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ABSTRACT 

 Laminitis is a crippling and often life-threatening disease of the equine foot.  Soft tissue 

damage characteristic of this disease has been associated with increased MMP activity.  

Therefore, it seems likely that MMPIs could be potential therapeutic agents for laminitis. Further 

characterization of equine MMPs and evaluation of the effectiveness of MMPIs in the horse are 

needed. 

 Equine MMP-9 was harvested from neutrophils, purified by affinity chromatography, and 

evaluated using western blotting and gelatin zymography.  The Biotrak MMP-9 Activity Assay 

was evaluated for use with equine samples using equine neutrophil MMP-9 as a standard, and 

was determined to have insufficient sensitivity for equine MMP-9.   Therefore, zymography was 

used for evaluating MMP activity in all studies. 

 The abilities of doxycycline, oxytetracycline, and flunixin meglumine to inhibit LPS-

induced equine MMP-2 and MMP-9 activities in vitro were investigated using a digital laminar 

explant model.  The structural integrity of the explants was tested using an Instron biomechanical 

testing device, and MMP activity in the explants medium was evaluated using zymography.  

Doxycycline, oxytetracycline, and flunixin meglumine all successfully inhibited equine MMP-9 

to varying degrees.  However, only doxycycline and oxytetracycline increased the structural 

integrity of the explants.  Explant structural integrity was inversely correlated with MMP-2 

concentrations in the medium. 

 Based on the in vitro results, a non-terminal in vivo model for investigating MMPIs in the 

horse was validated.  The administration of IV endotoxin to normal adult horses resulted in 

significant increases in MMP-2 and MMP-9 activities, as assessed by zymography.  This in vivo 

model of MMP induction was used to determine the effects of doxycycline, oxytetracycline, 

flunixin meglumine, and pentoxifylline on equine MMP inhibition.  Pentoxifylline and 



xiii 
 

oxytetracycline appeared to be potent MMP-9 and modest MMP-2 inhibitors in the horse.  

Flunixin meglumine and doxycycline were potent inhibitors of equine MMP-2, but only weak 

inhibitors of equine MMP-9.  These findings warrant the evaluation of pentoxifylline and 

oxytetracycline as MMPIs in the prevention/treatment of equine laminitis. 
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2 
 

1.1 Introduction 

 The extracellular matrix (ECM) plays a critical role in normal tissue structure and 

function.  It is constantly undergoing remodeling via the actions of proteases, in particular, 

matrix metalloproteinases (MMPs).  During normal physiological events, MMPs are highly 

regulated and necessary for homeostasis.  However, in pathologic states, their enzymatic actions 

may go unchecked and lead to substantial tissue destruction.  Extensive evidence exists for the 

role of MMPs in the pathophysiology of both human and animal diseases.  Thus, MMPs have 

become targets for therapeutic intervention by the development of MMP inhibitors (MMPIs). 

 Liberation of endotoxin from the cell wall of Gram-negative bacteria often leads to 

endotoxemia and the subsequent induction of a systemic inflammatory response.  Multiple 

inflammatory mediator cascades are initiated that ultimately result in tissue destruction and death 

if left untreated.   Some of the many mediators responsible for the pathological changes 

associated with endotoxemia include MMPs.  The experimental administration of endotoxin has 

been used in many species to study alterations in various mediator activities, including MMPs.  

Although endotoxemia has been experimentally induced in horses, MMP activity has not been 

investigated. 

 Laminitis is a crippling and often life-threatening disease of the equine foot.  The 

pathophysiology of laminitis remains unclear; however, recent studies suggest that MMPs are 

responsible for the soft tissue damage associated with this disease.  Therefore, it seems likely 

that MMPIs could be potential therapeutic agents for laminitis.  The induction of laminitis for 

research is costly, emotionally difficult for researchers, and causes pain and discomfort for the 

horses.  Endotoxemia may be an effective model of MMP induction in the horse which can be 

used for evaluating MMPIs for use in the prevention/treatment of equine laminitis.  



3 
 

1.2 Matrix Metalloproteinases  

 The function of MMPs cannot be fully understood without first understanding the 

structure and function of the ECM.  The main structural unit of the ECM is collagen.  Collagens 

provide the scaffolding necessary for structural integrity of tissues.  There are over 20 distinct 

collagens.  Collagens types I, II, III, V, and XI assemble into fibrils that provide tissues such as 

bone, cartilage, tendon, and skin with tensile strength.  The basement membrane (BM) of the 

ECM is composed mostly of type IV collagen and laminin.1,2  The BM also contains other 

proteins such as type V collagen, growth factors, proteases, proteoglycans, and glycoproteins.2  

Type IV and V collagens are organized into non-fibrillar multilayer networks (as are types VIII 

and X) that are resistant to nonspecific proteolytic degradation.1,2  Proteoglycans adhere to the 

collagen framework and function to support cell adhesion and bind growth factors. 

 The ECM functions to maintain tissue structure and integrity, regulate cellular migration, 

and serve as a reservoir for various cytokines and growth factors.3  Multiple stimuli induce 

remodeling of the ECM during homeostasis, normal development, and pathologic conditions.  

Remodeling involves both ECM degradation and synthesis.  Proteolytic breakdown is 

accomplished via numerous proteases, especially MMPs.1 

 Proteases can be divided into exopeptidases and endopeptidases, or proteinases.  

Endopeptidases are hydrolytic enzymes that are grouped according to the catalytic group at their 

active site.  Metalloproteases contain over 200 mostly zinc-dependent enzymes, of which only 25 

or more are MMPs.  The metzincin superfamily of metalloproteases contains the matrixin family, 

also known as MMPs.4  

 Matrix metalloproteinases are a family of over 25 zinc-dependent endopeptidases that 

degrade ECM components.  They were first discovered when enzymes from tadpole tails 

undergoing metamorphosis hydrolyzed a native collagen matrix.5  All MMPs share general basic 
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characteristics.  They are secreted (except for the membrane-type) or anchored to the cell surface 

in the pro enzyme form as zymogens that require cleavage for activation.4  They require Ca2+ for 

stability and function at neutral pH.6,7   

 Proteases must contain at least two conserved motifs, a pro and catalytic domain, to be 

classified as MMPs.8  Their structure usually contains a signal sequence followed by the N-

terminal pro-domain.7  The pro domain is approximately 80 amino acids long and contains a 

cysteine residue.  The active, or catalytic, domain is approximately 170 amino acids long and 

contains three histidines which ligate a Zn2+ active site.9  The inactive pro-enzymes are held in 

the latent form by a “cysteine switch” mechanism which consists of the interaction between the 

thiol moiety of the pro-domain cysteine residue and the Zn2+ of the active site.  This interaction 

blocks access of the active site to substrate and must be disrupted for activity.7  At the C-

terminal, there is a hemopexin-like domain which aids in substrate recognition.10  Some MMPs 

also have specialized domains that further determine substrate specificity and allow recognition 

and interaction with other proteins.10 

 Matrix metalloproteinases not only perform matrix catalysis, but also regulate cell-cell 

and cell-matrix interactions and activate other proteins.  They act on membrane proteins or 

proteins within the extracellular space.8  Their expression, location, and substrate availability 

determine the proteolytic activity of MMPs in physiologic and pathologic inflammatory 

processes.11  They are present in tissues for homeostasis, but can be induced for repair or 

remodeling and during disease states by activated cells.8  Matrix metalloproteinases help to 

regulate physical barriers, modulate inflammatory mediators, and establish chemokine gradients 

for movement of leukocytes in inflamed tissue.  Specifically, they degrade endothelial cell 

junctional proteins to allow leukocyte migration into areas of infection or inflammation.  They 

help promote re-epithelialization and restoration of epithelial barriers against bacteria and other 
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invading pathogens.  They also promote or suppress inflammation by proteolytic activation and 

de-activation of cytokines and chemokines.11   

   Matrix metalloproteinases are grouped according to their substrate specificity and 

primary structure (Table 1.1).7  Collagenases degrade fibrillar forms of interstitial collagen and 

include interstitial collagenase (MMP-1),  neutrophil collagenase (MMP-8), and collagenase-3 

(MMP-13).  Gelatinase A and B (MMP-2 and MMP-9) degrade denatured collagen.  

Stromelysins 1, 2, and 3 (MMP-3, 10, and 11) act on non-collagen components of the ECM.10  

The matrilysins (MMP-7 and MMP-26) are the smallest of MMPs.  There are 7 membrane-type 

MMPs (MMP-14, 15, 16, 17, 23, 24, 25) which degrade ECM components as well as activate 

other MMPs.7,12  

 The gelatinases are the most widely studied group of MMPs.  Matrix metalloproteinase-2 

is a 72-kD protein in its pro-enzyme form known as Gelatinase A.  It degrades gelatin (denatured 

collagen), along with type-IV, V, VII, and X collagen, elastin, laminin, and fibronectin.13  

Gelatinase A is constitutively expressed by many structural cell types including endothelial cells, 

osteoblasts, and fibroblasts.12  Its activation is unique in that it requires binding to tissue inhibitor 

of MMP-2 (TIMP-2).  Once bound, this complex is then activated by MMP-14, a membrane type 

MMP (MT-MMP).14  Gelatinase B, or MMP-9, is a 92-kD protein in its pro-enzyme form.  It 

also degrades gelatin, types IV and V collagen, elastin, fibronectin, and plasminogen.13  Unlike 

MMP-2, MMP-9 expression is generally induced.  It is synthesized by leukocytes, predominately 

neutrophils, fibroblasts, and keratinocytes.  Neutrophils store preformed MMP-9 in tertiary 

granules for immediate release that does not require de novo synthesis.7  

 Regulation of MMP activity is tightly controlled on several levels to prevent rampant 

tissue destruction, including mRNA/protein expression, pro-enzyme activation, and 

inhibition/degradation.  Transcriptional regulation occurs through the cyclic adenosine 
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Table 1.1 – MMP nomenclature organized by group. 

 
 
 MMP NOMENCLATURE  
   

Group Name MMP Number 

   
Collagenase Interstitial Collagenase MMP-1 
 Neutrophil Collagenase MMP-8 
 Collagenase-3 MMP-13 
 Collagenase-4 MMP-18 
Gelatinase Gelatinase A MMP-2 
 Gelatinase B MMP-9 
Stromelysin Stromelysin-1 MMP-3 
 Stromelysin-2 MMP-10 
 Stromelysin-3 MMP-11 
Matrilysin Matrilysin MMP-7 
 Matrilysin-2 MMP-26 
Membrane-Type MT1-MMP MMP-14 
 MT2-MMP MMP-15 
 MT3-MMP MMP-16 
 MT4-MMP MMP-17 
 MT5-MMP MMP-24 
 MT6-MMP MMP-25 
Others Metalloelastase MMP-12 
 RASI-I MMP-19 
 Enamelysin MMP-20 
 CA-MMP MMP-23 
 Epilysin MMP-28 
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monophosphate/p38/mitogen activated protein kinase (cAMP/p38/MAPK) pathway, and can be 

induced or inhibited by various cytokines and growth factors, such as interleukin-1 (IL-1), IL-2, 

tumor necrosis factor-α (TNF-α), epidermal growth factor (EGF), and platelet-derived growth 

factor (PDGF).3,6,12,15-22  Other inflammatory mediators such as nitric oxide (NO), endothelin-1 

(ET-1), eicosanoids such as prostaglandin E2 (PGE2), and neuropeptides such as vasoactive 

intestinal peptide (VIP) have also been shown to induce or inhibit synthesis of MMP-2 and 

MMP-9.15,21,23-26  Matrix metalloproteinase gene expression can also be influenced by cell-cell 

interactions.27      

 Pro-enzyme activation of MMPs can occur through direct proteolytic cleavage of the pro-

domain via proteases such as plasmin, trypsin, elastase, tissue kallikrein, cathepsin-G, chymase, 

and other MMPs.10,28,29   Activation may also occur by exposure to organomercurials, oxidated 

glutathione, and reactive oxygen species (ROS).6,30   Heavy metal ions, such as mercurial 

compounds, can activate MMP zymogens by reduction of the pro-domain thiol.4  Oxidants can 

activate MMPs through oxidation of the pro-domain thiol and subsequent release of the Zn2+ 

active site allowing autolytic cleavage.31  Hypochlorous acid (HOCl), a ROS by-product of 

leukocyte myeloperoxidase, and peroxynitrite, a by-product of NO release, have been shown to 

activate MMP-2 and MMP-9.4,32-36  Several MMPs have also been found to undergo allosteric 

activation without pro-domain removal when in contact with the appropriate substrate.31 

 Regulation of MMP activity occurs post-activation by interaction with endogenous MMP 

inhibitors and degradation of the enzyme by ROS.  Endogenous inhibitors include the non-

specific protease inhibitor α2-macroglobulin, TIMPs, and reversion-inducing-cysteine-rich 

protein with kazal motifs (RECK).31,37  Circulating α2-macroglobulins bind MMPs to prevent 

substrate attachment.  The complexes are then cleared from the circulation by macrophage 

endocytosis.31  In normal tissues, MMP activity is highly regulated by the MMP/TIMP 
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balance.3,38  To date, four TIMPs have been discovered and characterized (TIMP-1 through 

TIMP-4).  TIMP-1, 2, and 4 are in a soluble form, whereas TIMP-3 is associated with the ECM.  

They all bind non-covalently in a 1:1 ratio with high affinity to both pro and active MMP 

catalytic sites resulting in either prevention or loss of activity.7,39  TIMP-1 binds specifically with 

MMP-9 and TIMP-2 with MMP-2, as previously stated.  In addition to inactivating MMPs, 

TIMPs also affect cell growth by inducing apoptosis.10  RECK is a membrane anchored 

glycoprotein that inhibits MMP-2, MMP-9, and MMP-14 (MT-MMP-1).  It has been suggested 

that RECK regulates MMP activity through direct inhibition of protease activity, regulation of 

cellular release, and cell surface sequestration.39  Degradation can occur via the same ROS that 

activate MMPs through modification of amino acids that are essential for catalytic activity.31 

 Several techniques are available for the detection of MMP-2 and MMP-9; however, 

gelatin zymography is most often used.  Zymography utilizes electrophoresis to separate proteins 

in a polyacrylamide gel impregnated with gelatin.40  Any MMP-2 or MMP-9 present in a sample 

will degrade the gel at the appropriate molecular weights.   Staining of the gels with Coomassie 

blue allows MMP activity to be visualized as a clear band in the blue gel (Figure 1.1).  

Zymography is highly specific for MMP-2 and MMP-9 activities, because they are the only 

MMPs known to degrade gelatin; however, it is only semi-quantitative.  Relative values can be 

established for MMP concentrations by digitally scanning zymography gels and measuring band 

intensity and size using a computerized densitometry program.  Both pro and active forms of the 

enzymes can be detected using zymography.  The samples are diluted and subjected to 

electrophoresis in buffers containing sodium dodecyl sulfate (SDS), which removes any 

inhibitors present and activates the enzymes.  The SDS is rinsed away following electrophoresis, 

allowing the enzymes to renature and degrade the gel.  Other procedures available for evaluation 
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Figure 1.1 – An example of a zymogram.  The clear areas indicate the presence of MMPs. 
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of MMPs include enzyme-linked immunosorbant assays (ELISAs), fluorogenic assays, activity 

assays, immunohistochemistry, and mRNA expression analysis.41,42 

Numerous studies have shown that MMPs are crucial for normal tissue development, 

remodeling, and homeostasis.  They are active in many processes such as ovulation, blastocyst 

implantation, embryonic development, postpartum uterine involution, bone remodeling, 

angiogenesis, and apoptosis.43-49  Several MMPs modulate the activities of growth factors, 

cytokines, and other mediators.  Both MMP-2 and MMP-9 activate TNF-α and IL-1β.11,50   In 

turn, IL-β can also be degraded by the gelatinases.51  Big ET-1 is cleaved into the potent 

vasoconstrictor ET-1by MMP-2, a process which can be blocked by TIMP-2.52  Vascular 

endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and EGF are all 

released and activated through the enzymatic actions of MMPs.53-55   

 While MMPs are crucial for normal biological processes, they are mainly disease-

associated enzymes.  Almost all forms of cancer are associated with increases in MMPs, because 

they are necessary for tumor metastasis and angiogenesis.56,57  Various neurological conditions 

result from unregulated MMP activity at the blood brain barrier, which allows pathogens and 

inflammatory cells access to the central nervous system (CNS).58,59  Increased MMP activity is 

also associated with osteoarthritis, asthma, cardiovascular disease, and numerous other 

diseases.6,10,60-64 

 In horses, MMPs have been identified in association with several pathologic conditions.  

Matrix metalloproteinase-9 is involved in equine respiratory disease, in particular in recurrent 

airway obstruction (RAO).65  Several studies have shown increased MMP-9 concentrations in 

bronchioalveolar lavage fluid (BALF) and tracheal epithelial lining fluid (TELF) of horses with 

RAO, and that elevations in MMP-9 are correlated with neutrophil numbers.66-68  Increased 

MMP-8 and MMP-13 activities are also present in association with RAO, and can be inhibited 
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by synthetic MMPIs.69,70   Increases in equine synovial fluid MMP-1, 2, 3, 9, and 13 

concentrations are associated with osteoarthritis.71-76  Matrix metalloproteinase-13 mRNA 

expression is up-regulated in equine superficial digital flexor tendonitis lesions, and MMP-9 is 

suggested to be important in this disease as well.77,78   Increases in gelatinase activity have been 

associated with colic, corneal ulceration, and endometriosis in horses.79-81   Studies have shown 

increased MMP-2 and MMP-9 concentrations in laminar tissues of both experimentally-induced 

and naturally-acquired equine laminitis.82-84  Increased mRNA expression of MMP-2 and MMP-

14 has also been found in laminar tissues of laminitic horses.85,86   

 As the role of MMPs in various pathological conditions has become more apparent, 

attention has been focused on MMPIs as therapeutic agents.  Synthetic MMPIs, such as 

batimastat, marimastat, and others have been developed as potential treatments for diseases such 

as cancer and arthritis.  However, in clinical trials, these compounds have been proven to be 

either ineffective or cause adverse side effects believed to be due to their non-specific MMP 

inhibition.87  The predominant side effect is a musculoskeletal syndrome (MSS) characterized by 

pain and immobility in the shoulder joints, arthralgias, contractures in the hands, and an overall 

decreased quality of life.88  Consequently, the only drug approved in human medicine for its 

effects on MMP inhibition is the tetracycline antibiotic doxycycline, which is used in the 

treatment of periodontal disease.88  

 Several classes of drugs are capable of inhibiting MMPs including corticosteroids, 

retinoic acid, chelating agents, bisphosphonates, statins, certain antibiotics, non-steroidal anti-

inflammatory drugs (NSAIDs), and phosphodiesterase inhibitors.23,88  Glucocorticoids and 

retinoic acid have both been shown to inhibit MMP transcription.12,13,38,89,90  Dexamethasone, 

triamcinolone, and prednisolone inhibit MMP-1, 2, 3, and 13 in equine chondrocyte cultures.71,91 

Chelating agents, N-acetylcysteine, and disodium ethylene diamine tetraacetate (EDTA), are 
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known to inhibit MMPs by binding Zn2+ and Ca2+.   Both agents are used in the treatment of 

ulcerative keratitis.92,93  Bisphosphonates, while developed for use in diseases involving bone 

and calcium metabolism, also have MMP inhibitory effects in various diseases including equine 

RAO.70,94,95  The mechanism of action of bisphosphonate MMP inhibition is unclear, but is 

suggested to involve chelation of cations and down-regulation of mRNA and protein 

expression.70  Statins are often used in cardiovascular disease and have been shown to inhibit 

MMPs through decreased expression and secretion.96,97  Clarithromycin and erythromycin, both 

macrolide antibiotics, have MMP inhibitory effects in cardiac allograft recipients and cultured 

smooth muscle cells through decreased MMP expression.98,99   

 In addition to their antibiotic effects, tetracyclines inhibit MMPs through decreased 

transcription, chelation of Zn2+ and Ca2+, and increased degradation of the enzymes.100,101  

Doxycycline, a semi-synthetic tetracycline, has been shown to be an effective MMPI in various 

tissues and diseases including endothelial cells, pleural fluid, corneal epithelium, cerebral 

ischemia, and endotoxemia-induced cardiac dysfunction.102-106  As previously mentioned, it is the 

only MMPI approved for human use.  In horses, doxycycline is used in the treatment of  various 

diseases including Potomac horse fever caused by Neorickettsia risticii, a disease associated with 

depression, fever, diarrhea, and laminitis.107  It has been reported to cause cardiovascular 

collapse and death when administered intravenously (IV) to horses; however, several studies 

have demonstrated the safety of oral administration of doxycycline.108-110  Oxytetracycline, a 

tetracycline analogue, is used in the horse for its antibiotic properties, but also for the treatment 

of flexural deformities in foals.  It has been shown to decrease MMP-1 expression in equine 

myofibrils.111  Chemically modified tetracyclines have been developed by removing the 

antimicrobial portion of the compound; thus, leaving the MMP inhibitory portion.112   Research 

suggests that they may be of potential use in horses with RAO.70 
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 NSAIDs are cyclooxygenase (COX) inhibitors, thus preventing the formation of 

eicosanoid inflammatory mediators in the arachidonic acid cascade.  They decrease MMP-2 and 

MMP-9 activities by decreasing mRNA expression.113,114   Cyclooxygenase-2 increases MMP-2 

and MMP-9 expression that can then be decreased in response to both non-selective and selective 

NSAIDs.114-117  Other research suggests that NSAIDs up-regulate mRNA expression of 

RECK.118  Due to their MMP inhibiting abilities, various NSAIDs are being used to prevent 

tumor migration and metastasis in cancer.  Although many studies have shown the MMP 

inhibitory effects of NSAIDs in other species, there is very little data assessing their ability to 

inhibit equine MMPs.   Flunixin meglumine is an NSAID that is commonly used in horses for 

gastrointestinal pain and inflammation.  The only research published do date suggests that in 

vitro, flunixin meglumine does not inhibit MMP-2 or MMP-9 obtained from equine cell 

culture.91 

 Phosphodiesterase inhibitors regulate MMP expression by increasing intracellular cAMP 

concentrations that disrupt phosphorylation pathways and prevent gene transcription.113,119   

Pentoxifylline is a methyl xanthine derivative and phosphodiesterase inhibitor commonly used 

for its rheological effects on peripheral vascular disease in people.120  It produces potent anti-

inflammatory effects through reduction of TNF-α and IL-6 concentrations and enhancement of 

the anti-inflammatory cytokine IL-10.121  Pentoxifylline has also been shown to decrease 

neutrophil infiltration and activation.119,122   It is used in the horse for its anti-inflammatory 

effects in the treatment of endotoxemia and other systemic inflammatory conditions. 

1.3 The Systemic Inflammatory Response/Endotoxemia 

Systemic inflammatory response syndrome (SIRS) has been defined by the American 

Society of Chest Physicians and the Society of Critical Care Medicine as an inflammatory 

response that includes more than one of the following clinical manifestations: 1) hyper- or 
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hypothermia, 2) tachycardia, 3) tachypnea, or 4) leukocytosis or leucopenia.123  This systemic 

response is most often associated with endotoxemia originating from Gram-negative bacteria. 

Endotoxin (lipopolysaccharide, LPS) is one of the most potent bacterial toxins known, and is 

responsible for inciting the severe inflammatory response seen during endotoxemia in the horse, 

as well as other species.124  The microvascular inflammatory response to endotoxin results in 

activation of mononuclear phagocytes which release numerous cytokines and enzymes.  This 

leads to endothelial and leukocyte activation with increased leukocyte and platelet adherence and 

microthrombi formation.125  Neutrophils are capable of being activated intravascularly, and are 

easily activated in vitro by LPS causing expression of integrin adhesion molecules, decreased 

deformability, size variation, and degranulation.126,127  Endothelial cells swell, increasing 

capillary and venular permeability resulting in tissue edema.  Diapedesis and degranulation of 

neutrophils results in further tissue damage and activation of inflammatory mediators.  This 

systemic inflammatory response begins a vicious cycle in the microcirculation, and if left 

unchecked, usually results in cardiac dysfunction, progressive hypotension, coagulopathies, and 

organ dysfunction/failure.125  

 Endotoxin is a component of the outer cell membrane of all Gram-negative bacteria that 

can be released during rapid proliferation or cell death.  It consists of three components.  The 

inner lipid A portion is highly conserved among Gram-negative bacteria and imparts the toxic 

effects.  Each LPS molecule also contains a core oligosaccharide and an outer O-specific 

polysaccharide that imparts serotype specificity for different bacterial strains.128 

 The endotoxin-induced inflammatory process is initiated by the binding of endotoxin to 

lipopolysaccharide binding protein (LBP) at the lipid A moiety.  Lipopolysaccharide binding 

protein acts as a shuttle to facilitate the transport of endotoxin to various cell types including 

mononuclear phagocytes, neutrophils, and endothelial cells; however, monocytes and 
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macrophages are the principal cells involved in the initial response to endotoxin.129  The 

inflammatory response is initiated when LBP transfers endotoxin to the cell surface receptor 

CD14.  This receptor is present in both a soluble form in the blood and a membranous form on 

the surface of monocytes, macrophages, and neutrophils.  The soluble form allows other cells 

such as endothelial and epithelial cells to react to endotoxin.  The endotoxin/LBP/CD14 complex 

increases cell sensitivity to endotoxin, but cannot cross the cell membrane to stimulate second 

messenger systems or signal transduction pathways.128  The LPS signal is carried intracellularly 

by the pattern recognition receptor Toll-like receptor 4 (TLR 4).  This occurs with the help of 

myeloid differentiation factor 2 (MD2) on the cell surface.  Cell stimulation by LPS leads to 

activation of the transcription factor nuclear factor κB (NFκB) and the MAPK pathway.  

Activation of these pathways ultimately results in the synthesis of various pro- and anti-

inflammatory mediators responsible for the clinical manifestations of endotoxemia.129   

 The inflammatory cascade induced by endotoxin includes release of pro-inflammatory 

cytokines, chemokines, adhesion molecules, proteolytic enzymes, and acute phase proteins, as 

well as production of ecosanoids.125  Tumor necrosis factor-α is the initial mediator of 

endotoxin’s effects, and is produced by macrophages in response to LPS.124  This cytokine 

typically reaches peak levels in the horse 1-2 hours after LPS exposure.130,131  It is responsible 

for a myriad of effects including stimulating the release of other cytokines and neutrophil 

activation.  Interleukin-6 is produced by monocytic phagocytes, fibroblasts, and endothelial cells, 

and is a potent inducer of acute phase proteins.124,129  Interleukin-6 activity is increased in 

endotoxemic horses from 30 minutes to 8 hours post-infusion of LPS.130,132  Interleukin-1β is 

also released from machrophages in response to LPS.  It is a potent attractant for neutrophils, as 

well as performing many functions similar to TNF-α.124  Endotoxin has also been shown to up-

regulate IL-1β and TNF-α mRNA in equine mononuclear cell culture.133   
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Endotoxemia also results in the activation and release of proteolytic enzymes, in 

particular MMPs.  Gelatinolytic activity (MMP-2 and MMP-9) is increased in patients with 

clinical Gram-negative sepsis.134  Plasma MMP-9 concentrations are increased between 1 hour 

and 8 hours post-infusion of LPS to human volunteers and between 30 minutes and 6 hours after 

LPS administration to baboons.134-136   Septic shock non-survivors have higher plasma 

concentrations of MMP-9 and greater expression of MMP-9 mRNA compared with survivors, 

with a positive correlation between plasma LPS and MMP-9 concentrations.137  Matrix 

metalloproteinase-9 activity is increased in the liver, spleen, kidney, brain, heart, and aorta of 

mice administered LPS.105,138,139  Endotoxin also stimulates release of MMP-2 in endothelial 

cells and rat aorta, as well as MMP-9 in peritoneal macrophages.138,140-142  Interleukin-1β 

stimulates the release of MMP-2 from rat aorta.138  Lipopolysaccharide, TNF-α, IL-8, and 

granulocyte colony-stimulating factor all stimulate rapid release of MMP-9 from neutrophil 

granules.134  Reactive oxygen species released from neutrophil granules help regulate the activity 

of vascular MMPs and are generated in response to LPS.143,144  In particular, peroxynitrite, a by-

product of NO release, can activate MMPs and is increased along with NO in LPS-treated 

rats.140,145,146  Increases in MMP-9 activity correlate inversely with mean arterial pressure (MAP) 

in endotoxemic rats.147  Furthermore, LPS and IL-1β both induce hyporeactivity in rat aorta that 

can be ameliorated by doxycycline, a potent MMPI, suggesting that MMPs play an important 

role in the cardiovascular effects of endotoxemia.138  

 In healthy horses, the gastrointestinal tract contains large amounts of endotoxin owing to 

the large quantities of Gram-negative bacteria needed for fermentation of food material.129  There 

are several mechanisms present to prevent LPS from reaching the systemic circulation during 

normal states.  Mucosal epithelial cells, the mucous layer covering them, and other resident 

bacteria restrict the movement of endotoxin within the intestinal lumen.128  Occasionally in 
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healthy animals, small amounts of the toxin escape into the portal circulation.  These molecules 

are quickly removed by either hepatic macrophages known as Kupfer cells or circulating anti-

endotoxin antibodies to prevent a systemic inflammatory response.  However, under disease 

conditions, endotoxin can overwhelm these mechanisms and play a major role in the systemic 

inflammatory response in the horse.124   

 Endotoxemia in the horse most often occurs secondary to compromise of the intestinal 

tract barrier.  The quantity of endotoxin in the circulation can become so great that it cannot be 

sufficiently removed and thus overwhelms the normal protective mechanisms.  Endotoxin can 

also cross hypoperfused or inflamed intestine, enter the peritoneal cavity, and gain access to the 

systemic circulation via the thoracic duct.128   

There are many disease processes of the horse that may lead to the development of 

endotoxemia.  Acute abdominal disease, colitis, post-operative ileus, enteritis, peritonitis, 

pleuropneumonia, metritis, and grain overload are all capable of inducing secondary 

endotoxemia in the horse.  Most commonly, equine endotoxemia results from an acute 

gastrointestinal tract disturbance.  Endotoxin has been detected in the plasma of approximately 

25% of horses admitted to teaching hospitals for acute gastrointestinal tract disease.148  

Experimentally, LPS decreases cecal blood flow and increases intestinal permeability, thus 

allowing endotoxin access to the systemic circulation.149  In an experimental model of small 

intestinal ischemia/reperfusion injury, circulating endotoxin was detected at 60 and 120 minutes 

after reperfusion.150  Clinical studies have shown that 50% of horses are endotoxemic during 

colic surgery, and that circulating LPS can be detected in a large proportion of horses up to 5 

days after colic surgery.151,152     

Intravenous infusion of LPS has been used extensively in the past as a method for 

inducing experimental endotoxemia.  Typically following administration of low-dose LPS (10 – 
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35 ng/kg), horses become mildly colicky and develop fever, tachypnea, tachycardia, an initial 

neutropenia with a rebound neutrophilia, thrombocytopenia, increased capillary refill time 

(CRT),  hemoconcentration, and lactic acidosis.130,131,153  Leukopenia is one of the cardinal signs 

of endotoxemia and can occur between 30 minutes and 4 hours post-infusion.154,155  Higher doses 

of LPS (over 10 µg/kg) have resulted in mucous membrane cyanosis, hyper- and hypoglycemia, 

hyper- and hypothermia, and extreme coldness of the lower limbs.156,157 

Although experimentally-induced endotoxemia does not exactly replicate or mimic 

clinical disease, it allows for investigation of various aspects that cannot be studied or controlled 

in the clinical arena.  Endotoxemia has been shown to cause decreased gastrointestinal tract 

motility in horses, specifically decreased intestinal muscular activity due to edematous 

degeneration and coagulative necrosis of smooth muscle cells of the intestinal muscularis layer 

and possibly degeneration of the central, autonomic, and myenteric nervous systems.158,159  

Lipopolysaccharide stimulates COX-2 activity in equine digital arterial smooth muscle cells.133  

Prostaglandin E2 decreases gastric contraction amplitude and rate in endotoxemic ponies.160  This 

decrease in gastric activity can be prevented by pre-treatment with phenylbutazone, a known 

COX-1 inhibitor.161  Insulin resistance is caused by endotoxemia in humans and rats.  In horses, 

administration of endotoxin resulted in decreased insulin sensitivity for 24 hours along with a 

compensatory pancreatic response.153     

 One major sequelae to diseases accompanied by endotoxemia in horses is the 

development of laminitis.  Endotoxin has been detected in both cecal contents and plasma of 

horses with experimentally-induced carbohydrate overload (CHO) laminitis, and has been 

associated with Obel Grade 3 lameness in this model.162,163  Lactic acid-induced decreases in the 

cecal population of Gram-negative bacteria correlates with the over 5 times increase in cecal 

fluid endotoxin levels.162,164  Severe compromise of the cecal mucosa found in experimental 
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CHO allows numerous toxins, including endotoxin, to enter the circulation and stimulate the 

release of pro-inflammatory cytokines, as demonstrated by the increased plasma endotoxin levels 

seen in CHO-induced laminitis.163,165  Evidence of endotoxemia including elevated temperature, 

tachycardia, and limb edema has also been observed in horses developing laminitis after 

accidental CHO.166  Experimentally-induced endotoxemia leads to decreased digital arterial and 

venous blood flow, decreased digital laminar blood flow, and decreased coronary band and hoof 

wall temperature.131,167  Increases in plasma 5-hydroxytryptamine (5-HT) and thromboxane B2 

(TXB2) occur with in vivo administration of LPS and with in vitro stimulation of equine 

platelets.131,168  These substances have been suggested as possible vascular mediators in the 

development of laminitis.168  Endotoxemia has also been implicated as an important risk factor 

for the development of acute laminitis in horses hospitalized for medical or surgical 

conditions.169  Despite the association between clinical endotoxemia and laminitis, 

experimentally-induced endotoxemia does not reproducibly induce laminitis.  Nevertheless, the 

clinical occurrence of laminitis subsequent to diseases associated with endotoxemia suggests that 

LPS does play a role, either directly or indirectly, in the development of laminitis.  

1.4 Equine Laminitis 

 Acute laminitis is an excruciatingly painful and severely debilitating disease  

of the soft tissues of the equine digit.  In many instances, it can lead to the separation of the 

epidermal and dermal laminae, resulting in rotation and/or sinking of the third phalanx within the 

hoof capsule.170  This disease is common to all breeds world-wide and often results in chronic 

pain, lameness, and sometimes death.  Laminitis is frustrating to both veterinarians and owners 

as current therapy consists mainly of NSAIDs and therapeutic shoeing, which are often 

ineffective.  One of the major reasons for the limited scope of treatment is that the pathogenesis 

of laminitis is not fully understood despite years of intense research. 
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A recent survey by the American Association of Equine Practitioners (AAEP) found that 

equine practitioners believe laminitis is the most important disease afflicting horses and the 

number one disease requiring further research efforts and funding.171  This is most likely due to 

the prevalence, morbidity and mortality, and economic and emotional costs of the disease, as 

well as the incomplete understanding of its pathogenesis.  Laminitis is considered one of the 

most important diseases in the equine industry with an estimated 15% of horses developing 

laminitis during their lifetime, of which 75% of those admitted to referral hospitals eventually 

require euthanasia.172  Annual monetary losses related to laminitis have been conservatively 

estimated at greater than $13 million associated with its diagnosis, treatment and loss of horses 

subsequent to complications.173 

In the horse, the distal phalanx (P3, coffin bone) is contained within the hoof capsule, and 

is attached to the hoof wall via soft tissue attachments.  Theses attachments, or laminae, extend 

from the inner surface of the hoof wall to form the primary epidermal (insensitive) laminae 

(PEL) and from the periosteum of P3 as primary dermal (sensitive) laminae (PDL). It is 

estimated that there are approximately 600 PEL per hoof.174  These epidermal and dermal 

laminae interdigitate and, in effect, suspend the distal phalanx within the hoof capsule (Figure 

1.2).  Both the PEL and PDL have secondary laminae that also interdigitate and increase the 

surface area of attachment between the hoof wall and P3.175  A BM separates the avascular 

secondary epidermal laminae (SEL) from the vascular secondary dermal laminae (SDL).  

Laminin, a glycoprotein, is distributed throughout the BM and is important for the differentiation 

and attachment of epidermal basal cells.175  Hemidesmosomes (HD) attach the epidermal basal 

cells to the lamina densa of the BM through anchoring filaments.175  The proximal epidermal 

laminae located near the coronary band and periople are proliferative, but the majority of the 

epidermal laminae are nonproliferative and function to suspend P3.176      
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Figure 1.2 – A hoof from a normal horse illustrating the hoof wall (A), epidermal laminae (B), 
dermal laminae (C), and third phalanx (D).  Note that the third phalanx is parallel to the hoof 
wall. 
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The medial and lateral palmar digital arteries supply oxygenated blood to the foot.  Blood 

flows through various arteries on its way to the laminar microvasculature.  Each PDL is supplied 

by a papillary artery flowing into a capillary bed which feeds the lamina and then passes out by 

way of a papillary vein.174  Deoxygenated blood eventually leaves the foot via the medial and 

lateral palmar digital veins.  Each papillary artery and vein have numerous (approximately 

500/cm2) arteriovenous anastomoses (AVAs), or shunts, between them that may regulate hoof 

temperature in cold environments.174    

During acute laminitis, the laminae are inflamed and may become necrotic and separate.  

If this occurs, P3 is able to rotate or sink distally within the hoof capsule leading to intense pain 

and hoof structural alteration (Figure 1.3).  Consistent histological changes within the laminae 

early in laminitis  are degradation of the BM and detachment from the epidermal basal cells in 

the SEL.83,175  Also, numerous neutrophils accumulate at the SDL tips, many of which have 

penetrated the BM and have moved into the SEL.83,177,178   

Laminitis may be a primary disease, (e.g. due to excessive concussive force), but most 

often occurs secondary to other illnesses.  Grain overload, colitis, enteritis, pleuropneumonia, 

metritis, colic, and contralateral limb lameness often precede the onset of laminitis.179  With the 

exception of contralateral limb lameness, the aforementioned diseases may all be associated with 

endotoxemia.  Studies have shown that gastrointestinal (GI) disease is the most common problem 

noted prior to the onset of laminitis, and that endotoxemia is a significant risk factor for the 

development of laminitis.169,180  Although there appears to be an association clinically between 

endotoxemia and laminitis, experimentally-induced endotoxemia does not reproducibly result in 

laminitis.  However, laminitis can be experimentally induced using either a CHO model, a black 

walnut extract (BWE) model, or an oligofructose (OF) model.181-183 
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Figure 1.3 – A hoof from a horse with chronic laminitis illustrating the hoof wall (A), epidermal 
laminae (B), dermal laminae (C), and third phalanx (D).  Note that the third phalanx has rotated 
distally from the hoof wall, and the epidermal and dermal laminae are thickened. 
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Due to the variable etiologies for the development of laminitis, the pathophysiology 

remains elusive.  There are several different hypotheses regarding its pathogenesis.184  A 

vascular theory hypothesizes that dysfunction of the digital vasculature results in interstitial 

edema and ischemia followed by laminar necrosis and separation.185  There is conflicting 

evidence as to whether vasodilation or vasoconstriction occurs at the onset of laminitis.  Early 

work using arteriovenograms to evaluate blood flow before and after CHO indicated that blood 

flow in the terminal arch of the foot was significantly decreased or absent after CHO.186  Other 

research has suggested that venoconstriction mediated via either ET-1, TXA2, or 5-HT is 

responsible for the laminar ischemia.168  Evaluation of Starling forces in horses with CHO and 

BWE indicate that increases in capillary pressure owing to increased vascular resistance leads to 

interstitial edema within the digit.187,188  Decreased hoof wall temperature, suggesting a decrease 

in digital vascular perfusion, and decreased lamellar microvascular blood flow occur during the 

developmental phase of carbohydrate overload induced laminitis.189,190  Other studies report 

conflicting data.  Early data refuted the theory of decreased perfusion suggesting that increased 

digital blood flow occurred in the CHO model due to decreased vascular resistance.191  

Scintigraphy used to evaluate blood flow following CHO indicated there was no reduction of 

blood flow and that flow was significantly increased in the laminae.192  Others have reported that 

increases in hoof wall temperature occur at the onset of clinical signs with no prior indication of 

decreased blood flow, and that cryotherapy prevented histological evidence of laminitis and 

lameness.83,193   It has been suggested that vasodilation occurs initially leading to opening of 

AVAs within the digital microvasculature to protect the laminar capillaries from the high 

pressures of increased flow.  However, this leads to ischemia of the laminar tips if vasodilation is 

prolonged as in laminitis.194  Regardless of the initial event, it is generally accepted that vascular 

changes are intricately involved in the pathogenesis of laminitis. 
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 Other research has characterized laminitis as a local manifestation of a systemic 

inflammatory response.195  Pro-inflammatory mediators, namely IL-1β, IL-6, IL-8, and COX-2 

are up-regulated in the laminae during the early stages of BWE laminitis.196-199  Normal laminae 

contain little or no neutrophils or macrophages in the perivascular region of the SDL.178  

However, in BWE laminitis, there is an influx of leukocytes, mostly neutrophils, into the dermal 

laminae at the onset of leukopenia that increases to significance by the onset of lameness.178  

Neutrophil activation is further demonstrated by increases in plasma, laminar, and skin 

myeloperoxidase prior to the onset of lameness in BWE laminitis.200    

 Coinciding with the inflammatory component of laminitis is the theory that intestinal 

mediators are released into the circulation that initiate SIRS and activate inflammatory cells to 

release cascades of mediators.201  Among these mediators are enzymes that regulate formation 

and degradation of the extracellular matrix, especially MMPs.  In the horse, MMP-2 and -9 have 

been isolated within the laminae of the digit.202  As stated previously, they are members of the 

gelatinase family and have the ability to degrade type IV collagen. Hemidesmosomes separate 

from the lamina densa due to degradation of anchoring filaments and allow laminar separation to 

occur in vitro when explants are exposed to the MMP activator p-aminophenylmercuric acetate 

(APMA), a mercurial compound.203  APMA-induced laminar separation can also be prevented by 

the MMPI batimastat.204  Laminar explants of horses with acute laminitis have increased 

concentrations of MMP-2 and MMP-9.83  Thus, MMP-2 and MMP-9 appear to be associated 

with the BM destruction and laminar separation characteristic of acute laminitis.  Mungall et al 

described an “in vitro laminitis model” in which bacterial broths increased MMP-2 and MMP-9 

concentrations and increased laminar separation in equine digital laminar explants.205   Bacterial 

proteinases such as thermolysin increase laminar explant separation as well as activate  

proMMP-2 and proMMP-9 in vitro.202  This, along with increases in Gram-positive bacteria in 
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the cecum of horses during CHO laminitis, led some researchers to believe that Streptococcus 

bovis toxins are responsible for the initiation of MMP-associated laminar destruction.205   

 The roles of MMP-2 and MMP-9 have also been evaluated in vivo.  Both enzymes are 

activated in laminar tissues of horses with naturally-acquired laminitis when compared to 

laminae of normal horses.82  Also, plasma MMP-9 concentrations and transcription of MMP-2 in 

laminar tissues are increased during experimentally-induced laminitis using a CHO model.85,206  

Recently, increased transcription of MMP-14 in the laminae of horses with OF laminitis has been 

reported, which is required for activation of MMP-2.86  As previously mentioned, MMP-9 

concentrations are increased in laminar tissue of BWE horses; however, pro and active forms of 

MMP-2 are present in both control and BWE horses.84  Serum collagen IV concentrations are 

increased in horses with naturally-acquired laminitis suggesting the breakdown of ECM by 

MMPs.207   

 Several inflammatory cells release MMP-9, in particular neutrophils.   Activation of 

MMPs during laminitis could be associated with leukocyte recruitment and induction of 

inflammation.  Decreases in circulating leukocytes as well as increases in production of ROS by 

leukocytes have been found in horses with BWE laminitis.195  Small amounts of MMP-9 are 

produced by keratinocytes and epithelial cells and have been found in normal SEL.208  

Neutrophil accumulation within the laminae is followed by increases in MMP-9 concentrations 

and mRNA expression in laminar tissues coinciding with the onset of Obel grade 1 lameness, 

suggesting that neutrophil infiltration, MMP-9 accumulation, and lameness are linked.84,196  

Release of MMP-2 from platelets leads to platelet aggregation, and there is a correlation between 

MMP-2 inhibition and decreased platelet aggregation.209  This suggests that MMP-2 may be 

involved in increased platelet aggregation and platelet-neutrophil aggregates found in CHO 
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laminitis.210  Therefore, the neutrophil infiltration and release of inflammatory mediators within 

the digital laminae during laminitis may lead to increased release of both MMP-2 and MMP-9.   

Metabolic disturbances are also suggested to precede the development of laminitis.  

Starch-rich diets and high fat supplements fed to inactive horses leads to increases in abdominal 

adipose tissue and predisposition to the development of a “peripheral Cushing’s syndrome” 

characterized by insulin resistance, glucose intolerance, and laminitis.211  Laminitis-prone ponies 

are hyperinsulinemic and insulin resistant compared with control ponies.212  Clinical and 

histological laminitis can be induced in normal ponies by prolonged hyperinsulinemia with 

euglycemia.213  Chronic administration of the glucocorticoid dexamethasone leads to increased 

insulin resistance and predisposition for the development of laminitis.214  In vitro, glucose 

deprivation induces laminar separation by reducing HD numbers, suggesting a mechanism by 

which insulin resistant horses may develop laminitis.203  

 The exact pathophysiology of acute laminitis is actively being pursued in the equine 

scientific community.  Although there are still many gaps in the multiple etiologic pathways that 

may ultimately result in laminitis, each of the components suggested above most likely plays a 

role in the development of this disease. Laminitis of alimentary origin can be used to illustrate 

how these components may be interconnected (Figure 1.4)  In this model, it is suggested that 

altered GI permeability leads to the elaboration of gut-derived substances which are absorbed 

into the portal circulation causing profound systemic effects.  This leads to local changes within 

the digit including vascular, inflammatory, enzymatic, and metabolic effects, each of which can 

perpetuate the other, leading to a vicious circle of events.  All of the local digital effects result in 

laminar structural alterations that can lead to laminar biomechanical weakening.  Weakening of 

the laminae ultimately results in rotation/sinking of the distal phalanx within the hoof capsule 

and the clinical manifestations of acute laminitis.
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Figure 1.4 – A schematic of the events associated with the development of acute laminitis of 
alimentary origin. 
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 While etiologies are varied and the definite pathophysiology of acute laminitis remains 

elusive, current methods of treatment remain unchanged.  NSAID administration along with 

application of frog supports are the cornerstone of therapy, with phenylbutazone being the most 

commonly used medication.180  Other medications used include the NSAID flunixin meglumine, 

the vasodilators acepromazine, isoxsuprine, and nitroglycerin, and the anti-inflammatory agents 

dimethylsulfoxide (DMSO) and pentoxifylline.180,215  Acepromazine administered intravenously 

or intramuscularly leads to modest increases in digital arterial blood flow in normal horses.215,216  

Isoxsuprine has been reported to improve lameness associated with CHO laminitis when 

administered IV, but has no effect on digital blood flow when administered orally.215,217  

Nitroglycerin has been shown to both improve and have no effect on digital blood flow.190,218-221  

Pentoxifylline has also been shown to have no effect on digital blood flow when administered 

orally to normal horses.215  Therapeutic shoeing, deep digital flexor tenotomy, and radical hoof 

wall resections are treatments used for cases of chronic laminitis. 

The lack of effective treatments for acute laminitis necessitates further investigation of 

possible therapeutic agents.  The recent elucidation of the suspected role of MMPs in the 

pathophysiology of this disease suggests that MMPIs may be effective in its treatment and 

warrants their evaluation. 

1.5 Summary of Literature and Hypotheses for Present Studies 

 Matrix metalloproteinases are enzymes responsible for the normal remodeling and 

pathologic destruction of the ECM.  During inflammation and disease, the increased release and 

unregulated activation of MMPs lead to rampant tissue destruction and organ failure.  Regulation 

of MMPs using exogenous MMPI is a new avenue of exploration for the treatment of various 

pathological conditions. 
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 Endotoxemia incites a systemic inflammatory response characterized by activation of 

inflammatory mediator cascades.  The increased release and production of MMPs play a 

significant role in the pathologic changes associated with this condition.  The administration of 

endotoxin, the toxic portion of Gram-negative bacteria responsible for initiating SIRS, has been 

shown in many species to directly and indirectly induce MMP synthesis.  Experimental induction 

of endotoxemia in the horse results in increases in various inflammatory mediators; however, 

MMP activity has not been investigated. 

 Acute laminitis in the horse is characterized by breakdown of the BM between the SEL 

and SDL and subsequent separation of the laminae within the digit.  This is believed to occur 

following the proteolytic actions of MMP-2 and MMP-9 on the laminar BM.  Therefore, 

reductions in MMP activity via MMPIs may be beneficial.  The experimental induction of equine 

laminitis can be achieved through several methods; however, while necessary, this is costly both 

monetarily and emotionally.  The development of a non-terminal model of MMP induction in the 

horse could be used to assess the effectiveness of MMPIs before evaluating them in 

experimentally-induced laminitis.  I propose that experimentally-induced endotoxemia can be 

used for such a model.  The hypotheses of the studies presented in this dissertation include: 

 Study 1 – Equine neutrophils can be stimulated to release MMP-9 by PMA.  The 

commercially available human Biotrak MMP-9 Activity Assay can be validated for use with 

equine samples. 

 Study 2 – Incubation of digital laminar explants with endotoxin will significantly 

increase medium MMP-2 and MMP-9 concentrations and significantly decrease laminar 

structural integrity.  The addition of doxycycline, oxytetracycline, flunixin meglumine, and 

combinations thereof will significantly decrease medium MMP-2 and MMP-9 concentrations 
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and significantly increase laminar structural integrity.  Laminar structural integrity will be 

inversely related to medium MMP-2 and MMP-9 concentrations. 

 Study 3 – Intravenous infusion of endotoxin will significantly increase digital venous 

plasma MMP-2 and MMP-9 concentrations in healthy adult horses when compared with digital 

venous plasma concentrations in horses administered an IV infusion of saline solution.  Pre-

treatment with oral doxycycline, IV oxytetracycline, IV flunixin meglumine, or IV pentoxifylline 

will significantly decrease digital plasma MMP-2 and MMP-9 concentrations in healthy adult 

horses administered an IV infusion of endotoxin. 
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2.1 Introduction 

 Matrix metalloproteinases are proteolytic enzymes that not only degrade ECM 

components, but also activate various inflammatory mediators and regulate cell-to-cell 

interactions.8,10,11  All MMPs are secreted in a latent, pro-enzyme form that usually requires 

cleavage for activation.4   Matrix metalloproteinases are required for normal tissue development 

and remodeling and play important roles in various human pathological conditions from 

neurologic disease to cancer.4,56,59  In recent years, MMPs have been implicated in several equine 

diseases, including RAO, OA, tendonitis, corneal ulceration, and laminitis.68,71,77,79,84   

 The most commonly studied MMPs to date are the gelatinases, MMP-2 and MMP-9.  

While proMMP-2 (72 kD) is constitutively expressed by various structural cell types, proMMP-9 

(92 kD) is mostly induced during inflammatory states and released from neutrophils.7   Most 

other cells do not store MMP-9, and secretion typically follows induction by de novo synthesis; 

however, neutrophils accumulate the zymogen within tertiary granules and release large 

quantities upon degranulation.7  Neutrophil accumulation has been correlated with MMP-9 

activity in several equine diseases, including equine laminitis and arthritis.74,84  Increases in 

MMP-2 and MMP-9 concentrations have been found in laminar tissues of both experimentally-

induced and clinically laminitic horses.82,85  Plasma concentrations of MMP-9 are also increased 

in horses with CHO laminitis.206 

 There are several methods available for assessing MMP activity.  Gelatin zymography is 

the traditional method used for measuring gelatinase activity; however, it is only semi-

quantitative.  ELISAs are quantitative, but can only measure either the pro or active form of 

MMPs.  An MMP activity assay has been developed which is highly specific and sensitive, 

quantitative, and can determine both pro and active forms of the enzymes.   
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 The purpose of this study was to collect and purify MMP-9 from equine neutrophils for 

use as a standard in the validation of the Biotrak MMP-9 Activity Assaya for use with equine 

samples.  The presence of MMP-9 in the neutrophil supernatant was confirmed by western 

blotting using equine granulation tissue as a positive control.  Gelatin zymography and the 

activity assay were used to evaluate MMP-9 activity in the neutrophil supernatant. 

2.2 Materials and Methods 

 2.2.1 Isolation/Stimulation of Equine Neutrophils – This study was approved by the 

Institutional Animal Care and Use Committee of Louisiana State University.  Jugular venous 

blood was collected (60 ml each) from 9 adult horses into vacutainers containing preservative-

free heparin.  The blood was mixed with room temperature 0.9% NaCl (saline) at a 1:2 dilution.  

The cell suspension was carefully poured onto 10 ml Ficoll-Hypaqueb solution in a 50 ml conical 

tube.  The tubes were centrifuged at 400 X g for 40 minutes at 20°C.  The upper saline and 

Ficoll-Hypaque layers were then aspirated, leaving the neutrophil/red blood cell (RBC) pellet.  

The pellet was resuspended in 20 ml phosphate buffered saline (PBS).  An equal volume of 

dextran/saline solution (3% Dextran T-500c in 0.9% saline) was added.  The mixture was 

incubated in an upright position for approximately 20 minutes at room temperature.  The 

neutrophil-rich upper layer was aspirated, the cells pelleted by centrifugation at 250 X g for 10 

minutes at 5°C, and the pellet resuspended in10 ml of 0.9% saline.  Residual RBCs were 

removed by subjecting the cells to hypotonic lysis by resuspending the pellet in 20 ml of cold 

0.2% NaCl for 30 seconds.  Isotonicity was then restored by adding 20 ml of ice-cold 1.6% 

NaCl.  The cells were centrifuged at 250 X g for 6 minutes at 5°C and the supernatant discarded.  

This was repeated until the neutrophil pellet was free of RBCs.  The cells were counted and 

resuspended in serum-free RPMI medium at a concentration of 1 X 107 cells/ml.  The neutrophils 

were stimulated to release MMP-9 by incubation with phorbol 12-myristate 13-acetated (PMA) at 
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a dose of 50 ng/ml for 30 minutes at 37°C.  Following stimulation, the cells were centrifuged at 

250 X g for 10 minutes at 5°C, and the supernatant was collected and frozen at -70°C. 

 2.2.2 Protein Extraction of Equine Granulation Tissue – Protein was extracted from a 

sample of equine granulation tissue for use as an equine positive control in western blotting.  A 

small piece of granulation tissue was frozen in liquid nitrogen and pulverized.  The pieces of 

tissue were placed into a 15 ml conical tube.  Three milliliters of extraction buffer (0.05M Tris, 

0.001M NaEDTA, 0.15M NaCl, 20mM phenylmethyl sulfonyl fluoride (PMSF), 5 µg/ml 

aprotinin, and 0.5% Triton X-114 at pH 8.0) were added to the conical tube.  The mixture was 

vortexed and left on ice for 2 hours.  The mixture was then centrifuged at 12,000 X g for 30 

minutes at 4°C.   

 2.2.3 Western Blot Analysis of Supernatant MMP-9 – The equine neutrophil 

supernatant was concentrated 5-fold (5X) via centrifugation at 8000 rpm for 20 minutes using 

Centriprep YM30e tubes.  The waste was removed and the tubes centrifuged once more.  The 1X 

and 5X neutrophil supernatant, equine granulation tissue extraction, and human proMMP-9 

standard were diluted 1:2 with 2X sample buffer (0.0625M Tris-HCl, 25% glycerol, 4% SDS, 

0.01% bromophenol blue at pH 6.8).  Fifteen microliters of each sample and the standard were 

added to a commercially available 12% Tris-HCl polyacrylamide gelf and subjected to 

electrophoresis for 45 minutes at 200 V.  The gel was removed and placed in transblot buffer 

(25mM Tris, 192mM glycine, and 20% methanol (v/v) at pH 8.3) for 15 minutes.  The gel was 

then placed into a blot apparatus and subjected to electrophoresis for 90 minutes at 90 V to 

transfer the separated proteins onto blot paper.  The blot was allowed to incubate overnight in 

10% milk in NET buffer (0.05M Tris, 0.001M NaEDTA, and 0.15M NaCl at pH 7.4).  After 

incubation, the blot was rinsed in NET buffer for 30 minutes.  A polyclonal rabbit anti-human 

MMP-9 antibodyg was diluted to 18 µl/ml using 10% milk in NET buffer.  The blot was 
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incubated with MMP-9 antibody for 1 hour and then rinsed with NET buffer for 15 minutes 4 

times.  Anti-rabbit IgG + horseradish peroxidase conjugateh diluted in 10% milk in NET buffer 

(1:1000) was incubated with the blot for 1 hour. The blot was rinsed again with NET buffer for 

15 minutes 4 times.  The chromogen, tetramethylbenzidine (TMB), was added to the gel to allow 

visualization of the protein bands. 

 2.2.4 Affinity Chromatographic Purification of Equine MMP-9 – Neutrophils were 

collected from 9 additional horses, stimulated with PMA to release MMP-9, and the supernatant 

collected as previously described.  The supernatant was split into Centriprep YM30 tubes and 

centrifuged at 4500 rpm for 1 hour at 4°C.  The waste was removed and the tubes refilled with 

chromatography starting buffer (0.05M Tris-HCl, 0.5M NaCl, 0.005M CaCl2, 0.05% Brij-35, 

and 0.02% NaN3 at pH 7.6) for 3 washes.  After washing, the supernatant was further 

concentrated to 25X the original concentration.   

 A 5 ml bed volume of gelatin sepharose beadsi was added to a 10 ml chromatography 

column.  The column was rinsed with 30 ml of chromatography starting buffer.  The 25X 

supernatant sample was applied to the column, re-collected, and applied to the column a second 

time.  Fifteen milliliters of elution buffer (0.05M Tris-HCl, 1M NaCl, 0.005M CaCl2, 0.05% 

Brij-35, 0.02 NaN3 and 5% DMSO (v/v) at pH 7.6) were applied to the column, and 1 ml elution 

fractions were collected. 

2.2.5 Zymographic Analysis of MMP-9 Activity – Zymograms were performed using 

commercially available 10% gelatin polyacrylamide gels.j  Equine neutrophil supernatant elution 

samples, 25X neutrophil supernatant, and pro and active MMP-9k standards were diluted 1:2 

with 2X sample buffer (62.5 mM Tris-HCl, 25% glycerol, 4% SDS, and 0.01% bromophenol 

blue at pH 6.8).  Ten microliters of each sample and 7 µl of the standard were loaded onto the 

gels.  Following 1 hour of electrophoresis at 166 V, the gels were washed with renaturing buffer 
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(2.5% Triton X-100)  for 30 minutes and incubated for 16-20 hours at 37˚C in development 

buffer (50mM Tris-HCl, 200 mM NaCl, 5 mM CaCl2, and 0.02% Brij-35 at pH 7.5).  After 

incubation, the gels were stained with 0.25% Coomassie brilliant blue in a mixture of aqueous 

50% methanol: 10 % acetic acid (v/v) and destained in aqueous 20% methanol: 10% acetic acid 

(v/v).  Gelatinolytic activity was detected as transparent bands against a dark blue background.  

Relative values in arbitrary units (A.U.) were established for MMP-9 concentrations by digitally 

photographing the gels and measuring band intensity and size using Image Jl densitometry 

software. 

 2.2.6 Activity Assay Analysis of MMP-9 Activity – Linear dilutions of equine 

neutrophil supernatant elution samples and plasma from normal adult horses were evaluated 

using the Biotrak MMP-9 Activity Assay.  The assay detects both endogenous levels of active 

MMP-9 and total MMP-9 (pro + active) by activating any proMMP-9 in the sample with APMA.  

Briefly, samples and human proMMP-9 standards (0, 0.125, 0.25, 0.5, 1, 2, 4, 8, and 16  ng/ml) 

were incubated in duplicate in microtiter wells coated with human anti-MMP-9 antibody.   Any 

MMP-9 present became bound to the wells, and any other components in the samples were 

removed by washing.  APMA was added to all standards and each sample well designated for 

total MMP-9 quantification.  A pro detection enzyme was added to each well that was then 

cleaved and activated by any MMP-9 present.  The activated detection enzyme was then able to 

cleave a chromogenic peptide substrate resulting in a color change.  The color was read at       

405 nm using a spectrophotometer.  The concentration of MMP-9 in each sample was 

interpolated from a standard curve.  
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2.3 Results   

 2.3.1 Western Blot Analysis of Supernatant MMP-9 – The presence of proMMP-9 was 

detected in both the 1X  and 5X equine neutrophil supernatants and in the equine granulation 

tissue extract (Figure 2.1).   

 2.3.2 Zymographic Analysis of MMP-9 Activity – All supernatant elutions contained 

proMMP-9 (92 kD) and proMMP-9 dimer (220 kD) (Figure 2.2).   

 2.3.3 Activity Assay Analysis of MMP-9 Activity – A linear MMP-9 standard curve 

was produced ranging from 0 – 16 ng/ml (Figure 2.3).  MMP-9 was detected in the linearly 

diluted equine neutrophil supernatant elutions; however, the assay became saturated at 

approximately 4 ng/ml equine MMP-9 (Figure 2.4).  No MMP-9 was detected in any equine 

plasma sample. 

2.4 Discussion 

 In this study, MMP-9 was successfully harvested from PMA-stimulated equine 

neutrophils and verified using western blotting.  Neutrophil supernatants were further purified 

using affinity chromatography, and gelatin zymography was used to assess MMP-9 activity 

present in the eluted supernatant samples.  Both the monomeric proMMP-9 (92 kD) and the 

dimeric proMMP-9 (220 kD) forms were present.  The Biotrak MMP-9 Activity Assay was able 

to detect equine MMP-9 in the neutrophil supernatant.  However, the activity assay was only 

approximately 25% as sensitive for equine MMP-9 compared with human MMP-9, for which the 

assay was developed. 

 There is currently no commercially available equine MMP-9 standard; therefore, MMP-9 

was harvested from equine neutrophils.  A rabbit anti-human MMP-9 antibody was used to 

detect MMP-9 in the equine neutrophil supernatant and equine granulation tissue.  Wounds with 

granulation tissue are in a state of remodeling and, therefore, should contain large amounts of 
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Figure 2.1 – Western blot analysis of concentrated equine neutrophil supernatant (5X), protein 
extraction from equine granulation tissue (GrT), and human proMMP-9 (MMP-9) using a rabbit 
anti-human MMP-9 antibody.  A dark band represents the presence of MMP-9. 
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Figure 2.2 – Zymogram of equine neutrophil supernatant purified by affinity chromatography 
(AC) and 25X concentrated equine neutrophil supernatant (25X).  Clear bands represent the 
presence of proMMP-9. 
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Figure 2.3 – Human MMP-9 (ng/ml) standard curve produced by the Biotrak MMP-9 Activity 
Assay.  Color change in the assay is directly proportional to MMP-9 activity and is represented 
by the rate of change of absorbance at 405 nm (abs405/h2*1000).   
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Figure 2.4 – Concentration of MMP-9 (ng/ml) in linear dilutions of equine neutrophil 
supernatant elutions determined by the Biotrak MMP-9 Activity Assay.  Color change in the 
assay is directly proportional to MMP-9 activity and is represented by the rate of change of 
absorbance at 405 nm (abs405/h2*1000).   
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MMPs.  For this reason, equine granulation tissue was selected as a positive control for the 

MMP-9 antibody used in the western blotting.  Although the western blot indicated that the 5X 

concentrated neutrophil supernatant contained MMP-9, the supernatant was further concentrated 

to 25X to ensure that enough MMP was present in the chromatography elution for detection by 

the activity assay.  The monomeric and disulfide-bonded homodimeric forms of proMMP-9 seen 

on the zymogram in the neutrophil supernatant are both physiologic forms of the same enzyme 

and have been identified in many different tissues, cell culture supernatants, and biological 

fluids.222   

 PMA-induced neutrophil degranulation occurs by activation of phosphokinase-C and 

NADPH-oxidase.  Stimulation of equine neutrophils with PMA resulted in significant release of 

MMP-9 into the supernatant, confirming previous reports that equine neutrophils store this 

enzyme.223  This has significant implications for equine diseases in which the elevated presence 

of MMP-9 correlates with neutrophil abundance, such as laminitis, RAO, and arthritis.  

 Gelatin zymography is the traditional method for assessment of both MMP-2 and    

MMP-9.  This method is highly sensitive and specific for the gelatinases and quite economical.  

However, it is only qualitative or semi-quantitative, as only relative values of MMP activity can 

be calculated from densitometry readings.  The Biotrak MMP-9 Activity Assay is highly specific 

for MMP-9 and equally as sensitive as an ELISA.  Like an ELISA, the activity assay is truly 

quantitative; however, it is superior due to its ability to determine both pro and active forms of 

the enzyme.    

 Unfortunately, the activity assay had a low sensitivity for equine MMP-9.  This may have 

been due to the human monoclonal MMP-9 antibody used in the assay, although it reportedly 

cross-reacts with mouse and rabbit samples.224  Equine MMP-9 may have similar but not 

identical epitopes as human MMP-9.  Thus, all of the equine MMP-9 may not have been bound 
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by the antibody, decreasing the amount of enzyme that could be detected.  Components of the 

chromatography elution buffer may also have been interfering with the assay.   

 Although the activity assay was able to measure MMP-9 in the purified neutrophil 

supernatant, it could not detect any MMP-9 in the normal equine plasma samples.  Normal 

human plasma contains 4.4 – 27.2 ng/ml MMP-9, as measured by the activity assay.224  It would 

seem likely that normal equine plasma would also contain measurable MMP-9 concentrations.  

The incubation time was extended to increase the sensitivity of the assay, but MMP-9 was never 

detected in any equine plasma samples.  This seems most likely due to the lowered sensitivity of 

the activity assay for equine MMP-9.   Also, other components of the plasma, such as 

endogenous inhibitors, may have been preventing the antibody from binding MMP-9 in the 

samples.  

 Due to the high cost of the activity assay and the time already invested in its assessment, 

any further evaluation for its use with equine samples was forgone.  Supernatant from an equine 

tumor cell line had also been collected for evaluation of the Biotrak MMP-2 Activity Assay; 

however, it was also aborted.  Gelatin zymography was chosen instead for MMP-2 and MMP-9 

evaluation of all equine samples in the following studies. 

2.5 Product Information  

aBiotrak MMP-9 Activity Assay System RPN2634, Amersham Biosciences, Pascataway, NJ  

bFicoll-Paque Plus 17-1440-02 , GE Healthcare Biosciences Corp, Pascataway, NJ 

cDextran T-500, Amersham Biosciences, Pascataway, NJ 

dPhorbal 12-myristate 13-acetate P1585, Sigma-Aldrich, St. Louis, MO 

eCentriprep YM-30 4322, Millipore Corporation, Billerica, MA  

f12% Tris-HCl Ready Gel 161-1156, Bio-Rad Laboratories, Hercules, CA 

gMMP-9 Ab-10 RB-1590-P1, Lab Vision, Thermo Scientific, Freemont, CA 
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hGoat anti-rabbit IgG (H+L) TR-001-HR, Lab Vision, Thermo Scientific, Freemont, CA 

iGelatin Sepharose 4B 17-0956-01, GE Healthcare Biosciences Corp, Pascataway, NJ 

j10% Gelatin Ready Gel 161-116, Bio-Rad Laboratories, Hercules, CA 

kMMP-9 Proenzyme PF038 and MMP-9 Human Recombinant PF024, Calbiochem, La Jolla, CA 

lImage J, U.S. National Institutes of Health, Bethesda, MD 
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3.1 Introduction 

 Endotoxin is a cellular membrane component of all Gram-negative bacteria that is 

responsible for inciting a systemic inflammatory response.  It is released following bacterial cell 

death or rapid proliferation, and is usually removed from the circulation by hepatic Kupfer cells 

or anti-endotoxin antibodies.124  However, during certain diseases, large amounts of endotoxin 

can overwhelm normal defense mechanisms and gain access to the systemic circulation resulting 

in the activation of multiple inflammatory cascades.128  

Matrix metalloproteinases are endopeptidases that degrade ECM proteins and regulate 

various cell-cell and cell-matrix interactions.4  They are involved in normal tissue homeostasis, 

but are most active during inflammation and disease.8  The enzymes are secreted in a pro-

enzyme, or zymogen, form that must be cleaved for activation.225  The gelatinases, MMP-2 and 

MMP-9, degrade denatured collagen, or gelatin, as well as other components of the ECM.  While 

MMP-2 is constitutively expressed by various structural cell types such as fibroblasts and 

endothelial cells, MMP-9 is mostly expressed by inflammatory cells, in particular neutrophils.7  

Endotoxin can stimulate the release of MMP-2 and MMP-9 from various cells and tissues in 

vitro.138,140,141  

Laminitis is an excruciatingly painful and often life-threatening disease of the equine 

digit that occurs when the epidermal and dermal laminar attachments within the foot become 

inflamed and, in severe cases, fail.  Histopathological evaluation of acutely laminitic horses have 

shown that epidermal laminar necrosis and disintegration of the laminar basement membrane are 

primary lesions.226,227  Recent studies have suggested that activation of MMPs within the digit is 

responsible for the laminar separation.206  Both MMP-2 and MMP-9 have been localized to the 

equine digit.  Several studies have found increased expression of both MMP-2 and MMP-9 in 

laminar tissues during experimentally-induced and naturally-acquired laminitis.82,85 
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Matrix metalloproteinase inhibitors are currently being studied in human medicine as 

potential therapeutic agents for many MMP-associated diseases such as rheumatoid arthritis, 

cardiovascular disease, and cancer.56,58,60  Tetracyclines down-regulate expression of MMP-2 and 

MMP-9, and may also prevent activation of the zymogen forms.23,88  Doxycycline, a semi-

synthetic tetracycline, has been shown to be an effective MMPI in various tissues and diseases 

including endothelial cells, pleural fluid, corneal epithelium, cerebral ischemia, and 

endotoxemia-induced cardiac dysfunction.102-106  Oxytetracycline, a tetracycline analogue, has 

been shown to decrease MMP-1 expression in equine myofibrils.111  NSAIDs also inhibit    

MMP-2 and MMP-9 through decreased transcription.114    Due to the apparent involvement of 

MMPs in equine laminitis, MMPIs may be beneficial in preventing or lessening the laminar 

destruction associated with this disease.   

The purpose of this study was to evaluate the ability of doxycycline, oxytetracycline, and 

flunixin meglumine to inhibit equine MMPs in vitro.  Endotoxin was used to induce MMP-2 and 

MMP-9 in equine laminar explants.  The structural integrity of the explants was assessed using a 

mechanical testing device.  The culture medium was analyzed for MMP activity using gelatin 

zymography.   

3.2 Materials and Methods 

3.2.1 Horses – This investigation was approved by the Institutional Animal Care and Use 

Committee of Louisiana State University.  Laminar tissues were harvested from horses 

undergoing euthanasia for unrelated research projects.  Twelve clinically healthy, adult horses of 

varying sex (6 mares, 6 geldings) and breed (4 Thoroughbreds, 4 Paso Finos, 3 Peruvian Pasos, 

and 1 Quarter Horse), ranging in age from 4 to 21 years old (median, 12 years) were used for this 

study.  The horses were deemed to be free of medical problems related to inflammatory diseases, 

endotoxemia, or diseases of the digit as determined through complete physical examination, 
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complete blood count, lameness examination including hoof testing, and radiographic evaluation 

of the digit. 

3.2.2 Experimental Design – Laminar explants were harvested from both forefeet of 

each horse and were used for 3 separate studies.   For each study, explants were incubated and 

stimulated in triplicate with various treatments for 24 hours at 37°C.  After incubation, the 

medium was collected from each explant and frozen at -70°C until analyses for MMP activity 

were performed.  The remaining explants were then subjected to biomechanical testing for 

assessment of structural integrity.  Treatments for each of the studies consisted of the following. 

Study 1:  (1) medium (control); (2) LPSa (E. coli O55:B5)100 ng/ml; (3) LPS + doxycyclineb 

(DOXY) 10 ng/ml; (4) LPS + DOXY 100 ng/ml; (5) LPS + DOXY 1 µg/ml; and (6) LPS + 

DOXY 10 µg/ml.  N = 8 horses were used for this study.  The LPS 100 ng/ml dose for explants 

stimulation was determined through preliminary data. 

Study 2:  (1) medium (control); (2) LPS 100 ng/ml; (3) LPS + oxytetracyclinec (OXY) 100 

ng/ml; (4) LPS + OXY 1 µg/ml; (5) LPS + OXY 10 µg/ml; and (6) LPS + OXY 100 µg/ml.  N = 

8 horses were used for this study. 

Study 3:  (1) medium (control); (2) LPS 100 ng/ml; (3) LPS + flunixin meglumined (FLU) 8 

ng/ml; (4) LPS + FLU + OXY 100 ng/ml; and (5) LPS + FLU + DOXY 100 ng/ml.  N = 6 horses 

were used for this study. 

 3.2.3 Harvesting of Explants – The laminar explants were harvested using a 

modification of the methods described by Pollitt.205  Immediately following euthanasia with 

sodium pentobarbitale (100 mg/kg, IV), both forefeet were removed just distal to the 

metacarpophalangeal joint.  Each hoof was then trimmed proximally and caudally with a band 

saw to facilitate further cutting.  The hooves were scrubbed with an antibacterial disinfectant and 

the solar surface pared with a hoof knife prior to transecting.  Using a table saw sterilized with 
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disinfectant, the outer ¼ of either the medial or lateral aspect of the hoof was removed in a 

sagittal plane. Five more sagittal cuts were made to create five 6-mm slices of the digit.  The 

slices were rinsed and placed in a sterile saline solution.  A small diamond band saw was used to 

cut 6 mm X 6 mm blocks of laminar tissue from each slice consisting of the hoof wall, epidermal 

laminae, dermal laminae, and distal phalanx (Figure 3.1).  The laminar explants were then 

incubated in Dulbecco’s Modified Eagles Mediumf (DMEM) supplemented with piperacilling 

(64 µg/ml), tazobactamh (8 µg/ml), amikacini (5 µg/ml), and nystatinj (100 U/ml) and stimulated 

with the treatments described above at 37˚ C in humidified air supplemented with 5% CO2.  

 3.2.4 Instron Biomechanical Testing – An Instronk biomechanical testing device was 

used to determine the structural integrity of each laminar explant.  Pneumatic clamps were 

securely affixed to the hoof wall and to the bone of each segment and mounted in the testing 

frame (Figures 3.2 and 3.3).  Segments were loaded at a constant elongation rate of 25 

mm/second until failure.  Data were collected at 20 Hz by analog/digital conversion and stored.  

The site of failure was recorded and confirmed with light microscopy of specimens.   For each 

segment examined, stress-strain curves were generated and used to derive the maximum load to 

failure. 

3.2.5 Zymographic Analyses of MMP Activities – All zymograms were performed 

using commercially available 10% gelatin polyacrylamide gels.l   Medium samples and pro and 

active MMP-2m and MMP-9n standards were diluted 1:2 with 2X sample buffer (62.5 mM Tris-

HCl, 25% glycerol, 4% SDS, and 0.01% bromophenol blue at pH 6.8).  Ten microliters of each  

sample and 7 µls of each standard were loaded onto each gel.  Following 1 hour of 

electrophoresis at 166 V, the gels were washed with renaturing buffer (2.5% Triton X-100)  for 

30 minutes and then incubated for 16-20 hours at 37˚C in development buffer (50mM Tris-HCl, 
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Figure 3.1 – Example of a laminar explant consisting of hoof wall (A), epidermal laminae (B), 
dermal laminae (C), and distal phalanx (D). 
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Figure 3.2 – A laminar explant mounted in the Instron biomechanical testing device. 
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Figure 3.3 – A closer view of a laminar explant mounted in the pneumatic clamps of the Instron 
biomechanical testing device. 
 



54 
 

 200 mM NaCl, 5 mM CaCl2, and 0.02% Brij-35 at pH 7.5).  After incubation, the gels were 

stained with 0.25% Coomassie brilliant blue in a mixture of aqueous 50% methanol: 10 % acetic 

acid (v/v) and destained in aqueous 20% methanol: 10% acetic acid (v/v).  Gelatinolytic activity 

was detected as transparent bands against a dark blue background.  Relative values in arbitrary 

units (A.U.) were established for MMP-9 concentrations by digitally photographing the gels and 

measuring band intensity and size using Image Jo densitometry software. 

 3.2.6 Statistical Analyses – All data were tested using the Shapiro-Wilk statistic and 

found to have normal distributions.  Normally distributed variables were analyzed using an 

ANOVA and post-hoc comparisons were made using least squares means.  Data were 

summarized and graphed as mean ± SEM.  Correlations between Instron data and MMP 

zymography data were assessed using the Pearson correlation coefficient.  A p ≤ 0.05 was 

considered significant for all data.  SASp statistical software was used for all statistical analyses. 

3.3 Results 

 3.3.1 Instron Biomechanical Testing – In Study 1, LPS + DOXY 1 µg/ml (68.33 ± 

4.42) explants had significantly greater load to failure than LPS (59.28 ± 3.09) and LPS + 

DOXY 10 ng/ml (58.33 ± 4.06) explants.  Explants treated with LPS + DOXY 100 ng/ml (67.54 

± 3.43) were also significantly stronger than those treated with LPS + DOXY 10 ng/ml (Figure 

3.4). There were no significant differences between control explants and any treatment group. In 

Study 2, LPS + OXY 100 ng/ml (74.49 ± 6.19) explants had significantly greater load to failure 

than LPS (60.32 ± 3.05) explants (Figure 3.4). There were no significant differences between 

control explants and any treatment group.    In Study 3, there were no significant differences 

between any explants in any group (Figure 3.4). 

 3.3.2 Zymographic Analyses of MMP Activities – Lucent bands of enzyme activity 

corresponding to proMMP-2 (72 kD) and proMMP-9 (92 kD) were detected in all laminar 
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explants medium samples.  The active forms of MMP-2 (66 kD) and MMP-9 (83 kD) were not 

detected.  In study 1, proMMP-2 concentrations were significantly lower in LPS + DOXY 100 

ng/ml (0.183 ± 0.010), LPS + DOXY 1µg/ml (0.177 ± 0.011), and LPS + DOXY 10 µg/ml 

(0.143 ± 0.010) explants medium compared with control (0.214 ± 0.019), LPS (0.231 ± 0.023), 

and LPS + DOXY 10 ng/ml (0.222 ± 0.020) explants medium (Figure 3.5).   ProMMP-9 

concentrations were significantly lower in LPS (0.157 ± 0.013), LPS + DOXY 10 ng/ml (0.165 ± 

0.010), LPS + DOXY 100 ng/ml (0.156 ± 0.011), LPS + DOXY 1 µg/ml (0.142 ± 0.013), and 

LPS + DOXY 10 µg/ml (0.125 ± 0.011) explants medium compared with control (0.190 ± 0.015) 

explants medium.  Furthermore, LPS + DOXY 10 µg/ml medium had significantly lower 

proMMP-9 concentrations than LPS and LPS + DOXY 10 ng/ml medium (Figure 3.5). 

 In Study 2, proMMP-2 concentrations were significantly lower in LPS + OXY 100 ng/ml 

(0.164 ± 0.012) and LPS + OXY 1 µg/ml (0.191 ± 0.015) explants medium compared with 

control (0.222 ±0.020) and LPS (0.246 ± 0.024) explants medium (Figure 3.6).  ProMMP-9 

concentrations were significantly lower in LPS (0.158 ± 0.011), LPS + OXY 100 ng/ml (0.124 ± 

0.010), LPS + OXY 1 µg/ml (0.152 ±0.013), LPS + OXY10 µg/ml (0.137 ± 0.008), and LPS + 

OXY 100 µg/ml (0.114 ±0.007) explants medium compared with control (0.191 ± 0.015) 

explants medium.  Furthermore, LPS + OXY 100 ng/ml and LPS + OXY100 µg/ml medium had 

significantly lower proMMP-9 concentrations than LPS and LPS + OXY 1µg/ml medium 

(Figure 3.6). 

 In Study 3, proMMP-2 concentrations were significantly lower in LPS + FLU + OXY 

(0.199 ± 0.014) explants medium compared with control (0.285 ± 0.030) and LPS (0.320 ± 

0.031) explants medium.  Medium from explants treated with LPS + FLU (0.244 ± 0.018) and 

LPS + FLU + DOXY (0.244 ± 0.022) also had significantly lower proMMP-2 concentrations 

than medium from explants treated with LPS (Figure 3.7).  ProMMP-9 concentrations were 
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significantly lower in LPS + FLU (0.127 ± 0.012) and LPS + FLU + DOXY (0.130 ± 0.010) 

explants medium compared with control (0.175 ± 0.016) and LPS (0.162 ± 0.012) explants 

medium (Figure 3.7). 

 3.3.3 Correlations Between Laminar Integrity and MMPs – Laminar explant 

maximum load to failure had a – 20.6% correlation with proMMP-2 concentrations in the 

medium.  This was significant at p < 0.001.  There was no correlation between medium 

proMMP-9 concentrations and explant maximum load to failure.  

3.4 Discussion 

 The MMPIs doxycycline and oxytetracycline increased the structural integrity of equine 

digital laminar explants; however, flunixin meglumine had no effect.  Doxycycline, 

oxytetracycline, and flunixin meglumine all decreased MMP-2 and MMP-9 release from equine 

digital laminar explants to varying degrees.  Structural integrity and MMP-2 medium 

concentrations were negatively correlated, but MMP-9 had no correlation with explant strength. 

 Hemidesmosomes attach epidermal basal cells to the lamina densa of the BM separating 

the epidermal and dermal laminae within the digit.  Pollitt et al found that degradation of the 

BM, loss of HDs, and detachment of epidermal basal cells are early pathologic events in acute 

laminitis.177,227  Mungall et al previously described an “in vitro laminitis model” in which 

bacterial broths increased MMP-2 and MMP-9 concentrations and increased laminar separation 

in equine digital laminar explants.205  Bacterial proteinases such as thermolysin increase laminar 

explant separation as well as activate proMMP-2 and proMMP-9 in vitro.202  Glucose deprivation 

induces laminar separation in vitro by reducing HD numbers.203  Hemidesmosomes separate 

from the lamina densa owing to degradation of anchoring filaments and allow laminar separation 

when explants are exposed to the MMP activator APMA, a mercurial compound.203  Thus, 

MMP-2 and MMP-9 appear to be associated with BM destruction and laminar separation. 
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Figure 3.4 – Mean (± SEM) maximum loads to failure (Newtons, N) for laminar explants in 
Study 1, Study 2, and Study 3 incubated with medium (CONTROL), LPS (LPS), LPS + 
doxycycline (DOXY), LPS + oxytetracycline (LPS + OXY), LPS + flunixin meglumine (LPS + 
FLU), LPS + flunixin meglumine + oxytetracycline (FLU + OXY), or LPS + flunixin meglumine 
+ doxycycline (LPS + FLU + DOXY).  Treatment groups with like letters are not significantly (p 
≤ 0.05) different. 
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Figure 3.5 – Mean (± SEM) proMMP-2 and proMMP-9 band intensities (arbitrary units, AU) in 
the medium of laminar explants in Study 1 incubated with medium (CONTROL), LPS (LPS), or 
LPS + doxycycline (DOXY).  Treatment groups with like letters are not significantly (p ≤ 0.05) 
different. 
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Figure 3.6 – Mean (± SEM) proMMP-2 and proMMP-9 band intensities (arbitrary units, AU) in 
the medium of laminar explants in Study 2 incubated with medium (CONTROL), LPS (LPS), or 
LPS + oxytetracycline (LPS + OXY).  Treatment groups with like letters are not significantly (p 
≤ 0.05) different. 
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Figure 3.7 – Mean (± SEM) proMMP-2 and proMMP-9 band intensities (arbitrary units, AU) in 
the medium of laminar explants in Study 3 incubated with medium (CONTROL), LPS (LPS), 
LPS + flunixin meglumine (FLU), LPS + flunixin meglumine + oxytetracycline (FLU + OXY), 
or LPS + flunixin meglumine + doxycycline (FLU + DOXY).  Treatment groups with like letters 
are not significantly (p ≤ 0.05) different. 
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 Incubation of laminar explants with E. coli bacterial broth has been reported to induce 

laminar separation.205  In the study described here, stimulation of explants with E. coli endotoxin 

caused a decrease in the strength of explants compared with controls, however, this was not a 

significant decrease.  Explants in previous studies were incubated for 48 hours, but explants in 

this study were only incubated for 24 hours.  The incubation time was shortened due to the 

possible tissue deterioration that may begin to occur by 48 hours.  Perhaps the decreased 

incubation time did not allow for maximum stimulation by endotoxin.   

The addition of the MMPIs doxycycline or oxytetracycline significantly increased 

laminar explant integrity compared with endotoxin alone, suggesting that MMP inhibition may 

play a role in preventing laminar separation.  This is further supported by significantly decreased 

MMP-2 and MMP-9 concentrations in the medium of explants exposed to doxycycline and 

oxytetracycline compared with endotoxin alone.  Decreases in MMP-2 medium concentrations 

were also correlated with increases in explant strength.   

 Incubation of explants with flunixin meglumine had no effect on explant strength 

although significant decreases in both MMP-2 and MMP-9 medium concentrations were 

observed.  The combination of flunixin meglumine and oxytetracycline further decreased   

MMP-2 concentrations.  This is in agreement with other reports of MMP-2 and MMP-9 

inhibition mediated by NSAIDs.115,117     

 The response of the laminar explants to endotoxin stimulation was different from that 

previously reported.  Several cell types and tissues produce increased concentrations of MMP-2 

and -9 when stimulated with endotoxin, such as endothelial cells, leukocytes, astrocytes, synovial 

cells, and aorta.134,138,140-142,228,229  In the present study, MMP-2 concentrations in endotoxin-

treated explants were only slightly greater than controls and endotoxin induced a significant 

decrease in MMP-9 concentrations.  This in vitro laminar explant model may not be suitable for 
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extrapolating the effects of endotoxin on MMP-9 activity.  Unlike MMP-2 which is expressed 

constitutively in tissues, MMP-9 is predominantly released by activated neutrophils.7  Several 

studies have shown that MMP-9 and neutrophils are either present at very low levels, or 

completely absent from normal equine digital laminar tissue.84,178  The isolated environment of 

the laminar explant would seemingly allow more significant changes to be seen in MMP-2 

activity compared to MMP-9, as the majority of MMP-9 activity would come from the small 

number of neutrophils present in the hoof at the time of tissue collection.  There are no reports of 

LPS-induced decreases in MMP-9 activity.  This is a novel observation, and cannot be explained. 

 The results of this in vitro study suggest that doxycycline, oxytetracycline, and flunixin 

meglumine all have MMP inhibitory effects of varying degrees within the equine digit.   Of the 

three, oxytetracycline appears to have the greatest effect and the most potential for use as an 

MMPI in the horse for the treatment/prevention of laminitis. 

3.5 Product Information 

aLipopolysaccharide from E. coli O55:B5 L2880, Sigma-Aldrich, St. Louis, MO 

bDoxycycline hyclate, Ranbaxy Pharmaceuticals, Princeton, NJ 

cLiquamicin LA-200, Pfizer Animal Health, St. Louis, MO 

dBanamine, Schering-Plough Animal Health, Union, NJ 

eBeuthanasia-D Special, Schering-Plough Animal Health, Union, NJ 

fDMEM – high glucose D6429, Sigma-Aldrich, St. Louis, MO 

gPiperacillin sodium salt P8396, Sigma-Aldrich, St. Louis,MO 

hTazobactam sodium salt T2820, Sigma-Aldrich, St. Louis, MO 

iAmiglyde-V, Fort Dodge Animal Health/Wyeth, Madison, NJ   

jNystatin 194534, MP Biomedicals, Solon, OH  

kInstron, Norwood, MA 
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l10% Gelatin Ready Gel 161-1167, Bio-Rad Laboratories, Hercules, CA 

mMMP-2 Proenzyme PF037 and Active PF023, Calbiochem, La Jolla, CA 

nMMP-9 Proenzyme PF038 and Human Recombinant PF024, Calbiochem, La Jolla, CA 

oImage J, U.S. National Institutes of Health, Bethesda, MD 

pSAS v 9.0, SAS Institute, Cary, NC 
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CHAPTER 4.  MATRIX METALLOPROTEINASE ACTIVITY IN THE DIGITAL 
CIRCULATION OF HORSES FOLLOWING AN INTRAVENOUS INFUSION OF 

ENDOTOXIN AND PRE-TREATMENT WITH MATRIX METALLOPROTEINASE 
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4.1 Introduction 

 Systemic inflammatory response syndrome occurs when inflammation is accompanied by 

more than one of the following:  1) hyper- or hypothermia, 2) tachypnea, 3) tachycardia, and 4) 

leukocytosis or leukopenia.123  In equine patients with gastrointestinal tract disease or Gram-

negative sepsis, endotoxemia initiates a systemic inflammatory response by activating various 

inflammatory cascades involving cytokine induction and leukocyte activation, thereby inducing 

fever, tachycardia, and neutropenia.129   

 Matrix metalloproteinases are ECM proteases that are most active during inflammation 

and disease.8  Various structural cells constitutively express MMP-2; however, MMP-9 is mostly 

expressed by inflammatory cells, in particular neutrophils.7  Both enzymes have been implicated 

in various disease processes including endotoxemia.56,59,135   In humans, MMP-9 is increased in 

patients with septic shock as well as experimental endotoxemia.134,136,137    

Equine laminitis is an excruciatingly painful disease involving the dermal and epidermal 

laminae of the equine foot.  Recent theories suggest that intestinal mediators initiate SIRS; thus, 

activating inflammatory cells to release cascades of mediators, including MMPs.201  Increased 

MMP activity within the laminae results in loss of laminar integrity and may lead to the 

development of laminitis.206  Several studies have found increased expression of both MMP-2 

and MMP-9 in laminar tissues during experimentally-induced and naturally-acquired laminitis, 

as well as increased plasma MMP-9 concentrations.82,85,206   

Several classes of drugs have MMP inhibitory effects including tetracyclines, retinoic 

acids, corticosteroids, NSAID, and phosphodiesterase inhibitors.23,88  Tetracyclines have been 

shown to down-regulate expression of MMP-2 and MMP-9, and may also prevent activation of 

the zymogen forms.112   Doxycycline significantly reduces MMP-9 activity in vitro and in vivo in 

a mouse endotoxemia model.102-106   In horses, doxycycline is used in the treatment of Potomac 
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horse fever caused by Neorickettsia risticii, a disease associated with depression, fever, diarrhea, 

and laminitis.107  Anecdotally, clinicians report that horses suffering from Potomac horse fever 

that are treated with doxycycline develop laminitis less frequently than those treated with other 

drugs.  Oxytetracycline, a tetracycline analogue, is used in the horse for its antibiotic properties, 

but also for treatment of flexural deformities in foals via MMP-1 inhibition.111  There are no 

other reports of MMP inhibition in horses by oxytetracycline.     

Both NSAIDs and phosphodiesterase inhibitors decrease MMP-2 and MMP-9 activities 

by decreasing mRNA expression.113,114  Flunixin meglumine is an NSAID that is commonly used 

in horses for gastrointestinal pain and inflammation.  Pentoxifylline, a phosphodiesterase 

inhibitor, is used in the horse for its anti-inflammatory effects in the treatment of endotoxemia 

and other systemic inflammatory conditions.  The effects of flunixin meglumine and 

pentoxifylline on in vivo MMP inhibition in the horse have not been investigated.       

 Due to the apparent involvement of MMPs in equine laminitis, MMPIs may be beneficial 

in preventing or lessening the laminar destruction associated with this disease.  In Chapter 3, 

LPS-induced MMP activity was inhibited in equine laminar explants in vitro by doxycycline, 

oxytetracycline, and flunixin meglumine.  The purpose of this study was to determine if the 

administration of endotoxin would increase plasma MMP-2 and/or MMP-9 concentrations in the 

horse. Experimentally-induced endotoxemia was then used as an in vivo model of MMP 

induction for evaluating potential MMPIs in the horse, including doxycycline, oxytetracycline, 

flunixin meglumine, and pentoxifylline.   

 4.2 Materials and Methods 

 4.2.1 Horses – This study was approved by the Institutional Animal Care and Use 

Committee of Louisiana State University.  Twenty-nine clinically healthy, adult horses of 

varying sex (11 mares, 18 geldings) and breed (17 Thoroughbreds, 8 Quarter Horses, 3 American 
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Paint Horses, and 1 Arabian), ranging in age from 3 to 19 years old (median, 7 years), and 

weighing from 379 to 560 kg (median, 491 kg) were used for this study.  The horses were 

deemed to be free of medical problems related to inflammatory diseases, endotoxemia, or 

diseases of the digit as determined by complete physical examination, complete blood count, 

lameness examination including hoof testing, and radiographic evaluation of the digit.    

4.2.2 Instrumentation – On the morning of the study, horses were placed into stocks and 

intravenous catheters were placed percutaneously following routine aseptic preparation of the 

skin and subcutaneous infiltration of a local anesthetic.  A 14-gauge, 13.3-cm Teflon catheter 

was inserted into the left jugular vein for administration of saline solution, LPS, oxytetracycline, 

flunixin meglumine, or pentoxifylline.  A 20-gauge, 5.1-cm Teflon catheter was inserted into the 

left lateral palmar digital vein for blood collection.   

4.2.3 Experimental Design – This investigation consisted of 2 studies.  Study 1 

determined if the administration of LPS could induce MMPs in the digital circulation of the 

horse.  Study 2 used the MMP induction model developed in Study 1 to evaluate the 

effectiveness of several MMPI in the horse. 

Study 1 – Horses were randomly allocated into either a control group (n=5) which received 

saline solution or a treatment group (n=5) which received LPS.  Control horses were 

administered 1 L 0.9% saline solution IV over 30 minutes.   E. coli 055:B5 LPSa was 

administered IV at a dosage of 35 ng/kg in 1 L 0.9% saline solution over 30 minutes.   

Study 2 – Horses were randomly allocated into one of the following treatment groups which 

received either doxycyclineb (n=5) at 10 mg/kg via nasogastric tube, oxytetracyclinec (n=5) at 20 

mg/kg IV, flunixin meglumined (n=5) at 1.1 mg/kg IV, or pentoxifyllinee (n=4) at 8.5 mg/kg IV 

in 1L 0.9% saline solution over 30 minutes in addition to LPS.  The MMPI treatments were 



69 
 

administered every 12 hours beginning 12 hours prior to LPS administration.  Horses in these 

groups were compared with horses that received LPS in Study 1. 

For both studies, baseline (T = 0) clinical variables were recorded and digital venous 

blood samples were collected into heparinized tubes immediately prior to infusion of LPS or 

saline solution.  After administration of LPS or saline solution, clinical parameters were recorded 

and digital venous blood samples were collected at T = 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0, 

16.0, and 24.0 hours.  The blood samples were centrifuged for 10 minutes at 2,000 rpm, and the 

plasma collected and stored in 1 ml aliquots at -70˚C until analyses for MMP activities were 

performed.  The IV catheters were removed 24 hours after LPS or saline solution administration.  

The horses were observed for an additional 24 hours and returned to pasture.   

4.2.4 Clinical Signs of Disease – Heart rate (beats/min), respiratory rate (breaths/min), 

rectal temperature (°F), mucous membrane color, CRT (seconds), and behavior were monitored 

and recorded at the above mentioned times.   

4.2.5 Zymographic Analyses of MMP Activities – All zymograms were performed 

using commercially available 10% gelatin polyacrylamide gels.f  Digital venous plasma samples 

were diluted 1:10 with buffer (25mM Tris, 192 mM glycine, and 0.1% SDS at pH 8.3).  The 

diluted plasma samples, as well as pro and active MMP-2g and MMP-9h standards, were diluted 

1:2 with 2X sample buffer (62.5 mM Tris-HCl, 25% glycerol, 4% SDS, and 0.01% bromophenol 

blue at pH 6.8).  Ten microliters of each sample and 7 µl of each standard were loaded onto each 

gel.  Following 1 hour of electrophoresis at 166 V, the gels were washed with renaturing buffer 

(2.5% Triton X-100)  for 30 minutes and then incubated for 16-20 hours at 37˚C in development 

buffer (50mM Tris-HCl, 200 mM NaCl, 5 mM CaCl2, and 0.02% Brij-35 at pH 7.5).  After 

incubation, the gels were stained with 0.25% Coomassie brilliant blue in a mixture of aqueous 

50% methanol: 10 % acetic acid (v/v) and destained in aqueous 20% methanol: 10% acetic acid 
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(v/v).  Gelatinolytic activity was detected as transparent bands against a dark blue background.  

Relative values in arbitrary units (A.U.) were established for MMP concentrations by digitally 

photographing the gels and measuring band intensity and size using Image Ji densitometry 

software. 

 4.2.6 Statistical Analyses – All data were tested using the Shapiro-Wilk statistic and 

found to have normal distributions.  Normally distributed variables were analyzed using a mixed-

effects ANOVA with horse as a random variable.  Post-hoc comparisons were made using least 

squares means.  P ≤ 0.05 was considered significant.  Data were summarized and graphed as 

mean ± SD.  SASj statistical software was used for all statistical analyses. 

4.3 Results 

 4.3.1 Clinical Signs of Disease – The mean values for heart rate, rectal temperature, and 

respiratory rate for each group are listed in Table 4.1.  Heart rate and rectal temperature did not 

significantly change from baseline (T=0) in horses receiving saline solution; however, 

respiratory rate increased significantly and remained elevated after 0.5 hours.    Tachycardia, 

increased rectal temperature, and mild colic occurred in all horses receiving LPS alone or in 

combination with an MMPI, consistent with a systemic inflammatory response.   Horses 

receiving LPS alone or in combination with an MMPI had modest, intermittent increases in 

respiratory rate.  The administration of LPS significantly increased heart rate from 0.5 through 

6.0 hours and rectal temperature from 1.5 through 6.0 hours compared with the administration of 

saline.  Horses receiving either oxytetracycline or flunixin meglumine had decreased heart rates 

and rectal temperatures compared with horses receiving only LPS.  Alterations in clinical 

variables returned to normal by 24.0 hours in all horses.   

 4.3.2 Zymographic Analyses of MMP Activities – Lucent bands of enzyme activity 

corresponding to proMMP-2 (72 kD) and proMMP-9 (92 kD) were detected in all digital venous  
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Table 4.1 – Mean heart rates (HR, beats/min), rectal temperatures (Temp, °F),  and respiratory 
rates (RR, breaths/min) over time (hours) for horses administered either an intravenous infusion 
of saline solution (SALINE), LPS (LPS), doxycycline followed by LPS (DOXY), 
oxytetracycline followed by LPS (OXYTET), flunixin meglumine followed by LPS 
(FLUNIXIN), or pentoxifylline followed by LPS (PTX).   †Significant (p ≤ 0.05) difference 
from baseline (T=0) value within treatment group.  *Significant (p ≤ 0.05) difference from LPS 
group. 
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SALINE 

   
LPS 

   
DOXY 

 

Time HR Temp RR HR Temp RR HR Temp RR 
          

T=0 41 ± 7 100.2 ± 0.9 15 ± 3 43 ± 3 99.7 ± 0.7 13 ± 4 39 ± 7 100.2 ± 0.4 15 ± 4 

T=0.5 
 

43 ± 9* 
 

100.3 ± 1.0 
 

25 ± 10†* 
 

54 ± 7† 
 

100.1 ± 0.6 
 

15 ± 3 
 

49 ± 5† 
 

100.6 ± 0.4 
 

18 ± 6 
 

T=1.0 
 

44 ± 2* 
 

100.2 ± 0.8 
 

21 ± 9† 
 

54 ± 8† 
 

100.7 ± 1.1 
 

17 ± 3 
 

58 ± 8† 
 

101.0 ± 0.3 
 

20 ± 3† 
 

T=1.5 
 

43 ± 3* 
 

100.3 ± 0.5* 
 

22 ± 4† 
 

60 ± 6† 
 

101.5 ± 1.3† 
 

19 ± 5† 
 

60 ± 9† 
 

101.5 ± 0.8† 
 

17 ± 3 
 

T=2.0 
 

40 ± 6* 
 

100.1 ± 0.4* 
 

26 ± 8†* 
 

59 ± 4† 
 

102.7 ± 1.2† 
 

15 ± 3 
 

51 ± 4† 
 

101.9 ± 1.2† 
 

17 ± 4 
 

T=3.0 
 

37 ± 4* 
 

100.1 ± 0.5* 
 

27 ± 12†* 
 

47 ± 8 
 

103.1 ± 1.4† 
 

18 ± 7 
 

46 ± 4† 
 

102.5 ± 1.8† 
 

16 ± 5 
 

T=4.0 
 

42 ± 7* 
 

100.4 ± 0.3* 
 

24 ± 5† 
 

50 ± 3† 
 

102.7 ± 1.3† 
 

19 ± 8† 
 

46 ± 2† 
 

102.1 ± 1.2† 
 

15 ± 2 
 

T=6.0 
 

42 ± 4* 
 

100.2 ± 0.4* 
 

24 ± 6†* 
 

51 ± 10† 
 

101.2 ± 0.6† 
 

15 ± 3 
 

50 ± 5† 
 

101.0 ± 0.8 
 

16 ± 7 
 

T=8.0 
 

41 ± 3 
 

100.3 ± 0.4 
 

22 ± 4† 
 

48 ± 6 
 

100.6 ± 0.4† 
 

15 ± 5 
 

46 ± 6† 
 

100.2 ± 0.5 
 

22 ± 10†* 
 

T=12.0 
 

41 ± 5 
 

99.9 ± 0.4 
 

21 ± 3† 
 

47 ± 8 
 

100.5 ± 0.6† 
 

14 ± 2 
 

43 ± 3 
 

100.1 ± 0.6 
 

18 ± 8 
 

T=16.0 
 

39 ± 7 
 

100.1 ± 0.4 
 

18 ± 7 
 

44 ± 8 
 

99.9 ± 0.7 
 

14 ± 2 
 

39 ± 3 
 

99.5 ± 0.7 
 

16 ± 5 
 

T=24.0 
 

38 ± 2 
 

99.8 ± 0.3 
 

21 ± 7†* 
 

41 ± 3 
 

99.3 ± 0.6 
 

13 ± 2 
 

45 ± 8 
 

99.7 ± 0.6 
 

15 ± 4 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
OXYTET 

 
 

 
 

 
FLUNIXIN 

 
 

 
 

 
PTX 

 
 

Time HR Temp RR HR Temp RR HR Temp RR 

T=0 
 

40 ± 3 
 

99.2 ± 0.9 
 

12 ± 2 
 

34 ± 8* 
 

99.8 ± 0.3 
 

14 ± 6 
 

40 ± 0 

 
99.6 ± 1.1 

 
20 ± 13 

 

T=0.5 
 

51 ± 12† 
 

100.1 ± 0.8 
 

20 ± 7† 
 

42 ± 8†* 
 

100.5 ± 0.4 
 

14 ± 3 
 

48 ± 7 
 

100.0 ± 1.2 
 

22 ± 12 
 

T=1.0 
 

67 ± 7†* 
 

100.0 ± 0.7 
 

19 ± 4† 
 

49 ± 8† 
 

100.5 ± 0.3 
 

15 ± 4 
 

56 ± 4† 
 

100.5 ± 1.5 
 

24 ± 12 
 

T=1.5 
 

57 ± 7† 
 

101.0 ± 0.5† 
 

16 ± 5 
 

50 ± 7† 
 

100.7 ± 0.4† 
 

19 ± 4† 
 

52 ± 11† 
 

101.1 ± 1.7† 
 

24 ± 10 
 

T=2.0 
 

49 ± 8†* 
 

101.1 ± 0.8†* 
 

13 ± 4 
 

48 ± 7†* 
 

100.8 ± 0.4†* 
 

14 ± 2 
 

58 ± 8† 
 

101.4 ± 1.6† 
 

18 ± 4 
 

T=3.0 
 

42 ± 2 
 

101.6 ± 0.7†* 
 

14 ± 2 
 

40 ± 9 
 

101.3 ± 1.0†* 
 

17 ± 7 
 

51 ± 8† 
 

101.8 ± 1.9† 
 

23 ± 7 
 

T=4.0 
 

40 ± 4* 
 

100.9 ± 1.5†* 
 

15 ± 4 
 

38 ± 11* 
 

100.8 ± 0.8†* 
 

16 ± 4 
 

47 ± 7 
 

102.1 ± 1.0† 
 

23 ± 8 
 

T=6.0 
 

45 ± 3 
 

99.9 ± 0.9* 
 

14 ± 5 
 

50 ± 9† 
 

100.6 ± 0.7† 
 

22 ± 8† 
 

46 ± 10 
 

101.0 ± 0.5† 
 

19 ± 6 
 

T=8.0 
 

42 ± 5 
 

100.4 ± 0.9† 
 

12 ± 3 
 

47 ± 3† 
 

100.4 ± 0.4 
 

18 ± 6† 
 

47 ± 7 
 

100.1 ± 0.6 
 

25 ± 11* 
 

T=12.0 
 

42 ± 2 
 

100.8 ± 0.3† 
 

14 ± 4 
 

49 ± 5† 
 

100.6 ± 0.4 
 

15 ± 5 
 

52 ± 9† 
 

100.4 ± 1.1 
 

23 ± 9 
 

T=16.0 
 

46 ± 10 
 

100.0 ± 0.6 
 

11 ± 2 
 

43 ± 6† 
 

99.8 ± 0.5 
 

13 ± 5 
 

47 ± 7 
 

99.7 ± 1.4 
 

17 ± 8 
 

T=24.0 
 

42 ± 4 
 

98.7 ± 0.6 
 

15 ± 3 
 

49 ± 4 
 

99.6 ± 0.4 
 

14 ± 4 
 

43 ± 6 
 

99.4 ± 0.6 
 

19 ± 2 
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plasma samples of all horses.  The active forms of MMP-2 (66 kD) and MMP-9 (83 kD) were 

not detected.   

 Study 1 – Administration of LPS significantly decreased proMMP-2 and increased 

proMMP-9 concentrations in the digital venous plasma over time compared with baseline values 

(Figures 4.1 and 4.2).  Both proMMP-2 and proMMP-9 concentrations remained unchanged 

from baseline in digital venous plasma samples from horses receiving saline solution (Figures 

4.1 and 4.2).   ProMMP-2 concentrations were significantly increased for the LPS group at 16.0 

and 24.0 hours compared with horses administered saline solution (Figure 4.1).  ProMMP-9 

concentrations were significantly increased for horses administered LPS at 0.5, 1.0, 1.5, 2.0, 4.0, 

12.0, 16.0, and 24.0 hours compared with horses administered saline solution (Figure 4.2). 

 Study 2 – ProMMP-2 concentrations remained unchanged compared with baseline values 

for the DOXY, OXYTET, FLUNIXIN, and PTX treatment groups; however, proMMP-9 

concentrations increased over time compared with baseline values despite treatment with MMPI 

in these groups (Figures 4.3 – 4.10).  Doxycycline significantly decreased proMMP-2 

concentrations in the digital venous plasma at 1.0, 1.5, 2.0, 3.0, 4.0, 16.0, and 24.0 hours and also 

decreased proMMP-9 concentrations at 0.5, 1.5, 6.0, and 8.0 hours compared with horses 

receiving only LPS (Figures 4.3 and 4.4).  ProMMP-2 concentrations were significantly 

decreased for the OXYTET group at 0.5, 1.0, 16.0, and 24.0 hours compared with the LPS group 

(Figure 4.5).  The OXYTET group also had significantly decreased proMMP-9 concentrations 

compared with the LPS group at 0, 0.5, 1.0, 1.5, 2.0, 3.0, and 4.0 hours (Figure 4.6).  Flunixin 

meglumine significantly decreased proMMP-2 concentrations at 0.5, 1.0, 1.5, 2.0, 4.0, 16.0 and 

24.0 hours and significantly decreased proMMP-9 concentrations at 0.5 and 1.5 hours compared 

with horses administered LPS alone (Figures 4.7 and 4.8).  Administration of pentoxifylline 

significantly decreased proMMP-2 digital venous plasma concentrations at 0, 0.5, 1.0, 16.0 and
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Figure 4.1 – Mean (± SD) proMMP-2 band intensities (arbitrary units, A.U.) in the digital 
venous plasma of horses receiving an IV infusion of LPS (LPS) or saline solution (SALINE).  
+Significant  (p ≤ 0.05) difference from baseline (T = 0) values for LPS group.  *Significant (p ≤ 
0.05) difference between treatment groups. 
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Figure 4.2 – Mean (± SD) proMMP-9 band intensities (arbitrary units, A.U.) in the digital 
venous plasma of horses receiving an IV infusion of LPS (LPS) or saline solution (SALINE).   
+Significant  (p ≤ 0.05) difference from baseline (T = 0) value for LPS group.  *Significant (p ≤ 
0.05) difference between treatment groups. 
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Figure 4.3 – Mean (± SD) proMMP-2 band intensities (arbitrary units, A.U.) in the digital 
venous plasma of horses receiving an IV infusion of LPS (LPS) or doxycycline followed by an 
IV infusion of LPS (DOXY).   *Significant (p ≤ 0.05) difference between treatment groups. 
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Figure 4.4 – Mean (± SD) proMMP-9 band intensities (arbitrary units, A.U.) in the digital 
venous plasma of horses receiving an IV infusion of LPS (LPS) or doxycycline followed by an 
IV infusion of LPS (DOXY).   +Significant (p ≤ 0.05) difference from baseline (T = 0) value for 
DOXY group.  *Significant (p ≤ 0.05) difference between treatment groups. 
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Figure 4.5 – Mean (± SD) proMMP-2 band intensities (arbitrary units, A.U.) in the digital 
venous plasma of horses receiving an IV infusion of LPS (LPS) or oxytetracycline followed by 
an IV infusion of LPS (OXYTET).   *Significant (p ≤ 0.05) difference between treatment groups.  
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Figure 4.6 – Mean (± SD) proMMP-9 band intensities (arbitrary units, A.U.) in the digital 
venous plasma of horses receiving an IV infusion of LPS (LPS) or oxytetracycline followed by 
an IV infusion of LPS (OXYTET).   +Significant (p ≤ 0.05) difference from baseline (T = 0) 
value for OXYTET group.  *Significant (p ≤ 0.05) difference between treatment groups. 
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Figure 4.7 – Mean (± SD) proMMP-2 band intensities (arbitrary units, A.U.) in the digital 
venous plasma of horses receiving an IV infusion of LPS (LPS) or flunixin meglumine followed 
by an IV infusion of LPS (FLUNIXIN).   *Significant (p ≤ 0.05) difference between treatment 
groups. 
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Figure 4.8 – Mean (± SD) proMMP-9 band intensities (arbitrary units, A.U.) in the digital 
venous plasma of horses receiving an IV infusion of LPS (LPS) or flunixin meglumine followed 
by an IV infusion of LPS (FLUNIXIN).   +Significant (p ≤ 0.05) difference from baseline         
(T = 0) value for FLUNIXIN group.  *Significant (p ≤ 0.05) difference between treatment 
groups. 
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24.0 hours and significantly decreased proMMP-9 concentrations at 0, 0.5, 1.0, 1.5, 2.0, and 3.0 

hours compared with horses receiving only LPS (Figures 4.9 and 4.10). 

4.4 Discussion 

 Intravenous infusion of endotoxin significantly increased MMP-2 and MMP-9 

concentrations in the digital circulation of healthy adult horses.   Horses receiving LPS 

developed clinical signs associated with endotoxemia similar to previous reports.130,131  The 

administration of doxycycline, oxytetracycline, flunixin meglumine, or pentoxifylline prior to 

LPS administration resulted in significant decreases in MMP-2 and MMP-9 digital venous 

plasma concentrations of varying degrees. 

 Early in the pathogenesis of experimentally-induced laminitis, a systemic inflammatory 

response occurs that is localized to the digit including increased pro-inflammatory cytokine 

induction, neutrophil infiltration, and MMP synthesis and release.178,195-197,200  Both MMP-2 and 

MMP-9 activities are increased in digital laminar tissue of horses with clinical and 

experimentally induced laminitis.82,84,85  Also, increases in MMP-9 concentrations have been 

found in the systemic circulation of experimental CHO laminitis.206  Thus, it would seem likely 

that synthetic inhibitors of MMPs may be useful in the treatment of this disease.  The validation 

of endotoxemia as a model of MMP induction in the digital circulation of the horse enabled 

further study of MMPIs as potential treatments for laminitis without requiring the euthanasia of 

numerous horses.     

 The non-proteolytic latent form of both MMP-2 and MMP-9 were identified in plasma 

samples, but not the active forms.  This is similar to results from experimental infusion of 

endotoxin in humans and in other animals.134,136  Reportedly, in healthy tissue most of the 

potential MMP activity is present in the latent form.82  ProMMPs can undergo allosteric 
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Figure 4.9 – Mean (± SD) proMMP-2 band intensities (arbitrary units, A.U.) in the digital 
venous plasma of horses receiving an IV infusion of LPS (LPS) or pentoxifylline followed by an 
IV infusion of LPS (PTX).   *Significant (p ≤ 0.05) difference between treatment groups. 
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Figure 4.10 – Mean (± SD) proMMP-9 band intensities (arbitrary units, A.U.) in the digital 
venous plasma of horses receiving an IV infusion of LPS (LPS) or pentoxifylline followed by an 
IV infusion of LPS (PTX).   +Significant (p ≤ 0.05) difference from baseline (T = 0) value for 
PTX group.  *Significant (p ≤ 0.05) difference between treatment groups. 
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 activation without proteolysis of their active domain if they are in contact with the appropriate 

substrate.31  Therefore, the zymogen forms may be up-regulated and released into the plasma, but 

may be either awaiting activation by other proteases or seeking the appropriate substrate.  In 

addition, the active MMPs may have already become bound to substrate in tissues and be 

unavailable for measurement in the plasma.  

 It is not surprising that endotoxin administration had only minor effects on MMP-2 

activity compared with its effects on MMP-9 activity.  Endotoxemia incites a severe 

inflammatory response that initiates numerous mediator cascades, many of which are MMP 

activators and substrates.15,16,22,125  Although MMP-9 can be constitutively expressed to some 

extent, it is mostly induced in response to inflammatory mediators and released by neutrophils.7   

Therefore, MMP-9 seems the mostly likely of the two gelatinases to be upregulated by endotoxin 

exposure.  Other studies have also shown that endotoxin induces predominantly MMP-9.230   The 

constitutive nature of MMP-2 and the lack of response seen here upon exposure to LPS, lend 

further evidence to the suggestion that MMP-2 is mostly involved in homeostasis and may 

possibly even play a protective role.  While the increases in proMMP-2 at 16.0 and 24.0 hours in 

the LPS group were significant compared with all other groups, they were not significantly 

increased compared to the LPS baseline value and seem to be merely fluctuations. 

 All of the MMPIs evaluated in this study were found to inhibit MMPs in the horse.  

Flunixin meglumine appeared to have the greatest inhibitory effect on MMP-2 plasma 

concentrations followed by doxycycline, pentoxifylline, and oxytetracycline.  In contrast, 

pentoxifylline was the most potent MMP-9 inhibitor, with oxytetracycline having only slightly 

lesser inhibitory effects.  Both doxycycline and flunixin meglumine had very little inhibitory 

effects on MMP-9 in the horse.   
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 The NSAID flunixin meglumine, a non-selective COX inhibitor, had inhibitory effects on 

both MMP-2 and MMP-9 in the horse in vivo.  These findings differ slightly from other in vitro 

results which indicated that neither flunixin meglumine nor phenylbutazone, another NSAID, 

inhibited equine MMP-2 or MMP-9 obtained from equine cell culture.76  The effects of NSAIDs 

on MMP inhibition have been extensively studied. Cyclooxygenase-2 increases activation of 

MMPs, and NSAIDs, or COX inhibitors, decrease MMP-2 and MMP-9 expression.114-117  Other 

research suggests that NSAIDs up-regulate mRNA expression of RECK, a membrane anchored 

endogenous MMPI.118  Increased expression of RECK leads to decreases in MMP-2 activity and 

suppression of MMP-9 release.231  Although RECK is inversely related to MMP-2 activation, it 

is not related to MMP-9 activation.  However, tumors with high RECK expression have a trend 

toward decreased MMP-9 expression.39  Therefore, flunixin meglumine’s potent inhibitory 

effects on MMP-2 as opposed to its weak effects on MMP-9 may be attributed to increased 

expression of RECK and its apparent affinity for MMP-2 inhibition.    

 The results of this study suggest that pentoxifylline is a potent MMP-9 and modest  

MMP-2 inhibitor in the horse.  Phosphodiesterase inhibitors regulate MMP expression by 

increasing intracellular cAMP concentrations that disrupt phosphorylation pathways and prevent 

gene transcription.113,119  Pentoxifylline is a methyl xanthine derivative and phosphodiesterase 

inhibitor commonly used for its rheological effects on peripheral vascular disease in people.120  

Pentoxifylline has also been shown to decrease neutrophil infiltration and activation in the lung 

and liver of rats administered endotoxin.119,232  Neutrophils are the predominant source of   

MMP-9; therefore, the neutrophil inhibiting effects of pentoxifylline may account for a portion 

of the decrease in MMP-9 activity demonstrated here.   

 Horses administered pentoxifylline had significantly lower baseline MMP-2 and MMP-9 

concentrations compared with horses administered endotoxin alone.  Likewise, oxytetracycline 
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had significantly lower baseline MMP-9 concentrations.  Various cells constitutively produce 

MMP-2 and, to a small extent MMP-9.7  The MMPI treatments were administered 12 hours prior 

to endotoxin infusion; therefore, it is logical that baseline MMP concentrations could be 

decreased because of inhibition already present at the time of LPS infusion.  Inhibition of basal 

MMP concentrations suggests that pentoxifylline and oxytetracycline are more potent MMPI in 

the horse than doxycycline and flunixin meglumine.  Furthermore, MMP-9 is usually induced by 

inflammatory mediators and released from neutrophils, as previously stated.   The above 

mentioned neutrophil inhibitory effects of pentoxifylline may also account for the decreases in 

baseline plasma MMP-9 concentrations.   

 Although doxycycline is a potent MMP-9 inhibitor in other species and the only drug 

approved for MMP inhibition in humans, it surprisingly had only minimal effects on endotoxin-

induced MMP-9 activity in this study.  However, it was a potent MMP-2 inhibitor, along with 

flunixin meglumine.  This is unusual because other reports indicate that doxycycline 

predominantly inhibits MMP-9 and in some cases has no inhibitory effect on MMP-2.101,230  

Matrix metalloproteinase inhibition by tetracyclines is believed to occur by chelation of Zn2+ 

ions at the binding site in the catalytic domain of MMPs.112  Other studies indicate that they 

regulate MMP gene expression by affecting mRNA stability.233  Doxycycline may also decrease 

MMP-9 secretion through up-regulation of its endogenous inhibitor, TIMP-1.101    

 Doxycycline has been reported to cause cardiovascular collapse and death when 

administered IV to horses; therefore, in this study, the drug was administered via nasogastric 

intubation (NGT).  Endotoxemia leads to decreased gastric and intestinal motility through the 

activation of COX and subsequent production of PGE2.149,160  It is possible that NGT 

administration of doxycycline in this study may have led to decreased absorption and decreased 

MMP inhibition. To determine if decreased absorption occurred, plasma doxycycline 
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concentrations were determined.  Plasma doxycycline concentrations peaked 0.5 hour after NGT 

administration with a mean of 0.97 ± 0.34 µg/ml.  This is consistent with reported maximum 

steady-state doxycycline serum concentrations of 0.94 µg/ml achieved after oral administration 

in horses at 10 mg/kg every 12 hours.234  Therefore, the low degree of MMP inhibition obtained 

in this study does not appear to be due to decreased intestinal absorption.  However, the 

maximum steady-state serum concentrations reported above correspond with the MIC for certain 

bacteria.  Perhaps serum concentrations of doxycycline required for adequate MMP inhibition 

are much greater than the MIC; therefore, the dose used in this in vivo study would not have been 

sufficient for maximal MMP inhibition.  Furthermore, this would also explain why doxycycline 

had greater MMP inhibitory effects in the confined explant culture environment.  The equivalent 

in vivo dose required would be approximately 5X the maximum safe dosage; therefore, it would 

not be an advisable dose to investigate in vivo.  

  Oxytetracycline had a much greater effect on equine MMP inhibition than doxycycline.  

It was both a potent MMP-9 inhibitor and a modest MMP-2 inhibitor.  The effects of 

oxytetracycline on MMP-2 and MMP-9 inhibition have not been studied previously.  It appears 

that oxytetracycline has greater inhibitory effects on MMP-9 than MMP-2, as is seen with other 

tetracyclines.101,230  

 Tetracyclines are excreted through the biliary duct into the intestine; therefore, there is a 

risk for the development of diarrhea following administration at higher doses due to intestinal 

microbial alterations.234  Several studies have demonstrated the safety of oral administration of 

doxycycline at both 10 mg/kg every 12 hours and 20 mg/kg every 24 hours.108-110   

Oxytetracycline has been used safely in horses at dosages ranging from 5 – 40 mg/kg IV.235   In 

this study, none of the horses administered doxycycline at a dose of 10 mg/kg or oxytetracycline 

at a dose of 20 mg/kg IV every 12 hours developed diarrhea. 
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 Establishing non-terminal models for the study of disease is important in any field of 

research, but especially in equine research.  This study has demonstrated that experimentally-

induced endotoxemia can be used as a non-terminal, in vivo model for the induction and 

investigation of MMPs in the horse.  Furthermore, pentoxifylline, oxytetracycline, flunixin 

meglumine, and doxycycline were all found capable of inhibiting equine MMPs.  Flunixin 

meglumine and doxycycline appeared to be weak MMP-9 and potent MMP-2 inhibitors.  

However, pentoxifylline and oxytetracycline were both potent MMP-9 and moderate MMP-2 

inhibitors in the horse. Past studies suggest that MMP-9 may play a more important role in 

laminitis; therefore, pentoxifylline and oxytetracycline warrant further study for use as 

treatments/preventatives for equine laminitis.   

4.5 Product Information 

aLipopolysaccharide from E. coli O55:B5 L2880, Sigma-Aldrich, St. Louis, MO 

bDoxycycline hyclate, Ranbaxy Pharmaceuticals, Princeton, NJ 

cLiquamicin LA-200, Pfizer Animal Health, St. Louis, MO 

dBanamine, Schering-Plough Animal Health, Union, NJ 

ePentoxifylline, HDM Pharmacy, Lexington, KY 

f10% Gelatin Ready Gel 161-1167, Bio-Rad Laboratories, Hercules, CA 

gMMP-2 Proenzyme PF037 and Active PF023, Calbiochem, La Jolla, CA 

hMMP-9 Proenzyme PF038 and Human Recombinant PF024, Calbiochem, La Jolla, CA 

iImage J, U.S. National Institutes of Health, Bethesda, MD 

jSAS v 9.0, SAS Institute, Cary, NC 
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 Acute laminitis is a debilitating disease affecting the equine foot, of which the 

pathogenesis is incompletely understood despite years of research.  Recent studies have 

suggested that MMP-2 and MMP-9 may be responsible for the laminar destruction seen with this 

disease.  Laminitis often occurs secondary to many diseases such as endotoxemia, which has also 

been associated with increases in MMP activity.  In human medicine, MMPIs have been 

investigated as potential treatments for various MMP-associated diseases; therefore, MMPIs may 

be helpful in the treatment/prevention of equine laminitis.  This doctoral research had three main 

goals:  1) to collect MMP-9 from equine neutrophils and to validate a human MMP activity assay 

for use with equine samples as a more complete evaluation of MMP activity compared with 

zymography; 2) to validate experimental endotoxemia as a non-terminal model for MMP 

induction in the horse; and 3) to use the MMP induction model to evaluate the effectiveness of 

various MMPIs in the horse. 

 Equine MMP-9 was successfully harvested from neutrophils and characterized.  The 

Biotrak MMP-9 Activity Assay had low sensitivity to equine MMP-9; therefore, it could not be 

used for quantification of MMPs in these studies.  In vitro, doxycycline and oxytetracycline 

significantly increased digital laminar explant structural integrity.  Furthermore, doxycycline, 

oxytetracycline, and flunixin meglumine all significantly decreased MMP-2 and MMP-9 

concentrations in the medium of digital laminar explants incubated with endotoxin.  Laminar 

structural integrity and medium MMP-2 concentration were inversely correlated.  Intravenous 

infusion of endotoxin to healthy adult horses significantly increased digital venous plasma 

MMP-2 and MMP-9 activities compared with IV infusion of a saline solution. Pre-treatment with 

oral doxycycline or IV flunixin meglumine significantly decreased digital plasma MMP-2 

concentrations, but merely blunted MMP-9 concentrations in healthy adult horses.  However, 

pre-treatment with IV pentoxifylline and IV oxytetracycline profoundly inhibited the effects of 
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endotoxin on plasma MMP-9 concentrations and modestly inhibited plasma MMP-2 

concentrations in healthy adult horses. 

 An established model of experimentally-induced endotoxemia was successfully validated 

for use as a non-terminal in vivo method of MMP induction in healthy adult horses.  This model 

was used to determine that doxycycline and flunixin meglumine are potent MMP-2 inhibitors in 

the horse, whereas pentoxifylline and oxytetracycline are far more potent MMP-9 inhibitors.   

The in vitro results agree that oxytetracycline was a superior MMP-9 inhibitor; however, it was 

also significantly inhibited MMP-2 in the laminar explants.  Flunixin meglumine also appeared 

to be a significant MMP-9 inhibitor in vitro, but not in vivo.  These results demonstrate the 

variations that can be seen when tissues are isolated in the culture environment.  Unfortunately, 

pentoxifylline was not evaluated in vitro.  It would be interesting to determine if pentoxifylline’s 

MMP inhibitory actions would be the same in explant culture as in the digital circulation of the 

horse.   

 MMPIs may have significant roles in the future of veterinary medicine, especially in 

regard to equine laminitis.  The validation of a non-terminal model for the study of MMPIs in the 

horse has great significance.  It will not only allow pre-screening of potential drugs for use in 

experimental CHO laminitis studies, but can also be used in the study of other equine diseases 

associated with increases in MMPs.  The data presented here suggest that the MMP inhibitory 

effects of pentoxifylline and oxytetracycline should be evaluated in an experimental equine 

laminitis model as potential treatments/preventatives. 
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