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ABSTRACT 
 
The Lyme disease spirochete Borrelia burgdorferi has a very unusual genome 

composed of one linear chromosome and up to 21 linear and circular plasmids.  Several 

plasmids are known to be important either for mammalian infection or tick colonization.  

A single spirochete harbors up to 7 different cp32 plasmids; however, nothing is known 

about their role in mammalian infection. The plasmids in this family are well maintained 

during in vitro cultivation, making it difficult to study their functions. To effectively deplete 

the plasmids, an 8kbp fragment containing essential elements for replication and 

partitioning in B. burgdorferi was amplified from one of the cp32 plasmids, cp32-3, and 

cloned into the vector pGE22 that carries a gentamycin resistance cassette and 

essential elements for replication in Escherichia coli.  The resulting construct, 

pG22cp32-3plus, was electroporated into borrelial cells. By increasing gentamycin 

selection pressure, the spirochetes were forced to lose the corresponding cp32 plasmid.  

This strategy can be used to knock out other members of the cp32 family.  
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INTRODUCTION 
 

LYME DISEASE 
 
DISCOVERY 

Lyme disease was discovered in 1975 in Lyme, Connecticut when children in the 

area were being diagnosed with juvenile rheumatoid arthritis at 100% higher than 

normal rate. Dr. Allen Steere along with other doctors traced the symptoms to an 

unknown bacterial infection transmitted by local deer ticks. In 1977, the newly 

characterized disease was named Lyme disease (Steere,  et al. 1977). 

The Centers for Disease Control and Prevention (CDC) began conducting 

national surveillance in 1980 and has continued to compile data since 1982 (Centers for 

Disease Control and Prevention, 1982). Lyme disease became the most commonly 

reported arthropod-borne disease in the United States between 1984 and 1985 when an 

average of 1,500 cases were reported to the CDC (Centers for Disease Control and 

Prevention, 1985). Since that time, incidence of the disease has steadily increased to 

over 20,000 cases annually (Figure 1).  

According to the most recent statistics published by the CDC, there were 23,305 

reported cases of Lyme disease in 2005 (Centers for Disease Control and Prevention, 

2007). Historically, Lyme disease has been characterized in every state but is most 

common in the Northeastern, mid-Atlantic, and North Central states (Figure 2). In the 

ten states where Lyme disease is most prevalent, the incidence per 100,000 persons 

increases from the national average of 7.9 cases to 31.9 cases (Centers for Disease 

Control and Prevention, 2007).  
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REPORTED CASES OF LYME DISEASE 1982-2005 

Figure 1: Reported cases of Lyme Disease 1982-2005 (Centers for Disease Control and 
Prevention, 1982; Centers for Disease Control and Prevention, 1985; Centers for Disease 
Control and Prevention, 2006; Centers for Disease Control and Prevention, 2001; Centers 
for Disease Control and Prevention, 2007). Over the last twenty-four years the CDC has 
tracked Lyme disease in the United States. Since reporting began, the CDC has shown 
that the number of cases has risen from 491 to 23,305 cases reported in 2005.  

LOCATION OF REPORTED CASES OF LYME DISEASE 2005 

Figure 2: Location of reported cases of Lyme Disease 2005 (Centers for Disease Control 
and Prevention, 2007). In 2005 the CDC compiled the location data for the 23,305 reported 
Lyme disease cases in the United States. Higher rates of incidence can be seen in the 
Northeastern to North-Central United States.  
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  The ticks known to transmit Lyme disease have a two-year life cycle (Figure 4). 

Peak larval activity occurs in the latter summer months when larvae feed on a wide 

variety of small mammals, primarily mice and birds. Late the next spring the newly 

molted tick exits dormancy and the nymph feeds a second time on small mammals. A 

second molt occurs late in the second summer and the adult tick becomes active and 

begins to feed again in the fall until temperatures drop below freezing. A tick may pick 

up the infection at any feeding during its life cycle and has the ability to transmit the 

disease at any stage of growth; larvae, nymph, or adult in any feeding after the tick has 

become infected (Klompen, 2004). Mice, specifically the white-footed mouse 

Peromyscus leucopus, are the primary natural reservoirs for the bacterial infection 

(Levine et al., 1985). 

 LIFE CYCLE OF LYME DISEASE VECTORS 

Figure 4: Life cycle of Lyme Disease vectors (American Lyme Disease Foundation, 2006). 
The vector of Lyme disease has a two-year life cycle. The tick can obtain the bacteria at 
any feeding and transmit the bacteria to any subsequent host. 
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Lyme disease patients are most likely to become infected in June, July, or 

August.  This trend is the result of the ticks feeding schedule and the higher prevalence 

of human outdoor activity during these months (Centers for Disease Control and 

Prevention, 2006). 

SYMPTOMS 

Lyme disease can produce a wide range of symptoms. The most common sign of 

the disease is the presence of the classic indicator rash, erythema migrans, located at 

the site of the tick bite (Figure 5) (Steere et al., 1983). According to the CDC’s official 

definition, erythema migrans begins as a focal red lesion that expands over several 

days to weeks (Centers for Disease Control and Prevention, 1997).  As the lesion 

expands, the rash will often resemble a bull’s-eye or target due to partial clearing of the 

center of the lesion (Centers for Disease Control and Prevention, 1997). The rash, 

present in 80% percent of infected people, can last up to several weeks and may be 

accompanied by localized swelling (Steere, 1989; Centers for Disease Control and 

Prevention, 1997). Around the time the rash presents, other flu-like symptoms such as 

joint pains, chills, fever, and fatigue may also appear (Steere et al., 1983; Centers for 

Disease Control and Prevention, 1997).  

If the infection is left untreated, the bacteria will continue to spread through the 

body within several weeks following initial infection. As dissemination occurs, an 

infected person may experience migratory joint pain, severe fatigue, and a stiff or 

aching neck. The infected individual may also experience tingling or numbness in the 

extremities as well as facial palsy (Steere, 2001; Aguero-Rosenfeld et al., 2005).  
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More severe symptoms can be seen in the months to years following initial 

infection. These symptoms include severe headaches, heart palpitations, and dizziness. 

The most prominent late stage infection symptom is the progression of severe swelling 

and pain in the joints known as arthritis. At this stage of infection, the central nervous 

system may also be affected and cognitive disorders may ensue (Steere, 2001; Aguero-

Rosenfeld et al., 2005). 

DIAGNOSIS 

In 1996 the CDC published the latest official case definition of Lyme disease in 

order to standardize the requirements for reporting a disease case. The presence of the 

hallmark erythema migrans rash satisfies the criteria the CDC sets forth for a positive 

diagnosis (Centers for Disease Control and Prevention, 1997).  However, if the patient 

does not exhibit evidence of a tick bite or have any known exposure to ticks within the 

previous 30 days, the CDC does recommend a laboratory confirmation as with late 

stage diagnoses (Centers for Disease Control and Prevention, 1997). Early diagnosis 

ERYTHEMA MIGRANS RASH 

Figure 5: Erythema migrans rash (Siegel et al., 2007). The erythema migrans or bull’s 
eye rash is a hallmark sign of the invading bacterium that causes Lyme disease. 
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and subsequent treatment can prevent further complications and the advancement of 

the disease (Centers for Disease Control and Prevention, 2005). 

If early symptoms went undetected, the CDC criteria for a positive diagnosis 

requires the presence of at least one late stage infection symptom that is confirmed via 

laboratory diagnostic testing (Centers for Disease Control and Prevention, 1997). 

Confirmation of the presence of the bacteria can be obtained via the culture of the 

bacteria from a clinical specimen removed from the patient (Aguero-Rosenfeld et al., 

2005). Diagnostic confirmation may also be obtained with a CDC recommended two-

step blood test for the disease causing bacteria (Centers for Disease Control and 

Prevention, 1997).  

First the blood should be tested using an enzyme immunoassay, such as 

enzyme-linked immunosorbent assay (ELISA) or immunofluorescent assay (IFA), to 

detect bacterial antibodies present in the patient specimen (Centers for Disease Control 

and Prevention, 1997). Kits approved by the FDA test for either IgG or IgM antibodies to 

the bacteria; however, more sensitive test kits screen for both types of antibodies 

(Aguero-Rosenfeld et al., 2005). Because these tests provide a high rate of false-

positive results, if a positive result is obtained a second, more specfic test must also be 

performed (Centers for Disease Control and Prevention, 1997). A FDA approved 

standardized western immunoblot kit should also be used to detect antibodies to 

proteins of various sizes produced by the bacteria (Centers for Disease Control and 

Prevention, 1997; Aguero-Rosenfeld et al., 2005). Positive results on both tests satisfy 

the CDC criteria for a confirmed disease case. In some chronic cases doctors may 
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choose to use FDA approved Polymerase Chain Reaction (PCR) kits to test fluid drawn 

from a joint or spinal tap to detect bacterial DNA (Aguero-Rosenfeld et al., 2005).  

TREATMENT 

The Infectious Diseases Society of America (IDSA) has recently updated the 

clinical practice guidelines for the treatment of Lyme disease. According to the IDSA’s 

2006 guidelines, treatment of the infection with a 14 day course of oral antibiotics such 

as doxycycline, amoxicillin, or cefuroxime axetil usually clears the infection and can 

prevent further complications caused by the dissemination of the bacteria (Wormser et 

al., 2006). Of the three recommended treatments, doxycycline should not be used for 

children under 8 or for pregnant or lactating females (Wormser et al., 2006).  

 The ISDA recommends a 28 day course of oral antibiotics for patients with 

persistent symptoms after a first course of oral antibiotics and for patients with the later 

stages of disease (Wormser et al., 2006). The longer course of treatment should 

significantly improve arthritis and other symptoms of the disease (Wormser et al., 2006). 

Patients that exhibit the neurologic components of the disease should be administered 

intravenous β-lactam antibiotics such as ceftriaxone, cefotaxime, or penicillin G 

(Wormser et al., 2006). Although full resolution of the disease can be obtained, the 

chance of the treatment providing a cure decreases with disease progression (Centers 

for Disease Control and Prevention, 2006; Wormser et al., 2006). 

BORRELIA BURGDORFERI 

DISCOVERY 

In the fall of 1981, Dr. Jorge Benach collected nymphal I. scapularis ticks from 

Shelter Island, New York (Burgdorfer et al., 1982; Oliver et al., 1993). The ticks were 
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sent to Dr. William Burgdorfer, a researcher at the NIH Rocky Mountain Laboratories, 

where they were analyzed (Burgdorfer et al., 1982). During his analysis an unidentified 

spirochetal bacterium was isolated from the tick midgut (Burgdorfer et al., 1982).  In 

1982 the spirochete was established as the etiologic agent of Lyme disease (Burgdorfer 

et al., 1982). The spirochete was later named Borrelia burgdorferi after its discoverer 

(Johnson et al., 1984).  

Since discovery, at least three genospecies of B. burgdorferi have been found to 

cause Lyme disease in humans. In the United States B. burgdorferi sensu stricto is the 

only strain of the bacteria that causes Lyme disease (Steere et al., 2004). Two distinctly 

different genospecies of the bacteria, Borrelia garinii and Borrelia afzelii, cause infection 

in Asia (Baranton et al., 1992; Canica et al., 1993). In Europe, all three genospecies are 

present and cause disease (Baranton et al., 1992; Canica et al., 1993).  

CHARACTERISTICS AND STRUCTURE 

Borrelial cells average 0.2 to 0.5 µm in diameter and 4 to 18 µm in length 

(Barbour and Hayes, 1986; Baron, 1996). It is the spirochete’s flagella that are 

responsible for the motility and corkscrew, helical cell shape (Figure 6). The 7-20 

periplasmic flagella, or axial filaments, originating from the ends of the spirochete are 

anchored into the cytoplasmic membrane. These endoflagella wind lengthwise between 

the outer membrane and cell wall around the protoplasmic cylinder (Charon and 

Goldstein, 2002).  

Borreliae are microaerophilic organisms that require oxygen at lower than 

normal, 21%, oxygen to survive (Baron, 1996). The bacterium is an obligate parasite, as  

it relies on its host’s metabolism. B. burgdorferi does not synthesize its own essential 
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nutrients and must obtain amino acids, fatty acids, and other essential elements from its 

host (Todder, 2005). In addition, unlike many pathogenic organisms, Borrelia does not 

require iron for infection or cellular survival (Posey and Gherardini, 2000). 

 

 

 

 

 

 

For laboratory culture, Borrelia is grown in a nutrient rich tissue culture medium 

such as variations of Barbour-Stoner-Kelly (BSK) culture medium (Wang et al., 2004). 

Since 1993, a modified version of BSK called BSK-Harvard (BSK-H), supplemented 

with mammalian serum is the standard medium used (Pollack et al., 1993). During its 

life cycle, the bacteria must adapt to survive changing environments that are 

encountered in the transition from the cold-blooded tick to a warm-blooded mammal. 

Mammalian conditions are mimicked by culturing B. burgdorferi at 35oC/pH 7.0 whereas 

the tick environment is approximated by growth at 23oC/pH 8.0 (Stevenson et al., 1995; 

Stewart et al., 2005). Although the media can be manipulated to mimic the host or the 

vector, experiments performed in vitro can not always be extrapolated to B. burgdorferi 

Figure 6: Internal Flagella (Charon and Goldstein 2002). The spirochete is given its 
unique helical shape by the internal flagella that are anchored in cytoplasmic membrane 
at the ends of the bacteria. The flagella wind lengthwise around the protoplasmic 
cylinder. Although the bacteria have many flagella, the graphic depiction is simplified 
with a single flagellum. 

INTERNAL FLAGELLA 
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during the infectious cycle because the bacteria can display different behavior inside 

vector or vertebrate host (Singh and Girschick, 2004). 

HOST – ORGANISM INTERACTION 

The spirochete presents outer surface protein A (OspA) on its surface while it 

survives inside the resting, non-feeding tick. The protein serves as an anchor for the 

spirochete to the tick midgut. During the bloodmeal, the bacteria migrate out of the tick 

midgut into the salivary glands. The bacteria travels along with the saliva excreted into 

the animal during tick feeding where it moves through the opening in the skin created by 

the tick. In order to establish mammalian infection, Borrelia downregulates the 

expression of OspA and upregulates expression of OspC when feeding begins 

(Figure7) (Schwan et al., 1995). 

After transmission, B. burgdorferi migrates through the extracellular matrix of 

host tissue by binding to epithelial cells, neural elements, platelets and red blood cells. 

To disseminate, the bacterium uses special binding or adhesion proteins to bind to 

Figure 7: Outer Surface Protein Expression from Tick to Mammalian Host (Singh and 
Girschick, 2004). The bacterium differentially regulates the expression of OspA and 
OspC depending upon its location in order to effectively establish infection. The figure 
has been modified from the original version. 

OUTER SURFACE PROTEIN EXPRESSION FROM TICK TO MAMMALIAN HOST 
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select host proteins such as integrins, proteoglycans and glycoproteins located on the 

surface of host cells and in tissue matrixes (Guo et al., 1995; Steere et al., 2004,). 

IMMUNOLOGY 

It is at the site of the tick bite where the bacterium is presented with the 

vertebrate host’s first line of defense, complement-mediated lysis (Steere et al., 2004). 

The process of complement activation and subsequent cell lysis as well as borrelial 

lipoproteins and cell signals recruit more immune cells to the site of infection (Abbas 

and Lichtman, 2005). Initially primary lymphocytes, macrophages, and plasma cells are 

localized to the infection site around the erythema migrans rash (Mullegger et al., 2000). 

Macrophages stimulated by the bacteria will begin to engulf and kill the bacteria (Abbas 

and Lichtman, 2005). The activated macrophages stimulate the maturation of helper T 

cells and production of proinflammatory cytokines, particularly interferon-γ (IFNγ), 

interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and 

interleukin-6 (IL-6) (Mullegger et al., 2000; Abbas and Lichtman, 2005). 

At the same time, borrelial lipoproteins act as B cell mitogens that independently 

stimulate a B cell response to produce antibodies (Steere et al., 2004; Abbas and 

Lichtman, 2005). Additionally, T cell mediated responses to nonlipidated proteins use 

Th1 cells to prime B cell responses (Steere et al., 2004; Abbas and Lichtman, 2005). 

The antibodies produced by the host immune system begin killing spirochetal cells via 

complement fixation and opsonization (Steere et al.,2004). 

Although an active immune response is present, the borrelial cells survive by 

minimizing or changing expression of surface proteins or inhibiting certain responses 

(Steere et al., 2004). In order to escape selective immunological pressure caused by the 
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host, the bacterial cells can downregulate lipoproteins like OspC (Liang et al., 2002). 

The variation of protein expression renders the OspC antibody useless as the antibody 

selects for cells with OspC-negative phenotypes or actually induces the protein’s 

downregulation (Liang et al., 2002). The bacterial cell also evades the host immune 

system by varying the antigenic portions of a expressed protein, namely, the vmp-like 

sequence protein E (VlsE) (Zhang et al., 1997). The variation of the VlsE protein is 

essential to the survival of the bacteria because the antibody will not recognize the 

protein variant (Zhang et al., 1997). 

Figure 8: Complement Regulator-Acquiring Surface Proteins (Singh and Girschick,
2004). Inside the mammalian host the bacterial cells express Erp and CRASP proteins 
on its surface. These proteins confer alternative pathway complement resistance by 
binding Factor H and FHL-1 proteins. The figure has been modified from the original 
version. 

    

COMPLEMENT REGULATOR-ACQUIRING SURFACE PROTEINS 
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Complement activation via the classic or alternative pathways destroys 

pathogens by coating them with opsonising molecules to form the complement 

membrane attack complex after entry in the human host; formation of the complex 

usually leads to cell lysis (Abbas and Lichtman, 2005). In this instance, Borrelia has 

evolved to provide an effective method of avoiding some complement mediated killing 

(Singh and Girschick, 2004). B. burgdorferi can express five distinct complement 

regulator-acquiring surface proteins (CRASPs) and several OspE/F related proteins, 

Erps, on their surfaces that bind the host complement regulators of the alternative 

pathway.  CRASPs bind Factor H and Factor H-like Protein 1 (FHL-1) which inactivate 

C3b and protect the cell from complement mediated killing (Figure 8) (Stevenson and 

Akins, 2000; Kraiczy et al., 2001; Kraiczy et al., 2004). 

The host’s innate and adaptive responses must work together to control 

disseminating bacteria (Steere et al., 2004).  While in the later stages of infection the 

infected host has high antibody responses towards several borrelial proteins, the host 

may still be unable to clear infection. The host’s hyperimmunization is caused by waves 

of bacterial growth following antigenic shifting (Akin et al., 1999). 

GENETICS 

The genome of B. burgdorferi cells consits of about 1,521,419 base pairs (bp) of 

nucleic acid. This information is contained on one linear chromosome and up to 21 

linear and circular plasmids, the largest plasmid complement of any bacteria (Figure 9) 

(Casjens et al., 2000). The single linear chromosome is approximately 910 kilobase 

pairs (kbp) in length and contains 853 predicted genes that provide mainly 

housekeeping functions for the cell (Baril, et al. 1989, Ferdows and Barbour 1989, 
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Fraser, et al. 1997). A significant amount of the bacterium’s genetic material is held in 

the extrachromosomal plasmids (Casjens, Palmer et al., 2000; Fraser et al., 1997). In 

total, the cell holds 40% of its genetic information in the extrachromosomal DNA; 

361,364 bp in 12 distinct linear plasmids as well as 249,330 bp in nine circular plasmids 

(Casjens et al., 2000).  

The genetic information contained in the cell is highly redundant and dispersed 

throughout the chromosome and plasmids (Zuckert and Meyer, 1996; Fraser et al., 

1997; Casjens et al., 1997). The complete genome contains 161 families of paralogous 

genes that are similar in function. Members of these gene families can be found on both 

the chromosome and on extrachromosomal plasmids. The paralogous gene families 

range in size from 2 to 41 members (Casjens, et al., 2000). 

 

 

Figure 9: Diversity of Genetic Composition (Stewart et al., 2005). Borrelia is a unique 
bacterium that contains one linear chromosome and up to 21 extrachromosomal 
elements. The figure has been modified from the original version.  

DIVERSITY OF GENETIC COMPOSITION 
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Borrelia extrachromosomal plasmids can coexist in an individual bacterium 

(Hinnebusch and Barbour, 1992). However, Borrelia strains have often been found to 

lose one or more plasmids during laboratory propagation and cloning procedures 

(Schwan et al., 1988). Among the plasmid-encoded products that have characterized or 

proposed functions are proteins required for nutrient acquisition, metabolism, and outer 

surface proteins (Fraser et al., 1997; Casjens et al., 2000).    

LINEAR PLASMIDS 

B. burgdorferi strains have been known to spontaneously lose lp28-1. Bacterial 

cells that lose lp28-1 are capable of infecting mice; however, the infection does not 

persist (Purser and Norris, 2000; Labandeira-Rey and Skare, 2001). The lack of a 

persistent infection may be due to the loss of the vlsE coding region of the plasmid. The 

region is comprised of a set of 15 silent cassettes that switch into an expression locus to 

give the bacteria antigenic variation of the surface exposed protein (Zhang et al., 1997).  

Similarly to lp28-1, borrelia cells can spontaneously loose lp25. This plasmid is 

essential for survival in both tick and mammalian hosts, however; lp25 is not required 

for in vitro growth (Purser and Norris, 2000). The plasmid harbors bbe22, the gene that 

encodes a nicotinamidase.  Nicotinamidase is absolutely essential in that it provides the 

critical step in converting nicotinamide to nicotinic acid in the exogenous pathway to 

synthesizing NAD as an energy source (Purser et al., 2003). 

Linear plasmid lp54 also contains many loci hypothesized to be required for 

survival in the mammalian host and the tick vector. Lp54 contains the highest 

percentage of temperature-regulated gene products, including OspA, OspB and the 

decorin binding proteins A and B (DbpA and DbpB) (Ojaimi et al., 2003; Fischer et al., 
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2003). Disruption of the ospA/B operon is linked to reduced tick colonization(Yang et al., 

2004). DbpA and DbpB mediate attachment to host tissue, which aids in initial 

colonization and dissemination of the bacteria (Guo et al., 1995; Fischer et al., 2003). 

CRASP-1, a factor H-binding protein of B. burgdorferi that is presumably needed to aid 

the cell in avoiding complement-mediated killing, is also encoded on lp54 (Kraiczy et al., 

2004). 

Unlike lp28-1,lp25, and lp54, linear plasmids lp21, lp28-2, lp28-4, and lp56 do not 

appear to be required for mammalian infection or growth in vitro (Purser and Norris, 

2000). It is speculated that the genes carried on the plasmids provide different 

capacities of selective advantages. The plasmids’ genes may aid the borrelial cells by in 

adapting to different hosts and establishing a lasting infection (Purser and Norris, 2000). 

CIRCULAR PLASMIDS 

The unique circular plasmid cp26 has been shown to be essential and present in 

all natural isolates of the bacteria (Byram et al., 2004). Housekeeping genes and 

virulence factors are found to be encoded on the plasmid. The very important OspC 

protein is encoded by a gene located on cp26 (Grimm et al., 2004; Pal et al.,2004). The 

plasmid also encodes a telomere resolvase (resT), which is required to resolve circular 

dimers of linear plasmids after replication (Kobryn and Chaconas, 2002).    

32 KILOBASE CIRCULAR PLASMIDS 

The 32 kilobase circular plasmid family contains almost 20% of the genetic 

information of Borrelia. These nine plasmids are each about 30,000 bp in length 

(Casjens et al., 2000). Although the plasmids have relatively the same amount of coding 
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DNA, the plasmids encode for 33 to 44 functional genes and between 0 to 9 

pseudogenes (Table 1) (Casjens et al., 1997; Casjens et al., 2000; Eggers et al., 2002). 

 

No borrelial isolate has ever lost all members of the cp32 family (Casjens et al., 

1997; Purser and Norris, 2000). This important fact suggests that they are essential to 

B. burgdorferi, as they may provide critical virulence genes, aid in the bacterium’s 

survival, or increase the range of possible hosts.  The cp32 family contains at least nine 

unique members that are about 80% homologous throughout their sequences (Casjens 

et al., 2000). Despite this homology, the cp32 plasmids can all stably coexist within the 

same cell (Casjens et al., 1997, Casjens et al., 2000). 

 The explanation for the ability of such similar plasmids to replicate, segregate, 

and coexist in the same cell is found in the plasmids’ first of three hypervariable regions 

(Stevenson and Akins, 2000). The first region contains the paralogous gene families, 

PF57, PF50, PF32, and PF49 that are responsible for the cp32 family’s replication and 

segregation into daughter cells (Figure 10) (Casjens et al., 2000; Eggers et al., 2002; 

Table 1: 32 Kilobase Circular Plasmids Composition (Casjens et al., 2000). The cp32 
family of plasmids are highly similar in composition as they are derivatives of each 
other. The plasmids are roughly the same size and contain similar numbers of genes. 
Table was adapted from original version for conciseness. The figure has been modified 
from the original version. 
 
 

32 KILOBASE CIRCULAR PLASMIDS COMPOSITION 

Plasmid Size Coding % Genes Pseudogenes 

cp32-1 30750 92 42 0 
cp32-3 30223 92 44 0 
cp32-4 30229 92 39 4 
cp32-6 29838 92 41 0 
cp32-7 30800 93 42 0 
cp32-8 30885 92 43 0 
cp32-9 30651 92 33 9 
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Stevenson and Akins, 2000). The region responsible for the plasmids replication is 

PF57, as well as the intergenic sequence immediately upstream. The intergenic 

sequence is theorized to contain approximately six DnaA boxes, the sites at which 

dnaA, a DNA replication initiation protein, bind. The PF57 gene serves as the plasmids 

origin of replication. Based on sequence and location, PF32 and PF49 are proposed 

partitioning proteins, ParA and ParB, respectively. The ParA and ParB proteins ensure 

that the plasmid segregates into each daughter cell (Casjens et al., 2000; Eggers et al., 

2002). Through deletion experiments, PF50 is also deemed essential for as of yet 

undetermined reasons (Eggers et al., 2002). It is the higher variability among these 

genes, as much as 69% compared to the plasmids’ overall 20% variability, that ensures 

all the cp32 plasmids are compatible and can coexist within the same cell (Casjens et 

al., 2000; Eggers et al., 2002,). 

B. burgdorferi has two other variable regions of DNA on their cp32 plasmids. The 

REPLICATION, MAINTENANCE, AND SEGREGATION HYPERVARIABLE REGION 

Figure 10: Replication, Maintenance, and Segregation Hypervariable Region (Casjens
et al., 2000). The region found in every cp32 plasmids is responsible for the family’s 
replication, maintenance, and segregation. The four genes in the region, PF32, PF49, 
PF50, and PF57, and the intergenic sequence upstream of PF57 are clustered together 
in each of the cp32s. The figure has been modified from the original version.  
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second region contains the erp locus. The Erp proteins OspE and OspF are surface 

exposed lipoproteins that are upregulated in the bacteria once the spirochete has 

entered the mammalian host (Stevenson et al., 1995). Later experiments have linked 

several of these proteins to complement evasion mediated by binding Factor H and 

FHL-1 proteins (Kraiczy et al., 2001; Stevenson et al., 2002; Kraiczy et al., 2004). 

The final hypervariable region has been named the 2.9 locus (Porcella et al., 

1996). This region contains genes from the multicopy lipoprotein (mlp) paralogous gene 

family. The mlp genes encode for a borrelial surfaced exposed protein to which infected 

hosts will develop antibodies (Yang et al., 1999). It is hypothesized that this protein 

product may assist in interacting with host tissues (Theisen, 1996; Yang et al., 1999). 

Most 2.9 loci also contains a gene from the Borrelia direct repeat (bdr) gene family that 

possibly play a role in cell regulation, sensing, or signaling (Zückert et al., 1999; Roberts 

et al., 2000; Stevenson and Akins, 2000). The two cp32 plasmids, cp32-1 and cp32-6, 

that do not contain a bdr contain a rev gene, a gene is a reverse orientation, that is 

surface expressed and can act as an antigen while giving the bacteria survival 

advantages in diverse environments (Gilmore and Mbow, 1998; Stevenson and Akins, 

2000).    

Other than these three hypervariable regions, the cp32 plasmids are between 99-

80% similar (Stevenson and Akins, 2000; Casjens et al., 2000). These nearly 

indistinguishable regions of DNA have not been extensively studied; therefore, little is 

known about the regions and their potential protein products. Some of these proteins 

are speculated to be additional surface expressed lipoproteins as well as secreted 

proteins (Stevenson and Akins, 2000).  
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Some of the known genes outside of the hypervariable region encode for borrelia 

haemolysin proteins A and B (BlyA and BlyB) (Stevenson and Akins, 2000). The two 

open reading frames upstream of the 2.9 locus work together to create pore-forming 

toxins (Guina and Oliver, 1997). Further experiments have determined that these genes 

are actually involved in cell lysis for the release of B. burgdorferi bacteriophage particles 

(Eggers and Samuels, 1999). Borrelia uses the bacteriophage ФBB-1 as a natural 

means of laterally transferring genetic material to other cells by packaging the genetic 

information from the members of the cp32 family and transducing them into other cells 

(Figure 11) (Eggers et al., 2001).  

 

 

 

 

 

 

 

 

  

PHIBB-1 BACTERIOPHAGE 

Figure 11: PhiBB-1 Bacteriophage (Eggers et al., 2001). Borrelia can laterally transfer 
genetic information by utilizing the bacteriophage particle ΦBB-1.  
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RESEARCH GOALS 
 
Many experiments have been conducted to determine the function of the different 

genes on the plasmids of B. burgdorferi.  If the genes on a plasmid encode for essential 

proteins, the plasmids on which the gene is located must be faithfully maintained by 

Borrelia (Purser and Norris, 2000). The required plasmids of Borrelia, lp28-1, lp25, lp54, 

and cp26, have genes that encode for proteins that confer infectivity and persistence of 

the bacteria (Zhang et al., 1997; Labandeira-Rey and Skare, 2001; Purser et al., 2003; 

Ojaimi et al., 2003; Fischer et al., 2003; Kraiczy et al., 2004; Byram et al., 2004).  

The cp32 family of plasmids are well maintained inside the B. burgdorferi cell.  

Recent studies have characterized many natural isolates of the bacteria obtained from 

several sources; no isolate of Borrelia has ever been found to exist with all of the cp32 

plasmids missing (Purser and Norris, 2000). When these isolates were examined, 

plasmids cp32-1, cp32-2, cp32-7, cp32-4, cp32-6, cp32-8, cp32-9 were almost always 

present, suggesting that at least some of the cp32 plasmids provide genetic information 

that is necessary for spirochetal survival in nature (Casjens et al., 1997; Purser and 

Norris, 2000). 

Little is known about the true function of the majority of the cp32 plasmids’ 

genes, which comprise almost 20% of the borrelial genome (Casjens et al., 2000). 

Experiments to determine their function must be performed. To get a broad 

understanding of their purpose, plasmid knockout mutants of B. burgdorferi can be 

produced. These knockout mutants will provide information on the cp32 plasmids role in 

infectivity and pathogenesis and determine if they are required by the bacterium.  
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MATERIALS AND METHODS 
 
REAGENTS 

LOADING DYE 

24.0 mL  Glycerol (EMD Chemicals, Incorporated, Gibbstown, NJ) 

4.8 mL  Ethylenediamine Tetraacetic acid (EDTA) (Amresco, Solon, OH) 

0.036 g  Xylene Cyanol (Amresco) 

11.2 mL  ddH2O 

Stored at Room Temperature 

50X TRIS-ACETATE-EDTA (TAE) BUFFER 

242 g   Tris Base (Amresco) 

57.1 mL  Glacial Acetic Acid (Mallinckrodt Baker, Incorporated, Phillipsburg, NJ) 

100 mL  0.5 M EDTA (pH8.0) (Amersco) 

Dissolved to 1 L with ddH2O 

Stored at Room Temperature 

1X TAE BUFFER 

10 mL  50xTAE  

900 mL ddH2O 

Stored at Room Temperature 

ELECTOPORATION SOLUTION (EPS) BUFFER 

46.5 g  Sucrose (Fisher Scientific Company, Pittsburgh, PA) 

75 mL  100% Glycerol (EMD Chemicals, Incorporated) 

Dissolved to 500 mL with ddH2O 

Adjusted to pH to 7.3 and filtered 
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Stored at 4oC  

0.8% ETHIDIUM BROMIDE INCORPORATED AGAROSE GEL 

0.26 g  UltraPureTM Agarose (Sigma-Aldrich Corporation, St. Louis, MO) 

30.0 mL  1x TAE 

3 µL   Ethidium Bromide (Sigma-Aldrich Corporation) 

1.0% ETHIDIUM BROMIDE INCORPORATED AGAROSE GEL 

0.30 g  UltraPureTM Agarose (Sigma-Aldrich Corporation) 

30.0 mL  1x TAE 

3 µL   Ethidium Bromide (Sigma-Aldrich Corporation) 

LURIA-BERTANI (LB) BROTH 

10 g   Tryptone (Acros Organics, Geel, Belgium) 

10 g  Sodium Chloride (Fisher Scientific Company) 

5 g  Yeast Extract (Becton, Dickinson and Company, Sparks, MD) 

Dissolved to 2000 mL with ddH2O 

Adjusted to pH to 8.0  

Stored at Room Temperature 

*Containing ampicillin (Fisher Scientific Company) at 100 µg/mL (LB-amp) 

Stored at 4oC  

*Containing gentamycin (Invitrogen Corporation, Carlsbad, CA ) at 5 µg/mL (LB-gent) 

Stored at 4oC  

LURIA-BERTANI (LB) PLATE 

10 g   Tryptone (Acros Organics) 

10 g  Sodium Chloride (Fisher Scientific Company) 

5 g  Yeast Extract (Becton, Dickinson and Company) 
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Dissolved to 2000 mL with ddH2O 

Adjusted to pH to 8.0  

32 g   BatoAgar (Becton, Dickinson and Company) 

Autoclaved in 500 mL increments 

Stored at 4oC 

*Containing ampicillin (Fisher Scientific Company) at 100 µg/mL (LB-amp)    

*Containing gentamycin (Invitrogen Corperation) at 5 µg/mL (LB-gent)    

BACTERIAL STRAINS AND PLASMIDS 

Borrelia burgdorferi strain 5A4 and 13A (Table 2) were cultured from the 

laboratory stock in BSK-H complete media (Sigma-Aldrich Corporation) supplemented 

with 6% rabbit serum (Sigma-Aldrich Corporation) and incubated inside a Forma Series 

II water jacketed CO2 Incubator (Thermo Electron Corporation) at 33oC and 5% CO2. 

The cells were grown to an approximate density of 100 spirochetes per field of view for 

further use or flash frozen in liquid nitrogen and stored at -80ºC until needed. 

DH5α chemically competent Escherichia coli cells (Invitrogen Corporation) were 

transformed using the E. coli cell transformation procedure (Table 2). During the course 

of the study several constructed plasmids were introduced into the cells for amplification 

for further use in the study (Table 2). 

GENOMIC DNA PREPARATION 

Genomic DNA was isolated from B. burgdorferi 5A4 and used for Polymerase 

Chain Reaction (PCR) amplification procedures. Cells were harvested in 1 mL volumes 

by centrifugation at 16,100 x g for 12 minutes at 4oC in an Eppendorf 5415R Table Top 

Micro-Centrifuge (Eppendorf Scientific, Incorporated, Madison, WI). The DNA from  
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Strain or Plasmid Description Source 

Borrelia burgdorferi   

      5A4 
B. burgdorferi high-infectivity, low passage, 
strain B31 with all plasmids present  

Steven Norris 
(Purser and Norris, 

2000) 

      13A 

B. burgdorferi highly transformable, low-
infectivity, high passage strain 5A13 
(Purser and Norris, 2000) lacking plasmids 
lp25- lp56- 

Liang Lab 

      pG22cp32-3plus 
B. burgdorferi strain 5A13 with pG22cp32-
3plus plasmid 

This Study 

Escherichia coli   

      DH5α 
F-, φ80dlacZ∆M15, ∆(lacZYA-argF)U169, 
deoR, recA1, endA1, hsdR17(rk-, mk

+), 
phoA, supE44, λ-, thi-1, gyrA96, relA1 

Invitrogen 
Corporation 

Plasmids   

      pNCO1T TA cloning vector  
Liang Lab 

(Downie et al., 
2004) 

      pNCO1Tcp32-3 

pNCO1T with cp32-3 putative maintenance 
region obtained from B. burgdorferi 5A4 
inserted into multiple cloning region at NcoI 
site 

This Study 

      pBSVGE22 
pBSV2G cloning vector inserted with 
borrelial bbe22 gene 

Liang Lab 

      pG22 
pBSVGE22 shortened with GenF/GenR 
primers 

This Study 

      pG22cp32-3plus 
pG22 inserted with cp32-3plus region 
obtained from pNCO1Tcp32-3  

This Study 

BACTERIAL STRAINS AND PLASMIDS USED IN STUDY 

Table 2: Bacterial strains and plasmids used in study. The bacterial strains and plasmids 
listed above were used to perform the outlined experiments.  
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pelletted cells was extracted using the Sigma GenElute™ Mammalian Genomic DNA 

Miniprep Kit (Sigma-Aldrich Corporation). 

The pellet of cells was resuspended in 200 µL Resuspension Buffer (Sigma-

Aldrich Corporation) and 20 µL of Proteinase K (Sigma-Aldrich Corporation) was added. 

The mixture was incubated in a 50oC water bath for 1 hour. After incubation, 200 µL of 

Lysis Solution (Sigma-Aldrich Corporation) was added to the centrifuge tube and mixed 

via inversion. The tube was then incubated for 10 minutes at 70oC. 

 A Nucleic Acid Binding Column (Sigma-Aldrich Corporation) was prepared by 

adding 500 µL of Column Preparing Solution (Sigma-Aldrich Corporation) to the column 

and spun at 3,900 x g for 1 minute. The collection tube was discarded. Ethanol at a 

volume of 200 µL was added to the lysed cell suspension. The tube was then vortexed 

and the contents added to the prepared binding column with new collection tube 

attached. The apparatus was spun at 3,900 x g for 1 minute. 

The collection tube was replaced again and the bound DNA was washed by with 

500 µL Wash Solution (Sigma-Aldrich Corporation) with ethanol and spun again for 1 

minute at 3,900 x g. The wash was repeated and the apparatus was spun at 16,100 x g 

for 3 minutes to allow the DNA to dry onto the column.  

Once the final collection tube was added to the column, the DNA was eluted by 

adding 200 µL sterile autoclaved ddH2O and spinning the apparatus at 3,900 x g for 1.5 

minutes. The resulting collection of DNA in ddH2O was either used immediately or 

stored for later use at -20oC. 
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Table 3: Genetic Sequence Access Numbers. cp32 genetic sequences were accessed 
via the Entrez Nucleotide database. Accession numbers for each cp32 are listed 
above. 

GENETIC SEQUENCE ACCESS NUMBERS 

 

PRIMER DESIGN 

Primers for this experiment were designed using Clone Manager Suite version 

7.1 (Scientific and Educational Software, Cary, NC). Sequences used in the design 

process were obtained via the Entrez Nucleotide database (Table 3). All primers were 

synthesized by Integrated DNA Technologies, Incorporated (Coralville, IA) (Table 4). 

The primers were used at a working concentration of 12 pM. 

Primers to amplify the putative maintenance required for autonomous replication 

and segregation region of cp32-3 were designed to include PF57, PF50, PF32, and 

PF49 genes along with 5.5 kbp of DNA flanking the region.  Although the regions 

surrounding this area are highly homologous between cp32 plasmids, the extra DNA 

was included in the amplification to ensure amplification of only the single cp32-3. The 

forward primer cp32-3F1NcoI was used in combination with either reverse primer 

cp32F1Nco1 or cp32R2 at an annealing temperature of 60oC in amplification PCR 
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procedures. The amplification produced the approximately 8.4 kbp fragment of DNA 

used in the experiments. All three primers introduced an NcoI restriction site onto the 

ends of the DNA.  

Primers to confirm the presence of the 8.4 kbp region of cp32-3 DNA were 

developed to amplify the 500 bp region of DNA located toward the end of the PF161 

gene extending toward PF57. The concp32F and concp32R primers used in 

confirmation PCR procedures were annealed to denatured DNA at 60oC. 

Primers to amplify and shorten the pBSVGE22 plasmid were designed to amplify 

only the necessary components of the plasmid.  For amplification purposes the Gen32F 

and Gen32R plasmids were used in combination at an annealing temperature of 60oC. 

The approximately 2.8 kbp product with newly introduced NcoI sites was used in the 

construction of the pG22cp32-3plus plasmid. 

To confirm the presence of the gentamycin acetyltransferase gene, primers were 

developed to amplify a 519 bp portion of the gene. The GenF and GenR primers were 

used in PCR confirmation procedures with annealing temperatures of 50oC. 

 

 

POLYMERASE CHAIN REACTION 

Amplification Polymerase Chain Reactions (PCR) were performed with a PCR 

reaction mixture that included approximately 1 pg - 10 ng DNA template, 10uL   5x 

High-Fidelity Buffer (Finnzymes, Espoo, Finland) with 1.5 mM MgCl2, 10 mM dNTP (200 

µM each dNTP) (Takara Bio Incorporated, Shiga, Japan), 0.02 U/µL (0.5 µL) phusion 

Taq polymerase (Finnzymes), and 0.5 µM reaction specific primers (Integrated DNA 

Table 4: Primers used in study. The primers above were used throughout the various 
procedures described. The primers were synthesized by Integrated DNA 
Technologies, Incorporated. 
 

Primer Name Sequence (5’ to 3’) 

cp32-3F1Nco1 ATCCATGGGTTTTGGAGTTATTGTAGT 

cp32R1Nco1 AACCATGGCTAGCTGCATTTGTGCTTGTA 

cp32R2 GACCATGGTACTCAGCAATAGCACTACT 

concp32F CCAGTACTTGTACTGTAGAATGTA 

concp32R TAGGCTATACTACAAACAGTGTAG 

Gen32F AACCATGGAATAAGCAGTCAAGTCTAGTCT 

Gen32R AACCATGGAAACCCTAAGGATGAACTT 

GenF TCACGGTGTTATGGAAATAG 

GenR GACTGCGAGATCATAGATATAG 

BBS41F CTGTTTAATCCACCACCAGTA 

BBS41R GGAGAAAGTACTGAGAAAGT   

PRIMERS USED IN STUDY 
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Technologies) made to 50 µL volume with sterile autoclaved ddH2O. The PCR reaction 

mixture was subjected to the following conditions inside the MyCycler Thermal Cycler 

(Bio-Rad Laboratories, Incorporated, Hercules, CA). The DNA was initially denatured at 

98ºC for 6 seconds. Next, the reaction mixture was subjected to 35 cycles of 

amplification during which the DNA was denatured at 98ºC for 6 seconds, primers were 

annealed at Tm+3oC for 23 seconds, and the primer was extended at 72ºC for 30 

seconds per 1 kbp DNA. Finally, the reaction mixture was allowed a final extension at 

72ºC for 7 minutes and cooled to 4ºC. 

Confirmation reactions contained approximately 1.0 µL DNA template or 1 µL 

cultured cells, 2 µL 10x PCR Buffer (Takara Bio Incorporated) with Mg2+ , 1.6 µL dNTP 

(Takara Bio Incorporated), 0.1 µL rTaq polymerase (Takara Bio Incorporated), and 0.5 

µL reaction specific primers (Integrated DNA Technologies, made to 20 µL volume with 

sterile autoclaved ddH2O. To begin, the DNA was denatured at 94ºC for 60 seconds. 

Next, the reaction mixture was put through 35 cycles of amplification. In the 

amplification process, the DNA was denatured again at 94ºC for 60 seconds, primers 

were annealed at primer specific temperatures for 30 seconds, and the primers were 

extended at 72ºC for 30 seconds per 1kbp DNA. At the end of these cycles, the reaction 

mixture was finally extended for 7 minutes at 72ºC and subsequently cooled to 4ºC. The 

DNA resulting from PCR reactions was either used immediately or stored at -20oC for 

future use. 

AGAROSE GEL ELECTROPHORESIS 

PCR amplification and confirmation products as well as DNA fragments 

generated via endonuclease restriction digestions were all visualized by agarose gel 
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electrophoresis.  DNA samples were mixed with 2 µL loading dye and run on 0.8% or 

1.0% ethidium bromide incorporated agarose gels depending on the size of the 

fragment of interest. Gels were run at 90 volts with a BioRad 3000Xi (Bio-Rad 

Laboratories, Incorporated) in a Mini-Sub Cell GT (Bio-Rad Laboratories, Incorporated) 

for 20 minutes. The separated DNA fragments were compared to 1KbPlus DNA Ladder 

(Invitrogen Corporation) to confirm approximate size. Bands within the gels were 

photographed inside a BioRad Universal Hood (Bio-Rad Laboratories, Incorporated) 

equipped with a CFW-1312M grayscale digital camera and viewed with The Discovery 

Series QualityOne 1-D Analysis Software version 4.6.1 (Bio-Rad Laboratories, 

Incorporated).  

AMPLIFIED DNA PURIFICATION 

DNA fragments generated from PCR or from digestion reactions were purified 

using the PureLinkTM PCR Purification Kit (Invitrogen Corporation). Binding Buffer B3 

(Invitrogen Corporation) at a volume of 400 µL was added to the DNA sample and 

pipetted into a PureLinkTM PCR Spin Column (Invitrogen Corporation) snapped into a 

collection tube. The column in the collection tube was spun at 16,100 x g for 1 minute 

and the flow through was discarded. 

The column was washed by adding 650 µL Wash Buffer (Invitrogen Corporation) 

to column and spun at 16,100 x g for 1 minute. The flow through was discarded and 

centrifugation continued for 3 additional minutes to remove excess buffer.  

The column was placed into a PureLinkTM Elution Tube (Invitrogen Corporation) 

and DNA was incubated with 32 µL of sterile autoclaved ddH2O for 2 minutes. The DNA 
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was eluted by spinning column at 16,100 x g for 2 minutes. The purified DNA was used 

immediately or stored at -20oC for future use. 

E. COLI CELL TRANSFORMATIONS 

Aliquots of 50 µL DH5α competent E. coli cells (Invitrogen Corporation) were 

incubated with 3 µL of ligation product DNA on ice for 35 minutes. Cells were heat-

shocked in a 42ºC waterbath for 45 seconds then immediately incubated on ice for 2 

minutes. 

To the tube, 180 µL of LB broth was added to the transformed cells and 

incubated at 37ºC for 1 hour in a Forma Orbital Shaker incubator (Thermo Electron 

Corperation). The cells were removed from the incubator and 100 µL to 180 µL of cells 

were plated on LB plates containing the appropriate antibiotics. When needed, 4 µL 

Isopropyl β-D-1-thiogalactopyranoside ,IPTG, (Applied Biosystems, Foster City, CA) 

and 40 µL X-gal (Invitrogen Corporation) was also added for blue versus white 

screening. 

The plates were incubated at 37ºC overnight and observed for growth. 

Transformation colonies were inoculated into 500 µL of LB broth containing the 

appropriate antibiotic and incubated for 4 hours in a shaking incubator. Confirmed 

transformant cultures were then brought up to 5 mL cultures with the addition of LB 

broth containing the appropriate antibiotic and returned to the incubator for overnight 

growth in preparation for plasmid recovery. 

PLASMID RECOVERY 

Plasmid mini preps were performed on 5 mL overnight E. coli cultures using the 

Qiagen QIAprep Miniprep Kit (Valencia, Ca). Overnight cultures of 5 mL were pelleted 
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at 3711 x g for 15 minutes in a Sorvall Legend RT tabletop centrifuge (Kendro 

Laboratory Products, Newtown, CT).  

The supernatant was discarded and the pellet was re-suspended by pipetting in 

250 µL of chilled Buffer P1 with LyseBlue (Qiagen Incorporated) and added to a 

microcentrifuge tube. Buffer P2 (Qiagen Incorporated) was added to the tube at a 

volume of 250 µL and mixed by inversion until consistent blue color was reached. A 300 

µL volume of Buffer P3 (Qiagen Incorporated) was added and mixed in immediately by 

inversion. The resulting solution was centrifuged at 16,100 x g for 10 minutes. The 

supernatant was removed to a QIAprep spin column (Qiagen Incorporated) and 

centrifuged at 16,100 x g for 1 minute. 

The flow through was discarded and the column was washed with 0.5 mL of 

Buffer PB (Qiagen Incorporated). The buffer was removed via centrifugation and the 

flow through discarded. The column was washed again with 0.75 mL Buffer PE (Qiagen 

Incorporated). The column was spun for an additional 1 minute to remove excess buffer 

then placed into a clean micro-centrifuge tube.  

The DNA was eluted after the column was incubated for 1 minute with 30 µL 

sterile autoclaved ddH2O by centrifugation at 16,100 x g for 1 minute. A second elution 

was collected by incubating the column with 20 µL sterile autoclaved ddH2O for 1 

minute and centrifuging again for 1 minute at 16,100 x g. The unused portion of plasmid 

DNA was stored at -20oC for future use. 

PLASMID CONSTRUCTION 

DNA from strain 5A4 Borrelia burgdorferi was PCR amplified using the primers  
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cp32-3F1Nco1 and cp32R2 to produce a DNA fragment that represents the putative 

maintenance region of cp32-3. This 8kbp DNA fragment compared to the DNA ladder 

after gel electrophoresis to confirm size and then purified. The fragment was then 

digested with NcoI and purified again. 

pNCO1T plasmid DNA was also digested with NcoI then purified. The digested 

cp32-3 fragment was then ligated into pNCO1T to produce pNCO1Tcp32-3. The 

fragment was transformed into E. coli and grown on LB-amp plates incorporated with  

IPTG and X-gal. The white colonies were selected for growth in LB-amp broth. Plasmid 

construction was confirmed via PCR using the concp32F and concp32R primers and 

confirmed transformants were allowed to grow overnight before plasmid DNA was 

recovered. 

The resulting DNA was PCR amplified using cp32-3F1Nco1 and cp32-3R1Nco1 

to produce the cp32-3plus fragment. The DNA resulting from the amplification was 

again compared to the DNA ladder to confirm appropriate fragment size. The DNA was 

then purified and digested with NcoI. The DNA fragment was then purified once more.    

The plasmid DNA from pBSVGE22 was PCR amplified with Gen32F and 

Gen32R primers to produce pG22. The plasmid fragment size was confirmed via gel 

electrophoresis and subsequently purified. The fragment was digested with NcoI. The 

ends of the fragments were dephosphorylated and the DNA fragment was purified once 

more. 

The cp32-3plus fragment was then ligated into the pG22 plasmid. The ligation 

product, pG22cp32-3plus was transformed into E. coli and grown on LB-gent plates. 

Transformants were confirmed via PCR using concp32F and concp32R and GenF and 
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GenR primers. Confirmed transformants were allowed to grow overnight in LB-gent 

broth. Plasmid DNA was consequently extracted for use in electroporation procedures.    

BORRELIAL ELECTROPORATION 

Borrelia burgdorferi strain A13 was resurrected from frozen stock into 2 mL BSK-

H complete media (Sigma-Aldrich Corporation) supplemented with 6% rabbit serum 

(Sigma-Aldrich Corporation) and incubated inside a Forma Series II water jacketed CO2 

Incubator (Thermo Electron Corporation) at 33oC and 5% CO2. Once the culture was 

grown to an approximate density of 100 spirochetes per field of view, the cells were 

transferred into 50 mL of media and allowed to return to 100 spirochetes per field of 

view before collection. 

To collect the cells, the culture was split into two 25 mL aliquots. The aliquots 

were pelleted at 3711 x g for 22 minutes in a Sorvall Legend RT tabletop centrifuge. 

The cells were rinsed with a total of 15 mL EPS and combined into one tube. The tube 

was spun at 3711 x g for 22 minutes. Again the cells were rinsed using 5 mL EPS and 

transferred into 20 mL falcon tube. The cells were spun once more at 3711 x g for 22 

minutes.  

After the final rinse, the cells were resuspended in 50 µL EPS. The suspension of 

cells was then added to the pG22cp32-3plus DNA to be inserted into the cells and 

incubated on ice for 1 minute. The chilled suspension was transferred to a pre-chilled 

0.1 cm GenePulserTM electroporation cuvette (Bio-Rad Laboratories, Incorporated) for 

transformation. The cuvette was placed inside the GenePulser XcellTM (Bio-Rad 

Laboratories, Incorporated) set to 1.25 kV, 25 µF, 200 e for a constant time of 4-6 ms 

for use. Immediately after electroporation, 1 mL of prewarmed (37oC) media was added 
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to the cuvette. Working quickly, the contents of the cuvette was transferred into 35 mL 

of media and incubated for 24 hours at 34oC. 

 After overnight incubation at 34oC, the media was supplemented with gentamycin 

to a final concentration of 50 µg/mL. The culture was then aliquoted into PCR tubes at a 

volume of 220 µL/tube to produce cultures with single clones. One week later the 

cultures were monitored for positive transformants. All steps in the transformation 

process were performed in a class II biosafety cabinet. 

TRANSFORMANT IDENTIFICATION 

Between 7 and 12 days after a transformation procedure, monitoring for positive 

transformants began. As Borrelia grows, the bacteria lower the pH of the culture media, 

changing it from a red-orange to a yellow-orange color. The color change is used as an 

indicator of growth and is produced by the phenol-red dye present in the media. Phenol 

red is a dye used to indicate the change in pH from 8.4 to 6.6, as the pH gradually 

decreases the dye will change color from red to yellow.   

All cultures were viewed under a Zeiss Axiostar plus microscope to visualize 

growth. All positive cultures were confirmed via confirmation PCR using primers specific 

to DNA inserted into transformed cells. All true positive cultures were transferred to 1 

mL new media for further growth and use.  

SELECTION PRESSURE INCREASE 

In order to increase selection pressure, 1 mL cultures of positive transformants 

were subjected to increasing concentrations of gentamycin. The media was originally 

increased from 50 µg/mL of gentamycin to 100 µg/mL and then again increased to 150 

µg/mL eight hours later. 
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After twelve hours of growth, the culture was aliquoted out in 50 µL volumes into 

media supplemented with varying concentrations of gentamycin ranging from 300 

µg/mL to 1400 µg/mL in 100 µg increments. The new 1 mL cultures were allowed to 

grow over several generations. Transformants grown in 300 µg/mL, 500 µg/mL, 700 

µg/mL, and 900 µg/mL had 50 µL of culture transferred into new media supplemented 

with the same concentration of gentamycin.  

As marked drop-off in growth was noted at 700 µg/mL of gentamycin, the 500 

µg/mL culture was recultured at 550 µg/mL and allowed twelve generations of growth. 

At that time, 50 µL of the culture was removed to 1 mL new media with the same 

concentration of gentamycin and allowed to grow for three more days. Following this 

period of growth, 50 µL of culture was transferred into two tubes of 950 µL culture 

media supplemented with 750 µg/mL or 950 µg/mL of gentamycin.  
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RESULTS 
 

SELECTION OF MAINTENANCE REGION 

 A previous study by Eggars and colleagues indicates that the PF57, PF50, PF32, 

and PF49 genes serve as the putative maintenance region of the cp32 plasmids in the 

B. burgdorferi strain 297 (2002).  As the regions surrounding this area are extremely 

similar between cp32 plasmids, a longer segment of DNA was amplified to ensure 

amplification of only the single cp32-3 plasmid. It is by this reasoning that the 3 kbp 

required region was amplified along with 5.5 kbp of DNA flanking the region (Figure 12).  

The PCR amplification with the primers cp32-3F1NcoI and cp32R2 (Table 4) 

produced the 8430 bp region of DNA used in the construction of plasmids in latter 

experiments. After amplification, the DNA fragment size was confirmed via agarose gel 

electrophoresis (Figure 13).  After digestion with NcoI, the restriction site introduced with 

both primers, the DNA fragment size was again confirmed using agarose gel 

electrophoresis. 

CREATION OF pNCO1Tcp32-3 

The pNCO1T vector, which is used extensively in our laboratory, can replicate in 

E. coli but does not have the necessary genes to do so in B. burgdorferi (Dowie et al., 

2004, Xu et al., 2007a, 2007b). The 8.4 kbp fragment of DNA amplified from cp32-3 was 

inserted into the vector pNCO1T at the NcoI restriction site, disrupting the lacZ gene 

(Figures 14,15). The resulting pNCO1Tcp32-3 plasmid was used to transform E. coli 

cells that were plated onto LB-amp plates supplemented with IPTG and X-gal. Potential 

successful transformants grew white colonies, as opposed to non-transformed blue 

colonies (Figure 16), greatly simplifying the selection process. 
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cp32-3 
30223 bp 

Figure 12:  cp32-3 Putative Maintenance Region. The 8.4 kb region of DNA 
representing the putative maintenance region from the cp32-3 plasmid was 
amplified using cp32-3F1NcoI/cp32R2 primers. The resulting fragment was used 
in the construction of future plasmids.  

cp32-3 PUTATIVE MAINTENANCE REGION 
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Figure 13: cp32-3 Amplified Fragment. The DNA fragment representing the 
putative maintenance region of ccp32 plasmids was amplified from cp32-3 and 
visualized by gel electrophoresis to confirm appropriate size. The resulting 8430 
bp fragment was used in the construction of future plasmids.  

 
Lane1:1kbp DNA Ladder 

Lane2: B. burgdorferi 5A4 cp32-3 fragment (cp32-3F1NcoI/cp3R1NcoI) 

cp32-3 AMPLIFIED FRAGMENT 
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Figure 14: pNCO1T Vector Composition. The pNCO1T plasmid was cut at the 
NcoI site to prepare the plasmid for the insertion of the cp32-3 fragment of DNA 
that represents the punitive maintenance region of cp32-3. 

 

Figure 15: pNCO1Tcp32-3 Vector Composition. The pNCO1Tcp32-3 plasmid is 
the result of cp32-3 fragment insertion into the NcoI site of the pNCO1T plasmid. 
After the plasmid was introduced into competent E. coli cells for amplification, the 
extracted plasmid was tested via confirmation PCR with concp32F and concp32R 
primers to confirm the presence of the inserted cp32-3 fragment.  

 

pNCO1T 
2955 bp 

pNCO1Tcp32-3 
11385 bp 

pNCO1T VECTOR COMPOSITION 

pNCO1Tcp32-3 VECTOR COMPOSITION 
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Figure 16: Blue Versus White Transformant Screening. E. coli colonies 
transformed with the pNCO1Tcp32-3 were grown on a LB plate supplemented with 
ampicillin, IPTG, and X-gal. Blue clones are the product of an unsuccessful 
transformation as they indicate an intact lacZ. The white colonies were chosen for 
further testing to confirm presence of correctly constructed pNCO1Tcp32-3 
plasmid. 

 

BLUE VERSUS WHITE TRANSFORMANT SCREENING 
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Although the colony color difference suggests successful transformants, 

confirmation PCR was performed to ensure the presence of the inserted cp32-3 

fragment. The plasmid was extracted and fragment presence was confirmed using the 

confirmation primers concp32F and concp32R (Table 4). The procedure successfully 

amplified the approximately 500 bp region of DNA located toward the end of the PF161 

gene extending toward PF57. The amplified fragment was run through an agarose gel 

and then compared in size to a DNA ladder. The size of the fragment was also 

compared to the position of a positive control confirmation PCR of original cp32-3 

fragment DNA. 

Next, a confirmation digestion reaction was performed by digesting the plasmid 

with NcoI. The two fragments were visualized by agarose gel electrophoresis to confirm 

successful plasmid construction. The two fragments, the original linear pNCO1T and the 

cp32-3 fragment, were compared to the DNA ladder and correctly located at 

approximately 3 kbp and 8.4 kbp respectively (Figure 17).          

CREATION OF pG22 

The vector pNCO1T can replicate in E. coli, but not in B. burgdorferi; however, 

the insertion of the putative maintenance region of cp32-3 may make the vector 

reproducible in spirochetes.  The use of the pNCO1T vector is further complicated 

because it does not have a selection marker that is available for use in the borrelial 

system.  The vector pBSVGE22 contains a selectable gentamycin acetyltransferase 

gene that is constantly expressed under a borrelial FlaB promoter (Figure 18) (Stewart 

et al., 2001). It also contains a copy of the B. burgdorferi gene bbe22 that is necessary 

to restore infectivity to the highly transformable borrelial strain 13A, which has been  
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Figure 17: pNCO1Tcp32-3 Digestion Confirmation. The plasmid DNA extracted from E. 
coli after transformation was confirmed by digestion the plasmid with NcoI. The 
resulting fragments at 3 kbp and 8.4 kbp correspond to the original portion of pNcoIT 
and the cp32-3 fragment, respectively.  

 
Lane 1: 1 kbp DNA Ladder 

Lane 2: pNcoITcp32-3 DNA (NcoI-) 
 

pNCO1Tcp32-3 DIGESTION CONFIRMATION 
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repeatedly used in our laboratory (Xu et al., 2007a; 2007b).  pBSVGE22 also contains 

the necessary elements to allow for successful replication and maintenance in E. coli 

cells. 

As these necessary components only comprise half of the 6409 bp plasmid, the 

vector was reduced in size as to aid in transformation efficiency. The plasmid DNA was 

amplified via PCR with Gen32F and Gen32R primers (Table 4) to shorten the plasmid 

by 3625 bp. The shortened plasmid was run through an agarose gel and compared to a 

DNA ladder (Figure 20). The fragment was positioned appropriately for it 2784 bp size.  

This 2784 bp fragment, which retained the origin of replication site, copy of bbe22, and 

the gentamycin acetyltransferase cassette, was designated pG22 when circularized 

(Figure 19). 

CREATION OF pG22cp32-3plus 

The pG22 plasmid, in linear form, was digested with NcoI to form cohesive ends 

compatible with the NcoI digested 8.4 kbp cp32-3 fragment amplified from 

pNCO1Tcp32-3. A ligation procedure was used to fuse the two fragments together to 

form a plasmid of 11.2 kbp in length designated pG22cp32-3plus (Figure 21).  The 

following analyses were conducted to confirm pG22cp32-3plus was constructed as 

designed after replication and extraction from transformed E. coli cells. 

First, the confirmation PCR was run using primers amplifying the gentamycin 

acetyltransferase gene, GenF and GenR (Table 4). The resulting DNA fragment was 

compared in size to the DNA ladder as well as the location of a positive control obtained 

using the same primers with pBSVGE22 DNA.     
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pBSVGE22 
6409 bp 

pG22 
2784 bp 

Figure 18: pBSVGE22 Vector Composition. The pBSVGE22 plasmid, at 6409 bp, 
was reduced in size to aid in transformation efficiency. The plasmid was reduced 
by amplifying a 2784 bp portion of the plasmid with the primers Gen32F and 
Gen32R. 

Figure 19: pG22 Vector Composition. pG22 is the 2784 bp product of pBSVGE22 
amplification with Gen32F and Gen32R primers. As the amplification process 
introduced NcoI sites at the ends of the fragment, pG22 is ready for the insertion of 
the cp32-3plus DNA fragment. 

 

pBSVGE22 VECTOR COMPOSITION 

pG22 VECTOR COMPOSITION 
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Figure 20: pBSVGE22 Plasmid Reduction. The pBSVGE22 plasmid was amplified 
with Gen32F and Gen32R primers to shorten the plasmid while retaining the 
plasmids necessary function. The resulting plasmid, pG22, is 2784 bp in length 
and appears as a single band on an agarose gel.  

 
Lane 1: 1kbp DNA Ladder 

Lane 2: pBSVGE22 (Gen32F/Gen32R) 

pBSVGE22 PLASMID REDUCTION  
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Figure 21: pG22cp32-3plus Plasmid Composition. The pG22cp32-3plus plasmid is 
the result of ligating the pG22 plasmid with the cp32-3plus fragment obtained from 
pNCO1Tcp32-3. The 11,214 bp pG22cp32-3plus plasmid will be introduced into 
Borrelia in order to push out the native cp32-3 plasmid.  

 

pG22cp32-3plus 
11214 bp 

pG22cp32-3plus PLASMID COMPOSITION 
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As a second confirmation step, a second confirmation PCR was performed with 

confirmation primers to cp32 as described before. Similarly, the resulting DNA fragment 

was viewed after agarose gel electrophoresis. The fragment was compared to the DNA 

ladder as well as the positive control PCR fragment obtained from original cp32-3 

fragment DNA. 

Based on these analyses, the plasmid pG22cp32-3plus contained all necessary 

components to replicate in both E. coli and B. burgdorferi. In addition, the plasmid also 

contained a selectable marker that can be used in both genera of bacteria as well as the 

cp32-3 DNA fragment of interest. With all these components present, the plasmid is 

ready for transformation into Borrelia. 

CREATION OF BORRELIA BURGDORFERI TRANSFORMANTS 

The pG22cp32-3plus was introduced into B. burgdorferi strain 13A by 

electroporation.  This particular borrelial clone is highly transformable due to the lack of 

lp25 and lp56, the two plasmids that may carry restriction enzymes (Lawrenz et al., 

2002).  The plasmid lp25, not lp56, is required for mammalian infection as it carries 

bbe22, a gene that codes for a nicotinamidase essential for survival of B. burgdorferi in 

the mammalian environment (Purser et al., 2003).  The copy of the bbe22 gene present 

on the pG22cp32-3plus plasmid will restore the bacteria to its naturally infectious state. 

Once pG22cp32-3plus was introduced, transformed bacteria were grown under 

gentamycin selection pressure at 50 mg/µL. The antibiotic added to the media 

eliminated spirochetes that had not received pG22cp32-3plus. The transformed bacteria 

were screened for growth using the color change in BSK-H media. Bacterial growth 
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lowers the media pH changing the color from red-orange to yellow-orange (Figure 22). 

The tubes containing yellow-orange media were selected for confirmation.   

The growing colonies were tested to confirm the presence of the gentamycin 

acetyltransferase cassette. The confirmation PCR procedure using GenF and GenR 

primers (Table 4) to rule out false positive transformants due to spontaneous mutation 

to a gentamycin resistant phenotype (Figure 23). All transformants that tested positive 

for the cassette are true transformants that had acquired pG22cp32-3plus. 

cp32-3 MAINTAINED IN PRESENCE OF pG22cp32-3plus   

All transformants that acquired the pG22cp32-3plus plasmid were tested by PCR 

to determine if the native cp32-3 plasmid was present. The confirmation PCR  

procedure utilized the BSS41F and BSS41R primers (Table 4). In all cases, cp32-3 was 

present (Figure 24). 

To afford the bacteria enough time for the vector pG22cp32-3plus to displace the 

cp32-3 plasmid, the cultures were maintained in fresh media supplemented with 50 

mg/µL of gentamycin for an additional two weeks. After this period of growth, the 

colonies were serially diluted into 96-well plates to produce single clones. 

The 14 clones were again visually screened for growth by observing media color 

change. The growing spirochetes were again tested for the presence of the gentamycin  

acetyltransferase cassette using confirmation PCR using the GenF and GenR primers 

(Table 4). Confirmation PCR was also employed to screen the transformants for the 

presence of the cp32-3 plasmid as described above. While all of the 14 clones still 

possessed the pG22cp32-3plus plasmid, the bacteria also maintained the cp32-3 

plasmid. 
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Figure 22:  Media Color Change Indicates Growth. Spirochetal growth is indicated 
by a color change in the BSK-H media when the pH is lowered. The phenol red 
indicator dye changes from red-orange color (shown at right) indicating a pH of 
approximately 7.0 to yellow-orange color (shown at left) indicating a pH of 
approximately 6.0. 

 

MEDIA COLOR CHANGE INDICATES GROWTH 
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Figure 23: PCR Screening For pG22cp32-3plus Transformants. Borrelial cells 
transformed with pG22cp32-3plus must be tested to confirm the presence of the 
gentamycin acetyltransferase cassette to ensure true transformants. The cassette 
presence was confirmed via PCR with GenF and GenR primers. False positive 
transformants due to spontaneous mutation were ruled out and excluded when the 
band of DNA representing the 519 bp GenF/GenR fragment did not appear on the 
agarose gel (lanes 2-6 and 9).  

 
Lane 1: 1kbp DNA Ladder 

Lanes 2-13: B. burgdorferi A13 pG22cp32-3plus (GenF/GenR) 
Lane 14: sterile autoclaved ddH2O (GenF/GenR) 

Lane 15: pG22cp32-3plus (GenF/GenR) 
  

PCR SCREENING FOR pG22cp32-3plus TRANSFORMANTS 
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Figure 24: PCR Screening for cp32-3 Plasmids. Single clones of Borrelia 
transformants with pG22cp32-3plus grown in 50 µg/mL of gentamycin. The 
cultures were tested for the presence of the native cp32-3 plasmid. In all cases the 
bacteria had eliminated the plasmid.  

 
Lane 1 & 10: 1kbp DNA Ladder 

Lanes 2-9 & 11-16: B. burgdorferi A13 pG22cp32-3plus (BBS41F/BBS41R) 
Lane 17: B. burgdorferi 5A4 (BBS41F/BBS41R) 

Lane 18: sterile autoclaved ddH2O (BBS41F/BBS41R) 
 

PCR SCREENING FOR cp32-3 PLASMIDS 
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INCREASED SELECTION PRESSURE FORCES cp32-3 EXCLUSION 

In an attempt to force the plasmid to selectively exclude the cp32-3 plasmid, the 

transformants were subjected to increased selection pressure in the form of varying and 

increasing gentamycin concentrations of 300 mg/µL to 1400 mg/µL. With this additional 

pressure, cultures were monitored for growth. Cultures grown at 500 mg/mL were 

allowed to incubate for four days in media containing 550 mg/mL of gentamycin.  

At the conclusion of this growth period the culture was divided and the 

gentamycin concentration was increased to 750 mg/mL and 950 mg/mL. The culture 

was allowed to grow to 100 spirochetes per field of view in media supplemented with 50 

mg/mL of gentamycin. The cultures were serially diluted into 96 well plates to select 

single clones. Single clones were selected visually using the color change in the media 

produced by growing bacteria. 

In the same manor as before, the growing transformants were tested to confirm 

the presence of the introduced plasmid (Figure 25). After the pG22cp32-3plus plasmid 

presence was confirmed, the transformants were tested for the presence of the cp32-3 

plasmid. In all cases the confirmation PCR performed with BBS41F and BBS41R 

primers (Table 4) showed the cp32-3 had indeed been lost in all of 17 clones examined 

(Figure 26). As an additional precautionary measure, the transformants were subjected 

to yet another round confirmation PCRs. The PCRs were also performed with primers 

specific to cp32-4, cp32-6, cp32-7, cp32-9 plasmids. Results confirmed the presence of 

all cp32 plasmids, except for cp32-3 (Figure 27).   
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Figure 25: PCR Confirmation of pG22cp32-3plus Presence. Single clones of 
borrelial pG22cp32-3plus transformants grown in high concentrations of 
gentamycin were tested via PCR for the presence of the gentamycin 
actyltransferase cassette using GenF and GenR primers.  

 
Lane 1: 1kbp DNA Ladder 

Lanes 2: B. burgdorferi A13 pG22cp32-3plus (GenF/GenR) 
Lane 3: sterile autoclaved ddH2O (GenF/GenR) 

Lane 4: pG22cp32-3plus (GenF/GenR) 

PCR CONFIRMATION OF pG22cp32-3plus PLASMID PRESENCE 
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Figure 26:  PCR Screening for cp32-3 Plasmids After Increased Antibiotic 
Selection Pressure. Single clones of borrelial pG22cp32-3plus transformants 
grown in high concentrations of gentamycin were tested for the presence of the 
cp32-3 plasmid. In all cases the bacteria had eliminated the plasmid.  

 
Lane 1: 1 kbp DNA Ladder 

Lanes 2-6: B. burgdorferi A13 pGE22cp32-3plus (BBS41F/BBS41R) 
Lane 7: B. burgdorferi 5A4 (BBS41F/BBS41R) 

Lane 8: sterile autoclaved ddH2O (BBS41F/BBS41R) 

PCR SCREENING FOR cp32-3 PLASMIDS  
AFTER INCREASED ANTIBIOTIC SELECTION PRESSURE 
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Figure 27: PCR Screening for cp32 Plasmids After Increased Antibiotic Selection 
Pressure. Single clones of borrelial pG22cp32-3plus transformants grown in high 
concentrations of gentamycin were tested for the presence of the cp32-3 plasmid. 
In all cases the bacteria had retained cp32-4,cp32-6, cp32-7, and cp32-9 
plasmids.  

 
Lanes 1-17: B. burgdorferi A13 pG22cp32-3plus  

Lane 18: B. burgdorferi 5A4  
Lane 19: sterile autoclaved ddH2O 

 

PCR SCREENING FOR cp32 PLASMIDS  
AFTER INCREASED ANTIBIOTIC SELECTION PRESSURE 
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DISCUSSION 
 

Lyme disease has been the most commonly reported arthropod disease in the 

United States for the last 23 years (Centers for Disease Control and Prevention, 1985).  

Since reporting began in 1980, the number of disease cases has dramatically 

increased.  In 2005 there were 23,305 cases reported in 45 different states making the 

incidence of Lyme disease in the United States 7.9 cases per 100,000 (Centers for 

Disease Control and Prevention, 2007).  

The disease produces a wide range of symptoms that can debilitate infected 

persons overtime, especially if the infection is allowed to progress.  The onset of the 

infection produces flu-like symptoms usually accompanied by an erythema migrans rash 

(Steere et al., 1983; Centers for Disease Control and Prevention, 1997).  When left 

untreated, the disease produces more serious symptoms including: joint pain, fatigue, 

aching neck, numbness of extremities, facial palsy, headaches, and arthritis.  The 

bacterial infection can also produce detrimental effects to the heart and central nervous 

system (Steere, 2001; Aguero-Rosenfeld et al., 2005).  The increased number of cases, 

as well as the severity of disease symptoms, validates the need to study Lyme 

disease’s causative agent, Borrelia burgdorferi.  

Casjens et al (2000) completed the genomic work by Fraser et al. (1997) to produce 

the full compilation of the Borrelia genome.  The bacteria have an unusual segmented 

genome comprised of a single linear chromosome complemented with up to 21 

extrachromosomal plasmids.  As the chromosome is 910 kbp in length, the 

extrachromosomal DNA contains 610,694 bp and makes up roughly 40% of the entire 

borrelial genome (Fraser et al., 1997; Casjens et al., 2000) . 
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The extrachromosomal DNA or plasmids are particularly interesting as they may 

encode for genes required by the bacteria; as a result the plasmids are faithfully 

maintained (Purser and Norris, 2000). Four of the bacteria’s plasmids, lp28-1, lp25, 

lp56, and cp26, are recognized as required and necessary. Although the bacteria can 

lose lp28-1 spontaneously, the plasmid is required to be present to produce a persistent 

infection because of the vlsE region that gives the bacteria antigenic variation to a 

surface exposed protein (Purser and Norris, 2000; Labandeira-Rey and Skare, 2001). 

The lp25 plasmid is required for borrelial survival in the mouse due to the pncA gene 

that provides a critical step in synthesizing NAD for cellular energy (Purser and Norris, 

2000; Purser et al., 2003,). 

Plasmid lp56 is required for cellular survival for several reasons.  The plasmid 

contains the genes to encode for OspA, OspB, DbpA, DbpB, and CRASP-1. The 

proteins OspA and OspB aid the bacteria in tick colonization while DbpA and DbpB 

facilitate the bacteria with colonization and dissemination and mediate attachment to 

host tissue (Guo et al., 1995; Fischer et al., 2003; Ojaimi et al., 2003). The CRASP-1 

protein assists Borreila in avoiding complement-mediated killing (Kraiczy et al., 2004). 

The circular plasmid cp26 has been shown to be essential to B. burgdorferi bacterial 

viability (Byram et al., 2004). The cp26 plasmids encodes for ospC and resT genes 

which produce proteins that help the spirochete adhere to tissue and resolve circular 

dimmers, respectively (Kobryn and Chaconas, 2002; Caimano et al., 2004).    

As part of the bacteria’s extrachromosomal plasmids, a single bacterium can 

maintain up to seven different cp32 plasmids (Casjens et al., 1997, Casjens et al., 

2000).  These plasmids represent almost 20% of bacterial DNA.  The nine plasmids that 
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make up the cp32 family are each roughly 30 kbp in length and have 80% similarity 

between them (Casjens et al., 2000).  By characterizing natural isolates of the bacteria, 

it was determined that the plasmids are well maintained during in vitro cultivation 

(Purser and Norris, 2000).  No characterized isolate exists with all cp32 plasmids 

missing from its repertoire (Purser and Norris, 2000).  This information suggests that at 

least some of the plasmids provide genetic information necessary for spirochetal 

survival in nature (Casjens, et al. 1997; Purser and Norris, 2000). 

At present, relatively little is known about the true function of the majority of the 

cp32 plasmids’ genes (Casjens et al., 2000). Through research, three distinct 

hypervariable regions have been identified on each cp32 plasmid. The first 

hypervariable region, the putative plasmid maintenance region, contains the paralogous 

gene families, PF57, PF50, PF32, and PF49 that responsible for the cp32 family’s 

replication and segregation (Casjens et al., 2000; Stevenson and Akins, 2000; Eggers 

et al., 2002). The second hypervariable region contains the erp locus that contain genes 

for the OspE and OspF surface exposed lipoproteins used to help the bacteria evade 

complement mediated killing (Stevenson et al., 1995; Kraiczy et al., 2001; Stevenson et 

al., 2002; Kraiczy et al., 2004).  

The final hypervariable region, the 2.9 loci contains genes that encode the 

antigenic Mlp proteins that may assist in interacting with host tissues (Porcella, et al. 

1996, Theisen 1996, Yang, et al. 1999). Most of the 2.9 loci also contain a bdr gene for 

proteins that potentially play a role in cellular regulation (Meyer and Barbour, 1999; 

Zückert et al.,1999; Roberts et al., 2000; Stevenson and Akins, 2000). Instead of a bdr 
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gene, cp32-1 and cp32-6 encode a rev gene to provide the bacteria survival advantages 

in diverse environments (Gilmore and Mbow, 1998; Stevenson and Akins, 2000).     

Outside of the hypervariable regions the cp32 plasmids similarity increases 

dramatically to between 80-99% similar (Stevenson and Akins, 2000; Casjens et al., 

2000). Throughout the almost identical stretches of DNA, only one region of DNA has 

been identified and characterized (Stevenson and Akins, 2000). This region, similar 

amongst all cp32 plasmids, contains genes for the BlyA and BlyB pore-forming toxins 

that are involved in the cellular release of bacteriophage particles (Guina and Oliver 

1997; Eggers and Samuels, 1999; Stevenson and Akins, 2000; Eggers et al., 2001). 

Other than these four regions of DNA, little is known about the genes encoded on the 

cp32 plasmids, including whether the plasmids play a role in mammalian infection. 

Studying the function of the cp32 plasmids by analyzing existing natural isolates 

is not possible because no isolate has been discovered lacking all members of the cp32 

family. Since every isolate does carry some combination of the plasmids and the 

plasmids are difficult to knockout, another approach to study the plasmid family must be 

developed.  Consequently, we have designed a process that artificially displaces the 

plasmids by utilizing the hypervariable region responsible for plasmid replication and 

segregation to construct a plasmid that is incompatible with its cp32 counterpart.  Once 

introduced, the constructed plasmid will force the bacteria to lose its corresponding 

plasmid. The transformed bacteria can be used to gain insight into Borrelia’s potential 

requirement for the plasmids as well as the subsequent role they play in infectivity or 

pathogenicity. 
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In addition to the four genes from the replication and maintenance region, PF57, 

PF50, PF32, and PF49, the constructed plasmid contains several other important 

components.  The borrelial BBE22 gene is present to restore the transformable 5A13 

strain of B. burgdorferi back to a naturally infectious state.  A gentamycin 

acetyltransferase gene under the constitutively expressed borrelial flaB promoter is also 

located on the plasmid to serve as a selection marker for transformed bacteria.  

After confirming proper construction, the pG22cp32-3plus plasmid was 

introduced into Borrelia 5A13.  Ultimately, selection pressure in the form of high 

concentrations of gentamycin forced the bacteria to eliminate cp32-3 plasmid.  The 

transformed bacteria were tested to confirm plasmid depletion.   

Further studies should exploit the same plasmid construction process employed 

by this experiment to create constructs corresponding to every cp32 family member.  

Both individually and in combinations, these plasmids transformed into Borrelia will 

produce a multitude of isolates for studies to ascertain if the plasmids confer any 

advantage to the bacteria during the infectious process.  

The borrelial transformants should be introduced into an established mammalian 

model to study the potential difference in infectivity and pathogenicity. The mouse 

model currently in use by the Liang lab is such a model that will allow the determination 

of the difference between the transformants with different cp32 plasmid contents (Xu et 

al., 2005; Xu et al., 2006).  The model requires intradermal injections of the 

transformants into both wild-type and SCID mice.  

To study infectivity, inoculated mice are sacrificed after 2 to 3 weeks. At the time 

of sacrifice, tissues from the mice are collected and cultured. The cultures are then 
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visually examined using dark-field microscopy for the presence of borrelial cells. If 

spirochetal cells are present the transformant is in fact infectious. 

For information regarding the transformants pathogenicity, mice, two weeks 

postinoculation, are visually examined every other day for the development of arthritis. 

The mice are sacrificed at one month postinoculation and tissues are collected. The 

tissues are then prepared for analysis with quantitative polymerase chain reactions for 

the presence of B. burgdorferi DNA. The severity of pathogenicity is accessed by the 

degree of arthritis present compared to the quantity of borrelial DNA.  

Ultimately, identifying plasmids that are associated with infectivity and 

pathogenicity is the first step to determining the location of Borrelia’s essential genes. 

The information gathered from the experiments outlined above can only provide 

evidence for B. burgdorferi’s requirement for the cp32 plasmid. Since these plasmids 

are extremely similar throughout their length, it is hypothesized that at least some of the 

cp32 plasmids will be required by the bacteria. If in fact a cp32 plasmid is required for 

infectivity, pathogenicity, or viability of the organism, the cp32 plasmids that are most 

closely related, such as cp32-3 and cp32-7, might serve the same function in the 

organism. In this case, the plasmids could be similar enough such that either plasmid 

could produce a strain of Borrelia with the same phenotype. 

The previously mentioned experiments can determine the bacteria’s requirement 

for the cp32 plasmid family. To further explore what gene or genes present on the cp32 

plasmids are required by B. burgdorferi, more specific experiments must be performed. 

It will be through those experiments that the true reason for the plasmids presence will 

be discovered and the link to infectivity, pathogenicity, or viability be revealed. 
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