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ABSTRACT 

 
The objectives of this study were to determine the effects of centrifugation on 

equine sperm progressive motility, plasma membrane integrity (viability), and acrosome 

integrity. We hypothesized that high centrifugation forces would be detrimental to 

equine sperm, yet recovery rates would increase. Ejaculates from six stallions were 

collected, extended (INRA96) to a concentration of 25 x 106 cells/mL, and subjected for 

10 min to 1) no centrifugation (NC); 2) 400 x g (400); 3) 900 x g (900); and 4) 4500 x g 

(4500). Before and after centrifugation (Day 0), and after 24 h of cooling (Day 1), sperm 

motility was assessed by computer assisted semen analysis, and samples were stained 

with SYBR-14/propidium iodide (PI) for viability, and with PI/fluorescent isothiocynate-

PNA (Arachis Hypogaea) for acrosome integrity and assessed by flow cytometry.  Data 

were analyzed using Shapiro-Wilk’s statistics; using a mixed linear model, effects of 

treatment and day were assessed. Compared with the other treatment groups the 4500 

treatment group showed reduced motility, viability, and intact acrosomes (P<0.05).  The 

400 and 900 treatment groups yielded lower recovery rates than the 4500 treatment 

group (NC= 100.0 ± 0.0%, 400 = 54.4 ± 8.6%, 900 = 75.0 ± 7.1% and 4500 = 97.9 ± 

2.8%) (P<0.05). Centrifugation at 400 or 900 x g did not damage equine sperm. Further 

studies of centrifugal forces between 900 and 4500 x g are warranted to find optimal 

forces that maximize recovery rate, minimize sperm damage, and do not affect fertility. 
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CHAPTER 1: 

INTRODUCTION 

 The first work performed in artificial insemination (A.I.) was in horses. The Arabs 

are considered the first to practiced A.I. in horses. In 1322 the first recorded A.I. took 

place after an Arab chief stole semen from the stallion of a rival to inseminate his 

mares. The next recorded work was performed in Italy by Lazzaro Spalanzani in 1776. 

He showed that equine semen placed in snow did not die, but simply inactivated the 

sperm and that motility returned after warming. 

 Initially, A.I. in horses was used to overcome infertility problems in the United 

States by Pearson (1880) and in Europe by a French veterinarian named Repiquet 

(1890). The impact of A.I. on the horse breeding industry started when in two Danes, 

Sand and Stribolt postulated that A.I. should be used as a tool for breed improvement 

rather than for treating infertility.  Consequently, the Russian royal stud in 1912 asked 

Ivanov to investigate A.I. on stud farms.  

 The interest for using of A.I. grew after the Russian’s work and spread to different 

countries including Spain, Hungary, Greece, Australia, China and Japan. By far the 

country that embraced A.I. in horses the most was China. By 1959, the number of 

mares bred in China by A.I. was estimated to be approximately 600,000 (Bowen, 1969). 

 The use of A.I. is commonplace in today’s equine breeding industry. Commonly, 

mares are inseminated with semen from a desired stallion that lives far away and the 

semen needs to be stored and transported. Equine semen for transportation can be 

fresh cooled or frozen. The most commonly used is fresh cooled semen. The 

preference for using fresh cooled semen is based on the higher pregnancy rates 

compared to rates with frozen-thawed semen insemination (Jasko D.J. et al., 1992b).  

 In equine, sperm motion characteristics have been lowered after storage with 

high concentrations of seminal plasma, whereas lowering concentrations has shown 

beneficial effects on motility (Jasko D.J. et al., 1991). Hence, the main goal during 

equine semen processing of either fresh cooled or frozen semen has been the dilution 

of seminal plasma. Seminal plasma dilution is performed by the addition of a semen 
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extender to the raw semen, or by centrifugation of extended semen, partial removal of 

the seminal plasma followed by sperm pellet re-suspension with fresh semen extender. 

Centrifugation of  equine extended semen, partial removal of seminal plasma and 

sperm pellet re-suspension have been shown to be beneficial for sperm fresh cooled 

storage (Brinsko et al., 2000a).  

 However, the effects of centrifugation on equine spermatozoa have not been fully 

elucidated. Some studies have shown a detrimental effect on equine sperm motility 

(Cochran et al., 1984; Heitland et al., 1996; Jasko D.J. et al., 1991), whereas others 

have shown no detrimental effects on either equine sperm motility or viability (Ferrer et 

al., 2004; Jasko D.J. et al., 1992a). Because of the inadequate understanding of the 

effects of centrifugation on equine sperm, the equine breeding industry uses 

conservative centrifugation forces (400 to 650 x g) for semen processing. However, 

these commonly used centrifugation forces cause a loss of 20 – 30% of the total 

number of spermatozoa. Thus, the processing of equine semen could be better 

optimized. 

 The objective of this study was to evaluate the effect of different centrifugal 

forces on equine sperm total and progressive motility, viability, and acrosomal integrity 

immediately after centrifugation and after cooling for 24 hours. Additionally, the sperm 

recovery rates at these different centrifugal forces were recorded. 
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CHAPTER 2: 

LITERATURE REVIEW 

2.1. Stallion Spermatozoa 

Spermatozoa are unique among cells as they posses specialized functions and 

limited repair capacity (Amann and Graham, 1993). The production of spermatozoa 

(spermatogenesis) takes place in the seminiferous tubules of the testes; thereafter they 

are released into the rete testis and enter the epididymus. During their transit through 

the epididymus, spermatozoa obtain fertilizing capacity and are stored at the cauda 

epididymus until ejaculation. 

2.1.1. Spermatozoal Structure and Function 

Stallion spermatozoa are divided into five structural regions (Fig. 1): head, neck, 

middle piece, principal piece, and end piece (Barth and Oko, 1989). Similar structures 

are described for bull, ram, boar, dog and human spermatozoa. Overlying these 

structures is the dynamic plasma membrane (Amann and Graham, 1993). 

The spermatozoal head is elliptical, flattened dorsoventrally and thicker in the 

posterior portion (Johnson et al., 1978; Varner et al., 2000). It can be subdivided into the 

nucleus, nuclear envelope, acrosome, equatorial segment, post acrosomal region, and 

posterior ring (Varner and Johnson, 2007). The nucleus occupies most of the head, and 

contains highly condensed chromatin in association with protamines. Compaction and 

stabilization of the DNA is a result of intra- and inter-molecular disulfide linkages of the 

cysteine residues from protamines (spermatozoal proteins). The nucleus is separated 

from the surrounding cytoplasm by the double-layered nuclear envelope (Fig. 2) (Varner 

and Johnson, 2007).  

The acrosome is a Golgi-derived membrane-bound vesicle formed during an 

early stage of spermiogenesis. Located in the rostral portion of the nucleus (bou-Haila 

and Tulsiani, 2000; Toshimori and Ito, 2003) it is subdivided into inner and outer 

acrosomal membranes, enclosing the acrosomal matrix. Composition of the inner- and 
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outer acrosomal membranes includes phospholipids, proteins and cholesterol. The 

ratios of protein to phospholipids are higher, and cholesterol to phospholipids similar  

 

 

 

when compared to that of the plasma membrane (Parks et al., 1987). The outer 

acrosomal membrane at the equatorial segment is highly fusogenic, and fuses with the 

overlying plasma membrane during the acrosome reaction. After the sperm-oocyte 

fusion, the spermatozoa undergoes the acrosome reaction, releasing hydrolytic 

enzymes (hyaluronidase, proacrosin/acrosin and lipases) from the acrosome matrix. 

These enzymes are necessary to penetrate the oocyte zona pellucida during fertilization 

(Abou-Haila and Tulsiani, 2000).  

Figure 1. Drawing of an equine 
spermatozoon. Structural divisions: 
a) head, b) neck, c) mid-piece, d) 

principal piece, and e) end piece. 
(Adapted from Varner, D.D.: From 
a Sperm’s Eye View-Revisting Our 

Perception of This Intriguing Cell. 
Milne Lecture. AAEP Proceedings, 
2007). 
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The neck is the connecting piece between the head and the middle piece and it 

consists of the capitulum, segmented columns and the proximal and distal centrioles 

(Varner and Johnson, 2007). The head is articulated by the capitulum at the 

implantation fossa. The segmented columns anchor the flagellum. The proximal 

centriole remains in the mature spermatozoa and is the site where the tail beat is 

initiated (Amann and Graham, 1993). The distal centriole disappears in the mature 

spermatozoa and gives rise to the axoneme.  

The middle piece is characterized by the presence of numerous mitochondria 

overlying the dense fibers and the axoneme. Mitochondria are helicoidally arranged in a 

continuous double spiral. Stallion spermatozoa have about 40 - 50 gyres. They are the 

Figure 2. Drawing of an equine 
spermatozoon head. Structural 

divisions: a) plasma membrane, b) 
outer acrosomal membrane, c) 
acrosome, d) inner acrosomal 

membrane, e) nuclear envelope, f) 
nucleus, g) post-acrosomal lamina, 
h) proximal centriole, i) axoneme, 

and j) motochondria. (Adapted from 
Varner, D.D.: From a Sperm’s Eye 
View-Revisting Our Perception of 

This Intriguing Cell. Milne Lecture. 
AAEP Proceedings, 2007). 
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production plant for ATP necessary for spermatozoal function and motility (Varner and 

Johnson, 2007). 

The principal piece is composed of the fibrous sheath and axoneme of the middle 

piece, which continues from the annulus (demarcates the end of the middle piece) and 

extends along the entire length of the principal piece and terminates in the caudal 

principal piece. The fibrous sheath provides structural support and flexibility to the 

flagellum (Amann and Graham, 1993; Varner and Johnson, 2007). 

The plasma membrane overlies all of the spermatozoal structures. Its main 

function  is to fuse with the oocyte oolemma after it undergoes transformation during 

capacitation (Bearer and Friend, 1990; Flesch and Gadella, 2000). At the equatorial 

segment the plasma membrane fuses with the oocyte (Amann and Graham, 1993; 

Bearer and Friend, 1990). The stallion spermatozoal plasma membrane components 

are similar to other species (bull, ram, rooster), consisting of lipids, proteins and 

cholesterol. Lipids, the major component,  include; phospholipids, neutral lipids and 

glycolipids (Flesch and Gadella, 2000; Parks and Lynch, 1992) with phospholipids being 

the predominant class. The phospholipids are arranged in a bilayer; within the inner 

layer are the aminophospholipids phosphatidylserine (PS) and 

phosphatidylethanolamine (PE), and located within the outer layer are the choline 

phospholipids sphingomyelin (SM) and phosphatidylcholine (PC) (Flesch and Gadella, 

2000; Gadella and Harrison, 2000). The molar ratio of cholesterol to phospholipids in 

stallions (0.36) is intermediate between the bull (0.45) and boar (0.26) (Parks and 

Lynch, 1992). The protein to phospholipid ratio in the stallion is low (0.80) (Parks and 

Lynch, 1992), which confers a lower sensitivity to cold shock, compared to the boar 

having a highest protein to phospholipid ratio (1.26) and a higher cold shock sensitivity. 

Cholesterol is a structural component and maintains plasma membrane stability.  

2.1.2. Spermatozoal Metabolism 

Spermatozoa function by fertilizing oocytes, and spreading genetic material 

distant from they were produced. Spermatozoa are one of the smallest cells in the body, 

and do not possess energy storage (Varner and Johnson, 2007). Spermatozoa use 
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adenosine triphosphate (ATP) as the basic energy source and require a constant supply 

for cell function and survival. Energy demands vary depending on spermatozoa activity, 

such as; hyperactivation, acrosome reaction, sperm-oocyte fusion, and motility (Miki, 

2007). To supply energy demands, spermatozoa rely on an extracellular substrate. 

Spermatozoa principally utilize carbohydrates to meet their energy requirements. 

Metabolizable carbohydrates cross the plasma membrane using protein transporters 

(ATP-dependent process). Spermatozoa are capable of producing ATP through 

oxidative phosphorylation, however glycolysis can be considered the central metabolic 

pathway for energy supply (Miki, 2007; Varner and Johnson, 2007). Glucose 

metabolized through glycolysis produces 2 molecules of pyruvate (ATP and NADH). 

Pyruvate is then oxidized by mitochondria to produce 36 ATP molecules (Miki, 2007). 

Glycolysis operates under both  aerobic and anaerobic modes (Storey and Kayne, 

1975), whereas oxidative phosphorylation occurs strictly under aerobic conditions. 

Other substrates can be utilized for energy metabolism, including pyruvic acid, lactic 

acid, fatty acids and amino acids (Varner and Johnson, 2007). Bull and ram 

spermatozoa readily metabolize fructose using protein transporters other than the 

glucose protein transporter (Hiipakka and Hammerstedt, 1978). Conversely, stallion 

spermatozoa have only a limited capacity to metabolize fructose, possibly due to the 

absence of a fructose transport protein (Amann and Graham, 1993). The majority of 

ATP produced by equine spermatozoa is used to maintain motility (Amann and Graham, 

1993; Williams and Ford, 2001). 

2.1.3. Reactive Oxygen Species (ROS) 

Spermatozoa under aerobic conditions will produce reactive oxygen species 

(ROS) as sub-products of aerobic respiration (Aitken, 1995; Twigg et al., 1998), causing 

defects in spermatozoal structure and function. In stallion spermatozoa the primary 

ROS is the superoxide anion (O2
-) which is rapidly catalyzed to hydrogen peroxide 

(H2O2). The amount of ROS produced in stallion semen is dependent on spermatozoal 

concentration (Fig. 3). Morphologically abnormal spermatozoa produce greater amounts 

of ROS than morphologically normal spermatozoa, and this may account for the 
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reduced fertility after storage of semen with high percentage of morphological abnormal 

spermatozoa (Ball et al., 2001). 

 

Figure 3. Generation of hydrogen peroxide (H2O2) by fresh equine spermatozoa during 

a 30-minute incubation at 38°C under aerobic conditions. Cell concentrations of 4 x 106 

(   ), 2 x 106 (   ), and 0.5 x 106 (  ). (Adapted from Ball et al.: Generation of reactive 

oxygen species by equine spermatozoa. American Journal of Veterinary Research, 
2001). 

 

Effects of ROS on spermatozoal function include decreased motility (Aitken et al., 

1993; Baumber et al., 2000; de Lamirande and Gagnon, 1992), lipid peroxidation 

(Aitken, 1995), and reduced spermatozoal viability and acrosome integrity (Aitken et al., 

1993; de Lamirande and Gagnon, 1992), and increased DNA fragmentation (Baumber 

et al., 2003a; Lopes et al., 1998). Reduced viability and acrosome integrity have been 

shown in mouse and ram spermatozoa (Baiardi et al., 1997; Peris et al., 2007). In 

humans, ROS caused spermatozoa DNA fragmentation resulting in reduced fertility or 

infertility (Hughes et al., 1996). The viability and acrosome integrity of fresh stallion 

spermatozoa was not affected by ROS after incubation for 30 min in a xantine-xantine 

oxidase system (X-XO) that generates both O2
- and H2O2. However, ROS caused a 

detrimental effect on motility (Baumber et al., 2000). Perhaps the incubation of stallion 
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spermatozoa for a longer period in ROS will affect the viability and acrosome integrity, 

although this has not been investigated. The plasma membrane composition makes it 

very susceptible to lipid peroxidation by ROS, causing a reduction in plasma membrane 

fluidity needed for sperm motility and sperm-oocyte fusion (Aitken, 1995; Storey, 1997). 

Stallion spermatozoa are very resistant to lipid peroxidation and only when they are 

exposed to high concentrations of ROS, lipid peroxidation occurs (Neild et al., 2005). 

Stallion spermatozoa incubated for 1 hr in a X-XO system resulted in DNA 

fragmentation (Baumber et al., 2003a) that may lead to reduced fertility (Love and 

Kenney, 1998). 

 Paradoxically, spermatozoa are vulnerable to oxidative stress, but at the same 

time, low concentrations of ROS are required for sperm maturation, capacitation and 

binding to the zona pellucida (Baker and Aitken, 2004; Ford, 2004; O'Flaherty et al., 

2006; Parinaud et al., 1997). Reactive oxygen species promote and regulate the protein 

tyrosine phosphorylation in equine (Baumber et al., 2003b), bull (Rivlin et al., 2004) and 

human (O'Flaherty et al., 2006) spermatozoa, which is associated with sperm 

capacitation. 

2.2. Processing of Fresh Cooled Semen  

2.2.1. Seminal Plasma 

Seminal plasma is a mixture of epididymal and accessory sex gland secretions in 

which sperm cells become suspended during ejaculation. The pH of raw stallion semen 

is approximately 7.6 ± 0.3 (Dowsett and Knott, 1996), and the osmolality ranges from 

310 to 320 mOsm  (Griggers et al., 2001). Seminal plasma is composed of minerals, 

proteins (Amann et al., 1987), enzymes (Pesch et al., 2005) carbohydrates (Mann, 

1975), hormones (Troedsson et al., 1998) and antioxidants (Potts et al., 1999). 

Seminal plasma plays an important role in spermatozoal transport and survival 

within the mare’s uterus, as well as elimination of spermatozoa from the mare’s uterus 

(Troedsson et al., 2005). During ejaculation, spermatozoa are coated with proteins from 

the seminal plasma which suppress uterine polymorphonuclear neutrophils (PMNs) 

from binding  and phagocytosing them (Alghamdi et al., 2004; Katila, 2001; Troedsson 
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et al., 2005). Seminal plasma also appears to regulate spermatozoal transport into the 

oviducts (Troedsson et al., 2005), by decreasing uterine contractions following 

insemination and then increasing uterine contractions four hours post-insemination 

(Portus et al., 2005). The beneficial effects of seminal plasma are accomplished after 

contact with spermatozoa for a short time, and seminal plasma may not be needed 

later, because its absence in an insemination dose does not appear to have a negative 

effect on pregnancy rates (Portus et al., 2005).  

Storage of equine spermatozoa in high concentrations of seminal plasma (>20% 

v/v) decreased spermatozoal motility (Jasko D.J. et al., 1991; Varner et al., 1987) and 

caused DNA fragmentation (Love et al., 2005). Deleterious effects on spermatozoa may 

be due to high concentrations of ROS having accumulated in the seminal plasma from 

spermatozoal metabolism. During equine semen processing, the approach commonly 

used to overcome any deleterious effects exerted by seminal plasma is to dilute semen 

by adding a semen extender or by centrifuging the extended semen followed by partial 

removal of the seminal plasma. After seminal plasma dilution, the extended semen is 

placed in a passive cooling device to decrease spermatozoal metabolism and 

consequently ROS production. 

2.2.2. Seminal Plasma Dilution 

Seminal plasma is not an ideal medium for equine spermatozoa storage (Jasko 

D.J. et al., 1991; Moore et al., 2005; Varner et al., 1987). To preserve the fertilizing 

capacity of stored spermatozoa after ejaculation, it is recommended to add a semen 

extender to the raw semen  (Varner, 1986). Semen extenders dilute the seminal plasma 

concentration, control pH and osmolality, supply nutrients and antimicrobials, and 

protect spermatozoa against cold shock during storage. Skim milk based semen 

extenders are commonly used to dilute raw semen. Alternatives to skim milk based 

semen extenders are the purified milk fraction semen extenders. The native 

phosphocaseinate based semen extenders have been shown to improve in vitro 

spermatozoal preservation and pregnancy rates per cycle, as compared with the skim 

milk based semen extenders (Batellier et al., 2001).  
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When diluting raw semen, it is recommended that two criteria are met, at least a 

1:4 dilution (one part semen : 3 parts extender) (Jasko D.J. et al., 1991; Varner, 1986) 

and a final cell concentration between 25 to 50 x 106/mL (Varner et al., 1987). In some 

cases however, even after meeting these criteria, ladequate spermatozoa preservation 

for 24 hours is not achieved. A population of stallions known as “poor coolers” do not 

benefit from dilution of seminal plasma for fresh cooled semen shipment (Brinsko et al., 

2000a). In other situations, dilution of stallion semen with low sperm concentration 

(oligospermic) using the mentioned criteria may provoke the loss of spermatozoal 

motility and viability (“dilution effect”).  

2.2.3. Centrifugation and Sperm Recovery Rate 

 Partial removal of the seminal plasma after centrifugation is thought to remove 

ROS and other components that may cause sperm damage, providing a more balanced 

medium for spermatozoal survival during storage after re-suspension with a semen 

extender. The effects of centrifugation on spermatozoa from different species vary. After 

centrifugation, fertilization by bull spermatozoa was decreased as compared to that by 

non-centrifuged cells (Pickett et al., 1975). Human spermatozoa do not suffer an 

immediate decrease in motility, instead motility loss is observed after a period of time, 

possibly caused by sub-lethal damage induced by centrifugation (Alvarez et al., 1993). 

Conversely, ram spermatozoal survival was improved after centrifugation and partial 

removal of seminal plasma from fresh semen (Ritar and Salamon, 1982). Stallion 

spermatozoal motility of cooled, stored semen was greatly improved after centrifugation 

and partial removal of seminal plasma (Jasko D.J. et al., 1991). The “poor coolers” 

stallion population also benefited from centrifugation, partial removal of the seminal 

plasma and re-suspension in semen extender (Brinsko et al., 2000a).  

The effects of centrifugation on spermatozoa, removal of seminal plasma, and re-

suspension of extended semen appears to be influenced by many factors. These 

factors include time of centrifugation, centrifugal forces, dilution rate, semen extender 

type and amount of seminal plasma retained. The inherent stallion individual variability 

also influenced the effects of centrifugation. Due to this multitude of factors, the effect of 

centrifugation on equine spermatozoa has not been fully elucidated. Consequently, 
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common centrifugation forces used to process equine semen are usually low (400 to 

650 x g) (Cochran et al., 1984).  

In evaluating the effects of centrifugation, the most common parameter used is 

sperm motility. Pickett et al. (1975) showed that undiluted semen centrifuged at 370 or 

829 x g for five min had no detrimental effects on sperm motility. Later, Martin et al. 

(1979) showed that centrifugation of undiluted semen at 1000 x g for 5 min caused 

detrimental effects on spermatozoal motility.  

Equine semen diluted (1:3 dilution) in Tris aminomethane, glucose, glycerol, citric 

acid and egg yolk extender centrifuged at 370 or 829 x g for five minutes and re-

suspended had no detrimental effect on spermatozoa motility, if the re-suspended 

semen contained 10% of seminal plasma. Similar results were obtained when diluted 

semen (50 x 106 sperm/mL) in a skim milk extender was centrifuged at 400 x g for 9 min 

and the re-suspended semen contained 5 to 10% seminal plasma (Jasko D.J. et al., 

1992a). Conversely, Jasko et al. (1991) showed that spermatozoal motility from semen 

extended at 50 x 106 sperm/mL and centrifuged at 500 x g for 18 min was significantly 

decreased when seminal plasma was not removed. Cochran et al. (Cochran et al., 

1984) centrifuged equine semen extended at 50 x 106 sperm/mL in a citrate-ethylene 

diamine tetraacetic acid (EDTA) extender at 400 x g for 10 min and at 650 x g for 15 

min. They found that progressive motility after centrifugation was not adversely affected, 

and even increased over time. In the same study however, centrifugation of semen 

extended with glucose-EDTA at a 1:1 ratio and centrifuged at 650 x g for 15 min 

adversely affected spermatozoal progressive motility. In a recent study (Kareskoski et 

al., 2006), fractionated ejaculates were diluted with a skim-milk semen extender at a 1:1 

ratio and centrifuged at 500 x g for 15 min. Centrifugation adversely affected total and 

progressive motility in each fraction of the ejaculate, except when sperm concentration 

after dilution was between 2 to 26 x 106 sperm/mL. 

The possible deleterious effects of centrifugation on spermatozoa may be caused 

by physical forces. In addition, applying higher centrifugal forces will cause a higher 

compaction of the sperm pellet (Cochran et al., 1984). Methods that have been used to 

minimize these possible outcomes after centrifugation consist of providing a “cushion” 
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during centrifugation of extended semen. Initially, a glucose-EDTA cushion was used 

and a softer sperm pellet was obtained, however sperm motility post-centrifugation was 

lower compared to extended semen centrifuged without a “cushion” (Cochran et al., 

1984). Later, a cushioned technique involving a dense solution of iodixanol in water was 

used and a softer pellet was obtained after centrifugation without causing a decrease in 

sperm motility (Revell SG et al., 1997). Recently, centrifugation of stallion sperm diluted 

into a dense, inert, isotonic solutions has been used to obtain a softer sperm pellet and 

increase sperm recovery rates without decreasing motility (Knop et al., 2005). These 

later techniques of cushioned centrifugation show promising results, however their use 

is still limited. 

To measure the effect of various times of centrifugation, Heitland et al. (Heitland 

et al., 1996) assessed motility after using the same centrifugal force, dilution, and 

semen extender, with different centrifugation times. Results from this study showed that 

time of centrifugation has minimal effects when semen extended (HEPES Buffered 

Sugar) to a concentration of 50 x 106 sperm/mL was centrifuged at 400 x g for up to 16 

min. Thereafter, sperm motility was detrimentally affected. 

Following centrifugation, seminal plasma removal and re-suspension, the number 

of sperm cells recovered are of great importance. Losses of sperm cells in the 

supernatant decrease the total number of cells available for processing, and possibly 

the number of doses available for insemination. Commonly, a 40 mL volume of 

extended semen is centrifuged in a 50 mL conical centrifuge tube. Centrifugation in a 20 

mL centrifuge tube (Cochran et al., 1984) or a 20 mL volume in a 40 mL centrifuge tube 

(Ferrer et al., 2004) of extended semen yielded higher sperm recovery rates; however 

this may be impractical due to typically large volume, and in some instances the high 

sperm numbers in the ejaculated equine semen. Recovery rates reported using the 

commonly used centrifugation forces (400 – 650 x g) yielded a loss of spermatozoa in 

the removed supernatant of 20 – 30 % (Cochran et al., 1984; Ferrer et al., 2004; 

Heitland et al., 1996) of the total number of spermatozoa before centrifugation. With the 

intent to increase the number of spermatozoa recovered after centrifugation, Ferrer et 

al. (Ferrer et al., 2004) used a centrifugation force of 900 x g for 10 min and recovered 
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91% of the total number of cells prior to centrifugation without detrimental effects on 

spermatozoal motility and viability. 

In summary, centrifugal forces up to 900 x g may not be detrimental to sperm 

motility if the semen is diluted to a concentration of 25 to 50 x 106 sperm/mL and the 

centrifugation time does not exceed 10 minutes. A summary of the effects of 

centrifugation and recovery rates from the scientific literature are presented in Table 1. 

2.2.4. Passive Cooling 

 After raw semen is prepared by adding semen extender or by centrifugation and 

partial removal of seminal plasma follow by re-suspension, the extended semen is 

placed in a passive cooling device under anaerobic conditions. Cooling of the extended 

semen under anaerobic conditions decreases the sperm metabolic rate and reduces the 

aerobic metabolic pathways (Batellier et al., 2001). In consequence a balanced medium 

that preserves spermatozoa viability and motility is maintained.    

Stallion extended semen can be cooled rapidly from 37°C to 20°C without 

causing damage to the spermatozoa (Kayser et al., 1992). Slow cooling below 20°C is 

recommended to avoid “cold shock” on equine spermatozoa (Varner et al., 1988). 

Passive cooling devices are designed to slowly cool extended semen at a rate of -

0.05°C/min (Brinsko et al., 2000b), and to maintain a temperature between 4 to 6°C, the 

optimal temperature to preserve spermatozoa of most stallions for 24 hours (Moran et 

al., 1992; Varner et al., 1988). 

2.3. Semen Evaluation 

 Conventional evaluation of raw semen includes gel-free volume, spermatozoa 

concentration, motility and morphology. Although these evaluated parameters provide 

much information, their correlation with stallion fertility has not been demonstrated. 

Semen evaluations are helpful to differentiate between good and poor semen quality; 

however a good semen quality is not a guarantee of acceptable fertility (Colenbrander 

et al., 2003) 
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Table 1. Effect of centrifugation force and time, and dilution rate of equine semen on 
sperm motility and recovery rates 

 
 

Author 

 
Centrifugation 

Force (x g) 

 
Time  

(min) 

 
 

Dilution 

 
 

Extender 

 
Effect on 

motility 

 
Recovery 

Rate (%) 

Pickett et 

al. 1975 

 

370 or 829 

 

5 

1:3 or 

undiluted 

 

EYT 

 

None 

 

  

956  

 

5 

 

Undiluted 

  

Decreased 

 

Martin et 

al. 1979 

 

1000 

 

5 

 

Diluted 

 

EDTA 

 

None 

 

   

5 

 

Undiluted 

 

 

 

Decreased 

 

Cochran et 

al. 1984 

 

 
400 

 

 
10 

 

50 x 106 
sperm/mL 

 

Citrate-
EDTA 

 

 
None 

 

 
67 

  
650 

 
15 

50 x 106 
sperm/mL 

Citrate-
EDTA 

 
None 

 
70 

  
650 

 
15 

 
1:1 

Glucose-
EDTA 

 
Decreased 

 

Jasko et al. 
1991 

 
500 

 
18 

50 x 106 
sperm/mL 

 
Skim-milk 

 
Decreased 

 

Jasko et al. 
1992 

 
400 

 
9 

25 x 106 
sperm/mL 

 
Skim-milk 

 
Decreased 

 

Heitland et 
al. 1996 

  
4 

  
 

 
None 

 
48 

  6   None 48 

  8   None 68 

  10   None 81 

  

400 

12 50 x 106 

sperm/mL 

 

HBS 

 

None 

 

80 

  14   None 86 

  16   None 83 

   
20 

   
Decreased 

 
87 

   
24 

   
Decreased 

 
95 

Ferrer et al. 
2004 

 
900 

 
10 

25 x 106 
sperm/mL 

Skim-milk  
None 

 
91 

Kareskoski 
et al. 2006 

 
500 

 
15 

 
1:1 

 
Skim-milk 

 
Decreased 

 

 . 
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Sperm structures and functions commonly evaluated with fluorescent stains 

include plasma membrane integrity or viability (Garner and Johnson, 1995), acrosome 

integrity (Cross and Meizel, 1989; Graham et al., 1990), mitochondrial respiration 

(Graham et al., 1990), and DNA integrity (Evenson and Jost, 1994). Evaluation of 

different sperm structures and functions may allow a better prediction of the sperm 

fertilizing capacity (Wilhelm et al., 1996).   

2.3.1. Motility 

 Spermatozoal motility has been considered the major criterion to assess fertility 

in males. The traditional assessment of spermatozoal motility has been very subjective 

because the great variability of assessment that exists among observers. Using light 

microscopy, a drop of raw semen is placed on a pre-warmed slide and covered with a 

cover slip. The observer then estimates spermatozoal motility (e.g. total motility and 

progressive motility). Stallion raw semen may exhibit a high sperm concentration that 

may lead to an overestimation of sperm motility. 

 To overcome the subjective assessment, application of a computerized assisted 

semen analyzer (CASA) offers an objective and rapid approach to assess (Malmgren, 

1997). In addition to the total and progressive motility, the CASA system measures 

other spermatozoal motion characteristics such as straight-line velocity (VSL), 

curvilinear velocity (VCL), average path velocity (VAP), linearity (LIN), straightness 

(STR), circularly motile spermatozoa (CIR), lateral head displacement (LHD), and beat 

cross frequency (BCF). 

 Analysis of sperm motion characteristics using the CASA system aids reducing 

the subjectivity and variability, and offers information regarding the speed and way in 

which the sperm moves,  compared to the traditional assessment using light 

microscopy; however, no correlations between total motility and speed in which the 

sperm moves and the way they move have been made (Love et al., 2003). In addition, 

the relation between sperm motion characteristics and fertility still unclear. A French 

study suggest that spermatozoa with rapid motility and high VAP have greater fertility 
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(Vidament, 2005); however, Kirk et al. (Kirk et al., 2005) indicated that VAP was not a 

reliable or repeatable parameter to analyze sperm quality.  

2.3.2. Concentration 

 Spermatozoal concentrations in raw semen can be estimated using a Neubauer 

hemocytometer or a spectrophotometer. To estimate concentrations using a 

hemocytometer, raw semen is diluted to a 1:100 dilution with formol-buffered saline 

(FBS). The hemocytometer is loaded with the diluted semen. Thereafter the 

hemocytometer is examined at 400x and all the sperm heads counted within the 25 

central squares represents the sperm concentration in millions/mL. 

 To estimate spermatozoa concentration using a spectrophotometer, a semen 

sample is placed in a spectrophotometer, and the optical density (O.D.) of the sample is 

analyzed at the appropriate wavelength. The O.D. of the sample is compared against a 

pre-established hemocytometer-derived standard curve to obtain the spermatozoal 

concentration (Jasko, 1992). The presence of debris, white blood cells and red blood 

cells can increase the O.D., which may result in erroneous spermatozoa concentration 

(Jasko, 1992). Estimation of concentration using extended semen or hemospermic 

semen samples is therefore not recommended. 

 After the raw semen concentration is estimated, the total number of spermatozoa 

in the ejaculate is calculated. The total number of spermatozoa is obtained by 

multiplying the spermatozoa concentration times the volume of gel-free semen. 

2.3.3. Morphology 

 An important parameter measured to assess sperm quality is cellular 

morphology. Abnormalities in sperm morphology affect sperm fertilizing capacity. 

Spermatozoal morphology can be assessed by using an unstained or stained semen 

sample. The method preferred by the Society for Theriogenology for sperm morphology 

assessment is the fixed unstained method (Jasko, 1992). For the unstained method, 

raw semen is fixed with FBS. A drop of the fixed semen is placed on a slide covered 

with a cover slip, and the sample is examined under a phase contrast microscope at 
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1000x total magnification (Fig. 4). For the stained method, the most common 

combination of  stains used is eosin-nigrosin (Jasko, 1992). A drop of eosin-nigrosin is 

mixed with raw semen on a slide. The mixture is smeared, and the morphology is 

examined under a light microscope at 1000x total magnification (Fig. 5). The eosin-

nigrosin stain also has been used to assess sperm viability. The eosin is a membrane-

impermeant dye, thus sperm with leaky membranes will stain, thus assumed dead, and 

live sperm will not. The disadvantage of these methods is that staining  and smearing 

sperm may alter their morphology (Voss et al., 1981), such as changes in sperm head 

size and increased detached heads (Dott, 1975). 

 

Figure 4. Stallion spermatozoa morphology analyzed with phase contrast microscope 
(Olympus BX51, DP Controller Software). 
 

 
2.3.4. Fluorescent Probes 

 

 Assessment of sperm morphology using light microscopy provides important 

information on semen samples; however, the structural integrity of sperm organelles 

essential for fertilization can be evaluated better by using specific fluorescent probes. 

The integrity of the plasma membrane, acrosome, DNA and mitochondrial activity can 

be assessed using fluorescent probes.  Levels of staining can be assessed by 
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fluorescent microscopy or flow cytometry, two technologies known for sensitivity. Bull 

and ram sperm plasma membrane integrity were initially assessed using a combination 

of carboxyfluorescein diacetate (CFDA) and PI (Harrison and Vickers, 1990). Later, 

Garner et al. (Garner and Johnson, 1995) used a combination of nucleic acid stains  

 

Figure 5. Stallion spermatozoa morphology and viability stained with eosin-nigrosin. 
Dead sperm stained red (arrow) (Olympus BX45, SPOT Software). 
 

(SYBR-14 and PI), to assess the viability of bull, boar, ram, rabbit, mouse and human 

spermatozoa. The SYBR-14 is a membrane-permeant nucleic acid stain, whereas PI 

that also stains nucleic acids cannot penetrate intact plasma membranes, similar to the 

eosin stain. Sperm cells that stain with SYBR-14 are viable (green) and the ones that 

stain with PI have a damaged plasma membrane or are non viable (red). The proposed 

working mechanism of the dual staining is that all cells stain with SYBR-14, as they die 

they permit the entrance of the membrane-impermeant dye (PI), which replaces the 

SYBR-14 dye from the nuclear DNA (Fig 6). 

Approaches that evaluate sperm acrosomes using fluorescent microscopy 

require tedious staining and results have been subjective. Plant lectins are proteins that 

bind to specific sequences of carbohydrates.  Pisum sativum (PSA) and Arachis 

hypogea (PNA) lectins have been used to evaluate human (Cross and Meizel, 1989), 
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Figure 6. Stallion spermatozoa stained with SYBR-14 and PI, imaged by epifluorescent 
microscopy. Viable sperm stained green (SYBR-14) and dead sperm stained red (PI) 

(Leitz DIAPLAN microscope, SPOT Diagnostic Instrument Inc. software). 
 

bull and ram (Graham et al., 1990), and stallion (Cheng et al., 1996; Farlin et al., 1992) 

acrosomes. Lectins conjugated with fluorescent probes such as fluorescein 

isothiocyanate (FITC), mark the target for visalization by fluorescent microscopy or flow 

cytometry. The PNA lectin is preferred over PSA because its binding is less non-specific 

and is limited to the outer acrosomal membrane (Cheng et al., 1996). The PNA lectin 

binds to β-galactose moieties of the outer acrosomal membrane of reacted or those 

undergoing the acrosome reaction; therefore, sperm with non reacted acrosome will not 

bind the FITC-PNA conjugate (no fluorescence), whereas sperm with reacted acrosome 

will bind FITC-PNA conjugate (fluorescence) (Rathi et al., 2001) (Fig. 7). 

Analysis of DNA strand breakage may be performed by using several methods 

including gel electrophoretic assay (Comet assay) (Evenson et al., 2007; Singh et al., 

1989) or flow cytometry (Tunel, Sperm Chromatin Structure Assay and Acridine orange) 
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Figure 7. Stallion spermatozoa stained with fluorescence isothiocynate –PNA and PI, 
imaged by epifluorescent microscopy. Intact acrosome stained green (FITC-PNA) and 

dead spermatozoa red (PI) (Leitz DIAPLAN microscope, SPOT Diagnostic Instruments 
Inc. software). 

 

(Evenson and Wixon, 2006). In the Comet assay, sperm cells are lysed and subjected 

to horizontal electrophoresis. The unbroken DNA remains in the sperm head, while the 

broken DNA migrates to take a comet form. With the Tunel assay, the intensity of 

fluorescence of each sperm is considered positive or negative to DNA fragmentation. 

Acridine Orange (AO) staining and the Sperm Chromatin Structure Assay (SCSA) 

(Evenson and Jost, 1994) share the same principle of physical DNA denaturation. Both 

methods use the metachromatic dye AO, the difference in the assays is the method 

used to cause DNA denaturation. Heat is used for the AO and acid is used for the 

SCSA. The AO dye intercalates into the DNA and fluoresces green when binding to 

double stranded DNA, and red when binding to single stranded DNA. The most 

commonly used method for stallion DNA breakage is the SCSA. The grade of DNA 

denaturation is determined by the ratio of green fluorescence (native, double-stranded 

DNA) or red (denatured, single-stranded DNA).  
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Flow cytometry can analyze one or more fluorescent probes to evaluate different 

attributes of cells. To analyze the cells, a stream of fluid containing individual cells is 

exposed to a laser beam that excites the fluorescent bound probe. Levels of 

fluorescence emitted are detected by specific photomultiplier tubes. Flow cytometric 

analyses are objective, precise, rapid, and measure a statistically relevant number of 

cells (Cordelli et al., 2005). Evaluation of the integrity of different sperm organelles 

should provide a better estimation of the percentage of sperm cells in a sperm 

population able to fertilize an oocyte (Wilhelm et al., 1996). 
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CHAPTER 3: 

CENTRIFUGATION HAS MINIMAL EFFECTS ON MOTILITY, VIABILITY AND 

ACROSOME INTEGRITY OF EQUINE SPERMATOZOA IMMEDIATELY AND AFTER 

COOLING FOR 24 HOURS 

3.1. Introduction 

 Most of the equine breed registries allow the use of A.I. for the production of 

foals. This has resulted in the request from many mare owners to breed them with fresh 

cooled or frozen-thawed semen. 

From these methods, A.I. with fresh cooled semen is preferred over AI with 

frozen-thawed semen, because pregnancy rates are higher (Jasko D.J. et al., 1992b). 

The main objective in processing fresh cooled or frozen equine semen is to dilute the 

concentration of seminal plasma from the ejaculate. Seminal plasma is not an ideal 

medium for storing equine spermatozoa (Jasko D.J. et al., 1991; Moore et al., 2005; 

Varner et al., 1987). Dilution of seminal plasma is commonly achieved by the addition of 

a semen extender or by centrifugation of extended semen, partial removal of seminal 

plasma, followed by re-suspension of the sperm pellet with fresh semen extender. 

Centrifugation effects on equine spermatozoa have been conflicting. Evaluation 

of the effect of centrifugation has been based on spermatozoa motility post-

centrifugation. Centrifugation has been shown by some studies to be detrimental to 

sperm motility (Cochran et al., 1984; Jasko D.J. et al., 1991; Kareskoski et al., 2006; 

Pickett et al., 1975). Conversely, some other studies have shown that centrifugation 

does not cause a detrimental effect on sperm motility (Ferrer et al., 2004; Jasko D.J. et 

al., 1992a; Martin et al., 1979), and is in fact, beneficial to sperm motility of fresh cooled 

semen (Brinsko et al., 2000a). 

Because the effects of centrifugation on equine spermatozoa have not been fully 

elucidated, recommended centrifugal forces used for equine semen processing are 

conservatively low (400 to 600 x g). Unfortunately, centrifugation of extended semen 

and partial removal of seminal plasma using the recommended centrifugal forces results 
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in a loss of 20 to 30% of the total number of spermatozoa in the supernatant (Cochran 

et al., 1984; Ferrer et al., 2004; Heitland et al., 1996). 

The objectives of this study were to evaluate the effects of different centrifugal 

forces on equine sperm motility, plasma membrane (viability), and acrosome integrity. 

Additionally, the spermatozoal recovery rates at the different centrifugal forces were 

also determined. 

3.2. Material and Methods 

 Six stallions were used in the study; five were from the LSU School of Animal 

Sciences and one was from the LSU School of Veterinary Medicine teaching herd. They 

were kept in a ½-acre pasture during the entire study and were fed a 12% protein 

commercial ration and free choice Alicia Bermuda hay. The stallions ranged from seven 

to 25 years old. 

3.2.1. Semen Collection 

Six stallions had semen collected at least 5 times in an every-other-day collection 

schedule to deplete the extra-gonadal sperm reserves (Amann et al., 1979). After the 

five collections it was assumed that the extra-gonadal sperm reserves were depleted 

and the stallions had semen collected once for the study. Before each collection, the 

stallion’s penis was washed with cotton soaked in warm water to remove dirt and 

smegma. Semen was obtained by having the stallion mount a phantom mare, and then 

collected into a Hannover or Missouri artificial vagina. The artificial vagina was equipped 

with an in-line nylon filter to obtain a gel-free semen sample. After each stallion was 

collected, the filter containing the gel from the ejaculate was removed and the semen 

was transported to the laboratory within 10 minutes. 

3.2.2. Semen Processing Overview  

Processing of a fresh cooled semen shipment is a dynamic process. In this 

section the different steps of processing are listed and the details of each step are 

presented individually.  
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Upon arrival at the laboratory, the semen volume was measured and raw semen 

motility and sperm concentration were determined. The raw semen was then diluted 1:1 

with a pre-warmed semen extender (INRA96, IMV Technologies, USA). After the semen 

was initially diluted, the semen was extended to a final concentration of ~25 x 106/mL 

(Varner et al., 1987) in a 4 x 8.5” Nasco Whirl-Pak® bag, by adding INRA96 at room 

temperature (~24°C). Extended semen motility and concentration were then evaluated. 

Two 25 µL samples of extended semen were obtained to assess plasma membrane 

and acrosome integrity (sperm cell analysis). An aliquot of 40 mL of the extended 

semen was then placed in each of four 50 mL conical centrifuge tubes (Corning®, NY, 

USA). Each 50 mL conical centrifuge tube was centrifuged at a different centrifugation 

force. The treatment groups were non-centrifuged (NC), centrifuged at 400 x g (400), 

centrifuged at 900 x g (900) and centrifuged at 4500 x g (4500). After centrifugation, the 

supernatant was partially removed and the sperm pellet was re-suspended with 

INRA96. Concentration and motility of the re-suspended post-centrifugation semen was 

assessed (see below). Two 25 µL samples of the re-suspended semen were obtained 

to assess plasma membrane, and acrosome integrity (see below). The re-suspended 

semen was packaged in a Nasco Whirl-Pak® bag and most of the air removed from the 

bag. The packaged semen was placed in a passive cooling device (Equitainer, Hamilton 

Thorn Research, Danver, MA) and cooled for 24 hours. Next, spermatozoal motility was 

assessed (see below). Two 25 µL samples of this cooled semen were used to assess 

plasma membrane and acrosome integrity (see below). A flow chart of the semen 

processing is presented in Fig. 8. 

3.2.3. Centrifugation 

Extended semen placed in the conical centrifuge tubes was subjected to one of 

four centrifugation treatments for 10 min; NC, 400, 900, and 4500. An Eppendorf  5804 

(Hamburg, Germany) centrifuge was used for centrifugation. 

After centrifugation, the supernatant was partially removed (~ 37 mL) to the point 

where the centrifugation tube angled and became conical. The sperm pellet was re-

suspended with INRA96 to its original volume. After 24 hours of cooling (4 to 6°C), a 25 
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µl aliquot from each treatment group was obtained and placed in a micro-centrifuge 

tube. The cooled semen in the micro-centrifuge was warmed for 5 min at 37.5°C prior to 

motility analysis. 

3.2.4. Concentration 

 A 100 µL semen aliquot was diluted into 900 µL of FBS (1:10 dilution). Then, 100 

µL of the 1:10 dilution was diluted into 900 µL of FBS (1:100 dilution). A Neubauer 

hemocytometer was loaded with the 1:100 dilution, and spermatozoal concentration 

was determined by counting all the cells within the 25 squares surrounded by the triple 

line from both sides of the hemocytometer, using a phase contrast microscope at 400x 

(Olympus BH-2, Olympus America Inc., USA). The cells counted from both sides of the 

hemocytometer should not have more than 10% difference and the final cell 

concentration was the average. If the number of cells counted from both sides had a 

difference greater than 10%, the hemocytometer was reloaded with the 1:100 dilution 

and cells were counted as described above. This procedure was performed until the 

difference between the cells counted from both sides of the hemocytometer was ≤ 10%. 

3.2.5. Motility 

 The spermatozoal motility was analyzed by placing 2 µL of raw semen in a 20 

micron height, four chamber slide (Leja Products B.V., The Netherlands) over a slide 

warmer at 37.5°C. The slide was then placed on an optical microscope warmed stage at 

37.5°C (Olympus BX41, Olympus America Inc., USA). Using the 20x phase contrast 

magnification objective, spermatozoa motility was analyzed with a computer assisted 

sperm analysis (CASA, Sperm Vision®, Minitube, Verona, WI, USA). Mean percentages 

of total and progressive motility were assessed from 7 fields with at least 100 

spermatozoa in each field. After 24 hours of cooling, a 25 µl sample of cooled semen 

from each treatment group was obtained and placed in a micro-centrifuge tube. The 

cooled semen in the micro-centrifuge was warmed for 5 min at 37.5°C prior to motility 

analysis. 
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3.2.6. Plasma Membrane Integrity (viability) 

Fluorescent dyes were purchased from Molecular Probes Inc. (Eugene, OR, 

USA) unless otherwise indicated. The SYBR-14 and propidium iodide (PI) (LIVE/DEAD® 

Sperm Viability Kit) were used to assess plasma membrane integrity. The SYBR-14 is a 

permeable nucleic acid fluorescent dye that stains spermatozoa with an intact plasma 

membrane green (viable). The PI is an impermeable nucleic acid fluorescent dye that 

stains spermatozoa with disrupted plasma membrane red (dead). A stock solution 

SYBR-14 was prepared. One 1µL of the SYBR-14 solution (1 mM) was diluted into 99 

µL of phosphate buffered saline (PBS) to obtain a 0.01 mM working solution. 

 

Figure 8. Flow chart presenting steps used in processing equine semen (n=6). 

 

A 25 µL aliquot from each of the treatment groups was stained to assess the 

plasma membrane integrity. After centrifugation and re-suspension of the sperm pellet, 

and after cooling for 24 h the samples were diluted with 250 µL of PBS (pH 7.4 and 320 
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mOsm) to a concentration of 1 x 106/mL; cells were stained by adding 2.5 µL of SYBR-

14 working solution and incubated at 37.5°C in the dark for 10 min. After incubation 2.5 

µL of PI (2.4 Mm) was added and the sample incubated in the dark for another 10 min, 

prior to analysis by flow cytometry. 

The stained samples were analyzed with a flow cytometer (FACSCalibur®, 

Becton Dickinson Immunocytometry, San Jose, CA) in triplicate. Cells were gated to 

exclude debris using a dot plot, and the fluorescence analysis done on the ten thousand 

cells outside the gate. Viable and non-viable spermatozoal populations were gated and 

analyzed using the CellQuest (BD Bioscience, Immunocytometry Systems, San Jose, 

CA, USA) software as shown in Fig. 9. 

 

Figure 9. Spermatozoa viability analysis by flow cytometry. Spermatozoal populations 
are gated. R2 viable spermatozoa (green) and R3 non-viable spermatozoa (red) 
(FACSCalibur®, CellQuest software). 

 

3.2.7. Acrosome Reactivity 

A 25 µL aliquot from each of the treatment groups was stained to assess the 

acrosome integrity after centrifugation and re-suspension of the sperm pellet, and after 

cooling for 24 h. To estimate the acrosome reactivity, spermatozoa were dual stained 
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with FITC-PNA/PI. The fluorescein-conjugated Arachis Hypogaea agglutinin (FITC-

PNA) binds to the β-galactose moieties of the outer acrosomal membrane and fluoresce 

green (Cheng et al., 1996). The PI served to differentiate between viable and non viable 

spermatozoa. The semen sample (25 µL) was diluted with 250 µL PBS to a 

concentration of 1 x 106/mL; sperm cells were stained with 2.0 µL of the FITC-PNA 

solution (1 mg/mL) and incubated at 37.5°C in the dark for 10 min. After incubation 2.5 

µL of PI was added and incubated in the dark for another 10 min, prior to analysis by 

flow cytometry.  

The stained samples were analyzed by flow cytometry (FACSCalibur®, Becton 

Dickinson Immunocytometry, San Jose, CA) using a quadratic gating. Viable sperm 

non-reacted acrosome, viable sperm reacted acrosome, dead sperm non-reacted 

acrosome, and dead sperm reacted acrosome populations were analyzed using the 

CellQuest (BD Bioscience, Immunocytometry Systems, San Jose, CA, USA) software 

as shown in Fig. 10. 

 

3.2.8. Recovery Rate After Centrifugation 

To determine sperm recovery rate, sperm concentration was measured two 

times. First it was measured on the extended semen before centrifugation, and then 

after centrifugation, partial removal of seminal plasma and sperm pellet re-suspension. 

The number of sperm cells counted from the post-centrifugation re-suspended semen 

was divided by the initial number of sperm cells prior to centrifugation then multiplied by 

100, to obtain the percentage of recovered sperm cells.    

SCR (%) = (SSR/TSC) X 100 
SCR: sperm cells recovered 
TSC: total number of sperm cells 
SSR: sperm cells in re-suspended semen 
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Figure 10. Spermatozoal acrosome integrity analysis by flow cytometry. Quadratic 

gating indentifies four spermatozoal populations. Upper left (UL) = dead sperm non-
reacted acrosome, upper right (UR) = dead sperm reacted acrosome, lower left (LL) = 
live sperm non-reacted acrosome and lower right (LR) = live sperm reacted acrosome 

(FACSCalibur®, CellQuest software). 
 

 

3.2.9. Statistical Analyses 

 

 The mean (± SD) percentage total motility, progressive motility, viability, 

acrosome reactive status and recovery rates were analyzed using Shapiro Wilk’s to 

evaluate if the data followed a normal distribution. 

 The mean (± SD) percentage total motility, progressive motility, viability, and 

acrosome integrity were compared for an effect of treatment and time, using a mixed 

linear model including the random variance of stallion across treatments. Where there 

was significant interaction of treatment and day at p<0.05, ad hoc comparisons were 

made using Scheffe’s adjustment to maintain type I error at 0.05. 

UL 

LL LR 

UR 
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 The mean (± SD) percentage recovery rates were compared for an effect of 

treatment using a mixed linear model including the random variance of stallion across 

treatments. Where there was significant effect of treatment at p<0.05, ad hoc 

comparisons were made between treatment groups to non-centrifuged treatment group 

using Dunnet’s adjustment to maintain type I error at 0.05. 

3.3. Results 

Total and progressive motility of sperm cells was not affected immediately or 

after cooling for 24 h, when extended semen was centrifuged at the 400 or 900 

treatment group, compared to the NC treatment group. Conversely, total and 

progressive motility was affected immediately and after cooling for 24 when the 

extended semen was centrifuged at the 4500 treatment group (Tables 2 and 3). 

 

Table 2. Mean (±SD) equine (n = 6) spermatozoal total motility (TM) percentage (%) 

immediately (D0) after centrifugation and after cooling for 24 h (D1). 

Treatment D0  
TM (%) 

D1 
TM (%) 

NC 86.4 ± 6.4a 80.1 ± 6.4a 

400 x g 87.9 ± 7.7a 78.2 ± 11.3a 

900 x g 86.5 ± 7.2a 76.0 ± 9.9a 

4500 x g 78.4 ± 6.6b 70.2 ± 11.8b 

*Values within column with different subscripts are different. 

Table 3. Mean (±SD) equine (n = 6) spermatozoal progressive motility (PM) percentage 

(%) immediately (D0) after centrifugation and after cooling for 24 h (D1).  

Treatment D0 
PM (%) 

D1 
PM (%) 

NC 82.6 ± 6.7a 76.4 ± 7.1a 

400 x g 85.6 ± 8.7a 74.9 ± 12.2a 

900 x g 84.2 ± 7.4a 73.4 ± 10.8a 

4500 x g 74.2 ± 6.2b 66.5 ± 11.5b 

*Values within column with different subscripts are different. 

Spermatozoal plasma membrane integrity (viability) was not affected by 

centrifugation immediately or after cooling for 24 h when extended semen was 

centrifuged at the 400 or 900 treatment group, compared to the NC treatment group. 

Conversely, sperm viability was affected immediately and after cooling for 24 h when 
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extended semen was centrifuged at the 4500 treatment group; however, after cooling 

for 24 hours, sperm plasma membrane integrity was not different from the NC treatment 

group (Table 4). 

Spermatozoa acrosomal reactivity was not affected by centrifugation immediately 

or after cooling for 24 h when extended semen was centrifuged at the 400 or 900 

treatment group, compared to the NC treatment group. Conversely, spermatozoa 

acrosome integrity was affected immediately and after cooling for 24 h when extended 

semen was centrifuged at the 4500 treatment group; however, after 24 h of cooling, 

acrosome integrity was not different from the NC treatment group (Table 5). 

Table 4. Mean (±SD) equine (n = 6) spermatozoal viability percentage (%) immediately 

(D0) after centrifugation and after cooling for 24 h (D1). 

 D0 D1 

Treatment Viable (%) Viable (%) 

NC 81.1 ± 6.2a 76.4 ± 5.2ab 

400 x g 85.5 ± 5.6a 81.1 ± 2.8a 

900 x g 81.7 ± 5.2a  79.0 ± 4.6a  

4500 x g 72.8 ± 6.6b  70.7 ± 7.8b  
*Values within column with different subscripts are different. 

Table 5. Mean (±SD) equine (n = 6) viable spermatozoa non-reacted acrosome 

percentage (%) immediately (D0) after centrifugation and after cooling for 24 h (D1). 

 D0 D1 

Treatment Non-reacted (%) Non-reacted (%) 

NC 81.9 ± 4.6a 76.0 ± 5.7ab 

400 x g 83.7 ± 2.4a 80.3 ± 5.8a 

900 x g 81.3 ± 5.0a 79.6 ± 5.3a 

4500 x g 72. 5 ± 6.1b 69.5 ± 8.5b 

*Values within column with different subscripts are different. 

Spermatozoa recovery rate was affected by centrifugation. Spermatozoa 

recovery rate was decreased when extended semen was centrifuged at the 400 or 900 

treatment group, compared to the NC treatment group. Conversely, spermatozoa 

recovery rate was similar to the NC treatment group when extended semen was 

centrifuged at the 4500 treatment group (Table 6). 
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Table 6. Mean (±SD) equine (n = 6) spermatozoal recovery rate percentage (%) after 

centrifugation at different centrifugation forces. 

Treatment Recovery Rate (%) 

NC 100a 

400 x g 54.4 ± 8.6b 

900 x g 75.0 ± 7.1b 

4500 x g 97.9 ± 1.16a 

*Values within column with different subscripts are different. 

 

3.4. Discussion 

 Storage of spermatozoa for long periods of time in the excurrent duct system is 

characterized by a reduction in motility and an increase in morphological abnormalities 

(Amann, 1993; Varner et al., 1991). Removal of the extra-gonadal sperm reserves 

allows the assessment of recently produced spermatozoa. Stallions used in this study 

were collected at least 5 times (Amann et al., 1979) to deplete the extra-gonadal 

reserves prior to obtaining the ejaculate used in the study. 

 In this study, the major source of variability was the stallions. Initial total and 

progressive motility and viability varied between stallions, and their response to the 

different treatments also varied. However, these variations still allowed the data to 

follow a normal distribution.  

The effect of centrifugation on equine spermatozoal motion characteristics (total 

and progressive motility) has not been fully elucidated. In the present study 

centrifugation of extended semen up to 900 x g for 10 min did not cause a reduction in 

mean total and progressive motility of equine spermatozoa immediately after 

centrifugation.  Results from this study are in agreement with the results of Ferrer et al. 

(2004) who also centrifuged extended semen at 900 x g for 10 min without causing a 

reduction on sperm motility immediately after centrifugation.  

Centrifugation of extended semen without partial removal of seminal plasma 

caused a decrease in sperm motility of stored semen (Jasko D.J. et al., 1991). The 

decrease in sperm motility can be attributed in part to the centrifugation-induced 

generation of ROS (Parinaud et al., 1997). In the present study, centrifugation of 
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extended semen up to 900 x g for 10 min, partial removal of seminal plasma, followed 

by re-suspension of the sperm pellet with fresh semen extender did not cause a 

decrease and maintained sperm motility after cooling for 24 hours. It can be concluded 

that components of seminal plasma (e.g. ROS), that would cause a detrimental effect 

on sperm motility of stored semen were removed with the seminal plasma after 

centrifugation.  

 Spermatozoal plasma membrane integrity is important for fertilization. Disruption 

or damage may impair sperm-oocyte fusion (Aitken, 1995). The equine plasma 

membrane can be damaged by semen centrifugation during processing of fresh cooled 

semen (Aurich, 2005). In the present study, centrifugation of extended semen up to 900 

x g for 10 min, partial removal of seminal plasma followed by re-suspension of the 

sperm pellet with fresh semen extender did not cause damage to the sperm plasma 

membrane, immediately (81.7 ± 5.2%) or after cooling for 24 hours (79.0 ± 4.6%), 

assessed by LIVE/DEAD® Sperm Viability Kit. Similar to the present study, previous 

studies have demonstrated that extended semen centrifuged at 600 x g for 10 min (Pagl 

et al., 2006) or 900 x g for 10 min (Ferrer et al., 2004) did not cause damage to the 

sperm plasma membrane, immediately after centrifugation or after cooling for 24 h, 

assessed by LIVE/DEAD® Sperm Viability Kit. It may be possible that removal of ROS in 

the seminal plasma after centrifugation, may have reduced the plasma membrane 

disruption caused by the sperm capacitation process induced by ROS (Ford, 2004; 

O'Flaherty et al., 2006). This may explain the higher sperm viability in the 900 treatment 

group after cooling for 24 hours (79.0 ± 4.6), compared to the NC treatment group (76.4 

± 5.2%). 

 An intact or non-reacted spermatozoal acrosome is necessary to penetrate the 

zona pellucida and further fertilization of an oocyte (Abou-Haila and Tulsiani, 2000). 

Results from our study showed that centrifugation of the 900 treatment group, partial 

removal of seminal plasma, followed by re-suspension of the sperm pellet with fresh 

semen extender, did not induce the equine sperm to undergo the acrosome reaction 

immediately after centrifugation or after cooling for 24 hours. Compared to the NC 

treatment group, the 900 treatment group non-reacted acrosome percentage was 
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similar immediately after centrifugation (81.9 ± 4.6% and 81.3 ± 5.0% respectively), 

however after cooling for 24 hours the non-reacted acrosomes percentage was greater 

for the 900 treatment group compared to the NC treatment group (79.6 ± 5.3% and 76.0 

± 5.7 respectively). In agreement with these results, Dawson et al. (Dawson et al., 2000) 

assessed the integrity of equine sperm acrosome using FITC-PSA after extended 

semen was centrifuged at 400 to 600 x g for 15, and reported no damage immediately 

after centrifugation or after cooling for 24 hours. 

Interestingly, sperm viability and non-reacted acrosomes immediately after 

centrifugation from the NC (81.1 ± 6.2% viable and 81.9 ± 4.6% non-reacted) and 4500 

(72.8 ± 6.6% viable and 72.5 ± 8.5% non-reacted) treatment groups were different 

immediately after centrifugation; however after cooling for 24 hours, sperm viability and 

non-reacted acrosomes were similar for the NC (76.4 ± 5.2% viable and 76.0 ± 5.7% 

non-reacted) and 4500 (70.7 ± 7.8% viable and 69.5 ± 8.5% non-reacted) treatment 

groups. Perhaps, on the 4500 treatment group, centrifugation caused an immediate 

damage to sperm viability and acrosome integrity percentage that occurred over time in 

the NC treatment group. Nevertheless, harmful components from the seminal plasma 

were removed (in the supernatant) from the 4500 treatment group as previously 

mentioned, probably limiting the damage to sperm viability and acrosome after cooling 

for 24 hours, compared to the NC treatment group, where no seminal plasma was 

removed.  

 In our study, equine sperm recovery rates increased as centrifugation force 

increased. When equine extended semen was centrifuged at the 400 and 900 treatment 

groups, equine sperm recovery rates were 54.4 ± 8.6% and 75.0 ± 7.1% respectively, 

from the total number of sperm cells before centrifugation. These recovery rates are 

different compared to a previous study by Cochran et al. (1984), where recovery rates 

were 67.0% and 70% for extended semen centrifuged at 400 x g for 10 min and 650 x g 

for 15 min. Differences in the recovery rates obtained in that study compared to the 

present study may be explained by the volume of supernatant removed after 

centrifugation. Cochran et al. (1984) did not report the volume of supernatant removed 

after centrifugation. In our study, we tried to simulate the equine semen processing that 
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occurs in a clinical situations and removed supernatant up to the point where the 

centrifuged tube angled and became conical (~ 37 mL). It is possible that in the present 

study more supernatant was removed compared to the study of Cochran et al. (1984), 

consequently losing more cells in the supernatant, however this is not known. Another 

possible reason for the differences in recovery rates between the studies may be the 

cell counting method used. Cochran et al. (1984) used an automated cell counter and in 

our study we used a hemocytometer. A margin of error may be expected with the 

hemocytometer when counting low numbers of cells as was the case in our study, 

possibly causing under- or over-estimation of sperm concentration. Noteworthy was the 

fact that sperm counts using the hemocytometer, in some instances needed to be 

performed several times until the number of cells counted from both sides of the 

hemocytometer was within 10%. Ferrer et al. (2004) reported recovery rates of 74.3% 

and 91.0% for extended semen centrifuged at 400 x g and 900 x g for 10 min. In this 

study, similar to our study, semen was diluted to 25 x 106/mL and volume of 40 mL 

before centrifugation; however recovery rates were calculated by subtracting the 

number of cells counted in the supernatant from the initial number of cells in the 

extended semen. Calculating sperm concentration with very low number of cells can be 

tedious and may result in a higher margin of error, causing under- or over-estimation of 

sperm concentration. In addition, sperm concentration in the supernatant was estimated 

using the 1:10 dilution instead of 1:100, trying to decrease the margin of error; however 

a high margin of error may be expected and may account for the difference between 

studies. Moreover, sedimentation of sperm cells can be affected by the type of extender 

(viscosity) used for centrifugation. In our study the type of semen extender used for 

centrifugation (INRA96) was different, compared to the studies by Cochran et al. (1984) 

(Citrate-EDTA) and Ferrer et al. (2004) (skim milk), and the viscosity between extenders 

may be different causing a difference in sedimentation of cells and consequently the 

number of cells in the pellet. Recovery rates between the studies may differ, however 

equine sperm recovery rates increased as centrifugal forces increased. In the present 

study, equine sperm recovery rate was 97.9% when extended semen was centrifuged 

at 4500 X g for 10 min, this is the highest recovery rate of equine sperm ever reported 

after centrifugation.  
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The sperm pellet, being difficult to re-suspend has been a problem when higher 

centrifugal forces are used. A centrifugation “cushion” is recommended (Knop et al., 

2005; Revell SG et al., 1997) when using high centrifugation forces. In the present study 

re-suspension of the sperm pellet was easily performed when extended semen was 

centrifuged up to 900 x g for 10 min. A dense pellet, more difficult to re-suspend was 

found when extended semen was centrifuged at 4500 x g for 10 min. An apparent 

positive relation of the hardness of the pellet with the amount of debris in the ejaculate 

was noticed. Due to the difficulty of gently handling and re-suspending cells from a 

compact pellet, some deleterious effects to the sperm cells may have been produced. 

The deleterious effect to sperm motility, plasma membrane and acrosomes was 

observed immediately after re-suspension of the sperm pellet and did not increase after 

cooling for 24 hours. 

To our knowledge, this is the first study where equine spermatozoa have been 

subjected to centrifugation at 4500 x g and evaluated for total motility, progressive 

motility, viability and acrosomal reactivity. Interestingly, although equine spermatozoa 

integrity (motility, viability and acrosome) was affected when extended semen was 

centrifuged at the 4500 treatment group in relation to the recovered cells, the total 

number of motile, viable and non-reacted acrosome spermatozoa recovered after 

centrifugation in the 4500 treatment group was greater, compared to the 400 and 900 

treatments groups. In addition, after cooling for 24 h, the number of intact spermatozoa 

recovered at the 4500 treatment group was similar to the 900 treatment group and 

higher than the 400 treatment group. This can be better appreciated using a practical 

example. For example, a total of 1 x 109 spermatozoa are commonly packed in an 

insemination dose of fresh cooled semen. If all the measured parameters in this study 

are combined, the number of motile, viable and non-reacted acrosome spermatozoa 

available after centrifugation (D0) would be 575 x 106, 342 x 106, 430 x 106, and 405 x 

106 for the NC, 400, 900 and 4500 treatment groups respectively; and 465 x 106, 277 x 

106, 358 x 106 and 337 x 106 after cooling for 24 h (D1) for the NC, 400, 900 and 4500 

treatments groups respectively (Fig. 11). This practical example demonstrates that the 

total number of motile, viable and non-reacted acrosome spermatozoa immediately after 

centrifugation and after cooling for 24 hours is greater in the 900 and 4500 treatment 
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groups compared to the 400 treatment group. It was also demonstrated that the NC 

treatment group yields the highest number of motile, viable and non-reacted acrosome 

spermatozoa, and it can be concluded that centrifugation should be used during the 

processing of fresh cooled semen only when needed (oligospermic or poor cooler 

stallions). 

 

 

Figure 11. Scheme of the total number of motile, viable and non-reacted acrosomes 
spermatozoa immediately after centrifugation (D0) and after cooling for 24 h (D1), at 
different centrifugal forces for 10 min. 

 

Within practitioners, it is believed that the sperm cells of the supernatant after 

centrifugation may be of better quality compared to the cells of the sperm pellet. During 

the study, sperm cells from the supernatant of some stallions (n = 3) were evaluated 

similarly as the cells in the sperm pellet. No difference in total motility, progressive 

motility, viability or acrosome reactive status was observed (data not shown) between 

sperm cells in the pellet of the NC, 400 and 900 treatment groups, compared to that of 

the supernatant. 
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New technologies for evaluating equine spermatozoa increases the knowledge of  

the capability of spermatozoa to undergo the processes required for fertilizing an 

oocyte; however, attempts to correlate laboratory evaluations of spermatozoa with 

fertility have yielded various results (Colenbrander et al., 2003; Kirk et al., 2005; Nie et 

al., 2002). Using a combination of parameters is thought to be better than using a single 

parameter to predict fertility; however until further studies are performed and a 

correlation between a parameter or combination of parameters with fertility is found, 

these parameters should not be used as fertility predictors. 

Further investigation using centrifugation forces between 900 x g and 4500 x g 

are warranted to identify the optimal centrifugation force or range of forces that yields 

the maximum recovery rate without causing damage to equine spermatozoa. Also, 

further studies are warranted to evaluate the effect of centrifugation treatments on 

sperm integrity and fertility. 
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CHAPTER 4: 

CONCLUSIONS 

Efficient processing of equine semen for fresh cooled semen or frozen semen is 

essential in today’s equine industry. Stallions in great demand will benefit from semen 

processing that cause minimal loss of spermatozoa. Use of centrifugation and partial 

removal of seminal plasma for equine semen processing has the advantage of 

decreasing the seminal plasma concentration in an ejaculate. In this study, we found 

that the effect of centrifugation on equine spermatozoa varied between stallions. Some 

stallions, but not all, with initial lower motility suffered a decrease in total and 

progressive motility, viability and acrosome reactivity, immediately after centrifugation, 

regardless of the centrifugal force used. Perhaps, spermatozoa from these stallions had 

an intrinsic defect and centrifugation may have exacerbated the problem. Nevertheless, 

the variance between stallions observed did not influence the results, and all the 

samples followed a normal distribution. 

The major problem encountered during the study was sperm concentration 

determination. Spermatozoal concentration estimation from the extended semen and 

after removal of the supernatant and re-suspension was difficult and needed to be 

repeated several times until the difference between two replicate counts using a 

hemocytometer were within the desired range (10%). This difficulty was due to the low 

spermatozoal concentrations after dilution of the raw semen and much lower 

concentrations after removal of the supernatant. Therefore the margin of error may have 

increased. This fact explains the reason why Ferrer et al. (2004), trying to decrease the 

margin of error, used the 1:10 dilution instead of the 1:100 dilution in her study. An 

automated cell counter could not be used because the semen extender was turbid and 

concentration estimation by the spectrophotometer would have been erroneous. Sperm 

concentration of extended stallion semen can be performed using a flow cytometer, and 

possibly could be a better approach for further studies. 

When seminal plasma was not removed, centrifugation has been shown to 

decrease sperm motility  (Jasko D.J. et al., 1991; Pickett et al., 1975) or to have no 



41 
 

detrimental effects (Ferrer et al., 2004; Jasko D.J. et al., 1991; Jasko D.J. et al., 1992a; 

Padilla and Foote, 1991) when seminal plasma was partially removed. In this study, 

similar to previous studies (Ferrer et al., 2004; Kareskoski et al., 2006), centrifugation 

up to 900 x g for 10 min, partial removal of seminal plasma, followed by re-suspension 

of the sperm pellet had no detrimental effect on equine spermatozoal motility, viability 

and acrosomal integrity compared to the non-centrifuged extended semen. In 

conclusion, centrifugation up to 900 x g for 10 min can be used to process stallion 

semen without causing detrimental effects, and can be recommended to process semen 

from oligospermic and “poor coolers” stallions.  

The toughness expressed by sperm cells was surprising. The initial purpose of 

centrifuging extended semen at 4500 x g for 10 min was to kill the spermatozoa, as a 

positive control; however, this was not the outcome. However, centrifugation of equine 

spermatozoa at 4500 x g for 10 min did cause statistical significant detrimental effects 

on total and progressive motility, viability and non-reacted acrosomes; but this damage 

was not extreme and the recovery rate was high in that it was not different from the non-

centrifuged extended semen (100%). These results indicated that a centrifugal force 

between 900 x g and 4500 x g, where sperm recovery rates are maximized and sperm 

integrity is minimally affected, exists and warrants investigation. 

 Assessment of motility, viability and acrosome integrity offers valuable 

information with regard to the fertilizing capacity of spermatozoa. It is reasonable to 

expect a better fertilizing capacity with a higher number of motile, viable and non-

reacted acrosomal spermatozoa in an insemination dose; however, the relation between 

laboratory tests and fertility has been unclear (Colenbrander et al., 2003; Kirk et al., 

2005; Nie et al., 2002). If all the parameters evaluated in this study are considered, the 

total number of motile, viable and non-reacted acrosomes after cooling for 24 h for a 

commonly used insemination dose (1 x 109 spermatozoa) was greatest for the NC 

treatment group (465 x 106 spermatozoa), followed by the 900 treatment group (358 x 

106 spermatozoa), then the 4500 treatment group (337 x 106 spermatozoa), and the 

least the 400 treatment group (277 x 106 spermatozoa). Showing that centrifugation 

should only be used when it is indicated (oligospermic or poor cooler stallions), not 
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because of damage to the spermatozoa, but due to losses of sperm cells in the 

supernatant discarded.  
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