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ABSTRACT 

 

Lidocaine, an amide local anesthetic agent, is commonly used in mammals, including 

humans. There is a general assumption that birds are more sensitive to lidocaine than mammals. 

Relatively low doses of lidocaine have been suggested to cause toxic effects in birds. While this 

information appears to be anecdotal, it has been perpetuated in the literature. The overall 

objective of this thesis research was to determine the tolerance and safety of intravenous 

lidocaine in broiler chickens. To assess the cardiovascular effects of lidocaine, relative changes 

on heart rate and mean blood pressure were calculated. Clinically significant cardiovascular 

effects were defined as relative decrease of heart rate and/or mean blood pressure equal to or 

greater than 30%. On the first study, doses below the reported toxic dose were assessed. The 

effects of 2.5, 3.0, 3.5 mg/kg intravenous lidocaine were compared with a control (saline) group. 

Each dose was used in 2 randomly selected animals. No significant cardiovascular effects were 

detected; therefore, higher doses were investigated. On a 2
nd

 study, using an up-and-down study 

design, a total of 11 subjects were evaluated. The up-and-down method is a sequential design 

with binary response variables within a certain population which allows the determination of an 

effective dose to 50% of the population (ED50). The ED50 was defined as the dose that would 

cause clinically insignificant cardiovascular depression to 50% of the population. Using two 

statistical methods, the ED50 of cardiovascular function was 6.3 mg/kg and 6.22 mg/kg (95% 

confidence interval, 5.3 – 7.13 mg/kg). The safety of this dose was then tested in a new group of 

broiler chickens. The dose of 6 mg/kg was administered to 6 animals. No clinically significant 

cardiovascular effects were detected in any animal. In conclusion, the 3 studies performed for 

this thesis indicates that the reported toxic dose of lidocaine appears to be erroneous. 
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Furthermore, this thesis determined the highest tolerable dose and its safety in a specific group of 

broiler chickens. Further studies assessing analgesia and anesthetic effects of lidocaine are 

necessary, both in chickens and other avian species. 
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CHAPTER ONE 

INTRODUCTION 

 

Birds have always drawn the attention of man and have been maintained in captivity for 

thousands of years. The use of birds by man, in particular birds of prey for the purpose of 

hunting, has been described for centuries, possibly tracing back to 10,000 BP in the Near 

East.(Epstein, 1943; Jaques and Dobney, 2002; Prummel, 1997) Although the use of birds by 

humans can be considered an ancient tradition, the discipline of avian medicine has advanced 

significantly in the last 40 years. The lack of scientific research that focuses on avian medical 

issues has led to a substantial amount of anecdotal information being reported and perpetuated in 

the literature. The use of allometric scaling for the conversion of data from, but not limited to, 

human medicine and small animal medicine has been reported for birds.(Frazier et al., 1995; 

Kabat et al., 2008; Pokras et al., 1993) However, lidocaine is said to be a poor candidate for 

pharmaceutical allometric scaling, although, no clear explanation is stated.(Hunter, 2010) The 

extrapolation of medical data from other species is useful and its contribution to avian healthcare 

is invaluable, however this nonspecific information may lead to overdose or underdose of 

therapeutic agents in birds. (Cunningham et al., 2010; Hunter et al., 2008) Comparison between 

predicated and observed data has proved to be grossly erroneous in some species for specific 

drugs.(Hunter et al., 2008)  

Avian medicine includes the treatment of any living bird. Currently, at least 9,993 species 

of live birds have been reported.(Jetz et al., 2012) In the opinion of the author, it is unlikely that 

all avian species will equally respond to or require the same dose of a specific drug. An example 

of the inconsistencies of doses of the same drug between different avian species is tramadol. 

While Hispaniolan Amazon parrots (Amazona ventralis) require doses of 30 mg/kg orally, 3 to 4 
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times a day to reach and maintain human therapeutic levels, peafowl (Pavo cristatus) require 7.5 

mg/kg orally, once to twice a day.(Black et al., 2010; Souza et al., 2013) Among birds of prey, 

bald eagles (Haliaeetus leucocephalus) and American kestrels (Falco sparverius) require 5 

mg/kg orally twice a day, however, red-railed hawks (Buteo jamaicensis) require 15 mg/kg 

orally, twice a day.(Guzman et al., 2014; Souza et al., 2009; Souza et al., 2011) Although 

interesting, such variability of doses exists among the avian species listed above. Moreover it is 

important to acknowledge that each of the identified avian groups have not only different 

anatomy but also different biology, feeding habits, and gastrointestinal tract anatomy and 

physiology which may lead to dissimilar bioavailabilities of the therapeutic agent. 

 Current thoughts do not consider lidocaine as an adequate therapeutical agent in avian 

species because of concerns associated with toxicity.(Figueiredo et al., 2008) It has been 

perpetuated in the literature that birds are more sensitive to local anesthetic agents than 

mammals. (Hall et al., 2001; Machin, 2005; West et al., 2007) Lidocaine has been reported to 

cause toxicity in birds, even at relatively low doses.(Carpenter, 2005; Carpenter and Marion, 

2013) It is said that seizure, cardiac arrest, and mortality is likely to occur when lidocaine is 

administered in small bird species.(Fedde, 1978; Murray, 1967) The recommended therapeutic 

dose range of lidocaine is published as 1 to 3 mg/kg, although the route of administration is not 

clearly defined.(Carpenter, 2005) Reports in the literature suggest that a dose of 4 mg/kg or 

higher (unknown route) can be toxic to birds.(Carpenter, 2005; Huckabee, 2000; Ludders and 

Matthews, 2007; Machin, 2005; Paul-Murphy and Ludders, 2001; West et al., 2007) While the 

origin of such information is unclear, it appears to come from a publication that assessed the 

toxicological effect of subcutaneous lidocaine administration in budgerigars (Melopsittacus 

undulatus).(Grono, 1961) Although the dose of lidocaine and the body weight of the study 
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subjects are not clearly stated, the dose can be extrapolated. Using the body weight of 29g 

(Sibley, 2000), the doses were calculated and are summarize in table 1. Two animals died within 

2 minutes after administration of approximately 345 mg/kg of lidocaine, 1 animal died within 2 

minutes after administration of 172 mg/kg of lidocaine, and 1 animal died within 20 minutes 

after administration of 172 mg/kg of lidocaine. One animal became ataxic but recovered after the 

administration of 86 mg/kg of lidocaine. Based on the calculated doses and in the assumption 

that the toxic dose of 4 mg/kg has originated in this publication, the toxic dose is grossly wrong. 

The doses of 2.7–3.3 mg/kg intra-articular administration in chickens have also been suggested 

to cause toxic effects.(Carpenter and Marion, 2013) However, the citation appears to be 

erroneous as the original publication describes the effect of intra-articular bupivacaine but not 

lidocaine.(Hocking et al., 1997) Lidocaine may not be commonly considered an adequate 

therapeutic agent due to the presumptive risk of toxicity.(Figueiredo et al., 2008) Contrary to 

those recommendations, other studies have described the use of lidocaine in avian species. 

Pharmacokinetics of intravenous lidocaine at 2.5 mg/kg has been assessed in chickens (n=6). (Da 

Cunha et al., 2012) Intravenous lidocaine in chickens had a shorter half-life than humans, pigs, 

dogs, cats, and rabbits.(Da Cunha et al., 2012) Lidocaine has been used for the purpose of nerve 

plexus block in chickens (n=6), mallards (n=2), and Hispaniolan Amazon parrots (n=18) at dose 

rates of 20 mg/kg lidocaine with 10 µg/ml epinephrine, 15 mg/kg lidocaine with 3.8 µg/ml 

epinephrine, and 2 mg/kg lidocaine, respectively.(Brenner et al., 2010; da Cunha et al., 2013; 

Figueiredo et al., 2008) No mortality or morbidity related to the regional block was reported 

(Brenner et al., 2010; Figueiredo et al., 2008), however, one duck died as a result of endotracheal 

tube obstruction by tracheal secretions.(Brenner et al., 2010) Moreover, lidocaine has also been 

used for non-clinical research. (Dial, 1992; Takahashi et al., 1984)  
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Table 1. Dose calculation based on the information provided in a study assessing the effects of 

subcutaneous lidocaine in budgerigars (Melopsittacus undulatus).(Grono, 1961) Dose was 

calculated based on the body weight of 29 g.(Sibley, 2000) 

Parakeet Volume (ml) Concentration (mg/ml) Dose (mg/kg) Outcome  

1 0.5 20 345 Death within 2 minutes 

2 0.5 20 345 Death within 2 minutes 

3 0.25 20 172 Death within 2 minutes 

4 0.5 10 172 Death within 20 minutes 

5 0.25 10 86 Death within 20 minutes 

 

 Based on the available literature, there is a lack of scientific information regarding the 

use of lidocaine in avian species and the available information appears to be contradictive. The 

purpose of this thesis is to scientifically assess the use of lidocaine under controlled conditions. 

The author hypothesized that the previously referenced toxic lidocaine doses are erroneous and 

that higher dosages of this drug can be safely used in a specific strain of broiler chickens. The 

up-and-down methodology provided evidence that the currently published high dose of 

lidocaine, when administered intravenously, would not cause clinically significant cardiovascular 

effects in 50% of the study population. Further scientific evaluation described in this thesis was 

performed in order to confirm the safety of the determined dose.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Historical review 

2.1.1 Local anesthetics 

 Local anesthetics have a common chemical structure which consists of a lipophilic 

aromatic ring, a link and a hydrophilic amine group, commonly tertiary amines.(Columb and 

MacLennan, 2007; Ostercamp and Brunsvold, 2006) Local anesthetics can be divided into 2 

groups according to the link; amides (-NH-CO-) or esters (-O-CO-).(Columb and MacLennan, 

2007) The class amide local anesthetics includes lidocaine, mepivacaine, bupivacaine, 

levobupivacaine, ropivacaine, etidocaine, prilocaine, and articaine.(McLure and Rubin, 2005) 

The ester group includes cocaine, procaine, chloroprocaine and amethocaine.(Columb and 

MacLennan, 2007) 

 

2.1.2 Ester group: From cocaine to procaine 

 Prior to the development of the amide class of local anesthetics, cocaine was commonly 

used for this purpose. Sigmund Freud (1856-1939) and Carl Koller (1857-1944) were two of the 

first researchers to investigate the medical use of cocaine.(Galbis-Reig, 2002) Joseph Brettauner 

(1835-1905) and Carl Koller demonstrated the numbing effect of cocaine when applied to the 

eye of a dog in 1884.(Drasner, 2014; Grzybowski, 2008; Markel, 2011; McLure and Rubin, 

2005) In front of an audience, Brettauner was able to touch the eye of an awake dog with 

surgical instruments without any kind of response after applying drops of cocaine to the corneas 

of the animal.(Markel, 2011) However, due to the addictive and toxic characteristics of cocaine 

as well as an inability to sterilize the drug, there was a need to develop safer drugs.(Drasner, 
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2010; Drasner, 2014; Scholz, 2002) In order to replace cocaine, Ritsert (1890) created 

benzocaine and Einhorn (1904) created procaine.(Boren et al., 2007) Although procaine quickly 

supplanted cocaine, in part because of a higher therapeutical index, procaine was still associated 

with toxic and abnormal reactions.(Drasner, 2010; Drasner, 2014; Scholz, 2002) Among 

mortality cases linked to the use of procaine, some were later determined to be due to the use of 

cocaine, most likely because of miscommunication since procaine and cocaine are similar in 

name and spelling.(Drasner, 2010) The use of procaine and other amino-esters for spinal 

anesthesia was popular for many decades.(Maltby et al., 2000) An important event led to 

criticism of the use and methodology of such drugs for spinal anesthesia. In 1947, Albert 

Woolley and Cecil Roe, two healthy middle-age men became paraplegic after each received 

spinal anesthesia for minor procedure at the Chesterfield Royal Hospital.(Maltby et al., 2000) 

Both anesthestic procedures were performed by the same anesthesiologist, in the same day, using 

the same drug (hypobaric 1:1500 cinchocaine).(Maltby et al., 2000; Morgan, 1995) This case had 

significant media and legal impact which led to questions relating to the use of spinal anesthesia 

and subsequent induction of paralysis.(Drasner, 2014; Hutter, 1990; Morgan, 1995) Although the 

anesthesiologist was considered not guilty and the drug contamination was believed to have 

occurred through a crack in the ampule, questions remained.(Cope, 1954; Drasner, 2014; 

Forrester, 1968) The “invisible crack” theory has been questioned over the years, however, no 

clear explanation has ever been provided.(Drasner, 2014; Hutter, 1990; Maltby et al., 2000; 

Morgan, 1995) 
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2.1.3 Amide group: From procaine to lidocaine 

The first amide local anesthetic to be produced was niraquine, however, it was quickly 

abandoned because of local irritation to the surrounding tissue where it was 

administered.(Ruetsch et al., 2001) Other anesthetic compounds, including lidocaine were 

developed following the adverse reactions noted with the use of niraquine. The origin of 

lidocaine comes from a compound called gramine (Figure 1.).(Vale et al., 2005; Wildsmith, 

2011) Gramine was initially isolated from a chlorophyll defective mutant of barley (Hordeum 

vulgare) by a Nobel prize awardee, Hans van Euler, and later from great reed (Arundo donax) by 

a group of Russian researchers.(Dahlbom and Hollman, 1991; Holmdahl, 1998) An isomer, 

isogramine, was isolated by Holger Erdman who noticed the numbing effect of isogramine but 

not gramine, when tasted.(Dahlbom and Hollman, 1991; Holmdahl, 1998) In the early 1940’s, 

Löfgren and Erdtman synthesized several compounds originating from isogramine.(Wildsmith, 

2011) Among the different compounds, one had an additional second methyl group in a ortho 

position on the ring structure.(Wildsmith, 2011) Using this compound, Löfgren and Lundqvist in 

1943 were able to produced LL30 (Löfgren & Lundqvist, compound number 30), later known as 

lidocaine.(McLure and Rubin, 2005) Lidocaine, also known as lignocaine or xylocaine, was 

initially used as a replacement for procaine and other amino-ester local anesthetics. Once the 

significance and potential medical use of this compound was reported, Astra Pharmaceutical 

took over the commercialization and further development of  lidocaine.(Holmdahl, 1998) For the 

next half a century, lidocaine was considered the gold standard of local anesthetics and since that 

time it has been widely used although newer drugs have been developed.(Drasner, 2014; 

Holmdahl, 1998) 
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Figure 1. Chemical formula for gramide, isogramine and lidocaine. (Wildsmith, 2011) 

 

2.2 Pharmacology 

2.2.1 Local anesthetic pharmacology 

 The chemical structure of lidocaine consists of an aromatic group, 2,6-xylidine which is 

coupled to diethyglycine through an amide bond. (Collinsworth et al., 1974) The physiochemical 

properties of local anesthetic correlate to the lipid solubility, protein binding, and acid 

dissociation constant (pKa) of the different drugs (Table 2).(Cousins and Bridenbaugh, 2009) 

The aromatic ring improves lipid solubility; increased lipid solubility implies increased 

potency.(Becker and Reed, 2006) The amine terminal may be in a lipid soluble tertiary form (3 

bonds) or as a quaternary form (4 bonds) which is positively charged and water-soluble.(Becker 

and Reed, 2006) The amine terminal acts as an “on-off switch” allowing the local anesthetic to 

exist either on a lipid-soluble or water-soluble conformation.(Becker and Reed, 2006) As with 

other local anesthetic agents, lidocaine produces its effect by affecting nerve 
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conduction.(Mofenson et al., 1983) Most local anesthetics impede the permeability of the neuron 

cell membrane to sodium.(Ragsdale et al., 1994; Subramaniam and Tennant, 2005) The sodium 

channels contain a larger α-subunit and one or two smaller β-subunits.(Neal and Rathmell, 2007) 

The α-subunit is the site for ion conduction and local anesthetic binding site.(Neal and Rathmell, 

2007) Local anesthetic drugs are assumed to inhibit sodium channels by occupying the binding 

sites at the α-subunit.(Chernoff, 1990) However, more recent information has suggested that this 

pathway may be more complex.(Columb and Ramsaran, 2010) Local anesthetics also interact 

with potassium and G-protein-regulated channels.(Scholz, 2002)  

 Ion channels are transmembrane proteins which can control the passive transport of ions, 

usually categorized as K
+
, Na

+
, Ca

2+
 or Cl

-
.(Zhorov and Tikhonov, 2004) The generation and 

propagation of the afferent (sensory) and efferent (motor, sympathetic) information requires the 

flow of specific ions through the sodium channels.(Eappen and Datta, 1998) The action 

potentials are transient membrane polarizations which occur due to increase of sodium and 

delayed increase of potassium.(Strichartz and Ritchie, 1987) In normal conditions, the sodium 

channel opens briefly during the action potential allowing the extracellular sodium to enter the 

cell and depolarize the membrane, after which the sodium channel is inactivated.(Neal and 

Rathmell, 2007) The sodium channels exist in three native conformations; resting, open, and 

inactivated.(Neal and Rathmell, 2007) Local anesthetic agents have a higher affinity towards 

open or inactivated sodium channels.(Neal and Rathmell, 2007) Local anesthetics reversibly bind 

and block certain membrane channels which prevent electrical impulses from being generated or 

propagated.(Eappen and Datta, 1998)   
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Table 2. Psycochemical properties of selected local anesthetics in Humans. Adapted from Lagan 

2004.(Lagan and McLure, 2004) 
Agent Molecular 

weight 

pKa Speed 

of 

onset 

Partition 

co-

efficient 

Potency  Protein 

binding 

(%) 

Duration Toxicity Maximum 

plain dose  

(mg/kg) 

Maximum dose 

with 

vasoconstrictors 

(mg/kg) 

Amide agents           

Lidocaine 234 7.7 Fast 43 Intermediate 64 Intermediate Low 5 7 

Mepivacaine 246 7.9 Slow 21 Intermediate 77 Intermediate Low 5 7 

Bupivacaine 288 8.1 Slow 346 High 95 Long High 2 3 

Levobupivacaine 288 8.1 Slow 346 High 96 Long Intermediate 2.5 3 

Ropivacaine  274 8.1 Slow 115 Intermediate 94 Intermediate Intermediate 2.5 4 

Prilocaine  220 7.9 Fast 25 Intermediate 55 Intermediate Low 5 8 

Articaine  321 7.8 Fast  Intermediate 95 Intermediate Low 7  

           

Ester agents           

Cocaine 303 8.7 Slow  High 98 Long Very high 1.5  

Procaine 236 8.9 Slow 1.7 Low 6 Short  Low 8 10 

Tetracaine 264 8.2 Slow 221 Intermediate 76 Intermediate Intermediate 1.5 2.5 

 

2.2.2 Lidocaine pharmacology 

 The main metabolic pathway of lidocaine is hepatic oxidative dealkylation into 

monoethylglycinexylidide (MEGX) followed by hydrolysis of this metabolite to 2,6-

xylidide.(Reichel et al., 1998; Stoelting and Hillier, 2006) Studies on liver homogenates have 

indicated that the microsomal enzyme system is primarily responsible for the hepatic metabolism 

of lidocaine.(Collinsworth et al., 1974) Monoethylglycinexylidide has a prolonged elimination 

half-life and accounts for approximately 80% of the drug’s activity, while xylidide only provides 

approximately 10% of the lidocaine activity to protect against cardiac dysrhythmias.(Stoelting 

and Hillier, 2006) In humans, the main clearance mechanism of lidocaine is through the liver 

which results in a half-life elimination of 1.4 to 8 hours.(Stoelting and Hillier, 2006) Further 

conversion of 2,6-xylidine to 4-hydroxy-2,6-xylidine is apparent with lidocaine, as more than 
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70% of the oral dose of this drug is detected in the urine over a 24 hour period.(Collinsworth et 

al., 1974) Other degradative pathways have been reported to produce small amounts of 

metabolites (e.g. 3-hydroxylidocaine, 3-hydroxymonoethylglycinexylidide, 

glycinexylidide).(Collinsworth et al., 1974) 

The therapeutic plasma concentration of lidocaine in humans has been reported to be 1 to 

5 µg/ml.(Stoelting and Hillier, 2006) In humans, lidocaine is stated to have an age-dependent 

kinetic effect.(Rademaker and de Vries, 2008) Moreover, lidocaine was shown to have similar 

interactions with the sodium channels of the heart, nerve, and skeletal muscle.(Bean et al., 1983) 

As previously stated lidocaine, similar to other local anesthetic drugs, is associated with a 

decrease in neuronal excitability by blocking voltage-dependent sodium channels. The 

pharmacologic effect of lidocaine on the nervous system enables this drug to have anti-seizure, 

and antiarrhythmic properties.(De Giorgio et al., 1992; Walker and Slovis, 1997) The potency of 

local anesthetic drugs is directly correlated to the lipid solubility of the agent in question.(Becker 

and Reed, 2006, 2012) Since bupivacaine has increased lipid solubility and is therefore more 

potent than lidocaine, the commercially available formulations are 0.5% versus 2%, 

respectively.(Becker and Reed, 2006) Interestingly, class I antiarrhythmic drugs, which block the 

calcium channels in a manner similar to local anesthetic agents, also have local anesthetic 

effects.(Tzeng et al., 2007) 

 As lidocaine is metabolized by the liver, hepatic disease, or decreased hepatic blood flow 

(i.e. not uncommon during anesthetic procedures), may decrease lidocaine metabolism.(Stoelting 

and Hillier, 2006) In human patients administered oral lidocaine, prior to being anesthetized for 

laparoscopic procedures, study results suggested a delayed rise of plasma concentration 

secondary to slow absorption and decreased elimination of lidocaine. Consequently an impaired 
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metabolism of lidocaine in the human surgery subjects was suggested.(Adjepon-Yamoah et al., 

1973) Although not statistically significant, intravenous lidocaine clearance rate was higher in 

patients receiving chronic antiepileptic therapy, which suggested a secondary effect associated 

with stimulation of hepatic first-pass metabolism by antiepileptic drugs.(Perucca and Richens, 

1979) Other drugs have been shown to interact with lidocaine (e.g. atropine (Adjepon-Yamoah et 

al., 1974), erythromycin (Olkkola et al., 2005), cimetidine (Feely et al., 1982; Knapp et al., 1983) 

propranolol (Branch et al., 1973)). Maternal clearance of lidocaine is also prolonged by 

pregnancy induced hypertension.(Ramanathan et al., 1986) Moreover during pregnancy placental 

transfer occurs leading to higher fetal concentrations of lidocaine than that of the mother at the 

time of delivery.(de Carvalho Cavalli et al., 2004)   

 Due to its pharmacological characteristics, lidocaine is used for a wide range of medical 

purposes. The most basic description of the mechanism of action of local anesthetics has been 

reported as blocking the inward movement of sodium at the sodium ionophore during 

depolarization which prevents the propagation of the axonal action potential.(Columb and 

MacLennan, 2007) As with other local anesthetic agents, an important use of lidocaine is for 

regional or topical anesthesia. Furthermore, lidocaine can be used to treat arrhythmias 

(Collinsworth et al., 1974), convulsions (Ragsdale et al., 1996), pain (Rowbotham et al., 1991), 

anti-inflammatory (Stoelting and Hillier, 2006), and cough (Adcock et al., 2003). Intravenous 

anesthesia has also been used as a part of a balanced anesthetic protocol in order to decrease the 

minimum alveolar concentration of volatile anesthetics.(Doherty and Frazier, 1998; Hendrickx et 

al., 2008; Valverde et al., 2004) The uses of lidocaine for different medical presentations are 

related to the drug’s effects on the sodium channels.  
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 The velocity of effect of sensorial anesthesia using local anesthetics is dependent on the 

pKa which represents the amount of local anesthetic that exists in the active nonionized form at 

the pH of the surrounding tissue.(Stoelting and Hillier, 2006) The clinical onset of lidocaine 

activity is approximately 3 minutes, while bupivacaine, levobupivacaine, or ropivacaine require 

approximately 15 minutes. The shorter onset of action of lidocaine is a result of the compound 

having a greater molecular fraction that exist in the lipid-soluble nonionized form.(Stoelting and 

Hillier, 2006)  

 The pharmacokinetics of lidocaine has been described in humans, rabbits, cats, horses, 

pigs, sheep, and dogs.(Bennett et al., 1982; Boyes et al., 1971; Feary et al., 2005; Finholt et al., 

1986; Morishima et al., 1979; Orszulak-Michalak et al., 2002; Satas et al., 1997; Thomasy et al., 

2005; Wilcke et al., 1983) To the author’s knowledge, no such study has been performed in 

reptiles. Among avian species, pharmacokinetics of lidocaine has only been investigated in the 

chicken (n=6).(Da Cunha et al., 2012) After the administration of 2.5 mg/kg intravenous 

lidocaine, the plasma levels of lidocaine, MEGX and glycinexylidine (GX) were determined.(Da 

Cunha et al., 2012) The elimination half-life of lidocaine was 25.54 (±9.39) minutes, which was 

faster than humans, dogs, cats, and rabbits; however, it was similar to the results of sheep.(Da 

Cunha et al., 2012) The pharmacokinetic profile of GX in chickens was not described as the 

maximum concentration could not be determined within sampling period.(Da Cunha et al., 2012) 

The mechanism of metabolism and elimination of lidocaine in the chicken and mammals appear 

to be similar as there is a rapid initial increase of MEGX followed by rapid decrease in 

concentration post intravenous administration of lidocaine as well as a steady increase of GX 

overtime.(Da Cunha et al., 2012)  
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2.3 Lidocaine uses 

2.3.1 Lidocaine as an anticonvulsive 

 Status epilepticus (SE) is characterized by prolonged seizure activity.(Lowenstein, 1998) 

Status epilepticus is commonly defined as seizure activity that last for 5 or more minutes of 

continuous clinical and/or electrographic seizure activity or recurrent seizure activity without 

recovery.(Brophy et al., 2012) The definition of SE is not precise although this condition has 

been long been recorded in human history.(Lowenstein, 1999) In children, the greatest seizure 

risk occurs during the neonatal period (1.8-3.5/1,000 live births in the United States).(Silverstein 

and Jensen, 2007) Several characteristics are used to distinguish between seizures that occur 

during the neonatal period and those observed in older children; neonatal seizures are usually 

behaviorally subtle and the electroencephalogram reflects a multifocal process while in older 

children, coordinated seizure activity is more common.(Silverstein and Jensen, 2007) Among 

adults, generalized convulsive status epilepticus and non-convulsive status epilepticus are 

important neurological conditions potentially associated with significant mortality and morbidity 

rates, with the annual incidence reported in Europe being 3.6 to 6.6 per 100,000 and 2.6 to 7.8 

per 100,000, respectively.(Meierkord et al., 2006; Meierkord et al., 2010) The initiation of status 

epilepticus is a consequence of an inability of normal mechanisms to terminate seizures, decrease 

inhibition, and regulate persistent excessive excitation.(Meierkord et al., 2006) The main causes 

of SE are, low blood concentration of antiepileptic medication with chronic epilepsy (34%), 

remote symptomatic causes (24%), cerebrovascular accidents (22%), anoxia or hypoxia (~10%), 

metabolic causes (~10%), and alcohol and drug withdrawal (~10%).(Chen and Wasterlain, 2006) 

Several other underlying etiologies have been reported in humans, which are divided in acute 

processes (e.g. sepsis, central nervous system infection, head trauma, hypertensive 
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encephalopathy, autoimmune encephalitis) or chronic processes (e.g. chronic ethanol abuse, CNS 

tumors, remote CNS pathology).(Brophy et al., 2012) Both intravenous lidocaine and 

mepivacaine have suppressed grand mal seizures due to initial depression of hyperexcitable 

cortical neurons.(Stoelting and Hillier, 2006)     

 In animal models, the tendency of SE is to become self-perpetuating as seizures rapidly 

become self-sustaining and continue long after the withdrawal of the epileptogenic stimulus, 

although this does not seem to occur in humans.(Chen and Wasterlain, 2006) With the previous 

premise that SE may be self-perpetuating there is a need for early seizure control, therefore 

optimum treatment may be achieved by early administration of intravenous 

anticonvulsants.(Chen and Wasterlain, 2006) Several medications (e.g. benzodiazepines and 

antiarrhythmics) have been studied to induce early seizure control.(Shorvon, 1994) In humans, 

only a few controlled, double-blinded, clinical studies have assessed treatments for SE. 

Lorazepam and diazepam were compared and no difference was detected.(Leppik et al., 1983) 

Other studies comparing lorazepam and diazepam reported that both drugs were useful for the 

treatment of SE, but lorazepam is recommended as a first-line therapy.(Alldredge et al., 2001; 

Cock and Schapira, 2002; Gathwala et al., 2012) Lorazepam was also considered superior to 

phenytoin but no significant difference was reported in comparison with phenobarbital and 

diazepam in combination with phenytoin.(Treiman et al., 1998) Research investigations have 

reported a time-dependent loss of benzodiazepine potency suggesting this class of drugs should 

not be used alone or to control seizures lasting longer than 30 minutes.(Kapur and Macdonald, 

1997; Mazarati et al., 1998) There is a need for the assessment of other therapies for SE using 

ketamine(Borris et al., 2000) or levetiracetam alone or in combination with diazepam(Mazarati et 

al., 2004), or lidocaine(Hamano et al., 2006).  
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Some authors suggest that lidocaine does not provide advantage over conventional 

medications for treatment of SE and have more severe side effects.(Manno, 2003) Nevertheless, 

lidocaine is considered a second line drug that can be used in cases of refractory SE.(Chen and 

Wasterlain, 2006; Fallah, 2009; Fallah and Gofrani, 2007; Rossetti and Lowenstein, 2011; 

Sugiyama et al., 2004) The usefulness of lidocaine is its short half-life and relative lack of 

respiratory or cerebral depressant effects.(Shorvon, 1994) Intravenous lidocaine for the treatment 

of SE has been assessed in human infants. Lidocaine was efficient to control seizure activity in 

19 of 53 convulsive episodes in children with a mean age of 3 years and 7 months (SD 3y 

5mo).(Hamano et al., 2006) Favorable properties of lidocaine include prompt response, less 

alterations of consciousness, and fewer adverse effects, however, less than 50% of the convulsive 

episodes responded to therapy.(Hamano et al., 2006) In other studies, lidocaine was considered 

useful or very useful in approximately 50% of the assessed SE cases.(Hattori et al., 2008; 

Sugiyama et al., 2004; Yildiz et al., 2008) In a scientific study investigating the use of lidocaine, 

continuous infusion of the drug was recommended over bolus administration.(Hattori et al., 

2008) After intravenous administration, distribution of lidocaine to vascular organs was fast and 

the drug able to cross the blood-brain barrier.(Shorvon, 1994) Lidocaine has also originally 

reported to have neuroprotective characteristics (Mitchell, 2002; Mitchell et al., 1999), however 

later studies have indicated that the drug has none of these properties (Mitchell et al., 2009). The 

initial erroneous conclusions were reported to be a consequence of a type 1 error.(Mitchell et al., 

2009) 

 

2.3.2 Lidocaine as an antiarrhythmic  
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 The antiarrhythmic effects of local anesthetic agents including procaine and related 

compounds have been described.(Burstein, 1946; Joseph et al., 1951; Kayden et al., 1958; Mark 

et al., 1951) However, these drugs have significant cardiovascular effects (e.g. hypotension), 

possibly due to impaired myocardial contractibility, lower cardiac output, and systemic arterial 

pressure.(Aserman, 1953; Harrison et al., 1963; Mason and Pelmore, 1953) Lidocaine when 

administered at clinically therapeutic doses is an effective antiarrhythmic and preferable to 

procaine amide.(Harrison et al., 1963) Historically lidocaine has been mainly used for the 

suppression of ventricular dysrhythmias, in particular for suppressing reentry cardiac 

dysrhythmias (e.g. premature ventricular contractions, ventricular tachycardia).(Stoelting and 

Hillier, 2006) Cardiac effects of lidocaine have been reported to be; tonic block, faster recovery 

kinetics, shortens the action potential, shortens effective refractory period, and decreases normal 

automaticity.(Gintant and Hoffman, 1987) Furthermore, lidocaine has a fast clinical effect as 

well as a prompt cessation of effects once intravenous administration is discontinued.(Stoelting 

and Hillier, 2006) Lidocaine has become a primary antiarrhythmic drug and its introduction has 

resulted in a 30% decrease in the fatality rate of humans that present with acute myocardial 

infarction.(Lown, 1981) However, the prophylactic use of lidocaine to treat the early stages of 

acute myocardial infarction is not recommended as it may increase the occurrence of fatal 

bradysdysrhythmias.(Stoelting and Hillier, 2006) Recently, other medications, including 

amiodarone has been reported to be superior to lidocaine for the treatment of shock-resistant out-

of-hospital ventricular fibrillation.(Dorian et al., 2002) The use of intravenous lidocaine has also 

been shown to increase the defibrillation threshold.(Stoelting and Hillier, 2006) 

 The antiarrhythmic effect of lidocaine is due to delayed rate of spontaneous phase 4 

depolarization either by prevention or diminishing the gradual decrease in potassium ion 
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permeability, and changes to the action potential of the cardiac myocytes secondary to sodium 

permeability.(Neal and Rathmell, 2007; Stoelting and Hillier, 2006) The effect of lidocaine in 

voltage clamped rabbit Purkinje fibers was a block effect on the cardiac sodium channels.(Bean 

et al., 1983) The blocking effect may be antagonized by external sodium ions with 

blocking/unblocking rates being voltage-dependent.(Zamponi et al., 1993) At therapeutic doses, 

lidocaine has no significant side effect on QRS or QTc intervals, however, at high doses it can 

decrease conduction in the atrioventricular node and His-Purkinje system.(Stoelting and Hillier, 

2006) 

 The antiarrhythmic effects of lidocaine are an effect of the drug on the rested, activated, 

and inactivated sodium channels of the cardiac tissue.(Hondeghem and Katzung, 1977) Changes 

on the myocardial electrical field cause rapid structural transformations of the cardiac sodium 

channels.(Balser, 2001) Cardiac sodium channels are key molecular substrates in both inherited 

and acquired disorders of cardiac excitability, therefore, the blockade of the sodium channels by 

local anesthetics can be used for the treatment of specific disease conditions.(Balser, 2001) 

However, significant mortality secondary to the use of class I antiarrhythmic drugs for 

ventricular ectopy suppression after myocardial infarction has been associated with arrhythmias 

and acute recurrent myocardial infarction.(Echt et al., 1991) 

 Cardiac toxicity secondary to local anesthetics has also been reported. The rank order, 

from highest to lowest cardiotoxic potency of local anesthetic drugs is tetracaine, etidocaine, 

R(+) bupivacaine, racemic bupivacaine, levobupivacaine, ropivacaine, mepivacaine, lidocaine, 

and prilocaine.(Heavner, 2002) Although lidocaine can have cardiotoxic effects, it is also used 

for the purpose of local anesthetic neuro- and cardiotoxicity treatments. After an accidental 

intravascular administration of bupivacaine via epidural catheter, the patient was treated with 
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lidocaine, propofol, and 20% lipid emulsion which resulted in a rapid recovery from the 

cardiotoxic event.(Zimmer et al., 2007) However, in canine patients, the use of lidocaine to treat 

bupivacaine induced cardiovascular toxicity was not effective.(Kasten and Martin, 1985) 

Conversely, lipid emulsion appears to be useful in treating bupivacaine induced cardiovascular 

toxicity. Although double blinded, placebo controlled studies are lacking, the use of lipid 

emulsion to treat local anesthetic induced cardiac arrest appears to be beneficial.(Brull, 2008; 

McCutchen and Gerancher, 2008)   

 

2.3.3 Lidocaine as an analgesic drug 

As previously mentioned the different therapeutic effects of lidocaine result from its 

effect on the sodium channels. The analgesic effect of lidocaine is also related to the blockade of 

sodium channels. Furthermore, although not clearly described, systemic lidocaine administration 

may suppress spontaneous ectopic discharges of  injured nerves without blocking normal nerve 

conduction.(Mao and Chen, 2000) In cases of diabetic neuropathic pain, the analgesic effect may 

be centered at the spinal level.(Bach et al., 1990) Reports indicate that lidocaine will provide 

local analgesia when the animal is treated in one of the following methods: local administration, 

transdermal patches, or intravenous administration.(Boas et al., 1982; Gammaitoni et al., 2003; 

Kolesnikov et al., 2000) Intravenous lidocaine and procaine produce significant analgesic effects 

but the use of these drugs in this manner is limited by the margin of safety between intravenous 

analgesia and systemic toxicity. However low-dose continuous rate infusion of both lidocaine 

and procaine decreases post-operative pain and reduces the need of opioids.(Stoelting and 

Hillier, 2006) 
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2.3.3.1 Lidocaine as an intravenous analgesic agent 

In humans, the use of intravenous lidocaine for the treating painful disease conditions has 

been well described and its first use was first reported in 1961.(Bartlett and Hutaserani, 1961) 

Since the first reported use of lidocaine, several studies have investigated the use of intravenous 

lidocaine in humans, specifically to determine its effectiveness in treating neuropathic 

pain.(Kastrup et al., 1987; Mao and Chen, 2000) Lidocaine has been compared to morphine for 

the treatment of post-amputation pain.(Wu et al., 2002) Although there are reports that lidocaine 

is more efficient than morphine for the treatment of stump pain, it was not effective in reducing 

phantom pain.(Wu et al., 2002) Nevertheless, lidocaine appears to be similar to morphine in 

reducing the intensity of neuropathic pain.(Rowbotham et al., 1991) Lidocaine is also effective in 

reducing  pain associated with rocuronium injection.(Cheong and Wong, 2000) Moreover, 

perioperative low dose lidocaine infusion decreased postoperative pain and postoperative 

analgesic consumption.(Baral et al., 2010) Other studies indicate that perioperative and/or 

postoperative intravenous lidocaine was beneficial in diminishing post-operative pain, bowel 

function restoration, and length of hospitalization.(Baral et al., 2010; Groudine et al., 1998; 

Marret et al., 2008; Tikuisis et al., 2013) The use of intravenous lidocaine for analgesic purposes 

is not without controversy. Some publications have reported no significant analgesic effects 

associated with lidocaine use; furthermore, it is hypothesize that in order to reach adequate 

plasma levels, toxicity may occur.(Baranowski et al., 1999; Hempenstall et al., 2005; Martin et 

al., 2008) 

The analgesic effects of intravenous lidocaine have also assessed in animals, primarily 

laboratory animals used as human models. In Sprague-Dawley rats, intravenous infusion of 

lidocaine prevented or reversed development of neuropathic pain.(Smith et al., 2002) The use of 
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intravenous lidocaine appears to be useful controlling some aspects of experimental allodynia in 

rats.(Sinnott et al., 1999) Clinical analgesic effects of intravenous lidocaine have also been 

assessed in dogs. A pilot study reported that lidocaine produced similar effects to that of 

morphine in anesthetized dogs undergoing intraocular surgery.(Smith et al., 2004) However, in 

another study, high rates of lidocaine did not show any antinociceptive effects when compared to 

saline in conscious dogs.(MacDougall et al., 2009) Nevertheless in the same study the canine 

subjects had a mild to moderate sedative effect and signs of toxicity associated with lidocaine 

administration.(MacDougall et al., 2009) 

 

2.3.3.2 Lidocaine as part of a balanced analgesia protocol 

Pain is considered to be the most important post-operative adverse side-effect that 

contributes to patient distress, prolonged hospitalization, and increased postoperative re-

hospitalization.(Jin and Chung, 2001) Opioid and anti-inflammatory drugs alone may not result 

in successful post-operative pain management.(Jin and Chung, 2001)  Therefore, a multimodal 

analgesic protocol is the currently recommended technique to properly manage post-operative 

pain. Multimodal analgesia is based on the combination of several analgesic agents that produce 

synergistic effects thereby minimizing the potential adverse side-effects of the drugs if 

administered alone.(Jin and Chung, 2001) A combination of local anesthetic agents and general 

anesthesia improves the management of a patient’s pain after surgery.(Kaufman et al., 2005) 

Multimodal anesthesia using local anesthetic agents and gabapentin led to reduced acute and 

chronic pain after breast cancer surgery in humans.(Fassoulaki et al., 2005) When a multimodal 

analgesic (morphine and local anesthetic) protocol was implemented in human patients on which 

a total knee arthroplasty procedure was performed, an improved analgesic effect, with minimal 
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adverse side effects, was reported.(Vendittoli et al., 2006) Significant attention has been focused 

by researchers on prevention of pain associated with the injection of propofol. Among 6,264 

patients, 70% reported pain or discomfort when propofol was administered.(Picard and Tramer, 

2000) Lidocaine mixed with propofol has been reported to prevent propofol injection induced 

pain, however, it is suggested to be due to pH changes in the “cocktail” rather than local 

anesthetic effects.(Eriksson et al., 1997) Combination of lidocaine and dexamethasone has also 

been reported to be efficient in controlling pain associated with propofol injection.(Kwak et al., 

2008) Lidocaine alone or in combination with remifentanil abolished moderate to severe pain 

associated with propofol injection.(Aouad et al., 2007) However, ketamine followed by vein 

occlusion has been reported to be more efficient than lidocaine in reducing pain associated with 

propofol injection.(Saadawy et al., 2007)  

The use of lidocaine as part of a multimodal or balanced analgesic protocol has not been 

established in avian medicine. In mammals lidocaine is considered safe, lacks adverse side-

effects when compared with other drugs, and its analgesic effect appears to be more consistent 

than that of ketamine.(Corletto, 2007) The use of lidocaine as part of a balanced analgesia has 

been assessed in dogs.(Almeida et al., 2010) Also, lidocaine confers hemodynamic stability and 

prevents ischemic/reperfusion injury in experimental animal models.(Corletto, 2007)  

 

2.3.4 Lidocaine as an anesthetic agent 

2.3.4.1 Lidocaine as part of a local and regional anesthetic protocol 

In the clinical perspective, the terminology local anesthetic implies a substance that 

blocks sensory and motor innervation of a peripheral area or region of the body.(Garfield and 

Gugino, 1987) As previously stated, Sigmund Freud and Carl Koller were two of the first 
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researchers to investigate the medical use of cocaine.(Galbis-Reig, 2002) The first attempt to use 

cocaine as a local anesthetic in a canine patient was performed by Koller and Brettauer in 

1884.(Grzybowski, 2008; Markel, 2011) In front of an audience, Brettauer was able to touch the 

eye of an awake dog with surgical instruments without any kind of response after applying drops 

of cocaine to the corneas of the animal.(Markel, 2011) Since this first demonstration of the 

medical use of local anesthetics, many technological developments have been made.  

Lidocaine is one of the most widely used drugs to produce local anesthesia in 

humans.(Vahatalo et al., 1993) Local anesthesia is the corner stone of anesthesia in several 

medical specialties (e.g. dentistry). Some authors suggest that it is impossible to provide proper 

dental care without the use of local anesthetics.(Becker and Reed, 2006) Reports indicate that 

approximately 20% of dental patients undergoing endodontic procedures experience moderate to 

severe pain, while 1 to 3% describe an sudden increase of severe pain.(Hargreaves and Keiser, 

2002) Local infiltration of local anesthetic agents implies the extravascular administration of the 

drug in the area to be anesthetized.(Stoelting and Hillier, 2006) In human dentistry, lidocaine is 

considered the gold standard for local anesthetic drugs.(Kanaa et al., 2006) Several other 

therapeutic agents have been compared to lidocaine. When evaluating 2% lidocaine (1:100,000 

epinephrine) to 4% prilocaine and 3% mepivacaine, no significant difference was reported 

between the drugs when the inferior alveolar nerve was blocked for 50 minutes.(McLean et al., 

1993) However, articaine was believed to be superior for mandibular buccal infiltration 

anesthesia.(Kanaa et al., 2006; Robertson et al., 2007) Articaine appears to enhance the 

effectiveness of lidocaine when anesthetizing the inferior alveolar nerve.(Kanaa et al., 2009) It 

appears that articaine, when administered in larger volumes may cause local discomfort.(Corbett 

et al., 2008) 
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Addition of epinephrine to the local anesthetic agent at 1:200,000 epinephrine can double 

the duration time of the local anesthesia effect.(Stoelting and Hillier, 2006) Furthermore, the 

addition of vasoconstrictors to local anesthetic therapeutic agents is beneficial in terms of depth 

of anesthesia, blood loss, and reduction of systemic toxicity associated with the drug use..(Brown 

and Rhodus, 2005) Other authors also suggest decrease in the peak plasma concentration of the 

local anesthetic agent, increase quality of anesthesia, and reduction of the minimum 

concentration of the anesthetic agent required for the nerve block.(Sisk, 1992) The addition of 

epinephrine to local anesthetic drugs may lead to increase presynaptic β2 receptors on 

sympathetic nerve endings and the adrenomedulla which also causes a release of endogenous 

epinephrine.(Takahashi et al., 2005) The combination of epinephrine and local anesthetic agents 

has been said to have possible side effects when administered to areas supplied by end-arteries 

(e.g. fingers, ears and, nose).(Stoelting and Hillier, 2006) The use of such drug combinations for 

digital blocks has long been considered dangerous as it has been associated with digital 

necrosis.(Krunic et al., 2004) However, literature reviews have failed to provide evidence to 

substantiate the association of epinephrine/local anesthetic drug use to digital necrosis.(Krunic et 

al., 2004) Nevertheless, the use of local anesthetic agents in dentistry procedures is said to have a 

low adverse side effect risk with complications reported to be 5.7% (risk factor group) and 3.5% 

(nonrisk factor group).(Daublander et al., 1997) 

Regional anesthesia is a therapeutic protocol that provides either central or peripheral 

anesthetic effect to a large part of the body. Administration of local anesthetics to the epidural 

space (central) or plexus (peripheral) are examples of regional anesthesia. Epidural 

administration is considered one of the most difficult procedures to be learned by human 

anesthesia residents.(Konrad et al., 1998) During the early onset of regional anesthesia, the 



25 
 

impulse transmission is not completely blocked; local anesthetics decrease the frequency and the 

amplitude of the action potential.(Grabinsky, 2005) When the local anesthetic drug is deposited 

in the vicinity of the nerve, the drug diffuses from the outer surface or mantle to the center (core) 

due to the concentration gradient, therefore, nerve fibers of the mantle are anesthetized 

first.(Stoelting and Hillier, 2006) The mantle fibers are more abundant in more proximal nerves, 

therefore anesthetic onset occurs first on the more proximal tissue.(Stoelting and Hillier, 2006)   

Peripheral nerve block, as means of regional anesthesia, are widely used in human 

medicine.(Casati et al., 2007) Peripheral nerve blocks has few cardiovascular or pulmonary side 

effects, however, some potential complications can occur including systemic side effects of local 

anesthetics, phrenic nerve block, and blockade of nerves which compromise respiration.(Kettner 

et al., 2011) Nerve stimulation has become the gold standard for appropriate delivery of local 

anesthetic agents to achieve a nerve blockade.(Casati et al., 2007) Recently, the use of ultrasound 

imaging has increased allowing clinicians to visualize the nerve when administering the drug to 

perform regional anesthesia procedures.(Casati et al., 2007) It is suggested that the use of 

imaging guidance improves nerve block success and reduces the likelihood of possible adverse 

side effects.(Eichenberger et al., 2009; Latzke et al., 2010; Marhofer and Chan, 2007; Marhofer 

et al., 2010; O'Donnell and Iohom, 2009) The use of ultrasound imaging for brachial plexus 

blockade using lidocaine has been studied in Hispaniolan Amazon parrots.(da Cunha et al., 2013) 

Although the ultrasound guided technique led to a faster onset of the nerve block in parrots, 

neither technique produced an effective block.(da Cunha et al., 2013) In humans, multiple 

injections using ultrasound imaging provided similar success with nerve stimulation 

guidance.(Casati et al., 2007) Currently, an increased use of ultrasound guided administration of 
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local anesthetic agents for the purpose of nerve blockade may not be possible due to financial 

constraints associated with this procedure.(De Andres and Sala-Blanch, 2002) 

The use of lidocaine for the purpose of regional block has been studied in a small number 

of avian species. Brachial plexus blockade in mallards (n=8) using lidocaine at 15 mg/kg with 

3.8 µg/ml epinephrine and bupivacaine at 2 mg/kg and 8 mg/kg, has been reported.(Brenner et 

al., 2010) In that study, 2 novel brachial plexus nerve block techniques (dorsal and axillary) were 

assessed by electrophysiologic methods.(Brenner et al., 2010) Results were highly variable and 

no technique significantly decreased cord dorsum potentials or resulted in consistent wing 

droop.(Brenner et al., 2010) In chickens (n=6), brachial plexus blockade by nerve detector 

guidance has been investigated using lidocaine (20mg/kg with 10µg/ml epinephrine) or 

bupivacaine (5 mg/kg with 10µg/ml epinephrine).(Figueiredo et al., 2008) Overall, the success 

rate of the nerve block described above was 66.6%. (Figueiredo et al., 2008) Lidocaine caused 

faster loss of motor and sensory function than bupivacaine; however, it was shorter 

acting.(Figueiredo et al., 2008)  

The administration of local anesthetic agents into the epidural space, provide anesthesia 

by 2 mechanisms. Local anesthetics diffuse across the dura and act on the nerve roots and spinal 

cord and also diffuse into the paravertebral area through the intervertebral foramina which 

produces several paravertebral blocks.(Stoelting and Hillier, 2006) The description of epidural 

space access has been well described in small and large animals.(Bettschart-Wolfensberger and 

Larenza, 2007; Jones, 2001; Lee et al., 2001; Lee et al., 2006; Robinson and Natalini, 2002) and 

epidural anesthesia has been reported.(Bozkurt et al., 1995; Lichtenberger and Ko, 2007; Otero 

et al., 2012) This technique is not commonly used in birds because of anatomical considerations. 

Although epidural anesthesia access is not well described, myelography has been reported.(Harr 
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et al., 1997; Krautwald-Junghanns et al., 2008; Naeini et al., 2006) While in mammals the caudal 

lumbar and occipital-C1 regions are commonly used for myelographic contrast administration, in 

birds the synsacrum is composed of fused lumbar and sacral vertebrae and pelvis, therefore, 

thoracolumbar access is needed rather than lumbar puncture.(Harr et al., 1997) Epidural 

administration of local anesthetics for regional anesthesia in avian species is difficult to perform.  

 

2.3.4.2 Lidocaine as part of a balanced anesthesia 

In veterinary medicine, the greatest attention to intravenous administration of lidocaine 

has been for the purpose of a multimodal or balanced anesthesia. The concept of balanced 

anesthesia is based on the assumption that the mixture of small amounts of several neuronal 

depressants provides the sum of the advantages but not the disadvantages of the individual 

pharmaceuticals. The objective of multimodal or balanced anesthesia is calming the patient, 

minimizing pain, and reducing potential adverse side effects. The major advantage of this 

approach is the reduction of the pharmaceutical dose used, therefore decreasing the occurrence of 

side-effects. This concept was first introduced in human anesthesia by George W. Crile (1910), 

the so-called anociassociation.(Tonner, 2005) However, veterinary anesthesia still relies heavily 

in inhalant drugs alone (Ilkiw, 1999) although efforts have been made to introduce balanced 

anesthesia/perioperative analgesia. The use of perioperative analgesia in Canada increased 

significantly between 1994 and 2001, with 62% of the questioned veterinarians reporting to use 

at least 2 classes of analgesic prior to surgery.(Hewson et al., 2006) In New Zealand, a relatively 

high percentage of veterinarians report to use peri-operative analgesia, including pre-emptive and 

multi-modal analgesia.(Williams et al., 2005) However, a similar study from South Africa, 

shown that approximately 86.3% of cats and 80.7% of dogs did not received peri-operative 
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analgesia.(Joubert, 2001) In the United Kingdom, the use of peri-operative analgesia was 

commonly considered and it was administered more often by female veterinarians and recent 

graduates.(Capner et al., 1999) 

In veterinary anesthesia, a relatively large number of pharmaceuticals have been assessed 

in terms of decreasing the minimum alveolar concentration (MAC) of volatile drugs. The effect 

of drugs like morphine, ketamine, butorphanol, fentanyl, alfentanil, buprenorphine, diazepam 

and dexmedetomidine on the inhalant drug MAC of dogs, cats, and horses has been 

studied.(Hellyer et al., 2001; Ilkiw et al., 1997; Ilkiw et al., 2002; Ko et al., 2000; Muir and 

Sams, 1992; Muir et al., 2003; Pascoe et al., 2006; Solano et al., 2006) The use of intravenous 

lidocaine has also been assessed. Lidocaine produced dose dependent halothane MAC decrease 

in ponies.(Doherty and Frazier, 1998) Similar findings were reported on isoflurane MAC in dogs 

and rabbits.(Schnellbacher et al., 2013; Valverde et al., 2004) In another study, lidocaine alone or 

in combination with morphine and ketamine was showed to cause a decrease on isoflurane MAC 

in dogs.(Muir et al., 2003) In comparison with morphine, lidocaine produced a lower effect on 

the isoflurane MAC, however, it appeared to be slightly superior to ketamine.(Muir et al., 2003) 

The use of lidocaine alone or in combination allowed clinically important reduction on isoflurane 

MAC in goats.(Doherty et al., 2007) In the case of sevoflurane, lidocaine alone or in 

combination with ketamine also led to decrease MAC in dogs.(Matsubara et al., 2009; Wilson et 

al., 2008) In cats, the use of lidocaine in combination with general anesthesia is not 

recommended as it has been reported to be associated with greater cardiovascular depression 

than isoflurane alone.(Pypendop and Ilkiw, 2005) 

 

2.3.5 Lidocaine as an anti-inflammatory 
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Inflammation has been described as a stereotypic response of vascularized tissue to an 

injury and as a protective response which serves to destroy, dilute or wall off both the injuring 

agent and the injured tissue.(Cassuto et al., 2006) Inflammation is necessary for structural and 

functional repair of injured tissue, which is complemented by granulocytes, macrophages, and 

other cell mediators to provide proper wound healing.(Durieux and Hollmann, 2004) In some 

situations, the inflammatory response may be over reactive and harmful so anti-inflammatory 

therapy is necessary.(Cassuto et al., 2006) Local anesthetics modulate the inflammatory response 

after surgical trauma, by inhibition of the nervous conductivity at the site of the trauma.(Beloeil 

and Mazoit, 2009) As local anesthetics attenuate the nervous system sensitization and 

consequently the inflammatory phenomena, exert intrinsic anti-inflammatory properties by 

modulating the local and systemic liberation of inflammatory mediators, it has been suggested 

that these therapeutic agents can be used for anti-inflammatory purposes.(Beloeil and Mazoit, 

2009) Local anesthetics appear to inhibit the release of several inflammatory mediators and also 

direct effect on polymorphonuclear granulocytes (PMNs) and macrophages.(Sallam and El-

Kafrawy, 2011) Lidocaine and procaine are suggested to decrease phospholipase A2 at low 

doses.(Sallam and El-Kafrawy, 2011) For example, intravenous lidocaine administered pre- and 

early post-induced lung injury in rabbits decreased PMNs accumulation in the lung and inhibited 

superoxide anion production by PMNs; leading to decreased edema.(Nishina et al., 1998) It is 

said that local anesthetics administered through the intravenous or epidural route could be 

considered for modulation of postoperative inflammatory response.(Hollmann and Durieux, 

2000)  In a recent literature review, lidocaine was reported to have potential as an anti-

inflammatory agent although there is limited scientific evidence to back up this claim.(Caracas et 

al., 2009) 
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2.3.6. Lidocaine side effects 

Although used for a multitude of purposes, lidocaine as well as other local anesthetics, 

can have toxic effects. Some authors suggest that because of its common use in over 1,000,000 

daily regional anesthestic procedures, it is not surprising that adverse reactions occur.(Yagiela, 

1985) Side effects include allergic reactions, systemic toxicity, ventilatory response to hypoxia 

and hepatotoxicity.(Stoelting and Hillier, 2006) 

Allergic reactions to local anesthetics are rare, estimated to correspond to less than 1% of 

all adverse reactions.(Stoelting and Hillier, 2006) Among 197 cases of adverse drug reactions to 

local anesthetic agents, only 3 reacted after subcutaneous challenge with the causative drug 

(amide type local anesthetic).(Gall et al., 1996) Of those 3 cases, one had delayed-type response 

to mepicaine and two had immediate-reactions non-IgE mediated to articaine and lidocaine.(Gall 

et al., 1996) In another study, among 236 patients referred to an allergy clinic for local anesthetic 

hypersensitivity, skin prick and interdermal challenge was negative in all patients.(Berkun et al., 

2003) It has been suggested that the methods to test hypersensitivity to local anesthetics be 

revisited.(Berkun et al., 2003) Incremental challenge tests have been suggested as part of the 

revision process.(Nettis et al., 2001) Considering the low number of confirmed allergic reactions, 

it is possible that the allergic reactions may be related to other ingredients within the 

drug.(Stoelting and Hillier, 2006) Among 208 patients with adverse reactions to local anesthetic 

drug administration, 39 were considered responses to additives but this consideration was never 

verified.(Fisher and Bowey, 1997) Several compounds are reported to have caused allergic 

reactions; methylparaben, sodium metabisulfite, and bisulfite.(Dooms-Goossens et al., 1989; 

Schwartz and Sher, 1985; Stoelting and Hillier, 2006) Although not confirmed, it is hypothesized 
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that latex contaminated, local anesthetic allergic reaction, can also occur.(Shojaei and Haas, 

2002) This assumption is based on information that latex can be released from the container 

either by penetration through or direct contact with natural latex stoppers.(Shojaei and Haas, 

2002)    

Systemic toxicity occurs when there is an excessive plasma concentration of the drug. 

(Stoelting and Hillier, 2006) There is a direct correlation between local anesthetic plasma 

concentration and symptoms of toxicity (Table 3).(Eappen and Datta, 1998) The results of a 

comparative study on intravenous toxicity of local anesthetics (lidocaine, procaine, 

chloroprocaine, and tetracaine) indicated that lidocaine was least tolerated by the subjects while 

chloroprocaine was the most tolerated.(Foldes et al., 1960) It was suggested that the low toxicity 

of chloroprocaine was due to rapid hydrolysis by plasma cholinesterase.(Foldes et al., 1960) The 

most common cause of systemic toxicity is due to accidental intravascular administration of local 

anesthetics (e.g. peripheral nerve block, because of excessive absorption from the injection 

site).(Stoelting and Hillier, 2006) Clinical signs of neurotoxicity associated with systemic 

toxicity occur as the local anesthetic crosses the blood-brain barrier leading to restless, vertigo, 

tinnitus and difficulty focusing followed by slurred speech and skeletal muscle 

twitching.(Stoelting and Hillier, 2006) The cardiovascular tissue is more resistant to the systemic 

toxicity than the central nervous system.(Stoelting and Hillier, 2006) However, cardiotoxicity is 

a common adverse effect of local anesthetics. If a sufficient number of sodium channels is 

blocked due to excessive plasma concentration of local anesthetics, conduction and automaticity 

becomes depressed.(Stoelting and Hillier, 2006) Although cardiotoxicity has been described 

since the 1930’s, more attention was devoted since 1979 when Albright reported cardiac arrest 

after regional anesthesia with bupivacaine and etidocaine.(Groban and Butterworth, 2007) Long 
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acting local anesthetics like bupivacaine are disproportionately more cardiotoxic than their 

shorter acting counterparts (ropivacaine and levobupivacaine).(Mather and Chang, 2001) The 

rank order from lowest to highest cardiotoxic potency of local anesthetics has been reported to be 

prilocaine, lidocaine, mepivacaine, levobupivacaine, racemic bupivacaine, R(+) bupivacaine, 

etidocaine and tetracaine.(Heavner, 2002) Although the shorter acting more modern local 

anesthetics are safer, toxicity can still occur.(Mather and Chang, 2001) While plasma 

concentrations of lidocaine below 5 µg/kg only lead to decrease rate of spontaneous phase 4 

depolarization, plasma concentrations of 5 to 10 µg/kg may produce profound hypotension and 

direct myocardial depression.(Stoelting and Hillier, 2006) Furthermore, lidocaine can also cause 

slow cardiac impulse conduction, prolongation of the P-R interval and QRS complex.(Stoelting 

and Hillier, 2006) 

Table 3. Dose dependent effects of lidocaine.(Stoelting and Hillier, 2006)   

Plasma lidocaine concentration (µg/kg) Effect 

1-5  Analgesia 

5-10  Circumoral numbness 

 Tinnitus 

 Skeletal muscle twitching 

 Myocardial depression 

10-15  Seizures 

 Unconsciousness  

15-25  Apnea  

 Coma 

>25  Cardiovascular depression 

 

2.3.6.1. Lidocaine side effects in birds 

Lidocaine is not commonly considered an adequate therapeutic agent in avian species 

because of concerns associated with toxicity.(Figueiredo et al., 2008) It has been perpetuated in 

the literature that birds are more sensitive to lidocaine than mammals, and that lidocaine dose 

should not exceed 4 mg/kg because toxic effects may occur.(Carpenter, 2005; Carpenter and 
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Marion, 2013; Hall et al., 2001; Machin, 2005; West et al., 2007) Higher doses than 4 mg/kg are 

suggested to possibly lead to seizures and cardiac arrest.(Machin, 2005) However, this 

information appears to be anecdotal. Also, no clear information on route of administration and 

species variability are available in the literature. As stated previously, lidocaine has been used in 

several studies and no reports of mortality, morbidity or toxic effects have been 

published.(Brenner et al., 2010; Da Cunha et al., 2012; da Cunha et al., 2013; Figueiredo et al., 

2008) 

Bupivacaine has been used in avian species but the available information is limited. 

Bupivacaine is reported to relieve pain in chickens (n=72) with experimentally induced 

arthritis.(Hocking et al., 1997) It was suggested that the dose of 2.7–3.3 mg/kg intraarticular 

bupivacaine cause toxic effects in 10/12 animals; recumbency, abnormal posture, and 

distress.(Hocking et al., 1997) All animals were covered completely within 1 hour.(Hocking et 

al., 1997) The overall results of the study suggested that the minimal dose of 3 mg in 0.3 ml 

given intraarticularly was efficient in order to provide analgesia in chickens with experimentally 

induced arthritis.(Hocking et al., 1997) Differential mortality of spectacled eiders (Somateria 

fischeri) and king eiders (Somateria spectabilis) subsequent to field anesthesia with propofol 

(mean total dose, 26.2–45.6 mg/kg IV), bupivacaine (2–10 mg/kg SC surgical site), and 

ketoprofen (2–5 mg/kg IM) has been reported.(Mulcahy et al., 2003) Within 4 days following the 

anesthetic event, 4/10 male spectacled eiders, 5/6 male king eiders and 1/5 female king eiders 

died.(Mulcahy et al., 2003) The suggested cause of death was the perioperative use of non-

steroidal anti-inflammatory drug although the combination of propofol, bupivacaine and 

ketoprofen was recommended to be avoided in field situations.(Mulcahy et al., 2003) The use of 

propofol (8-15 mg/kg IV) in combination with bupivacaine and lidocaine (s.c. and i.m. 
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infiltration of 1.5–2.0 mg/kg of a 2:1 mixture [total concentration of 1 mg/ml]) for field coelomic 

satellite transmitter implantation is reported to be safe in bar-tailed godwit (Limosa lapponica) 

and the bristle-thighed curlew (Numenius tahitiensis).(Mulcahy et al., 2011) 
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CHAPTER 3 

STATISTICAL ANALYSIS 

 

3.1 Statistical analysis and optimal dose determination 

The determination of the optimal dose is a difficult procedure that most clinical 

researchers need to deal with. The definition of optimal dose varies with the drug and the 

therapeutical objective. Nevertheless, this utopic pursuit of clinical research has greatly 

improved since the use of statistics. The use of statistical analysis allows researchers to 

extrapolate from a limited population to a general population.  

One of the critical steps in drug development is proper understanding and 

characterization of its drug response relationship; erroneous determination may lead to 

inappropriate recommendations which may be shown to be drastic.(Dette et al., 2013) 

Commonly, dose determination or MAC studies in veterinary medicine use a bracketing design. 

Although less common, the up-and-down method has also been used. In toxicological studies, 

both these methods are commonly used. 

    

3.1.1. The bracketing system 

In the past, acute lethal dose 50 (LD50) determinations in toxicological studies used to 

depend on a bracketing system. Using this design, several dose levels (3 to 5 different doses, 

ideally including the LD13 and the LD87) were experimented in several groups (usually 5 

animals of each sex per group).(Rispin et al., 2002) A dose increase should lead to decrease 

survival and two or more doses should show partial responses; in this case responses being 

mortality.(Rispin et al., 2002) However, this assays may have to be repeated as the confidence 

intervals may not fulfill the regulatory requirements.(Kelly, 2001) Minimum alveolar anesthetic 
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concentration studies in humans are commonly performed in a quantal (categorical; all-or-none) 

study design, which implies exposing each individual to an anesthetic concentration for a defined 

period of time, applying a noxious stimulus (commonly a skin incision) and recording the 

response.(Sonner, 2002) Data is fitted into a logistic or sigmoid Emax equation which allows 

determination of the probability of non-movement in half of the population, the 50% effective 

dose (ED50) or MAC for the population but not to the individual.(Sonner, 2002) In the bracketing 

study design, which is commonly used in animals, the animal is exposed to the anesthetic and the 

movement or lack of is noted.  Depending on the initial response, the dose is increased until the 

animal does not respond or decreased until a response is detected.(Sonner, 2002) This design 

allows determination of MAC per individual as the minimum dose to preventing movement and 

the largest concentration permitting movement.(Sonner, 2002) The population MAC is the 

average individual MAC.(Sonner, 2002) In the case of toxicology studies, the determination of 

LD50 is usually required. Using older methods, a large number of animals is needed, therefore, 

alternative studies designs have been proposed as the Acute-Toxic-Class-Method, the Fixed-

Dose-Procedure and the Up-and-Down method.(Rusche, 2003) The up-and-down has been 

reported to reduce the number of animals needed without affecting the reliability.(Lichtman, 

1998) 

 

3.1.2 The Up-and-Down study design 

The so-called up-and-down method was initially described by Dixon and Mood (1948) to 

test the sensitivity of explosives.(Dixon and Mood, 1948) Later, Dixon (1965) described the up-

and-down method for statistical analysis of small samples.(Dixon, 1965) Since then, this method 

has been used and modified for different purposes from toxicological studies (Sunderam et al., 
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2004) to human and veterinary MAC studies (Mercado et al., 2008; Niu et al., 2013). The use of 

the up-and-down method for MAC determination has been performed in birds, mainly in 

endangered species as the thick-billed parrot (Rhynchopsitta pachyrhyncha).(Mercado et al., 

2008; Phair et al., 2012) 

The up-and-down method is a sequential design with binary response variables within a 

certain population which allows the determination of an effective dose to 50% of the 

population.(Pace and Stylianou, 2007) The target dose is the mean dose measured during these 

crossover events.(Mercado et al., 2008) With this method each animal is used only once. This is 

extremely important because if one animal is used more than once, this animal will have too 

much influence on the final dose determination, therefore, inducing bias to the data. A 

predetermined dose is chosen. This dose can be randomly selected or based on prior experience; 

however, ideally it should be close to the ED50 or LD50. Strict quantifiable binary response 

variables should be established a priori. For MAC studies, a response or lack of response to 

stimuli is commonly used. Crossover events occur when two sequential animals have 

contradictory results (one positive response followed by a negative response or vice versa). 

In order to clarify the up-and-down method, the following hypothetical example is given 

in which X is the initial dose and Y is the variation of the dose. (Figure 2 and 3) The first animal 

is given a dose X. If the response of the first animal was considered negative, the second animal 

receives the dose of X+Y. If the response of the first animal is positive, the second animal will 

receive X-Y. The sequence and dose calculation is based on the response of the previous animal. 

Dose will receive increments or reductions in a sequential faction. 
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Figure 2. Flow chart demonstrating the sequence of dose selection using the up-and-down 

method in a hypothetical case.  

 

Figure 3. Graphical distribution of a hypothetical study using the up-and-down design. Animals 

are used only once in a sequential manner. Dose is increased or decreased by equal dose spacing 

depending on response of the previous animal. Binary responses (effect [solid blue circle] or no 

effect [solid red circle]) are previously defined. Cross over events are contradictive responses 

between two sequential animals. 
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The up-and-down method has been compared with the fixed dose procedure and 

conventional LD50 tests.(Bruce, 1987; Lipnick et al., 1995; Yam et al., 1991) In one study, the 

up-and-down method was consistent with the conventional LD50 in 23 of 25 cases while the 

fixed dose procedure was consistent in 16 of 20.(Lipnick et al., 1995) In another study, although 

similar results were gathered with both the up-and-down method and the fixed dose procedure, 

the up-and-down required a lower number of study subjects.(Yam et al., 1991) In one study, 

about 40 to 50 animals were needed using the traditional LD50 method while with the up-and-

down method only 6 to 9 animals were needed.(Bruce, 1987) Although to the author’s 

knowledge no comparison between the conventional methods and the up-and-down has been 

reported in anesthesia, one could consider this method as an adequate method for efficient dose 

determination. Some limitations to the up-and-down have been reported. As the determination of 

dose is based on the response of the previous animal, it is necessary to allow time for the effect 

of the test. This is a concern in some toxicological studies in which the mortality may only occur 

7 days after drug experimentation, therefore, the up-and-down method is not recommended for 

cases in which death is expected within more than 2 days post dosing.(Bruce, 1985) The use of 

the up-and-down method, as previously stated, allows the determination of the ED50, however, it 

does not provide information on ED95/99 as it does not give any insight into the upper tail of the 

tolerance distribution.(Pace and Stylianou, 2007; Rispin et al., 2002)   
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CHAPTER 4 

ASSESSMENT OF CARDIOVASCULAR EFFECT OF PREDEFINED DOSES OF 

INTRAVENOUS LIDOCAINE IN BROILER CHICKENS (GALLUS GALLUS 

DOMESTICUS) – PILOT STUDY 

 

4.1 Objective and hypothesis 

The objective of this pilot study was to determine the cardiovascular effects of predefined 

intravenous doses of diluted preservative free lidocaine in broiler chickens. The dose selection 

was based on the published lidocaine doses of 1 to 3 mg/kg (route of administration not reported) 

in birds, while 4 mg/kg (route of administration not reported) is suggested to be toxic.(Carpenter, 

2005) Therefore, three treatment doses of 2.5, 3.0 and 3.5 mg/kg of intravenous lidocaine were 

selected for this study. Intravenous 0.9% saline would serve as the control. The hypothesis was 

that intravenous lidocaine at 2.5, 3.0 and 3.5 mg/kg would not cause clinically significant 

cardiovascular side-effects when compared to the saline group. 

 

4.2 Study design 

The LSU Institutional Animal Care and Use Committee (IACUC) approved this study. 

Eight female broiler chickens (Ross 708, Aviagen, Huntsville, AL, USA), 6 to 8 weeks of age, 

acquired from the LSU poultry unit, were used for this study. Chickens weighed an average of 

2.5 kg (range 2.1 – 3.7 kg). To ensure the health of the birds, a physical exam, complete blood 

cell count (CBC) and plasma biochemistry panel were performed on all birds upon arrival at the 

housing facility. The CBC’s were performed by the LSU Clinical Pathology Laboratory. The 

plasma biochemistries were analyzed using the Abaxis Avian/Reptile biochemistry profile 

(VetScan, Abaxis, California, USA). All animals were considered healthy based on the results of 

the physical exam, CBC, and biochemistries. Chickens were individually identified with a 
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numbered leg band and allowed to acclimatize for 1 week prior to the experimental period. The 

animals were housed as a group and cared for in accordance to protocols set forth by the LSU 

Division of Laboratory Animal Medicine. The birds were offered ad lib commercial maintenance 

chicken pelleted diet (Layena SunFresh, Purina Mills, St. Louis, MO) and unfiltered tap water in 

plastic containers. Fluorescent lighting was maintained on an automatic timer with a 12 hour 

photoperiod. 

Animals and order of treatments were randomized using statistical software (R, R 

Foundation for Statistical Computing, Vienna, Austria) to limit order effect. Treatments 

consisted of: treatment I (0.9% saline control of equal volume to treatment IV), treatment II (2.5 

mg/kg lidocaine), treatment III (3 mg/kg lidocaine) and treatment IV (3.5 mg/kg lidocaine). Two 

animals were assigned to each treatment group. Each animal was used only once. Preservative 

free lidocaine hydrochloride 2% (Lidocaine Hydrochloride Injection, International Medication 

Systems, California, USA) was diluted with 0.9% saline (0.9% Sodium Chloride Injection USP, 

Hospira, Illinois, USA) to reach a concentration of 10 mg/ml. 

Clinically significant cardiovascular effects were defined as a relative decrease in the 

mean blood pressure (MAP) and/or heart rate (HR) of 30% or greater from the baseline value. 

Conversely, clinically insignificant effects were defined as a relative decrease in the MAP and 

HR of less than 30%.  

  

4.3 Experimental design 

Each chicken was physically restrained for anesthetic induction via face mask with 

isoflurane (Isoflo; Abbott Laboratories, Illinois, USA) delivered at 5% in 100% oxygen at a flow 

rate of 2 L/min using a Bain breathing system. Once anesthetic induction was achieved, the birds 
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were intubated with a non-cuffed Murphy’s endotracheal tube (3.0, 3.5 or 4.0 mm internal 

diameter as needed) and placed in dorsal recumbency. Isoflurane concentration was decreased 

until the end-tidal concentration of isoflurane was between 1.4 and 1.7% as measured by a gas 

analyzer (Datascope Passport 2, MAQUET, New Jersey, USA). Core temperature was monitored 

with an esophageal temperature probe (Datascope Passport 2, MAQUET, New Jersey, USA) 

placed at the level of the heart. Surface electrocardiogram pads (LL Electrode Series, Lead-Lok, 

Idaho, USA) were placed bilaterally on the cranial pectoral muscles and unilaterally on the left 

proximal tarsometatarsus connected to a data acquisition system (Power Lab Acquisition System, 

Power Lab, Colorado, USA). A 22-gauge 1 inch long venous catheter (Abbocath-T, Hospira, 

Illinois, USA) was placed in either the right or left ulnar vein and a 22-gauge 1 inch long arterial 

catheter (Abbocath-T, Hospira, Illinois, USA) was placed in the left or right deep radial artery or 

in the right cranial tibial artery. Selection of venous and arterial access placement was based on 

subjective interpretation of access quality. Direct arterial blood pressures were measured using a 

disposable pressure transducer system (Menscap, SP844 physiological sensor, North Coralina, 

USA) connected to a data acquisition system (Power Lab Data Acquisition System, Colorado, 

USA). Spontaneous breathing was allowed as long as end-tidal carbon dioxide concentration 

(EtCO2) remained between 35 and 45 mmHg. If higher values of EtCO2 were detected, positive-

pressure ventilation was administered by a mechanical ventilator (SAV2500 Ventilator, Smiths 

Medical PM, Wisconsin, USA) at a rate of 5 breaths/min with a peak inspiratory pressure of 15 

cm H2O until EtCO2 levels returned to the 35 and 45 mmHg range. Constant rate infusion of 

lactated ringer’s solution (Lactated Ringer’s Injection USP, Hospira, Illinois, USA) was 

delivered at 4 ml/kg/h via venous catheter using a fluid pump (Vet/IV 2.2, Heska Corporation, 

Colorado, USA). A hot-water blanket (T/Pump, Gaymar Industries Inc., New York, USA) set at 
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90
o
F (32

o
C) was covered with a towel and placed underneath the animal. The animals’ 

temperature was maintained between 102 and 105
o
F (39 and 40.5

o
C). If temperature was below 

target, additional thermoregulatory support was provided with a forced-air warmer (Bair Hugger, 

Arizant Inc., Minnesota, USA). 

Once all instrumentation was placed, and target values reached, data collection using a 

data acquisition system (Power Lab Acquisition System, Power Lab, Colorado, USA) was 

initiated. Baseline values were recorded for 30 seconds prior to treatment administration. After 

baseline was acquired, administration of lidocaine at the target dose was initiated. Total volume 

was administered over a 2 min period using a syringe drive pump (Medfusion 2010i Syringe 

Pump, Medex Inc., Georgia, USA). Data was collected for 30 minutes post drug administration. 

 

4.4 Data analysis 

Mean HR and MAP was calculated using computer software (Power Lab Acquisition 

System, Power Lab, Colorado, USA) for 30s (baseline) prior to lidocaine administration. The 

lowest HR and MAP values were determined from the data collected post lidocaine 

administration using computer software (Power Lab Acquisition System, Power Lab, Colorado, 

USA). Relative changes between baseline and post lidocaine values were calculated. Calculation 

was performed with the following formulas: 

                         (   
                        

                       
)      

                         (   
                         

                        
)      
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Data was analyzed using Microsoft Excel 2010 (Microsoft, Redmond, WA, USA) 

software. Values were calculated to the first decimal unit. Effect was considered when relative 

changes of MAP and/or HR were equal to or greater than 30%. Conversely, no effect implied 

relative changes of MAP and HR were less than 30%.  

 

4.5 Results 

During the course of the experiment, none of the animals showed clinically significant 

cardiovascular depression. Values of HR and MAP pre- and post-lidocaine administration as 

well as relative changes are reported on table 4. Variable responses to the administration of 

preservative free lidocaine were detected. The highest doses of intravenous lidocaine did not 

appear to consistently lead to the most significant decreases of HR or MAP. As an example, one 

of the control animals (saline) had a decrease in HR of 28%, which was similar to the effect 

cause by the dose of 3.5 mg/kg and 2.5 mg/kg in one animal, each (animal #6 and #2, 

respectively). The animal #2 which received the dose of 2.5 mg/kg had similar relative decrease 

of MAP to animal #6, which received the dose 3.5 mg/kg. 

 

Table 4. Heart rate and mean blood pressure values prior and post intravenous lidocaine (at 2.5, 

3.0, 3.5 mg/kg) or control, and relative changes. 

Animal  HR 

baseline 

(bpm) 

HR post 

lidocaine 

(bpm) 

HR 

relative 

changes 

(%) 

MAP 

baseline 

(mmHg) 

MAP 

post 

lidocaine 

(mmHg) 

MAP 

relative 

changes 

(%) 

Response Dose 

(mg/kg) 

1 236.2 190.1 19.5 96.8 75.5 22.0 No effect 3.5 

4  266.1 237.4 10.8 106.2 81.9 22.9 No effect 3.0 

6 313.3 226.3 27.8 113.7 80.1 29.6 No effect 3.5 

2 240.5 174.6 27.4 83.4 58.8 29.5 No effect 2.5 

5  225.4 162.2 28.0 96.7 89.1 7.9 No effect Control 
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Table 4 continued 

Animal  HR 

baseline 

(bpm) 

HR post 

lidocaine 

(bpm) 

HR 

relative 

changes 

(%) 

MAP 

baseline 

(mmHg) 

MAP 

post 

lidocaine 

(mmHg) 

MAP 

relative 

changes 

(%) 

Response Dose 

(mg/kg) 

8 266.1 211.5 20.5 106.9 78.8 26.3 No effect 3.0 

3 238.9 168.7 29.4 95.9 83.9 12.5 No effect 2.5 

7 178.9 168.4 5.9 77.2 67.7 12.3 No effect Control 

 

4.6 Conclusions 

Based on these results, it was concluded that doses of 2.5, 3.0 and 3.5 mg/kg were not 

sufficient to cause clinically significant cardiovascular effects in broiler chickens. This supports 

the previous recommended doses of 1 to 3 mg/kg in birds. It appeared that higher doses had to be 

used in order to determine the tolerable limit.  

Although the suggested toxic dose of 4 mg/kg was not tested, the 3.5 mg/kg dose did not 

result in clinically significant cardiovascular depression. It appeared unlikely that an increase of 

0.5 mg/kg would lead to a severe cardiovascular depression. The cardiovascular changes caused 

by the dose of 3.5 mg/kg on animal #6 (HR decrease 27.8%, MAP decrease 29.6%) were similar 

to the dose of 2.5 mg/kg on animal #2 (HR decrease 27.4%, MAP decrease 29.5%). Animal #1 

which received a dose of 3.5 mg/kg had lower cardiovascular depression than an animal 

receiving the 2.5 mg/kg dose (animal #2). It is unclear why the lower doses occasionally led to 

similar cardiovascular effect as the higher doses.  

Although the initial suspicion was that the toxic and recommended doses of lidocaine 

were anecdotal, this pilot study was needed to assess the accuracy of this information. 

Furthermore, it would be unethical to test the toxic or higher doses without first confirming the 
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accuracy of the published information. The purpose of this pilot study was to confirm the 

published information.  

Based on the information gathered during this study, it would be necessary to test higher 

doses to determine the highest tolerable dose in terms of cardiovascular effects.  
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CHAPTER 5 

CARDIOVASCULAR TOLERANCE TO INTRAVENOUS LIDOCAINE IN THE 

BROILER CHICKEN (GALLUS GALLUS DOMESTICUS) – EFFECTIVE DOSE 50 

DETERMINATION PHASE 

 

5.1 Objective and hypothesis 

The goal of this study was to determine the cardiovascular tolerance to intravenous 

lidocaine administration in broiler chickens. The objective was to determine the effective dose 

(ED50) using up-and-down methodology (Dixon, 1965). The ED50 was defined as the dose that 

would cause clinically significant cardiovascular effects in 50% of the population. Based on the 

previously reported pilot study in which no clinically significant cardiovascular depression was 

detected at the predefined doses of 2.5, 3.0 and 3.5 mg/kg, higher doses than previously test were 

necessary. The initial dose was selected to be 7 mg/kg. The dose selection was determined by 

applying a factor of 2 to the previously higher dose tested. The rationale to such dose selection 

was based on the fact that the highest doses tested previously were insufficient to cause clinically 

significant cardiovascular depression. Furthermore, the lowest doses tested led to similar 

cardiovascular changes as the highest dose. The hypothesis was that the ED50 of intravenous 

lidocaine would be lower than 7 mg/kg for a specific population of broiler chickens.  

 

5.2 Study design 

The study was approved by the LSU IACUC. Eleven female broiler chickens (Ross 708, 

Aviagen, Huntsville, AL, USA) 8 to 10 weeks of age, acquired from the LSU poultry unit, were 

used for this study. Chickens mean weight was 3.6 kg (range 2.6 – 4.3 kg). Animals were 

assessed and housed as previously described in chapter 3.   



48 
 

Order of animals was randomized using freeware statistical software (R, R Foundation 

for Statistical Computing, Vienna, Austria). Each animal was used only once. The dose of 7 

mg/kg was used as the baseline dose for the first animal. Increments and deductions of the dose 

were elected to be 1 mg/kg (one unit). Effect was defined as a relative decrease of MAP and/or 

HR equal to or greater than 30%. Conversely, no effect implied relative decrease of MAP and 

HR of less than 30%. Relative changes were calculated using Microsoft Excel 2010 (Microsoft, 

Redmond, WA, USA). Clinically significant and insignificant relative changes on MAP and HR 

were noted.  

 

5.3 Experimental design 

Anesthesia, monitoring, and determination of baseline values were performed as 

described in chapter 3. The first animal received a dose of 7 mg/kg of preservative free lidocaine 

hydrochloride 2% (Lidocaine Hydrochloride Injection, International Medication Systems, 

California, USA) diluted with 0.9% saline (0.9% Sodium Chloride Injection USP, Hospira, 

Illinois, USA) to a concentration of 10 mg/ml. Total volume was administered over 2 minutes 

via a syringe drive pump (Medfusion 2010i Syringe Pump, Medex Inc., Georgia, USA). Based 

on the response in the first animal, the second randomly selected animal would receive either an 

increment or deduction of one unit (1 mg/kg) from the 7 mg/kg dose if no effect or effect 

response, respectively, was observed. The third animal would receive either an increment or 

deduction of 1 mg/kg from the dose of the second animal if a no effect or effect response, 

respectively, were observed. This pattern would be continued for all animals in study. Crossover 

events were allowed and noted. Crossover events were classified as contradictory effects 

between sequential animals. A minimum of 4 cross overs were required. Each animal was used 
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only once. The HR and MAP was monitored and recorded for 30 minutes after the administration 

of lidocaine as described on Chapter 3. After the end of the treatment, all equipment was 

removed and anesthesia was discontinued. Animals were allowed to recover under supervision. 

 

5.4 Data analysis 

Mean HR and MAP was calculated using computer software (Power Lab Acquisition 

System, Power Lab, Colorado, USA) for 30s (baseline) prior to lidocaine administration. The 

lowest HR and MAP values were determined from the data collected post lidocaine 

administration using computer software (Power Lab Acquisition System, Power Lab, Colorado, 

USA). Relative changes between baseline and post lidocaine values were calculated. Calculation 

was performed with the following formulas: 

                         (   
                        

                       
)      

                         (   
                         

                        
)      

 

Data was analyzed using Microsoft Excel 2010 (Microsoft, Redmond, WA, USA) 

software. Values were calculated to the first decimal unit. Effect was considered when relative 

decrease of MAP and/or HR was equal to or greater than 30%. Conversely, no effect implied 

relative decrease of MAP and HR were less than 30%.  

 The ED50 of intravenous lidocaine was calculated using the Dixon’s up-and-down 

analysis (Dixon, 1965) and quantal analysis. For the up-and-down analysis, the ED50 was defined 

as the mean of lidocaine doses measured during crossover events. The 95% confidence intervals 

were calculated by use of binomial probability. Quantal analysis was used to calculate the 
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probability of significant cardiovascular effects as a function of intravenous dose, where ED50 

was the dose at which that probability was 50%. Data underwent logistic and nonlinear 

regression by use of computer software. The ED50 and fiducial intervals were estimated from the 

probit curve. For all statistical analyses, a value of p < 0.05 was considered significant.  

 

5.5 Results 

Animals were considered healthy based on physical examination, CBCs and plasma 

biochemical. Values of HR and MAP pre- and post-lidocaine administration as well as relative 

changes are reported on table 5. Six of 11 animals had effect (decrease of MAP and/or HR ≥ 

30%). The remaining 5 animals had no effect (decrease of MAP and HR < 30%). Five cross over 

events occurred as shown on Figure 4. Using the Dixon’s up-and-down analysis (Dixon, 1965), 

the ED50 of the population was 6.3 mg/kg. Using logistic regression, we obtained a calculated 

dose of 6.22 mg/kg with a 95% Wald confidence interval of 5.3 – 7.13 mg/kg.  

 

Table 5. Heart rate and mean blood pressure values prior and post intravenous lidocaine, and 

relative changes. 

Animal 

order 

HR 

baseline 

(bpm) 

HR post 

lidocaine 

(bpm) 

HR 

relative 

changes 

(%) 

MAP 

baseline 

(mmHg) 

MAP 

post 

lidocaine 

(mmHg) 

MAP 

relative 

changes 

(%) 

Response Dose 

(mg/kg) 

1
st
  309.6 216.9 29.9 101.6 91.5 9.9 No effect 7 

2
nd

  331.9 204.6 38.4 116.1 58.3 48.2 Effect 8 

3
rd

  188.9 146.5 22.4 117.8 73.0 38.0 Effect 7 

4
th

 166.3 145.1 12.8 94.9 61.0 35.7 Effect 6 

5
th

  160.6 188.9 15.0 120.0 95.7 20.3 No effect 5 

6
th

  274.2 207.4 24.4 117.8 86.6 26.5 No effect 6 

7
th

  181.1 144.5 20.2 100.9 62.7 37.9 Effect 7 

8
th

  242.1 187.1 22.7 112.3 75.5 32.8 Effect 6 
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Table 5 continued 

Animal 

order 

HR 

baseline 

(bpm) 

HR post 

lidocaine 

(bpm) 

HR 

relative 

changes 

(%) 

MAP 

baseline 

(mmHg) 

MAP 

post 

lidocaine 

(mmHg) 

MAP 

relative 

changes 

(%) 

Response Dose 

(mg/kg) 

9th  258.3 247.5 4.2 121.4 113.6 6.4 No effect 5 

10th  229.9 179.6 21.9 101.5 92.3 9.1 No effect 6 

11th  242.2 178.7 26.2 124.7 78.9 36.7 Effect 7 

 

 

 
Figure 4. Sequence of animals used during the tolerability study. No effect (+) and effect (-) 

responses are shown. Cross-over events (circles) are highlighted.    

 

5.6 Conclusions 

Mortality or morbidity events were not detected. The highest dose used throughout the 

experimental period was 8 mg/kg. The relative decreases at that dose were 38.4% (HR) and 

48.2% (MAP). At the dose of 7 mg/kg (2
nd

 highest dose), one animal had effect while three 
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animals had no effect. In 3 of 4 animals, only the MAP was clinically significantly affected 

(38%, 37.9%, 36.7%). None of the 4 animals had a clinically significant decrease of HR. No 

abnormality was detected during recovery in any of the animals. Although the objective of this 

study was not to determine the toxic dose, it appears that higher doses than 7 and 8 mg/kg may 

be necessary to determine the toxic dose.  

The dose calculation based on the Dixon’s up-and down statistical analysis allowed the 

determination of the ED50. For the up-and-down technique, the ED50 was defined as the mean of 

lidocaine doses measured during crossover events. Using the up-and-down method, it was 

possible to detect the maximum dose without clinically significant cardiovascular side-effects for 

50% of the population as 6.3 mg/kg. 

The quantal analysis was used to calculate the probability of clinically significant 

cardiovascular depression (HR and/or MAP decrease equal to or greater than 30%) as a function 

of intravenous lidocaine dose. Using the quantal analysis the dose of 6.22 mg/kg with intervals 

of 5.3 – 7.13 mg/kg was calculated.   

With this study, it was possible to determine the highest tolerable dose of intravenous 

lidocaine in 50% of a broiler chicken population. Using two different statistical methods, the 

dose determination resulted in similar results (6.3 vs. 6.22 mg/kg). The quantal analysis also 

allowed determination of the confidence interval of 5.3 – 7.13 mg/kg with 95% Wald 

confidence. 

The doses determined in this study were higher than the 4 mg/kg toxic dose previously 

reported.(Carpenter, 2005) However, this information was representative of a particular 

population of broiler chickens. Another study would be required to further characterize the use of 
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intravenous lidocaine in a different group of broiler chickens and assess the safety of the 

determined dose.  
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CHAPTER 6 

CARDIOVASCULAR SAFETY OF INTRAVENOUS LIDOCAINE IN THE BROILER 

CHICKEN (GALLUS GALLUS DOMESTICUS) – EFFECTIVE DOSE 50 

CONFIRMATION PHASE 

 

6.1 Objective and hypothesis 

The objective of this study was to determine the safety of the previously determined 

doses of 6.22 and 6.3 mg/kg. Based on the previous study, these doses should cause clinically 

insignificant cardiovascular depression in 50% of the population. The goal of this study stage 

was to determine a safe dose that could be used clinically in broiler chickens. Therefore, it was 

elected to reduce the dose to 6 mg/kg. The hypothesis of this study was that the dose of 6 mg/kg 

of intravenous lidocaine would not cause significant cardiovascular effects on the study 

population of broiler chickens. 

 

6.2 Study design 

The study was approved by LSU IACUC. Six female broiler chickens (Ross 708, 

Aviagen, Huntsville, AL, USA), 8 to 10 weeks of age, acquired from the LSU poultry unit, were 

used for this study. The chickens mean weight was 3.2 kg (range 2.8 – 3.6 kg). Animals were 

assessed and housed as previously described in chapter 3. 

 Order of animals was randomized using freeware statistical software (R, R Foundation 

for Statistical Computing, Vienna, Austria). Each animal was used only once. Effect was defined 

as a relative decrease of MAP and/or HR equal to or greater than 30%. Conversely, no effect 

implied relative decrease of MAP and HR of less than 30%. Results of relative decrease were 

calculated using Microsoft Excel 2010 (Microsoft, Redmond, WA, USA). Clinically significant 

and insignificant relative changes on MAP and HR were noted.  
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6.3 Experimental design 

Anesthesia, monitoring, and determination of baseline values were performed as 

described in chapter 3. Each animal received a dose of 6 mg/kg of preservative free lidocaine 

hydrochloride 2% (Lidocaine Hydrochloride Injection, International Medication Systems, 

California, USA) diluted with 0.9% saline (0.9% Sodium Chloride Injection USP, Hospira, 

Illinois, USA) to a concentration of 10 mg/ml. Total volume was administered over 2 minutes 

via a syringe drive pump (Medfusion 2010i Syringe Pump, Medex Inc., Georgia, USA). The HR 

and MAP was monitored and recorded for 30 minutes after the administration of lidocaine as 

described on Chapter 3. 

 

6.4 Data analysis 

Mean HR and MAP was calculated using computer software (Power Lab Acquisition 

System, Power Lab, Colorado, USA) for 30s (baseline) prior to lidocaine administration. The 

lowest HR and MAP values were determined from the data collected post lidocaine 

administration using computer software (Power Lab Acquisition System, Power Lab, Colorado, 

USA). Relative changes between baseline and post lidocaine values were calculated. Calculation 

was performed with the following formulas: 

                         (   
                        

                       
)      

                         (   
                         

                        
)      

 

Data was analyzed using Microsoft Excel 2010 (Microsoft, Redmond, WA, USA) 

software. Values were calculated to the first decimal unit. Effect was considered when relative 
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decrease of MAP and/or HR was equal to or greater than 30%. Conversely, no effect implied a 

relative decrease of MAP and HR of less than 30%.  

 

6.5 Results 

All animals were determined to be healthy based on physical exam, CBC and plasma 

biochemistry. All 6 animals received an intravenous lidocaine dose of 6 mg/kg over a period of 2 

minutes. No mortality or morbidity was detected during the course of the study. No clinically 

significant cardiovascular effects were detected in any of the animals. Results are reported on 

table 6. 

 

Table 6. Heart rate and mean blood pressure values prior and post intravenous lidocaine, and 

relative changes. 

Animal 

order 

HR 

baseline 

(bpm) 

HR post 

lidocaine 

(bpm) 

HR 

relative 

changes 

(%) 

MAP 

baseline 

(mmHg) 

MAP 

post 

lidocaine 

(mmHg) 

MAP 

relative 

changes 

(%) 

Response Dose 

(mg/kg) 

1
st
  239.7 222.9 7.0 79.8 79.6 0.3 Positive 6 

2
nd

  308.5 288.0 6.7 83.6 75.4 9.8 Positive 6 

3
rd

  324.4 307.5 5.3 112.4 113.9 -1.3 Positive 6 

4
th

 261.6 242.3 7.4 90.2 82.6 8.4 Positive 6 

5
th

  260.9 223.2 14.5 91.6 99.6 -8.7 Positive 6 

6
th

  315.6 279.8 11.3 71.4 59.8 16.2 Positive 6 

 

6.6 Conclusions 

This study phase was intended to test the safety of intravenous lidocaine of 6 mg/kg in 

the broiler chicken. The dose of 6 mg/kg was based on the previous ED50 determined on chapter 

4. This dose is 2 mg/kg higher than the previously suggested toxic dose. (Carpenter, 2005) If the 

published information was accurate, it would be expected that the dose of 6 mg/kg would lead to 
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significant morbidity and even possibly mortality. However, throughout the entire study, no 

significant cardiovascular effects were noticed. Furthermore, no mortality or morbidity was 

observed.  

Interestingly, the relative changes detected in the course of this study phase, were lower 

than the ones detected during the ED50 study. These different findings may be related to the 

slightly lower dose (6 mg/kg versus 6.22 and 6.3 mg/kg) used on the third phase.  

 As previously mentioned, the rationale of reducing the dose to 6 mg/kg was in order to 

test a dose that could be used in a clinical setting. As the entire population did not show 

clinically significant cardiovascular effects, it appears that this dose could be safe under clinical 

setting for broiler chickens. 

This study showed that the dose of 6 mg/kg of intravenous preservative free lidocaine did 

not lead to clinically significant cardiovascular effects. Further studies are needed to assess the 

safety of 6 mg/kg lidocaine dose in a larger population as well as in other species.  
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CHAPTER 7 

CONCLUSIONS 

 

Based on the currently published information, it is said that lidocaine can cause toxicity 

at relatively low doses (4 mg/kg).(Carpenter, 2005) Based on this assumption, lidocaine may not 

be commonly used in avian species. However, this information appears to be anecdotal and lack 

scientific validation. The use of non-scientifically validated information is a common problem in 

avian medicine. Due to the large number of species and limited scientific research, there is a 

need to adapt information from other species and use personal experience. In the case of the 

suggested therapeutic (1-3 mg/kg) and toxic (4 mg/kg) doses of lidocaine for birds, the origin of 

such information is not clear.(Carpenter, 2005; Carpenter and Marion, 2013; Huckabee, 2000; 

Ludders and Matthews, 2007; Machin, 2005; Paul-Murphy and Ludders, 2001; West et al., 2007) 

Furthermore, no information on the route of administration or species is provided in those 

references. As previously mentioned, several studies have used much higher doses for the 

purpose of regional nerve block without reporting mortality or morbidity related to the use of 

lidocaine.(Brenner et al., 2010; Figueiredo et al., 2008) The route of administration is a factor 

that could have a significant impact on the occurrence of adverse side effects. Also, certain 

species may be more sensitive to lidocaine than others. Due to this contradictive data, there was a 

need to assess the veracity of such information. 

The objective of this thesis research was to assess the cardiovascular effects of 

intravenous lidocaine in a specific strain of broiler chickens. To do so, a 3 stage study was 

planned. On an initial stage, validity of the published information was tested. On a pilot study, 

doses below the published toxic level were tested. Based on a lack of clinically significant 

cardiovascular toxicity during that study, testing higher doses was performed. The 2
nd

 study, 
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using the Dixon’s up-and-down method, allowed the determination of the highest tolerable dose 

of intravenous lidocaine that would not cause significant cardiovascular depression in chickens. 

On the 3
rd

 study, the previously gathered information was tested in a different group of broiler 

chickens. 

The 3 studies allowed the determination of the highest tolerable dose in terms of 

cardiovascular effects and further assessed the safety of such dose. The results gathered during 

these studies indicate that the previously reported toxic dose were erroneous, at least for this 

study population. These studies were performed in a specific strain of chickens. Future studies 

assessing the use of lidocaine in other species are needed, nevertheless, the results show that 

lidocaine may be a useful therapeutical agent and that it may be worth to investigate its effects 

further in avian species. However, the studies had limitations that are important to consider.  

The lidocaine used was preservative free lidocaine. In humans, allergic reactions to local 

anesthetics are rare. (Stoelting and Hillier, 2006) Considering the low number of confirmed 

allergic reactions, it can be considered that the allergic reactions could be related to other 

compounds of the drug rather than the pharmaceutical agent per se. (Stoelting and Hillier, 2006) 

Several compounds commonly used as preservative have been reported to cause allergic 

reactions; methylparaben, sodium metabisulfite, and bisulfite.(Dooms-Goossens et al., 1989; 

Schwartz and Sher, 1985; Stoelting and Hillier, 2006) Because of the assumption that other 

compounds could be related to lidocaine toxicity, it was elected to use a lidocaine formulation 

that did not contain preservatives. It is unclear if the findings of this study could have been 

different if another lidocaine formulation was used, but it is an important consideration in terms 

of clinical use.  
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All animals used during this study had similar genetic background. The broiler chickens 

used during the study were Ross 708 (Aviagen, Huntsville, AL, USA). These animals are highly 

selected and the genetic background is very similar. This provides less genetic variability, 

therefore less bias to the study but may limit the usefulness of the information to other chicken 

breeds and other avian species. Congenital cardiovascular disease predisposition of broiler 

chickens has been well described.(Julian, 1998; Julian et al., 1987; Moghadam et al., 2005; Rauw 

et al., 1998) In a recent study assessing the gross pathological finding on dead-on-arrival broiler 

chickens (Ross 308 and Ross 708) to a Danish abattoir, atrial dilation (222/295), myocardial 

congestion (54/295), right ventricular dilation (32/295), and biventricular dilation (7/295) were 

reported.(Lund et al., 2013) The reason to use such animals was that if no clinically significant 

cardiovascular effects would be noted in a strain of chickens genetically predisposed to 

cardiovascular disease, then it would be less likely to occur in species without this genetic 

predisposition. Nevertheless, this hypothesis needs to be scientifically validated.  

During the 3 studies, all anesthetic monitoring and instrumentation placement was 

performed in the same manner. Attention was given to standardize certain parameters like 

EtCO2, temperature, and end-tidal concentration of isoflurane. This was achieved by defining 

target values for these parameters. The reason behind such standard was to reduce bias to the 

research. Furthermore, if these parameters were not similar among the animals, significant 

differences among the metabolic rates of the individuals could occur associated with the 

anesthesia. The isoflurane MAC of chickens with controlled ventilation is reported to be 1.25 ± 

0.13% (n=9 female cross-bred) and 1.24 ± 0.05%.(Concannon et al., 1995; Naganobu and Hagio, 

2000) In the current study, the measurement of the end-tidal isoflurane concentration was 
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performed using a gas analyzer (Datascope Passport 2, MAQUET, New Jersey, USA). The 

selected target range was 1.4 and 1.7%. 

The effect of the intravenous lidocaine on the cardiovascular parameters (MAP and HR) 

was used to quantify the cardiovascular depression. Prior to the lidocaine infusion, the average 

value of MAP and HR were calculated. These data was acquired for 30s prior to the drug 

infusion. Following the lidocaine administration, the lowest values of HR and MAP were 

determined. The comparison between the average value of cardiovascular parameters prior to the 

drug administration and the lowest values obtain post-lidocaine administration, allowed the 

determination of a relative decrease (or increase) of those cardiovascular parameters. This also 

allowed the definition of binary responses (effect or no effect). A binary response definition is 

essential for the use of the up-and-down method.  

The definition of clinically significant cardiovascular depression was considered to be a 

threshold of 30% decrease for HR and MAP. Effect was considered when relative decrease of 

MAP and/or HR was equal to or greater than 30%. No effect implied relative decrease of MAP 

and HR of less than 30%. To the author knowledge, there is no clear definition of hypotension 

for chickens or avian species in general; therefore, the definition of hypotension for the purpose 

of this thesis was based on published data on normal MAP/HR and the effects of anesthesia on 

those parameters. Mean blood pressure measured from the abdominal aorta of conscious white 

leghorn chickens (n=45, 30 to 35 weeks old) has been reported to be 137.6 ± 2 mmHg. 

(Nishimura et al., 1981) However, the MAP of anesthetize chickens at 1x MAC (1.25% 

isoflurane) has been reported to be 88 ± 10 (n=9).(Naganobu and Hagio, 2000) In the same 

study, the MAP at 2x MAC (2.5% isoflurane) was 63 ± 9 mmHg (n=9).(Naganobu and Hagio, 

2000) Once the isoflurane was reduce to 1x MAC, the MAP returned to the original 
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values.(Naganobu and Hagio, 2000) The decrease of MAP pressure between 1x MAC and 2x 

MAC was approximately 30%, which was considered statistically significantly 

(p<0.01).(Naganobu and Hagio, 2000) In another study, the administration of reserpine, a indole 

alkaloid antipsychotic and antihypertensive agent, led to statistically significant decrease of 

MAP.(Nishimura et al., 1981) The HR prior to the administration of reserpine was 272 bpm 

while the HR post administration was 186 bpm, which corresponded to approximately 32% 

decrease.(Nishimura et al., 1981) Based on this data, it was elected to use 30% as the clinically 

significant threshold. Although the author considers that a decrease of 30% HR and MAP may 

not be clinically significant in healthy individuals, this may not be the case in unhealthy animals.   

Overall, this study has shown that lidocaine can be used safely in broiler chickens. 

Furthermore, even at the highest doses used during the study (7 and 8 mg/kg), no mortality or 

morbidity was detected. Nevertheless, 4 of 5 animals that received those doses had clinically 

significant cardiovascular effects. Although the objective of this study was not to determine the 

toxic dose, it appears that the toxic/lethal intravenous dose may be higher than 7 or 8 mg/kg.  

In conclusion, this study provides information on the use of intravenous lidocaine in 

chickens. As mentioned above, lidocaine can be used as an analgesic and anesthetic. This is not 

commonly reported in avian species, possibly due to concerns with toxicity. The information 

provided by this study shows evidence that further attention to research on the use of intravenous 

lidocaine in avian species should be performed. Studies assessing the use of constant rate 

infusion, MAC reduction, and analgesic effect of lidocaine need to be performed to investigate 

lidocaine’s efficacy for these purposes. The multitude of lidocaine uses makes it a very appealing 

and interesting drug. The versatile use of lidocaine is, as described previously, due to its effects 

on the sodium channels. Analgesic effects are a consequence of this channel interaction as well. 
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This appears to be extremely interesting in avian analgesia. Avian analgesia still relies greatly on 

the use of non-steroidal anti-inflammatories and opioids. Opioids depend on the interaction with 

opioid receptors, which are of unknown distribution in most avian species. Using a drug, such as 

lidocaine, that does not rely on opioid receptors may be promising. Further studies are needed to 

assess such hypothesis. The author expects that this study can provide useful information for the 

use of lidocaine in avian species. 
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