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ABSTRACT 
 

Brucella melitensis is a facultative intracellular bacterial pathogen that causes 

abortions in goats and sheep and Malta fever in humans.  The zoonotic disease 

brucellosis causes severe economic losses in the Mediterranean region and parts of 

Africa, Asia, and Latin America.   

With the completion of the genomic sequences of B. abortus 2308 and B. 

melitensis 16M, no classical virulence factors were found; and the chromosomes were 

virtually identical.  However, in B. melitensis, a putative hemagglutinin gene was 

identified which is absent in B. abortus. The possibility of the hemagglutinin gene being 

a potential virulence factor was evaluated via gene replacement/deletion in B. melitensis 

and expression in trans in B. abortus. 

The hemagglutinin gene was PCR-amplified, cloned into pBBR1MCS-4, and 

electroporated into B. abortus 2308 yielding B. abortus 2308-QAE.  A kanamycin-

Region E-kanamycin disrupted gene fragment (KAN-E-KAN) was also generated and 

electroporated into B. melitensis 16M.  The resulting mutants were characterized 

biochemically to confirm its Brucella origin and screened by antibiotic selective pressure. 

A colonization study of non-pregnant goats infected with B. abortus 2308, B. 

melitensis 16M, B. abortus 2308-QAE, or B. melitensis 16M∆E revealed no attenuation 

of the 16M∆E mutant when compared to 16M at 4, 7, and 21 days post inoculation. The 

study also showed that both the variant and the mutant were capable of infecting and 

disseminating throughout the host. 

All four strains were introduced into the pregnant goat model and evaluated for 

pathogenicity. Pregnancy/delivery results revealed 27%, 78%, 67%, and 50% abortion 



 x

rates in goats infected with 2308, 16M, 2308-QAE, and 16M∆E, respectively.  Bacterial 

culture of tissues from 2308, 16M, 2308-QAE, 16M∆E -exposed goats revealed 45 %, 

79%, 75%, and 100% colonization of dam/kid pairs, respectively.  The expression of the 

B. melitensis 16M hemagglutinin gene in trans in 2308-QAE revealed a significant 

(p<0.05) increase in colonization and abortion rates when compared to B. abortus 2308, 

mimicking the virulence of B. melitensis 16M in pregnant goats. The B. melitensis 

16M∆E disruption mutant colonization and abortion rates demonstrated no attenuation in 

colonization but did show a 28% reduction in abortions when compared to B. melitensis 

16M. 
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INTRODUCTION 

 
 Over 100 years after Lieutenant Colonel David Bruce, a physician in the Royal 

Army, discovered “Micrococcus melitensis” in the spleens of British soldiers residing on 

the island of Malta in the Mediterranean Sea (Moreno and Moriyon 2002), Del Vecchio 

et al (2002a) presented the genomic sequence of Brucella melitensis, which was renamed 

after Dr. Bruce (Spink 1956). This revelation brought new insight into the biology and 

pathology of the organism. Brucella species are short, non-motile, non-sporulating, non-

encapsulated, Gram-negative aerobic rods.  They are facultative intracellular pathogens 

of animals and humans (Corbel 1997).   The genus Brucella consists of six species, each 

with a preference for a primary host and varying degrees of pathogenicity.  B. melitensis 

primarily infects goats and is the most pathogenic for humans.  B. abortus infects cattle; 

B. canis causes infection in dogs; B. ovis is pathogenic for sheep; B. suis infects pigs; and 

B. neotomae causes infection in the desert wood rat.  In recent years, there have also been 

Brucella species isolated from marine mammals, mostly seals and cetaceans (Bricker et 

al 2000). 

 Brucellosis, the zoonotic disease that is caused by these organisms induces 

abortions in wild and domestic animals and Malta or undulate fever in humans 

(Dalrymple-Champneys 1960).  The disease is transmitted through the consumption of 

non-pasteurized milk and milk products or by direct contact with diseased animals or 

animal carcasses.  The organism penetrates the skin or mucus membranes and travels to 

the lymph nodes, which become hemorrhagic, leading to bacteremia and the 

dissemination of the bacteria throughout the body (Elzer 2002).   
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 The spread of brucellosis has been essentially controlled in developed countries, 

but the disease still poses a threat in the Mediterranean region, parts of Asia, Africa, and 

Latin America.  The most recent concern focuses on the potential use of Brucella species, 

primarily B. melitensis, as an agent of biological warfare because of the debilitating 

disease it causes. Widespread dispersal of aerosolized B. melitensis would pose a 

biological, agricultural, as well as an economical threat to all countries involved. 

 The Brucella genus is highly homogeneous with all members showing greater 

than 90% homology in DNA-DNA pairing studies (Verger et al 1985; Vizcaino et al 

2000), and little is known about Brucella virulence.  This study evaluated the virulence of 

a putative ~2.0 kilobase (kb) hemagglutinin gene, Region E, using the completed genome 

of B. melitensis (Del Vecchio et al 2002a).  Comparison of the chromosomes of other 

Brucella species with that of B. melitensis 16M revealed the absence of this 

hemagglutinin gene in B. abortus 2803. Experiments using a Region E disruption mutant 

of B. melitensis 16M and a variant of B. abortus 2308 expressing Region E in trans were 

carried out in the caprine model to provide insight into molecular basis of Brucella 

virulence and possible vaccine development. 
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LITERATURE REVIEW 

Brucellosis is an infectious disease caused by bacteria of the genus Brucella. 

These bacteria are primarily passed among animals causing disease in many different 

vertebrates. Various Brucella species infect sheep, goats, cattle, deer, elk, pigs, dogs, and 

other animals.  Humans become infected by coming in contact with animals or animal 

products that are contaminated with these bacteria.  Brucella melitensis, B. abortus, and 

B. suis are zoonotic pathogens which can infect humans.  B. canis may cause infections in 

immunosuppressed individuals (Young 2000).  Brucellosis can cause a range of 

symptoms in humans that are similar to the flu and may include fever, sweats, headaches, 

arthritis, back pains, and physical weakness.  Severe infections of the central nervous 

systems or lining of the heart may also occur resulting in meningitis, spondylitis, 

endocarditis, or even death. Brucellosis can also cause long-lasting or chronic symptoms 

that include recurrent fevers, joint pain, and fatigue. Bacteriologic culture and serological 

agglutination tests are used for the diagnosis of infected humans and animals. 

Brucellosis is not very common in the United States in that 100 to 200 human 

cases occur each year. However, brucellosis can be very common in countries where 

animal disease control programs have not reduced the amount of disease among animals. 

Although it can be found worldwide, brucellosis is more common in countries that do not 

have standardized and effective public health and domestic animal health programs.  

Because of its epidemic potential, the absence of a human vaccine, the drawbacks 

of current vaccine strains in terms of safety, and the effectiveness of aerosol infection, 

this agent has been classified as a biosafety level 3 pathogen and is considered to be a 

potential bioterrorism agent (Kaufmann et al 1997).  
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Genus Brucella 

 Brucellae are very small, Gram-negative coccobacilli that may appear in pairs, 

short chains, or groups (Corbel and Morgan 1984). Brucellae are fastidious organisms 

which usually grow in nutrient-rich media within 48-72 hours of incubation at 37ºC in a 

5% CO2 atmosphere.  They are the causative agent of the zoonotic disease brucellosis. 

The organisms are aerobic, non-encapsulated, and catalase and oxidase positive.  They do 

not ferment carbohydrates and have variable urease activity (Young 1995). Based on 

DNA homology, it has been proposed that all six members of the genus are actually 

serovars of a single species (Halling et al 2005). Four members of the genus Brucella, B. 

abortus, B. suis, B. canis, and especially B. melitensis are able to cause infection in 

humans (Young 1995).  

Brucellae are capable of evading host defense mechanisms, surviving as 

intracellular organisms, and are able to cause prolonged morbidity, relapses, and long-

term abnormal conditions.  Brucellosis is a systemic infection that may affect any organ 

system in the body (Shehabi et al 1990; Yagupsky 1997). Because of the wide spectrum 

of its clinical manifestations, brucellosis may mimic other infectious and noninfectious 

conditions, frequently delaying the diagnosis of the disease or even missing the disease 

all together (Solera et al 1997; Young 1995).  

Brucellosis continues to affect large human populations living in rural areas in 

Mediterranean Basin (Portugal, Spain, Southern France, Italy, Greece, Turkey, and North 

Africa), South and Central America, Eastern Europe, Asia, Africa, the Caribbean, the 

Middle East, and Latin American countries where the organisms are endemic (Arnow et 

al 1984; Gotuzzo et al 1986; Shehabi et al 1990; Yagupsky 1994; Solera et al 1997). As a 
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result of infection control measures, the incidence of human brucellosis has declined over 

the past fifty years in developed countries.  Most cases in these countries represent 

occupational disease, travel-acquired infections, or accidental laboratory exposure.  

 Brucella abortus 

Brucella abortus, initially isolated as Bacillus abortus by Bang in 1897 and 

eventually renamed in 1920, is the etiological agent of bovine brucellosis, an infection 

that leads to spontaneous abortion, premature calving, and infertility in cattle. The fetus, 

placenta, and uterine fluid typically contain large quantities of B. abortus bacteria, which 

can infect other cattle coming into contact with an infected animal and its vaginal 

secretions around the time of calving. The organism is also excreted in the milk.  

Brucellosis is contracted by humans by drinking infected unpasteurized milk or 

from contact with discharges from cattle or goats that abort their fetuses. This disease 

does not spread from person to person. Symptoms include intermittent or irregular fever 

of variable duration, headache, weakness, profuse sweating, chills, weight loss, and 

generalized malaise.  

In cattle, brucellosis is primarily a disease of the female. Bulls can be infected, 

but they do not readily spread the disease. The organism localizes in the testicles of the 

bull, resulting in orchitis. In the female, the organism is prevalent in the udder, uterus, 

and lymph nodes adjacent to the uterus. The infected cows exhibit symptoms which may 

include abortion during the last trimester of pregnancy, retained afterbirth, and weak 

calves at birth (Enright 1990). Typically, infected cows usually abort only once; 

subsequent calves may be born weak or healthy. Some infected cows will not exhibit any 

clinical symptoms of the disease and give birth to normal calves. Millions of organisms 
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are shed in the afterbirth and in fluids associated with calving and aborting. The disease is 

spread when cattle ingest contaminated feed or lick calves or aborted fetuses from 

infected cattle.  

This species is able to cross the species barrier affecting both other livestock and 

humans (Young 1995).  In livestock, it causes billions of dollars in losses due to 

abortions in cattle.  This species is also listed as a civilian, military, and agricultural 

bioterrorism agent. 

 Brucella melitensis 

Brucella melitensis, the first species in the genus Brucella to be described, causes 

abortions in female goats and sheep, unilateral orchitis in males, and Malta fever in 

humans (Alton 1990a). Sir David Bruce, a British army surgeon, discovered the organism 

in 1887 as the causative agent of Mediterranean or Malta fever (Moreno and Moriyon 

2002).  The organism now bears his name coupled with “melitensis,” which is Latin for 

Malta.  B. melitensis is prevalent in Mediterranean and Middle Eastern countries through 

Central Asia to China and southern areas of the former Soviet Union.  Some areas of 

Africa and India, as well as Central and South America, are also affected. This species’ 

natural hosts may be goats and sheep, but the organism is the least species-specific of the 

brucellae (Alton 1990a). 

Sheep and goats and their products are the main source of infection, but B. 

melitensis in cattle has emerged as an important problem in some southern European 

countries, Israel, Kuwait, and Saudi Arabia. The disease in goats resembles the disease in 

B. abortus-infected cattle (Enright 1990).    B. melitensis infection is particularly 

problematic because B. abortus vaccines do not protect effectively against B. melitensis 
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infection. Thus, bovine B. melitensis infection is emerging as an increasingly serious 

public health problem in some countries with the spread of the disease through 

unpasteurized dairy products received from these infected cows. 

B. melitensis is highly pathogenic for humans, making it one of the most serious 

zoonoses in the world. The most prominent symptoms are weakness and intermittent 

fever. The disease persists for months if left untreated but is seldom fatal in humans. 

Infection is normally by inhalation and via abraded skin, and transmission between 

species occurs readily. Humans usually become infected by ingestion of contaminated, 

unpasteurized milk and milk products.  So far, a vaccine has not yet been discovered to 

fight the disease in humans, and animal vaccines are pathogenic to humans. 

Brucella melitensis is considered a potential agent for biological warfare by the 

US Department of Health and Human Services Centers for Disease Control and 

Prevention.  Although rarely fatal for humans, brucellosis is highly contagious, difficult 

to treat, and easily transmitted, making it ideal for use in bioterrorism. 

 Brucella suis 

Brucellosis caused by B. suis was first described by J. Traum in 1914 in swine 

herds in Indiana.  It was initially thought to be a pathogenic B. abortus but was later 

named B. suis by I. F. Huddleson (Alton 1990b).  Comparison of the closely-related B. 

suis and B. melitensis genomes revealed a set of genomic variations that could be 

responsible for the differences in virulence and host preference between these organisms 

(Paulsen et al 2002).   

Domestic and feral swine are natural hosts of B. suis (Norton and Thomas 1976; 

Becker et al 1978; Zygmont et al 1982).  In sows, abortion is the primary indicator of 
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disease, which occurs at any stage of the pregnancy.  An infected sow may deliver some 

healthy live piglets and have some born dead or die shortly after birth.  Mastitis may also 

be observed.  In boars, there may be brucellae present in the semen without any visual 

indications of disease.  There may also be unilateral swelling and atrophy of the 

epididymes and testes usually resulting in infertility.  Reports of lameness; swollen joints, 

bursae, and tendons; and paralysis because of abscess formation near the spine have also 

been documented (Alton 1990b).  Brucellosis caused by B. suis is considered to be a 

venereal disease with the infected boar passing the disease on to uninfected sows (Alton 

1990b). 

 Contraction of the human disease is primarily limited to the occupational hazards 

of farmers and abattoir workers. Considered a potential bio-weapon, B. suis was the first 

pathogenic organism weaponised by the U.S. military during the 1950s. It is seen as a 

potential bioterrorism threat that could be targeted against military personnel, civilians, or 

food supplies (Paulsen et al 2002). 

             Brucella ovis 

 A rough form of Brucella, B. ovis is the primary cause of brucellosis in sheep.  In 

its rough form, brucellae lack the hydrophilic O-polysaccharide (OPS) side chain of the 

lipopolysaccharide (LPS) of their outer cell membrane, differing from the typically 

smooth forms of B. abortus, B. melitensis, and B. suis (Myers et al 1972).  B. ovis was 

first isolated in New Zealand by McFarlane et al and in Australia by Simmons and Hall 

(Blasco 1990).  It has also been found in the US, Mexico, Canada, South Africa and parts 

of Asia, Europe and South America (Blasco 1990). 

 B. ovis may be transmitted venereally via an infected ewe.  It can also be passed 
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from one ram to another ram by direct contact, sodomy, sharing of pens, or through 

shearing wounds (Blasco 1990).  Ewes rarely show symptoms and only a small 

percentage of them actually abort (Grillo et al 1999).  Abortions typically occur in cases 

where the ewe is exposed to the organism at early or mid-pregnancy, yet females rarely 

abort if they are infected before mating or late in pregnancy.  However, some ewes may 

develop placentitis as a result of exposure to the organism which may result in weak 

lambs (Theon and Enright 1986).  In sexually-mature rams, B. ovis causes epididymitis, 

orchitis, and infertility.  Not all rams appear to be shedders of the infection. It is thought 

that only 40% of rams with low titer reactions shed the organism, whereas, 100% of high 

titer reactor rams are thought to shed the microbes (West et al 2002). 

            Brucella canis 

            The canine Brucella was first recognized in the late 1960s as a cause of abortions 

and reproductive failures, and it has since been recognized in several countries 

(Carmichael 1990). It is especially common in Mexico, Central and South America and 

in the southern states of the United States.  It has been diagnosed in commercial or 

research breeding beagle kennels in several other countries, including Japan and more 

recently in The People's Republic of China. The disease has been reported sporadically in 

Europe (Wanke 2004).  Humans may be infected; however, dogs and other canine species 

are believed to be the only true hosts.  Canine brucellosis does not typically end in an 

animal’s death, but an animal’s reproductive failures can be economically detrimental to 

their owners (Hollett 2006). 

            Brucellosis in dogs is caused by the sexual transmission of B. canis through the 

mating of infected males and females. In the female dog, B. canis lives in the vaginal and 
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uterine tissues and is secreted for years and usually for life. The infected female may 

appear healthy with no signs of disease or indication that she is a carrier of the organisms.  

She can spread the bacteria to other animals through her urine, aborted fetuses, or most 

commonly through the act of breeding. The bacteria also infect the developing fetuses 

causing illness (Carmichael and Joubert 1988). Clinical signs are primarily associated 

with the reproductive tract.  In females, the most prominent sign is abortion after 45-55 

days of gestation in about 75% of the cases. These may go unnoticed, and the female may 

present with the complaint of "failure to conceive." In males, the bacteria live in the 

testicles and seminal fluids.  An infected male can spread the bacteria via his urine or 

semen (Moore and Kakuk 1969).  There are often no signs except in advanced cases 

where epididymitis, testicular atrophy, scrotal dermatitis, and infertility may be observed 

(Carmichael 1990).  Semen from infected males usually contains large numbers of 

abnormal sperm and inflammatory cells, especially during the first three months 

following infection. Chronically-infected males may have no sperm or reduced numbers 

of immature sperm.  Infected males harbor organisms in the prostate gland and 

epididymides (Wanke 2004).  Nonspecific signs in both sexes include lethargy, loss of 

libido, premature aging, and generalized lymph node enlargement.   

            Litters of infected dogs are commonly aborted, usually in the last two weeks of 

gestation, or the puppies may die shortly after birth.  Usually, the fetuses are partially 

decayed and accompanied by a gray to green vaginal discharge. This discharge can 

contain very high numbers of B. canis.  Early embryonic death and re-absorption or 

abortion 10-20 days after mating may occur in some cases. If they die early, embryos 

may be reabsorbed, and the female may never appear to be pregnant at all.  
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 Brucella neotomae 

           B. neotomae was isolated from the desert wood rat, Neotoma lepida, by Stoenner 

and Lackman in 1957 (Cameron and Meyer 1958).  It was identified as a new species of 

Brucella on the basis of conventional genus speciation, including the organism’s behavior 

on differential dye media, CO2 requirements, and H2S production.  The organism was 

found to display a distinct difference from the three main species, B. abortus, B. 

melitensis, and B. suis, and all sub-classifications within the species (Huddleson et al 

1957; Cameron and Meyer 1958).  

 Marine Mammal Species 

            Recently, a number of Brucella isolates were described whose properties do not 

closely agree with the descriptions for recognized species.  The status of most of these 

strains has not been finally decided, and it is possible that some or all of them will 

eventually be found to correspond to atypical cultures of existing species or biovars. In 

several reports, these new Brucella species were isolated from marine mammals, 

predominantly seals and cetaceans and an otter from Scotland and the coast around 

northern England and from a bottle-nosed dolphin from California (Ewalt et al 1994). 

Identification of these organisms was based on serology, morphology, staining, metabolic 

phenotype, culture characteristics, and phage typing (Vizcaino et al 2004; Clavareau et al 

1998; Jahans et al 1997). Characterization of these strains failed to assign them to a 

known species of the genus Brucella, and many findings have raised questions 

concerning exposure, prevalence of infection, distribution and possible pathogenicity and 

zoonotic potential of these new species (Foster et al 1996; Ewalt et al 1994).  
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Vaccines 

            Development of efficacious vaccines against brucellosis is at the forefront of 

prevention of the disease.  Many experiments have been conducted using killed and live 

vaccine candidates (Schurig et al 2002).  Killed vaccine candidates usually confer poor 

immunity, whereas live-attenuated vaccines of virulent strains typically provide adequate 

immunity against abortion but can lead to release of the pathogenic organisms and 

possibly expose susceptible animals to infection (Nicoletti 1990a).  Ideal qualities of a 

vaccine candidate include:  (1) long duration of immunogenesis; (2) minimum 

interference with diagnostic tests; (3) easy production and storage of the vaccine with 

long stability; and (4) minimum adverse effects in vaccinated animals with no danger to 

humans in the event of exposure (Nicoletti 1990a). 

            The three primary vaccines used to prevent brucellosis in cattle, goats and sheep 

include B. abortus strain 19 (S19), B. abortus strain RB-51, and B. melitensis strain 

Rev.1.  There are no effective commercial vaccines available for pigs, B. ovis-infected 

sheep (Sanmartino 2005), or humans.  

           B. abortus Strain19 

           Until recently, Strain19 (S19) was the only vaccine used in the brucellosis control 

programs for cattle in the United States.  After it became the official vaccine in the US, it 

was subsequently used throughout the world.  S19 is the most widely used vaccine for the 

prevention of bovine brucellosis (Nicoletti 1990b).  It is like other smooth B. abortus 

strains containing an intact LPS with an O-side chain.  S19 originated after a virulent B. 

abortus isolation from a cow was serially-passaged and stored at room temperature for 

several months and appeared to be attenuated upon replication (Sanmartino 2005).  
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Protection in pregnant heifers induced by S19 is reported to be 70-90% against abortion 

and/or infection (Sanmartino 2005, Confer et al 1985; Nicoletti 1984).  The S19 vaccine 

was and still is an effective tool in brucellosis control. However, using the S19 vaccine 

has its advantages and disadvantages.  It is a live vaccine that stimulates both the humoral 

and cell-mediated responses of the immune system of vaccinated animals to resist a 

challenge with virulent Brucella spp. which otherwise results in disease.  Disadvantages 

include abortion, orchitis, pyrexia, anorexia, and occasional persistent udder infection 

(Nicoletti 1990a). Normally, a vaccinated animal retains resistance to disease for an 

extended period of time (years), but the detectable antibodies disappear in a few months. 

            Unfortunately, the serological tests used to detect brucellosis-infected cattle 

cannot differentiate between antibodies produced against S19 vaccine and antibodies 

produced against field strains due to S19’s smooth orientation. If a vaccinated animal is 

tested too soon following vaccination or if the vaccinated animal retains the antibodies 

stimulated by the vaccine for an extended period, the vaccinated animal would result in a 

false positive. In addition, some animals with developing uteruses and/or mammary 

glands vaccinated with S19 vaccine may become permanently infected with the vaccine 

organism, constantly producing antibodies against it and continuing to test positive. If an 

animal is vaccinated with the S19 vaccine after the animal reaches reproductive maturity, 

the animal may be prone to become permanently infected with the live vaccine organism 

and will continue to be stimulated to produce antibodies against the vaccine.  

            Calves born to S19-vaccinated cows acquire anti-Brucella antibodies from the 

cow through the colostrum (first-milk) immediately after birth. These acquired antibodies 

normally circulate in the calves' blood system for 4-6 months and can neutralize or kill 



 14

the live vaccine organisms if the calf is vaccinated during the time it still possess the 

antibodies from the colostrum. The routine vaccination of cattle/herds against brucellosis 

is restricted to heifers between the ages of three to eight months of age (Nagy et al 1967; 

Poester et al 2006). 

           B. abortus RB-51  

           In 1996, the USDA officially recognized and began using RB-51 as a brucellosis 

vaccine for protecting cattle against the disease. Like S19, RB-51 is a live vaccine 

derived from, B. abortus.  After 51 serial passages of smooth B. abortus 2308 onto tryptic 

soy broth agar plates supplemented with rifampicin and penicillin, Schurig et al isolated 

the rough attenuated B. abortus Strain RB-51 (Schurig et al 1991; Schurig et al 2002). 

The RB-51 vaccine was derived from this rifampicin-resistant mutant of smooth B. 

abortus 2308 which lacks almost all of the LPS O-side chain.  Vaccination of calves three 

to ten months of age with RB-51 has been evaluated to provide protection against 

abortion and infection statistically similar to that of S19 with no signs clinical disease, no 

pathogenic lesions associated with acute brucellosis, and with rapid clearance of the 

organism from draining lymph nodes (Cheville et al 1992; Cheville et al 1993; Cheville 

et al 1996). Studies have shown that vaccination of pregnant cattle with RB-51 elicits 

both humoral and cell-mediated immune responses without infection and/or abortion 

(Palmer et al 1997). Unlike S19, RB-51 vaccine does not stimulate antibodies that are 

detected by the standard brucellosis serological tests, alleviating the problem of having 

some brucellosis-vaccinated cattle test positive with standard serological tests (Cheville 

et al 1993; Stevens et al 1994).  The RB-51 vaccine is approved for use in most 

brucellosis eradication programs for subcutaneous vaccination of calves four to twelve 
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months of age at a full dose of 1.0-3.4 x 1010 CFU (Poester et al 2006). 

           B. melitensis Rev. 1 

           Rev. 1 vaccine was developed by Elberg and Herzberg in 1957 from a non-

dependent reverse mutant of the virulent streptomycin-dependant strain of B. melitensis 

5056 as a live vaccine against B. melitensis in goats and sheep (Sanmartino 2005). Rev. 1 

is a smooth bacterium with a complete LPS which induces a similar antibody response as 

that caused by the field strains and can not be easily differentiated by conventional 

serology.  The vaccine is a streptomycin-resistant B. melitensis, and it can become an 

important health problem if accidents occur involving those persons working with the 

vaccine (Blasco and Diaz 1993). 

            Subcutaneous vaccination with Rev. 1 is recommended for goats and sheep 

between four to six months of age.  Using standard subcutaneous doses (1 x109 - 2 x109 

CFU) of the vaccine, Rev. 1 yields a two to three month widespread and persistent 

infection of the animal by the organism, actively colonizing the spleen and several lymph 

nodes.  It also induces a powerful and long-lasting serological response, which can 

interfere with diagnostic tests (Blasco 2006). In areas with widespread infection or the 

likelihood of re-infection, it is recommended that adult animals receive reduced doses of 

the vaccine (Blasco 1997).  Conjunctival vaccination induces sufficient protection in 

animals three to six months of age and also reduces the possibility of serological 

interference. 

            Both standard and reduced doses of Rev. 1 induce abortions in sheep and goats 

vaccinated during pregnancy.  Studies have demonstrated that even reduced doses are not 

entirely safe or protective (Alton 1970; Blasco 1997) against B. melitensis in sheep and 
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goats (Alton 1970).  Nevertheless, conjunctival vaccination of animals with Rev.1 during 

breeding periods can effectively provide protection and reduce the risk of vaccine-

induced abortions (Blasco 1997). 

Human Infection and Treatment 

            Generally, humans are infected in one of three ways: ingestion or inhalation of 

Brucella organisms via the nasal, oral, and pharyngeal cavities; or having the bacteria 

enter the body through skin wounds (Brinley-Morgan and Corbel 1990). The most 

common way to be infected is by eating or drinking contaminated milk products.  Milk 

from infected animals, such as sheep, goats, or cows, is contaminated with the bacteria. If 

the milk is not pasteurized, these bacteria can be transmitted to persons who drink the 

milk or eat cheeses produced from the infected animals.  Inhalation of Brucella 

organisms is not a common route of infection, but it can be a significant hazard for 

people in certain occupations, including those working in laboratories where the 

organism is cultured.  Inhalation of the organism is often responsible for a significant 

percentage of cases in abattoir employees. Contamination of skin wounds is problematic 

for persons working in slaughterhouses, meat packing plants, or for veterinarians.  

Hunters may also be infected through skin wounds or by accidentally ingesting the 

bacteria after cleaning killed caribou, elk, or wild pigs that were infected.  

Human patients suffering from brucellosis are routinely treated with combinations 

of antibiotics, such as rifampin and doxycycline or streptomycin and doxycycline (Solera 

et al 1997). Historically, 2% of untreated B. melitensis-infected patients die, and 

Brucella-induced deaths are still reported (Corbel 1997).  Because of the zoonotic aspects 
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of this infectious disease, the control of brucellosis in agricultural animals is crucial in 

order to eradicate human brucellosis. 

The World Health Organization recommends a treatment of 600 to 900 mg 

rifampicin and 200 mg doxycycline daily for a minimum of six weeks for acute 

brucellosis in adults (World Health Organization 1986). Some research supports the 

claim that a combination of intramuscular streptomycin with doses of oral tetracycline 

provides fewer relapses (Ariza et al 1985).  For treatment of the disease in children, 

rifampicin has been recommended as the treatment of choice with cotrimoxazole as an 

alternative.  Both drugs are associated with a high relapse rate if they are used alone; 

better results are usually achieved by using them in combination (Khuri-Bulos et al 

1993).  Relapse rates among adults and children of 5-10% are not uncommon after the 

completion of antibiotic treatment (Hall 1990; Memish et al 2000). 

Pathogenicity 
 

Brucella species are intracellular pathogens that are capable of survival and 

replication inside host phagocytic and non-phagocytic mammalian cells, which is 

essential for virulence (Celli 2006).  Following penetration of the mucosal epithelium, the 

bacteria are transported to the regional lymph nodes. The spread and multiplication of 

brucellae in lymph nodes, spleen, liver, bone marrow, mammary glands, and sex organs 

occurs via macrophages.  The increase of brucellae in the host is mainly due to the 

organisms’ ability to avoid the killing mechanisms and proliferate within macrophages. 

Virulent Brucella species not only resist killing by neutrophils following phagocytosis 

(Riley and Robertson 1984a and 1984b; Canning et al 1986), but they also replicate 

inside macrophages (Jones and Winter 1992) and nonprofessional phagocytes (Detilleux 
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et al 1990a).  Brucellae are capable of establishing themselves in replicative phagosomes 

inside of host macrophages for extended intracellular survival.  They also appear to be 

capable of withstanding exposure to reactive oxygen intermediates, acidic pH, and 

nutrient deprivation during their time inside the host macrophage (Celli 2006).  There is 

evidence that smooth LPS probably plays a vital role in intracellular survival since 

smooth organisms tend to survive much more effectively than rough ones (Zhan and 

Cheers 1995; Caron et al 1994).  Survival in macrophages is considered to be responsible 

for the establishment of chronic infections and allows the bacteria to escape the 

extracellular mechanisms of host defense, like complement and antibodies.  Many studies 

have been done to evaluate the relationship between the brucellae and mammalian 

macrophages from cattle (Harmon et al 1988; Price et al 1990), humans (Rittig et al 

2001), and mice (Watarai et al 2002; Celli et al 2003), which reveal the organisms’ 

ability to survive and replicate within those cells. 

The mechanism of invasion of non-phagocytic cells, such as placental 

trophoblasts, is not clearly established.  Within non-phagocytic cells, brucellae tend to 

localize in the rough endoplasmic reticulum.  Placental trophoblasts are a part of the 

epithelial layers of the placenta of the natural host.  They serve as an important interface 

between the maternal and fetal circulation.  At late-gestation, Brucella are known to 

replicate within the placental trophoblasts of their natural ruminant host causing, the 

degradation of placental integrity, infection of the fetus, and possibly abortion or the birth 

of weak or infected animals (Roop et al 2004).  Erythritol, which may serve as a growth 

stimulant for brucellae, is produced in large amounts by ruminant placental trophoblasts 

(Enright 1990).  Further experiments utilizing microscopic analysis of placental tissues 
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from B. abortus-infected cows and goats also revealed that brucellae replicate in 

intracellular compartments associated with the rough endoplasmic reticulum of 

trophoblasts, suggesting a similar intracellular environment to that inside of host 

macrophages (Meador and Deyoe 1989; Anderson et al 1986a and 1986b).  Brucellae 

have also been observed to infect the non-phagocytic trophoblasts cells of pregnant 

ruminants in vivo (Anderson and Cheville 1986).  They have also been observed to infect 

epitheloid HeLA (Pizarro-Cerda et al 1998) and fibroblast Vero (Detilleux et al 1990b 

and 1991) cell lines in vitro. 

Brucella Genomes 

 Several complete genomes of the genus Brucella, including B. melitensis 16M 

(De Vecchio et al 2002a), have been sequenced thereby providing an opportunity for 

researchers to examine new perspectives for deciphering this historical, disease-causing 

organism.  Revelations provided by the completed genomes initiates the commencement 

of studies pertinent to evaluating the functional annotation of products from predicted 

coding sequences (De Bolle et al 2004), giving researchers insight into genes and gene 

functions. It also creates an opportunity to study the products produced by novel genes 

and to evaluate their implications for survival, replication, and virulence. Proteomic 

studies to define biochemical pathways associated with stress responses, host specificity, 

pathogenicity, virulence, and vaccine development have also expanded. Comparison of 

genomes and proteomes among the species has shed significant light on the Brucella 

genus (Wagner et al 2002; Mujer et al 2002; Halling et al 2005; Eschenbrenner et al 

2006; Ding et al 2006). 

 



 20

Genetic Manipulation of Brucella Species 

 Genomic characterizations have also enabled researchers to manipulate many 

Brucella genomes in an effort to determine gene functions, particularly those genes 

involved with virulence.  Genetic manipulation of the genomes has become an important 

tool in unraveling the pathogenicity of the genus. 

Although not naturally competent, brucellae are capable of accepting plasmid 

DNA via electroporation or after chemical treatment (Lai et al 1990; Elzer et al 1994). 

The broad-host-range vector pBBR1MCS is able to provide genetic complementation for 

all Brucella species (Kovach et al 1994; Elzer et al. 1995).  Derivatives of pBBR1MCS 

have also been produced, each with a selectable marker, such as the green fluorescent 

protein or an antibiotic cassette, for easy identification of successful transformations and 

variant strains.  The vector and its derivatives are not actually incorporated into the 

genome but are maintained at a low copy number throughout the Brucella genus (Elzer et 

al. 1995).  

Additional vectors are also useful in these experiments.  Suicide vectors, like 

ColE1-derived plasmids, containing fragments of Brucella DNA are unable to replicate in 

Brucella species and are not maintained within the cell (Elzer et al 1995).  In many gene 

replacement studies, homologous recombination occurs between the suicide vector and 

the Brucella genome, resulting in successful replacement of the target gene (Ugalde et al 

2000; Alvarez-Martinez et al 2001; Edmonds et al 2002a and 2002b).   

Creation of in vivo gene mutations has become an important component in the 

quest to identify Brucella virulence factors. Genetic manipulation of Brucella genomes 

using gene replacement by homologous recombination is well documented (Lai et al. 
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1990; Halling et al 1991; Tatum et al 1992; Elzer et al 1994; Phillips et al 1994; Drazek 

et al 1995; Elzer et al 1995; Phillips et al 1995; Kohler et al 1999; O'Callaghan et al 

1999; Alvarez-Martinez et al 2001; Edmonds et al 2001; Boschiroli et al 2002; Edmonds 

et al 2002a and 2002b).  

Gene disruption via deletion or insertion mutagenesis is a technique routinely 

used in the process of gene replacement. Initially, production of such a gene knockout 

mutant involves cloning the gene of interest into an appropriate plasmid vector. This gene 

of interest is then mutated, in vitro, by deleting a portion of the gene or introducing a 

selectable marker, like an antibiotic resistance gene into an endonuclease restriction site 

in the gene (Madigan et al 2000; Edmonds et al 2002a and 2002b). The mutation in the 

gene of interest is then confirmed, and the plasmid is introduced, usually via 

electroporation, into Brucella species.  A double crossover event within the cell replaces 

the wildtype gene via homologous recombination resulting in a loss of function in the 

gene of interest.  

Bacterial Hemagglutinins 

 Bacterial hemagglutinins became interesting in the early 1900s when Kraus and 

Ludwig observed that some bacteria, historically staphylococci and vibrio, use substances 

to cause red blood cells (RBCs) to agglutinate (Netter et al 1954). A resurgence in the 

study of hemagglutinins occurred with the evaluations of viral hemagglutinins.  

G. K. Hurst studied the effect of influenza hemagglutinins on RBCs via the allantoic fluid 

of chick embryos infected with the virus (Hirst 1941). 

 Classically, there are two types of bacterial hemagglutination:  direct and indirect 

(Neter et al 1954).  Direct hemagglutination occurs when bacteria cause the clumping of 



 22

RBCs.  In indirect hemagglutination, bacteria change the RBCs, making them susceptible 

to agglutination by antibodies.  Many bacterial antigenic components may be absorbed by 

RBCs, resulting in the agglutination of these modified RBCs by homologous bacterial 

antibodies (Neter et al 1954).  As studied in viruses, hemagglutinins allow the recognition 

of the target cells’ sialic acid-containing receptors and help facilitate the entry of the virus 

into the target cell via the fusion of the host endosomal and viral membranes (White et al 

1997). 

 Brucella LPS has important cell surface properties yet there is no evidence 

showing its role in invasion (Aragon et al 1996).  Varied virulence between smooth and 

rough strains of Brucella suggests that the O-side chain of LPS is not the organisms’ only 

virulence factor.   Other outer membrane proteins may also play a role in the organisms’ 

virulence (del C. Rocha-Gracia et al 2002; Corbel and Brinley-Morgan 1984).  An 

organism’s ability to adhere to a mucosal surface is a crucial first step in the pathogenesis 

of many pathogens (Finlay and Falkow 1997).  For that reason, brucellae entry into 

phagocytic and non-phagocytic cells must be preceded by direct contact of the bacteria 

with host target cells on the mucosal surface (del C. Rocha-Gracia et al 2002).  This 

initial attachment of the brucellae to epithelial or RBCs is mostly unknown.  Historically, 

Brucella cell components specific for cell adhesion and invasion have not been 

characterized, and attempts to detect invasin genes homologous to those of enterobacteria 

have failed (Corbel 1997).  With the completion of entire Brucella species genomes, 

specifically B. melitensis 16M, studies have been and are currently being done to detect 

and characterize novel genes that may be involved in Brucella pathogenicity (Del 

Vecchio et al 2002a and 2002b).  Of particular note is a putative hemagglutinin gene 
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found within the B. melitensis genome that is absent in B. abortus (DelVecchio et al 

2002b and 2002c).  The gene is present in B. suis and B. canis but with minor nucleotide 

substitutions.  There are two copies of the gene in B. ovis.  A NCBI Nucleotide Blast of 

the sequence reveals that the gene corresponds to a B. melitensis 16M hemagglutinin 

(GenBank GI 17989062).  There is also some homology to a cell wall surface protein of 

B. suis 1330 (GenBank GI 23500299) (Paulsen et al 2002). 

 A study done by del C. Rocha-Gracia et al (2002) explored the possibility of 

hemagglutinins on the cell surface of brucellae serving as adhesins to eukaryotic cells 

through the ability of B. abortus and B. melitensis to hemagglutinate human and animal 

(rabbit, hamster, guinea pig, rat, mouse, sheep, and dog) erythrocytes and attempted to 

identify a receptor moiety involved in that reaction.  The study utilized the 

hemagglutination test (HA), which is frequently used to detect and characterize bacterial 

lectin-like adhesins (Evans et al 1980; Qadri et al 1994).  All Brucella strains (B. abortus 

2308, B. abortus S19, B. abortus 02, and B. melitensis 03) tested showed 

hemagglutination to the RBCs from the various sources, with B. melitensis 03 showing 

the highest hemagglutination titers against all RBCs and B. abortus 2308 the lowest titer 

(del C. Rocha-Gracia et al 2002).  Further studies such as these serve as evidence of the 

presence of hemagglutinins on the cell surface of Brucella species. 

Brucellosis in the Caprine Model 

 Use of the goat model for the study of ruminant brucellosis has been well 

documented (Anderson et al 1986a and 1986b; Meador and Deyoe 1986; Meador et al 

1988; Meador et al 1989a and 1989b; Elzer et al 1996; Phillip et al 1997; Roop et al 

2001; Elzer et al 2002; Gee et al 2004; Zygmunt et al 2006; Kahl-McDonagh et al 2006).  
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The lower cost of these small ruminants, the greater quantity of animals in the available 

space to increase statistical significance, and the shorter gestation periods allowing for 

timely results are the primary advantages of using the caprine model system for the study 

of ruminant brucellosis (Elzer et al 2002). 

 Elzer et al (2002) established a goat model system to test potential vaccine 

candidates as well as evaluate virulence factors in knockout and disruption mutants.  The 

system is based upon the colonization of the non-pregnant female, colonization of the 

pregnant female and fetus/kid, and the delivery status of the fetus/kid following exposure 

to the experimental pathogen.  This system also allows researchers to assess a mutant 

strain’s ability to invade a mucosal site if administered conjunctively.  Survival, 

replication, and dissemination of the mutant throughout the body is assessed using the 

colonization assay.  The organism’s ability to colonize the dam and the fetus/kid can be 

evaluated through the pathogenesis assay (Elzer et al 2002). 

B. abortus 

Although goats are not the primary hosts, B. abortus produces similar clinical and 

serological results in the goat as those seen in cattle (Anderson et al 1986a and 1986b; 

Meador et al 1988 and 1989). The use of the caprine model to evaluate B. abortus for its 

applicability for bovine brucellosis has been documented (Meador and Deyoe 1986; Elzer 

et al 1996).  Typically, studies show the 30-50% of pregnant goats infected with B. 

abortus 2308 abort, and 50-70% of dam/kid pairs are colonized (Elzer et al 2002). 

 The inoculation, intraveniously or via uterine arteries, of pregnant goats with B. 

abortus revealed placentitis five days post-inoculation and abortions eleven days later 

(Anderson et al 1986a and 1986b).  A study of the histopathology of the bovine pathogen 
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in pregnant goats in mid-gestation also revealed lesions similar to those of B. abortus-

infected cows and fetuses/kids although occurring at a less consistent rate in goat 

fetuses/kids than in bovine fetuses/kids (Meador et al 1998).   

Studies have also been done to determine the effects of rough strains of B. abortus 

in goats. A rough strain of B. abortus, RB-51, was found to maintain its rough phenotype, 

produce significant levels of anti-Brucella IgG, and did not produce abortions when 

experimentally injected into the fetuses of goats in their last trimester of pregnancy (Roop 

et al 1991). 

B. melitensis 

As the primary host of B. melitensis, goat infections can be extremely devastating.  

Caprine brucellosis is characterized by abortion, low production, and infertility among 

infected animals (Zygmunt et al 2006).  The organism enters the animal through the 

mouth, nose, eye, or an area of abraded skin; and the infection quickly spreads 

throughout the animal’s body via its lymphatic system.  In documented studies, pregnant 

goats infected with B. melitensis 16M generally abort the fetus 70-100% of the time with 

90-100% of the dam/kid pairs being culture positive (Elzer et al 2002). 

Infection of a pregnant uterus almost always ends in abortion of the fetus, which 

usually occurs during the last two months of pregnancy (Alton 1990).  Kids may be born 

alive and weak or may appear to be healthy.  But, upon the culturing of their tissues, the 

kids are confirmed as being colonized by the organism.  Some kids have been found to be 

culture- and sero-negative by the time they are two months old (Alton 1990).  Others 

have also been observed to be anti-Brucella antibody free prior to receiving colostrum 

(Meador and Deyoe 1986).   



 26

HYPOTHESES 

 The current study evaluates the virulence of a putative Brucella  melitensis 16M 

hemagglutinin gene, Region E, in the caprine model, according to the following 

hypotheses:  production of a B.  abortus 2308 variant, B. abortus 2308-QAE, through the 

expression of Region E in trans causes increased virulence within the goat model and 

creation of a Brucella melitensis 16M mutant, B. melitensis 16M∆E, through the 

disruption of Region E causes attenuation within the goat model.  Genetically-

manipulated strains of B. abortus 2308 and B. melitensis 16M were assessed based upon 

their colonization of non-pregnant goats and dam/kid pairs and the abortion rate of 

pregnant goats infected with the test strains. 
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MATERIALS AND METHODS 

Bacterial Strains 

 Brucella abortus strain 2308 and B. melitensis strain 16M as well as B. abortus 

2308-QAE (this study) and B. melitensis 16M∆E (this study) were cultured from the 

laboratory stock when needed.  Glycerol stocks of B. abortus 2308 and B. melitensis 16M 

were thawed and plated on Schaedler Brucella Agar (SBA) (Difco Laboratories, Detroit, 

MI).  Glycerol stocks of B. abortus 2308-QAE were plated on SBA containing 100 µg/ml 

ampicillin (Sigma Chemical Company, St. Louis, MO) and  B. melitensis 16M∆E on 

SBA containing 45 µg/ml kanamycin (Sigma Chemical Company).  Plates were 

incubated at 37ºC in a 5% CO2 atmosphere for 2-3 days.  Bacterial lawns were harvested 

with sterile brucella broth (Difco Laboratories).  Equal volumes of the cell suspensions 

and a 50% glycerol (EMD Chemicals, Inc., Gibbstown, NJ) - brucella broth mixture were 

made and stored at -80ºC until needed. 

 Inoculation doses of B. abortus 2308, B. melitensis 16M, B. abortus 2308-QAE, 

and B. melitensis 16M∆E were made by harvesting 2-3 day-incubated plates with 

brucella broth.  Cell suspensions were diluted and standardized via spectrophotometer 

(Bausch and Lomb, Rochester, NY) to an O.D. reading of 0.15 at 600λ for a 

concentration of 1x109 CFU/ml.  Infectious doses were snap frozen in liquid nitrogen in 1 

ml aliquots and stored at -80ºC until needed.  Viability counts on SBA plates, SBA plates 

with ampicillin (100 µg/ml), and SBA plates with kanamycin (45 µg/ml) using serial 

dilutions were done to validate the concentration of the inoculation doses. 
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 One Shot® TOP10 Chemically Competent Escherichia coli Cells (Invitrogen 

Corporation, Carlsbad, CA) were obtained commercially.  They were received frozen on 

dry ice and were stored at -80ºC until needed.  

Genomic DNA Preparation 

 Genomic DNA was isolated from B. abortus 2308 and B. melitensis 16M for 

analysis by Polymerase Chain Reaction (PCR).  SBA plates were inoculated with 100 µl 

of either organism and incubated at 37ºC and in a 5% CO2 atmosphere for 2-3 days.  

Plates were harvested in 2 ml Phosphate Buffered Saline (PBS) (Sigma Chemical 

Company).  Cell suspensions were placed into 15 ml centrifuge tubes. An equal volume 

of chloroform (CH3Cl) was added to the cells, and the tubes were rocked in a biosafety 

cabinet for 1 hour.  The mixture was allowed to settle for at least 30 minutes resulting in 

the formation of distinct layers.  The aqueous layer containing the bacteria was removed 

to another 15 ml centrifuge tube and the remaining CH3Cl discarded.  Two hundred to 

500 µl of chloroform-killed cells were transferred to a 1.5 ml micro centrifuge tube and 

pelleted at 9,000 rpm for 10 minutes and the supernatant discarded. The remaining 

pelleted cells were used with the Qiagen DNeasy Blood and Tissue Kit (Qiagen, Inc., 

Valencia, CA). 

 Pelleted cells were re-suspended in 180 µl Buffer ATL (Qiagen, Inc.).  Proteinase 

K (Qiagen, Inc.) was added to the suspension before it was mixed by vortexing and 

incubated at 55ºC for 1 hour in a shaking water bath.  Following incubation, cells were 

vortexed for 15 seconds and 200 µl Buffer AL (Qiagen, Inc.) was added to the sample 

before again thoroughly mixed by vortexing.  The cells were incubated in a heating block 

for 10 minutes at 70ºC.  Two hundred micro liters absolute ethanol was added to the 
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sample, and it was mixed by vortexing. The entire mixture was then pipetted into a 

DNeasy mini column sitting in a 2 ml collection tube (Qiagen, Inc.) and centrifuged at 

8,000 rpm for 1 minute.  The flow-through and the collection tube were discarded and the 

mini column placed into another 2 ml collection tube.  Five hundred micro liters Buffer 

AW1 (Qiagen, Inc.) was added to the column.  It was centrifuged at 8,000 rpm for 1 

minute, and the flow-through and collection tube were discarded.  The mini column was 

again transferred to a new 2 ml collection tube, and 500 µl Buffer AW2 (Qiagen, Inc.) 

was added to the column and spun at 15,000 rpm for 3 minutes to dry the DNeasy 

membrane (Qiagen, Inc.).  The mini column was placed into a sterile 1.5 ml micro 

centrifuge tube, and 200 µl Buffer AE (Qiagen, Inc.) was added directly to the 

membrane. The tube was incubated at room temperature for 1 minute then centrifuged at 

8,000 rpm to elute the DNA.  The elution step was repeated into the same tube.  Isolated 

DNA was stored at -20ºC until needed. 

Polymerase Chain Reaction 

 Polymerase Chain Reaction (PCR) amplification was performed using a 

MyCycler™ Personal Thermal Cycler (BioRad Laboratories, Inc., Hercules, CA) with the 

FailSafe™ PCR System with the 2X G PreMix (Epicentre Biotechnologies, Madison, 

WI).  Each reaction contained 0.75 Units FailSafe™ PCR Enzyme Mix (Epicentre 

Biotechnologies) which consisted of a blend of thermostable DNA polymerases, 

FailSafe™ PCR 2X G PreMix [100 mM Tris-HCl, 100 mM KCl, 400 µM of each dNTP, 

and varying concentrations of MgCl2 (3-7 mM) and FailSafe™ PCR Enhancer (0-8X) 

with betaine], approximately 300 ng of template DNA, and 0.2 µM of each primer 
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specific for either the B. melitensis 16M hemagglutinin gene (Region E) or the 

kanamycin gene from pBBRIMCS-2 (Kovach et al 1995).   

 A set of primers was designed for an approximately 2000 bp putative 

hemagglutinin gene (Region E) in the B. melitensis 16M.  Primers ORF-944F  

(5’- GAATTGGCGACCTGACTGAGGA -3’) and ORF-944R  

(5’- CTCACGGCTGTTCTCCTTTAACA -3’) were desidned at The Institute of 

Molecular Biology and Medicine at the University of Scranton (Scranton, PA)  from the 

gene sequence of B. melitensis 16M chromosome II (GenBank Accession Number 

AE008918).  Primers were synthesized by BioMMED in the Department of 

Pathobiological Sciences at the Louisiana State University School of Veterinary 

Medicine (Baton Rouge, LA).  A second set of primers was designed for an 840 bp 

kanamycin gene from the published nucleotide sequence of pBBR1MCS-2 (GenBank 

Accession Number U23751).  Primers KAN-AL  

(5’- TGACCGGTTCATTTCGAACCCCAGAGTC -3’) and KAN-AR  

(5’- AGACCGGTACAGGATGAGGATCGTTTCG -3’) were constructed with an Age I 

(New England Biolabs, Beverly, MA) endonuclease restriction sequence site (5’- 

ACCGGT -3’) at their 5’- ends for further genetic manipulation. They were initially 

synthesized by BioMMED in the Department of Pathobiological Sciences at the 

Louisiana State University School of Veterinary Medicine (Baton Rouge, LA) and 

subsequently produced by Integrated DNA Technologies, Inc. (Coralville, IA). 

 For the amplification of Region E, template DNA was initially denatured at 96ºC 

for 5 minutes.  Samples were then denatured at 96ºC for 1 minute, primers annealed at 

55ºC for 30 seconds, and primers extended at 72ºC for 2 minutes over a total of 30 



 31

cycles.  A final extension at 72ºC for 5 minutes was also performed.  Amplification of the 

kanamycin gene from pBBR1MCS was carried out using the same protocol but with an 

annealing temperature of 56ºC. 

Cell Transformations 

 Cell transformations were performed using the TOPO® Cloning and 

Transformation protocol for One Shot® Chemically Competent Cells (Invitrogen 

Corporation).  Five to ten micro liters of ligation reactions were added to one vial of 

chemically competent TOP10 E. coli cells (Invitrogen Corporation) and mixed gently 

without pipetting the mixture up and down.  The cells and ligation mixtures were 

incubated on ice for 10-20 minutes then heat-shocked at 42ºC without shaking for 30 

seconds in a heating block.  The tubes were then immediately transferred to ice, and 250 

µl of room temperature S.O.C. medium (2% tryptone, 0.5% yeast extract, 10mM NaCl, 

2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose) (Invitrogen Corporation) 

was added to each tube.  The cells were then incubated at 37ºC for 1 hour in a shaking 

water bath.  Following incubation, 50 µl to 100 µl of each transformation was plated on 

pre-warmed Luria-Bertani (LB) plates (1.0% tryptone, 0.5% yeast extract, 1.0% NaCl, 

pH 7.0) with or without ampicillin (100 µg/ml), kanamycin (45 µg/ml), or ampicillin and 

kanamycin.  The plates were incubated at 37º C overnight and observed for growth.  

Successful transformation colonies were picked with a sterile loop and inoculated into 2 

ml to 4 ml LB broth and incubated at 37ºC overnight in a shaking water bath in 

preparation for plasmid DNA isolation. 
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Plasmid Preparation 

 Plasmid mini preps were performed on suspect E. coli colonies to confirm the 

presence of plasmids, pQAE and pUC19∆E, using the Qiagen Buffer System (Qiagen, 

Inc.).  After an overnight incubation at 37ºC in a shaking water bath, approximately 1.5 

ml of broth culture was pelleted at 9,000 rpm for 5 minutes and the supernatant 

discarded.  The pellet was completely re-suspended in 300 µl of Buffer P1 (50 mM Tris 

base; 10 mM EDTA, pH 8.0; 100 µg/ml RNase A) by vortexing. Three hundred micro 

liters of Buffer P2 (200 mM NaOH, 1% SDS) was added to the tubes and mixed 

thoroughly before the addition of 300 µl of chilled Buffer P3 (3.0 M CH3CO2K, pH 5.5).  

The tubes were mixed by inverting several times then centrifuged at 14,000 rpm for 10 

minutes.  The supernatant was promptly removed to a clean 1.5 ml micro centrifuge tube 

and the DNA precipitated with 0.7 times the total volume with isopropanol by inverting 

the tube several times. Following a 15 minute centrifugation at 14,000 rpm, the 

supernatant was promptly poured off, and the pellet was allowed to air dry.  The pellet 

was re-suspended in 25-30 µl of dH2O.  Glycerol stocks of the re-suspended, confirmed 

plasmids were made as described above and stored at -20ºC until used.  Brucella spp. 

were initially chloroform killed prior to the cells being used in the above mini preps 

protocol. 

 Plasmid maxi preps were performed on E. coli colonies to acquire a large quantity 

of isolated pQAE for electroporation into B. abortus 2308 using the Qiagen Plasmid 

Maxi Kit (Qiagen, Inc.).  A single colony was picked from a streaked plate into a 2-5 ml 

LB medium containing 100 µg/ml ampicillin and incubated for ~8 hours at 37ºC in a 

shaking (300 rpm) water bath.  The starter culture was then diluted 1/1000 into 100 ml 
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LB medium containing 100 µg/ml ampicillin and incubated at 37ºC for 12-16 hours in a 

shaking (300 rpm) water bath.  The cells were harvested by centrifugation at 6,000 rpm 

for 15 minutes at 4ºC and re-suspended in 10 ml of Buffer P1(50 mM Tris base; 10 mM 

EDTA, pH 8.0; 100 µg/ml RNase A).  Ten milliliters of Buffer P2 (200 mM NaOH, 1% 

SDS) was added, mixed, and the sample incubated at room temperature for 5 minutes.  

Following incubation, ten ml of chilled Buffer P3 (3.0 M CH3CO2K, pH 5.5) was added, 

mixed gently by inverting, and incubated on ice for 20 minutes.  The sample was then 

centrifuged at ≥20,000 x g for 30 minutes at 4ºC and plasmid-containing supernatant 

removed and re-centrifuged at ≥20,000 x g for 15 minutes at 4ºC, removing the plasmid-

containing supernatant to a Qiagen-tip 500 column, which had been equilibrated with 10 

ml Buffer QBT (750 mM NaCl; 50 mM MOPS, pH 7.0; 15% isopropanol; 0.15% Trion® 

X-100).  The column was washed two times with 30 ml Buffer QC (1.0 M NaCl; 50 mM 

MOPS, pH 7.0; 15% isopropanol).  The DNA was eluted from the column using 15 ml 

Buffer QF (1.25 M NaCl; 50 mM Tris-Cl, pH 8.5; 15% isopropanol), precipitated in 0.7 

times the total volume with room temperature isopropanol, and centrifuged at ≥15,000 x 

g for 30 minutes at 4ºC.  Pelleted DNA was washed with 5 ml room temperature 70% 

ethanol and centrifuged at ≥15,000 x g for 10 minutes.  The supernatant was decanted.  

The pellet was allowed to air dry and was re-suspended in dH2O.  Confirmed plasmids 

were stored at -20ºC until used. 

Agarose Gel Electrophoresis 

 DNA products generated via PCR, endonuclease restriction digestions, genomic 

DNA isolations, or plasmid DNA preparations were mixed with 3 µl to 5 µl 6X loading 

buffer (12% Ficoll 4000, 1.0 M Na2EDTA, pH 8, 0.6% SDS, 0.15% bromphenol blue) 
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and visualized by agarose gel electrophoresis.  DNA products were run on 0.7% to 1% 

ultra pure agarose (Invitrogen Corporation)-TAE (Tris-base, glacial acetic acid, 

Na2EDTA) gel.  Gels were run at 100 volts in a BioRad DNA Sub Cell (BioRad 

Laboratories, Inc.) until the dye front was approximately 1 inch from the bottom of the 

gel.  One hundred base pair or 1 kb molecular weight standards (New England Biolabs,) 

were visualized on gels to determine the size and approximate concentration of linearized 

DNA samples being tested.  One Kilobase Supercoiled Plasmid Ladder (Bayou Biolabs, 

Harahan, LA) was visualized on gels to determine the size and approximate concentration 

of supercoiled plasmid DNA samples. Gels were incubated in 1.0 µg/ml ethidium 

bromide for 5-8 minutes and destained in dH2O for 30 minutes.  DNA bands within the 

gels were viewed and photographed using a Polaroid Gel Documentation System 

(BioRad Laboratories, Inc.) which included a UV Transilluminator. 

Gel Purification 

 DNA products derived from PCR, endonuclease restriction digestions, genomic 

DNA isolations, or plasmid DNA preparations were routinely purified via agarose gel 

purification before they were used in any additional reactions.  Gel purification was 

achieved using a Zymoclean Gel DNA Recovery Kit™ (Zymo Research, Orange, CA).  

Bands of interest were excised from the agarose gels with a sterile razor blade or scalpel 

and transferred to a 1.5 ml micro centrifuge tube.  Three volumes of ADB-Buffer (Zymo 

Research) was added to each volume of agarose gel section per tube and incubated at 

55ºC in a heating block for 10 minutes until the gel was completely dissolved.  The 

melted gel solution was loaded into a Zymo-spin column and collection tube (Zymo 

Research) and centrifuged at full speed (15,000 rpm) for 10 seconds.  After discarding the 
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flow-through, 200 µl of Wash Buffer was added to the column, and it was spun at full 

speed (up to 15,000 rpm) for 10 seconds.  The column was then washed again with 200 

µl of Wash Buffer and spun at full speed (up to 15,000 rpm) for 30 seconds.  Afterwards, 

the column was transferred to a clean 1.5 ml micro centrifuge tube, and 6 µl to 8 µl sterile 

dH2O was added to the column matrix.  The tube was spun briefly at full speed (up to 

15,000 rpm) to elute the DNA which was stored at -20ºC until used. 

Construction of Plasmids 

 A 4,950 bp plasmid, pBBR1MCS-4 (Kovach et al 1995) was digested in a 

reaction using 20 units of the restriction endonuclease EcoR V (New England Biolabs) 

along with 2.5 µl 1X NEBuffer 3, 2.5 µl 100 µg/ml bovine serum albumin (BSA), and 

dH2O to a volume of 25 µl and incubated at 37ºC for 1 hour with gentle agitation in a 

shaking water bath.  The enzyme was deactivated at 85ºC for up to 20 minutes in a 

heating block.  The digested samples were run on 0.7-1.0% agarose gels for visualization 

of linearized plasmids and then gel purified as described above.   PCR-amplified Region 

E was ligated into the EcoR V-linearized, gel-purified pBBR1MCS-4 plasmid using the 

Fast-Link™ DNA Ligation Kit for Blunt End Ligation (Epicentre Biotechnologies) to 

create pQAE.  Region E and the EcoR V-digested pBBR1MCS-4 were combined in a 15 

µl total volume reaction with 1.5 µl 10X Last-Link Ligation Buffer, 0.75 µl 10mM ATP, 

a 1:5 concentration ratio of vector DNA to insert DNA, sterile dH2O to 14 µl, and 1 µl 

Fast-Link DNA Ligase. The reaction was incubated at room temperature for 15 minutes 

and then transferred to a 70ºC heating block for 15 minutes to inactivate the ligase.  The 

reaction was briefly spun at full speed (15,000 rpm) in a micro centrifuge tube.  The 

ligation mixture was then used to transform One Shot® Chemically Competent Cells as 
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described above and plated on LB agar plates supplemented with 100 µg/ml ampicillin 

and incubated overnight at 37ºC.  Successful transformants were cultured and their 

plasmids isolated as described above for confirmation of the new 6,950 bp plasmid, 

pQAE.  Confirmation was achieved via PCR amplification using the Region E primers 

and enzyme digestion with EcoR V.   All techniques were preformed as described above.  

Maxi preps were done on cultured One Shot® Chemically Competent Cells containing 

pQAE as described above, and the isolated plasmid DNA was electroporated into B. 

abortus 2308 or frozen at -20ºC until further use. 

A ~2.0 kilobase PCR-amplified Region E fragment was generated from B. 

melitensis 16M genomic DNA using the primers ORF-944F and ORF-944R as described 

above.  The PCR fragment was then ligated into the linear 3,519 base pair pCR®-Blunt II-

TOPO® vector (Invitrogen Corporation) using the Zero Blunt® TOPO® PCR Cloning Kit 

(Invitrogen Corporation).  Three micro liters of fresh PCR product, 1 µl of kit-supplied 

salt solution, 1 µl sterile dH2O and 1 µl TOPO® vector were added for a final volume of 6 

µl in a micro centrifuge tube. The reaction was gently mixed by fingertip-tapping and 

incubated at room temperature for 20 minutes.  The cloning reaction was then used in the 

TOPO® Cloning and Transformation protocol with One Shot® Chemically Competent 

Cells (Invitrogen Corporation) as described above and plated on LB agar plates 

supplemented with 45 g/ml kanamycin and incubated overnight at 37ºC.  Successful 

transformants were cultured and their plasmids isolated for confirmation of pTOPO+E as 

described above.  

Region E was then excised from the TOPO® vector via EcoR I (New England 

Biolabs) endonuclease restriction digestion.  A 2,686 E. coli plasmid vector, pUC19 
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(Yanisch-Perron et al 1985), which confers ampicillin resistance, was also digested using 

EcoR I.  In separate 25 µl reactions, pTOPO+E and pUC19 were each combined with 2.5 

µl 1X NEBuffer for EcoR I, 20 units EcoR I, and dH2O to a total volume of 25 µl.  The 

reactions were incubated at 37ºC for 1 hour with gentle agitation in a shaking water bath 

to release the Region E fragment and the linearized pUC19 vector, leaving both with 

EcoR I overhanging 3’ and 5’ ends.  The enzyme was then deactivated in a 65ºC heating 

block for up to 20 minutes.  The digested samples were run on 0.7-1.0% agarose gels for 

visualization of the released Region E and the linearized pUC19 and then gel purified as 

described above.    

The EcoR I-digested Region E and pUC19 were ligated together using the Fast-

Link™ DNA Ligation Kit for Cohesive End Ligation (Epicentre Biotechnologies) to 

create pUC19E.  Region E and pUC19 were combined in a 15 µl total volume reaction 

with 1.5 µl 10X Last-Link Ligation Buffer, 1.5 µl 10mM ATP, a 1:2 concentration ratio 

of vector DNA to insert DNA, sterile dH2O to 14 µl, and 1 µl Fast-Link DNA Ligase. 

The reaction was incubated at room temperature for 15 minutes and then transferred to a 

70ºC heating block for 5 minutes to inactivate the ligase.  The reaction was briefly spun 

at full speed (up to 15,000 rpm) in a micro centrifuge tube.  The ligation mixture was 

then used to transform One Shot® Chemically Competent Cells as described above and 

plated on LB agar plates supplemented with 100 µg/ml ampicillin and incubated 

overnight at 37ºC.  Successful transformants were cultured and their plasmids isolated as 

described above for confirmation of pUC19E, a 4,686 bp vector. 
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 Disruption of Region E on the pUC19E plasmid was achieved by excising a 1.2 

bp interior portion of Region E.  An 840 bp kanamycin cassette was PCR-amplified from 

the broad-host-range vector, pBBR1MCS-2 (Kovach et al 1995) using the primers KAN-

AL and KAN-AR, containing the Age I restriction endonuclease sequence, 5’-ACCGGT-

3’, added to their 5’ ends as described above. Both pUC19E and the PCR-amplified 

kanamycin antibiotic cassette (KAN) were digested with Age I in a 25 µl reaction 

containing 2.5 µl 1X NEBuffer 1, 5 units of Age I, and dH20 to a total volume of 25 µl.  

The reactions were incubated at 37ºC for 1 hour with gentle agitation in a shaking water 

bath, which linearized pUC19E, releasing the 1.2 bp internal portion of Region E and 

digested KAN cassette leaving both with Age I overhanging 3’ and 5’ ends.  The enzyme 

was then deactivated in a 65ºC heating block for up to 20 minutes.  The digested samples 

were run on 0.7-1.0% agarose gels for visualization of the released interior portion of 

Region E and the linearized pUC19E and then gel purified as described above.    

 Age I-digested pUC19E and kanamycin cassette were ligated together using the 

Fast-Link™ DNA Ligation Kit for Cohesive End Ligation (Epicentre Biotechnologies) to 

create pUC19∆E.  The kanamycin cassette and pUC19E were combined in a 15 µl total 

volume reaction with 1.5 µl 10X Last-Link Ligation Buffer, 1.5 µl 10mM ATP, a 1:2 

concentration ratio of vector DNA to insert DNA, sterile dH2O to 14 µl, and 1 µl Fast-

Link DNA Ligase. The reaction was incubated at room temperature for 15 minutes and 

then transferred to a 70ºC heating block for 5 minutes to inactivate the ligase.  The 

reaction was briefly spun at full speed (up to 15,000 rpm) in a micro centrifuge tube.  The 

ligation mixture was then used to transform One Shot® Chemically Competent Cells as 

described above and plated on LB agar plates supplemented with 45 µg/ml kanamycin 
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and 100 µg/ml ampicillin and incubated overnight at 37ºC.  Successful transformants 

were cultured and their plasmids isolated as described above for confirmation of 

pUC19∆E, a 4,326 bp vector. 

The new plasmid, pUC19∆E, was digested with EcoR I to produce the 1,640 

Region E-Kanamycin-Region E (E-KAN-E) fragment.  The reaction contained the 

plasmid, pUC19∆E, along with 2.5 µl 1X NEBuffer for EcoR I, 20 Units EcoR I, and 

dH2O to volume.  The reaction was incubated at 37ºC for 1 hour with gentle agitation in a 

shaking water bath to release the E-KAN-E fragment.  The enzyme was then deactivated 

in a 65ºC heating block for up to 20 minutes.  The digested sample was run on 0.7-1.0% 

agarose gels for visualization of the released E-KAN-E fragment and gel purified as 

described above.  The fragment was stored at -20ºC until it was electroporated into B. 

melitensis 16M. 

Electroporation 

 A 100 µl infectious dose containing 1x109 CFU/ml of B. abortus 2308 or B. 

melitensis 16M was thawed and plated on Schaedler Agar (Difco Laboratories) 

supplemented with 5% whole bovine blood taken from an animal with no evidence of 

Brucella exposure.  Following a 2-3 day incubation period at 37°C in a 5% CO2 

atmosphere, the bacterial cells were harvested in 2 ml of sterile dH2O.  Twenty-five 

milliliters of sterile Brucella broth (Difco Laboratories) was inoculated with the harvested 

cells and incubated overnight at 37°C in a shaking water bath.  After incubation, the 

culture was equally dispensed into micro centrifuge tubes and spun at 6,000 rpm for 15 

minutes.  Combined pellets were re-suspended in a total volume of 1 ml cold sterile dH2O 

and centrifuged at 15,000 rpm for 5 minutes and the supernatant discarded.  The resulting 
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pellet was then washed three additional times with 1 ml cold sterile dH2O with the final 

pellet re-suspended in 100 µl of cold sterile dH2O. 

 Electroporations were performed using an Eppendorf 2510 Electroporator 

(Eppendorf Scientific, Inc., Madison, WI).  Thirty-three micro liters of a cold B. abortus 

2308 cell suspension with 3 µl of a cold pQAE plasmid solution or 33 µl of a cold B. 

melitensis 16M cell suspension with 4 µl of a cold E-Kan-E fragment solution were 

combined in a pre-chilled 2 mm, 0.04 ml Eppendorf Electroporation Cuvette (Brinkmann 

Instruments, Inc., Westbury, NY).  The mixtures were electroporated at 2.5 kV for 

approximately 5-6 milliseconds.  Five hundred micro liters of cold filter-sterilized SOC-B 

(6% trypticase soy broth (Difco), 10mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM 

MgSO4, 20 mM glucose) (Lai et al 1990) recovery media was immediately added to the 

cells which were incubated overnight at 37°C in a shaking water bath. 

 One hundred micro liters of the electroporated cells were plated onto SBA plates 

containing either 100 µg/ml ampicillin (Sigma Chemical Company) for the B. abortus 

2308-QAE cells or 45 µg/ml kanamycin (Sigma Chemical Company) for the B. 

melitensis 16M∆E cells.  Plates were incubated at 37ºC in a 5% CO2 atmosphere and 

observed for growth for 2 weeks.  All resultant B. abortus 2308-QAE colonies were 

patched onto SBA plates containing ampicillin (100 µg/ml), and all resultant B. melitensis 

16M∆E colonies were patched onto SBA plates containing kanamycin (45 µg/ml). Plates 

were incubated at 37ºC at a 5% CO2 atmosphere and observed for growth. 

Standard Brucella Identification Tests 

 Potential mutant colonies were isolated for Brucella speciation using techniques 

commonly performed to differentiate Brucella spp. from other Gram-negative organisms.  
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An organism’s ability to break down urea into ammonia, H2O, and CO2 because of its 

production of urease was evaluated using urease slants (Alton et al 1988).  An isolated 

colony was streaked onto a urease slant using a sterile loop and incubated at 37ºC in a 5% 

CO2 atmosphere for 24-48 hours.  A pH indicator in the media turned the yellow media 

pink in the presence of the alkaline ammonia product to indicate a positive reaction. 

 The presence of a cytochrome oxidase, which aids in reducing molecular oxygen 

by an organism, was evaluated using the oxidase test.  A commercial oxidase reagent 

ampule (Becton Dickinson and Company, Cockeysville, MD) was broken, and its 

contents mixed.  Colonies were picked using a sterile cotton swabs.  A few drops of the 

oxidase reagent were added to the colonies on the swabs.  Within 30 seconds, a violet to 

purple color appeared on the picked colonies if the organisms were oxidase positive. 

 The catalase test was performed to examine an organism’s ability to break down 

hydrogen peroxide into water and oxygen.  A commercially-available catalase reagent 

dropper (Becton Dickinson and Company) was used.  Suspected colonies were picked 

using a sterile loop and smeared onto a clean glass slide.  One to two drops of the reagent 

were added to the smear and mixed.  The immediate appearance of gas bubbles was 

indicative of a positive catalase reaction. 

Goats 

For the colonization studies, 24 adult male and female Spanish goats were 

obtained from commercial herds or from the Elzer farm herd (Louisiana State University, 

Baton Rouge, LA). All animal sera samples were Brucellosis Card tested and evaluated 

by western blot prior to any experimentation to confirm the absence of Brucella-specific 

antibodies.  The animals were housed throughout the study at the Ben Hur Large Animal 
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Isolation Facility, a restricted-access USDA/APHIS/VS/CDC –approved facility.  All 

animals were cared for in accordance with the LSU AgCenter Animal Care and Use 

Committee guidelines. 

For the pathogenesis studies, 37 pregnant Angora and/or Spanish goats were 

obtained from commercial herds or from the Elzer farm herd.  Eight sexually-mature, 

female Spanish goats obtained from commercial herds or from the Elzer farm herd were 

administered two doses of Lutalyse® (dinoprost tromethamine) Sterile Solution (Upjohn 

Co., Kalamazoo, MI) intramuscularly with an 11 day interval between doses for estrus 

synchronization. The first dose was 15 mg in 3 ml, and the second was ~8 mg in 1.6 ml.  

Dams were bred with Brucella-negative billies, and their pregnancies were later 

confirmed via ultrasound.  All animal sera samples were Brucellosis Card tested and 

evaluated by western blot prior to any experimentation to confirm the absence of 

Brucella-specific antibodies.  The animals were housed throughout the study at the Ben 

Hur Large Animal Isolation Facility, a restricted-access USDA/APHIS/VS/CDC –

approved facility.  All animals were cared for in accordance with the LSU AgCenter 

Animal Care and Use Committee guidelines. 

Serum Collection 

 Goats were bled using 20 gauge, 1.0 inch Precision Glide® Vacutainer® Brand 

Blood Collection needles (Becton Dickinson and Company, Franklin Lakes, NJ) along 

with sterile 10 ml BD Vacutainer® Serum tubes (Becton Dickinson and Company).  After 

separation by centrifugation, sera were stored at -20ºC until tested.  
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Serological Analysis 

 Pre- and post-inoculation serum samples were analyzed by the Brucellosis Card 

Test (Becton Dickinson and Company) and western immunoblot. Serum samples were 

examined via Card Test by placing 30 µl of test serum along with 30 µl stained Buffered 

Brucella Antigen (BBA) (Becton Dickinson and Company) onto the test area of the 

Brewer Diagnostic Card (Becton Dickinson and Company).  Serum samples and the 

antigen were mixed to a uniform suspension, rocked back and forth on the card for 4 

minutes and then observed for antigen-antibody agglutination. 

 For western immunoblot analysis, cell lysates of B. abortus 2308, B. melitensis 

16M, B. abortus 2308-QAE, and B. melitensis 16M∆E were prepared by plating 100 µl 

glycerol stock of each onto SBA plates with or without the appropriate antibiotic.  Cells 

were cultured for 2-3 days at 37ºC in a 5% CO2 atmosphere then harvested from each 

plate in 2 ml sterile PBS (Sigma Chemical Company).  The resulting suspensions were 

sonicated for 8 minutes using a Heat Systems-Ultrasonics W-385 Sonicator 

(Farmingdale, NY) with a tapered micro tip using a 1 second pulse at 50% duty and an 

output of approximately 4.0 to 4.5.  Cells were boiled for 10 minutes to ensure killing of 

Brucella.  Lysates were then boiled for 10 minutes in a 1:1 dilution with Laemmli Sample 

Buffer (BioRad Laboratories).  Cell lysates were stored at -20ºC until used. 

 Cell lysates ranging in volumes of 2 µl to 10 µl were separated by polyacrylamide 

gel electrophoresis (SDS-PAGE) using 12% Tris-HCl Ready Gels (BioRad Laboratories) 

run at 150 volts for 1 hour and 18 minutes in a 2-gel Criterion cell as a part of the 

Criterion Precast Gel System (BioRad Laboratories) .  Two micro liters of BioRad 

Kaleidoscope Prestained Standard (BioRad Laboratories) per blot was used as a 
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molecular weight marker.  At the completion of a run, gel proteins were transferred to a 

nitrocellulose membrane (Osmotics, Livermore, CA) using a Criterion blotter (BioRad 

Laboratories) at 100 volts for 1 hour.  Following transfer, blots were blocked with 5% 

Blotting Grade Blocker Nonfat Milk (BioRad Laboratories) for 1 hour on a shaker at 

room temperature. Blots were then washed 5 times with Tris-Buffered Saline (TBS)-

Tween and once with TBS (0.5 M NaCl, 20 mM Tris).  Individual blots were incubated 

in a 1:40 dilution of test serum on a shaker at room temperature overnight.  After 

incubation, blots were again washed with TBS-Tween and TBS and incubated on a 

shaker for 45 minutes at room temperature in a 1:800 dilution of rabbit anti-goat IgG 

peroxidase conjugate (Sigma-Aldrich Co., St. Louis, MO).  Blots were developed using 

4-chloro-1 napthol tablets (Sigma-Aldrich Co.) in a TBS-methanol-3% hydrogen 

peroxide solution.  Reactions were stopped by the addition of dH2O, and blots were 

allowed to air dry. 

Necropsy 

 In the colonization studies, adult non-pregnant goats were euthanized by captive-

bolt and exsanguination.  Blood samples were collected and tested serologically as 

described above.  The following tissues were collected:  parotid, prescapular, internal 

iliac, supramammary (females), inguinal (males) lymph nodes; liver; and spleen. 

 In the pathogenesis studies, pregnancies were monitored until delivery and kids 

recorded as aborted/weak or live/healthy.  Live kids were euthanized by CO2 

asphyxiation, and lung and abomasal fluid was collected on all kids born or aborted.  A 

month following the last birth or abortion, all dams were euthanized by captive-bolt and 

exsanguination.  Blood samples were collected and tested serologically as described 
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above.  The following tissues were collected:  parotid, prescapular, internal iliac, 

supramammary, lymph nodes; liver; spleen; and mammary gland.  All tissues collected 

were stored at -20ºC until bacteriological analysis. 

Bacteriological Analysis 

 Tissue samples were thawed, weighed, and homogenized in 20 ml PBS.  One 

hundred microliters of each sample, including 100 µl abomasal fluid, was plated on SBA 

plates supplemented with Brucella Selective Supplement (Oxoid Ltd., Basingstoke, 

Hampshire, England) (Farrell 1974).  After a 14-day incubation period at 37ºC in a 5% 

CO2 atmosphere, the total number of colonies present on each plate was counted and 

CFU/gram of tissue calculated.  Brucella spp. were identified by colony morphology; 

growth rate; and urease, oxidase, and catalase reactions. B. abortus 2308-QAE was 

differentiated from B. abortus 2308 based upon its ability to grow on SBA plates 

containing 100 µg/ml ampicillin.  B. melitensis 16M∆E was differentiated from B. 

melitensis 16M by its ability to grow on SBA plates containing 45 µg/ml kanamycin. 

Statistics 

 Numbers of colonized dams, colonized kids, and abortions in the pathogenesis 

study were compared between two groups at a time using a Fisher exact probability test, 

with p<0.05 being considered significant (Snedecor and Cochran 1989).  Statistical 

analysis was performed with statistical software (Sigma Stat Statistical Software, Version 

1.0; Jandel Scientific, San Rafael, CA, USA). 
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RESULTS 

Creation and Transformation of pQAE 

 A putative hemagglutinin gene, Region E, was found within the B. melitensis 

genome that is absent in B. abortus (Del Vecchio et al 2002b) (Figure 1).  A NCBI 

Nucleotide Blast of the sequence reveals that the gene corresponds to a B. melitensis 16M 

hemagglutinin (GenBank GI 17989062).  There is also some homology to a cell wall 

surface protein of B. suis 1330 (GenBank GI 23500299) (Paulsen et al 2002).   

 

B. melitensis 16M 

 

 

 

 

 

 

 

B. abortus 2308 

 
Figure 1.  Schematic diagram showing the presence and absence of a putative 
hemagglutinin ORF in B. melitensis 16M and B. abortus 2308. The hemagglutinin ORF 
is indicated by the red arrow.  Other ORFs in the diagram encode the following proteins: 
green, transposases; black, preprotein translocase subunit; blue, transcriptional regulator 
proteins; and purple, hypothetical proteins. [ ] indicates IS elements. 
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This putative B. melitensis hemagglutinin gene was PCR-amplified from the genomic 

DNA of B. melitensis 16M using the primers ORF-944F and ORF-944R (Figure 2).  The 

primers are specific for the ~2.0 kilobase hemagglutinin gene of B. melitensis 16M, 

which is not present in the B. abortus 2308 genome.  The PCR fragment was visualized 

by gel electrophoresis (Figure 3) and then gel-purified for further genetic manipulation.  

Region E, the purified PCR product, was cloned into the 4,950 base pair broad-host-range 

vector pBBR1MCS-4 (Kovach et al 1995) (Figure 4) which confers ampicillin resistance.  

Following blunt-end ligation, chemically-competent TOP10 E. coli cells (One Shot®) 

were transformed with the 6,950 base pair plasmid pQAE and plated on LB agar plates 

supplemented with 100 µg/ml ampicillin and monitored for growth.  Minipreps were 

performed on successful transformants (Figure 5).  Resulting plasmids were digested with 

EcoR V to confirm the presence of pQAE by the release of a ~2.0 kilobase Region E 

fragment from a linear 4.9 kilobase pBBR1MCS-4 plasmid (Figure 6).  PCR 

amplification using ORF-944F/R primers was also performed for additional confirmation 

of the new plasmid (Figure 7). 

Creation of the B. abortus 2308-QAE Variant 

 Expression of pQAE in trans in B. abortus 2308 was achieved by the introduction 

and maintenance of the low copy number plasmid into the cell (Figure 4).  The new 

plasmid containing Region E from B. melitensis, pQAE, was electroporated into B. 

abortus 2308 and screened for successful transformation using SBA plates supplemented 

with 100 µg/ml ampicillin.  Plasmid minipreps were performed on colonies displaying 

ampicillin resistance, and the presence of pQAE was visualized by gel electrophoresis.  

Resulting plasmids were also digested with EcoR V to confirm the presence of pQAE by  
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Region E 
GAATTGGCGACCTGACTGAGGATAGCGGCACAAATACGGCTGCAGTCAGCGGCAATACCATTCGCGCCCAG
ACGATCGTGAATGATAGTTCTAATACCCTTGAAGGAAAACTGTCGGACGACTATGCGTCATCAACGTTGGG
TACCTCTTCCTTAACCTTTGGGACTCCTTTCGGATTGGAACCTCGGCATGTAACTCAGGGGGCAATCCTGG
CAGAAACGGCGCAGATAAACATTGCAACCGGCCATAAGGCGACGGTTTCCGAGGGCATAATAGGAACCCAG
AATACGGCAAAACAAGAGGTGGCCGCTGGGGCAAGCCTCAGTCTGCAAGAAAATACTATTGATGCTTCGCT
TGCCGTCAACAATGCGGCGAACAGGATTGCCATCGACAAGGAAGGCGATCCGACTTTCCAAGGCTCGGTCC
TTATTACCAATCTGCAGCAGAACAAAGAGGGCTCTGTTGACGCAGAAACGACAGAGTCGGGTATATTGGCG
CAAGCGACAGAAGGAGATGTTGCGAATGTAATGTCTATTCTGTCGGGCAGTCTGAACGTAGCGGAAAACAT
TGTTTCCAGTTCTGCAACCGGTAACCAGACCGTTGGTGCCGCAGGCGCCGCAGGTCATCAGATTGTGATCG
GTGGTCAACTCAGCGTCGATAGCAATACTACCGGAAACGGCAGTTCAACGATATCGCATGACGGAGGCTCT
GCATTTGCCGAAACCGCCGCTGACTTTGTTATTGCCAATAACCAGGCAAACATCGTTACAGATGCGGCTGA
TCATTTGACAATCTCCAGCGCGTCTATTGGTGTGGAGGGTACACCGACGATTGGTGCGGTTGTTGATGCCG
TCGAAGGAGGTTCGGTTGTCCTCGCGGATAATGCCGTGACGTCTCAGGCGGTAGGTAACAACACATCCGCC
GCAATCTTGAAGGATGATGACTCCGCAGTCGGCTTTGATGCAACAGCTGCCCTTGCTAACCATCAGATTAA
TCTGTTTTCTGATATTGCGGCGACCACGCAAAATGGCTCAGTGGTTGCCATTGTCGGTAAAGCGAGAGACA
GTATCTTCGATGAAGGGACCGTTGATGTTTCGGGGAACAAGATTTCCGCACTGGCGTTTGGCAACAGCGCC
AGCCAGCAGTTGGCCCTGGACGCCAATAACCTAACCGCTGGGGATAGCACTGGGTTGCTGACGGGCGGGCC
GAACGACGAGACTACCCATGATAGCGGCCTTCGGGCTAAGGCAGGTGCTATGCTTACCAGCCTACAGGCAA
ACTATAGCAGTGATATTTCCGCCAACAATGCGGCGTCGGTGGTTGGTGTCTACGGCGACAACAAGGTTGGT
AGCGACATATCTGGAGCCAAATTAACCGTCGAGAACAACACGCAGCAGGCGACTGCGATTGGTAGCGACGC
TACTAATCTGCTTGGACAAGTGCATTATGAGGACGGCAAGGCGGATCATGTAGCCGGACTTGGCGGAAACA
GTGTCGCCGGTTCGGCCGGTATTGCCAACGTTCAGGTGGGTGATGCTGGATCGTCGGTCATTGCTTCGTTG
ACCGATGCGGTCGCAGGATTCCCAGGAATCAGCAGTAGGGCTCCCATAACGCTACCGTTTTTTAATGCCAA
CGTTAAACAGGAGGAATCCAGCTTTTCGGTAACCGACAATGTGCAGAGCGCCTCAGCCAGCGGCACCCAGA
GCCGCAATGAACTGGTGGTCGAGAGCAATTCCGTCACTGCCAATATTGGAACTGGTGCTCAAGAGCATCCC
ACTTCATCAAATACCGGTCTTGACGGAGCGTATGTACGCGATAACGAAGATAGTTTCCATACCATTCATCA
GCCTATGATCATGGCGGCCTATGGCCTTATCAACGATCAGTCGATTGGGGGGAGAGTCAATGCCCTAGAAC
CTGTCTGCATTCAAGGATTCCCTTTTGTACGAAATTCTGATTCAAGGTTGTTAAAGGAGAACAGCCGTGAG 

 
 
Figure 2. Region E isolated within the ORF-944F and ORF-944R primers. 
 
Primers ORF-944F (5’- GAATTGGCGACCTGACTGAGGA -3’) and ORF-944R  
(5’- CTCACGGCTGTTCTCCTTTAACA -3’) are shown in red.
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1    2    3    4 
 

Figure 3.  Agarose gel electrophoresis of the ~2.0 kilobase Region E PCR-amplified 
using the ORF-944F and ORF-944R primers.  The arrow indicates the 2.0 kb band on the 
molecular weight ladder. 
 
Lane 1 - 1 kb Molecular Weight Ladder 
Lane 2 - dH2O negative control 
Lane 3 - B. abortus 2308 Genomic DNA 
Lane 4 - B. melitensis 16M Genomic DNA 
 

2.0 kb → 



 50

 
 

 
 
 
Figure 4.  Schematic of the creation of B. abortus 2308-QAE. 
 

QAE:  B. abortus Region E 

16M Region E 2.0 kb 

Chromosomal DNA

16M Region E 2.0 kb

Chromosomal DNA
B. abortus 2308

2308-QAE

pQAE

+
pBBR1MCS-4 Amp 

pBBR1MCS-4 Amp 

Region E expressed in trans in B. abortus 
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                                                        1       2     3     4 
 
Figure 5.  Agarose gel electrophoresis of pQAE following plasmid miniprep.  The arrow 
indicates a 7.0 kb band on the molecular weight ladder. 
 
Lane 1 - Supercoiled DNA Molecular Weight Ladder 
Lanes 2-4 - pQAE DNA (~6,950 bp) 

7.0 kb → 
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                           1    2    3    4   5    6     7     8    9   10  11  12  13  14  15 
 
Figure 6.  Agarose gel electrophoresis of pQAE miniprep DNA digested with EcoR V. 
Digestion reveals a ~2.0 kb Region E and a 4,950 bp linearized pBBR1MCS-4.  The 
arrows indicate 2.0 and 4.0 kb bands on the molecular weight ladder. 
 
Lane 1 - 1 kb Molecular Weight Ladder 
Lanes 2-15 - pQAE DNA digested with EcoR V 

2.0 kb → 

4.0 kb → 
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                                                   1      2    3      4     5      6    7 
 
Figure 7.  Agarose gel electrophoresis of PCR products amplified from pQAE miniprep 
DNA using the ORF-944F and ORF-944R primers. Gel reveals a ~2.0 kb Region E. The 
arrow indicates a 2.0 kb band on the molecular weight marker. 
 
Lane 1 - 1 kb Molecular Weight Ladder 
Lanes 2-7 - Region E PCR products from pQAE DNA 

2.0 kb → 
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the release of a ~2.0 kilobase Region E fragment from a linearized 4.9 kilobase 

pBBR1MCS-4 plasmid (data not shown). The new variant of B. abortus 2308 was named 

B. abortus 2308-QAE.   

Creation and Transformation of pUC19∆E 

 Region E, the ~2.0 kilobase PCR fragment, amplified from B. melitensis 16M 

genomic DNA using the primers ORF-944F and ORF-944R (Figure 2) was cloned into 

the 3,519 base pair pCR®-Blunt II-TOPO® vector (Invitrogen Corporation, Carlsbad, CA) 

and then excised from the vector via EcoR I endonuclease restriction digestion (Figure 8).  

A 2,686 E. coli plasmid vector pUC19 (Yanisch-Perron et al 1985), which confers 

ampicillin resistance, was also digested using EcoR I.  These EcoR I digestions produced 

overhanging, cohesive ends on both the PCR product of Region E and the pUC19 vector 

for uncomplicated ligation of the fragment into the vector producing, a 4,686 base pair 

plasmid pUC19E.   

 An 840 base pair kanamycin cassette was amplified from the broad-host-range 

vector pBBR1MCS-2 (Kovach et al 1995) using the primers KAN-AL and KAN-AR, 

which contained the Age I restriction endonuclease sequence 5’-ACCGGT-3’ added to 

their 5’ ends (Figure 9).  Both pUC19E and the PCR-amplified kanamycin antibiotic 

cassette were digested with Age I.  Age I digestion of pUC19E released a 1.2 kilobase 

internal portion of Region E, which was replaced via cohesive-end ligation with the 840 

base pair kanamycin cassette to produce the 4,326 base pair pUC19∆E (Figure 10).  Each 

PCR amplification and digestion step was visualized by gel electrophoresis, and all DNA 

components were gel-purified prior to further manipulation.  The ~4.3 kilobase 

pUC19∆E, which confers ampicillin and kanamycin resistance, was transformed into  
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               1    2   3    4    5    6    7    8   9  10  11  12  13  14 15  16  17  18  19   20 
 
Figure 8.  Agarose gel electrophoresis of the pCR®-Blunt II-TOPO® vector+Region E 
miniprep DNA digested with EcoR I. Digestion reveals a ~2.0 kb Region E fragment and 
a 3,519 bp linearized pCR®-Blunt II-TOPO® vector.  The arrows indicate 2.0 and 3.0 kb 
bands on the molecular weight ladder. 
 
Lane 1 - 1 kb Molecular Weight Ladder 
Lanes 2-20 -  pCR®-Blunt II-TOPO® vector+Region E miniprep DNA digested with 
EcoR I 

3.0 kb → 
 

2.0 kb → 
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                                                  1    2    3     4    5    6    7 
 
Figure 9.  Agarose gel electrophoresis of an 840 bp kanamycin antibiotic cassette PCR-
amplified from pBBR1MCS-2 using the KAN-AL and KAN-AR primers. The arrows 
indicate 0.5 and 1.0 kb bands on the molecular weight ladder. 
 
Lane 1 - 100 bp Molecular Weight Ladder 
Lanes 2-7 - PCR-amplified kanamycin antibiotic cassette

0.5 kb → 

1.0 kb → 
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Figure 10.  Schematic of the creation of B. melitensis 16M∆E. 
 

16M:  Region E Disruption 

Native 16M Region E
Chromosomal DNAB. melitensis 16M

16M∆E

Altered Region E in B. melitensis 16M

E-Kan-E Fragment
KanR 840 bp

+

Chromosomal DNA

Region E Region E 

KanR 840 bp
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chemically-competent TOP10 E. coli cells (One Shot®) and plated on LB agar plates 

supplemented with 100 µg/ml ampicillin and 45 µg/ml kanamycin. Minipreps were 

preformed on successful transformants (Figure 11), and the resulting plasmids were 

digested with Age I (Figure 12) and EcoR I (data not shown) to confirm the presence of 

pUC19∆E.  The presence pUC19∆E was also confirmed using the ORF-944F/R and 

KAN-AGE F/R primers. 

Creation of the B. melitensis 16M∆E Mutant 

 For the production of a B. melitensis 16M Region E mutant via homologous 

recombination, a Region E-Kanamycin-Region E (E-KAN-E) fragment was produced by 

EcoR I digestion of pUC19∆E.  Successful digestion of the plasmid was confirmed via 

gel electrophoresis (Figure 13).  The 1,640 base pair E-KAN-E fragment was 

electroporated into B. melitensis 16M and screened for homologous recombination using 

SBA plates supplemented with 45 µg/ml kanamycin. Genomic DNA isolation was 

performed on colonies displaying ampicillin and kanamycin resistance.  PCR of the 

isolated DNA using the ORF-944F/R primers revealed the presence of the 1.6 kilobase E-

KAN-E fragment.  This integration of E-KAN-E into the chromosome was visualized by 

gel electrophoresis (Figure 14).  The resulting mutant was named B. melitensis 16M∆E. 

Colonization of B. abortus 2308-QAE and B. melitensis 16M∆E  

 A short term colonization study was preformed to see if B. abortus 2308-QAE or 

B. melitensis 16M∆E could colonize non-pregnant goats.  Twenty-four goats divided into 

four equal groups were inoculated with either 1x109 cfu/ml of B. abortus 2308, B. 

abortus 2308-QAE, or B. melitensis 16M or 1x1010 cfu/ml of B. melitensis 16M∆E.   
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                                                     1     2    3 
 
Figure 11. Agarose gel electrophoresis of pUC19∆E miniprep DNA. The arrow indicates 
a 4.0 bp band on the molecular weight ladder. 
 
Lane 1 - Supercoiled DNA Molecular Weight Ladder 
Lanes 2-3 - pUC19∆E DNA (4,326 bp) 

4.0 kb → 
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                                                        1    2    3 
 
Figure 12.  Agarose gel electrophoresis of pUC19∆E digested with Age I.  Digestion 
releases a 1,200 bp interior Region E fragment and linearizes a 3,486 bp pUC19+E 
vector.  The arrows indicate 1.0 and 3.0 kb bands on the molecular weight ladder. 
 
Lane1 - 1 kb Molecular Weight Ladder 
Lanes 2-3 - Age I-digested pUC19∆E 

1.0 kb → 

3.0 kb → 
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                                                  1     2   3   4    5     6   7   8 
 
Figure 13.  Agarose gel electrophoresis of pUC19∆E digested with EcoR I.  Digestion 
releases a 1,640 E-KAN-E fragment and linearizes a 2,678 pUC19 vector. The arrows 
indicate 1.5 and 3.0 kb bands on the molecular weight ladder. 
 
Lane 1 - 1 kb Molecular Weight Ladder 
Lanes 2-8 - EcoR I-digested pUC19∆E 

1.5 kb → 

3.0 kb → 
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                                                     1    2   3    4 
 
Figure 14.  Agarose gel electrophoresis of PCR-amplified products from DNA isolated 
from B. melitensis 16M∆E mutants using the KAN-AL and KAN-AR and ORF-944F and 
ORF-944R primers.  The arrows indicate 1.0, 1.5, and 2.0 kb bands on the molecular 
weight ladder. 
 
Lane 1 - 1 kb Molecular Weight Ladder 
Lane 2 - B. melitensis 16M∆E DNA with KAN-AL and KAN-AR primers (840 bp) 
Lane 3 - B. melitensis 16M∆E DNA with ORF-944F and ORF-944R primers (1,640 bp) 
Lane 4 - B. melitensis 16M with ORF-944F and ORF-944R primers (2,000 bp) 

2.0 kb → 
 

1.5 kb → 
 

1.0 kb → 
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Greater numbers of the genetically-manipulated B. melitensis 16M strain than the virulent 

parental strain was used to establish initial colonization of the lymphoid tissue in the 

event that the disruption mutant was severely attenuated (Elzer et al 2002).  Two animals 

from each group were sacrificed at days 7, 14, and 21.  The following tissues were 

collected and examined bacteriologically: parotid, prescapular, internal iliac, inguinal, 

and supramammary lymph nodes; liver; and spleen.  Results were recorded as colony-

forming-units pre gram of tissue.  Colonization results are presented in Table 1. 

 All resulting colonies were evaluated to verify their Brucella origin via oxidase, 

catalase, and urease tests.  Both B. melitensis 16∆M and B. abortus 2308-QAE were also 

plated on SBA plates supplemented with either 45 µg/ml kanamycin or 100 µg/ml 

ampicillin, respectively.  All colonies were confirmed to be Brucella and grew on the 

appropriate antibiotic-supplemented media. 

 Serological analysis of the colonization goats at days 7, 14, and 21 via Brucella 

Card Test and western immunoblot analysis revealed that all animals at days 14 and 21 

were seropositive.  At day 7, animals inoculated with B. abortus 2308, B. abortus 2308-

QAE, and B. melitensis 16M were seronegative; whereas, animals infected with B. 

melitensis 16∆M were seropositive (Table 2). 

Pathogenesis of B. abortus 2308-QAE and B. melitensis 16M∆E in Pregnant Goats 

 To assess the pathogenicity of B. melitensis 16M∆E and B. abortus 2308-QAE in 

the ruminant host, pregnant goats in late-gestation were exposed to either the virulent 

parental strains, B. melitensis 16M or B. abortus 2308; the variant, B. abortus 2308-QAE; 

or the mutant, B. melitensis 16M∆E.  Pregnant, mixed-breed goats were inoculated 

conjunctively with 1x107 cfu/ml of inoculum.  Study results are presented in Table 3.   
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Table 2.  Serological analysis of non-pregnant colonization goats inoculated with B. 
abortus 2308, B. abortus 2308-QAE, B. melitensis 16M, or B. melitensis 16M∆E. 
 

Brucella Day 7* Day 14* Day 21* 
B. abortus 2308 2/2  NEG 2/2  POS 2/2  POS 
B. abortus 2308-QAE 2/2  NEG 2/2  POS 2/2  POS 
B. melitensis 16M 2/2  NEG 2/2  POS 2/2  POS 
B. melitensis 16M∆E 2/2  POS 2/2  POS 2/2  POS 
 
*Evaluated using the Brucella Card Test and western immunoblot analysis using cell 
lysates from B. abortus 2308, B. abortus 2308-QAE, B. melitensis 16M, or B. melitensis 
16M∆E. 
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Table 3.  Colonization and abortion rates of pregnant goats inoculated with B. abortus 
2308, B. abortus 2308-QAE, B. melitensis 16M, or B. melitensis 16M∆E. 
 

 B. abortus 2308

 
B. abortus 
2308-QAE 

 

B. melitensis 
16M 

 
B. melitensis 

16M∆E 

Dam/Kid Pair* 
Bacterial Colonization 

Rate 

5/11 
45%** 

9/12 
75% 

11/14 
79% 

 
6/6 

100% 
 

 
Abortion Rate 

(Aborted fetuses/weak 
kids) 

 

27%** 67% 78% 

 
 

50% 

 
*One positive dam or kid constituted a positive dam/kid pair. Dam tissues homogenized 
and plated included: parotid, prescapular, and supramammary lymph nodes; liver; spleen; 
internal iliac; and mammary gland. Kid tissues included: lung and abomasal fluid. 
**p≤0.05.  
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Eleven goats inoculated with B. abortus 2308 resulted in a 27% abortion rate, as 

compared to, 12 goats infected with B. abortus 2308-QAE exhibiting a 67% abortion rate 

(P<0.05).  Additionally, a 78% abortion rate was observed in 14 goats inoculated with B. 

melitensis 16M; whereas, only a 50% abortion rate was recorded in seven goats infected 

with the B. melitensis 16M∆E disruption mutant. 

 Dam and kid culture results were analyzed in pairs. A positive kid or dam within a 

pair was recorded as a culture positive pair (Table 3).  The parotid, prescapular, internal 

iliac, and supramammary lymph nodes; liver; spleen; and mammary glands were taken 

from the adults.  Lung and abomasal fluid was taken from the fetuses or kids.  All tissues 

were homogenized and plated for bacterial growth.  Results were recorded as colony-

forming-units pre gram of tissue.  Bacteriologically, five of 11 goats (45%) infected with 

B. abortus 2308 were culture positive.  Nine of 12 goats (75%) inoculated with B. 

abortus 2308-QAE were found to be culture positive.  B. melitensis 16M infected goats 

resulted in 11 of 14 (79%) animals being culture positive. All seven (100%) of the 

pregnant goats infected with B. melitensis 16∆M were culture positive at necropsy or 

time of death (Table 3). 

 All emerging colonies were evaluated via oxidase, catalase, and urease tests to 

verify their Brucella origin.  The mutant, B. melitensis 16∆M, and variant, B. abortus 

2308-QAE, colonies were additionally plated on SBA plates supplemented with either 45 

µg/ml kanamycin or 100 µg/ml ampicillin, respectively.  All colonies were confirmed to 

be Brucella and grew on the appropriate antibiotic-supplemented media. 
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Serological Responses to B. abortus 2308-QAE and B. melitensis 16M∆E 

 Serological responses of pregnant goats to B. melitensis 16M, B. melitensis 

16M∆E, B. abortus 2308, and B. abortus 2308-QAE were determined via Brucellosis 

Card Test and western immunoblot analysis (Figure 15) using cell lysates from each of 

the aforementioned test strains.  At termination, serological analyses of all necropsied, 

inoculated animals were found to be positive for the presence of Brucella antibodies 

(Table 4). 
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                2308 Goat          16M Goat      2308-QAE Goat       16M∆E Goat 

            
 
Figure 15. Western immunoblot analysis of B. abortus 2308, B. melitensis 16M, B. 
abortus 2308-QAE, or B. melitensis 16M∆E-infected goats.  Sera were taken at necropsy, 
and the blots were run using cell lysates from each of the aforementioned strains. 
 
Lane 1 - Kaleidoscope Pre-stained Standard 
Lane 2 - B. abortus 2308 Cell Lysates 
Lane 3 - B. abortus 2308-QAE Cell Lysates 
Lane 4 - B. melitensis 16M Cell Lysates 
Lane 5 - B. melitensis 16M∆E Cell Lysates 
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Table 4.  Serological analysis of pregnant goats inoculated with B. abortus 2308, B. 
abortus 2308-QAE, B. melitensis 16M, or B. melitensis 16M∆E. 
 

  B. abortus 2308 

 
B. abortus 
2308-QAE  

 

B. melitensis 
16M 

 
B. melitensis 

16M∆E 

 
Serologic Analysis* 
via Card Test and 

Immunoblot 
(+ Response) 

 

10/11 
91% 

12/12 
100% 

11/14 
79% 

 
 

6/7 
86% 

 
*One B. abortus 2308, three B. melitensis 16M, and one B. melitensis 16M∆E -inoculated 
goat(s) died prior to necropsy, therefore, no post-inoculation sera was collected on these 
animals.  Western blot analysis used cell lysates from B. abortus 2308, B. abortus 2308-
QAE, B. melitensis 16M, or B. melitensis 16M∆E. 
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DISCUSSION 

 An important step in understanding the molecular basis of pathogenesis is the 

identification of genes utilized in causing disease.  Opportunities to determine the 

possible virulence genes in the Brucella genus increased with the complete 

characterization of genomes within the genus.  Various techniques have been used to 

evaluate potential virulence genes (Hensel and Holden 1996). 

 Transposon mutagenesis has been well documented for the study of possible 

virulence genes (de Lorenzo et al 1990).  Mini-Tn5 has been used to identify virulence 

factors including a two-component system, BvrR-BvrS, critical for intracellular growth in 

B. abortus (Sola-Landa et al 1998).  A type IV secretion system was also identified by 

screening a TnBlaM library of B. suis for growth in HeLa cells (O’Callahan et al 1999). 

 Signature-tagged mutagenesis (STM) has also allowed for the screening of 

numerous transpositional mutants in a single animal (Hensel et al 1995) and has been 

successfully applied to the identification of attenuated mutants in Gram-negative bacteria 

(Darwin and Miller 1999; Edelstein et al 1999).  This technique has also been used to 

identify numerous Brucella virulence and survival genes (Lestrate et al 2000; Hong et al 

2000; Kahl-McDonagh and Ficht 2006; Zygmunt et al 2006; Wu et al 2006). 

 Many experiments have been conducted using deletion mutants generated by gene 

replacement via homologous recombination to identify gene function (Halling et al 1991; 

Drazek et al 1995; Elzer et al 1994; Gee et al 2004 and 2005).  Edmonds et al (2002a and 

2002b) described a B. melitensis 16M OMP 25 deletion mutant created via gene 

replacement, which colonized fewer pregnant goats and kids than the virulent B. 
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melitensis 16M strain without resulting in abortions.  Experiments such as these will lead 

to the discovery of potential efficacious vaccine candidates. 

 A recent study by del C. Rocha-Gracia et al (2002) investigated the ability of 

various strains of B. abortus and B. melitensis to hemagglutinate human and animal red 

blood cells.  It identified a 29 kilo Dalton surface protein (SP29), which is associated 

with the hemagglutination of all the Brucella strains tested with human (A+ and B+) and 

animal (rabbit, hamster, rat, and mouse) red blood cells. 

 This current study suggested that the manipulation of a B. melitensis 16M putative 

hemagglutinin gene, Region E, would play a role in the virulence of the organism.  The 

absence of this hemagglutinin gene in B. abortus 2308 raised the question of whether or 

not the gene has an effect on the colonization and pathogenesis of either B. melitensis 

16M and B. abortus 2308 in the caprine model.  It was proposed that the expression of 

Region E in trans in B. abortus 2308 would cause increased virulence. In contrast, it was 

also proposed that a B. melitensis 16M Region E disruption mutant created via gene 

replacement and homologous recombination would be attenuated in the caprine model.  

The caprine model was used to test the virulence of the B. melitensis 16M Region E 

disruption mutant and the B. abortus 2308 region E variant based upon colonization of 

pregnant, non-pregnant females and fetuses/kids, and delivery status of the fetuses/kids 

(Elzer et al 2002).  B. melitensis 16M∆E and B. abortus 2308-QAE were evaluated for 

their ability to colonize the expected reticuloendothelial organs and cause abortions in 

goats. 

 Animals inoculated conjunctively are usually colonized in the parotid lymph node 

within the first three days post-infection with the organism disseminating to the liver and 
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spleen by seven days post-infection.  The supramammary and internal iliac lymph nodes 

should show signs of colonization by 14 days post-infection (Elzer et al 2002). 

 B. abortus 2308-QAE displayed colonization results typical of virulent Brucella 

species in that the parotid lymph node was colonized by seven days post-inoculation. 

However, B. abortus 2308-QAE infection resulted in a greater number of colony forming 

units per gram of tissue (cfu/gm) than its parental B. abortus 2308 strain in animals given 

the same dosage of infectious organisms, 1x109 cfu/ml (Table 1).  There was no growth 

seen in the liver or spleen which was in contrast to minimal numbers seen in B. melitensis 

16M inoculated animals.  By day 14 post-inoculation, B. abortus 2308-QAE was cultured 

from the parotid, prescapular, and internal iliac lymph nodes and the spleen.  B. abortus 

2308 was cultured from all tissues except the liver with possible evidence of clearance of 

the organism by day 21 post-inoculation.  Day 21 data revealed that B. abortus 2308-

QAE, similar to what was seen in B. melitensis 16M, could still be found in every tissue 

sample tested except the inguinal lymph node with an increased number of cfu/gm in 

comparison to B. abortus 2308. 

 Serologically, all animals infected with B. abortus 2308-QAE tested positive for 

the presence of Brucella antibodies in their sera on the Brucellosis Card Test and by 

western immunoblot analysis, which used cell lysates from B. abortus 2308, B. abortus 

2308-QAE and B. melitensis 16M (Table 2).  Western blot analysis results were 

indicative of what is typically seen when the sera from animals exposed to smooth 

Brucella species are analyzed (Figure 15). 

 B. melitensis 16M∆E, in comparison to B. melitensis 16M, colonized the animals 

to a greater extent by seven days post-infection with the parotid, prescapular, internal 
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iliac, and inguinal lymph nodes as well as the spleen being colonized by the mutant with 

similar cfu/gm of tissue as B. melitensis 16M (Table 1).  By days 14 and 21 post-

inoculation, all tissues from B. melitensis 16M∆E-infected animals had been colonized 

very similarly to those exposed to the B. melitensis 16M parental strain.  Animals 

exposed to the B. melitensis 16M∆E disruption mutant were given a log higher infectious 

dose at 1x1010 cfu/ml than the B. melitensis 16M-infected animals, which received 1x109 

cfu/ml.  A higher dosage of the genetically-manipulated strain, B. melitensis 16M∆E, was 

used to establish initial colonization of the lymphoid tissue in the event that the mutant 

was severely attenuated (Elzer et al 2002).  All animals were found to be seropositive at 

necropsy via the Brucellosis Card Test and western blot immunoblot analysis using cell 

lysates from B. abortus 2308, B. abortus 2308-QAE, B. melitensis 16M, and B. melitensis 

16M∆E (Table 2). 

 This short-term colonization study revealed no sign of attenuation in B. melitensis 

16M∆E’s ability to invade the mucosal epithelium, infect the animal, and disseminate 

throughout the animal’s body.  A similar rate and quantity of cfu/gm of tissue as its 

virulent parental strain, B. melitensis 16M, was also observed. 

 B. abortus 2308-QAE, the B. abortus 2308 variant, was also capable of infecting 

and colonizing the animal with no sign of attenuation.  There was a slight increase in the 

number of cfu/gm of tissues colonized by the organism in comparison to its virulent 

parental strain. 

 Typically, pathogenesis studies in the goat model reveal a 90-100% dam-kid pair 

colonization and a 70-100% abortion rate with B. melitensis 16M-infected animals.  In 

contrast, studies with animals infected with B. abortus 2308 usually display a 50-70% 
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dam-kid pair colonization and a 30-50% abortion rate.  The pathogenicity of mutants or 

variants is measured by comparing their colonization and abortion rates to those of their 

virulent parental strains.  Mutant strains can exhibit no statistical difference from the 

parental strains or result in up to 50% colonization or 0-20% abortion rates (Elzer et al 

2002). 

 In this pathogenesis study, animals infected with B. abortus 2308-QAE aborted 

(67%) and were colonized (75%) at rates more similar to the 70-100% abortion and 90-

100% colonization rates of B. melitensis 16M (Table 3).  Statistically, these B. abortus 

2308-QAE rates were significantly different from the B. abortus 2308 parental strain 

rates observed (p≤0.05).  Results showed a 45% colonization and a 27% abortion rate in 

B. abortus 2308-infected pregnant goats, which is consistent with the reported 

colonization and abortion rates of 50-70% and 30-50%, respectively.  The addition and 

expression of Region E, in trans, in B. abortus 2308 caused a significant increase in the 

pathogenicity in B. abortus 2308-QAE-infected pregnant goats (p≤0.05). However, B. 

abortus 2308-QAE appeared less pathogenic than B. melitensis16M, causing fewer 

abortions and lower colonization rates. 

Animals infected with B. melitensis 16M∆E showed a 30% reduction in abortions 

when compared to the 70-100% abortion rates typically seen in pregnant goats infected 

with B. melitensis 16M.  Data also revealed a 28% reduction when comparing the 

abortion rate of B. melitensis 16M∆E-infected goats to the 78% rate of B. melitensis 

16M-infected goats seen in this study (Table 3).  This reduction could indicate 

attenuation of the mutant’s ability to cause abortions in pregnant goats.  All dams (100%) 

and six of twelve kids/fetuses (50%) infected with B. melitensis 16M∆E were culture 
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positive at necropsy or time of death, demonstrating the disruption mutant’s ability to 

effectively colonize both the dam and the gravid uterus (Table 3). 

 All animals infected in the pathogenesis study were found to have a positive 

serologic response typical of a smooth Brucella strain infection (Table 4) (Figure 15).  

Some animals died before necropsy and were unable to be analyzed serologically. One B. 

abortus 2308, three B. melitensis 16M, and one B. melitensis 16M∆E -inoculated goat(s) 

died prior to necropsy, therefore, no post-inoculation sera was collected on these animals. 

These deaths were not believed to be attributed to the Brucella infections but to the 

birthing process or other unrelated circumstances. 

 Region E is purported to be a putative hemagglutinin and may be a virulence 

factor for B. melitensis 16M.  It may also be evaluated as a possible host specificity factor 

for B. melitensis 16M in goats.   

 Further studies should be conducted to determine the possibility of Region E 

being a host specificity factor by evaluating its effects in other animals.   Additionally, 

the immunological response elicited by Region E must be assessed. Studies should also 

be done to exploit the stability of pQAE in other Brucella species or strains to be tested 

as possible vaccine candidates given the increased colonization rate of pQAE-containing 

B. abortus 2308.  Placing this plasmid into a rough Brucella strain or current vaccine may 

be effective in developing an efficacious vaccine that spans the Brucella genus to help 

eradicate the worldwide problem of brucellosis for both man and animals. 
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