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Abstract 
 

Viral infections of the central nervous system (CNS) in infants are rare; however, 

they are associated with high morbidity and mortality rates.  These virus infections often 

induce strong innate immune responses in the brain including: the production of 

cytokines and chemokines, the activation of astrocytes and microglia and the recruitment 

of macrophages.  Innate immune responses are often initiated by toll-like receptors 

(TLR).  Several studies have demonstrated that toll-like receptor 7 (TLR7) can be 

stimulated by single-stranded RNA from multiple viruses.  In the current study, we 

examined the mechanism by which TLR7 contributes to neuroinflammation in the 

neonatal brain using a mouse model of polytropic retrovirus infection. We found that 

TLR7 deficiency had no effect on neurologic disease, viral replication, or induction of 

interferon beta mRNA. However, TLR7 deficiency significantly altered 

neuroinflammatory responses including proinflammatory cytokine production, astrocyte 

activation, and microglial/macrophage activation. To our knowledge, this is the first 

demonstration of the necessity of TLR7 for innate immune responses to retrovirus 

infection in vivo. Additionally, this indicates that the immune response to retrovirus in the 

CNS may not be essential for disease pathogenesis in neonates. 
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Chapter 1: Introduction 

Fr98 infection of neonates induces the innate immune response (1, 2). Activation 

of microglial cells and astrocytes is observed as well as the production of 

proinflammatory cytokines and chemokines as detected by both mRNA and protein 

expression (3-12). Induction of the innate immune response may play a role in either 

suppression of viral replication or detrimental pathology induced by the viral infection 

(13-16). Since innate immune responses are often initiated by stimulation of toll-like 

receptors (17), their study is warranted to discover opportunities to intervene and treat 

neuropathogenic viral infections in newborns.  Toll-like receptor 7 (TLR7), which is 

activated by single-stranded RNA from numerous viral families (18-22), is expressed on 

brain capillary endothelial and microglial cells in neonates (23).  The role of TLR7 in 

retroviral infection and the induction of the innate immune response in the neonatal brain 

are unknown. We hypothesize that TLR7 stimulation by virus infection initiates 

neuroinflammatory pathways in the developing brain. 

To determine the role of TLR7 in the virus-mediated host neuroinflammatory 

response, we characterized the neuroinflammatory response to Fr98 retrovirus infection 

in wildtype, heterozygous, and TLR7-deficient mice prior to clinical disease as well as in 

animals exhibiting clinical signs of disease. Quantitative reverse transcriptase real time 

polymerase chain reaction technology and multiplex analysis of cytokine and chemokine 

proteins were utilized to calculate differences in gene expression levels between Fr98-

infected and mock-infected wild type and TLR7-deficient animals to determine which 

neuroinflammatory pathways are dependent on TLR7 stimulation.  
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  Additionally, since the role of TLR7 in retroviral neuropathogenesis is unknown, 

we infected wildtype, heterozygous, and TLR7-deficient mice with Fr98 retrovirus and 

followed them for clinical signs of disease. Mice were scored as having neurologic 

disease when signs of severe ataxia and/or seizures were apparent. Survival curve 

analysis of disease onset was calculated to determine if TLR7 deficiency altered Fr98-

induced neuropathogenesis.  
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Chapter 2: Review of Literature 
 
2.1: Innate Immune Response in the Brain 

The brain is considered an immunologically privileged site due to the lack of 

lymphatics and the presence of the blood brain barrier (BBB) that restricts immune cell 

entry into the central nervous system (CNS). However, the immune privilege of the CNS 

is incomplete. Inflammation can still occur in the CNS, by either a response to exogenous 

antigens or self-antigens (autoimmunity) (24). Additionally, the innate immune response 

in the brain may differ between adult and neonatal animals. While adult and neonatal 

animals both possess tight junctions present at the blood-brain and blood-cerebrospinal 

fluid (CSF) barriers, neonates also have additional types of junctions (plate, strap, wafer) 

at the CSF-brain barriers that are not present in adults. The developing brain is also more 

permeable to small insoluble lipid molecules and has specific transfer mechanisms for 

certain proteins into CSF (25).  

The innate immune system in the brain is composed of phagocytic cells 

(monocytes/macrophages and polymorphonuclear phagocytes), natural killer cells, 

interferons, and soluble factors (24). In addition, parenchymal macrophages, microglial 

cells, and astrocytes also play a role in innate immunity. Key players in the innate 

immune response in the CNS are microglia/macrophages. The CNS endogenous 

microglia share many properties with macrophages since they develop from the same 

hematopoietic line (26-28). When activated, both systemic macrophages and microglial 

cells are able to phagocytize pathogens, cells, and cellular debris (28-31). There are two 

types of microglial cells in the CNS, parenchymal microglia and perivascular microglia. 
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The parenchymal microglial cells are not routinely repopulated by “fresh” monocytes, but 

perivascular microglial cells are (32). When parenchymal microglial cells are not 

activated, they play a role in signaling and support to neurons and astrocytes.  

Astrocytes, which were once considered just “scaffolding” to support neurons, 

have recently been shown to actively engage in critical events in the brain such as 

regulation of the BBB permeability and entry of inflammatory cells (33), antigen 

presentation (34, 35), and uptake of neurotransmitters (36). Astrocytes possess endfoot 

processes which are in close physical proximity to the endothelial cells of the blood brain 

barrier. This location places astrocytes in an ideal position to modulate the 

transendothelial migration of blood cells into the brain parenchyma (37). 

Experimentation with angiotensin-deficient mice demonstrated that restoration of the 

blood brain barrier after injury was strictly dependent upon intact astrocyte function. It 

has also been shown that monocyte-chemoattractant protein-1 produced by astrocytes 

direct the migration of monocytes and lymphocytes across the endothelium of an in vitro 

blood brain barrier model (38). Additionally, astrocytes respond to brain injury via 

reactive gliosis, which is a proliferation of astrocytes in the damaged CNS.  Brain lesions 

of varying etiologies such as infection (i.e. HIV), autoimmunity (MS), degenerative 

disorders (AD), ischemic or tumor damage are infiltrated by hypertrophic astrocytes 

expressing elevated levels of glial fibrillary acidic protein (GFAP) (39). Reactive 

astrocytes also display an increased expression of adhesion molecules compared to 

resting astrocytes, as well as an increase in the production of cytokines, chemokines, 

growth factors, and neuropeptides, confirming the involvement of these cells in immune 

responses (40).  
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2.2: Toll-like Receptors (TLRs) 
 

The ability of the immune system to detect and recognize pathogens is critical for 

mounting the appropriate immune response to adequately combat invading organisms.  

In mammals, host defense against pathogens is dependent on two types of immunity, 

innate immunity and acquired immunity (41). Pathogen detection by the innate immune 

system occurs via pattern recognition receptors (PRRs), a class of immune-sensor 

molecules that recognize microbes or microbial components. This recognition results in 

the initiation of anti-pathogen gene expression that promotes the adaptive immune 

response (42).  Toll-like receptors are a class of PRRs that detect an array of pathogens 

(43).  The TLR family currently consists of 11 members (TLR1-TLR11) identified in 

humans, and 12 TLRs identified in mice. TLRs are expressed primarily on cells which 

are likely to be the first to encounter antigens (44-50), with dendritic cells, macrophages, 

and neutrophils expressing the highest amount of receptors (51, 52). However, it appears 

that the majority of the cells in the body express at least a subset of TLRs (53).  

All of the TLRs are structurally similar (50). They are all type 1 transmembrane 

proteins with a single domain that spans the membrane. While the majority of TLRs are 

expressed on the surface of the cell, some are retained intracellularly, which allows for 

optimal positioning to interact with certain pathogens invading the host (Fig. 1). For 

example, TLRs 3, 7, 8 and 9 tend to localize on endocytic compartments (53). The 

cytoplasmic region of the TLRs consists of a conserved domain (Toll/IL-1R) which 

contains the cytosolic adaptor protein, myeloid differentiation factor 88 (MyD88), and is 

responsible for intracellular signaling initiation.  Signaling pathways can be MyD88-

dependent or MyD88-independent, with TLR3 and TLR4 signaling being the latter (54, 
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55). MyD88 activation results in NF-кB and mitogen activated protein kinase (MAPK) 

activation which results in the secretion of cytokines (55).  

 

 

Figure 1. Toll-like receptors and their ligands, cellular locations, and secondary signaling 
pathways (53). 

 
The outer domains of TLRs are composed of varying length leucine-rich repeats, 

which allows each TLR to recognize specific components of different pathogens, 

providing ligand-specific activation.  The pathogen-specific motifs on invading 

organisms that allow for specific TLR recognition are known as pathogen-associated 

molecular patterns (PAMPs) (53). Examples of PAMPs recognized by TLRs include: 

lipopolyscaahride (TRL4) (56-58), flagellin (TRL5) (59), peptidoglycan and lipoproteins 

(TRL2) (60-63), and deoxycytidylate phosphate deoxyguanylate (CpG) DNA (TLR9) 
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(64, 65) (Fig. 1). Additionally, some TLRs work together in concert which results in even 

greater ligand recognition specificity. 

Pathogen activation of TLRs results in complex changes in the cellular 

microenvironment that leads to the activation of the immune system. With regard to viral 

infections, the purpose of TLR activation and immune system stimulation is to effectively 

limit the replication and spread of the viral infection.  When a TLR is engaged, TLR 

signaling occurs which leads to induction of NF-kB, causing the transcription of 

chemokines, proinflammatory cytokines, and the up-regulation of cell surface molecules 

that are involved in the initiation of the adaptive immune response (66). Experiments in 

mice and cultured human cells have shown that TLRs also influence adaptive immunity 

by activating dendritic cells (DCs), which present antigen to T cells and release factors 

that stimulate T cell differentiation and expansion (67).  In addition to the stimulation of 

humoral immunity by DCs, it has been shown in mice that direct activation of TLRs on B 

cells is necessary for robust production of some classes of antigen-specific antibodies 

(68).  Therefore, TLRs play an influential role in the activation and stimulation of both 

the innate and adaptive immune responses. 

Recognition of viruses by TLRs also results in stimulation of the antiviral effector 

type I interferon (IFN) cytokine system consisting of IFNα, IFNβ, IFNω, and IFNτ (69).  

The production of type I IFNs plays a critical role in antiviral activity because the 

cytokines both establish an anti-viral microenviroment and bridge the innate and adaptive 

immune responses (70).  Human DCs have been shown to be activated via TLRs to make 

IFNα in response to multiple enveloped viruses, including influenza virus and HIV.  

IFNα stimulates multiple protective pathways, such as enhancing the cytotoxic effect of 
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natural killer cells and macrophages as well as stimulation T cell production or 

maintaining activated T cells (71-74). IFNα has also been shown to induce Th1 activity in 

human CD4+ T cells (75). Additionally, IFNα also stimulates intracellular RNAse 

activity, which inhibits viral replication and can lead to viral clearance.  

2.3: TLRs and Viral Infection 

  There are currently four classes of viral PAMPs that are recognized by TLRs 

which include: double stranded RNA (dsRNA), single stranded RNA (ssRNA), CpG 

DNA, and envelope glycoproteins (53).   It is currently thought that viral ligands come 

into contact with TLRs in antigen presenting cells (APC) through receptor-mediated 

uptake of virus or viral fusion with endosomal membranes (76) (Fig. 2). For viruses that 

either do not infect or cannot replicate in APCs, CD8+ T cells can be activated by cross-

priming from DCs that engulf and then present antigen from apoptotic cells infected with 

virus (67). An example of such an activation system is TLR3. TLR3 recognizes dsRNA 

and its synthetic analogue, polyinosine-polycytidylic acid  (polyI:C) (77).  Since dsRNA 

is a replication intermediate of RNA viruses, it is thought that TLR3 is activated when 

virus-infected cells are lysed, releasing the dsRNA into the microcellular environment.  

TLR9 is activated by CpG DNA (64, 65), which is thought to be exposed when virus 

particles are taken into cells and degraded by endosomal acidification (Fig. 2). TLR9 

activation and resultant IFN response occurs only in a MyD88-dependent fashion (78-

80).  The viral PAMP for TLR7 and TLR8 is ssRNA, which requires endosomal 

acidification and MyD88-dependent IFN production like TLR9 (18, 19). Because of these 

similarities between TLR7, TLR8, and TLR9, they are thought to have evolved from a 

common precursor and operate as a subfamily (49, 81). Viral envelope glycoproteins can 
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act as PAMPs to activate TLR2, TLR3, and TLR4. These are unique in that the virus can 

be detected at the earliest stage of infection, before viral gene expression or replication 

occurs (53).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Viral stimulation and signaling pathways of endosomal toll-like receptors (76). 

 

The identification of ssRNA as a ligand for TLR7 is a recent finding. During early 

TLR research, the only known ligands of TLR7 and TLR8 were the family of 

imidazoquinolines. Imidazoquinolines are low-molecular weight compounds that display 

anti-viral and anti-tumor activity and are potent activators of immune cells (82-87). One 
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imidazoquinoline family member, imiquimod, is currently used as an approved anti-viral 

treatment in humans with human papillomavirus infections (88). From imiquimod a more 

potent compound was derived, resiquimod (R-848). Through the use of MyD88-and 

TLR7-deficient mice, both imidazoquinoline compounds have been shown to stimulate 

immune cells via TLR7. Imidazoquinoline signaling, cytokine production by 

macrophages, proliferation of splenocytes, and maturation of dendritic cells were all 

absent in the MyD88-and TLR7-deficient mice stimulated with imidazoquinolines (89).  

Additionally, guanosine analogues have also been shown to activate TLR7 and TLR8 

(89-92).  This discovery resulted in the investigation of ssRNA as a physiologic ligand, 

since the structure of the guanosine analogues is similar to that of nucleic acids (19).  

However, TLR7-deficient mice do not respond to imiquimod, R-848, or viral ssRNA, 

which suggests that murine TLR8 was inactive (19, 89).  Recent studies have 

demonstrated that murine TLR8, along with human TLR8, can be stimulated by the co-

administration of TLR7/8 ligands and poly-T oligodeoxynucleotides (pT-ODNs).  

Administration of the pT-ODN stimulates TLR8, but inhibits TLR7-mediated responses 

(93-95).  To date, genomic RNA from influenza A virus, vesicular stomatitis virus, and 

synthetic RNA oligonucleotide from human immunodefiency virus type-1 (HIV) have all 

been found to activate TLR7 (18, 19, 21).    

2.4: Role of TLR7 in HIV Immune Response 

The main target cell of the HIV retrovirus is the CD4+ T cell, which does not 

express TLR7 or TLR8 (22). However, TLR7 and TLR8 are expressed on multiple cell 

types of the innate immune system, such as dendritic cells, macrophages, and monocytes 

that are also targets of HIV (66).  Selective cellular expression of TLR7 and TLR8 also 
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occurs. For example, both TLR7 and TLR8 are expressed on B cells and monocytes, 

TLR7 is expressed on both myeloid (mDC) and plasmacytoid dendritic cells (pDC), and 

TLR8 is expressed on myeloid dendritic cells only  (96-98). Stimulation of TLR7/8 on 

these innate immune system cells by synthetic ssRNA from HIV retrovirus results in anti-

HIV activity, as demonstrated by NF-кB activation which results in the secretion of 

proinflammatory and antiviral cytokines (18, 19, 66).  It has also been shown that human 

pDCs are activated and mature following exposure to intact HIV in vitro (99). Another 

recent discovery is that activation of TLR7/8 results in opposing immune responses in 

acute versus latent infection. Activation of TLR7/8 has been shown to block HIV 

replication in vitro in acutely infected human aggregate lymphocyte cultures (HLAC) and 

peripheral blood mononuclear cells (PBMC). Once TLR7/8 is activated, there is a 

reduction of HIV co-receptor expression on CD4+ T cells. Additionally, when TLR7/8 is 

triggered, an IFN-α anti-viral state is produced (22). Of the subset of cells that produce an 

anti-viral state, pDCs seem most likely to be responsible, as they produce the highest 

levels of anti-viral IFN-α  (100-102). However, it has been shown that of the cell 

population in lymphoid tissue, it is B cells that mediate the TLR7/8-dependant anti-HIV 

effects, which implies a role for B cells in innate immunity. In contrast to acute infection, 

TRL7/8 activation in latently infected cells results in release of HIV virions and the 

activation of HIV replication in the cells of the myeloid-macrophage cell line (22). 

2.5: Fr98 Retrovirus System       

The group of lentiviruses that induce immunodeficiency such as HIV, SIV, FIV, 

and Fr98, a polytropic murine retrovirus, all induce severe clinical CNS disease. (103-

108). Fr98 is a polytropic retrovirus and was created by combining a rapidly replicating 
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retrovirus (FB29) with the cloned envelope gene of an extremely neurovirulent virus 

(FMCF98) (107).  Fr98 primarily infects CNS microglia cells, macrophages, and 

occasionally oligodendrocytes (108). In the brain, Fr98 produces astrogliosis, 

microgliosis, and mild vacuolar and neuronal degeneration (1, 107). Fr98 produces the 

same neurological disease and pathology as FMCF98, but CNS disease is seen 20-30 

days post-infection instead of 6-8 months (108). Clinical disease consists of ataxia, hind 

limb weakness, tremors, seizures, and death (107). A comparative study of Fr98 and the 

non-neurovirulent chimeric polytropic retrovirus Fr54 demonstrated that the two viruses 

were very similar in that they infect the same cell types, cause similar pathology, induce 

no significant changes in apoptosis gene expression, and had no associated lymphocytic 

infiltrates (2, 109). The lack of inflammatory infiltrates implies that the innate immune 

response is mediating the pro-inflammatory cytokine and chemokine response.  Fr98 

differs, however, in that it produces a much higher viral load than Fr54 and activates 

astrocytes and microglia/macrophages. In Fr98 pathogenesis there is also significant gene 

up-regulation of pro-inflammatory cytokines and chemokines, which does not occur in 

Fr54 retrovirus infections. Up-regulated pro-inflammatory genes in Fr98 infection 

include: Tnfα, Tnfβ, Il-1α, Ccl2, Ccl3, Ccl4, Ccl5, Ccl7, Ccl12, Cxcl1, and Cxcl10 (1, 2).  

The structural difference between Fr98 and Fr54 that results in these differences is in the 

envelope protein. Currently, two neurovirulent determinants have been discovered on the 

Fr98 genome which appear to be mechanistically different yet complementary to each 

other (2, 109). 

We studied the mechanism by which TLR7 contributes to neuroinflammation in 

the neonatal brain using a mouse model of polytropic retrovirus infection. In this mouse 
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model, infection of neonatal mice with the neurovirulant polytropic retrovirus, Fr98, 

induces severe clinical neurologic disease characterized by ataxia, seizures, and/or death 

by 2-3 weeks post-infection. The effects of retrovirus infection in the CNS include viral 

encephalitis with associated microgliosis, mild vacuolar and neuronal degeneration, 

astrogliosis, and minimal mononuclear cell infiltrates (1, 107). Fr98 primarily infects 

CNS microglial cells, macrophages, endothelial cells, and occasionally oligodendrocytes, 

suggesting an indirect mechanism of neuropathogenesis (107, 108). One mechanism by 

which Fr98 induces neuropathogenesis may be the up-regulation of pro-inflammatory 

cytokines and chemokines, which correlates with neuropathogenesis. In the current study, 

TLR7 knockout mice were used to examine the role of TLR7 in virus-mediated host 

neuroinflammatory responses and pathogenesis induced by Fr98 infection. We found that 

TLR7 had a significant impact on cytokine and chemokine induction and astrocyte 

activation during retrovirus infection.  
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Chapter 3: Materials and Methods  

3.1: Solutions 

10X Tris buffered EDTA (TBE) 

 108 g Tris base (890 mM)  
 

55 g boric acid (890 mM)  
 
40 ml 0.5 M EDTA, pH 8.0  

 
Mix completely and stored at RT. 

 

1X Tris buffered EDTA (TBE) 

            100 ml 10X stock TBE 

900 ml ddH2O 

Mix completely and stored at RT. 

 

3.2: Mouse Strain 

TLR7-deficient C57BL/6 mice (89) were backcrossed with Inbred Rocky 

Mountain White (IRW) mice for eight generations prior to use. The Tlr7 gene is located 

on the X chromosome. To generate litters of 50% TLR7+ (+/- or +) and TLR7- (-/- or -) 

male mice containing the Tlr7 allele were mated with Tlr7 heterozygous females. All 

mice were maintained at the Louisiana State University School of Veterinary Medicine, 

which is fully accredited by the Association for the Assessment and Accreditation of 

Laboratory Animal Care. All animal experiments were conducted in accordance with the 

regulations of the Louisiana State University Institutional Animal Care and Use 

Committee and the guidelines set forth by the National Institutes of Health.   
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3.3: Genotyping for Tlr7 Wild-type and Knockout Alleles 

DNA was isolated from individual mouse tail biopsies using Sigma GenElute 

Mammalian Genomic DNA Miniprep Kit (Sigma Aldrich, St. Louis, MO). A dry heat 

block was preheated to 55oC and all kit reagents were thoroughly mixed by shaking. The 

Wash Solution was prepared by mixing 1 part Wash Solution Concentrate with 4 parts 

EtOH. Proteinase K was dissolved in sterile ddH2O and mixed by pipetting to obtain a 20 

mg/ml stock solution. One Miniprep binding column and three 2 ml collection tubes were 

labeled for each sample. Tail biopsies were removed from -80oC storage, and each was 

placed in a 1.5 ml microcentrifuge tube. To each tube, 180 μl of Lysis Solution T and 20 

μl of Proteinase K solution were added to digest the tissue. The samples were then 

vortexed to ensure that the tail biopsies were completely submerged. The samples were 

incubated at 55oC on the dry heat block for 4-6 hours with hourly vortexing until 

completely digested. After digestion the samples were vortexed and 20 μl of RNAse A 

solution was added to each sample to remove residual RNA. The samples were allowed 

to incubate in the RNAse A solution for 2 minutes at room temperature. 200 μl of Lysis 

Solution C was then added to lyse the cells, and the samples were vortexed thoroughly 

for 15 seconds. To each Miniprep Binding Column, 500 μl of Column Preparation 

Solution was added and centrifuged at 12,000 x g for 1 minute to maximize the binding 

of DNA to the membrane. The flow-through was discarded and 200 μl of 100% EtOH 

was added to the lysate and vortexed for 5-10 seconds to prepare for binding. The entire 

contents of the tube were transferred into the treated binding column using a wide-orifice 

pipette tip (to reduce shearing the DNA) and centrifuged at > 6,500 x g for 1 minute. The 

collection tube was discarded and the binding column was placed in a new 2 ml 
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collection tube. 500 μl of the appropriately diluted Wash Solution was added to the 

binding column and centrifuged at 6,500 x g for 1 minute. The Wash Solution was 

necessary because the binding column must be free of ethanol before the DNA is eluted.  

Once again, the collection tube was discarded and the binding column was placed in a 

new 2 ml collection tube.  Another 500 μl of Wash Solution was added to the binding 

column and samples were centrifuged at > 16,000 x g for 3 minutes to dry the binding 

column.  The collection tube was discarded and the binding column was placed in a new 

2 ml collection tube.  Directly into the center of the binding column, 200 μl of the Elution 

Solution (10 mM Tris-HCl, 0.5 mM EDTA) was added and left to incubate at room 

temperature for 5 minutes to increase the elution efficiency. The samples were 

centrifuged at 6,500 x g for 1 minute to elute the DNA. The binding column was 

discarded and genomic DNA (gDNA) samples were stored at 4oC for short-term storage.  

For analysis by PCR, gDNA samples were removed from storage and placed on 

ice.  A master mix was made using 8 μl of nuclease-free water, 8 μl Eppendorf® 

MasterMix 2.5x (containing: Taq DNA Polymerase (0.0625 U/μl), 125 Mm KCl, 75 mM 

Tris-HCl pH 8.3, 3.75 MgCl2, 0.25% Nonidet® -P40, 500 μM of each dNTP stabilizers), 

1 μl TLR7 forward primer, 1 TLR7 reverse primer, and 1 μl TLR7 wildtype primer for 

each sample run. The master mix was dispensed into tubes and the appropriate samples 

were added and vortexed and quickly centrifuged. Detection of both wild-type and 

knockout alleles were completed in the same PCR reaction using the Tlr7 forward 

primer: TCC AGT GTC ATG CCT ACC TGT in combination with the Tlr7 wild-type 

primer: GGC GGT CAG AGG ATA ACT TGT and the Tlr7 knockout primer: ATG CCT 

GCT TGC CGA ATA TC. Products were amplified under the following conditions: 94oC 
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for 3 min, followed by 25 cycles at 94oC for 30 s, 60oC for 30 s and 70oC for 30 s, and 

72oC for 10 min.  After the PCR reaction was completed, 5 μl Cresol red/40% Glycerol 

loading dye was added to sample.  Samples were run on a 1.5% agarose gel which was 

made by adding 1.5 g agarose to 100 ml 1X TBE.  The mixture was microwaved for 120 

seconds at full power until the agarose had dissolved. The flask was removed, 3 μl EtBr 

was added and the agarose was mixed by swirling the flask. The mixture was poured into 

the gel caster and 26-well combs were inserted. The gel was allowed to cool.  Once set, 

the gel was placed in the mini-gel tank and covered in 1X TBE. The combs were 

removed and 10 μl of the BioRad EzLoad HT Molecular Marker (Bio-Rad Laboratories, 

Hercules, CA) was added to the first and last lanes and 10 μl of sample were loaded into 

the appropriate lanes. The lid was placed on and the gel was run at 150 V for 30 minutes 

or until the dye was half-way down the gel. The gel was viewed on a FluorChem 8800 

(Alpha Innotech, San Leandro, CA).   Wild-type alleles were detected by a 250 bp band, 

and knockout alleles were detected by a 450 bp band.  Expression of Tlr7 mRNA 

correlated with the Tlr7+/-, + and -/-, - genotypes.  

3.4: Virus Infection and Sample Collection 

The construction of virus clone Fr98 has been previously described (107). Virus 

stocks were prepared from the supernatant of Fr98 or mock-infected Mus dunni fibroblast 

cell cultures. Envelope-specific monoclonal antibodies 514 and 720 were used in focus 

forming assays to determine virus titers (110). Virus stocks were stored at -80oC until 

use. Newborn IRW mice were infected intraperitoneally (i.p.) with 100 μl of cell culture 

supernatant containing mock virus or 104 focus-forming units (FFU) of Fr98 virus within 

24 hours of birth using a 27 ½ gauge needle and 1 ml syringe (Becton Dickinson, 
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Franklin Lakes, NJ). Mice were observed daily for clinical signs of CNS disease, which 

include ataxia and/or seizures (107).  At the onset of clinical disease or the appropriate 

time point, animals were euthanized under isoflurane anesthesia via exsanguination by 

cardiac puncture. Brains, spleens, tails, and serum were collected from each animal and 

flash frozen in liquid nitrogen and stored at -80oC.  Prior to freezing, brains were divided 

in half sagittally with one half immersion-fixed in 3.7% neutral buffered formalin (NBF) 

for 48 hours and kept in 70% ethanol until histological processing and the other half flash 

frozen in liquid nitrogen and stored at -80oC for RNA isolation or multiplex analysis.  

3.5: Histological Analysis 

Hemisected brain tissue samples were immersion fixed in 3.7% neutral-buffered 

formalin for 48 h, embedded in paraffin and cut in 4-μm para-central saggital sections 

that included cerebrum, cerebellum, and brainstem. Tissue sections were then adhered to 

coated microscope slides and stained with hematoxylin and eosin (H&E) using an 

automated histological stainer.  Additional tissue samples were stained with antibodies to 

virus envelope, CD3 (Dako, Carpinteria, CA), or active-caspase 3 (Promega, Madison, 

WI) as described below.  Slides were examined in a blind fashion for histopathological 

evidence of neuroinflammation and neurodegeneration. 

3.6: Immunohistochemistry Analysis 

Sections were incubated twice in xylene for fifteen minutes to remove residual 

paraffin and rehydrated with five minute incubations in 100%, 95%, 70% ethanol, and 

twice in PBS.  Antigen retrieval was performed using sodium citrate antigen retrieval 

buffer in a decloaking chamber (Biocare Medical, Concord, CA) set at 120oC for 20 

minutes and cooled to 90oC.  Pressure consistently read between 12-15 psi.  When slides 
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reached 90oC, they were rinsed four times with ultra pure water by replacing half of the 

volume of antigen retrieval solution with water.   Slides were then washed twice with 

0.5% coldwater fish skin gelatin (Sigma Aldrich, St. Louis, MO) /PBS (0.23% FSG/PBS) 

for ten minutes on a rocker.  Slides were incubated in a humidity chamber (Evergreen 

Scientific, Los Angles, CA) in 175 μl normal donkey serum blocking solution for at least 

30 minutes.  Slides were incubated overnight at 4oC with primary antibody.  TLR7 

antigen was detected using a polyclonal rabbit anti-TLR7 antibody (Zymed, Carlsbad, 

CA), with biotinylated goat anti-rabbit secondary antibody and streptavidin conjugated to 

AlexaFluor 555 (Invitrogen, Carlsbad, CA).  CD31 was detected using a goat polyclonal 

antibody to mouse CD31 and a rabbit anti-goat antibody conjugated to AlexaFluor 488 

(Invitrogen). gp70 was detected using a rabbit anti-goat IgG conjugated to AlexaFluor 

555 (Invitrogen).  Secondary antibodies were applied at a dilution of 6.67 μg/ml in 0.5% 

FSG/PBS and incubated for at least 30 minutes at room temperature.  All sections were 

counterstained with DAPI.   Slides were rinsed twice in 0.5% FSG/PBS.  Slides were 

mounted with ProLong Gold anti-fade reagent (Invitrogen) and allowed to set for at least 

two hours at 4oC.    An irrelevant rabbit anti-mouse Ig antibody did not produce 

detectable fluorescence.  Images were psuedo-colored and overlayed using ImagePro 

Plus software. 

3.7: Mutiplex Assay for Chemokine Expression 

Brain tissue samples were retrieved from -80oC storage, weighed, and 

homogenized in 400 μl of Bio-Plex cell lysis solution (BioRad) containing Complete 

Mini protease inhibitors (Roche Applied Science, Indianapolis, IN) and 2 mM 

phenylmethylsulfonyl fluoride (Sigma Aldrich) was added. Samples were homogenized 
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using Kontes Disposable Pellet Pestles and a cordless motor (Fisher Scientific, Hampton, 

NH) and diluted to 400 μg/ml in lysis buffer. Samples were centrifuged at 4500 x g for 15 

min at 4oC; cellular debris was removed and the supernatants were collected and held on 

ice until use. Cytokine protein expression was analyzed using a BioRad 6-plex assay 

(BioRad, Hercules, CA).  A working wash buffer was prepared by warming the 20X 

concentrate to room temperature and vortexing it to remove any precipitate. 15 ml of 

wash buffer concentrate was mixed with 285 ml deionized water in a 500 ml media 

bottle.  The assay diluent was prepared by diluting it with an equal volume of lysis buffer.   

To set up for vacuum aspiration, a plate lid was placed on the manifold (with metal grid) 

and the house vacuum was turned on. Then the valve was opened to the manifold and the 

vacuum was adjusted to less than 5” Hg. The valve to the manifold was closed and the 

plate lid was removed. To perform vacuum aspiration, the valve was opened to the 

manifold and the loaded plate was placed on the manifold. Once the aspiration was 

complete (< 3 seconds), the valve to the manifold was closed and the plate was removed. 

The bottom of the plate was blotted with a Kimwipe (Kimberly-Clark, Irving, TX) and 

the plate was placed on an inverted lid to load. Within an hour of use, the standard was 

prepared to a total volume of 1 ml. For the 6-plex standard, 1 ml of diluent was added to 

the vial and left to sit at room temperature for 10 minutes. Six 300 μl diluent tubes were 

prepared along with one 300 μl diluent blank. The standard vial was inverted to mix and 

then serial three-fold dilutions were performed by transferring 150 μl starting with the 

standard into 300 μl, then mixing, changing tips, and transferring. A plate map of samples 

to be run was made, and the plate was pre-wet by adding 200 μl of wash buffer to each 

well of the plate. The wash buffer was allowed to sit for 15-30 seconds and then vacuum 
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aspirated and blotted with a Kimwipe. Immediately prior to use, the 6-plex beads were 

vortexed for 30 seconds and then sonicated for 30 seconds. The beads were washed by 

adding 25 μl beads per well and 200 μl wash buffer to each well of the plate.  The 

beads/wash buffer mixture was allowed to sit for 15-30 seconds and then was vacuum 

aspirated.  A wash was performed by the addition of 200 μl of wash buffer, allowing the 

plate to sit for 15-30 seconds, followed by vacuum aspiration. The bottom of the plate 

was wiped with a Kimwipe. The standard and sample reactions were then prepared by 

adding 50 μl Incubation buffer to each well. 100 μl of standard and blank were added to 

designated duplicate wells, and 50 μl of appropriate assay diluent was added to sample 

wells.   Then 50 μl of clarified sample was added to designated duplicate wells, resulting 

in a 1:2 dilution of sample. The plate was covered to protect the beads from light for the 

rest of the assay and allowed to incubate at room temperature on an orbital shaker at 500-

600 rpm for 2 hours. 10-15 minutes prior to the end of the incubation, the biotinylated 

detector antibody (BioRad) was prepared by diluting 1 ml of the 10X concentrate with 9 

ml biotinylated detector antibody diluent (BioRad) in a non-Corning 15 ml polypropylene 

conical tube. After the 2 hour incubation was complete, the plate was vacuum aspirated 

and the previously described wash was repeated twice. The bottom of the plate was 

wiped with a Kimwipe. 100 μl of diluted biotinylated detector antibody was added to 

each well and the plate was covered and allowed to incubate at room temperature on an 

orbital shaker at 500-600 rpm for 1 hour.  10-15 minutes prior to the end of the 

incubation, the Strepavidin-RPE (BioRad) was prepared by diluting 1 ml of the 10X 

concentrate with 9 ml Strepavidin-RPE Diluent in a foil wrapped non-Corning 15 ml PP 

conical tube. The beads were then washed twice as previously described above. To each 
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well, 100 μl of Strepavidin-RPE was added and allowed to incubate at room temperature 

on an orbital shaker at 500-600 rpm for 30 minutes. The beads were then washed and 

vacuum aspirated three times as described above.  100-125 μl of wash buffer was added 

to each well and the plate was covered. Immediately prior to reading, the plate was 

placed on an orbital shaker at 500-600 rpm for 2-3 minutes. Cytokine protein expression 

was then analyzed using a Bio-Plex system instrument (Bio-Rad).  Samples were 

calculated as pg/ml using a standard curve from in-plate standards and subsequently 

converted to fg/mg of brain tissue.  

Table 1: Cytokines and Chemokines of Interest 

Cytokine/Chemokine 
Abbreviation 

Cytokine/Chemokine Full 
Name 

Cytokine/Chemokine 
Function 

IL-12p70 Interleukin-12 Induces INFγ production by 
T cells 

MIP-1α Chemokine ligand 3 Monocyte/lymphocyte 
attractant  

MIP-1β Chemokine ligand 4 Monocyte/lymphocyte 
attractant 

MCP-1 Monocyte chemoattractant 
protein 1 

Monocyte attractant 

RANTES Chemokine ligand 5 Lymphocyte attractant 
TNF-α Tumor necrosis alpha  Involved in apoptosis and 

cell proliferation 
 

3.8: Preparation of RNA for Real-Time PCR analysis 

Tissues were removed from storage at -80oC and transferred to a TropiCooler set 

at -10oC. Tissues were homogenized in 2 ml of Trizol reagent (Invitrogen), an effective 

inhibitor of RNase activity, in a sterile dounce homogenizer, pestle size B. The 

homogenate was divided into two 1.5 ml centrifuge tubes, and the homogenizer was 

rinsed with 1 ml of Trizol between samples.  To allow for complete dissociation of 

nucleoprotein complexes, homogenates were left at room temperature for 5 minutes, and 
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then 200 μl of chloroform was added to each tube. Tubes were then shaken for 15 

seconds and then incubated for 2-3 minutes at room temperature. The samples were then 

centrifuged at 12,000 x g for 15 minutes at 4oC in an Eppendorf table-top centrifuge to 

create a phenol-chloroform phase (proteins), an interphase (DNA), and an RNA 

containing upper aqueous phase.  The aqueous phase was removed and transferred to a 

new 1.5 ml centrifuge tube. RNA was precipitated using 600 μl isopropanol and the 

samples were incubated for at least 10 minutes at room temperature. Samples were then 

centrifuged at 12,000 x g for 10 minutes at 4oC.  The RNA precipitate formed a gel-like 

cloudy pellet at the bottom of the tube. The supernatant was poured off all samples, 1 ml 

of 70 % ethanol was added and the samples were briefly vortexed to dislodge and wash 

the RNA pellet. The samples were centrifuged at 7,500 x g for 5 minutes at 4oC and the 

ethanol was poured off. The pellets were air dried for 5-10 minutes and 50 μl of RNAse-

free water was added to solubilize the pellets. The samples were incubated at 55oC for 10 

minutes on a dry heat block, briefly vortexed and then centrifuged, then placed in storage 

at -80oC.    

Following Trizol purification, all RNA samples were subsequently treated with 

DNase (Ambion, Austin, TX) to remove any residual genomic DNA from the purified 

RNA.  Using the Ambion DNase I kit, a master mix was made by combining 10 μl 

DNase buffer, 15 μl (30 units) of DNase I, and 70 μl RNase-free water for each sample. 

For each RNA sample, 95 μl of the master mix was added to a clean 1.5 ml centrifuge 

tube and 10 μl of the appropriate sample was added. The master mix and sample were 

mixed by pipetting, and then briefly centrifuged and incubated at 37oC for 30 minutes, 

allowing the DNase I enzyme to degrade any gDNA that could result in false positive 
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signals in subsequent RT-PCR.  Samples were then purified over Zymo RNA Cleanup 

Columns (Zymo Research). To each sample, 400 μl of RNA-Binding buffer (Zymo 

Research) was added, pipetted to mix, and was then transferred to a Zymo-spin column 

and centrifuged for 30 seconds at full speed. The RNA, bound to the column by the 

RNA-Binding buffer, was washed twice with 350 μl of Wash Buffer (Zymo Research) 

and centrifuged for 30 seconds at full speed to remove Wash Buffer residues. RNA was 

eluted by adding 50 μl of RNase-free water to the column and briefly centrifuging it at 

>10,000 x g. The eluent was used immediately or stored at -80oC.   

The RNA was reverse-transcribed to make cDNA for RT-PCR using an iScript 

Reverse Transcription kit (Bio-Rad). First, a master mix was made using 10 μl  nuclease-

free double distilled water, 4 μl  of 5x iScript Reaction Mix, and 1 μl  iScript reverse 

transcriptase (iScript RT) for each sample. For the non-reverse transcribed (no-RT) 

controls, 1 μl of water was used in place of the iScript RT. In a 0.5 ml tube, 5 μl of the 

appropriate sample and 15 μl of the master mix were mixed together. Additionally, 

control samples of RNA were made and serially diluted 1:5, 1:25, and 1:125 to measure 

the efficiency and sensitivity of the reverse transcription process.  The samples were then 

placed in an MJ Research PTC Thermal Cycler (MJ Research Inc., Quebec, Canada) and 

run under the following conditions: 25oC for 5 minutes, 42oC for 30 minutes, 85oC for 5 

minutes, and held at 20oC until removed. Following the reverse transcriptase reaction, 

samples were briefly centrifuged and diluted four-fold in RNase-free water.  cDNA was 

stored at -20oC prior to use in real-time PCR reactions.   
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3.9: Real-time PCR Analysis of Gene Expression 

A master mix was made using 17.5 μl 2x iTaq SYBR Green Supermix with Rox 

(Bio-Rad), 1.75 μl of forward and reverse primers (1.8 μM final concentration) and 9 μl 

RNase-free H2O for a total volume of 30 μl per sample. In a 96 well plate kept on a 

cooling block, 30 μl of master mix was dispensed into each well and 5 μl (10 ng) of 

cDNA or water was added to the appropriate well. The plate was covered with 

RNase/DNase-free film, vortexed to mix, and centrifuged at 1500 rpm for 5 minutes. The 

film was removed and the samples were dispensed 10 μl per well in triplicate into a 384 

well plate (Applied Biosystems, Foster City, CA) using a Matrix electronic repeating 

pipette (Matrix Technologies, Hudson, NH). Once again, the plate was covered with 

RNase/DNase-free film and centrifuged at 1500 rpm for 5 minutes. Plates were kept at 

4oC until analysis on an ABI PRISM 7900 Sequence Detection System (Applied 

Biosystems). Primers for real-time PCR analysis are shown in Table 2. All primers used 

for real-time analysis were designed using Primer3 software (111). To confirm that all 

primer pairs were specific for the gene of interest and that no homology to other genes 

was present, primers were compared against the National Center for Biotechnology 

Information (NCBI) website. Analysis of dissociation curves was used to confirm the 

amplification of a single product for each primer pair per sample. Confirmation of a lack 

of DNA contamination was achieved by running reactions without reverse transcriptase. 

Untranscribed controls had at least a 1000-fold lower expression level than analyzed 

samples or were negative for all genes after 40 cycles. Gene expression was quantified by 

the cycle number at which each sample reached a fixed fluorescence threshold (CT). To 

control for variations in RNA amounts among samples, data were calculated as the 
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difference in CT values (log2) between Gapdh and the gene of interest for each sample 

(ΔCT = CT Gapdh – CT gene of interest). Therefore, data are presented as a percentage of 

Gapdh expression for each gene of interest. 

3.10: Statistical Analysis  

All statistical analyses were performed using Graph-Pad Prism software (San Diego, CA) 

using the appropriate statistical test as stated in each figure legend.  Indications of 

statistical significance are: * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 
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Table 2. List of primers used for real-time PCR analysis. 
Common gene Name NCBI Gene 

Symbol &  ID#  
Forward primer Reverse Primer 

Actin Actb: 11461 CAGCTTCTTTGCAGCTCCTT CACGATGGAGGGGAATACAG 
CD3 antigen epsilon  Cd3e: 12501 GAGCACCCTGCTACTCCTTG TGAGCAGCCTGATTCTTTCA 
Chemokine ligand 2 (MCP-1) Ccl2: 20296  TCCCAATGAGTAGGCTGGAG CCTCTCTCTTGAGCTTGGTGA 
Chemokine ligand 3 (MIP-1α) Ccl3:  20302 ACCATGACACTCTGCAACCA GATGAATTGGCGTGGAATCT 
Chemokine ligand 4 (MIP-1β) Ccl4: 20303 AGTCCCAGCTCTGTGCAAAC CCACGAGCAAGAGGAGAGAG 
Chemokine  ligand 5 
(RANTES) 

Ccl5: 20304 GGTTTCTTGATTCTGACCCTGT
A 

AGGACCGGAGTGGGAGTAG 

Chemokine ligand 10 (IP10) IP10: 15945 CAGTGAGAATGAGGGCCATAG
G 

CTCAACACGTGGGCAGGAT 

Friend murine leukemia virus 
Fb29 gag  (gag) 

gag: 1491876 AAACCAATGTGGCCATGTCATT AAATCTTCTAACCGCTCTAACT
TTCG 

F4/80 Emr1: 13733 TTACGATGGAATTCTCCTTGTA
TATCA 

CACAGCAGGAAGGTGGCTATG 

Glyceraldehyde-3-phosphate 
dehydrogenase (Gapdh) 

Gapdh: 407972 TGCACCACCAACTGCTTAGC TGGATGCAGGGATGATGTTC 

Glial fibrillary acidic protein 
(GFAP) 

Gfap: 14580 CGTTTCTCCTTGTCTCGAATGA
C 

TCGCCCGTGTCTCCTTGA 

Integrin alpha X (Cd11c) Cd11c: 16411 ATGTTGGAGGAAGCAAATGG TGGGGCTGACTTAGAGGAGA 
Interferon beta (Ifnb1) Ifnb1: 15977 AGCACTGGGTGGAATGAGAC TCCCACGTCAATCTTTCCTC 
Myeloid differentiation primary 
response 88 (MyD88) 

Myd88: 17874 CATGGTGGTGGTTGTTTCTG CTGTTGGACACCTGGAGACA 

Toll-like receptor 3 Tlr3: 142980 AGCTTTGCTGGGAACTTTCA ATCGAGCTGGGTGAGATTTG 
Toll-like receptor 4 Tlr4: 21898 GGCAGCAGGTGGAATTGTAT AGGATTCGAGGCTTTTCCAT 
Toll-like receptor 7 Tlr7: 170743 GGCATTCCCACTAACACCAC TTGGACCCCAGTAGAACAGG 
Toll-like receptor 8  Tlr8: 170744 TCGTCTTGACCATTTGTGGA AATGCTCCATTTGGGATTTG 
Toll-like receptor 9 Tlr9: 81897 ACTTCGTCCACCTGTCCAAC TCATGTGGCAAGAGAAGTGC 
Tumor necrosis factor alpha  Tnf: 21926 CCACCACGCTCTTCTGTCTAC GAGGGTCTGGGCCATAGAA 



Chapter 4: Results 

4.1 Effect of TLR7 Deficiency on Fr98-induced Neurologic Disease 

 To analyze the role of TLR7 in neuropathogenesis, TLR7+ and TLR7- littermates 

were infected i.p. with Fr98 or mock culture supernatants within 24 hours of birth and 

followed for the development of clinical disease. No significant difference in the 

development of neurologic disease was observed in TLR7- mice versus TLR7+ mice 

(Fig. 3).  Additionally, there were no notable distinctions in the histopathology of Fr98-

infected TLR7+ and TLR7- mice as detected in hematoxylin and eosin (H&E) stained 

sections or in tissue sections stained with antibodies to CD3, viral envelope protein or 

active caspase 3 (data not shown).  Thus, TLR7 did not appear to play a critical role in 

the development of Fr98-mediated neurologic disease. 
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Figure 3. Analysis of the effect of TLR7 deficiency on neurologic disease. Development 
of neurologic disease in TLR7 positive (+/- or +) and TLR7 deficient (-/- or -) Fr98-
infected mice and age-matched control mice.  At the time of clinical disease, mice were 
genotyped for Tlr7 positive and knockout alleles.  Data are presented as the percentage of 
mice (14 TLR7- mice and 15 TLR7+ mice) with severe ataxia or death. Data was 
analyzed using Kaplan-Meir survival curve and log-rank post-test. 
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4.2 Effect of TLR7 on Viral Replication, TLR8, TLR9, and the MyD88 Signaling 
Pathway in the Brain 
 
 To determine if TLR7 alters virus replication during infection,  we analyzed brain 

tissue from mock and Fr98-infected TLR7+ and TLR7- mice for expression of virus gag 

RNA at 14 dpi, just prior to the development of clinical neurologic disease. No 

significant difference was observed in viral gag RNA expression in the brains (Fig. 4A) 

of Fr98-infected TLR7+ or TLR7- mice. Thus, TLR7-deficiency did not appear to 

influence virus replication in the brain. 

As expected, the presence of TLR7 was demonstrated by mRNA expression in 

both the TLR7+ mock and Fr98 infected mice, and absent in both groups of TLR7- mice 

(Fig. 4B). Since TLR7, TLR8, and TLR9 comprise a subfamily in which all are confined 

to the membranes of endosomes and recognize similar molecular structures, the 

oligonucleotide-based PAMPs, we analyzed Tlr8 and Tlr9 mRNA expression to 

determine if any cooperative interactions among these receptors existed. A significant up-

regulation of Tlr8 mRNA by Fr98 infection was observed in both TLR7+ as well as 

TLR7- mice (Fig. 4C).  An approximate 3-fold increase was observed with Tlr9 

expression in Fr98-infected TLR7+ mice compared to controls, although expression 

levels varied substantially between mice, making the increase not statistically significant 

(Fig. 4D).  This increase was not observed in TLR7- mice (Fig. 4D). Additionally, we 

examined the mRNA expression of Myd88, as it is the cytosolic adaptor protein 

responsible for intracellular signaling initiation of TLR7, TLR8, and TLR9 (54, 55).  No 

significant difference was seen in Myd88 mRNA expression in the brain. Thus, multiple 

members of the TLR9 family of receptors were up-regulated by Fr98 infection in 
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wildtype mice.  TLR7 deficiency may have an impact on TLR9 expression, but the 

variability of TLR9 expression makes this difficult to determine. 
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Figure 4. Analysis of the effect of TLR7 on viral replication, TLR8, TLR9, and the 
MyD88 signaling pathway in the brain. Brain tissue from mock and Fr98-infected mice 
was removed at 14 dpi, divided into two sagittal sections, snap frozen in liquid nitrogen 
and processed for RNA.  Real-time quantitative RT-PCR analysis was performed using 
primers specific for (A) virus gag, (B) Tlr7 (C) Tlr8 (D) Tlr9 (E) Myd88.  Data was 
calculated as gene expression relative to Gapdh expression (% of Gapdh expression) for 
each sample.  Data are the mean +/- SEM for 5-6 mice per group.  Data shown is from 
one of two replicate experiments. Data analyses of TLR8 and TLR9 for both replicate 
experiments was completed at the same time and were combined for graphing and 
analysis. Statistical analysis was completed using a One-way ANOVA with Newman 
Keuls post-test analysis.  * = p<0.05, ** p<0.01.   
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4.3 Effect of TLR7 Deficiency on Fr98-induced Cytokine and Chemokine 
Production by Multiplex Analysis and Real-time Polymerase Chain Reaction 
 

Fr98 infection of neonates induces substantial innate immune responses in the 

brain including the production of proinflammatory cytokines as detected by both mRNA 

and protein expression (1, 107, 108, 112, 113). To determine the role of TLR7 in the 

innate immune response to Fr98 infection, brain tissue was analyzed for proinflammatory 

cytokines and chemokines by multiplex bead array. Similar to previous reports, Fr98 

infection of TLR7+ mice induced a significant up-regulation of CCL2 (MCP-1), CCL4 

(MIP-β), and CCL5 (RANTES) protein levels (Fig. 5A-C) (1, 2).  CCL3, TNF and Il-

12p70 protein levels were below sensitivity levels by multiplex bead array (data not 

shown).  In contrast to TLR7+ mice, only CCL5 protein was up-regulated significantly 

by Fr98-infection in TLR7- mice (Fig. 5C).  However, CCL5 expression was 

significantly lower in TLR7- mice compared to TLR7+ mice (Fig. 5C). Thus, TLR7 

appeared to play a non-redundant role in the induction of multiple pro-inflammatory 

chemokines during retrovirus infection in the CNS.  

Since some protein levels were too low for detection, we also analyzed gene 

expression in the brain by real time polymerase chain reaction. Significant up-regulation 

of Ccl3 (MIP-α), Cxcl10 (IP-10), Tnf (TNFα) and Ifnb1 mRNA levels were detected in 

the brain of Fr98-infected wildtype mice at 14 dpi (Fig. 6A-C). TLR7 appeared to be 

required for induction of Cxcl10 and Tnf mRNA, but was not necessary for Ccl3 or Ifnb1 

mRNA up-regulation (Fig. 6A, 6D).  
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Figure 5.  Influence of TLR7 deficiency on Fr98-induced cytokine and chemokine (A-C) 
protein levels in the brain. Brain tissue from mock and Fr98-infected mice was removed 
at 14 dpi, snap frozen and processed for multiplex bead array.  Analysis of (A) CCL2, (B) 
CCL4 and (C) CCL5 protein levels in brain tissue.  Results are the mean +/- standard 
error of 5-6 mice per group.  Statistical analysis was done by One-way ANOVA with 
Newman Keuls post-test analysis. Statistical significance: * = p < 0.05, ** = p < 0.01.  
 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Influence of TLR7 deficiency on Fr98-induced cytokine and chemokine (A-D) 
mRNA levels in the brain.  Brain tissue from mock and Fr98-infected mice was removed 
at 14 dpi, snap frozen and processed for real-time PCR analysis.  Expression of (A) Ccl3 
(B) Cxcl10 (C) Tnfa and (D) Ifnb1 mRNA.  Data shown are the gene expression as a 
percent of Gapdh mRNA expression for each sample. Results are the mean +/- SEM of 5-
6 mice per group. Data shown is from one of two replicate experiments. Statistical 
analysis was done by One-way ANOVA with Newman Keuls post-test analysis. 
Statistical significance: * = p < 0.05, ** = p < 0.01. 
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4.4 Effect of TLR7 on Peripheral Viral Replication and TLR7 Deficiency on Fr98-
induced Peripheral Cytokine Production 
 

To investigate if TLR7 alters virus levels and cytokine production in the 

periphery, we analyzed splenic tissue from mock and Fr98 infected TLR7+ and TLR7- 

for expression of virus gag RNA at 14 dpi.  No significant difference was observed in 

viral gag RNA expression in the spleen (Fig. 7A) between Fr98-infected TLR7+ and 

TLR7- mice. Thus, TLR7-deficiency did not appear to influence peripheral virus 

replication. 

 

 

 

 

 

 

 
Figure 7. Expression of virus gag (A), Ifnβ1 (B), and Ccl3 (C) mRNA in the spleen of 
mock and Fr98-infected TLR7 positive and TLR7 deficient mice at 14 dpi.  Splenic tissue 
from mock and Fr98-infected mice was removed at 14 dpi, snap frozen and processed for 
real-time PCR analysis.  Data are the mean +/- SEM of 5-6 mice per group. Data shown 
is from one experiment. Statistical analysis was completed using One-way ANOVA 
Newman Keuls post-test analysis. Statistical significance: * = p < 0.05.  
 

In the spleen, mRNA for several cytokines including Ccl2 (MCP-1), Ccl4 (MIP-

β), Ccl5 (RANTES), Ccl3 (MIP-α), Cxcl10 (IP-10), and Tnf (TNFα) were up-regulated in 

Fr98-infected TLR7+ mice compared to mock-infected controls (data not shown).  Of 

these cytokines, only Ccl3 mRNA was not up-regulated by Fr98 in TLR7- mice (Fig. 

7C).  Fr98-induced Ifnb1 mRNA expression was lower in TLR7 deficient mice compared 
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to wildtype controls, but not to a significant level (Fig. 7B).  Thus, TLR7 only had a 

limited role in peripheral immune responses to Fr98 infection. 

4.5 Effect of TLR7 Deficiency on Fr98-induced Neuroinflammation 

 Activation of astrocytes, microglial cells, and macrophages is one of the primary 

pathologic changes associated with Fr98 infections (107, 108). To examine if TLR7 was 

involved in Fr98-induced activation of astrocytes and/or microglia/macrophages, we 

analyzed TLR7+ and TLR7- mice at 14 dpi for mRNA expression of Gfap and F4/80 via 

quantitative RT-PCR. GFAP and F4/80 are up-regulated on astrocytes and 

microglia/macrophages, respectively, following activation (114-116). A significant 

increase in Gfap and F4/80 mRNA expression was observed in Fr98-infected TLR7+ 

mice when compared to mock infected mice (Fig. 8A-B).  However, Gfap and F4/80 

were not up-regulated in TLR7- mice (Fig. 8A-B). The pattern of GFAP staining 

observed by immunohistochemistry was inconclusive (data not shown). 

 To examine if TLR7 was involved in Fr98-induced up-regulation of other cellular 

molecules, we also analyzed TLR7+ and TLR7- mice at 14 dpi for mRNA expression of 

Cd3ε, Cd11c and Siglec-H via quantitative RT-PCR.  Cd3ε is expressed by T cells, 

Cd11c is expressed by a number of cell types including dendritic cells, and Siglec-H is 

expressed by plasmacytoid dendritic cells.  A significant increase in Cd3ε and Cd11c 

mRNA expression was observed in Fr98-infected TLR7+ mice as compared to mock 

infected mice (Fig. 8C-D). Additionally, Cd3ε and Cd11c mRNA was not up-regulated in 

TLR7- mice.  No increase in mRNA expression was observed for Siglec-H in Fr98-

infected TLR7+ or TLR7- mice (data not shown).  Thus, Cdllc mRNA expression may be 

due to microglial cells which up-regulate this molecule on activation, rather than 
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recruitment of plasmacytoid dendritic cells which could migrate to the CNS in response 

to infection.   
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Figure 8.  Expression of Gfap (A), F480 (B) Cd3ε (C), and Cd11c (D) mRNA in the brain 
of mock and Fr98-infected TLR7 positive and TLR7 deficient mice at 14 dpi. Tissue was 
processed as described in Fig. 4. Real-time quantitative RT-PCR analysis was performed 
using primers specific for Gfap, F480, Cd3ε, Cd11c, and Gapdh. Data are shown as the 
gene expression as a percent of Gapdh mRNA expression for each sample. Results are 
the mean +/- SEM of 5-6 mice per group. Data shown is from one of two replicate 
experiments. Statistical analysis was done by One-way ANOVA with Newman Keuls 
post-test analysis. Statistical significance: * = p < 0.05, ** = p < 0.01 
 

4.6 Effect of TLR7 on Viral Replication and the Effect of TLR7 Deficiency on Fr98-
induced Neuroinflammation in Clinically Ill Animals 
 
 While we found that virus replication prior to clinical disease was not TLR7 

dependent, we wanted to determine if TLR7 alters virus replication during active clinical 

disease.  To determine this, we analyzed brain tissue from mock and Fr98 infected 

TLR7+ and TLR7- mice for expression of virus gag RNA when mice began to exhibit 

clinical signs (ataxia, seizures). No significant difference was observed in viral gag RNA 
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expression in the brain (Fig. 9A) of Fr98-infected TLR7+ and TLR7- mice. Thus, TLR7 

deficiency did not appear to influence virus replication in the brain of preclinical or 

clinically ill animals. 

 Since GFAP and F4/80 up-regulation was decreased in TLR7- mice in pre-clinical 

animals, we analyzed Gfap and F4/80 mRNA expression in TLR7+ and TLR7- mice to 

determine if this remained true in clinically ill animals.  Surprisingly, a significant 

increase in Gfap mRNA expression was observed in both Fr98-infected TLR7+ and 

TLR7- mice as compared to mock infected mice (Fig. 9B).  No up-regulation of F4/80 

was observed at the time of clinical disease in either Fr98-infected TLR7+ or TLR7- mice 

(Fig. 9C).  Thus, TLR7 appears to play a role in stimulating astrocytes early in infection 

(prior to day 14), but other mechanisms appear to compensate for the lack of TLR7 at 

later stages of disease.   

 

 

 

 

 

 
 mock

 TLR7+

Fr98
 TLR7+

mock
 TLR7-

Fr98
 TLR7-

0.0

2.5

5.0

7.5

10.0
A.  Viral gag RNA

%
 o

f
G

ap
dh

mock
 TLR7+

Fr98
 TLR7+

mock
 TLR7-

Fr98
 TLR7-

0

4

8

12

16
B. Gfap mRNA

* *

mock
 TLR7+

Fr98
 TLR7+

mock
 TLR7-

Fr98
 TLR7-

0.000

0.025

0.050

0.075

0.100
C. F4/80 mRNA

 
Figure 9. Expression of virus gag (A), Gfap (B), and F4/80 (C) mRNA in the brain of 
Fr98-infected TLR7 positive and TLR7 deficient mice and age-matched controls at the 
time of apparent clinical disease (tremors, ataxia, seizures).  Tissue was processed as 
described in Fig. 4.  Data are the mean +/- SEM of 7-8 mice per clinical disease group 
and 3 mice per age-matched control group. Data shown is from one experiment. 
Statistical analysis was completed using One-way ANOVA with Newman Keuls post-test 
analysis. Statistical significance: * = p < 0.05. 
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4.7 Effect of TLR7 Deficiency on Fr98-induced Cytokine and Chemokine 
Production in Clinically Ill Animals 
 

As Gfap mRNA was up-regulated in clinically ill TLR7- mice, we were interested 

in whether other inflammatory markers were also up-regulated during the clinical stage of 

disease. Tnf mRNA expression was significantly up-regulated by Fr98-infection in 

TLR7+ mice, but was not up-regulated by Fr98-infection in TLR7- mice (Fig. 10F).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Influence of TLR7 deficiency on Fr98-induced cytokine and chemokine 
mRNA levels in the brain. Expression of Ccl2 (A), Ccl3 (B), Ccl5 (C), Cxcl10 (D), Ifnb1 
(E), and Tnfa (F) mRNA in the brain of Fr98-infected TLR7 positive and TLR7 deficient 
mice and age-matched controls at the time of apparent clinical disease (tremors, ataxia, 
seizures).  Tissue was processed as described in Fig. 4.  Data are the mean +/- SEM of 7-
8 mice per diseased group and 3 mice per age-matched control group.  Data shown is 
from one experiment. Statistical analysis was completed using One-way ANOVA with 
Newman Keuls post-test analysis. Statistical significance: * = p < 0.05.   
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For the other genes of interest, mRNA expression fluctuated too much to establish 

significance; however, there was an observable trend of a more substantial increase of 

cytokine and chemokine mRNA expression in the brain of clinically ill Fr98-infected 

TLR7+ animals compared to Fr98-infected TLR7- mice (Fig. 10A-D).  TLR7 appeared to 

contribute to the induction of most cytokines and chemokines but had no effect on Ifnb1 

mRNA expression (Fig. 10E).  Thus, TLR7 may play a role in modulating the innate 

immune response in both early and late stages of virus infection, with the exception of 

Ifnb1. 
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Chapter 5: Discussion 

In the current study, TLR7 deficiency did not alter retroviral pathogenesis, but did 

alter neuroinflammation, including astrocyte activation and chemokine production.   

Thus, TLR7 appears to play an important role in the early glial response to retrovirus 

infection, and inhibition of the pathway may reduce neuroinflammation. To date, this is 

the first demonstration of the necessity of TLR7 for innate immune responses to 

retrovirus infection in vivo. Additionally, these results indicate that the innate immune 

response to retrovirus in the CNS may not be an essential step in the pathogenesis of the 

disease. 

TLR7 stimulation has been shown to both suppress and enhance HIV virus 

replication in PBMC (22).  In this study, TLR7 deficiency did not alter virus replication 

in the brain or in the spleen of pre- or post-clinically diseased mice as measured by virus 

gag RNA expression (Fig. 4A, 7A, 9A).  This lack of an effect may be due to the 

immaturity of the immune system in neonates. B cells play an important role in TLR7 

mediation of HIV viral replication, and these responses are not fully developed in the 

neonate. Additionally, spread of Fr98 may be restricted in the absence of an anti-viral 

response.  Unlike ecotropic retroviruses which infect microglia/macrophages throughout 

the brain, polytropic retrovirus infection has a limited spread to microglia/macrophages 

around blood vessels in the thalamus, hippocampus, corpus collosum, and cerebellum 

(107).  Thus, even in the absence of an anti-viral response, the spread of polytropic 

viruses may be limited. 

The lack of virus spread in TLR7 deficient animals may also be due to the 

production of interferon beta. Ifnb1 mRNA was up-regulated in response to retrovirus 
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infection in both TLR7 sufficient and deficient mice in the brain and the spleen of 

animals prior to onset of clinical signs as well as in the brains of mice that exhibited 

clinical signs of disease (Fig. 6D, 7B, 10E).  Type 1 interferons,  such as IFNβ, are 

known to suppress the spread of the virus to uninfected cells (18, 19, 78, 79, 117).  As 

IFNβ up-regulation is a common downstream effect of TLR stimulation (69), it is 

probable that stimulation of other TLR molecules are responsible for the Ifnb1 up-

regulation observed in the TLR7 deficient mice (Fig. 6D, 7B, 10E).  For example, TLR4 

has been shown to be activated by retroviral glycoproteins and can induce the expression 

of Ifnb1 mRNA (118-122).  Thus, TLR4 stimulation by Fr98 envelope proteins may be 

sufficient for the induction of Ifnb1 mRNA in the absence of TLR7. 

Despite the lack of effect on virus replication and clinical disease in this model, 

TLR7-deficiency had a significant impact on neuroinflammatory responses. Many, but 

not all, chemokines were reduced and cellular responses were also limited in both the 

brain and in the periphery (Fig. 5A-C, Fig. 6A-D, Fig. 7B-C). Similar suppression of the 

innate immune response was observed with TLR2 deficient mice following HSV-1 

infection (14). Mice deficient in TLR3 had reduced infiltration of virus and immune cells 

to the brain following West Nile virus infection (123).  Thus, specific TLRs may play a 

critical non-overlapping role in the initiation of immune responses to certain viruses. This 

effect may be more profound in the developing brain, where limited immune cell 

interaction reduces the possible mechanisms available for stimulation of immune 

responses. 

Another factor potentially influencing the neuroinflammatory responses observed 

in the study is the cooperative interactions of the TLR7, TLR8, and TLR9 (TLR7/8/9) 
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subfamily. Selective expression of murine TLR7, TLR8, and TLR9 in HEK293 cells has 

demonstrated that co-expression of TLR8 or TLR9 inhibited TLR7 activation and 

cytokine production (124). It is possible that selective activation and suppression within 

the TLR7/8/9 subfamily provides a more tailored immune response to a specific 

pathogen.  In this study, both Tlr8 and Tlr9 mRNA appear to be up-regulated in TLR7+ 

Fr98-infected mice, with a statistical increase in Tlr8 mRNA expression (Fig. 4C-D).  

However, only Tlr8 mRNA appeared to be up-regulated in TLR7 deficient Fr98-infected 

mice. The observed up-regulation of Tlr8 mRNA in TLR7- mice may indicate that Tlr8 

mRNA expression is not dependant on TLR7.  The apparent lack of up-regulation of Tlr9 

mRNA expression in TLR7- mice suggests that Tlr9 up-regulation may be dependent on 

TLR7 stimulation: TLR7 agonist stimulation did induce Tlr9 mRNA up-regulation in an 

astrocyte cell line (data not shown), suggesting a possible self-regulatory mechanism for 

TLR7-induced responses. 

 Murine TLR8 was previously thought to be dysfunctional, based on the lack of 

response of murine TLR7 deficient cells to viral ssRNA stimulation and TLR7/8 agonist 

stimulation (125, 126).  However, murine TLR8 is expressed on the embryonic and 

neonatal brain and has been shown to play a role in regulating axonogenesis in the 

developing nervous system and to inhibit neurite outgrowth and induce neuronal 

apoptosis, in vitro (127). Possibly, TLR8 stimulation on neurons contributes to Fr98-

induced pathogenesis even in the absence of other inflammatory stimuli. 

 Differences and similarities in stimulation and signaling within the TLR7/8/9 

subfamily may also influence inflammatory responses.  As previously mentioned, ssRNA 

genomes such as vesicular stomatitis virus, influenza A virus, and synthetic RNA 
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oligonucleotide from HIV have all been found to activate TLR7 (18, 21) while TLR9 

recognizes dsDNA genomes such as herpes simplex virus and murine cytomegalovirus 

(64, 65, 79, 79).  Additionally, it has been shown that during HIV infection, HIV-1 RNA, 

not DNA retrotranscripts, appears to be essential for activating pDCs. However, 

retroviruses, including HIV-1, may signal through both TLR7 and TLR9 (128).  Possibly, 

TLR9 is being stimulated by Fr98 viral CpG DNA fragments that have been released into 

the cellular environment by infected apoptotic cells.  Therefore, the neuroinflammatory 

response observed in Fr98-infected mice may be due to multiple TLR stimulation, not 

solely TLR7.   

Due to their location, both TLR7 and TLR9 require endosomal acidification for 

stimulation. It has recently been shown that for plasmacytoid dendritic cell activation and 

subsequent IFNα production, TLR7 viral recognition and stimulation in pDCs requires 

transport of viral replication intermediates into the lysosome by autophagy (129).  

Because murine leukemia viruses may release their RNA into the cytosol (130), 

stimulation of TLR7 may be through autophagy of infected cells or by uptake of 

cellular/viral debris.  

The requirement for TLR7 in Fr98-mediated up-regulation of multiple cytokines 

and chemokines is interesting, as many of these cytokine and chemokine-producing cells 

are not productively infected with virus. For example, Ccl2 and Cxcl10 mRNA is 

produced by astrocytes (112), while Ccl3 and Ccl5 mRNA is produced by uninfected cell 

types (131) (data not shown). The lack of cytokine and chemokine production correlated 

with the lack of activation marker expression by astrocytes. As astrocytes are not 

productively infected by Fr98, it is unclear how TLR7 influences their response to virus 
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infection. Possibly, these cells are not directly activated through TLR7 signaling, but are 

responding to a secreted cytokine or other signaling molecule produced by an infected 

cell. This response may be inhibited in the absence of TLR7. Alternatively, astrocytes 

and other uninfected cell types may take up viral particles including viral ssRNA by 

phagocytosis or pinocytosis, leading to the activation of these cells through TLR7.  

TLR7, TLR8, and TLR9 are expressed on lymphoid cellular subsets: B cells and 

monocytes express TLR7 and 8, while pDC express TLR7 and TLR9, and CD11c 

immature DC only express TLR8 (96, 132-134).  A significant lack of mRNA expression 

of Cd3ε and Cd11c in Fr98-infected TLR7 deficient versus Fr98-infected TLR7+ mice 

was also observed in this study, indicating that activation of T cells and 

dendritic/moncyte/macrophage cells is TLR7 dependent.  No mRNA up-regulation was 

observed in the expression of Siglec-H, a marker for pDCs, in Fr98-infected wildtype or 

TLR7 deficient mice (data not shown), indicating that the cell types affected by TLR7 

deficiency were mDC, monocytes or macrophages.  

While TLR7 deficient mice sacrificed before clinical disease development 

displayed significantly reduced expression by astrocytes and microglia/macrophages 

compared to wildtype animals, mice which exhibited clinical signs of disease showed no 

difference in Gfap mRNA up-regulation between Fr98-infected TLR7+ and TLR- mice.  

Thus, TLR7 activation may stimulate astrocytes prior to the development of clinical 

signs, but other mechanisms appear to compensate for the lack of TLR7 during later 

stages of infection.   

While not statistically significant (with the exception of TNF), mice which 

developed clinical signs of disease displayed similar innate immune responses to those 
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sacrificed prior to the development of clinical disease at day 14 and the peak time 

increase in cytokine and chemokine expression (1) (Fig. 10A-F).  The variability of 

cytokine and chemokine gene expression in Fr98-infected TLR7+ clinically ill mice was 

surprising as we have previously shown that cytokine and chemokine expression is 

significantly and repeatedly up-regulated following Fr98-infection in wildtype IRW mice.  

The variability in gene expression in this experiment could be due to multiple reasons 

including the variation in the age of the mice when they developed clinical signs (13-37 

dpi) and the potential influence of heterozygosity (all females +/-, all males +) of the 

genotype. Additionally, these studies were completed on mice that had only been 

backcrossed for eight generations, not the full ten generations required for the residual 

amount of unlinked donor genome in the strain to fall below 0.01 %. While each of the 

effects may be minor, the combination may be sufficient to account for the variability 

observed in the cytokine and chemokine results in the wildtype mice. That withstanding, 

there was still a substantial up-regulation of cytokines and chemokines in wildtype mice 

following Fr98-infection, but not in knockout mice.  

The lack of a strong innate immune response to Fr98 infection in TLR7 deficient 

mice is also interesting in light of potential mechanisms of neuropathogenesis.  The 

development of clinical disease by the TLR7 deficient mice indicates that the induction 

of several components of the innate immune response is not essential for 

neuropathogenesis.  We have previously shown that TNFa and CCL2, two of the 

molecules not induced in the TLR7 deficient mice, contribute to but are not necessary for 

Fr98-mediated neurologic disease (2, 112). Possibly, the absence of both TNFa and 

CCL2 negates the pathogenic and protective properties of both molecules. Although we 
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did not observe any notable change in histopathology between Fr98-infected TLR7+ and 

TLR7- mice, it is possible that other molecules were up-regulated in the TLR7 deficient 

mice and that they contributed to disease pathogenesis, effectively compensating for the 

lack of TLR7.  It is also probable that the innate immune response may play a more 

important role in slower developing neurologic disease compared to the rapid onset of 

pathologic changes following Fr98 infection.  

In the current study, TLR7 deficiency did not alter virus replication, clinical 

disease, or influence the production of IFNβ1 in the brain. However, TLR7 deficiency did 

alter neuroinflammation, including astrocyte activation and chemokine production.   

Therefore, TLR7 appears to play an important role in the early glial response to retrovirus 

infection, and inhibition of the pathway may reduce neuroinflammation.  To further 

define the role of TLR7 in neuropathogenesis, the neuroinflammatory and 

neuropathogenic properties of the TLR7/8/9 family should be evaluated, as well as how 

the interactions between TLR7, TLR8, and TLR9 elicit those responses. Additionally, 

since it has been shown in this study that TLR7 has a non-redundant role in the induction 

of neuroinflammatory responses in the CNS, it would be interesting to determine if the 

roles of TLR7 and TLR9 are pathogenic or protective during retrovirus infection in the 

neonatal brain.  It would also be invaluable to determine how different TLR7, TLR8, and 

TLR9 agonists affect the innate and adaptive immune responses to retrovirus infection in 

the brain.  
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