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ABSTRACT 

Objectives – To compare the osseointegration of roughened and electropolished 5.5 mm cortical  

screws used to secure a 4.5 mm broad dynamic compression plate (DCP) in equine third 

metacarpal (MC3) bones. 

Study Design – In vivo study 

Animals –  5 Adult thoroughbred horses (2-7 years old). 

Methods – For each horse one MC3 was randomly assigned to secure a 4.5 mm broad DCP with  

4aluminum oxide (Al2O3) roughened screws on the dorsal mid diaphysis. Four regular 

electropolished screws used to secure a similar plate on the contralateral limb served as control. 

They were removed at 12 weeks and the extraction torque was recorded. A paired t-test was used 

for comparison and statistical significance was set at p < 0.05. 

Results – At 12 weeks, the mean extraction torque for roughened screws was significantly 

greater (p < 0.0002) when compared to regular AO screws.  The roughened screws had a mean 

extraction torque of 3.24± 0.56 N-m, which was twice the mean extraction torque of the AO 

screws (1.65 ± 0.34 N-m). 

Discussion/Conclusions – Bone tissue infiltrates the pores of the roughened screws increasing 

the contact surface and the mechanical anchorage. In our study the screw surface roughness is 

2.14± 0.48 µm.  This roughness has the lowest pore size that will interact with the surrounding 

bone without altering the screw dimensions. We found that Al2O3 roughened screws have a 

significantly greater removal torque when compared to the electropolished AO cortical screws 

when removed at 12 weeks post implantation. 

 Clinical relevance - Information obtained from this study may help in improving the contact 

surface of implants and subsequent fixation and stability of bone-implant construct in equine 

fracture  repair. 
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1.1 Principles of Equine Long Bone Fracture Repair  

The original Swiss AO (Arbeitsgemeinschaft für Osteosynthesefragen) system of plates 

and screws was founded in 1958 to research into the concepts of functional rehabilitation and 

rigid internal fixation for human fracture repair. This system is known today as the Association 

for the Study of Internal Fixation (ASIF). The first veterinary AO/ASIF course for veterinarians 

was organized in Columbus, Ohio in 1970. Since those early years it developed an equine and 

small animal subgroup and remains the premier in North America for operative treatment of 

fractures in veterinary medicine. 

The treatment of equine long-bone fractures remains challenging. Postoperative 

complications like laminitis, angular limb deformities, surgery site infection, and implant 

loosening /breakage or bone failure contribute to failure of the successful surgical repair (Auer et 

al, 1987; Crawford et al, 1985; Nunamaker, 1996). To prevent contralateral limb laminitis or limb 

deformity, evenly distributed weight bearing on all limbs is essential. As a result, the goal is to 

immediately reestablish a functional, full weight bearing limb that is nearly painless (Bramlage, 

1983). Veterinary orthopedic surgery has been dependent on implants designed for the use in 

humans. While the small animal veterinary orthopedic community embraced the latest concept of 

biological fixation, the equine group is still looking for increased strength and stability in their 

fixations as required by full weight bearing in the horse (Nunamaker, 2002). Complications 

specific to the horse have helped maintain the focus of the equine group on improving the 

immediate loading potential of internal fixations. Horses don’t experience bone atrophy and 

“stress protection” associated with their implants to the extent that occurs in man and small 

animals (Nunamaker, 2002). Therefore, the need to move the implant away from the bone seems 

unnecessary and may compromise the strength of the fixation. Cyclic loading of implants, which 
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occurs during weight bearing in the horse, has pointed out the importance of micro motion within 

the bone/implant composite as it relates to implant failure and fracture healing (Nunamaker, 

2002).   The adaptation for large-animal fractures has been difficult because of the long bone size 

and the need for the repair to be immediately weight bearing. Anesthetic recovery of horses can 

be difficult and implants must withstand extreme forces. The repaired fractures are exposed to 

axial cyclic loading of 1.5 times body weight during walking and up to 4 times body weight 

during recovery from anesthesia (Rybick, 1977).   

1.2 Bone Structure and Function. Bone Healing 

Bone is not an inert structure, it can renew itself. It can add and subtract new bone on its 

surfaces (change shape) as it grows in a process called remodeling. It may also replace itself 

going through a remodeling phase that involves bone activation, discrete areas of resorption 

followed by bone formation in these resorption spaces. Modeling and remodeling can be 

occurring in the same bone at the same time. Bone does not heal, incorporating the scar tissue as 

seen in most all other tissues: it regenerates itself. It changes its shape and structure based on its 

use and if fractured can resume 100% of its former strength and function. Any treatment that 

doesn’t reconstitute the bone into its fully functional state must be considered sub-optimal 

(Nunamaker, 2002). 

The three major components of bone are osteogenic cells, organic matrix, and mineral. 

The osteogenic cells include osteoblasts, osteocytes, and osteoclasts, while the organic matrix 

consists predominantly of collagen and proteoglycans that constitute approximately 30% of the 

bone mass. The mineral that makes up approximately two thirds of bone is composed of calcium 

phosphate crystals deposited as hydroxyapatite. Although all bone is made up of these 

components its structure differs based on its apparent density and porosity. Cortical bone in the 
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horse is made up of primary and secondary osteons or haversian systems. Cortical bone has an 

apparent density of 1.85 g/cm3. Cancellous bone is less dense with an apparent density of 0.9 

g/cm3 or less (Nunamaker, 2002). Cortical bone may have a porosity of only 5%, whereas 

cancellous bone may be greater than 20% (Nunamaker 2002). Osteoblasts develop through an 

undifferentiated lineage from stem cells. They are very active metabolically when turned on and 

also participate in matrix mineralization. Osteoblasts may become trapped in their own matrix 

production and become osteocytes. These cells have long cytoplasmic processes that extend to 

other osteocytes and osteoblasts to form a network that covers over 90% of the mature bone 

matrix. Osteoclasts are multinucleated giant cells that resorb bone. These cells form on bone 

surfaces and resorb bone at the junction of their brush border with the mineralized matrix. They 

appear mobile and their cell numbers change in response to the “need” for local resorption 

(Figure 1.1). 

 

 

Figure 1. Cortical bone remodeling with “Cutting cone” osteoclastic resorption (Figure taken from 

www.scanvetpress.com)  
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 In cancellous bone the osteoclasts form Howship lacuna or craters as they resorb bone on 

surfaces (Markel, 2005). In cortical bone these osteoclasts form the front of the so-called “cutting 

cone” that marks cortical bone remodeling (Figure 1.1).  

 The organic matrix of bone consists mostly of type 1 collagen. The inorganic matrix is a 

calcium phosphate that forms a crystalline hydroxyapatite. As the inorganic phase matures, its 

solubility decreases and mineralization increases changing the mechanical properties of bone 

making it stiffer. The calcium content also affects fatigue life of the bone with less calcium 

yielding longer fatigue life in vitro and possibly in vivo (Nunamaker, 2002). Morphologically, 

bone tissue appears to be under the control of bone cells. Modeling changes bone’s shape and 

seems to be related to the physical forces that the bone encounters (Wolff’s Law).   

Vascularity of bone is maintained through a medullary and periosteal blood supply.The 

cortex is largely supplied from the medullary source (inner two thirds) with the periosteal 

supplying the outer one third of the cortex. Circulation is mainly centripital in nature. The 

afferent blood supply consists of arteries and arterioles (nutrient vessels) and the efferent supply 

is made up of the veins and veinules (periosteal vesseles) with the capillaries being the 

intermediate connection. At the microscopic level the central canal of the haversian system is the 

arteriole with Volkman’s canals being transverse components. Bone formation and resorption is a 

vascular phenomenon and does not occur without blood supply. In the dog and horse, no 

osteocyte is more than 0.3 mm from a blood vessel (Nunamaker 2002) 

Mechanically, bone functions as a material and as a support structure for the body. As a 

material,  the type 1 collagen of the organic matrix combined with the mineralized matrix gives 

bone material properties that allow for limited deformation and certain brittleness. This explains 

why bones bend then break. The bending is related to the collagen phase, which has a very low 

modulus of elasticity (stiffness), and the breaking is related to the mineral phase, that has a high 
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modulus of elasticity, which allows little deformation (up to 2% strain) before bone failure. 

Composite materials are made of two or more different materials with different physical 

properties. Bone is a composite material (collagen and mineral) and its modulus relates to the 

sum of its parts. Equine cortical bone has a modulus of elasticity of 18–20 giga pascals (Gpa).  Its 

structure has greater strength in some directions than in others. Bone is anisotropic in that it has 

different material properties in different directions. Long bones are usually thought to be 

orthotropic, being strongest in their axial direction and 20% weaker in their radial and transverse 

directions. Bone is strongest in compression and weakest in tension. Bending forces produce 

tension on the convex surface of the bone, hence bones are weak in bending. Torsion forces will 

resolve into tension forces as well so bones are also weak in torsion. Loading of bone determines 

its shape: functional requirements may lead bone to model and remodel to change its shape and 

internal architecture. Bone overload may create injury and fracture. 

Fracture healing involves a series of overlapping processes that occur in the majority of 

fractures. These stages are typically referred to as the inflammatory phase(first 2-3 weeks), the 

reparative phase(2-12 months), and the remodeling phase (Markel, 2005). Primary bone healing 

(haversian remodeling) occurs under the stable conditions provided by interfragmentary 

compression with direct bone apposition; such conditions are produced by lag screw fixation or 

an axially loaded dynamic compression plate. (Schatzker, 2002). The healing is the result of a 

proliferation of new osteons which grow parallel to the long axis of the bone through the necrotic 

bone ends and then across the fracture, reestablishing bony continuity. There is no net resorption 

in this type of union. For every bit of necrotic bone removed new bone is laid down. The internal 

remodeling of the haversian system uniting the fragment ends is the only process in direct healing 

that results in solid union. Therefore, direct healing does not lead to faster union, but it is 

characterized radiologically by the virtual absence of callus formation. The mechanical 
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environment will affect the reparative phase. Under conditions of instability, secundary (indirect) 

healing occurs by formation of callus. Initially, granulation tissue forms around and between the 

bone fragments. The fracture gap widens due to resorption of the bone ends. Finally, bone forms 

through a series of steps from granulation tissue through to fibrocartilage, unmineralized callus, 

mineralized callus, and eventually cortical bone. The greater the instability at the fracture site, the 

greater amount of callus that is produced before healing occurs. 

The biological environment will also influence the facture healing. Local pluripotential 

mesenchymal cells and adequate vascular supply are both required for a successful outcome, 

therefor balance between accurate anatomical reduction and preservation of blood supply the 

bone fragments promote biological fixation. 

 1.3  AO Principles of Lag Screw Fixation  

  The lag screw was defined by Perren and Buchanan (1981) as the production of 

interfragmental compression by compressing the bone under the screw head against the fragment 

in which the screw threads are anchored. The steps for proper lag screw principle for a 5.5-mm 

cortical screw are as follows: 

1. The fracture is reduced and held with reduction forceps. 

2. The glide hole is drilled through the near cortex or fragment with a 5.5-mm drill bit 

protected by the drill sleeve. 

3. The 4.0-mm drill sleeve is then inserted into the glide hole until it comes into contact 

with the far cortex or the bottom of the glide hole( parent bone). 

4. The thread hole is then drilled in a coaxial direction in the trans-cortex or parent bone 

with a 4.0-mm drill bit. 
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5. The cis-cortex is countersunk with the large countersink. 

6. Screw length is then measured with the large depth gauge. 

7. The thread hole is then tapped with a 5.5-mm bone tap. By turning two turns clockwise 

and one-half turn counterclockwise, the cut bone is directed into the channels of the cutting flutes 

to be removed. 

8. A 5.5-mm cortical screw is inserted with the large hexagonal screwdriver ensuring 

engagement of the transcortex. 

1.4 General Consideration of Equine Fracture Repair with Internal Fixation 

 Internal fixation of long bone fractures by use of tension band principle has been the 

primary method of fixation of equine fractures for the last few decades. Oblique or transverse 

fracture of long bones can be stabilized by means of interfragmentary compression. Axial 

compression may be achieved with tension devices or by the insertion of  load screws in a self-

compression plate. Axial compression increases with loading, this type of fixation been 

referred as dynamic compression. Because a compressive force is applied on the opposite side 

of the compressive load, it functions as a tension band. A dynamic compressive plate applied to 

the tension side of the bone is called tension band plate. Under dynamic load it converts the 

tensile forces into axial compressive forces. The tension band acts as additional compression 

placed on the bone to offset eccentric loading and thus help reduce or eliminate the tensile 

bending stress. Therefore, bone plates are best placed on the surface of the bone with the most 

tensile strain. Placed on the compressive side, the resulting forces for the plate would tend to 

further distract the bone fragments on the side normally experiencing tensile loads 

(Rybicki,1977). This would also increase the risk of the plate bending. Certain equine long 
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bones such as radius, tibia, femur and humerus are eccentrically loaded. The strain on these 

cortices is not in equilibrium. The metacarpus is a bone which is loaded almost axially 

throughout the stride. Medial and dorsal quadrants endure a bit more tension than the lateral 

and palmar side (Turner, 1975). The plate can be placed on the tension side, compressing the 

fracture gap, provided there is bony contact on the compression side. Without an intact cortex 

on the compression, the tension band principle cannot work because of lack of buttress 

(Nunamaker, 2000).  

1.4.1 Bone-Screw Interface 

The function of the surgical bone screw is to compress a plate to the bone or to lag bone 

fragments together. When the screw head engages the screw hole of the plate, continued 

tightening of the screw pulls the plate and the underlying bone together (Hughes, 1972), 

 (Figure 1.2).  

 

Figure 1.2 Schematic representation of compressive stresses between screw and plate 

countersink and between bone and plate, by the tensile stress induced in the screw. 

(Figure taken from Hughes et al. 1972) 
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A linear relationship exists between the applied screw torque and the amount of axial 

force generated within the screw (Nunamaker, 1976). The fatique life of a screw used with a bone 

plate can be enhanced by applying maximum torque to it; this increases the transverse load 

applied to the screw as a bending moment, since a greater part will be taken by the plate-cortical 

bone density. The friction produced by compressing the plate against the bone is used to resist 

shear. The greater the compression induced friction the greater the shear forces can be 

neutralized. Since a 316L stainless steel cortical bone screw and equine cortical bone have a 

different modulus of elasticity, the stresses and strains are concentrated at the bone-screw 

interface (Ling, 1986).  

Histological studies have shown that immediately after its insertion, a limited area of 

contact between screw threads and bone exists (Uhthoff, 1973). For a cortical screw with buttress 

threads, the thread surface closest to screw head is perpendicular to the screw long axis. Only at 

the level of this horizontal thread surface of the screw do the threads firmly oppose the bone. In 

tightening the screw, the horizontal surface compresses the bone while the oblique under-surface 

of the thread, which is oriented towards the tip of the screw, is lifted away from the bone 

(Uhthoff, 1973),  (Figure 1.3).  

                    

Figure1.3 Diagram showing contact between screw and bone (B)-is limited at a part of the horizontal thread 

surface (H). The oblique (O) undersurface is separated by a space show as dark strip. When a tap (T) has been used 

to cut threads into cortical bone, the thread crest of the screw does not touch the bone. CD = core diameter; ED = 

thread diameter (Figure taken from Uhthoff, 1973). 
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 For AO cortical screw insertion, the thread hole (3.2 mm for the 4.5 mm and 4.0 for the 

5.5 mm cortical screws) is larger than the  inner core diameter of the screws (3.0 mm for the 4.5 

mm and 3.9 mm for the 5.5 mm cortical screws),  which results in decreased bone thread depth 

and less contact. The tap diameter is larger than the outer thread diameter of the screw and further 

decreases the contact between the screw thread and bone, with the crest of the screw threads 

losing contact with the bone. These spaces between the screw threads and bone can be up to 

0.150 mm thick (Figure 1.3).  The limited contact and the presence of spaces between screw and 

bone predispose to screw micromovement and bone resorption (Uhthoff, 1973).The microscopic 

space is invaded by migrating cells and the presence or absence of movement influences the 

differentiation of these cells growth. In cases of stable internal fixation these cells differentiate 

into osteogenic cells and produce a solid callus in 4 weeks. Osteoblast, osteoid and mineralized 

matrix are observed adjacent to the lamina limitans-like layer, suggesting bone is deposited 

directly on the surface of the implant, extending outward from the biomaterial; thus bone 

formation in the periprosthetic region occurs in two direction (Puelo, 1999). The bone extending 

away from the implant forms at a rate about 30% faster than that moving toward the biomaterial 

(Puelo, 1999). Biological tissue interact with the outermost atomic layers of the implant. “The 

primary interaction zone” is about 0.1-1 nm and much effort is being devoted to methods of 

modifying the surface of existing biomaterials to achieve desired biological responses. 

 1.4.2 Biomechanical Studies on Roughened Implants 

The internal fixation maintains and protects the reduction of the fracture. This is a 

mechanical function of force transmission; therefore the plate must be firmly fixed by the screw 

onto the bone. The stability of repaired fracture with plates and screws depends on the bending 
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stiffness of the screw and the friction between plate and bone (Cordey, 2000). The bending 

stiffness of the screw does not allow forces larger than 1200N to be sustained (Martin, 1980). A 

previous in vitro study, (Cordey, 2000) demonstrated that the difference between stainless steel 

and titanium plates is not due to material itself (stainless steel or titanium) but to the roughness of 

the undersurface. Motion is prevented by friction and depends on the axial forces of the screw 

that presses the plate against the bone. Slippage occurs at a lower eccentric load for a plate with a 

smooth contact surface compared to a plate with a rough contact surface. In that study they found 

that the surface roughness contributes highly to stabilization and prevention of motion between 

the plate and the bone (Cordey, 2000).  In a more recent study, by creating a rough contact 

surface, the contact area was increased and appears to have changed the friction between the plate 

and bone (Sod, 2011). For the fixation of osteotomized equine third metacarpal bones, the 

constructs with plates having rough contact surface were superior to the corresponding constructs 

with plates having standard smooth contact surfaces in resisting cyclic fatigue under 

palmarodorsal four-point bending (Sod, 2011). Hutzschenreuer (1980) studied the extraction 

torque of cortical screws with roughened surface prepared by titanium plasma sprayed. These 

screws had only the tip ward half roughened. The authors reported removal torque after 16 weeks 

of 50% of the insertion torque for the polished screws and 50% increase of the insertion to 

removal torque for the rough screw (Hutzschenreuer, 1980).  

1.4.3 The 5.5 mm AO Cortical Bone Screw 

The 5.5 mm cortical screw (Synthes Vet, Paoli, PA) is made of 316 L stainless steel and is 

fully threaded. It is not self-tapping so a tap is required to cut its threads into the bone before 

insertion (Nunamaker, 2000). The drill bit for the thread hole measures 4.0 mm in diameter. The 

thread diameter of the screw is 5.5 mm and the core has a diameter of 3.9 mm. They come in 

lengths from 24 to 100 mm (Synthes Vet Catalog, 2008).  Electropolishing of stainless steel is 
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considered standard, which gives it a smooth surface with a roughness average of 0.13µm. This 

surface is void of microdiscontinuities and as a result supports fibro-osseous integration upon 

implantation (Hayes, 2010). 

1.4.4 The Aluminum Oxide (Al2O3) Roughened Screw 

 Aluminum oxide (alumina) is classified as an inert bioceramic with low conductivity of 

electricity and heat and high melting temperature (Billotte, 2006). Alumina is a quite hard 

material with a 9/10 hardness index on Moh’s scale, second after diamond (Billotte, 2006). 

Because of its high hardness (between 20 and 30 MPa), alumina has been used as an abrasive and 

as bearings. The alumina’s high hardness is accompanied by low friction and wear and inertness 

to the in vivo environment (Billotte, 2006). Alumina has been used in the area of orthopedics and 

dental surgery for more than 30 years (Billotte, 2006).   

For the purpose of our study the screw surface roughening with aluminum oxide was 

made in accordance with the manufacturer’s specifications (Orchid Bio-Coat) using a Trinco 

20/CPH blaster and 100 mesh size. The 5.5 mm cortical bone screws (Synthes, Paoli, PA) were 

used for surface treatment. Subsequent to blasting, the surfaces were ultrasonically cleaned. 

Roughness measurements were performed by the manufacturer using a Mitotoyo Surftest 211 

profilometer, and an average of five readings was performed for each surface. The mean surface 

roughness and standard deviation for the 100mesh Al2O3 was 2.14±0.48 µm. The roughness 

created by the 100mesh finish was typically of those commercially available finishes. Larger grit 

size would have created an increased roughness, but this would also begin to destroy the 

geometry of the implant. SEM micrographs were taken at 100X to assess the appearance of the 

roughness and compare it with the smooth electro polished surface of the untreated screws 

(Figure 1.4). 
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Figure 1.4 SEM picture of Al2O3 roughened (R) and electropolished AO cortical screws (AO). 
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MECHANICAL EVALUATION OF ALUMINUM OXIDE ROUGHENED SCREWS IN 
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2.1 Introduction 

 

The poor prognosis for survival for adult horses suffering from long bone fractures hasn’t 

improved by much over the last decades (Saunder-Samis, 1986; Auer, 1987; Bischofberger, 

2009; McClure, 1996 ).  This in part due to lack of adequate orthopedic implants available for 

equine osteosynthesis. When the extreme loads concentrated on implants overcome fixation 

stability, breakdown injuries occur (Auer, 1987; Bischofberger, 2009; McClure, 1996).  Repeated 

loading of the affected limb during walking and weight shifting can lead to cyclic fatigue failure 

of the implants. Ways to increase the stability of implant are needed ( Ling, 1986). Surgical 

implant complications are often associated with the strength of the fixation construct relative to 

the mechanical demands placed on it. Catastrophic fracture construct failure may occur when it is 

exposed to forces that exceed the implant strength, such as during recovery, or when the rate of 

bone healing is slower than the implant fatigue life. Implant loosening as a result of localized 

implant or bony failure can result in an unstable fracture and delayed healing. (Markel, 2005). 

 The resistance of the bone-screw-plate construct to cyclic fatigue relies on the bone-plate 

friction and anchoring strength of the screw in the surrounding bone. Microfracture and  

resorption of the surrounding bone followed by screw loosening is most commonly the result of 

cyclic mechanical loading during limb use (Schatzker, 1975).  A recent study reported that a 

common cause of implant failure in equine metacarpal/metatarsal fractures is still screw 

loosening, bending or breaking (Bischofberger, 2009).  Ways to improve the screw behavior in 

this sensitive construct of bone-screw-plate can potentially add to the longevity of the implant 

(Zacharias, 2007; Moroni, 2001; Caja, 1996). 

Osseointegration and the importance of micro-and macro- texture of screws have been 

addressed extensively in human orthopedic research (Thomas, 1985; Boyan, 1999; Brett, 2004; 

Brunette, 1988).  There is currently sufficient evidence (over 95% clinical efficacy) that titanium 
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implants with rough surfaces achieve faster bone integration, a higher percentage of bone implant 

contact, and a higher resistance to shear documented with higher removal torque values when 

compared with titanium implants with smooth surface (Nasatzky, 2003; Guehennec, 2007).While 

titanium implants are biologically inert and more ductile, stainless steel are preferred in equine 

orthopedics where implants must withstand extreme loads. Stainless steel implants have a higher 

yield stress and stiffness, are stronger and less expensive than corresponding titanium implants 

(Hayes, 2010). During implant healing, bone tissue deposits onto the pores of the roughened 

surface and the mechanical anchorage continues to increase even after healing of the surgical site 

is complete (Takeuchi, 2004). Methods to assess the anchorage of roughened screws, including     

insertion vs extraction torque, pull-out and push-in test on cortical bone have been done in sheep, 

goat and rabbit models (Nasatzzky, 2003), but not in equine model.  

   Recent studies looking at screw mechanical properties and bone screw interface (BSI) 

have found significant increase in pullout strength and resistance to cyclic fatigue failure by 

increasing the bone-screw interface with polymethylmethacrylate and Teflon foil (Sod, 2004; 

Sod, 2007). A current in vitro study has shown that plasma sprayed hydroxyapatite coated AO 

stainless steel screws can be placed in equine third metacarpal bone without exceeding 

physiologic thermal thresholds (Gudehus, 2008).  This was followed by  in vivo studies with 

placement of HA-coated screws in dorsal equine MC3 under unloaded and loaded conditions 

which revealed significant increase in extraction torque at 12 weeks post implantation, when 

compared with the electropolished cortical bone screw (Gudehus, 2009, Durham, 2011).  

 The present study focused on testing the strength of bone-roughened screw attachment 

under loaded conditions.  Having an increased contact surface, roughened screws should provide 

superior biomechanical interlocking strength when compared with smooth cortical bone screws.   

The objective of our study was to determine if Al2O3 roughened screws (R) would have a 
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greater extraction torque at the end of the study when compared to the smooth cortical bone 

screw (AO). Our hypothesis is that roughened screws will have significantly greater mean 

extraction torque at 12 weeks when compared to the AO screws when used to secure a 4.5 mm 

broad dynamic compression plate (DCP) to equine third metacarpal bone. 

 

2.2 Materials and Methods 

Development of the aluminum oxide (Al2O3) roughened implant by the use of 5.5 mm AO 

screws (Synthes, Paoli, PA), which were grit blasted with 100 mesh Al2O3 particles to obtain 

implants with surface roughness of 2.14± 0.48 µm (Orchid Bio-Coat Inc, Southfield, MI). 

After the implant threaded surface was grit blasted , the surface was ultrasonically 

cleaned. SEM analysis was performed on Amray 1645 SEM with an energy dispersive x-ray 

analysis set-up (EDAX, Orchid Bio-Coat). Roughness measurements  were performed using a 

Mitotoyo Surftest 211 Profilometer, with an average of 5 readings been performed for each 

surface.  

    Groups:Twenty 5.5 mm x 24 mm Al3O2 roughened screws (R Group) and twenty 5.5 mmx 

24 mm AO cortical screws (AO group) were evaluated. For each horse one metacarpus (MC3) 

was randomly assigned to secure a 4 hole, 4.5 mm narrow dynamic compression plate (DCP ), 

(Synthes, Paoli, PA), with 4 roughened screws and separated plate on the contralateral MC3 

using conventional AO cortical screws.The limb selection was determined by a computer 

generated list. Unicortical screw placement was used to limit variables arising from differences in 

cortical thickness and insertion technique.   

 Surgical Procedures 

 Five adult Thoroughbred horses between 2 – 7 years of age, free of orthopedic disease, 

were used in the study. Food only was withheld 12 hours prior to surgery. An intravenous jugular 
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catheter was placed using aseptic technique. Perioperative medications consisting of potassium-

penicillin (22,000 IU/kg IV), gentamicin (6.6 mg/kg IV), and flunixin-meglumine (1.1 mg/kg IV) 

were administered 30 minutes prior to induction of general anesthesia.  Xylazine (0.5 mg/kg IV) 

was administered for preanesthetic sedation. Anesthesia was induced with diazepam (0.5 mg/kg 

IV) and ketamine hydrochloride (2.2 mg/kg IV), and maintained on total intravenous  drip 

anesthesia (1L guiafenesin, 500mg xylazine, and 1g ketamine) at 1.5-2 ml/kg/hr adjusted as 

needed based on anesthetic monitoring. Horses were placed in dorsal recumbency and the 

surgical sites were routinely clipped, aseptically prepared and draped. The mid-diaphyseal area 

was determined (midpoint between the carpometacarpal and metacarpophalangeal joints) and a 

incision was made in the dorsal mid diaphysis. A 4-hole x 71 mm broad DCP (Synthes, Paoli, 

PA) was positioned on the bone. Thread holes were drilled perpendicular to and through the 

dorsal cortex of the MC3 bone using a 4.0 mm drill bit (Synthes, Paoli, PA) using a drill guide in 

the neutral position on the plate. The depth of each hole was measured using a depth gauge and 

the thickness of the cis cortex recorded. Each hole was tapped using a 5.5 mm tap. A new 4.0 mm 

drill bit and 5.5 mm tap was used for each limb. Screws were inserted by hand using a screw 

driver with the final revolution performed with a digital torque wrench (DTW 265i, Checkline, 

Cedarhurst, NY) fitted with the shaft of an AO/ASIF screwdriver  that was welded to a 3/8 inch 

square drive socket adapter. The digital torque wrench has an accuracy of ± 2.5% clockwise 

rotation and ± 3.5% counterclockwise rotation with a resolution of 0.01 Nm.  Drilling, tapping 

and screw placement were performed under constant irrigation using 0.9% NaCl solution. Screws 

were numbered from 1 to 4, from proximal to distal and were all tightened through the plate in 

the bone to a final torque of 5.4 N-m. Incisions were closed in two layers and the limbs were 

bandaged prior to moving the horse into recovery. 
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 Postoperative Regimen 

In the initial postoperative period (14 days), the horses were stall confined and bandages 

were changed every other day for seven days at which time the skin staples were removed.  

Unrestricted weight bearing was allowed immediately after surgery. Phenylbutazone 

(4.4mg/kg/day) was given for pain relief for three days following surgery. Horses were evaluated 

daily for lameness, general health and level of comfort. If any signs of lameness or localized 

infection at the surgery sites were noted, cranio-caudal and latero-medial radiographic views of 

the metacarpus were immediately obtained and the surgery site evaluated for any radiolucency 

(radiographic signs of infection) around the screws (Figure 2.1).  

  

 

Figure 2.1. Lateral and dorsopalmar radiographic views of metacarpi of a horse taken at 3 months post-

implantation of a 4.5 mm dynamic compression plate with 5.5 mm screws. 

 

 Implant Removal 

All implants were removed at 3 months post implantation under general anesthesia, in a 

similar manner as used for implant placement. The dorsal mid MC3s were clipped of hair, 
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surgically prepped, and draped. Stab incisions were made directly over the screw heads. The 

screws were loosened one full rotation (360
o
) using a calibrated digital torque wrench and the 

removal torque measured. The same operator performed all of the torque removal tests. The 

proximal stab incision was extended to facilitate plate removal and the plates were removed using 

a combination of periosteal elevator and osteotome as needed. Incisions were closed in one layer 

using skin staples. Bandages were applied prior to moving the horse into recovery and changed 

every other day for seven days at which time the skin staples were removed. 

Calculations of values: 

 In order to rule out potential bone contact variability between samples, the 

insertion/extraction torque per screw was converted to torque per thread by calculating the scale 

(cortex thickness/pitch) for all 20 samples. The torque per thread was then calculated by dividing 

the torque applied to insert (5.4Nm) the screw by the torque recorded at extraction for every 

sample. . This mathematical calculation eliminates potential bone-implant contact variability. 

 Statistical analysis  

 Mean + standard deviation (SD) was calculated for the insertion and extraction torques 

for each screw type and each testing group.  Paired samples were evaluated using t-tests for 

paired sample means within each testing group.  Statistical significance was set at p < 0.05. 

 2.3 Results  

There were no postoperative complications. All horses recovered well from surgery and 

resumed normal ambulation. There was mild to moderate swelling at the surgery sites after 

implant removal due to scar tissue formation. Radiographs did not show rarefaction/reaction 

around any of the screws (Figure 4.2.1). Periosteal new bone growth and cortical  thickening was 

observed around all screws. 

 At 12 weeks, the mean extraction torque for the Al2O3 finish roughened screws was 
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significantly (p <0.00005) greater than that of AO screws. The roughened screws had a mean 

extraction torque of 3.24± 0.56, twice the mean extraction torque of the AO screws (1.65 ± 0.34) 

(Figure 2.2).         

 

                  AO = standard screws group       Rough = Al2O3 roughened screws group 

Figure 2.2 A bar chart shows screw insertion and extraction torque of two different types of 

5.5 mm cortical screws placed in the metacarpi of 5 horses 

 

 

   There was no significant (p = 1.00) difference between the mean cortical bone thickness 

for the R group and AO group.  The mean insertion torque was significantly (p < 2.71 x 10
-16

) 

greater than the mean extraction torque for the AO group. There was significant difference (p<6.0 

x 10
-7

) between the insertion and extraction torque of the R groups as well. There was no 

significant difference (p=0.07) between the insertion torque of the AO group and the R group 

there was also no significant (p = 0.78) difference when we compared mean insertion torques for 

the R vs AO groups (Table 1). 
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Table 1  Mean + SD of dorsal equine MC3cortex thickness, screw insertion and extraction 

torques per thread for 5.5 mm Al2O3 roughened and standard AO screws. AO = standard screws 

group, R = Al2O3 roughened screws group. 

 

 

Group 

 

Cortical Bone 

Thickness (mm) 

 

Insertion Torque 

(N-m) 

 

Extraction Torque 

(N-m) 

 

 AO  

 

20.1 ± 1.1
1 

 

5.39 ± 0.23
2,4

 

 

1.65 ± 0.75
2,5

 

 R  20.1 ± 0.9
1 

5.36 ± 0.35
3,4

 3.26 ± 1.32
3,5

 

 

1
 There is no significant (p = 1.00) difference between the mean cortical bone thickness for the R and AO groups. 

2 
  The mean insertion torque is significantly (p < 2.71 x 10

-16
) greater than the mean extraction torque for the AO 

group. 

3
 There is significant difference (p<6.0 x 10

-7
) between the insertion and extraction torque of the R group. 

4
 There is no significant (p = 0.78) difference between mean insertion torques for the R and AO groups. 

5
 The mean extraction torque for the R group was significantly (p< 0.00005) greater than AO group. 

  Implant infection was suspected on the control limb on horse # 4. Moderate increase of 

clear serous fluid encapsulated over the implant was noted at the time of screws and plate 

removal. Aerobic culture of the loose screw hole was performed at the time of implant removal 

and results came back negative for bacterial growth. 

 At the end of the study period, all incisions had healed without complications; however, all 

horses had a noticeable change in contour of the dorsal cannon bone consistent with periosteal 
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reaction and soft tissue scar formation at the surgery site. These areas were not painful to 

palpation and no lameness was noted. 

 

 2.4 Discussion/Conclusions   

  Extraction torque is a mechanical testing that evaluates the strength of bone-implant 

attachment.  In this study we found that screws with roughened surface had greater extraction 

torque when compared to smooth AO screws at 12 weeks post implantation. Our results are 

similar with recent in vivo studies where hydroxyapatite (HA) coated screws had significantly 

higher extraction torque at 3 months under unloaded and loaded conditions when compared to the 

conventional smooth screws (Gudehus et al, 2009; Durham et al, 2011).  The increased extraction 

torque of HA-coated screws in these previous studies may have been influenced by change in 

surface topography (roughness), surface chemistry (HA coating), (Moroni ‚1999) or both 

(Moroni 2003).  The HA plasma sprayed coating is an additive process  and it increased the 

screw diameter by approximately 50 µm and roughness( Gudehus, 2009). Our screws were grit 

blasted with 100 mesh aluminum oxide, a subtractive process which creates pits/pores into the 

screw surface, and not by adding material to the implant surface. It is possible that with the HA 

coated screws in the previous studies created a wedge effect that may have contributed to the 

overall increased stability and mechanical anchorage when compared to our roughened screws. 

It’s been reported that the superior osseointegration is due to both surface texture and surface 

biochemical treatment (Moroni, 2002; Moroni, 2003). In our study, we attribute the superior 

extraction torque to surface texture since that was the only difference between the control and the 

studied implants. The roughened screw has an average roughness of 2.14 µm, ( vs. AO screw 

roughness mean  of 0.13 µm) which has been reported appropriate for improved bone-to-metal 

fixation (Wennerberg et al, 1996; Wennerberg, 2009).  
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The biodynamics of the implants is also influencing factor to the stability of the bone-

screw interface (Billotte, 2006). The electropolished stainless steel is clasified as a biotolerant 

material and promotes fibrous tissue formation around it.  Aluminum oxide is an inert bioceramic 

and  promotes contact osteogenesis characterised by direct contact between implant and 

surounding bone. This biodynamical difference may have been contributed to the increased 

extraction torque recorded for the aluminum oxide screws. 

Histomorphometric studies have demonstrated that implants with roughened surface 

support direct osseo-integration, which is highly desirable for maximal stability (Hayes et al, 

2010)  By contrast the 316 L stainless steel screw, the most commonly used screw in equine 

orthopedics, has electropolished surface, void of micro discontinuities and supports fibro-osseous 

integration upon implantation(Hayes et al, 2010).  Histological studies in other species confirmed 

fibrous tissue encapsulation around standard smooth screws with both stainless steel and titanium 

implants. (Schatzker,1975; Caja, 1996; Moroni, 2003; Guehennec, 2007; Pierce, 2008).  

Histomorphometry gives a measure of the degree of bone implant contact, whereas mechanical 

testing gives an evaluation of the strength of bone–implant attachment.  Our mechanical testing 

revealed stronger bone-roughened screw attachment  demonstrated by the extraction torque at 12 

weeks suggesting increased osseointegration; Histomorphometric evaluations of the bone screw 

interface needs further analysis in order to determine the degree of bone-implant contact. 

    Resistance of the bone-screw-plate construct to cyclic fatigue relies on bone-plate 

friction and the anchoring strength of the screw in the surrounding bone.  A linear relationship 

exists between the applied screw torque and the amount of axial force generated within the screw 

(Nuanmaker, 1976). The magnitude of force which compresses a plate to bone depends on the 

tensile stress induced in the screw. This tensile strength is derived from the torque applied to the 

screw head (Hughes, 1972). Ideally the smallest increments of torque should induce some tension 
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but in practice this is never reached since some of the applied torque is lost to overcome friction 

between screw threads and bone, and between the screw and the countersink surface of the plate 

(Hughes, 1972). It would be interesting in determining the torque available for conversion into 

tension (useful torque) from the 5.4 Nm applied torque in our study. Because of their roughened 

threaded surface, the screws have to overcome higher friction forces than the smooth screws. 

Therefore, the useful torque would probably be lower when compared to the smooth AO screws. 

This would translate into less compression of the plate onto the bone and increased loading and 

fatigue cycling when compared to the standard AO screws. The increased extraction torques for 

the roughened screw in our study suggests that the roughened surface of the screws provides 

superior interlocking into the surrounding bone even at lower useful torque.   

Previous in vivo study looking at cortical screws with roughened thread surface vs 

polished surface reported removal torque after 16 weeks  50% of the insertion torque for the 

polished screws and 50% increase of the insertion to removal torque for the roughened 

screw(Hutzschenreuer, 1980). This was an in vivo gap osteotomy model repaired with a single 

plate and screws in sheep. A gap osteotomy model  would not be possible in equine. Succesful 

fracture repair in horses necessitates anatomic reconstruction and interfragmentary compression 

with screws and plates.This allows the sharing of loads between the reconstructed bone and the 

implants. Interfragmentary compression is absolutely essential for maintaining bone contact 

between fragments to protect the relatively weak implants. Orthopedic implants by themselves 

are not able to withstand the full force of weight-bearing without failure in equine.  Although not 

a fracture model, the significant difference in insertion-extraction torque for both smooth and 

rough screws demonstrate cyclic loading conditions in our study. A decrease of 25 % in 

extraction torque was also noted when HA screws with plate were implanted in equine cannon 

bone vs screws alone (Gudehus, 2009;Durham, 2011). These studies show that even without a 
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fracture model, the plate will create loading effect on the screws. 

 Unstable internal fixation has been shown to lead to the development of thick fibrous 

tissue layer and limited bone to screw contact at the interface between the loose metallic screw 

and bone (Uhthoff, 1973). Shatzker (1975) stated that if the compression between the screw 

threads and bone decays rapidly, rigidity is lost and movement, non-union, and failure of the 

fixation may be the outcome. The higher surface roughness of the roughened screws as opposite 

to the polished surface of the conventional screws may have been beneficial to optimize initial 

screw stability and consequently osseointegration. Increasing fracture stiffness before the natural 

increase in stiffness provided by bone callus formation could have positive clinical consequences 

It has been shown that aluminum oxide blasting applied to machined implants promote 

mesenchimal stem cell commitment to the osteoblast phenotype. Greater bone-specific gene 

expression was observed in tissue adjacent to Al2O3 implants, and associated increases in bone-

implant contact and torque removal were noted, leading to the conclusion that  aluminum  may 

directly influence cell behavior to enhance osseointegration (Mendonca, 2009).  Aluminum oxide 

roughening process is also more affordable when compared to other surface treatment techniques.   

The limitations of this study include the evaluation of results at only one period of time, 

the fact that a nonfracture model was used and the absence of histological analysis. Future studies 

should address quantitative and qualitative histomorphometric evaluation of these implant in 

bone. This will give a better understanding of the degree of osseointegration of roughened 

implants in equine cortical bone.  
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           CHAPTER 3  

FINAL DISCUSSION AND CONCLUSIONS 
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3.1 Summary 

  

A primary function of any roughened implant is to increase their initial mechanical 

fixation to the surrounding bone and maintained stability for later remodeling and 

oseointegration. In equine patient, the initial BSI interlocking is desired for a stable repair to be 

immediately weight bearing.  Although not a fracture model, in our study we were able to 

evaluated the mechanical strength of bone-screw attachment and found that roughened screws 

have a significantly greater extraction torque when compared to the smooth surface AO cortical 

screws. The higher surface roughness of the roughened screws as opposite to the polished surface 

of the conventional screws may have been beneficial to optimize initial screw stability and 

consequently osseointegration.  Increasing fracture stiffness before the natural increase in 

stiffness provided by bone callus formation could have positive clinical consequences in equine 

fracture repair.  Information obtained from this study may help in improving the contact surface 

of implants and subsequent fixation and stability of bone- implant constructs in equine fracture 

repair. 

Further work is needed to completly analyse the effect of surface roughening on 

electropolished implants. Histology and histomorphometry will will determine the type of tissue 

that comes in contact with the screw and the measure the degree of bone-implant contact. It 

would also be interesting in comparing the axial compression generated by the 5.4 Nm torque 

applied in our study. Because of the roughened threaded surface, the aluminum oxide screws 

have to overcome higher friction forces between the screw thread and bone during insertion and 

may generate less compression than the smooth AO cortical screws at the same insertion torque. 
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