibodies that cross react with horse tissues.  

We validated that antibodies of other species (human, mouse, dog) cross-reacted with equine 

keratinocytes, thus expands tools that can be used to study these cell in normal horses and horses 

with laminitis.  

In conclusion cells from the equine laminae were harvested, cultured and characterized in normal 

and laminitic hooves.  Cells from laminitic hooves in general have higher expression of 

progenitor genes indicating that the progenitor cells do not undergo proper differentiation, due to 
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the disease.  Expansion properties of these cells make them a possible therapeutic tool specially 

because cells from healthy hooves increase expression of progenitor genes after passages.  

Exploring the immunogenicity of these cells after passages would be a next step toward clinical 

application.  Progenitor cells from the lamina are from a specific niche and could be cultured in 

scaffolds and applied in laminitic hooves to guide new laminar tissue formation.  
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