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ABSTRACT 

Effects of carprofen on colon of dog have not been investigated. 

Objectives  

1) Measure conductance and permeability to mannitol of transverse, proximal descending and 

distal descending colonic mucosa of dog.  

2) Measure conductance and permeability to mannitol of colonic mucosa of dog in presence of 

carprofen.  

Design 

In vitro experimental – nested, randomized block design 

Animals 

Colonic mucosa from 6 (objective 1) and 7 (objective 2) mature mixed-breed dogs. 

Methods 

Objective 1) Control - Three sections of mucosa from each region of colon were mounted in 

Ussing chamber units. Conductance was calculated every 15 min for 240 min. Flux of mannitol 

was calculated for three periods of one hour.  

Objective 2) Carprofen - Methods based on results for objective 1. Sections of mucosa were 

prepared as in objective 1. Carprofen (400μg/ml) was added to bathing solution. Data for 

conductance and flux of mannitol was obtained as in objective 1. 

Histologic examination of all sections was performed after experiment.  

For both objectives, conductance was graphed against time for each chamber and area under 

each curve calculated. Conductance*time, flux of mannitol and frequency distribution of 

histologic categories were used for analysis. 
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Results 

Objective 1) Mean +/- SEM conductance*time transverse colonic mucosa was higher than 

proximal and distal descending. Mean +/- SEM flux of mannitol increased from period 1 to 

period 3 for transverse colonic mucosa. Objective 2) Data from objective 1 was used as control 

for objective 2. Mean +/- SEM conductance*time carprofen group was higher than control group 

for all regions of colon. For carprofen group, mean +/- SEM flux of mannitol increased from 

period 1 to period 2 and from period 2 to period 3 for all regions of colon. There was higher 

proportion of sections with severe sloughing of cells and erosions involving more than 10% of 

epithelium in carprofen group compared to control. 

Conclusion 

Carprofen increases in vitro conductance and permeability to mannitol and causes sloughing of 

cells and erosions of colonic mucosa of dog which suggests compromise of integrity and loss of 

barrier function. 
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CHAPTER 1. BACKGROUND AND REVIEW OF LITERATURE  

1.1   Colon 

1.1.1 Macroscopic Anatomy  

 The colon of dog accounts for almost the entire length of the large intestine. It is bordered 

proximally by the ileocolic orifice and sphincter and distally by the rectum. The colon lies in the 

dorsal abdomen where it forms an arc around the root of the mesentery. The colon is suspended 

by the mesocolon which maintains the colon’s position while allowing some mobility (Evans 

1993).  

 The colon is divided into three anatomical regions. The ascending colon is the most 

proximal region. The ascending colon lies to the right of the root of the mesentery. It is the 

shortest region and begins at the ileocolic sphincter, extends cranially and terminates at the right 

colic flexure. The right colic flexure marks the junction between the ascending and transverse 

colon. The transverse colon courses from right to left, cranial to the root of the mesentery. The 

transverse colon terminates at the left colic flexure, which marks the junction between the 

transverse and descending colon. The descending colon, the longest and most distal of the three 

regions, lies to the left of the root of the mesentery.  The descending colon courses caudally and 

terminates at the pelvic inlet (Evans 1993).   

 The arterial blood supply to the proximal two thirds of the colon is via branches of the 

cranial mesenteric artery: the colic branch of the ileocolic artery supplies the ascending colon; 

the right colic artery runs in the mesocolon to the right colic flexure and supplies the distal 

ascending and proximal transverse colon; the middle colic artery runs in the mesocolon to the 

left colic flexure and supplies the distal transverse and proximal descending colon. The left colic 

branch of the caudal mesenteric artery supplies the distal descending colon. The caudal  
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mesenteric vein carries blood from the colon into the portal vein. Autonomic innervation to the 

colon is by the cranial and caudal mesenteric plexuses (Guilford, Center et al. 1996),(Evans and 

deLaHunta 1996).  

 

Figure 1.1   Arteries of the Colon of the Dog 

 

Figure 1.2   Veins of the Colon of the Dog 
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1.1.2 Microscopic Anatomy  

 The wall of the colon of the dog is composed of four distinct layers: the mucosa, the 

submucosa, the muscularis and the serosa. The mucosa lines the lumen of the colon. It is flat 

without villi and consists of a single layer of cells, mostly columnar epithelial cells with 

interspersed goblet cells that secrete mucus. The epithelium of the mucosa is folded inwards on 

itself to form strait tubular mucosal glands that extend away from the lumen towards the 

muscularis mucosae. The muscularis mucosae is a thin layer of smooth muscle located at the 

base of the mucosa, adjacent to the submucosa. A loose connective tissue called the lamina 

propria occupies the space between the epithelium and the muscularis mucosae. The organization 

of the mucosal glands in the mucosa is very dense and leaves little place for the lamina propria. 

Epithelial cells found at the surface of the mucosa (surface epithelial cells) are distinct from 

those found within the mucosal glands. It has been suggested that surface epithelial cells are 

primarily for absorption of water and electrolytes whereas epithelial cells within the mucosal 

glands are primarily for secretion of water and electrolytes. More recent studies have shown that 

in epithelial cells within the mucosal glands, absorption is constitutive and secretion is regulated 

by neurohumoral agonists, such as cyclic adenosine monophosphate and carbachol, released 

from cells of the lamina propria (Heitzmann, Warth et al. 2000),(Mall, Bleich et al. 1998).  

The submucosa is a layer of dense fibroelastic connective tissue. The submucosa contains 

blood vessels, lymphatics and nervous fiber plexuses. The thick muscularis consists of smooth 

muscle arranged in an inner circular and an outer longitudinal layer. The serosa consists of a 

layer of loose connective tissue covered by a single layer of mesothelial cells, the visceral 

peritoneum. This is the outer layer of the colon (Fawcett 1994; Guilford, Center et al. 1996; 

Gartner and Hiatt 1997).  
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Figure 1.3   Microscopic Anatomy of the Colon of the Dog 

1.1.3 Epithelium of the Mucosa  

 The colon serves as a conduit and reservoir for gastrointestinal contents and is an 

important site of absorption of fluid and electrolytes. The epithelium of the mucosa functions as 

a selectively permeable barrier between the luminal environment and the interstitium allowing 

simultaneous segregation and exchange (Guilford, Center et al. 1996). Cells of the epithelium of 

the mucosa are tightly held into a sheet-like ultra structure by intercellular junctions. Anchoring 

junctions mechanically attach cells to one another, to the basement membrane and to the 

extracellular matrix while intercellular tight junctions seal adjacent epithelial cells together. 

Intercellular tight junctions consist of trans-membrane proteins that form a belt around the apical 

extremity of every cell in the epithelium (Alberts, Bray et al. 1994.; Amasheh, Schmidt et al. 

2005). The presence of intercellular tight junctions allows for segregation of plasmic membrane 

proteins and thus, the formation of two distinct plasmic membrane domains. The first domain is 

mucosa 

lamina propria 

muscularis mucosae

mucosal gland 

submucosa
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the apical membrane which is in contact with the luminal environment. The second domain is the 

baso-lateral membrane which is in contact with the interstitial space. The polarity of these 

membranes is very important for absorption of molecules against a gradient of concentration 

(Alberts, Bray et al. 1994).  

 Transport across the epithelium of the colonic mucosa can occur via transcellular or 

paracellular transport. Transcellular transport is a directional flux of molecules through the 

epithelial cells and relies on polarity of the epithelium. Paracellular transport is a passive flux of 

small molecules through the intercellular tight junctions along a gradient of concentration 

(Alberts, Bray et al. 1994.; Guilford, Center et al. 1996; Amasheh, Schmidt et al. 2005).  

 With transcellular transport, proteins of the apical membrane actively transport selected 

molecules from the lumen into the cell against a gradient of concentration. These molecules then 

passively diffuse along a gradient of concentration from the intracellular space to the interstitial 

space. Occlusion of the paracellular space by intercellular tight junctions prevents diffusion of 

molecules back into the lumen along a gradient of concentration. From the interstitial space, 

molecules are absorbed into blood vessels (Alberts, Bray et al. 1994).  

 While transcellular transport depends on the impermeability of intercellular tight 

junctions, paracellular transport depends on their permeability. The seal formed by intercellular 

tight junctions is relative and despite their name, intercellular tight junctions are in fact the most 

permeable element of the epithelium of the mucosa. This allows passive movement of small 

molecules across the epithelium of the mucosa along a gradient of concentration.  The 

impermeability of intercellular tight junctions to molecules varies considerably from one 

epithelium to another (Alberts, Bray et al. 1994.; Guilford, Center et al. 1996; Amasheh, Schmidt 

et al. 2005).  
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 The polarity of the membrane and the transport of molecules with an electrical charge 

across the epithelium of the colonic mucosa results in electrophysiologic parameters that can be 

quantified including transepithelial voltage, short-circuit current, resistance and conductance 

(Hongyu, Sheppard et al. 2004). 

 

Figure 1.4  Transport Across the Epithelium of the Colonic Mucosa 

1.1.4 Trans-epithelial Ion Transport 

 The main ions transported across the epithelium of the colonic mucosa of mammals are 

sodium ions (Na), chloride ions (Cl), potassium ions (K), bicarbonate (HCO3) and short chain 

fatty acids (Binder, Rajendran et al. 2005). Ion transport systems across the epithelium of the 

colonic mucosa are complex and our knowledge of those transport systems is expanding as new 

transporter molecules, modulator and inhibitor molecules, pathways and interactions are 

discovered. Transport systems for sodium ions, chloride ions, potassium ions, bicarbonates and 

short chain fatty acids in the colon of mammals are well described. 
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 The two main transport systems for absorption of sodium ions from the lumen of the 

colon into the interstitial space are electroneutral sodium-chloride absorption and electrogenic 

sodium absorption. During electroneutral sodium-chloride absorption, sodium is transported 

across the apical membrane of the epithelial cell by the transport protein sodium-proton 

exchange-3 (NHE-3) isoform. During electrogenic sodium absorption, sodium is transported 

across the apical membrane of the epithelial cell by the amiloride sensitive epithelial sodium 

channel (ENaC) (Shull, Miller et al. 2000; Gawenis, Hut et al. 2004). These two transport 

systems for absorption of sodium ions occur in the surface epithelial cells and not in the crypt 

epithelial cells. A third and less important transport system for absorption of sodium ions occurs 

in the crypt epithelial cells. Sodium ions are transported across the apical membrane of the crypt 

epithelial cell by the chloride-dependant sodium-proton exchange transport protein. This 

chloride-dependant transport system for absorption of sodium ions is present to a lesser extent in 

the surface epithelial cells. Sodium-potassium adenosine triphosphatase (Na-K ATPases) of the 

basolateral membrane maintain gradient and electroneutrality necessary for functioning of those 

three transport systems for absorption of sodium ions. Once into the epithelial cell, sodium ions 

diffuse passively across the basolateral membrane into the interstitial space along a gradient of 

concentration (Sellin and DeSoignie 1987; Smith and Benos 1991; Palmer 1992; Guilford, 

Center et al. 1996; Gawenis, Hut et al. 2004).  

 Chloride ions are absorbed from the lumen of the colon into the epithelial cells by one of 

three transport systems of the apical membrane known as chloride-bicarbonate exchange system, 

chloride-hydroxide exchange system or chloride-short chain fatty acids exchange system. Once 

into the epithelial cell, chloride ions are transported across the basolateral membrane into the 

interstitial space by chloride-potassium cotransport (where a membrane protein transports 

together one chloride ion and one potassium ion) or through chloride channel-2 (ClC-2). 
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Absorption of chloride ions occurs mostly in surface epithelial cells and to a lesser extent in 

crypt epithelial cells (Gawenis, Hut et al. 2004). 

 Chloride ions are secreted from the interstitial space into the lumen of the colon by a 

secretion system stimulated by cyclic adenosine monophosphate (cAMP). This system requires 

an apical membrane transport protein, called cystic fibrosis transmembrane conductance 

regulator (CFTR) and three different basolateral membrane transport proteins including one 

sodium-potassium adenosine triphosphatase, one sodium-potassium-chloride-chloride (NKCC) 

transporter and one or more potassium channels (Hass 1994; Heitzmann, Warth et al. 2000; Day, 

King et al. 2005; Mayol, Alarma-Estrany et al. 2005; Schultheiss, Siefjediers et al. 2005).   

 Potassium ions are absorbed from the lumen of the colon into the epithelial cell by 

passive diffusion, along a gradient of concentration or by an active system requiring a proton-

potassium adenosine triphosphatase (H, K-ATPase) at the apical membrane and a potassium-

chloride cotransport system at the basolateral membrane (Shull, Miller et al. 2000). 

 Potassium ions are secreted from the interstitial space into the lumen of the colon by a 

potential dependant potassium secretion system or by an active potassium secretion system. In 

the colon of normal mammals, the two potassium transport systems sum up to an overall low rate 

of potassium ion secretion (Rechkemmer, Frizzell et al. 1996; Binder, Rajendran et al. 2005). 

 Bicarbonate ions are secreted from the interstitial space into the lumen of the colon by a 

chloride-dependant bicarbonate secretion system, a cyclic adenosine monophosphate-induced 

bicarbonate secretion system or a short-chain fatty acid-dependant bicarbonate secretion system. 

Secretion of bicarbonate ions occurs mostly in surface cells but also to a lesser extent in crypt 

cells (Vidyasagar, Rajendran et al. 2004; Binder, Rajendran et al. 2005).  

 Short-chain fatty acids are the primary anion in the lumen of the colon. Butyrate, 

propionate and acetate are the most abundant short-chain fatty acids. These short-chain fatty 
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acids are synthesized in the lumen of the colon by resident bacteria. Short-chain fatty acids are 

absorbed from the lumen of the colon into the interstitial space by a  transport system requiring 

an apical membrane short-chain fatty acid-bicarbonate exchange protein, linked in parallel to a 

sodium-proton exchange protein and a chloride-short-chain fatty acid exchange protein; and a 

basolateral membrane short-chain fatty acid-bicarbonate exchange protein distinct from the 

apical one (Sellin 1999). 

1.1.5 Ussing Chamber System  

 The Ussing chamber is a system used to study molecule transport across epithelia. Since 

its first description in 1951 by Hans Ussing, it has been used in a broad range of applications and 

has improved our knowledge of permeation and absorption of epithelia. The system consists of a 

chamber unit connected to an electrical circuit (Hongyu, Sheppard et al. 2004). 

 The chamber unit is composed of 2 symmetrical halves consisting of a “U” shaped 

reservoir system connected to an acrylic hemi-chamber via polyethylene tubes. Both hemi-

chambers are mounted with their lumen communicating to form one unique chamber. During an 

experiment, the epithelium to be studied is mounted between the two hemi-chambers. The only 

communication from one hemi-chamber to the other is through the epithelium. The tissue is 

bathed in the experimental solution contained in each of the reservoirs. The reservoirs and 

chambers are designed to minimize hydrostatic pressure on the tissue. The reservoirs are water 

jacketed for a temperature controlled environment.  Gas, usually 95% oxygen / 5% carbon 

dioxide, is delivered into the reservoirs to oxygenate the experimental solution and also to stir the 

solution in the reservoir. The specific design of the chamber unit allows measurement of 

permeability of epithelia to molecules soluble in the bathing solution (Hongyu, Sheppard et al. 

2004).  

 



 10

 

Figure 1.5   Ussing chamber 

Each hemi-chamber is connected to an electrical unit via a voltage and a current 

electrode. The silver chloride electrodes connect to plastic cartridges designed to be filled with a 

conducting gel, usually agar. The electrodes are connected to a preamplifier. This circuitry 

allows measurement of transepithelial potential difference. Recordings are performed in current-

clamp (open-circuit). Short-circuiting of the tissue, which means bringing the transepithelial 

potential difference to zero, allows measurement of the short-circuit current, defined as the 

charge flow per time when the tissue is short circuited.  Transport of chloride, sodium and 

potassium ions accounts for most of the in vitro short-circuit current across the colonic mucosa 

(Rechkemmer, Frizzell et al. 1996). Electrical conductance is a measure of how easily ions flow 

through the tissue (Somasundaram, Sigthorsson et al. 2000). Electrical conductance can be 

calculated from transepithelial potential difference and short-circuit current using Ohm’s law 

(Hongyu, Sheppard et al. 2004).  
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  Ohm’s law states that the electrical potential difference or voltage drop between 

two points of an electrical circuit is equal to the product of the current flowing through it and the 

electrical resistance of the conductor.  

    V  =  R  x  I 

where 

 V is the potential difference (V, volt) 

 I is the current (A, ampere) 

 R is the electrical resistance of the conductor (Ω, ohm) (Somasundaram, 

Sigthorsson et al. 2000) 

Using this relation, transepithelial potential difference across and short-circuit current 

through the section of colonic mucosa can be used to calculate its resistance. Electrical resistance 

is a measure of the degree to which a conductor opposes the passage of electrical current. In an 

electrical circuit, electrical resistance does not depend on the amount of current flowing or the 

voltage applied. Rather, the electrical resistance of the conductor determines the amount of 

current flowing for any given voltage applied. Electrical conductance is the reciprocal of 

electrical resistance such that  

    G  =  1  /  R  =  I  /  V 

Where 

 G is the conductance (S, siemens) 

 R is the resistance (Ω, ohm)  

 V is the potential difference (V, volt) 

 I is the current (A, ampere) (Somasundaram, Sigthorsson et al. 2000) 

Using this relation, transepithelial potential difference across and short-circuit current 

through the section of colonic mucosa can be used to calculate its electrical conductance.  
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1.1.6 Electrophysiology and Permeability in Function of Region of Colon 

 Differences in electrophysiologic parameters (such as transepithelial potential difference, 

short-circuit current, electrical resistance and conductance) and permeability of the mucosa exist 

between anatomical regions of the intestinal tract. Polentarutti and co-workers showed that 

transepithelial potential difference of the intestinal mucosa of rats is highest in the colon, 

followed by duodenum, jejunum and ileum. In their study, short circuit current was highest in the 

duodenum, followed by jejunum, ileum and colon. Electrical resistance was higher in the colon 

than the small intestine. Their study also showed regional variation in the permeability of the 

intestinal mucosa. The permeability to propanolol was greatest in the duodenum, followed by 

jejunum, ileum and colon while the permeability to mannitol was greater in the small intestine 

than in the colon. In their study the colon was treated as a single anatomical region (Polentarutti, 

Peterson et al. 1999). 

 Sellin and DeSoignie studied the transport of sodium and chloride ions in the colonic 

mucosa of people in vitro. Electrical conductance was lower in the proximal descending colon, 

compared to the transverse and distal descending colon but there were no other differences in 

basal electrophysiologic parameters between anatomical regions (Sellin and DeSoignie 1987). 

Charney and co-workers reported a positive transepithelial potential difference across the 

epithelium from lumen to interstitial space of similar magnitude in the colonic mucosa of the 

proximal and distal colon of mice. Short-circuit current in the proximal colon and the distal colon 

were not compared. Their study showed the electrical conductance of the colonic mucosa to 

increase from proximal to distal.  Transport of sodium ions was similar in the proximal and the 

distal colon, but absorption of chloride ions occurred at a higher rate in the distal colon than in 

the proximal colon (Charney, Egnor et al. 2001). Sellin showed that electrical conductance of the 

colonic mucosa of rabbits increases from proximal to distal (Sellin and DeSoignie 1984).  
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Differences in electrophysiologic parameters and permeability between anatomical regions of the 

colonic mucosa of normal dogs have not been investigated.  

1.2   Non Steroidal Anti-inflammatory Drugs and Colon 

 Non steroidal anti-inflammatory drugs (NSAIDs) can adversely affect the colon. In 

people, one third of life-threatening gastrointestinal complications due to non steroidal anti-

inflammatory drugs involve the lower gastrointestinal tract (Lanas, Panes et al. 2003). A wide 

spectrum of side effects have been reported in people, including isolated colonic ulcers, diffuse 

colonic ulceration with or without bleeding and perforation, diffuse colitis (Hall, Petty et al. 

1983; Pierrugues and Fontes 1994; Kurahara, Matsumoto et al. 2001). and reactivation of 

inflammatory bowel disease (Hall, Petty et al. 1983; Pierrugues and Fontes 1994; Evans, 

McMahon et al. 1997; Kurahara, Matsumoto et al. 2001).   

1.2.1 Prostaglandin Synthesis  

 Non steroidal anti-inflammatory drugs exert their anti-inflammatory effects through 

inhibition of prostanoid synthesis. Non steroidal anti-inflammatory drugs inhibit the action of 

fatty-acid cyclooxygenase (COX) enzymes. Fatty-acid cyclooxygenase enzymes catalyse the 

synthesis of prostaglandins and thromboxanes from arachidonic acid. Arachidonic acid is also 

the substrate for the synthesis of leucotrienes via lipooxygenase (LOX) enzymes. At least two 

isoforms of fatty-acid cyclooxygenase enzymes have been identified. Cyclooxygenase-1 

enzymes are present in most cells and are responsible for the synthesis of the majority of 

prostaglandins involved in normal homeostasis of the gastrointestinal tract. Cyclooxygenase-2 

enzymes are present in inflammatory cells during inflammatory states. Cytokines, bacterial 

products, laparotomy and exposure to serotonin up-regulate the expression of cyclooxygenase-2 

enzyme (Josephs, Cheng et al. 1999; Engelmann, Bindslev et al. 2002).  In dogs, the messenger 

ribonucleic acid (mRNA) for cyclooxygenase-2 but not the enzyme itself, is found in all regions 
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of the gastrointestinal tract, spleen, liver, brain, kidneys, lungs and ovaries (Wilson, 

Chandrasekharan et al. 2004). Cyclooxygenase enzymes catalyse two reactions that transform 

arachidonic acid into prostanoids. The first is via an endoperoxidase synthase action that 

transforms arachidonic acid into cyclic endoperoxide prostaglandin G2 (a reaction involving 

oxygenation and cyclisation of arachidonic acid). The second is via a peroxidase action that 

transforms prostaglandin G2 to another cyclic endoperoxide, prostaglandin H2. Further 

transformation of prostaglandin H2 produces different metabolites depending on the cell type 

hosting the reaction. In platelets, prostaglandin H2 is transformed into thromboxane A2 (TXA2). 

In vascular endothelium, prostaglandin H2 is transformed into prostacyclin (PGI2). In 

macrophages, prostaglandin H2 is transformed into prostaglandin E2 (PGE2). In mast cells, 

prostaglandin H2 is transformed into prostaglandin D2 (Hardman, Limbird et al. 2001).   

1.2.2 Prostaglandins and Normal Gastrointestinal Physiology  

 Prostaglandins are important in the normal physiology of the gastrointestinal tract. 

Endogenous prostaglandins modulate gastric acid secretion, mucus secretion and bicarbonate 

secretion in the stomach and duodenum (Reimer, Heim et al. 1992; Soll 1992) and influence 

blood flow to the enteric mucosa (Gana, MacPherson et al. 1988). In the colon, prostaglandins 

are mainly produced by the mononuclear cells of the lamina propria of the mucosa (Barrera, Lai 

et al. 1996; McCarn, Yursik et al. 2002). A study by Barrera and co-workers demonstrates that 

prostaglandin E2 has an immuno-modulatory action on the resident lymphocyte T population of 

the colon during non-inflammatory states (McCarn, Yursik et al. 2002). Prostaglandins are also 

involved in the secretory physiology of the colonic mucosa and it is shown that prostaglandin E2 

stimulates secretion of chloride ions in several species (Dharmsathaphorn, Mandel et al. 1985; 

Rechkemmer, Frizzell et al. 1996; Sahi, Wiggins et al. 1996; Ahrens, Gabel et al. 2003; King, 

Haque et al. 2004). An in vitro study by McCarn and co-workers showed that prostaglandins 
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increase trans-epithelial electrical resistance in monolayers of human colonic epithelial cells 

suggesting a positive effect of prostaglandins on the barrier function of the colonic mucosa in 

people (McCarn, Yursik et al. 2002).  

1.2.3 Prostaglandin and Gastrointestinal Inflammation  

 The inflammatory response is invariably accompanied by the synthesis of prostaglandins 

and other prostanoids, predominantly prostaglandin E2 and to a lesser extent prostacyclin 

(Hardman, Limbird et al. 2001). In acute inflammation, cells from local tissues and blood vessels 

produce prostaglandin E2 and prostacyclin. In chronic inflammation, macrophages and other 

mononuclear cells also produce prostaglandin E2 and thromboxane A2 (Hardman, Limbird et al. 

2001). Prostaglandin E2 and prostacyclin and other cytokines mediate the local inflammatory 

reaction which induces local pain but also modulates central nociception and fever (Hardman, 

Limbird et al. 2001).  

 In the gastrointestinal tract, prostaglandins are synthesized during acute and chronic 

inflammation. During acute inflammation, prostaglandins stimulate secretion of water and 

electrolytes in the intestine. King and co-workers showed that inhibition of cyclooxygenase 

enzymes by prostaglandins increases the effect of serotonin, a potent stimulant for the secretion 

of chloride ions in the rat distal colon (King, Haque et al. 2004).  Ahrens and co-workers showed 

that prostaglandins increases the effect of histamine, a stimulant for the secretion of chloride ions 

in the pig proximal colon (Ahrens, Gabel et al. 2003). Schmitz and co-workers showed that 

prostaglandins E2 increases the effect of tumor necrosis factor-α (TNF-α), a stimulant for the 

secretion of chloride and potassium ions in the distal colon of people (Schmitz, Fromm et al. 

1996). In people, increased prostaglandin synthesis, mainly prostaglandin E2, occurs in the 

colonic and rectal mucosa of patients with active inflammatory bowel disease (IBD). 

Additionally, prostaglandin concentration is increased in stool and venous blood of people with 
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active inflammatory bowel disease compared to that of healthy people (Rampton and Sladen 

1984; Raab, Sundberg et al. 1995). Prostaglandin concentration correlates with disease activity 

and decreases when disease is controlled (Rampton and Sladen 1984).  

1.2.4 Non Steroidal Anti-Inflammatory Drugs and Normal Colon  

 Non steroidal anti-inflammatory drugs can adversely affect both the normal and the 

diseased colon. In the normal colon, non steroidal anti-inflammatory drugs can cause diffuse 

colitis, isolated or diffuse ulcers, bleeding and perforation (Hall, Petty et al. 1983; Pierrugues and 

Fontes 1994; Kurahara, Matsumoto et al. 2001). There is debate over the pathophysiology of 

these complications and whether inhibition of prostaglandin synthesis plays a role. Jenkins and 

co-authors showed that non steroidal anti-inflammatory drugs increase permeability of the 

colonic mucosa in people. They propose that there is a relation between increased permeability 

of the colonic mucosa and adverse reaction to non steroidal anti-inflammatory drugs (Jenkins, 

Trew et al. 1991). Somasundaram and co-workers showed that non steroidal anti-inflammatory 

drugs uncouple oxidative phosphorylation in the mitochondria of epithelial cells of the intestinal 

mucosa. They propose that this alters the intercellular junctions and increases mucosal 

permeability (Somasundaram, Sigthorsson et al. 2000).  Increased mucosal permeability would 

allow luminal substances such as ingesta molecules, bile acids and bacteria to enter the 

interstitial space and invoke an inflammatory reaction. Inflammation would further contribute to 

mucosal damage and loss of barrier function (Bjarnason, Hayllar et al. 1993; Lanas, Panes et al. 

2003). A study from Whittle and co-workers suggests that colonic complications due to non 

steroidal anti-inflammatory drugs, such as erosions and ulcerations, are unlikely the result of 

inhibition of prostaglandin synthesis. Whittle and co-workers showed that as macroscopic 

damage to the intestinal mucosa develops in rats, the activity of fatty-acid cyclooxygenase 

enzymes have returned to values similar to those observed prior to administration of non 
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steroidal anti-inflammatory drugs. Further, they showed no relationship between the severity of 

damage to the intestinal mucosa and the decrease in synthesis of mucosal prostaglandins. Whittle 

and co-workers also showed that inhibition of 95% of prostaglandin synthesis did not induce 

macroscopic damage to the intestinal mucosa in rats (Whittle 1981).  

In contradiction of Whittle’s work, other studies suggest that inhibition of prostaglandin 

synthesis plays a role in the development of colonic complications due to non steroidal anti-

inflammatory drugs.  Redfern and co-workers documented intestinal erosions and ulcerations in 

rats in which prostaglandin synthesis was inhibited by induction of a fatty-acid cyclooxygenase 

enzyme antibody (Redfern and Feldman 1989). Seibert and co-workers showed that rats 

administered an overdose of a selective inhibitor of fatty-acid cyclooxygenase-2 enzymes (SC-

58125) did not develop gross intestinal erosions or ulcerations. Rats administered an overdose of 

a non-selective inhibitor of fatty-acid cyclooxygenase enzymes (indomethacin) developed gross 

intestinal erosions and ulcerations (Seibert and Masferrer 1994).   

1.2.5 Non Steroidal Anti-Inflammatory Drugs and Inflamed Colon  

 Non steroidal anti-inflammatory drugs can adversely affect the chronically inflamed 

colon. In people, non steroidal anti-inflammatory drugs can reactivate or exacerbate 

inflammatory bowel disease. This is observed with both non-selective and fatty-acid 

cyclooxygenase-2 enzyme selective non steroidal anti-inflammatory drugs (Kaufmann and 

Taubin 1987; Singh, Patil et al. 2004). Prostaglandins likely play an important role in the 

pathogenesis of inflammatory bowel disease (Bjarnason, Hayllar et al. 1993; Eberhart and 

Dubois 1995; Lanas, Panes et al. 2003). Higher concentrations of prostaglandins, mainly 

prostaglandin E2, are found in the colonic and rectal mucosa of people with active inflammatory 

bowel disease compared to concentrations in healthy people (Rampton and Sladen 1984; Raab, 

Sundberg et al. 1995). This could result from up-regulation of the expression of fatty-acid 
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cyclooxygenase-2 enzymes causing increased synthesis of prostaglandins. Hendel and co-

workers showed that the concentration of fatty-acid cyclooxygenase-2 messenger ribonucleic 

acid in the colonic mucosa of people with active inflammatory bowel disease increased with 

severity of disease (Hendel and Nielsen 1997). Singer and co-workers documented the presence 

of fatty-acid cyclooxygenase-2 enzymes in the colonic mucosa of people with active 

inflammatory bowel disease. They did not find fatty-acid cyclooxygenase-2 enzymes in the 

colonic mucosa of healthy people (Singer, Kawka et al. 1998). In both studies, concentrations of 

messenger ribonucleic acid for fatty-acid cyclooxygenase-1 enzyme and fatty-acid 

cyclooxygenase-1 enzyme were similar in the colonic mucosa of people with active 

inflammatory bowel disease and healthy people (Hendel and Nielsen 1997; Singer, Kawka et al. 

1998). Otani and co-workers suggest that high concentrations of prostaglandin E2 in the colonic 

mucosa of people with active inflammatory bowel disease are the consequence of both increased 

synthesis and reduced catabolism. Their work showed decreased concentrations of 15-

hydroxyprostaglandin dehydrogenase, the key enzyme responsible for metabolic inactivation of 

prostaglandin E2 (Otani, Yamaguchi et al. 2006). They suggest that high concentrations of 

prostaglandin E2 promote wound healing in the inflamed colonic mucosa of people with 

inflammatory bowel disease. Thus, inhibition of prostaglandin synthesis by non steroidal anti-

inflammatory drugs would result in exacerbation of clinical signs of inflammatory bowel disease 

(Otani, Yamaguchi et al. 2006). Reactivation or exacerbation of inflammatory bowel disease by 

non steroidal anti-inflammatory drugs becomes an important clinical problem as many people 

with inflammatory bowel disease have a concurrent condition, such as arthritis, requiring 

treatment with non steroidal anti-inflammatory drugs.  
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1.2.6 Carprofen  

 Carprofen is a non steroidal anti-inflammatory drug of the propionic acid class. 

Carprofen is available in oral and injectable formulations. Clark and co-workers reported a 

maximum plasma concentration of 16.9μg/ml after oral intake of 25mg carprofen in dogs. 

Maximum plasma concentration was reached within 30 min to 3 hours (Clark, Chieffo et al. 

2003). At steady-state (25 mg, per os, every 12 hour), a maximum plasma concentration of 

18.7μg/ml was reached within 30 min to 3 hours of intake (Clark, Chieffo et al. 2003). Maximum 

plasma concentration of 8μg/ml was reached within 1.5 to 8 hours of subcutaneous injection of 

25mg carprofen. At steady-state (25 mg, subcutaneous, every 12 hour), a maximum plasma 

concentration of 14.7μg/ml was reached within 1.5 to 4 hours of injection (Clark, Chieffo et al. 

2003). Plasma concentrations are proportional to dose. The drug is found in plasma mostly as an 

intact molecule. The carprofen molecule forms a strong bond with plasma proteins resulting in a 

high ratio of concentration in plasma relative to tissue. Metabolites are rapidly eliminated by 

biotransformation. The carprofen molecule is transformed into an ester glucuronide which 

determines the pharmacokinetics of the drug. In rats and dogs, the ester glucuronide of carprofen 

is eliminated predominantly by biliary secretion. Less than 5% of carprofen is eliminated as the 

intact molecule. The drug undergoes an extensive enterohepatic circulation in people but not in 

dogs. In dogs, 70% of an intra-venous dose is excreted in feces while 8-15% is excreted in urine 

(Rubio, Seawall et al. 1980).  

 Carprofen inhibits the activity of fatty-acid cyclooxygenase enzymes but its effect is 

reversible. Carprofen is a non-selective non steroidal anti-inflammatory drug in people but 

preferentially inhibits fatty-acid cyclooxygenase-2 enzymes in dogs. Wilson and co-workers 

showed that carprofen had a 6 times greater preference for inhibiting fatty-acid cyclooxygenase-

2 enzymes in a whole blood assay in dogs (Wilson, Chandrasekharan et al. 2004).  
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1.3   Summary and Hypotheses for Present Studies 

 The colon of dogs is divided into three anatomical regions: the ascending colon, the 

transverse colon and the descending colon. The wall of the colon is composed of four layers: the 

mucosa, the submucosa, the muscularis and the serosa. Cells of the epithelium of the mucosa are 

held together by intercellular tight junctions. These allow the epithelium of the mucosa to 

function as a selectively permeable barrier between the lumen and the interstitial space. The 

presence of intercellular tight junctions forces transport across the epithelium of the colonic 

mucosa in one of two ways; 1) transcellular transport is a directional flux of molecules occurring 

through the epithelial cells against a gradient of concentration; 2) paracellular transport is a 

passive flux of small molecules occurring through the tight junctions along a gradient of 

concentration. The main ions transported across the epithelium of the colonic mucosa of 

mammals are sodium ions, chloride ions, potassium ions, bicarbonate ions and short chain fatty 

acids. There are multiple systems to transport each one of these ions across the epithelium of the 

colonic mucosa. Transport of ions across the epithelium of the colonic mucosa results in 

measurable electrophysiologic parameters. The Ussing chamber system can be used to determine 

electrophysiologic parameters and permeability of epithelia including the epithelium of the 

colonic mucosa.  

Electrophysiologic parameters and permeability vary between anatomical regions of the 

colonic mucosa in people, rabbit, mice and rats. Differences in electrophysiologic parameters 

and permeability between anatomical regions of the colonic mucosa of the dog have not been 

investigated. The first objective of this study is to measure the in vitro electrical conductance and 

permeability to mannitol of the mucosa of the transverse, proximal descending and distal 

descending colon of the dog. Based on evidence in other omnivorous species we hypothesize that 
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the in vitro electrical conductance and permeability to mannitol are greater in the mucosa of the 

transverse colon compared to the proximal descending and distal descending colon of the dog.  

Non steroidal anti-inflammatory drugs can adversely affect the colon of people and rats. 

Non steroidal anti-inflammatory drugs inhibit the activity of fatty-acid cyclooxygenase enzymes 

which in turn inhibits the production of prostaglandins. Prostaglandins participate in both the 

normal physiology of the colon as well as the development of acute inflammation. 

Prostaglandins may also play a role in chronic inflammatory diseases. Whether or not non 

steroidal anti-inflammatory drugs have an adverse effect on the colon due to inhibition of 

prostaglandin synthesis remains controversial.  

It is not known if non steroidal anti-inflammatory drugs adversely affect the colon of the 

dog. The second objective of this study is to measure the in vitro electrical conductance and 

permeability to mannitol as well as describe the histologic appearance of the colonic mucosa of 

the dog in the presence of carprofen. We hypothesize that carprofen increases the in vitro 

electrical conductance and permeability to mannitol and causes deleterious effects to the 

histologic appearance of the colonic mucosa of the dog. 
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CHAPTER 2: MATERIALS AND METHODS 

2.1   Objective 1. Control Group  

2.1.1   Harvesting and Preparation of Sections of Colonic Mucosa  

Six mature mixed breed dogs were used for objective 1. The dogs were placed under 

general anesthesia with thiopental and maintained with isoflurane. The entire colon was 

harvested immediately prior to euthanasia, cut open on the mesenteric side, placed in ice-cold 

Krebs-Ringer bicarbonate buffer solution and transported to the laboratory. The dogs were then 

euthanized for reasons unrelated to the study with an overdose of sodium pentobarbital. The time 

from harvest to mounting in the Ussing chamber was less than 30 minutes. 

 The colon was placed in stripping pans filled with 400 ml ice-cold oxygenated (95% 

oxygen / 5% carbon dioxide) Krebs-Ringer bicarbonate buffer solution. The colon was divided in 

three regions: transverse colon, proximal descending and distal descending. The transverse colon 

extended from the cecocolic junction to the middle colic vein. The descending colon extended 

from the middle colic vein to the pelvic inlet and was divided into two equal proximal and distal 

segments. The colonic mucosa was separated from the seromuscular layer using blunt and sharp 

dissection. Three sections of mucosa were obtained from each region of the colon. An additional 

section of mucosa was obtained from a randomly chosen region of the colon. That section was 

placed in neutral-buffered 10 % formalin and reserved for histologic examination.  

2.1.2   Ussing Chamber Studies 

2.1.2.1   Mounting  

Each section of mucosa was randomly assigned to one of nine Ussing chamber units 

(3.14 cm2 aperture). The mucosa was clamped as a flat sheet between the two halves of the 

acrylic chamber.  
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2.1.2.2   Solutions  

Each hemi-chamber was filled with 15 ml Krebs-Ringer bicarbonate buffer solution at pH 

7.4 containing (in nM) 118 NaCl, 4.7 KCl, 25 NaHCO3, 1.2 MgSO4, 1.2 KH2PO4, 2.5 CaCl2 and 

10 dextrose. The Krebs-Ringer bicarbonate buffer solution was continuously oxygenated (95% 

oxygen / 5% carbon dioxide) and circulated in water-jacketed reservoirs. The temperature of the 

solution was maintained at 37ºC.  

2.1.2.3   Electrical Measurements  

Transepithelial potential difference (mV) was measured using agar bridges connected to 

silver/silver chloride voltage electrodes. If transepithelial potential difference was between -1.0 

and 1.0 mV, tissues were current clamped at 100 μA for 5 seconds and transepithelial potential 

difference was recorded. 

Transepithelial potential difference was short-circuited through the voltage electrodes 

using a voltage clamp that corrected for fluid resistance. Short-circuit current (μA) was measured 

using a separate pair of agar bridges connected to silver/silver chloride electrodes (current 

electrodes).  

Transepithelial potential difference and short-circuit current were recorded every 15 

minutes for 240 minutes. Electrical conductance was calculated from transepithelial potential 

difference and short-circuit current using Ohms law. Ohm’s law states that the voltage drop 

(electrical potential difference) between two points of an electrical circuit is equal to the product 

of the current flowing through it and the electrical resistance of the conductor.  

    V  =  R  x  I 

where 

 V is the potential difference (V, volt) 

 I is the current (A, ampere) 
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 R is the electrical resistance of the conductor (Ω, ohm) 

Using this relation, transepithelial potential difference across and short-circuit current 

through the section of colonic mucosa were used to calculate its electrical resistance. Electrical 

conductance is the inverse of resistance. 

    G  =  1  /  R 

Where 

 G is the electrical conductance (S, siemens) 

 R is the electrical resistance (Ω, ohm) 

Using this relation, electrical conductance of the section of colonic mucosa was 

calculated.  

2.1.2.4 Mannitol  

Tritium-mannitol (3H-mannitol) as a solution containing 10 μCi/ml was added to the 

mucosal bathing solution 15 minutes after mounting. A sample (0.1 ml) was then collected from 

the mucosal solution 30 minutes after addition of 3H-mannitol. Samples (0.5 ml) were collected 

from the serosal solution 60, 120, 180 and 240 minutes after addition of 3H-mannitol. Samples 

were assessed for β emission (counts/min) and mucosal to serosal flux of mannitol was 

calculated for each of three periods: 60-120 minutes, 120 to 180 minutes and 180 to 240 minutes.  

 At the end of the experiment, sections of colonic mucosa were removed from the Ussing 

chambers. The sections were placed in neutral-buffered 10% formalin for later histologic 

examination. 

2.1.3  Histologic Examination  

Fixed sections of colonic mucosa were trimmed, embedded in paraffin and sectioned at a 

thickness of 5 μm. Tissue slices were mounted on slides and stained with hematoxylin and eosin. 
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Tissue slices were evaluated by a single, blinded evaluator with light microscopy for the 

presence of inflammation, edema, sloughing of cells from the surface epithelium, erosions and 

sloughing of epithelial cells within the mucosal glands. Any additional outstanding findings were 

noted. Inflammation was determined based on the percent surface area of lamina propria 

infiltrated by inflammatory cells (lymphocytes and plasma cells). Less than 20% of the lamina 

propria infiltrated by inflammatory cells was considered normal. Inflammation was considered 

mild if 20 to 40% of the surface area of lamina propria was infiltrated by inflammatory cells, 

moderate if 40 to 60% of the surface area of lamina propria was infiltrated by inflammatory cells 

and severe if more than 60% of the surface area of lamina propria was infiltrated by 

inflammatory cells.  Edema was considered absent if the mucosal glands were not separated from 

each other by clear fluid, mild if the mucosal glands were less than 50 μm apart, moderate if the 

mucosal glands were 50 to 150 μm apart and severe if mucosal glands were more than 150 μm 

apart.  Sloughing of cells from the surface epithelium was defined as detachment of surface 

epithelial cells without discontinuity of the surface epithelium. Sloughing of cells from the 

surface epithelium was considered minimal if <10% of the surface area was affected, mild if 10 

to 20% of the surface area was affected, moderate if 20 to 50% of the surface area was affected, 

and severe if greater than 50% of the surface area was affected. Erosions were defined as 

discontinuity of the surface epithelium. Erosions were classified as absent, involving less than 

10% of the epithelial surface, or involving more than 10% of the epithelial surface. Sloughing of 

epithelial cells within the mucosal glands was considered absent if no glands had detached 

epithelial cells in their lumen, mild if less than 5% of mucosal glands had detached epithelial 

cells in their lumen, moderate if 5 to 10% of mucosal glands detached epithelial cells in their 

lumen, and severe if greater than 10% of mucosal glands detached epithelial cells in their lumen.  
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2.2   Objective 2. Carprofen Group  

 Methods for objective 2 were based on results for objective 1. The methods specific to 

objective 2 are described. 

2.2.1   Harvesting and Preparation of Sections of Colonic Mucosa - Seven mature 

mixed breed dogs were used for objective 2. Sections of colonic mucosa were harvested and 

prepared as in objective 1.  

2.2.2   Ussing Chamber Studies 

2.2.2.1   Mounting  

Each section of mucosa was randomly assigned to one of nine Ussing chamber units 

(3.14 cm2 aperture). Sections of colonic mucosa were mounted as in objective 1.  

2.2.2.2   Solutions  

Each hemi-chamber was filled with 15 ml Krebs-Ringer bicarbonate buffer solution at pH 

7.4 as in objective 1. The Krebs-Ringer bicarbonate buffer solution was continuously oxygenated 

(95% oxygen / 5% carbon dioxide) and circulated in water-jacketed reservoirs. The temperature 

of the solution was maintained at 37ºC. Carprofen was added to the bathing solution at a 

concentration of 400μg/ml thirty minutes after mounting. The pH of the Krebs-Ringer 

bicarbonate buffer solution with carprofen was 7.4.  

2.2.2.3   Electrical Measurements and Mannitol  

Data for electrical conductance was obtained as in objective 1. Data for mucosal to 

serosal flux of mannitol was obtained as in objective 1.  

2.2.3   Histologic Examination  

 At the end of the experiment, sections of colonic mucosa were removed from the Ussing 

chambers. The sections were placed in neutral-buffered 10% formalin for later histologic 

examination.  
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2.3   Statistical Analysis 

2.3.1   Ussing Chamber Studies 

2.3.1.1   Electrical Conductance  

Data from 0 minute to 15 minutes were not used for analysis (equilibration period). 

Electrical conductance from 30 minutes to 240 minutes (end of experiment) was graphed against 

time for each chamber and the area under each curve was calculated using the trapezoid method. 

Sections from the same region of the colon within a dog were considered replicates. The area 

under the curve was the response variable used for the statistical analysis. The mean+/-SEM area 

under the curve (electrical conductance*time) for each region (transverse, proximal descending 

and distal descending colon) was calculated. The electrical conductance*time was normally 

distributed verified by failure to reject the null hypothesis of normality at p≤0.05 (Shapiro-

Wilks’statistic). Data from objective 1 was first explored for an effect of region using a one-way 

analysis of variance (ANOVA) for repeated measurements with ad-hoc comparisons made with 

the Scheffe adjustment to maintain alpha at 0.05. Based on the results of objective 1, data from 

objective 2 was evaluated incorporating  data from objective 1 such that the electrical 

conductance*time was compared across regions and treatments using a two-way analysis of 

variance (ANOVA) for repeated measurements with ad-hoc comparisons made with the Scheffe 

adjustment to maintain alpha at 0.05. Thus, where results are considered significant, p<0.05 

unless otherwise stated. 

2.3.1.2   Mannitol  

Mucosal to serosal flux of mannitol was calculated for three periods of one hour: 60 to 

120 minutes, 120 to 180 minutes and 180 to 240 minutes. Sections from the same region of the 

colon within a dog were considered replicates. Mucosal to serosal flux of mannitol was the 

response variable used for the statistical analysis. The mean+/-SEM mucosal to serosal flux of 
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mannitol for each period and for each region of the colon (transverse, proximal descending and 

distal descending colon) was calculated. The data was normally distributed verified by failure to 

reject the null hypothesis of normality at p≤0.05 (Shapiro-Wilks’statistic). Data from objective 1 

was first explored for an effect of region and period using a two-way analysis of variance 

(ANOVA) for repeated measurements with ad-hoc comparisons made with the Scheffe 

adjustment to maintain alpha at 0.05. Based on the results of objective 1, data from objective 2 

was evaluated incorporating data from objective 1 such that the mannitol flux was compared 

across regions, treatments and periods using a three-way analysis of variance (ANOVA) for 

repeated measurements with ad-hoc comparisons made with the Scheffe adjustment to maintain 

alpha at 0.05. Thus, where results are considered significant, p<0.05 unless otherwise stated. 

2.3.1.3   Histology  

The frequency distribution of histologic categories from the control group and the 

carprofen group across sections were compared using a Chi square analysis or Fisher’s exact test. 

Where the frequency was 0 in a category for both groups, the category was deleted. Where there 

was 3 or less categories, a Fisher’s exact test was performed. Where there were four categories, a 

Chi square analysis was performed with a 0.5 correction used where a single cell had a 0 

frequency entry. The null hypothesis of similar distributions was rejected at p<0.05 for both 

tests.  PROC UNIVARIATE, PROC GLM and PROC FREQ were used for the analysis (SAS 

V.9.1).1 

 

 

 

 

                                                 
1 SAS Institute, Cary, NC 
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CHAPTER 3. RESULTS 

3.1   Objective 1. Control Group 

 3.1.1   Ussing Chamber Studies 

3.1.1.1   Electrical Conductance 

 Mean +/- SEM electrical conductance*time for transverse, proximal descending and 

distal descending colon for the control group were 3115 +/- 304.8, 2367 +/- 147.0 and 2449 +/- 

156.7 mS/cm2*min respectively; mean +/- SEM electrical conductance*time for transverse colon 

was significantly higher than proximal descending and distal descending colon; mean +/- SEM 

electrical conductance*time for proximal descending and distal descending colon were not 

significantly different. 

3.1.1.2 Mannitol  

 Mean +/- SEM mucosal to serosal flux of mannitol 60-120 min for transverse, proximal 

descending and distal descending colon for the control group were 0.18 +/-0.016, 0.15 +/- 0.018 

and 0.15 +/- 0.016 μmol/cm2*h respectively; mean +/- SEM mucosal to serosal flux of mannitol 

120-180 min for transverse, proximal descending and distal descending colon were 0.21 +/- 

0.014, 0.19 +/- 0.029 and 0.18 +/- 0.018 μmol/cm2*h respectively; mean +/- SEM mucosal to 

serosal flux of mannitol 180-240 min for transverse, proximal descending and distal descending 

colon were 0.23 +/- 0.013, 0.20 +/- 0.020 and 0.19 +/- 0.018 μmol/cm2*h respectively.  

 Mean +/- SEM mucosal to serosal flux of mannitol 60-120 min for transverse colon was 

significantly different from mean +/- SEM mucosal to serosal flux of mannitol 180-240 min for 

transverse colon; there was no significant difference between mean +/- SEM mucosal to serosal 

flux of mannitol periods for proximal descending and distal descending colon; there was no 

significant difference between mean +/- SEM mucosal to serosal flux of mannitol for transverse, 

proximal descending and distal descending colon for any of the flux periods.  
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 3.1.2   Histologic Examination  

3.1.2.1   Sections of Colonic Mucosa Obtained Prior to Mounting 

 Six sections of colonic mucosa (one from each dog) were examined. All sections had a 

normal amount of lymphocytes and plasma cells. None of the sections had edema. Sloughing of 

cells from the surface epithelium was minimal in 5 sections. One section had mild sloughing of 

cells from the surface epithelium. Erosions were absent in 5 sections. One section had erosions 

involving less than 10% of the surface epithelium. None of the sections had sloughing of 

epithelial cells within the mucosal glands.   

 3.1.2.2   Sections of Colonic Mucosa Removed from the Ussing Chamber  

  

 

 

 

 

 

 

 

 

 
Figure 3.1   Light micrograph of section of colonic mucosa from control group at the end of 
the experiment. There is mild sloughing of cells from the surface epithelium (arrowhead) 
but no sloughing of epithelial cells within the mucosal glands or erosions. x40 magnification 

 
Fifty-four sections of colonic mucosa (9 from each dog) were examined. All sections had 

a normal amount of lymphocytes and plasma cells. Edema was absent in 9/54 (16.7%) sections, 

mild in 25/54 (46.3%) sections, moderate in 14/54 (25.9%) sections and severe in 6/54 (11.1%) 
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sections. Sloughing of cells from the surface epithelium was minimal in 7/54 (13%) sections, 

mild in 23/54 (43%) sections, moderate in 16/54 (30%) sections and severe in 8/54 (15%) 

sections. Erosions were absent in 34/54 (63%) sections, involved less than 10% of the surface 

epithelium in 19/54 (35%) and involved at least 10% of the surface epithelium in 1/54 (2%) 

sections. Sloughing of epithelial cells within the mucosal glands was absent in 25/54 (46%) 

sections, mild in 20/54 (37%) sections, moderate in 6/54 (11%) sections and severe in 3/54 (6%) 

sections.  

3.2   Objective 2. Carprofen Group 

 3.2.1   Ussing Chamber Studies 

3.2.1.1   Electrical Conductance 

 Mean +/- SEM electrical conductance*time for transverse, proximal descending and 

distal descending colon for the carprofen group were 3902 +/- 232.5, 3829 +/- 309.6 and 3975 

+/- 294.3 mS/cm2*min respectively. Mean +/- SEM electrical conductance*time for the 

carprofen group was significantly higher than for the control group for all regions. In the 

carprofen group, mean +/- SEM electrical conductance*time for transverse, proximal descending 

and distal descending colon were not significantly different.  

Table 3.1   Mean electrical conductance*time (SEM) (mS/cm2*min) for control group and 
carprofen group for different regions of the colon. Means from control group with a * are 
significantly different from means from carprofen group (p≤0.05). Within each row, means 
with different superscripts are significantly different (p≤0.05).  
 
 Transverse Proximal descending Distal  

descending 

Control 3115a*  (304.8) 2367b*  (147.0) 2449b*  (156.7) 

Carprofen 3902a  (232.5) 3829a   (309.6)  3975a   (294.3) 

 
 

 



 32

3.2.1.2 Mannitol  

 Mean +/- SEM mucosal to serosal flux of mannitol 60-120 mins for transverse, proximal 

descending and distal descending colon for the carprofen group were 0.10 +/- 0.016, 0.10 +/- 

0.011 and 0.09 +/- 0.013 μmol/cm2*h respectively; mean +/- SEM mucosal to serosal flux of 

mannitol 120-180 min for transverse, proximal descending and distal descending colon were 

0.23 +/- 0.037, 0.21 +/- 0.027 and 0.22 +/- 0.037 μmol/cm2*h respectively; mean +/- SEM 

mucosal to serosal flux of mannitol 180-240 mins for transverse, proximal descending and distal 

descending colon were 0.43 +/- 0.061, 0.38 +/- 0.039 and 0.36 +/- 0.056 μmol/cm2*h 

respectively. 

Mean +/- SEM mucosal to serosal flux of mannitol for transverse, proximal descending 

and distal descending colon significantly increased from period 60-120 mins to period 120-180 

mins and from period 120-180 mins to 180-240 mins; there was no significant difference 

between mean +/- SEM mucosal to serosal flux of mannitol for transverse, proximal descending 

and distal descending colon for any of the flux periods.  

Mean mucosal to serosal flux of mannitol for treated sections of transverse colon and 

distal descending colon was significantly lower than corresponding control sections at 60-120 

mins; treated sections of proximal descending colon was not significantly different than control 

sections at 60-120 mins. The mean mucosal to serosal flux of mannitol for treated sections of 

transverse colon, proximal descending colon and distal descending colon were not significantly 

different than corresponding control sections at 120-180 mins; The mean mucosal to serosal flux 

of mannitol for treated sections of transverse colon, proximal descending colon and distal 

descending colon were all significantly higher than corresponding control sections at 180-240 

mins. 
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Table 3.2   Mean (SEM) mucosal to serosal flux (μmol/cm2*h) of mannitol for control 
group and carprofen group for different regions of the colon. Means from control group 
with a * are significantly different from the corresponding mean from carprofen group 
(p≤0.05). Mean fluxes within a region (column) with different superscripts are significantly 
different (p≤0.05). 
 

 
3.2.2   Histologic Examination  

3.2.2.1   Sections of Colonic Mucosa Obtained Prior to Mounting 

 Seven sections of colonic mucosa (one from each dog) were examined. Six sections had a 

normal amount of lymphocytes and plasma cells. One section had a small focus of neutrophilic 

inflammation. None of the sections had edema. Sloughing of cells from the surface epithelium 

was minimal in 4 sections. One section had mild sloughing of cells from the surface epithelium. 

Two sections had moderate sloughing of cells from the surface epithelium. Erosions were absent 

in 4 sections. Two sections had erosions involving less than 10% of the surface epithelium. One 

section had erosions involving at least 10% of the surface epithelium. None of the sections had 

sloughing of epithelial cells within the mucosal glands.  The distribution of all histologic features 

was not different between groups.  

 

 

  
 

Transverse 
 

Proximal 
descending

Distal 
descending 

Comparison 
across regions 

Flux 60-120 min 0.18a*  
(0.016) 

0.15p*  
(0.018) 

0.15x*  
(0.016) 

NSD 

Flux 120-180 min 0.21ab  
(0.014) 

0.19p  
(0.029) 

0.18x  
(0.018) 

NSD 

Control 

Flux 180-240 min 0.23b*  
(0.013) 

0.20p*  
(0.020) 

0.19x* 
(0.018) 

NSD 

Flux 60-120 min 0.10a  
(0.016) 

0.10p  
(0.011) 

0.09x  
(0.013) 

NSD 

Flux 120-180 min 0.23b  
(0.037) 

0.21q  
(0.027) 

0.22y  
(0.037) 

NSD 

Carprofen 
 
 
 
 
 

Flux 180-240 min 0.43c  
(0.061) 

0.38r  
(0.056) 

0.36z  
(0.056) 

NSD 



 34

Table 3.3   Histologic examination of sections of colonic mucosa obtained prior to 
mounting: Inflammation, edema, sloughing of cells from the surface epithelium, erosion 
and sloughing of epithelial cells within the mucosal glands.* denotes a significantly 
different distribution across categories between control and carprofen groups. 

  

 3.2.2.2   Sections of Colonic Mucosa Removed from the Ussing Chamber  

 Sixty-three sections of colonic mucosa (9 from each dog) were examined. Mild 

inflammation was present in one section. All the other sections had a normal amount of 

lymphocytes and plasma cells. The distribution of inflammation was not different between 

groups. Edema was absent in 16/63 (25.4%) sections, mild in 37/63 (58.7%) sections and 

moderate in 10/63 (15.9%) sections. The distribution of edema in the carprofen group was 

significantly different from the control group (p<0.001). Sloughing of cells from the surface 

epithelium was mild in 5/63 (8%) sections, moderate in 17/63 (27%) sections, and severe in 

41/63 (65%) sections. The distribution of sloughing of cells from the surface epithelium in the 

carprofen group was significantly different from the control group (p<0.001) Erosions were 

absent in 1/63 (2%) sections, involved less than 10% of the surface epithelium in 27/63 (43%) 

sections and involved at least 10% of the surface epithelium in 35/63 (56%) sections. The 

 Absent Mild Moderate Severe 
Control (n=6) 6 0 0 0 

Inflammation 

Carprofen (n=7) 6 1 0 0 
 Absent Mild Moderate Severe 
Control (n=6) 6 0 0 0 

Edema 

Carprofen (n=7) 7 0 0 0 
 Minimal Mild Moderate Severe 
Control (n=6) 5 1 0 0 

Sloughing 
surface 
epithelium  Carprofen (n=7) 4 1 2 0 

 Absent < 10% ≥ 10% 
Control (n=6) 5 1 0 

Erosion 

Carprofen (n=7) 4 1 2 
 Absent Mild Moderate Severe 
Control (n=6) 6 0 0 0 

Sloughing 
within 
mucosal 
glands 

Carprofen (n=7) 7 0 0 0 
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distribution of erosions in the carprofen group was significantly different from the control group 

(p<0.001) Sloughing of epithelial cells within the mucosal glands was absent in 39/63 (62%) 

sections, mild in 20/63 (32%) sections, moderate in 3/63 (5%) sections and severe in 1/63 (2%) 

sections. The distribution of sloughing of epithelial cells within the mucosal glands was not 

different between groups. 

Table 3.4  Histologic examination of sections of colonic mucosa removed from the Ussing 
Chambers: Inflammation, edema, sloughing of cells from the surface epithelium, erosion 
and sloughing of epithelial cells within the mucosal glands.* denotes a significantly 
different distribution across categories between control and carprofen groups.  
 

 Absent Mild Moderate Severe 

Control (n=54) 54  
(100%) 

0 0 0 

Inflammation 

Carprofen (n=63) 62  
(98.4%) 

  1    
(1.6%) 

0 0 

 Absent Mild Moderate Severe 

Control (n=54) 9  
(16.7%) 

25  
(46.3%) 

14  
(25.9%) 

6  
(11.1%) 

Edema 

Carprofen (n=63) 16 
(25.4%)* 

37  
(58.7%) 

10  
(15.9%) 

0 

 Minimal Mild Moderate Severe 

Control (n=54) 7  
(13.0%) 

23  
(42.6%) 

16  
(29.6%) 

8  
(14.8%) 

Sloughing 
surface 
epithelium  

Carprofen (n=63)   0*   5  
(7.9%) 

17  
(27.0%) 

41  
(65.1%) 

 Absent < 10% ≥ 10% 

Control (n=54) 34  
(63.0%) 

19  
(35.2%) 

1  
(1.9%) 

Erosion 

Carprofen (n=63)   1  
(1.6%)* 

27  
(42.9%) 

35  
(55.6%) 

 Absent Mild Moderate Severe 

Control (n=54) 25  
(46.3%) 

20  
(37%) 

6  
(11.1%) 

  3  
(5.6%) 

Sloughing 
within 
mucosal 
glands 

Carprofen (n=63) 39  
(61.9%) 

20  
(31.7%) 

3  
(4.8%) 

1  
(1.6%) 
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Figure 3.2   Light micrograph of section of colonic mucosa from carprofen group at the end 
of the experiment. There is mild edema, severe sloughing of cells from the surface 
epithelium (arrowhead) and erosions of the surface epithelium (arrow). x40 magnification. 
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CHAPTER 4. DISCUSSION 

 Carprofen increased the in vitro electrical conductance and permeability to mannitol of 

the colonic mucosa of the dog. Together, these findings suggest compromise of the integrity and 

loss of barrier function of the colonic mucosa. 

 Increased electrical conductance may reflect changes in transcellular and paracellular 

transport of ions across the epithelium of the colonic mucosa, or compromise of the functional 

integrity of intercellular tight junctions (Nedergaard, Larsen et al. 1999; Mlodzik-Danielewicz 

and Tyrakowski 2005). Carprofen increased electrical conductance of the colonic mucosa of the 

dog by a mechanism other than inhibition of prostaglandin synthesis. This can be explained by 

examining the normal physiology of prostaglandins in the colon. In the colon of mammals, under 

normal conditions, prostaglandins are important secretagogues, promoting mainly secretion of 

chloride ions into the lumen. Transport of chloride, sodium and potassium ions account for most 

of the in vitro short-circuit current across the epithelium of the colonic mucosa. Short-circuit 

current is referred to as positive for positively charged ions traversing the epithelium of the 

mucosa from the luminal side to the serosal side. Transport of negatively charged chloride ions 

from the serosal side to the luminal side consequently increases short-circuit current. According 

to Ohm’s law, electrical conductance of the conductor (the colonic mucosa) increases 

proportionally with short-circuit current flowing through the conductor assuming transepithelial 

potential difference across the conductor is unchanged (Rechkemmer, Frizzell et al. 1996). By 

promoting secretion of chloride ions, prostaglandins increase electrical conductance across the 

epithelium of the colonic mucosa. These interrelations between prostaglandins, secretion of 

chloride ions, short-circuit current and electrical conductance are well demonstrated in a study by 

Rechkemmer and co-workers, in which exogenous prostaglandin E2 increased secretion of 

chloride ions and electrical conductance in the distal colon of guinea-pigs (Rechkemmer, Frizzell 
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et al. 1996). In a study by Dharmsathaphorm and Pandol, prostaglandin E1 potentiated the 

positive effect of carbachol on secretion of chloride ions and increased electrical conductance in 

a monolayer of well-differentiated human colonic cells (Dharmsathaphorn and Pandol 1986). 

Prostaglandins increase electrical conductance. Accordingly, inhibition of prostaglandins 

synthesis should decrease electrical conductance. If inhibition of prostaglandin synthesis was the 

mechanism by which carprofen affected electrical conductance of the colonic mucosa of the dog 

in our study, electrical conductance would have been lower in the carprofen group compared to 

the control group. Therefore, inhibition of prostaglandin synthesis does not explain how 

carprofen increased electrical conductance of the colonic mucosa. 

 Carprofen could have increased electrical conductance of the colonic mucosa of the dog 

by compromising the functional integrity of intercellular tight junctions. Somasundaram and co-

workers showed that oral administration of indomethacin, a non-steroidal anti-inflammatory 

drug, uncouples oxidative phosphorylation in mitochondria of epithelial cells of the intestinal 

mucosa of rats. This results in decreased production of adenosine tri-phosphate by mitochondria, 

which in turn causes release of calcium from cytoplasmic storage vesicles. The release of 

calcium affects the functional integrity of intercellular tight junctions (Somasundaram, 

Sigthorsson et al. 2000). This was shown in a study by Tai and co-workers in which increased 

intracellular concentration of calcium ions in a monolayer of human colonic cells compromised 

the functional integrity of intercellular tight junction. A simultaneous increase in electrical 

conductance was observed (Tai, Flick et al. 1996). Likewise, in our study, carprofen could have 

uncoupled oxidative phosphorylation in mitochondria of epithelial cells of the colonic mucosa of 

the dog, thereby compromising the functional integrity of intercellular tight junctions and 

consequently increasing electrical conductance. 
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 Carprofen increased the in vitro permeability to mannitol of the colonic mucosa of the 

dog. This increase in permeability occurred over time and was most evident for the last mannitol 

flux period (180-240min). These findings are consistent with a previous study in which non-

steroidal anti-inflammatory drugs increased permeability of the colon of people to radiolabelled 

ethylenediaminetetraacetate (51CrEDTA), a molecule used as a marker of paracellular 

permeability (Jenkins, Trew et al. 1991). In the colonic mucosa of the dog, mannitol is passively 

transported along a gradient of concentration using both paracellular and transcellular pathways 

(Nejdfors, Wang et al. 1998). Because there is no active transport of mannitol in the colonic 

mucosa of the dog, increased permeability to mannitol is likely due to compromised functional 

integrity of intercellular tight junctions of the colonic mucosa. In the previously mentioned study 

by Somasundaram and co-workers, oral administration of indomethacin was associated with 

increased permeability to radiolabelled ethylenediaminetetraacetate  of the intestinal mucosa of 

rats (Somasundaram, Sigthorsson et al. 2000). A similar increase in permeability was also 

observed with dinitrophenol, an agent that uncouples oxidative phosphorylation in the 

mitochondriae of epithelial cells of the intestinal mucosa without affecting the activity of 

cyclooxygenase enzymes. Parenteral administration of aspirin on the other hand did not increase 

permeability of the intestinal mucosa. These findings suggest that non-steroidal anti-

inflammatory drugs have a direct local damaging effect on the intestinal mucosa 

(Somasundaram, Sigthorsson et al. 2000). This has been called the “topical” phase of non-

steroidal anti-inflammatory drug induced injury to the intestinal mucosa (Somasundaram, Rafi et 

al. 1997). The “topical” phase occurs at the time of absorption of the drug by the epithelium of 

the intestinal mucosa and results in rapid and dose-dependant structural changes to mitochondria 

and uncoupling of oxidative phosphorylation (Somasundaram, Rafi et al. 1997). This affects the 

functional integrity of the intercellular tight junctions which results in increased permeability of 
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the intestinal mucosa. In the study by Tai and co-workers, compromise to the functional integrity 

of intercellular tight junctions due to increased intracellular concentration of calcium ions in a 

monolayer of human colonic cells was associated with increased permeability to mannitol (Tai, 

Flick et al. 1996). Likewise, in our study, carprofen could have uncoupled oxidative 

phosphorylation in mitochondria of epithelial cells of the colonic mucosa of the dog, thereby 

compromising the functional integrity of intercellular tight junctions and consequently increasing 

permeability to mannitol of the colonic mucosa. 

 Carprofen caused sloughing of cells from the surface epithelium and erosions of the 

colonic mucosa of the dog in vitro. These histologic findings are indicative of compromise of the 

integrity and loss of barrier function of the colonic mucosa and add support to the changes in 

electrical conductance and permeability to mannitol previously discussed. 

 Sloughing of cells from the surface epithelium was observed in our study to a 

significantly greater extent in the carprofen group where 92.1% of sections of colonic mucosa 

showed moderate or severe sloughing of cells from the surface epithelium compared to 44.4% of 

sections of colonic mucosa in the control group. Polentarutti and co-workers studied the relation 

between permeability to mannitol and histologic changes in the intestinal mucosa of rats during 

Ussing chamber experiments (Polentarutti, Peterson et al. 1999).  They observed that 

permeability of the duodenal and jejunal mucosa to mannitol gradually increased throughout the 

duration of the experiment (180 minutes). This gradual increase in permeability to mannitol was 

attributed to gradual sloughing of cells from the surface epithelium of the intestinal mucosa and 

extensive repair process. Repair of the epithelium of the mucosa was observed histologically by 

reduced villi index and reduced nucleo-apical distance which indicate a reduction in the number 

of cells in the epithelium with the remaining cells flattening out to compensate for cell loss 

(Polentarutti, Peterson et al. 1999). Sloughing of cells from the surface epithelium is likely to 
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have contributed to the gradual increase in permeability to mannitol of the colonic mucosa of the 

dog in the carprofen group.  

 Erosions of the epithelium of the colonic mucosa were observed in our study to a 

significantly greater extent in the carprofen group where 98.5% of sections of colonic mucosa 

had erosions compared to 37.1% of sections of colonic mucosa from the control group. Erosions 

are areas of discontinuity of the epithelium of the mucosa. In the study by Polentarutti and co-

workers, erosions of the epithelium of the intestinal mucosa were not evaluated or discussed 

separately from sloughing of cells from the surface epithelium. Rather, they were assigned a high 

morphologic score for tissue damage (Polentarutti, Peterson et al. 1999). Erosions of the 

epithelium of the colonic mucosa are likely to result in changes in permeability similar in nature 

but greater in magnitude to sloughing of cells from the surface epithelium as the indiscriminate 

passage of small and large molecules across the mucosa through areas devoid of epithelial cells 

is possible. Electrical conductance should also be affected as indiscriminate passage of ions 

through areas devoid of epithelial cells would preclude establishment of a concentration gradient 

necessary for normal transport of ions across the epithelium of the colonic mucosa.  

Compromise of the integrity and loss of barrier function of the colonic mucosa indicated 

by increased electrical conductance, increased permeability to mannitol, sloughing of cells from 

the surface epithelium and erosions of the epithelium could be of concern in vivo. The 

epithelium of the colonic mucosa functions as a selectively permeable barrier between the lumen 

and the interstitium. When the integrity of the epithelium of the colonic mucosa is preserved, 

segregation of molecules to the luminal space or the interstitium is possible in conjunction with 

absorption of selected molecules from the lumen to the interstitium and secretion of yet other 

molecules from the interstitium to the lumen (Guilford, Center et al. 1996). Increased 

permeability of the intestinal mucosa constitutes the earliest and mildest stage of injury to the 
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intestinal mucosa caused by non-steroidal anti-inflammatory drugs. Increased permeability of the 

intestinal mucosa leads to delivery of luminal agents such as bile acids and bacteria to the 

intestinal mucosal immune system which may trigger an inflammatory reaction. Inhibition of 

prostaglandin synthesis by non-steroidal anti-inflammatory drugs facilitates progression of 

mucosal inflammation to mucosal ulcers (Thiefin and Beaugerie 2005). In people with Crohn’s 

disease and other inflammatory bowel disease, increased permeability of the intestinal mucosa 

may underlie development and relapses of active disease (Kaufmann and Taubin 1987; 

Meddings 1997; Meddings 2000; Breslin, Nash et al. 2001; Otani, Yamaguchi et al. 2006). 

During times of increased intestinal permeability in people with Crohn’s disease and other 

inflammatory bowel disease, abnormally high delivery of antigenic luminal agents to the 

intestinal mucosal immune system would trigger an inflammatory reaction and clinical signs of 

colitis (Meddings 2000). Support for this hypothesis comes from studies in animals in which 

inflammatory bowel disease can develop by increasing delivery of luminal agents to the 

intestinal mucosal immune system (Kiliaan, Saunders et al. 1998; Meddings, Jarand et al. 1999; 

Meddings and Swain 2000).  

Electrical conductance was higher in the mucosa of the transverse colon compared to the 

proximal descending and the distal descending colon of the dog in the absence of carprofen. 

Carprofen annulled this difference in electrical conductance. Regional differences in electrical 

conductance of the colonic mucosa have been reported in rabbits, mice and people (Sellin and 

DeSoignie 1984; Sellin and DeSoignie 1987; Charney, Egnor et al. 2001). In rabbits, electrical 

conductance is higher in the proximal colon compared to the distal colon (Sellin and DeSoignie 

1984). This is consistent with our findings in dogs. Regional differences in electrical 

conductance in rabbits are due to the presence of a sodium-chloride ion co-transport pathway in 

the proximal colon and not in the distal colon (Sellin and DeSoignie 1984). In people, electrical 
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conductance was lower in the proximal colon compared to the transverse and descending colon 

(Sellin and DeSoignie 1987). Comparison of these findings with our findings is complicated by 

major anatomical differences between the colon of people and the colon of dog. Regional 

differences in electrical conductance in people were attributed to an aboral gradient of increasing 

transport of sodium ions (Sellin and DeSoignie 1987). Regional differences in electrical 

conductance of the colonic mucosa of the dog may reflect differences in transport of ions across 

the epithelium of the colonic mucosa or variations in intercellular tight junctions. Hypothetically, 

greater secretion of chloride ions in the mucosa of the transverse colon compared to the 

descending colon could explain the regional differences we observed. Mayol and co-workers 

showed that depletion of adenosine tri-phosphate inhibits secretion of chloride ions in the distal 

colon of rats to a greater extent than in the proximal colon (Mayol, Alarma-Estrany et al. 2005). 

A similar situation could be present in the dog where gradual depletion of adenosine tri-

phosphate in the Ussing chamber environment would lead to lower secretion of chloride ions in 

the mucosa of the descending colon which would result in lower electrical conductance 

compared to the transverse colon. Alternately, greater transport of sodium ions in the mucosa of 

the descending colon compared to the transverse colon could explain the regional differences in 

electrical conductance we observed. Systems for the transport of ions across the epithelium of 

the colonic mucosa have not been extensively studied in the dog and further studies are needed to 

investigate these hypotheses. 

Regional differences in electrical conductance of the colonic mucosa of the dog could 

reflect variations in intercellular tight junctions. The seal formed by intercellular tight junctions 

is relative and despite their name, tight junctions are in fact the most permeable element of the 

epithelium of the mucosa. The impermeability of intercellular tight junctions to molecules varies 

considerably from one epithelium to another. Studies in mice have shown that there are 
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variations in the expression of the molecular constituents of tight junctions resulting in 

differences in paracellular transport of ions across the epithelium of the mucosa over different 

regions of the intestinal tract (Muresan, Paul et al. 2000; Fujita, Chiba et al. 2006). It is plausible 

that variations in intercellular tight junctions also exist between different regions of the colonic 

mucosa of the dog.  

Permeability to mannitol gradually increased over the three flux periods in the mucosa of 

the transverse colon but not in the proximal descending or distal descending colon in the absence 

of carprofen. This result, together with regional differences in electrical conductance, suggests 

that the colonic mucosa of the transverse colon of the dog is distinct from that of the descending 

colon. Preservation of integrity and barrier function of tissues in the Ussing chamber is of major 

concern. The in vitro environment created in the Ussing chamber will eventually be unable to 

maintain integrity and barrier function of tissues. Polentarutti and co-workers showed that 

integrity and barrier function of the colonic and ileal mucosa of rats is better preserved in the 

Ussing chamber compared to the duodenal and jejunal mucosa (Polentarutti, Peterson et al. 

1999). This finding was based on observation of a greater increase in permeability to mannitol 

over time as well as greater histologic evidence of mucosal damage in the duodenum and 

jejunum compared to the colon and ileum. The authors did not hypothesize regarding the cause 

of the differences observed (Polentarutti, Peterson et al. 1999). Such regional differences among 

regions of the colonic mucosa of the dog may exist. The mucosa of the transverse colon of the 

dog may be more susceptible to loss of integrity and loss of barrier function in the in vitro 

environment of the Ussing chamber.  

 Histologic examination of all sections of colonic mucosa from the Ussing chamber was 

performed to verify viability and preservation of structural integrity at the end of the experiment 

in the control group and to compare to the histologic findings of the sections of colonic mucosa 
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from the carprofen group. Polentarutti and co-workers observed sloughing of cells from the 

surface epithelium, sloughing of epithelial cells within the mucosal glands and edema in the 

colonic mucosa of rats following Ussing chamber experiments. Sloughing of cells from the 

surface epithelium, sloughing of epithelial cells within the mucosal glands and edema were 

present 60 minutes after the start of the experiment and progressively worsened throughout the 

duration of the experiment (180 minutes) (Polentarutti, Peterson et al. 1999). Sloughing of cells 

from the surface epithelium and sloughing of epithelial cells within the mucosal glands may 

represent loss of epithelial cells within the limits of repair of the epithelium and therefore does 

not indicate complete loss of tissue integrity or barrier function. Edema does not result in loss of 

continuity or function of the epithelium of the mucosa and therefore does not indicate complete 

loss of tissue integrity or barrier function. Another indication of preserved integrity and barrier 

function of the colonic mucosa in their study was that permeability to mannitol was stable until 

the end of the experiment (Polentarutti, Peterson et al. 1999). The epithelium was intact (without 

erosions) in most sections of colonic mucosa from the control group (63%). Erosions involving 

more than 10% of the epithelium were present in only 2% of the sections. Sloughing of epithelial 

cells within the mucosal glands was absent or mild in 83.3% of the sections. Edema was absent 

or mild in 63% of the sections. These mild histologic changes in combination with relatively 

stable permeability throughout the experiment suggest that integrity and barrier function were 

adequately preserved for the colonic mucosa from the control group. Thus, presence of severe 

damage to the epithelium of the colonic mucosa (sloughing of cells from the surface epithelium 

and erosions) in the sections from the carprofen group can reasonably be attributed to the effect 

of carprofen. 

One section of colonic mucosa placed in formalin immediately after harvesting of the 

colon (not bathed in the Ussing chamber) from each dog in the control and the carprofen group 
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was examined to look for histologic evidence of preexisting colonic disease. While it is 

presumed that the findings in the section examined represent the entire colon it is taken from, we 

cannot determine whether any changes observed in one section represent a focal change limited 

to that section or diffuse disease. While isolated sections had some mild changes, there was no 

significant difference in the frequency of this finding between groups. Thus, under the 

constraints of the experimental design, we believe pre-existing disease was not a factor in the 

results.  

The concentration of carprofen in the bathing solution for the carprofen group was 

400μg/ml. The maximum plasma concentration after an oral dose of 25mg of carprofen in 

beagles reported by Clark and co-workers is 18.7μg/ml. This corresponds approximately to 

2.2mg/kg or half the total recommended daily dose of carprofen (Fox and Johnston 1997) 

assuming that the dogs were of normal weight and size for the breed (Deavers, Huggins et al. 

1972). Clark and co-workers showed that plasma concentration of carprofen is proportional to 

the dose administered orally (Clark, Chieffo et al. 2003). It is unknown whether plasma 

concentrations of 400μg/ml carprofen can be achieved in vivo and whether this linear relation 

would be maintained at such high plasma concentrations. If so, the colonic mucosa in our study 

was exposed to a concentration of carprofen approximately ten times that achieved with a full 

single daily dose administered orally in vivo. This magnitude of concentration is not outside the 

realm of a clinical overdose. Our results show that at a concentration of 400μg/ml, carprofen 

does compromise the in vitro integrity and barrier function and causes sloughing of cells and 

erosions of the colonic mucosa of the dog. The minimum concentration of carprofen resulting in 

damage to the colonic mucosa of the dog has not been determined. Whether the effect of a given 

plasma concentration of carprofen on the colonic mucosa of the dog in vivo is the same as the  
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effect of the corresponding concentration of carprofen in vitro is unknown. Whether repeated 

dosing of carprofen has a cumulative damaging effect on the colonic mucosa of the dog in vivo 

is also unknown.  

 



 48

CHAPTER 5. CONCLUSION 

 Carprofen increases in vitro electrical conductance and permeability to mannitol and 

causes sloughing of cells from the surface epithelium and erosions of the colonic mucosa of the 

dog. Together, these findings suggest compromise of the integrity and loss of barrier function of 

the colonic mucosa.  

 Cells of the epithelium of the colonic mucosa are held together by intercellular tight 

junctions. The tight junctions allow the epithelium of the mucosa to function as a selectively 

permeable barrier between the lumen and the interstitial space. The presence of intercellular tight 

junctions forces transport of molecules across the epithelium of the colonic mucosa through 

either the transcellular or the paracellular pathway. Increased electrical conductance of the 

colonic mucosa in this study may reflect changes in transcellular and paracellular transport of 

ions across the epithelium of the colonic mucosa, or compromise of the functional integrity of 

intercellular tight junctions. Because there is no active transport of mannitol in the colon of the 

dog, increased permeability to mannitol in this study is likely due to compromised functional 

integrity of intercellular tight junctions of the colonic mucosa. 

  We propose that increased electrical conductance, increased permeability to mannitol, 

sloughing of cells from the surface epithelium and erosions are due to a direct effect of carprofen 

on the colonic mucosa of the dog. The direct effect of non-steroidal anti-inflammatory drugs has 

previously been demonstrated. Non-steroidal anti-inflammatory drugs uncouple oxidative 

phosphorylation in the mitochondria of the epithelium of the intestinal mucosa which secondarily 

affects the functional integrity of intercellular tight junctions. 

To clarify the mechanism underlying the effects of carprofen on the colonic mucosa of 

the dog, further studies are needed. Systems for the transport of ions across the epithelium of the 

colonic mucosa of the dog under normal conditions and in the presence of carprofen can be 
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studied by use of radiolabelled ions in an Ussing chamber system similar to the one used in this 

study. The effect of carprofen on intercellular tight junctions can be studied through permeability 

experiments such as this study with complementary information obtained from electron 

microscopic assessment of mitochondrial and intercellular tight junction morphology.  

The information obtained in this study is of clinical importance as compromise of 

integrity and loss of barrier function of the colonic mucosa could be of concern in vivo. 

Increased permeability of the intestinal mucosa constitutes the earliest and mildest stage of injury 

to the intestinal mucosa caused by non-steroidal anti-inflammatory drugs. This may progress to 

mucosal ulcers. In people with Crohn’s disease, as well as in animals with inflammatory bowel 

disease, increased permeability of the intestinal mucosa may underlie development and relapses 

of active disease.  

 Further information regarding the clinical consequences of the effects of carprofen on the 

colonic mucosa of the dog could be obtained by conducting experiments similar to this one with 

non-steroidal anti-inflammatory drugs other than carprofen and comparing their effects to those 

of carprofen. The results of our study could also be compared to results of experiments in which 

carprofen would be administered in vivo, prior to euthanasia rather than added to the bathing 

solution in the Ussing chamber. Our study does not evaluate the effects of varying plasma 

concentrations of carprofen on the colonic mucosa of dogs. Permeability and structure of the 

colonic mucosa of dogs with clinical signs of colonic disease (mostly hematochezia) associated 

with the administration of carprofen or other non-steroidal anti-inflammatory drugs could be 

studied with the Ussing chamber system, light microscopy and electron microscopy. Similar 

experiments could be conducted on the colonic mucosa of dogs with inflammatory bowel disease 

receiving carprofen or other non-steroidal anti-inflammatory drugs. 
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 Electrical conductance and permeability vary between anatomical regions of the colonic 

mucosa in omnivorous species. In this study, electrical conductance was higher in the mucosa of 

the transverse colon compared to the mucosa of the descending colon of the dog in the absence 

of carprofen. Carprofen annulled this difference in electrical conductance. Regional differences 

in electrical conductance of the colonic mucosa of the dog may reflect differences in transport of 

ions across the epithelium of the colonic mucosa or variations in intercellular tight junctions. 

Permeability to mannitol gradually increased over time in the mucosa of the transverse colon but 

not in the mucosa of the descending colon in the absence of carprofen. The mucosa of the 

transverse colon of the dog may be more susceptible to loss of integrity and loss of barrier 

function in an in vitro environment such as the Ussing chamber.  

 Regional differences in electrical conductance and permeability to mannitol should be 

taken into account in designing future studies of the colonic mucosa of the dog.  

To better explain the mechanism underlying regional difference in electrical conductance 

and permeability between the mucosa of the transverse and the descending colon, further studies 

are needed. Systems for transport of ions across the epithelium of the colonic mucosa in the 

transverse colon and in the descending colon of the dog can be studied by use of radiolabelled 

ions in the Ussing chamber system. Intercellular tight junctions in the epithelium of the mucosa 

of the transverse and the descending colon of the dog can be studied by use of electron 

microscopy,  immunohistochemistry of tight junctions associated proteins and western blot 

analysis. 
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APPENDIX I. CONDUCTANCE CONTROL  

Conductance (mS/cm2) for control group. Time is in minutes. Trans = transverse colon; 
Prox = proximal descending colon; Dist = distal descending colon 
 
Dog Time Trans Trans Trans Prox Prox Prox Dist Dist Dist 
1 30 22 25 16 12 11 12 21 7 14 
1 45 19 22 14 12 11 12 17 9 13 
1 60 21 21 13 11 1 12 15 9 13 
1 75 21 20 13 11 11 12 15 10 14 
1 90 21 20 13 11 12 11 14 10 12 
1 105 23 21 13 10 12 11 15 10 11 
1 120 22 21 13 10 12 11 14 10 12 
1 135 24 23 15 10 12 11 15 11 13 
1 150 25 23 17 11 12 11 14 11 14 
1 165 26 24 18 11 12 11 14 12 16 
1 180 28 27 20 11 13 12 15 12 18 
1 195 32 30 24 12 14 11 15 13 20 
1 210 37 35 27 13 15 11 15 13 25 
1 225 42 38 33 13 15 12 15 14 31 
1 240 42 43 35 14 15 12 15 15 37 
2 30 10 13 14 . 11 12 15 11 . 
2 45 13 13 12 . 11 12 11 10 . 
2 60 15 15 11 . 10 14 12 10 . 
2 75 14 14 11 . 10 13 10 10 . 
2 90 18 15 11 . 11 8 11 10 . 
2 105 20 16 12 . 10 17 10 9 . 
2 120 32 16 12 . 11 17 10 10 . 
2 135 32 17 13 . 12 19 11 11 . 
2 150 32 18 13 . 14 19 12 11 . 
2 165 35 19 14 . 13 20 13 11 . 
2 180 40 20 14 . 14 20 14 11 . 
2 195 40 21 15 . 15 21 14 12 . 
2 210 47 23 15 . 17 21 20 12 . 
2 225 56 23 16 . 17 23 21 12 . 
2 240 56 24 16 . 18 23 24 12 . 
3 30 13 14 14 12 13 12 7 7 9 
3 45 11 12 12 12 13 10 7 7 8 
3 60 10 11 12 11 11 9 7 7 8 
3 75 10 10 11 11 11 8 7 7 7 
3 90 10 10 10 12 10 8 7 8 7 
3 105 10 10 11 10 11 7 7 9 7 
3 120 10 10 10 10 11 7 7 10 7 
3 135 11 10 11 10 12 7 7 12 8 
3 150 10 9 11 11 13 7 7 16 9 
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3 165 1 9 11 11 15 7 8 17 9 
3 180 12 10 12 11 16 8 8 19 10 
3 195 14 10 13 12 17 8 10 19 10 
3 210 15 11 14 12 19 9 11 19 12 
3 225 16 12 15 12 18 10 12 19 12 
3 240 16 13 16 12 19 11 14 18 12 
4 30 9 13 13 11 10 13 21 14 14 
4 45 9 13 13 10 10 10 20 11 12 
4 60 8 12 12 10 9 11 19 11 10 
4 75 8 12 12 9 9 10 18 10 9 
4 90 8 10 12 8 9 12 19 9 8 
4 105 8 9 12 9 9 11 20 9 8 
4 120 8 9 12 9 9 9 19 9 9 
4 135 9 9 13 9 8 10 19 9 9 
4 150 9 10 13 9 9 9 19 10 9 
4 165 10 10 13 9 9 10 19 10 9 
4 180 12 11 14 10 10 10 20 12 9 
4 195 13 12 15 11 11 10 20 13 10 
4 210 15 13 15 12 11 9 21 14 11 
4 225 17 14 15 14 12 9 23 14 11 
4 240 17 15 16 17 13 10 24 16 12 
5 30 32 . . 11 11 9 8 11 9 
5 45 29 . . 11 11 8 7 11 10 
5 60 14 . . 8 10 9 8 11 9 
5 75 12 . . 10 10 9 8 10 9 
5 90 12 . . 11 10 9 8 10 8 
5 105 12 . . 11 9 10 7 10 8 
5 120 12 . . 11 10 10 7 10 8 
5 135 11 . . 12 10 10 7 9 8 
5 150 11 . . 13 10 11 7 9 8 
5 165 11 . . 13 11 12 10 9 8 
5 180 10 . . 14 12 13 7 9 8 
5 195 10 . . 14 13 13 7 9 9 
5 210 10 . . 16 16 15 8 9 10 
5 225 10 . . 17 17 16 8 9 10 
5 240 10 . . 19 19 17 8 10 12 
6 30 18 10 15 16 24 13 10 16 17 
6 45 18 9 14 14 23 12 9 16 16 
6 60 16 8 13 13 22 11 9 14 15 
6 75 15 8 12 13 21 12 8 14 15 
6 90 14 8 11 12 21 12 7 13 14 
6 105 14 7 10 11 19 11 7 12 13 
6 120 13 7 9 10 17 10 7 11 12 
6 135 14 7 9 8 16 9 7 10 12 
6 150 14 7 8 8 14 8 7 9 11 
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6 165 14 8 8 8 14 8 7 9 11 
6 180 13 8 9 8 13 7 7 8 10 
6 195 13 8 8 8 13 8 7 8 10 
6 210 13 8 9 8 13 9 7 8 10 
6 225 13 8 10 8 12 8 6 8 10 
6 240 13 9 11 9 6 9 6 10 11 
7 30 11 9 8 10 11 8 8 9 . 
7 45 9 8 8 10 11 8 9 9 . 
7 60 9 7 7 10 0 8 9 8 . 
7 75 10 7 7 9 10 8 10 8 . 
7 90 11 6 7 9 10 9 11 8 . 
7 105 12 6 7 9 11 9 12 8 . 
7 120 13 6 8 9 11 9 12 9 . 
7 135 12 6 9 10 12 9 13 11 . 
7 150 13 7 11 11 12 9 13 13 . 
7 165 14 8 13 12 13 9 17 15 . 
7 180 15 9 16 13 15 10 17 17 . 
7 195 17 10 19 20 16 10 18 18 . 
7 210 18 11 24 22 18 10 19 19 . 
7 225 18 13 26 23 17 11 20 20 . 
7 240 18 14 28 23 18 12 20 21 . 
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APPENDIX II. CONDUCTANCE CARPROFEN  
 
Conductance (mS/cm2) for carprofen group. Time is in minutes. Trans = transverse colon; 
Prox = proximal descending colon; Dist = distal descending colon 
 
Dog Time Trans Trans Trans Prox Prox Prox Dist Dist Dist 
1 30 8 . 10 11 8 8 10 12 7 
1 45 6 . 9 7 9 8 9 14 6 
1 60 8 . 7 8 7 8 7 12 6 
1 75 6 . 9 9 11 9 11 13 7 
1 90 6 . 9 7 10 9 8 14 8 
1 105 8 . 8 8 9 9 8 15 8 
1 120 8 . 9 8 10 11 9 17 9 
1 135 13 . 9 9 12 13 11 15 10 
1 150 16 . 11 10 14 15 12 16 11 
1 165 18 . 13 11 18 15 14 17 13 
1 180 19 . 15 14 21 19 16 18 14 
1 195 21 . 17 14 24 23 18 18 15 
1 210 27 . 19 16 29 24 21 19 16 
1 225 29 . 21 19 35 29 23 21 19 
1 240 29 . 21 23 40 35 27 23 21 
2 30 . 17 13 9 12 . 11 11 10 
2 45 . 17 11 11 14 . 13 11 13 
2 60 . 16 10 10 13 . 12 11 13 
2 75 . 20 15 14 23 . 16 16 19 
2 90 . 19 14 13 24 . 23 13 26 
2 105 . 18 14 13 27 . 25 13 28 
2 120 . 17 19 15 32 . 28 23 32 
2 135 . 20 21 19 27 . 32 24 34 
2 150 . 21 24 21 40 . 34 32 37 
2 165 . 24 27 24 34 . 37 45 40 
2 180 . 27 32 29 43 . 39 39 43 
2 195 . 31 34 30 44 . 43 38 47 
2 210 . 33 40 35 49 . 48 45 . 
2 225 . 36 41 39 51 . 50 48 49 
2 240 . 36 46 40 52 . 52 50 49 
3 30 9 8 9 9 7 8 9 9 8 
3 45 9 9 10 8 10 10 9 9 8 
3 60 10 8 14 9 9 10 8 9 7 
3 75 10 8 11 13 12 9 9 12 10 
3 90 10 15 13 12 12 11 11 20 9 
3 105 12 16 18 14 12 15 13 53 13 
3 120 13 14 21 16 13 19 13 27 15 
3 135 14 16 26 24 18 19 14 29  
3 150 18 17 32 35 21 21 20 31 18 
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3 165 21 29 53 15 24 27 17 30 19 
3 180 24 27 318 159 27 32 18 33 23 
3 195 27 29 106 159 27 35 19 30 45 
3 210 29 32 106 0 35 35 20 31 32 
3 225 32 32 159 0 40 40 24 34 35 
3 240 32 29 318 32 45 40 25 38 40 
4 30 10 9 15 11 9 13 11 13 13 
4 45 10 10 13 11 9 13 14 13 13 
4 60 9 9 11 12 9 12 13 12 13 
4 75 9 9 12 12 9 12 12 11 13 
4 90 10 9 13 11 9 11 12 12 14 
4 105 11 9 13 11 9 13 13 13 15 
4 120 14 10 15 11 10 14 14 14 14 
4 135 16 12 17 13 11 18 16 15 16 
4 150 19 15 19 35 15 15 18 18 17 
4 165 20 19 21 21 18 18 20 21 19 
4 180 20 20 23 23 20 19 21 23 21 
4 195 21 21 27 32 20 21 27 25 24 
4 210 23 21 27 35 21 23 29 25 24 
4 225 23 24 29  23 24 32 27 24 
4 240 23 24 29 37 24 24 32 28 24 
5 30 12 12 11 11 13 13 11 10 13 
5 45 14 13 12 9 10 13 10 11 11 
5 60 12 12 11 8 10 13 9 10 11 
5 75 12 12 13 9 10 16 9 10 11 
5 90 14 13 12 10 11 16 10 16 11 
5 105 14 16 13 10 11 19 10 11 12 
5 120 16 17 15 12 13 22 11 12 14 
5 135 18 20 18 14 15 24 12 14 15 
5 150 19 21 21 17 18 27 13 15 16 
5 165 21 23 23 20 19 32 14 17 17 
5 180 23 24 24 21 22 37 14 18 19 
5 195 23 32 27 21 24 45 16 19 20 
5 210 29 32 32 23 32 53 17 19 23 
5 225 35 45 45 30 29 63 23 21 30 
5 240 35 45 53 32 53 45 27 23 33 
6 30 10 8 9 8 12 8 9 9 12 
6 45 10 8 8 7 11 7 8 8 11 
6 60 11 10 9 7 10 7 8 8 11 
6 75 12 12 11 7 10 7 9 8 12 
6 90 13 11 10 7 9 8 9 9 13 
6 105 15 17 11 8 10 9 10 10 14 
6 120 16 19 12 9 11 10 12 11 14 
6 135 16 20 14 9 11 11 13 13 16 
6 150 16 21 17 10 12 12 13 15 16 
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6 165 18 30 15 11 13 13 14 14 17 
6 180 20 33 18 12 14 14 15 15 17 
6 195 23 33 20 12 17 16 17 16 20 
6 210 24 36 24 14 -13 18 18  21 
6 225 27 39 27 16 21 20 19 19 24 
6 240 27 40 32 17 23 23 20 19 24 
7 30 18 9 10 10 9 11 10 11 11 
7 45 17 9 10 11 9 10 9 10 10 
7 60 15 7 7 11 9 10 8 9 10 
7 75 17 8 8 13 8 9 9 9 11 
7 90 19 8 10 9 9 10 7 10 13 
7 105 19 7 9 9 8 9 8 10 12 
7 120 21 8 9 11 8 9 8 10 14 
7 135 0 9 11 12 10 10 9 12 13 
7 150 27 10 13 14 11 11 10 13 7 
7 165 35 11 16 13 12 13 12 14 16 
7 180 40 12 13 15 13 14 12 15 18 
7 195 53 14 15 17 15 14 14 15 18 
7 210 53 15 17 21 18 14 14 17 19 
7 225 53 17 18 21 19 15 16 18 20 
7 240 53 19 19 21 21 17 18 19 20 
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 APPENDIX III. FLUX CONTROL  

Mucosal to serosal flux (μmol/cm2*h) of mannitol for control group. a2 = 60 to 120 minutes, 
3 = 120 to 180 minutes, 4 = 180 to 240 minutes. trans = transverse colon; bprox = proximal 
descending colon; dist = distal descending colon 
 
Dog Chamber  Perioda Regionb  Flux 
1 1 2 trans 0.10 
1 1 3 trans 0.12 
1 1 4 trans 0.23 
1 2 2 trans 0.13 
1 2 3 trans 0.19 
1 2 4 trans 0.27 
1 3 2 prox 0.02  
1 3 3 prox 0.05  
1 3 4 prox 0.10 
1 4 2 prox 0.15  
1 4 3 prox 0.18  
1 4 4 prox 0.31  
1 5 2 prox 0.05 
1 5 3 prox 0.33 
1 5 4 prox 0.27 
1 6 2 dist 0.13 
1 6 3 dist 0.05 
1 6 4 dist 0.32 
1 7 2 dist 0.16 
1 7 3 dist 0.15 
1 7 4 dist 0.21 
2 1 2 trans 0.15 
2 1 3 trans 0.21 
2 1 4 trans 0.24 
2 2 2 trans 0.15 
2 2 3 trans 0.26 
2 2 4 trans 0.29 
2 3 2 trans 0.08  
2 3 3 trans 0.14 
2 3 4 trans 0.17 
2 4 2 prox 0.02  
2 4 3 prox 0.23 
2 4 4 prox 0.09  
2 5 2 prox 0.09 
2 5 3 prox 0.18 
2 5 4 prox 0.15 
2 6 2 prox 0.07 
2 6 3 prox 0.12 
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2 6 4 prox 0.12 
2 7 2 dist 0.11 
2 7 3 dist 0.14 
2 7 4 dist 0.17 
2 8 2 dist 0.10 
2 8 3 dist 0.13 
2 8 4 dist 0.19 
2 9 2 dist 0.03 
2 9 3 dist 0.18 
2 9 4 dist 0.08 
3 1 2 trans 0.14 
3 1 3 trans 0.24 
3 1 4 trans 0.22 
3 2 2 trans 0.20 
3 2 3 trans 0.24 
3 2 4 trans 0.24 
3 3 2 trans 0.13  
3 3 3 trans 0.15 
3 3 4 trans 0.21 
3 4 2 prox 0.15  
3 4 3 prox 0.19 
3 4 4 prox 0.14 
3 5 2 prox 0.13  
3 5 3 prox 0.35 
3 5 4 prox 0.17  
3 6 2 prox 0.09 
3 6 3 prox 0.10 
3 6 4 prox 0.11 
3 7 2 dist 0.08  
3 7 3 dist 0.08 
3 7 4 dist 0.15 
3 8 2 dist 0.12 
3 8 3 dist 0.25 
3 8 4 dist 0.29 
3 9 2 dist 0.07 
3 9 3 dist 0.16 
3 9 4 dist -0.01 
4 1 2 trans 0.24  
4 1 3 trans 0.26 
4 1 4 trans 0.23 
4 2 2 trans 0.16 
4 2 3 trans 0.16 
4 2 4 trans 0.27 
4 3 2 trans 0.14 
4 3 3 trans 0.16 
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4 3 4 trans 0.21 
4 4 2 prox 0.14 
4 4 3 prox 0.15 
4 4 4 prox 0.24 
4 5 2 prox 0.1 
4 5 3 prox 0.12 
4 5 4 prox 0.14 
4 6 2 prox 0.18 
4 6 3 prox 0.3 
4 6 4 prox 0.38 
4 7 2 dist 0.13 
4 7 3 dist 0.09 
4 7 4 dist 0.14 
4 8 2 dist 0.13 
4 8 3 dist .13 
4 8 4 dist .23 
4 9 2 dist 0.13 
4 9 3 dist 0.12 
4 9 4 dist 0.20 
5 1 2 trans .15 
5 1 3 trans .33 
5 1 4 trans .35 
5 2 2 trans .21 
5 2 3 trans .21 
5 2 4 trans .22 
5 3 2 trans .23 
5 3 3 trans .23 
5 3 4 trans .27 
5 4 2 prox .11 
5 4 3 prox .18 
5 4 4 prox .10 
5 5 2 prox .12 
5 5 3 prox .2 
5 5 4 prox .27 
5 6 2 prox .15 
5 6 3 prox .20 
5 6 4 prox .23 
5 7 2 dist .1 
5 7 3 dist .18 
5 7 4 dist .23 
5 8 2 dist .13 
5 8 3 dist .18 
5 8 4 dist .191 
5 9 2 dist .08 
5 9 3 dist .15 
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5 9 4 dist .17 
6 1 2 trans .13 
6 1 3 trans .19 
6 1 4 trans .13 
6 2 2 prox .25 
6 2 3 prox .32 
6 2 4 prox .24 
6 3 2 dist .2 
6 3 3 dist .23 
6 3 4 dist .16 
6 4 2 trans .21 
6 4 3 trans .24 
6 4 4 trans .15 
6 5 2 prox .33 
6 5 3 prox .36 
6 5 4 prox .27 
6 6 2 dist .19 
6 6 3 dist .24 
6 6 4 dist .22 
6 7 2 trans .39 
6 7 3 trans .36 
6 7 4 trans .24 
6 8 2 prox .21 
6 8 3 prox .24 
6 8 4 prox .2 
6 9 2 dist .22 
6 9 3 dist .28 
6 9 4 dist .24 
7 1 2 trans .17 
7 1 3 trans .11 
7 1 4 trans . 
7 2 2 prox .18 
7 2 3 prox .17 
7 2 4 prox . 
7 3 2 dist .25 
7 3 3 dist .22 
7 3 4 dist . 
7 4 2 trans .23 
7 4 3 trans .21 
7 4 4 trans . 
7 5 2 prox .27 
7 5 3 prox -.26 
7 5 4 prox . 
7 6 2 dist .27 
7 6 3 dist .28 
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7 6 4 dist . 
7 7 2 trans .27 
7 7 3 trans .19 
7 7 4 trans . 
7 8 2 prox .27 
7 8 3 prox .24 
7 8 4 prox . 
7 9 2 dist .32 
7 9 3 dist .38 
7 9 4 dist . 
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APPENDIX IV. FLUX CARPROFEN  
 
Mucosal to serosal flux (μmol/cm2*h) of mannitol for carprofen group. a2 = 60 to 120 
minutes, 3 = 120 to 180 minutes, 4 = 180 to 240 minutes. trans = transverse colon; bprox = 
proximal descending colon; dist = distal descending colon 
 
Dog Chamber  Period a Region b Flux 
1 1 2 trans . 
1 1 3 trans 0.13 
1 1 4 trans . 
1 2 2 prox 0.06 
1 2 3 prox 0.11 
1 2 4 prox . 
1 3 2 dist 0.06 
1 3 3 dist 0.14 
1 3 4 dist . 
1 4 2 trans 0.07 
1 4 3 trans 0.12 
1 4 4 trans . 
1 5 2 prox 0.06 
1 5 3 prox 0.12 
1 5 4 prox . 
1 6 2 dist 0.07 
1 6 3 dist 0.15 
1 6 4 dist . 
1 7 2 prox 0.05 
1 7 3 prox 0.12 
1 7 4 prox . 
1 8 2 dist 0.08 
1 8 3 dist 0.18 
1 8 4 dist . 
2 1 2 trans 0.29 
2 1 3 trans 0.62 
2 1 4 trans 0.97 
2 2 2 prox 0.20 
2 2 3 prox 0.39 
2 2 4 prox 0.81 
2 3 2 dist 0.08 
2 3 3 dist 0.44 
2 3 4 dist 0.41 
2 4 2 trans 0.21 
2 4 3 trans 0.69 
2 4 4 trans 1.07 
2 5 2 prox 0.18 
2 5 3 prox 0.47 
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2 5 4 prox 0.59 
2 6 2 dist 0.33 
2 6 3 dist 0.89 
2 6 4 dist 1.27 
2 7 2 trans -0.07 
2 7 3 trans 0.34 
2 7 4 trans 0.69 
2 8 2 prox 0.24 
2 8 3 prox 0.57 
2 8 4 prox 0.61 
2 9 2 dist 0.10 
2 9 3 dist 0.23 
2 9 4 dist 0.43 
3 1 2 trans 0.07 
3 1 3 trans 0.14 
3 1 4 trans 0.23 
3 2 2 prox 0.07 
3 2 3 prox 0.16 
3 2 4 prox 0.30 
3 3 2 dist 0.06 
3 3 3 dist 0.14 
3 3 4 dist 0.24 
3 4 2 trans 0.08 
3 4 3 trans 0.21 
3 4 4 trans 0.40 
3 5 2 prox 0.11 
3 5 3 prox 0.36 
3 5 4 prox 0.55 
3 6 2 dist 0.07 
3 6 3 dist 0.24 
3 6 4 dist 0.31 
3 7 2 trans 0.08 
3 7 3 trans 0.25 
3 7 4 trans 0.39 
3 8 2 prox 0.06 
3 8 3 prox 0.20 
3 8 4 prox 0.27 
3 9 2 dist 0.09 
3 9 3 dist 0.32 
3 9 4 dist 0.38 
4 1 2 trans 0.18 
4 1 3 trans 0.38 
4 1 4 trans 0.66 
4 2 2 prox 0.10 
4 2 3 prox 0.19 
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4 2 4 prox 0.37 
4 3 2 dist 0.12 
4 3 3 dist 0.18 
4 3 4 dist 0.25 
4 4 2 trans 0.08 
4 4 3 trans 0.16 
4 4 4 trans 0.24 
4 5 2 prox 0.12 
4 5 3 prox 0.20 
4 5 4 prox 0.32 
4 6 2 dist 0.12 
4 6 3 dist 0.19 
4 6 4 dist 0.40 
4 7 2 trans 0.13 
4 7 3 trans 0.27 
4 7 4 trans 0.45 
4 8 2 prox 0.09 
4 8 3 prox 0.14 
4 8 4 prox 0.26 
4 9 2 dist 0.11 
4 9 3 dist 0.17 
4 9 4 dist 0.43 
5 1 2 trans 0.13 
5 1 3 trans 0.20 
5 1 4 trans 0.46 
5 2 2 prox 0.09 
5 2 3 prox 0.19 
5 2 4 prox 0.44 
5 3 2 dist 0.07 
5 3 3 dist 0.13 
5 3 4 dist 0.26 
5 4 2 trans 0.12 
5 4 3 trans 0.22 
5 4 4 trans 0.45 
5 5 2 prox 0.08 
5 5 3 prox 0.15 
5 5 4 prox 0.29 
5 6 2 dist 0.07 
5 6 3 dist 0.13 
5 6 4 dist 0.22 
5 7 2 trans .08 
5 7 3 trans .12 
5 7 4 trans .21 
5 8 2 prox 0.14 
5 8 3 prox 0.25 
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5 8 4 prox 0.54 
5 9 2 dist 0.00 
5 9 3 dist 0.23 
5 9 4 dist 0.29 
6 1 2 trans 0.13 
6 1 3 trans 0.15 
6 1 4 trans 0.30 
6 2 2 prox 0.10 
6 2 3 prox 0.13 
6 2 4 prox 0.26 
6 3 2 dist 0.08 
6 3 3 dist 0.14 
6 3 4 dist 0.28 
6 4 2 trans 0.10 
6 4 3 trans 0.12 
6 4 4 trans 0.30 
6 5 2 prox 0.09 
6 5 3 prox 0.15 
6 5 4 prox 0.23 
6 6 2 dist 0.13 
6 6 3 dist 0.19 
6 6 4 dist 0.34 
6 7 2 trans 0.09 
6 7 3 trans 0.11 
6 7 4 trans 0.36 
6 8 2 prox 0.07 
6 8 3 prox 0.14 
6 8 4 prox 0.28 
6 9 2 dist 0.09 
6 9 3 dist 0.15 
6 9 4 dist 0.32 
7 1 2 trans 0.05 
7 1 3 trans 0.06 
7 1 4 trans 0.07 
7 2 2 prox 0.07 
7 2 3 prox 0.11 
7 2 4 prox 0.26 
7 3 2 dist 0.05 
7 3 3 dist 0.10 
7 3 4 dist 0.20 
7 4 2 trans 0.07 
7 4 3 trans 0.12 
7 4 4 trans 0.28 
7 5 2 prox 0.09 
7 5 3 prox 0.16 
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7 5 4 prox 0.24 
7 6 2 dist 0.09 
7 6 3 dist 0.13 
7 6 4 dist 0.27 
7 7 2 trans 0.10 
7 7 3 trans 0.18 
7 7 4 trans 0.29 
7 8 2 prox 0.08 
7 8 3 prox 0.19 
7 8 4 prox 0.30 
7 9 2 dist 0.09 
7 9 3 dist 0.14 
7 9 4 dist 0.24 
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APPENDIX V. HISTOLOGIC EXAMINATION CONTROL  

Findings for histologic examination of sections of colonic mucosa for control group: 
Inflammation, edema, sloughing of cells from the surface epithelium, erosion and sloughing 
of epithelial cells within the mucosal glands. aA = absent; + = mild; ++ = moderate; +++ = 
severe. bA = absent; <10% = erosion involving less than 10% of the surface epithelium; 
≥10% = erosions involving 10% of the surface epithelium or more. 
 

Sample Inflammation 
a 

Edema 
a 

Sloughing 
of surface 
epithelium 

a 

Erosions
b 

Sloughing 
within 
mucosal 
glands a 

Comments 

CONTROL 1 
Pre-
experiment 

A A A <10% A  

DD A +++ A <10% A  
TRANS A + ++ <10% +++  
TRANS A + ++ A +++ Muscularis 
PD A + + A A  
PD A ++ + A +  
DD A ++ + <10% A  
DD A ++ ++ A +  
TRANS A +++ + A A  
PD A ++ A A A  
CONTROL 2 
Pre-
experiment 

A A A A A  

PD A ++ + <10% A  
TRANS A A + A  + Muscularis 
PD A + ++ <10% ++  
TRANS A A A A  A Small sample 
PD A ++ + A A  
DD A ++ + A A  
DD A A ++ A  ++  
TRANS A + + A  A Lymph nodule
DD A + + A  A artefactual cut 

of epithelium 
CONTROL 3 
Pre-
experiment 

A A A A  A Parasite 

DD A + ++ <10% A Bacteria 
within lamina 
propria 

TRANS A A + A A  
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TRANS A + + <10% + Intralesional 
parasites 

PD A + + <10% A  
TRANS A + + A +  
PD A A A A +++ Muscularis; 

small sample 
DD A + A <10% A lymph nodule 
DD A + + A A  
PD A +++ ++ A  + Superficial 

bacteria 
CONTROL 4 
Pre-
experiment 

A A A A  A Lymph nodule

PD A ++ + <10% + Lymph nodule
TRANS A + + <10% A  
DD A + A A A  
TRANS A ++ ++ <10% + Lymph nodule
TRANS A + + <10% A  
DD A + A A A  
PD A + +++ <10% A  
DD A + + A  A Lymph 

nodules  
PD A + + A +  
CONTROL 5 
Pre-
experiment 

A A + A A  

TRANS A +++ ++ A +  
PD A ++ +++ A +  
DD A + ++ <10% A  
PD A +++ ++ A  + Artefactual 

loss of 
epithelium 

TRANS A ++ +++ A A  
DD A ++ +++ A  + Muscularis 
DD A ++ ++ A +  
PD A +++ ++ A A  
TRANS A ++ +++ A +  
CONTROL 6 
Pre-
experiment 

A A A A  A Lymph nodule

TRANS A + + A ++  
TRANS A + ++ A  + Lymph nodule
PD A A ++ <10% ++  
DD A A +++ <10% +  
PD A + + A +  



 75

DD A A +++ ≥10%  ++  
DD A A ++ <10% + Superficial 

bacteria 
TRANS A + +++ <10% ++  
PD A + + A +  
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APPENDIX VI. HISTOLOGIC EXAMINATION CARPROFEN 

Findings for histologic examination of sections of colonic mucosa for carprofen group: 
Inflammation, edema, sloughing of cells from the surface epithelium, erosion and sloughing 
of epithelial cells within the mucosal glands. aA = absent; + = mild; ++ = moderate; +++ = 
severe. bA = absent; <10% = erosion involving less than 10% of the surface epithelium; 
≥10% = erosions involving 10% of the surface epithelium or more. 
 

Sample Inflammation 
 

Edema 
 

Sloughing 
of surface 
epithelium 

erosions Sloughing 
within 
mucosal 
glands 

Comments 

CARPROFEN 1 
Pre-
experiment 

A A A A A  

PD A + +++ ≥10% A  
DD A + ++ ≥10%  A Lymph nodule
PD A + +++ <10% +  
TRANS A + ++ ≥10% A  
PD A + ++ ≥10%  +  
TRANS A + +++ <10% A  
TRANS A + +++ ≥10% +  
DD A A +++ ≥10% +  
DD + A +++ ≥10%  +++ Focal 

neutrophilic 
inflammation 

CARPROFEN 2 
Pre-
experiment 

A A ++ <10% A Lymph nodule

PD A ++ ++ <10% A  
TRANS A + +++ <10% A Lymph 

nodule; focal 
crypt abcess 

DD A + ++ ≥10%  +  
DD A ++ +++ ≥10%  + Lymph nodule
PD A ++ +++ ≥10%  A  
TRANS A + ++ ≥10%  +  
DD A A +++ <10% A  
PD A ++ +++ <10% A  
TRANS A ++ +++ ≥10% +  
CARPROFEN 3 
Pre-
experiment 

A A A A A  

PD A + ++ <10% A  
DD A A +++ <10% A Lymph nodule
TRANS A + +++ <10% +  
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TRANS A A +++ <10% A  
PD A + +++ ≥10% A  
DD A + +++ <10% A Lymph nodule
TRANS A + +++ ≥10% A  
DD A A ++ <10% A Lymph nodule
PD A + +++ ≥10% A  
CARPROFEN 4 
Pre-
experiment 

A A ++ ≥10% A  

PD A + +++ ≥10% +  
DD A + +++ A A  
TRANS A A +++ <10% A  
TRANS A + +++ ≥10% A  
PD A + +++ <10% A  
DD A A +++ <10%  A Superficial 

bacteria 
TRANS A + +++ <10% A  
DD A + +++ <10% A  
PD A + + ≥10% +  
CARPROFEN 5 
Pre-
experiment 

A A + <10%  A Lymph nodule

TRANS A ++ ++ ≥10% A  
DD A A ++ ≥10% + Lymph nodule
DD A + +++ ≥10% A  
PD A ++ +++ ≥10% A  
DD A A + ≥10% A  
PD A + +++ ≥10% A  
TRANS A + +++ ≥10% +  
TRANS A + +++ ≥10% + Lymph 

nodule; Plant 
foreign body 
with focal 
neutrophilic 
inflammation 

PD A A +++ ≥10% +  
CARPROFEN 6 
Pre-
experiment 

A A A A A  

DD A + ++ <10% +  
TRANS A + +++ <10%  ++ Muscularis 
PD A + ++ <10%  A Lymph 

nodules  
DD A + + <10% A Lymph nodule
TRANS A + ++ ≥10% A Muscularis 
PD A + +++ ≥10% A  
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DD A A ++ <10% A  
PD A ++ +++ <10% A  
TRANS A ++ + ≥10% A  
CARPROFEN 7 
Pre-
experiment 

+ A A A  A Focal 
neutrophilic 
inflammation 

TRANS A + ++ ≥10% +  
PD A A ++ ≥10% A  
DD A + ++ ≥10% A  
PD A A +++ ≥10% +  
TRANS A ++ + ≥10% ++  
DD A + +++ <10% A  
DD A A +++ <10% +  
PD A A +++ <10% ++  
TRANS A + +++ <10% +  
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