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ABSTRACT 

Although the biochemical characterization of E. ictaluri, the subsequent disease 

progression of enteric septicemia of catfish (ESC), and the associated pathologic lesions are well 

characterized, the mechanism of invasion of E. ictaluri into a susceptible host is poorly 

understood.  Identification and confirmation of virulence factors and associated genes of E. 

ictaluri is crucial to elucidating the pathogenesis of this important disease.  A signature tagged 

mutagenesis (STM)  study conducted by Thune et al. (2006) identified 50 E. ictaluri clones with 

transposon insertions in genes potentially involved in pathogenesis.  A specific STM mutant, 

233PR, carrying a transposon insertion in a gene encoding a hypothetical adhesin protein, was 

selected for further characterization.  In addition, an isogenic mutant was created by inserting a 

kanamycin resistance cassette 222 bp downstream from the site of the transposon insertion in 

233PR in order to examine the effects of differential protein truncation on function.  

Bioinformatic analysis of the E. ictaluri genome revealed a pathogenicity island encoding genes 

with similarity to a gene cluster encoding putative adhesin/hemolysin genes in E. coli CL3 (Shen 

et al. 2004).  In vivo results demonstrated the importance of the putative adhesin’s role in E. 

ictaluri pathogenesis and that protein length correlated to the level of attenuation.  In vitro data 

did not support a role in adhesion, invasion, or intracellular replication in cell culture.  The E. 

ictaluri PAI genes were designated eacA-H for Edwardsiella attenuation complex   Results 

demonstrate that EacF, the putative adhesin, is a virulence factor, but further investigation is 

required to determine its specific role in E. ictaluri pathogenesis. 
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INTRODUCTION AND LITERATURE REVIEW 

 Aquaculture was first attempted in the United States in the late 20th century, and while 

Asian countries continued to dominate aquaculture production, the value of U.S. aquaculture 

production rose over 400% between 1980 and 1998, making it an important part of U.S. 

agriculture and the U. S. economy.  The channel catfish (Ictalurus punctatus) industry is the 

largest sector of the U.S. aquaculture industry, accounting for almost half of all sales at $433.6 

million in 2005 (Harvey 2006).  Despite increased production, profitability of the catfish industry 

is declining, with disease related problems constituting the largest single cause of economic 

losses.  Bacterial pathogens cause the most overall disease problems, with Gram-negative 

bacteria leading the most frequent causes of bacterial disease mortalities in finfish (USDA 2003).  

Enteric septicemia of catfish (ESC) is the principle disease problem in catfish culture, costing 

over $10 million in losses annually (Hawke et al. 1998). 

 Enteric septicemia of catfish was first identified in moribund catfish in Georgia and 

Alabama in 1976, which led to the discovery of its etiologic agent, Edwardsiella ictaluri in 1979 

(Hawke 1979; Hawke et al. 1981).  Outbreaks of ESC occur primarily during the spring and 

early fall when the water temperatures are naturally in the range of 22°C - 28°C, a temperature 

range known as the “ESC window” (MacMillan 1985; Francis-Floyd 1987).  Originally, Hawke 

(1979) suggested that E. ictaluri was an obligate pathogen that could only survive in water for 

eight days, but it has since been shown that it can survive for up to 95 days at 18°C and 25°C 

when inoculated into sterile pond mud (Plumb and Quinlan 1986).  Outbreaks of ESC occur 

primarily in the southeastern United States, especially Mississippi, Arkansas, Alabama, 

Louisiana, Georgia, and Florida. The disease occurs less frequently in Virginia, Texas, Idaho, 

Indiana, Kentucky, California, Arizona, and Maryland (Hawke et al. 1998).  Although channel 
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catfish are the most susceptible to infection, white catfish, brown bullhead, walking catfish, and 

blue catfish can also be infected by E. ictaluri.  Experimentally exposed golden shiners, 

largemouth bass, and bighead carp are all resistant to infection, while tilapia are mildly 

susceptible (Plumb and Sanchez 1983).  However, European catfish (Plumb and Hilge 1987), 

rainbow trout and Chinook salmon (Baxa and Hedrick 1989) are all susceptible to infection 

following experimental exposure to ESC.  Natural outbreaks have also been reported in non-

ictalurid species, including green knife fish (Kent and Lyons 1982), danio (Waltman et al. 1985), 

rosy barbs (Humphrey et al. 1986), and walking catfish (Kasornchandra et al. 1986).  

The biochemical characterization of the causative agent of ESC, Edwardsiella ictaluri, 

was first described by Hawke, et al. (1981), with further studies by Waltman et al. (1986) and 

Plumb et al. (1989).  Briefly, E. ictaluri is a Gram negative member of the enterobacteriaceae 

family and is most similar to Edwardsiella tarda and Yersinia ruckeri. Edwardsiella ictaluri 

measures 0.75 x 2.5 µm at 26 C and is weakly motile with peritrichous flagellation.  Smooth, 

circular colonies grow on brain heart infusion (BHI) agar at a slow rate that requires 48 hours at 

26 C to produce colonies 2 mm in size.  Optimal growth occurs between 25 C – 30 C, which 

overlaps the catfish disease susceptibility range of 22 C – 28 C (Francis-Floyd 1987).  The 

organism is cytochrome oxidase negative, reduces nitrate to nitrite, does not produce a pigment, 

is positive for lysine and ornithine decarboxylase, and oxidizes and ferments glucose.  It is 

negative for indole, citrate, protease, esterase, pectinase, chitinase, lipase, alginase, collagenase, 

hyaluronidase, and many carbohydrates.  Edwardsiella ictaluri was previously characterized as 

urease negative, but Booth (2006) recently described an acid activated urease gene that is 

involved in pathogenesis in the catfish host.   



  
 

3

Edwardsiella ictaluri causes a disease that is best described as an acute, rapidly 

progressive septicemia in exposed or inoculated healthy fish.  Environmental factors that are 

favorable for proliferation of E. ictaluri and stressful for the host favor development of ESC in 

catfish.  Transmission can occur by either introduction of an ESC-infected fish into a pond with 

healthy fish or by stocking healthy fish into a pond of asymptomatic carrier fish.  Clinical signs 

of ESC vary with fish size, stocking density, and water temperature (Hawke 1979; MacMillan 

1985).  Fish can be seen swimming erratically in tight circles or hanging listlessly in the water 

column in a head up and tail down position.  They normally stop eating shortly after becoming 

infected (Jarboe et al. 1984; Blazer et al. 1985), eliminating treatment with medicated feed as a 

potential cure.   

The disease process of ESC is well characterized.  ESC can manifest as either an acute 

gastrointestinal septicemia with rapid mortality or as a chronic disease exhibiting a very 

characteristic “hole-in-the-head” lesion (Shotts and Blazer 1986; Johnson 1989).  External 

lesions include small red and white ulcers covering the skin, petechial hemorrhages around the 

mouth, base of fins, or ventral and lateral surfaces, pale and swollen gills, exophthalmia, and a 

very swollen abdomen due to the accumulation of ascitic fluids (Areechon and Plumb 1983; 

Jarboe et al. 1984; MacMillan 1985; Hawke et al. 1998).  This blood tinged or clear yellowish 

ascitic fluid is a hallmark of acute septicemia that is also caused by other types of bacterial 

pathogens.   The intestine contains clear red fluid and is partially filled with gas.  Other internal 

lesions include petechial hemorrhages in the muscles, intestine, fat, and liver.  The liver is friable 

with characteristic pale foci of tissue necrosis, and there is massive necrosis in the spleen and 

kidney (Hawke 1979; Areechon and Plumb 1983; Jarboe et al. 1984; Blazer et al. 1985; 

MacMillan 1985; Miyazaki and Plumb 1985; Waltman et al. 1985). 
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Although the biochemical characterization of E. ictaluri, the subsequent disease 

progression of ESC, and the associated pathologic lesions are well characterized, the mechanism 

of invasion into a susceptible host is poorly understood.  Studies suggest various possible routes 

of invasion.  Miyazaki and Plumb (1985) proposed that E. ictaluri first colonizes the olfactory 

sac and enters the brain via the olfactory bulb (Miyazaki and Plumb 1985), then disseminates 

systemically and concludes in fatal septicemia.  In another study, fish exposed orally to E. 

ictaluri developed the acute form of ESC and fish exposed via the water, the route that favors 

colonization of the olfactory sac, developed the chronic form of ESC (Shotts and Blazer 1986).  

Newton et al. (1989) exposed channel catfish to viable E. ictaluri cells by direct immersion, 

resulting in the development of the acute septicemic form of ESC in 93% of the fish exposed, 

with development of the chronic form of ESC in the remaining 7% of the fish.  Microscopic 

lesions were present within 2 days of immersion challenge.  In other studies, catfish kidney was 

culture positive for E. ictaluri as early as 15 minutes after exposure by gastric lavage, and liver 

was culture positive by 30 minutes post exposure (Baldwin and Newton 1993). 

The rapid spread of E. ictaluri from the intestinal lumen to the internal organs suggests 

circulation through the vasculature as free organisms or within migrating phagocytic leukocytes 

(Shotts and Blazer 1986; Janda et al. 1991; Baldwin 1992; Reger et al. 1993).  Several authors 

have suggested that E. ictaluri is capable of survival and growth within catfish macrophages 

based on the histological observation of intracellular bacteria that appeared to be in the process 

of cellular division within the macrophage phagocytic vacuoles, although bacteria were also 

observed within interstitial spaces (Miyazaki and Plumb 1985; Shotts and Blazer 1986; Baldwin 

and Newton 1993).  It was also demonstrated through histological observation that E. ictaluri is 

generally found in vacuoles of phagocytic leukocytes, and is only occasionally found free in 
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tissue when associated with degenerating leukocytes (Shotts and Blazer 1986; Baldwin and 

Newton 1993).  Booth et al. (2006) determined that E. ictaluri can successfully invade, survive, 

and replicate in catfish macrophages in vitro.  Their study used bacteria opsonized with either a 

normal autologous catfish serum or with heat-inactivated serum to resemble first exposure to a 

natural infection and successful entry of E. ictaluri into the macrophage.  Ingestion of non-

opsonized bacteria suggest that E. ictaluri may have a surface invasion ligand that is recognized 

by a specific receptor on the macrophage (Booth et al. 2006).  

  Little work has been conducted to evaluate receptor mediated adherence of E. ictaluri to 

host cells, although mannose sensitive and mannose resistant hemaggultination of non-fish 

erythrocytes has been demonstrated in some strains (Wong et al. 1989).  A cell associated 

hemolysin that was thought to contribute to reduction of hematocrit, hemoglobin, plasma protein, 

and plasma glucose associated with ESC infection has been described (Waltman et al. 1986).  

Another study utilizing a model in which E. ictaluri was coincubated with erythrocytes from 

guinea pigs, sheep, and rabbits reported that E. ictaluri does not express any associated 

hemolysins (Janda et al. 1991).  However, since E. ictaluri is a host specific fish pathogen, it is 

possible that it possesses hemolysins that do not lyse mammalian erythrocytes.  Williams and 

Lawrence (2005) identified a two-component hemolysin in E. ictaluri that was homologous to a 

virulence factor in E. tarda.  However, virulence tests using an isogenic hemolysin mutant strain 

in channel catfish challenges did not demonstrate significant difference in virulence compared to 

the wild type (WT) E. ictaluri strain (Williams and Lawrence 2005).  There are only two 

virulence factors that have been identified and confirmed in E. ictaluri using isogenic mutants:  

the secreted enzyme chondroitinase (Cooper et al. 1996), which plays a putative role in the 

formation of the chronic “hole-in-the-head” lesions due to cartilage degradation (Shotts and 
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Blazer 1986), and the O polysaccharide (OPS) (Lawrence et al. 2001; Lawrence et al. 2003), an 

important part of the Gram-negative outer membrane that can mediate resistance to complement-

mediated killing.  Identification and confirmation of more virulence factors and associated genes 

of E. ictaluri is crucial to elucidating the pathogenesis of this important disease.   

Signature tagged mutagenesis (STM) is a well accepted method of identifying virulence 

associated genes that is based on the selection of mutants that have lost their ability to survive in 

a host, allowing the discovery of virulence genes prior to ascertaining their function (Autret and 

Charbit 2005).  Signature tagged mutagenesis was first developed by David Holden in 1995 as a 

method that utilized dot-blot hybridization techniques with polymerase chain reaction (PCR) 

amplified tags (Hensel et al. 1995).  Using this method many mutants can be screened at the 

same time, allowing for rapid analysis of virulence factors in many organisms.  Despite a few 

drawbacks to STM methods, such as signal quality and reproducibility (Autret and Charbit 

2005), Holden’s STM method has been successfully used to identify virulence factors in 

pathogens such as Staphylococcus aureus, Vibrio cholera, and Yersinia enterocolitica (Mei et al. 

1997; Chiang and Mekalanos 1998; Darwin and Miller 1999). 

More recently, modifications to Holden’s method that are simpler and faster have been 

developed by Lehoux et al. (1999).  This optimized method was utilized by Thune et al. (Thune 

et al. 2007) in studies to identify virulence genes of E. ictaluri.  Briefly, the optimized STM 

technique utilizes transposon insertion mutagenesis, where each transposon carries a unique tag 

that can be identified by PCR analysis.  Libraries of bacterial mutants are constructed using 

pUTmini-Tn5Km2 plasmids.  Pools containing the uniquely tagged mutants are then used to 

infect the suitable host, channel catfish.  Following infection, mutants that invaded and persisted 

in vivo are recovered and screened by PCR.  Those strains found to be missing from the host 
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tissue are assumed to have the transposon insertion in genes required for establishment and 

persistence of infection.  Sequencing the flanking E. ictaluri genomic DNA of the insertion 

cassette identifies the gene of insertion and further sequence analysis provides additional 

information regarding surrounding genes. 

The STM study conducted by Thune et al. (2006) identified 50 E. ictaluri clones with 

transposon insertions in genes potentially involved in pathogenesis.  Specifically, STM mutant 

233PR, carrying a transposon insertion in a gene encoding a hypothetical virulence protein, was 

selected for further characterization.  The STM attenuation was confirmed with a competitive 

index (CI) that was determined by challenging the host catfish with equal colony forming units 

(CFU) of mutant and wild type (WT) bacteria and then dividing the recovery ratio of mutant 

CFU/WT CFU, by the input ratio of mutant CFU/WT CFU.  Values for the CI range from 0 to 1, 

with values closer to 0 indicating greater attenuation compared to full virulence at values closer 

to 1.  The 233PR CI of 0.00089 indicates that this clone was attenuated and is a good candidate 

for further analysis (Thune et al. 2007).  Based on bioinformatic analysis, the gene mutated in 

233PR has similarity to putative adhesin, hemolysin, and hemagglutinin genes of other 

pathogenic bacteria and has a downstream region that encodes other adhesion related motifs.  

Elucidation of adherence and invasion mechanisms of E. ictaluri could greatly contribute to our 

understanding of the pathogenesis of ESC; therefore, mutant 233PR was selected as a promising 

candidate to study.   

Adherence of pathogenic bacteria to host cell surfaces and invasion of host tissues are 

crucial initial steps to colonization and establishment of a bacterial infection (Ofek and Beachey 

1980).  Adherence allows extracellular pathogens to withstand the mechanical clearing 

mechanisms of the host and is a necessary step for uptake and invasion by intracellular 
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pathogens.  Adhesins are specialized surface proteins that mediate bacterial adhesion by 

controlling contact between the bacterium and the host cells (Ofek et al. 2003).  Bacterial 

interaction with host cell receptors function to target a pathogen to a particular niche, activate 

signaling pathways, establish persistent infection, and induce invasion of the pathogen (Finlay 

and Cossart 1997).  Different bacterial species and strains produce many different adhesin 

determinants, allowing adherence to a variety of host cells and receptors.  Due to the vast arsenal 

of adhesins in the prokaryotic realm, it is necessary to focus on those most related to the 

hypothetical protein in E. ictaluri, specifically Gram-negative Enterobacteriaceae members. 

Adhesins are either located on filamentous surface structures called pili (also known as 

fimbria), or on surface structures not assembled into pili.  Pili are adhesive hair-like structures 

that protrude from the surface of bacteria and function with an adhesin to attach bacteria to a 

surface.  They are composed of a rod anchored to the bacterial outer membrane and a bacterial 

adherence factor, or adhesin, at the tip, which confers the binding specificity (Pizarro-Cerda and 

Cossart 2006).  The pilin domain, responsible for anchoring the adhesin to the pilus, is encoded 

in the carboxy terminus of the protein, while the receptor binding domain is encoded in the 

amino terminus (Choudhury et al. 1999).   

Many types of pili have lectins, which are adhesins that show high substrate specificity 

for carbohydrate (Haslam et al. 1994).  The type 1 pilus, the most frequently expressed pilus of 

enterobacteria, is encoded by the fim gene cluster and exported by the chaperone-usher pathway.  

Receptor specific adhesion is mediated by the fimbrial tip associated lectin-like subunit FimH, 

which dictates the pilus adhesin (Orndorff and Falkow 1984; Soto and Hultgren 1999; Thomas et 

al. 2002).  The most common enteric bacterial adhesin, FimH, binds specifically to mannose 

carbohydrates on cell surfaces (Ofek et al. 1982; Karlsson et al. 1992; Ofek and Doyle 1994).  It 
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was traditionally thought that internal bodily fluid flow reduced bacterial adhesion.  In this 

model, bacteria bound to surfaces by receptor ligand bonds that were described as ‘slip-bonds’ 

(Dembo et al. 1988; Wang et al. 1995; Dickinson et al. 1997; Shive et al. 1999), whose bond 

adhesive strength weakened exponentially under force (Bell 1978; Evans 2001).  However, 

recent studies have demonstrated that the binding strength of FimH increases with shear stress 

(Forero et al. 2006; Nilsson et al. 2006; Anderson et al. 2007) due to the formation of catch 

bonds that strengthen under force (Thomas et al. 2004; Nilsson et al. 2006; Thomas et al. 2006).  

In its native state FimH binds with a short-lived, weak bond to mannose presenting surfaces 

under static and low-flow conditions, but then undergoes a conformational change to long-lived, 

strong bonds induced by high flow shear stress, termed shear dependent stick and roll adhesion 

(Thomas et al. 2004; Nilsson et al. 2006).   

Adhesins frequently work in concert to promote colonization and invasion under various 

environmental conditions and bind to numerous specific and non-specific receptors and surfaces, 

making it very difficult to determine which genes are involved in different stages of attachment 

and invasion during colonization and infection.  Pathogenic bacteria have evolved an incredibly 

vast and diverse array of adhesion and invasion molecules that enable them to exploit a variety of 

host-cell surface components.  Based on this knowledge, the underlying hypothesis of this study 

is that the hypothetical gene encoding mutant 233PR has an important role in the pathogenesis of 

E. ictaluri as a possible adhesin.   

Using the 233PR strain and a newly created isogenic mutant strain to test the hypothesis, 

studies were completed to determine the role of the hypothetical adhesin in the pathogenesis of 

E. ictaluri in channel catfish.  Mortality and persistence studies, along with a competition 

challenge, were performed to determine if the WT strain was able to supplement the defect in 
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vivo of the attenuated mutant strain.  To assess the effect of disruption of the hypothetical 

adhesin gene on invasion, intracellular survival, and replication, a gentamicin exclusion assay 

was performed using channel catfish head kidney derived macrophages (HKDM) and in a 

channel catfish ovary (CCO) cell line.  The following sections provide detailed analysis of the 

procedures and results that examines the putative adhesin as a virulence factor in the 

pathogenesis of E. ictaluri. 
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MATERIALS AND METHODS 

Bacterial Strains, Plasmids, and Growth Conditions.  The bacterial strains and plasmids used 

in this study are listed in Table 1.  Escherichia coli, used for maintaining the plasmids during 

mutation of the putative adhesin gene, was grown in Luria-Bertani (LB) broth at 37 C throughout 

the entire study.  Edwardsiella ictaluri strains were grown in either brain-heart infusion (BHI) 

broth or LB broth supplemented with either fish peptone (LB-FP) or mannitol (LB-Man) at 28 C.  

E. coli strain CC118 λpir was used to maintain the delivery plasmids and to isolate plasmid DNA 

prior to introduction into the conjugation strain, SM10 λpir.  Antibiotics, used for the selection of 

resistant and sensitive bacterial strains, were used in the following concentrations:  kanamycin 

(Km) at 50 μg/ml, colistin (Col) at 10 μg/ml, tetracycline (Tet) at 65 μg/ml, and ampicillin 

(Amp) at 20 μg/ml.  E. ictaluri transconjugates that were re-isolated from fish were grown on 

tripticase-soy agar plates supplemented with 5% de-fibrinated sheep blood (BA).  

Specific-Pathogen-Free (SPF) Channel Catfish.  All animal use was in accordance with LSU 

laboratory animal use guidelines and approved animal use protocol.  Egg masses were obtained 

from commercial channel catfish producers with no history of enteric septicemia of channel 

catfish (ESC) outbreaks, disinfected with 100 mg/L free iodine, and hatched in closed 

recirculating systems in the LSU SPF laboratory.  All experimental fish were reared in the SPF 

laboratory.  Holding systems consisted of four 350-liter fiberglass tanks connected to a 45 liter 

biological bead filter.  Water temperature was maintained at 27±2 C and water quality 

parameters, consisting of total ammonia nitrogen, total nitrate, pH, hardness, and alkalinity, were 

measured 3 times per week using a HACH (Loveland, CO) aquaculture kit.  Water quality was 

adjusted as necessary to maintain optimal conditions.   
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TABLE  1  Bacterial strains and plasmids used in this study. 

 
Strain or Plasmid Description Source 
Escherichia coli   

CC118 λpir Δ(ara-leu) araD ΔlacX74 galE galK phoA20 
thi-1 rpsE rpoB argE (Am) recA  λpir phage lysogen 

(de Lorenzo and 
Timmis 1994) 

SM10 λpir Kmr thi-1 thr leu tonA lacY supE recA::RP4-2-
Tc::Mu λpir phage lysogen 

(de Lorenzo and 
Timmis 1994) 

XL1-Blue MRF' -hsdSMR-mrr) 173 endA1 supE44 thi-1 recA1 
gyrA96 relA1 lac [F' proABblacIgZ.M15 Tn5 (Kan)] 

Stratagene, La Jolla, 
CA 

Edwardsiella 
ictaluri 

  

93-146 
Wild-type E. ictaluri isolated in 1993 from moribund 
channel catfish in a natural outbreak of ESC on a 
commercial farm 

Louisiana Aquatic 
Diagnostic 
Laboratory 

233PR Derived from the parental WT strain 93-146, having 
an insertion of STM tag P/R in an adhesin gene This study 

EacF::Km 

Isogenic mutant strain derived from the parental WT 
strain 93-146, having a pUT-mini-Tn5Km cassette 
insertion in place of the restriction enzyme BsaBI site 
located in an adhesin gene 

This study 

Plasmids   

pBluescript SK- Phagemid cloning vector Stratagene, La Jolla, 
CA 

pUT-Km-MCS pUT-mini-Tn5Km with multiple cloning site 
containing EcoRV, XbaI, and ApaI restriction sites 

(Thune et al. 2007) 

pGP704 Apr, pBR322 derivative with R6K ori, mob RP4, 
polylinker from M13 tg131 

(Miller and 
Mekalanos 1988) 
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 Bioinformatic Analysis.  In order to further characterize the genetic region surrounding the site 

of insertion of the STM transposon, the Blast Local Alignment Search Tool (BLAST) was used 

to analyze the E. ictaluri genomic database (http://microgen.ouhsc.edu/cgi-bin/blast_form.cgi).  

Resulting sequence from the data base was  analyzed using the Open Reading Frame (ORF) 

finder tool, with subsequent BLAST analysis of the individual ORFs at the National Center for 

Biotechnology Information,  The LALIGN program at www.ch.embnet.org was used to align 

and compare individual sequences when required. 

Construction of EacF::Km Mutant Strain.  The bioinformatic analysis resulted in the 

identification of substantial sequence surrounding the STM transposon insertion site, which was 

used to design a strategy for constructing an isogenic mutant of the open reading frame (ORF) 

encoding the putative adhesin.  Briefly, primers were designed that amplified a 1617 bp 

fragment, 836 bp upstream and 781 bp downstream from the proposed transposon insertion site 

in 233PR (233PR F TAATCAAGCAGAACACCC and 233PR R 

ATCACAGAACCACCAATAG).  The reaction was performed in a 50 μl volume consisting of 

0.5 μg template, 1.0 Unit of PFU DNA polymerase (Stratagene, La Jolla, CA), 1.0 µM for 

forward and 1.0 µM for reverse primers, 1.0 µM 10 X Pfu PCR buffer (Stratagene, Ind., La Jolla, 

CA) and 200 µM of each dNTP.  PCR was performed in a GeneAmp 9700 thermal cycler (PE-

Applied Biosystems, Foster City, CA).  Cycling parameters were 94 C for 5 min, followed by 35 

cycles of 94 C for 30 s, 55.1 C for 45 s and 72 C for 1 min, followed by 72 C for 5 min.  The 

PCR reaction was purified using Qiagen PCR Purification Kit (Qiagen, Valencia, CA) and the 

fragment generated was confirmed by DNA sequencing.  

For cloning, 1.5 pmol of the PCR product was phosphorylated with T4 polynucleotide 

kinase (New England Biolabs, Inc., Beverly, MA).  A total of 10 μg of the phagemid cloning 
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vector  pBluescript SK- plasmid DNA was digested with EcoRV (New England Biolabs, Inc., 

Beverly, MA), alkaline phosphatase treated using calf intestinal phosphatase (CIP) (New 

England Biolabs, Inc., Beverly, MA), and phenol extracted.  The gene insert was ligated into the 

pBS SK- vector using T4 DNA ligase (New England Biolabs, Inc., Beverly, MA).  The ligation 

was purified by drop dialysis on a 0.025 µm Millipore nitrocellulose filter (Millipore 

Corporation, Billerica, MA) over sterile distilled deionized water, electroporated into E. coli 

XL1-Blue MRF' competent cells using a Bio-Rad gene pulser (Bio-Rad Laboratories, Hercules, 

CA), allowed to recover in 1 mL LB broth at 37 C, and then spread onto S-Gal-Amp (3,4-

cyclohexenoesculetin-b-D-galacto-pyranoside) agar (Sigma Chemicals, St. Louis, MO) plates to 

differentiate between lac+ and lac- colonies for selection of transformants.  Plasmid DNA was 

isolated from the selected grey colony using the Qaigen midiprep kit (Qiagen, Valencia, CA), 

run on a 0.7% agarose gel alongside uncut pBS SK- DNA to ensure that the vector contained the 

insert at approximately 1.6 kb.  The plasmid was then sequenced using E. coli specific T3 and T7 

primers.  Plasmid DNA carrying the putative adhesin insert was linearized with restriction 

enzyme BsaBI (New England Biolabs, Inc., Beverly, MA), and treated with Antarctic 

Phosphatase (New England Biolabs, Inc., Beverly, MA) in preparation for insertional 

mutagenesis using the kanamycin resistance cassette.   

 The 897 bp mini-Tn5-Km gene was amplified using primers kan 757 

(GAAGCCCTGCAAAGTAAA) and kan 1635 (GCTCAGAAGAACTCGTCAA) from pUT-

mini-Tn5Km DNA template.  The reaction was performed in a 50 μl volume containing 0.5 μg 

template, 1.0 Unit of Pfu Ultra DNA polymerase (Stratagene, La Jolla, CA), 1.0 µM of each 

forward and reverse primer, 1.0 µM 10 X Pfu Ultra PCR buffer (Stratagene, Ind., La Jolla, CA), 

and 200 µM of each dNTP.  PCR was performed in a GeneAmp 9700 thermal cycler (PE-
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Applied Biosystems, Foster City, CA).  Cycling parameters were 94 C for 5 min, followed by 35 

cycles of 94 C for 30 s, 54.0 C for 45 s and 72 C for 1 min, followed by 72 C for 5 min.  The 

PCR reaction was purified using Qaigen PCR purification kit (Qiagen, Valencia, CA) and 

phosphorylated using T4 polynucloetide kinase (New England Biolabs, Inc., Beverly, MA). 

 The mini-Tn5-Km gene was ligated into the digested plasmid DNA carrying the 

hypothetical adhesin insert using T4 DNA ligase (New England Biolabs, Inc., Beverly, MA).  

The ligation was purified by drop dialysis on a 0.025 µm Millipore nitrocellulose filter 

(Millipore Corporation, Billerica, MA) over sterile distilled deionized water, and then 

electroporated into E. coli XL1-Blue MRF' competent cells using a Bio-Rad gene pulser (Bio-

Rad Laboratories, Hercules, CA).  The cells were allowed to recover in 1 mL LB broth at 37°C, 

and then spread onto LB-km-amp agar plates for selection of transformants carrying the mini-

Tn5-Km insert and associated chromosomal DNA flanking the site of insertion.  Plasmid DNA 

was isolated from the selected colonies using the Qaigen midiprep kit (Qiagen, Valencia, CA) 

and run on a 0.7% agarose gel alongside uncut pBS SK- DNA and uncut pBS with the 233PR 

insert DNA to ensure that the new construct contained the hypothetical adhesin carrying the 

mini-Tn5-Km insert.   

 The suicide vector pGP704 was isolated from CC118 λpir using the Qaigen midiprep kit 

(Qiagen, Valencia, CA), digested with EcoRV (New England Biolabs, Inc., Beverly, MA), and 

treated with Antarctic Phosphatase (New England Biolabs, Inc., Beverly, MA).  A total of 5.0 µg 

of plasmid DNA containing the hypothetical adhesin carrying the mini-Tn5-Km insert was 

digested with restriction enzymes SpeI and XhoI (New England Biolabs, Inc., Beverly, MA), 

treated with 5.0 units of Klenow fragments (New England Biolabs, Inc., Beverly, MA), and 

separated by electrophoresis on a 2.0% agarose gel.  The band that contained the 2486 bp 
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eacF::km fragment was excised, gel purified using the Mo-Bio ultra-clean gel spin kit (Mo Bio 

Laboratories, Inc., Carlsbad, CA), and ligated into the digested pGP704 suicide vector using T4 

DNA ligase (New England Biolabs, Inc., Beverly, MA).  The ligation was purified by drop 

dialysis on a 0.025 µm Millipore nitrocellulose filter (Millipore Corporation, Billerica, MA) over 

sterile distilled deionized water, electroporated into E. coli CC118 λpir competent cells using a 

Bio-Rad gene pulser (Bio-Rad Laboratories, Hercules, CA), allowed to recover in 1 mL LB 

broth at 37°C, and then spread onto LB-km-amp agar plates for selection of transformants 

carrying the eacf::km fragment.   

 The genetic construction of the selected colonies was confirmed by PCR.  Each reaction 

was performed in a 50 μl volume consisting of 3 µL of boil-prepped DNA, 0.5 Unit of Amplitaq 

DNA polymerase (Applied Biosystems, Foster City, CA), 1.0 µM 10 X Applied Biosystem PCR 

buffer containing 1.5 mM MgCl2 (Applied Biosystems, Foster City, CA), 1.0 µM of each 

forward and reverse primers, and 200 µM of each dNTP.  PCR was performed in a GeneAmp 

9700 thermal cycler (PE-Applied Biosystems, Foster City, CA).  Cycling parameters were 94C 

for 5 min, followed by 35 cycles of 94 C for 30 s, 55.0 C for 45 s and 72 C for 1 min, followed 

by 72 C for 5 min.  Plasmid DNA from the correct colonies carrying the eacf::km fragment was 

isolated using the Qaigen miniprep kit (Qiagen, Valencia, CA) and directly electroporated into E. 

coli SM10 λpir competent cells, allowed to recover in 1 mL LB broth at 37 C, and then spread 

onto LB-km-amp agar plates for selection of transformants carrying the eacf::km fragment.  

Plasmid DNA was isolated from select colonies using the Qaigen miniprep kit (Qaigen, 

Valencia, CA), digested with restriction enzyme XbaI (New England Biolabs, Inc., Beverly, MA) 

and separated by gel electrophoresis on a 0.7% agarose gel to confirm that the selected colonies 

carried the eacf::km fragment.   
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 The mutated gene was then introduced into E. ictaluri by conjugation. Briefly, E. ictaluri 

93-146 was mated with E. coli SM10 λpir containing pGP704 eacf::km on a Pall 0.4 μM 

membrane filter (Pall Corporation, Ann Arbor, MI).  The filter was incubated on a BA plate and 

the bacterial cells were recovered in 1 mL LB-FP, spread onto LB-FP-km-col plates, and 

incubated at 28°C.  Putative transconjugates were patched onto LB-FP-km-amp and LB-FP-km-

col plates and incubated at 28°C.  As E. ictaluri is resistant to colistin but sensitive to ampicillin, 

a single crossover event resulted in colonies that were km and amp resistant, indicating plasmid 

integration.  The desired double crossover resulted in colonies that were km resistant and amp 

sensitive due to gene replacement by homologous recombination and loss of the suicide plasmid.   

 Those colonies that grew on the LB-FP km-col plates but not the LB-FP-km-amp plates 

were further examined by PCR.  Each reaction was performed in a 50 μl volume containing of 3 

µl of chromosomal DNA, 0.5 Unit of Amplitaq DNA polymerase (Applied Biosystems, Foster 

City, CA), 1.0 µM 10 X Applied Biosystem PCR buffer containing 1.5 mM MgCl2 (Applied 

Biosystems, Foster City, CA), 1.0 µM for each forward and reverse primers, and 200 µM of each 

dNTP.  PCR was performed in a GeneAmp 9700 thermal cycler (PE-Applied Biosystems, Foster 

City, CA).  Cycling parameters were 94 C for 5 min, followed by 35 cycles of 94 C for 30 s, 

55.0C for 45 s and 72 C for 1 min, followed by 72 C for 5 min.  The PCR product was separated 

by gel electrophoresis on a 0.7% agarose gel to confirm the presence of the mini-Tn5-Km insert.  

Chromosomal DNA was isolated according to the method of Ausubel et al. (Ausubel et al. 1994) 

and stored at 4°C.  The isogenic mutant strain was designated EacF::Km (the altered E. ictaluri 

adhesin protein carrying a kanamycin resistance cassette) to differentiate it from mutant strain 

233PR from the STM project. 
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 The EacF::Km construct was further confirmed by differential PCR using gene specific 

primers 233PR F and 233 PR R and mini-Tn5-Km specific primers kan 757 and kan 1635 in 

various combinations to examine the full length gene including the mini-Tn5-Km insert (233PR 

F x 233PR R), the mini-Tn5-Km insert (kan 757 x kan 1635), from the beginning of the gene to 

the end of the mini-Tn5-Km insert (233PR F x kan 1635) and the beginning of the mini-Tn5-Km 

insert to the end of the gene (kan 757 x 233PR R).  Each reaction was performed in a 50 μl 

volume consisting of 0.5 μg template EacF::Km DNA, 0.5 Unit of Amplitaq DNA polymerase 

(Applied Biosystems, Foster City, CA), 1.0 µM 10 X Applied Biosystem PCR buffer containing 

1.5 mM MgCl2 (Applied Biosystems, Foster City, CA), 1.0 µM of each forward and reverse 

primers, and 200 µM of each dNTP.  PCR was performed in a GeneAmp 9700 thermal cycler 

(PE-Applied Biosystems, Foster City, CA).  Cycling parameters were 94 C for 5 min, followed 

by 35 cycles of 94 C for 30 s, primer specific annealing temperature for 45 s and 72 C for 1 min, 

followed by 72 C for 5 min.  The annealing temperatures for primer pairs was 59 C for 233PR F 

x 233PR R, 60.1 C for kan 757 x kan 1635, 58.5 C for 233PR F x kan 1635, and 55.2 C for kan 

757 x 233PR R.  The PCR reactions were purified using Qaigen PCR purification kit (Qiagen, 

Valencia, CA) and sequenced to confirm proper genetic construction of the new mutant strain.   

Confirmation of a SingleIinsertion Event in the EacF::Km and 233PR Mutant Strains.  It 

was necessary to confirm that there was only a single transposon insertion in 233PR and also a 

single Km-resistance cassette insertion in the EacF::Km mutant strains.  A single insertion event 

was confirmed using genomic DNA prepared from the 233PR and EacF::Km mutant strains 

using the standard method of Ausbel et al. (1994).  A total of 10 μg of DNA was digested to 

completion with ClaI, which does not cut the mini-Tn5-Km insert or Km-STM transposon.  

Digested genomic DNA was separated on a 1.0% agarose gel and transferred to an ECL Hybond 
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N+nylon membrane (Amersham Pharmacia Biotech, Piscataway, NJ).  A 140 bp Km product 

was amplified from pUT-mini-Tn5Km using primers KanGeneF 

(AGAAAGTATCCATCATGGC) and KanGeneR (ATCATCCTGATCGACAAG) and labeled 

using the ECL nucleic acid labeling system (Amersham Pharmacia Biotech, Piscataway, NJ).  

The probe was hybridized to each digested genomic DNA on the membrane, and detected using 

the ECL detection reagents according to the manufacturer’s instructions.   

Competitive Challenge with WT E. ictaluri.  Comparative attenuation of the two strains, 

EacF::Km and 233PR verified that the gene that was successfully knocked-out is a virulence 

factor of E. ictaluri. One tank of 25 fish was inoculated by immersion challenge as described by 

Thune, et al. (1999).  Briefly, experimental SPF fish were transferred to a separate laboratory 

into 20 L tanks supplied with a continuous flow of de-chlorinated water maintained at 27±1C at a 

flow rate of 500-600 ml per minute.  Fish were stocked at a density of 25 fish per tank and fed 

commercial catfish feed every day during a four week acclimation.  After lowering the tank 

water level to four liters and turning off water flow, 40 ml (approximately 1 X 10 8 CFU/ml final 

concentration) of WT strain 94-146 and 40 ml (approximately 1 X 10 8 CFU/ml final 

concentration) of the EacF::Km strain was added to the water and left for one hour, after which 

the water flow was resumed.  Air circulation was constant during the challenge.  Liver samples 

from fish that died were removed, weighed, homogenized and spread on both LB-Man agar and 

LB-Man-Km agar plates.  The plates were incubated at 28 C for 48 hours, after which CFU/gm 

of tissue for WT and mutant bacterial strains was determined.  The competitive index (CI) was 

determined by dividing the recovery ration of mutant/WT by the input ratio of mutant/WT, with 

values closer to 0 indicating greater attenuation compared to values closer to 1.   
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Mortality Assay.  Three tanks of 25 fish were inoculated by immersion challenge as described 

above with 80 ml (1 X 108 CFU/ml final concentration) of either WT, 233PR, or EacF::Km E. 

ictaluri strains for one hour and observed for mortality.  Inoculation with 80 ml LB broth served 

as a negative control.  Liver samples from all dead fish were streaked on BA plates and 

incubated at 28 C for 48 hours to confirm the presence of E. ictaluri.   

Persistence Studies.  Three tanks of 25 fish were inoculated by immersion challenge as 

described above with 80 ml (1 X 108 CFU/ml final concentration) of either WT, 233PR, or 

EacF::Km E. ictaluri strains for 15 minutes.  One tank inoculated with 80 ml LB-Man broth 

served as a negative control.  One fish was removed and euthanized daily from each of the three 

tanks per strain for the duration of the study.  Head kidney tissue from the fish was removed, 

weighed, homogenized, spread on LB-Man agar plates, and incubated at 28 C for 48 hours.  

Recovered CFU/gm of tissue was determined for each strain each day of the study.   

Intracellular Survival in Channel Catfish Macrophages.  The gentamicin survival assay was 

performed as described by Booth et al. (2006).  This assay enables quantification of internalized 

bacteria at various time points of post infection, in order to accurately examine intracellular 

invasion, survival, and replication in the channel catfish head kidney derived macrophage 

(HKDM).  Briefly, channel catfish were anesthetized with tricane methanesulfonate (MS-222) 

(Argent Chemical Laboratories, Redmond, WA) and bled from the caudal vein to collect 

autologous serum.  Macrophages were prepared from channel catfish head kidney tissue, 

suspended in channel catfish macrophage media (CCMM), diluted to 1 X 107 cells/ml with 

CCMM, plated 1 ml/well in a 24 well poly-D-lysine coated cell culture plates (Biocoat Cell 

Environments, Becton Dickinson Labware, Bedford, MA) and allowed to adhere for 16 hours at 

28 C with 5% CO2 in a CO2 water jacketed cell culture incubator (Forma Scientific, Inc., 
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Marjeta, OH).  For microscopic observations, glass cover slips coated with poly-D-lysine 

(Biocoat Cell Environments, Becton Dickinson Labware, Bedford, MA) were placed in wells 

prior to the addition of cells.   

After 16 hours, the HKDM were washed three times to remove non-adherent cells, and 

the media was replaced with fresh CCMM, yielding approximately 1 X 105 cells per well.  

Overnight late-log phase cultures of WT, 233PR and EacF::Km strains were serially diluted to 1 

X 106 bacteria/ml and treated with either autologous normal serum (NS) or heat-inactivated 

autologous serum (HIS) to examine possible surface invasion ligands capable of recognizing 

specific receptors located on macrophages.  Macrophages were inoculated with 1 X 104 CFU per 

well of NS and HS treated WT, 233PR, or EacF::Km strains at a multiplicity of infection (MOI) 

of 1:10 (bacteria:macrophage).  Once the wells were inoculated with the appropriate strain, one 

replicate plate was placed on the platform of a rotary shaker (The Belly Dancer, Stoval Life 

Science, Inc., Greensboro, NC) inside of the cell culture incubator and rotated at a speed of 50 

rpm to add movement to the media in the plate in attempts to simulate host internal milieu shear 

force, while another replicate plate remained static on the shelf of the cell culture incubator 

during the infection stage.  The plates remained in their assigned conditions and were removed 

only briefly for sampling for the duration of the assay.  Coverslips were placed only into static 

plates.  Following a 30 minute incubation, a killing dose of gentamicin at a final concentration of 

100 μg/ml was added to each well to kill extracellular bacteria.  The cells were allowed to 

incubate for one hour to ensure that all extracellular bacteria were killed.   Cells were then 

washed once and 1 ml of CCMM containing a static dose of gentamicin at a concentration of 

0.35 μg/ml was added to control extracellular growth of released bacteria from lysed cells.  At 0, 

4, 8, and 12 hour time points (0 hour is equivalent to 90 minutes post infection (PI)) the cells 
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were lysed with 100 μl of 1% Triton X-100 solution (Fisher Scientific, Fair Lawn, NJ) at room 

temperature for 10 minutes, serially diluted, and spread onto blood agar plates to determine 

percent invasion, survival, and replication.  Coverslips with infected macrophages were removed 

from wells without lysing, mounted on glass slides with Permount (Fisher Scientific, Fair Lawn, 

NJ), stained with Hema 3 Stain Kit (Fisher Scientific, Fair Lawn, NJ), and observed with light 

microscopy.  The experiment was repeated ten times with triplicate wells at each time point in 

each experiment.   

Intracellular Survival in Channel Catfish Ovary Cells.  Determination of intracellular 

survival in the channel catfish ovary cell line was performed in a manner similar to the 

macrophage assay described above.  Briefly, viable channel catfish ovary (CCO) cells were 

diluted to a concentration of 2 X 105 cells/ml with Liebowitz-15 (L-15) supplemented with 10% 

fetal bovine serum (FBS) and 1 ml/well was added to 24 well Falcon tissue culture plates 

(Becton Dickinson Labware, Becton Dickinson and Company, Fanklin Lakes, NJ).  The plates 

were wrapped with parafilm to exclude CO2, and allowed to adhere for 20 hours at 28 C in the 

cell culture incubator.  A 16 hour late log phase culture of WT, 233PR, and EacF::Km  E. 

ictaluri strains were diluted to a concentration of  approximately 1 X 106 bacteria/ml using sterile 

Dulbecco’s phosphate buffered saline (PBS) (calcium and magnesium free).  CCO cells were 

inoculated with approximately 2 X 104 CFU of either WT, 233PR, or EacF::Km strains at an 

MOI of 1:10 (bacteria:cells).  Once the wells were inoculated with the appropriate strain, one 

replicate plate was placed on the rotary shaker inside of the cell culture incubator and rotated at a 

speed of 50 rpm, while another replicate plate remained static on the shelf of the cell culture 

incubator (28°C).  The plates remained at those conditions for the duration of the assay except 

for brief removal for sampling.  Following a 30 minute incubation, a killing dose of gentamicin 
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at a final concentration of 100 μg/ml was added to each well to kill extracellular bacteria.  The 

cells were allowed to incubate for one hour to ensure that all extracellular bacteria were killed, 

after which the cells were washed and 1 ml of L-15 with 10% FBS containing a static dose of 

gentamicin at a concentration of 0.35 μg/ml was added to control extracellular growth of bacteria 

released from lysed cells.  At 0, 4, 8, and 12 hour time points (0 hour is the equivalent to 90 

minutes PI) the cells were lysed with 100 μl of 1% Triton X-100 solution (Fisher Scientific, Fair 

Lawn, NJ) at room temperature for 10 minutes, serially diluted, and spread onto blood agar 

plates to determine percent invasion, survival, and replication.  This experiment was repeated ten 

times with triplicate wells at each time point in each experiment.   

Statistical Analysis.  The mortality, persistence and competition challenge experimental design 

was completely randomized with a factorial arrangement of treatments.  All data were analyzed 

by General Linear Methods Procedure as CFU recovered/well following a natural log 

transformation of the number of CFU recovered/well (SAS Institute, Inc. 2003).  When the 

overall model indicated significance at p ≤ 0.05, Tukey’s test was used for pairwise comparison 

of main effects, and a least square means procedure was used for pairwise comparison of 

interaction effects. 
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RESULTS 
 
Bioinformatics Analysis.  Analysis of the sequence encoding the 233PR mutation and 

surrounding open reading frames (ORF’s) using BLAST revealed a hemolysin/adhesin cluster in 

E. ictaluri that is similar to the hemolysin/adhesin cluster  (Figure 1 and Table 2) located in a 

pathogenicity island (PAI) of locus of enterocyte effacement (LEE) –negative strains of E. coli 

CL3, described by Shen et al. (2004).  The putative hemolysin/adhesin cluster in E. ictaluri 

encodes 8 open reading frames (ORF’s) that have been named EacA-H for Edwardsiella 

attenuation cluster.  The 8 eac genes are flanked by two transposases (TnpA) that are 

homologous to other transposases in E. ictaluri.  The presence of flanking transposases is a 

common feature of PAI’s and is indicative of horizontal transfer of genetic material (Hacker and 

Kaper 1999).  The overall G/C content of the 8 ORFs is 54%, very similar to the 53% for the E. 

ictaluri genome.  The protein encoded by the first ORF downstream from the transposase, EacA, 

has 64% identity to S1, a homologue to the hemolysin activator HlyB of E. coli CL3, and the 

protein shows 60% identity to the conserved domain of FhaC.  HlyB and FhaC are hemolysin 

secretion/activation proteins that are involved in intracellular trafficking and secretion (Willems 

et al. 1994).   EacB has 57% identity to S2, hemolysin activator HlyC, of E. coli CL3, as well as 

the HlyC conserved domain.  HlyC is a hemolysin activating protein that is involved in post-

translational modification and protein turnover (Bhakdi et al. 1988).   EacC is 51% identical to a 

putative PagC-like membrane protein of Y. enterocolitica and the protein has 50% identity to the 

conserved domain Ail Lom, a protein that directly promotes invasion (Heffernan et al. 1994).  

EacD has 50% identity to S3, a putative hemolysin/hemagglutinin in E. coli CL3, and shows 

41% identity to the conserved hemagglutination activity domain.  EacE is a large protein with 

48% identity to S4, a putative adhesin/hemagglutinin/hemolysin of E. coli CL3, and with a  
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Figure 1  Map of hemolysin/adhesin clusters found in E. ictaluri and E. coli CL3.  Sequencing 
and subsequent BLAST analysis in the NCBI databases located the insert in the carboxy 
terminus of a gene with similarity to a putative gene found in verocytotoxin producing E. coli 
CL3 (0113:H21).  Analysis of the E. ictaluri partially completed genome using the 233PR 
sequence identified a 19,953 bp fragment of the genome, encoding genes with similarity to the 
hemolysin/adhesin cluster located in the pathogenicity island (PAI) of  the locus of enterocyte 
effacement (LEE) -negative strain of  E. coli CL3 (Shen et al. 2004).   Table 2 gives full 
description of those genes located in E.ictaluri from the above map.  The 233PR transposon 
insertion mutation and the isogenic EacF::Km mutations are both located in the carboxy-
terminus of the eacF gene. 
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Table 2  Amino acid (aa) homologies of the putative open reading frame’s (ORF) identified from the hemolysin/adhesin cluster in E. 
ictaluri that aligned to the hemolysin/adhesin cluster in E. coli CL3, as described in Figure 1, as well as related proteins from other 
bacteria. 
 

ORF and Location 
(bp) 

Size 
(no. of 

aa) 

Conserved 
Domain 

Similar 
E. coli 
CL3 

Protein 

Homologous Protein % Identity/ 
no. of aa 

Accession No. 
of Homolog 

TnpA (19953-19750) 67 None S6 TnpA, transposase, E. ictaluri 69/52 ABD93710 
EacA (19217-17475) 580 FhaC S1 S1, putative hemolysin activator  

  HlyB,  E. coil CL3 
64/546 AAQ19124 

    COG2831: Hemolysin activation/  
  secretion protein, Y. frederiksenii  

60/566 ZP_00827590 

EacB (17475-16948) 175 HlyC S2 S2, putative hemolysin activator  
  HlyC, E. coil CL3 

57/169 AAQ19125 

EacC (17006-16323) 227 Ail_Lom None putative PagC-like membrane protein, 
  E. coli EDL933 

51/177 NP_289546   

    attachment invasion locus protein,  
  Y. enterocolitica  

32/200 YP_00100609
1 

EacD (16244-13893) 783 Haemagg_act S3 S3, putative hemolsyin/   
  hemagglutinin, E. coil CL3 

50/639 AAQ19126 

    COG3210: Large exoproteins    
  involved  in heme utilization  
  or adhesion, Y. mollaretii 

41/778 ZP_00824144 

EacE (13984-7592) 2130 FhaB S4 S4, putative adhesin/hemagglutinin/  
  hemolysin, E. coil CL3 

48/2140 ABG33928 

    YPO2490, putative hemolysin,  
  Y. pestis CO92 

36/2075 YP_651897 

    COG3210: Large exoproteins  
  involved in heme utilization  
  or adhesion,  Y. intermedia  

34/2169 ZP_00833445 

    YPO0599, putative hemolysin, Y. 
pestis CO92 

33/2187 NP_993634   

               (Table 2 continued) 
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ORF and Location 
(bp) 

Size 
(no. of 

aa) 

Conserved 
Domain 

Similar 
E. coli 
CL3 

Protein 

Homologous Protein % Identity/ 
no. of aa 

Accession No. 
of Homolog 

EacF (7035-5134) 633 None S4 S4, putative adhesin/hemagglutinin/  
  hemolysin, E. coil CL3 

70/632 ABG33928 

    COG3210: Large exoproteins  
  involved in heme utilization  
  or adhesion,  Y. pestis  

55/381 ZP_01174535   

    YPO2490, putative hemolysin,  
  Y. pestis CO92 

55/381 YP_651897 

    YPO0599, putative hemolysin,  
  Y. pestis CO92 

38/636 NP_993634   

EacG (3414-2464) 316 None S4 S4, putative adhesin/hemagglutinin/ 
  hemolysin, E. coil CL3 

74/304 ABG33928 

    COG3210: Large exoproteins  
  involved in heme utilization  
  or adhesion,  Y. pestis  

55/315 ZP_01174535   

    YPO2490, putative hemolysin, Y. 
pestis CO92 

55/315 YP_651897 

    YPO0599, putative hemolysin, 
  Y. pestis CO92 

51/316 NP_993634   

EacH (2188-1559) 209 None S4 hypothetical protein  
  YmolA_01003827, Y. mollaretii  

68/124 ZP_00823794 

    S4, putative adhesin/hemagglutinin/ 
  hemolysin,  E. coil CL3 

61/144 ABG33928 

    Adhesin HecA, B. xenovorans LB400 47/129 YP_555132 
TnpA (458-2) 151 Transposase None TnpA, transposase,  E. ictaluri 100/47 ABD93710 
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conserved domain similar to FhaB, a large exoprotein involved in heme utilization and adhesion 

during intracellular trafficking and secretion (Willems et al. 1994).  EacF, EacG, and EacH also 

display identities of 70%, 74%, and 68% to S4 of E. coli CL3, respectively, but without any 

conserved domains. Further analysis of the S4 homologues indicates that the first 1086 bp of 

eacF  have 94% identity to base pair 633 to 1737 in the 5’ end of eacE  and that the entire eacG 

ORF has 98.6% identity to the same regionsof eacF  and eacE.  Both the 233PR and the 

EacF::Km mutations are located in the carboxy terminus of EacF at 5,632 and 5,404 bp, 

respectively.  

Construction of the EacF::Km Isogenic Mutant.  Following ligation of the mini-Tn5 Km gene 

into the PCR generated insert and eventual conjugation into E. ictaluri 93-146 WT strain, the 

isogenic EacF::Km strain was sequenced for confirmation of the insertion and associated 

sequence flanking the site of insertion (Figure 2).  Amplification with the four primers produced 

the four PCR fragments and sequencing confirmed the construction.  The sequence was also used 

to identify the gene and surrounding adhesin related genes in the partially completed E. ictaluri 

genome database (http://microgen.ouhsc.edu/cgi-bin/blast_form.cgi) using ORF Finder and the 

BLAST in the National Center for Biotechnology Information (NCBI).  The sequenced 

EacF::Km also allowed for the comparison of protein length to 233PR, in respect to location of 

the insert that truncated the functional protein.   

Confirmation of a Single Insert.  A Southern blot of ClaI digested DNA from E. ictaluri 

233PR and transconjugate EacF::Km mutant strains detected a single band upon hybridization 

with a Km probe, indicating a single insertion event in these two strains (Figure 3).  This verified 

that the STM and the constructed mutant strains had only a single insertion in the gene.   
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Figure 2  Confirmation of the EacF::Km mutant construction.   Far right and left lanes contain 1 
Kb markers.  The first lane is the entire insertion sequence of the 233PR gene interrupted with 
the KmR gene insert (2496 bp).  The second lane shows beginning at the mini-Tn5-Km insert 
through to the end of the 233PR inserted gene (1797 bp).  The third lane has only the entire mini-
Tn5-Km insert (879 bp).  The fourth lane shows the beginning of the 233PR gene stopping at the 
end of the mini-Tn5-Km insert (1578 bp).   
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Figure 3  Southern blot confirmation of single insertion events in 233PR mutant and constructed 
eacf-km.  ClaI digested DNA was hybridized with a labeled Km probe.  Generation of a single 
band in both mutant strains is indicative of a single insertion event.   

eacf::km 233PR Km gene probe 



  
 

31

Competitive Challenge with WT E. ictaluri.  Previous competitive challenge of the 233PR 

mutant with WT from the STM study resulted in a CI of 0.00089 for 233PR (Thune et al. 2007).  

In the current study, challenge with a 50/50 mix of EacF::Km and WT 93-146 strains of E. 

ictaluri resulted in a recovered average of 2.71 X 10+08 (±9.04 X 10+07) CFU per gram of liver 

WT organisms recovered and 1.43 X 10+08 (±4.27 X10+07) CFU per gram of tissue EacF::Km 

organisms.  The EacF::Km mutant CI of 0.25 defines it as moderately attenuated in relation to 

the virulent WT strain, and less attenuated than the 233PR mutant strain. 

Mortality Studies.  No mortalities were observed in fish challenged with the 233PR strain or in 

the media-only control.  Total average mortality for fish challenged with the EacF::Km strain 

was 39% and the total average mortality for fish challenged with the WT E. ictaluri strain was 

96% by day 12 (Figure 4).  These results support the previous data that the 233PR mutant strain 

is more attenuated than the EacF::Km mutant strain, and both are moderately attenuated in 

respect to the WT strain. 

Persistence Studies.  Persistence results are shown in Figure 5.  Although all three strains 

invaded the catfish host by 24 hours post infection at a statistically similar rate (P>0.05), all three 

strains behaved differently (P<0.05) after the first day of sampling.  The WT strain persisted and 

increased in numbers by day 6, but no data is available past day 6 because all fish had died.  The 

233PR mutant numbers declined until the strain was cleared from head kidney tissue by day 8.  

The EacF::Km strain persisted at a constant level until day 10, after which numbers declined 

until the strain was cleared by day 13.   Although there was a difference in persistence, both 

mutant strains were completely cleared from the catfish host while all of the fish infected with 

WT strain died.  The clearance rates of the two mutants is consistent with the mortality data, in   
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Figure 4  Mortality results for WT, 233PR mutant, and EacF::Km mutant E. ictaluri strains in 
fingerling channel catfish following immersion challenge.  Each point is the average mortality in 
three replicate tanks of 25 fish.  There were no mortalities in the control LB broth (not shown on 
graph).  These results support the previous data that the 233PR mutant strain is more attenuated 
than the EacF::Km mutant strain, and both are moderately attenuated in respect to the WT strain. 
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Figure 5 
Persistence results for WT, 233PR, and EacF::Km strains in fingerling channel catfish.  Each 
point represents the average of CFU/gm of head kidney from three individual fish from three 
separate tanks per strain and transformed to LOG10 values.  Error bars represent the standard 
error among the three fish tested for each strain that day.  All fish from the WT group had died 
by day 6 so there are no values for any of the days past day 6.  There were no bacteria recovered 
in the control fish treated with LB-Man broth only (not shown in graph).   
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that EacF::Km, carrying a less truncated EacF protein, maintained higher levels for a longer  

period of time indicated. 

Intracellular Survival in Channel Catfish Macrophages.  Survival and replication results of 

WT, 233PR, and EacF::Km strains of E. ictaluri in channel catfish head kidney derived 

macrophages (HKDM) are presented in Table 3.  There was no significant (P>0.05) difference in 

initial uptake (Figure 6 A and B) or intracellular replication (Figure 7) of either strain of E. 

ictaluri in the HKDM, but there was a significant difference (P<0.05) between serum treatments 

(Figure 7).  Attempts to add shear flow forces did not affect invasion.   Light microscopy was 

used to identify an increase in bacteria in HKDM from 0 hour to 12 hours post infection with 

EacF::Km mutant strain (Fig 8). 

Intracellular Survival in Channel Catfish Ovary Cells.  Survival and replication of WT, 

233PR, and EacF::Km strains of E. ictaluri in channel catfish ovary (CCO) cells is presented in 

Table 4.  There was no significant difference found in invasion data (Figure 9) or growth of any 

of the strains of E. ictaluri in CCO cells (Figure 10).  Attempts to add shear flow forces did not 

affect invasion.    
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Table 3  Increase in number of colony forming units (CFU) per well over time for E. ictaluri 
WT, 233PR, and EacF::Km strains following infection of channel catfish head kidney derived 
macrophages (HKDM).  Multiplicity of infection (MOI) ratio was one bacteria to ten HKDM.  
Bacteria were pre-treated with either normal autlogous serum (NS) or heat inactivated 
autologous serum (HIS) to examine if the putative adhesin was involved in recognition of 
specific receptors on HKDM.  Means with different letters indicate significant differences 
between times for the same serum treatment in the least squares means procedure (P<0.05).  
Means with different numbers indicate significant differences between the serum treatments at 
the same time in the least squares means procedure (P<0.05).  However, there was no significant 
difference found between the three strains for the same serum treatment in the same times in the 
least squares means procedure (P>0.05).  Results from this single experiment are representative 
of data from four experiments, with triplicate wells for each treatment at each time in each 
experiment. 
 

Time (Hr) Strain 
&Treatment 

CFU/well 
Recovered 

Percent 
Internalized  

Fold Increase 

0 WT NS 1,070 ± 33.33 A,1 20.65 ± 0.65 1  
 233PR NS 570 ± 76.38 A,1 25.00 ± 2.55 1  
 EacF::Km NS 300 ± 104.08 A,1 12.00 ± 4.16 1  
 WT HIS 43.3E ± 2.40 A,2 0.58 ± 0.03 2  
 233PR HIS 9.33 ± 3.53 A,2 0.20 ± 0.08 2  
 EacF::Km HIS 6.00 ± 2.00 A,2 0.13 ±0.04 2  
4 WT NS 1,050E ± 57.74 B,1  0.98 A 
 233PR NS 667 ± 16.67 B,1  1.17 A 
 EacF::Km NS 400 ± 57.74 B,1  1.33 A 
 WT HIS 40.0 ± 5.00 B,2  0.92 A 
 233PR HIS 20.0 ± 4.41 B,2  2.14 A 
 EacF::Km HIS 20.0 ± 15.00 B,2  3.33 A 
8 WT NS 2,720 ± 120.19 C,1  2.55 B 
 233PR NS 2,120 ± 185.59 C,1  3.71 B 
 EacF::Km NS 820 ± 133.33 C,1  2.73 B 
 WT HIS 107 ± 21.28 C,2  2.46 B 
 233PR HIS 31.7 ± 9.28 C,2  3.39 B 
 EacF::Km HIS 25.0 ± 2.89 C,2  4.17 B 

12 WT NS 5,500 ± 1258.31 D,1  5.16 C 
 233PR NS 5,000 ± 288.68 D,1  8.77 C 
 EacF::Km NS 3,000 ± 288.68 D,1  10.00 C 
 WT HIS 108 ± 10.93 D,2  2.48 C 
 233PR HIS 80.0 ± 16.07 D,2  8.57 C 
 EacF::Km HIS 98.3 ± 4.41 D,2  16.39 C 
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Figure 6 A and B 
Percent  internalization of WT, mutant 233PR, and mutant EacF::Km E. ictaluri strains 
recovered from channel catfish head kidney derived macrophages (HKDM).  A) represents the 
graphical data for opsonized bacteria (treated with normal autologous catfish serum, while B) 
represents graphical data for non-opsonized bacteria (treated with heat inactivated autologus 
catfish serum).  There was no statistical difference found between strains (P>0.05) for either 
serum treatment.  There was a significant difference (P<0.05) in internalization between serum 
treatments.  Results from this single experiment are representative of data from four experiments, 
with triplicate wells for each treatment at each time in each experiment. 
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Figure 7 
Intracellular survival and replication of WT, 233PR mutant, and EacF::Km mutant strains treated 
with either normal autologous serum (NS) or heat inactivate autologous serum (HIS) in channel 
catfish head kidney derived macrophage (HKDM).  Each point represents the average CFU/well 
from triplicate wells transformed to LOG10 values.  Error bars represent the standard error among 
the three wells. There is no significant difference between the three NS treated strains, nor is 
there any significant difference between the three HIS treated strains (P>0.05) at any time point.  
However, there is a significant difference between the NS and the HIS treated strains (P<0.05).   
Results from this single experiment are representative of data from four experiments, with 
triplicate wells for each treatment at each time in each experiment. 
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Figure 8 A and B 
Light microscopy of E. ictaluri EacF::Km growth in channel catfish head kidney derived 
macrophages (HKDM).  Coverslips were stained and observed at 630X.  A)  HKDM after 0 hour 
incubation (90 minutes post infection).  B) Macrophages after 12 hour incubation.   

A B
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Table 4  Increase in number of CFU over time for E. ictaluri WT, 233PR mutant, and EacF::Km 
mutant strains following infection of channel catfish ovary cell line at an MOI rate of one 
bacteria to ten cells.  Means with different letters indicate significant differences between times 
for infection with the same strain in the least squares means procedure (P<0.05).  Means with 
different numbers indicate significant differences between different strains at the same time in 
the least squares means procedure (P<0.05).  There is no significant difference between strains, 
regardless of static or shaken conditions (shaken data not shown).  Fold increase is relative to the 
amount of internalized bacteria.  Results from this single experiment are representative of data 
from four experiments, with triplicate wells for each treatment at each time in each experiment. 
 
 

Time (hours) Strain CFU/well 
Recovered 

Percent 
Invasion 

Fold Increase 

0 WT 41.3 ± 1.33A,1 0.016 ± 0.041  
 233PR 48.7 ± 2.40A,1 0.018 ± 0.031  
 EacF::Km 28.7 ± 2.67A,1 0.014 ± 0.031  
4 WT 143 ± 12.02B,1  3.47  
 233PR 70.0 ± 5.77B,1  1.44 
 EacF::Km 16.7 ± 6.67B,1  0.58  

8 WT 1670 ± 192.21C,1  40.32 
 233PR 783 ± 192.21C,1  16.10 
 EacF::Km 225 ± 52.04C,1  7.85 

12 WT 7170 ± 927.96D,1  173.39 
 233PR 2980 ± 591.84D,1  61.30 
 EacF::Km 1400 ± 264.58D,1  48.84 

 



  
 

40

 
 
 
 
 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

WT 233PR EacF::Km 

Strain

Pe
rc

en
t

 
 
Figure 9  
Percent invasion of WT and mutant strains in the channel catfish ovary cell line at time 0 hour 
(90 min PI).  Error bars represent the standard error among the three wells.   There was no 
statistical difference in invasion of the CCO cells by any of the E. ictaluri strains (P>0.05).  
Bacteria invaded the CCO cells consistently at a very low rate (0.01 – 0.02%) in all four 
experiments.  Results from this single experiment are representative of data from four 
experiments, with triplicate wells for each treatment at each time in each experiment. 
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Figure 10 
Intracellular survival and replication of WT, mutant 233PR, and mutant EacF::Km strains in 
channel catfish ovary cells.  Each point represents the average CFU/well from triplicate wells 
transformed to LOG10 values.  Error bars represent the standard error among the three wells.   
Results from this single experiment are representative of data from ten experiments, with 
triplicate wells for each treatment at each time in each experiment.  There is no significant 
difference (P>0.05) between the three E. ictaluri strains at any point in the experiment regarding 
invasion, survival, or replication. 
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DISCUSSION 

 The mortality, persistence, and competition challenge results suggest that EacF is 

essential for persistence of E. ictaluri in the channel catfish host.  The persistence study revealed 

that both the 233PR and the EacF::Km mutant strains were able to invade host tissue, but were 

incapable of sustaining an infection, as demonstrated by the complete clearance of bacteria by 

days 8 and 13 for 233PR and EacF::Km, respectively.  Infection with the 233PR or EacF::Km 

mutant strain resulted in no mortality or 36% mortality, respectively, whereas infection with the 

WT strain resulted in 98% mortalities over a 16 day period following infection during the 

mortality study.  A competitive index of 0.00089 for 233PR and 0.25 for EacF::Km indicate 

attenuated mutant strains, although the lower index for 233PR suggests greater attenuation than 

the EacF::Km strain.  Despite in vivo results suggestive of attenuated, disruption of eacF did not 

significantly affect intracellular survival or replication in channel catfish head kidney derived 

macrophages (HKDM) or the channel catfish ovary (CCO) cell line under static conditions 

during the 12 hour assay.  In addition, neither 233PR nor the EacF::Km mutant strain were 

significantly different from the WT in the rate of phagocytosis or in their ability to invade 

HKDM or CCO cells.  Although the in vitro results indicate that eacF is not involved in invasion 

or intracellular replication under the experimental conditions that were used, the in vivo results 

define EacF as a gene involved in E. ictaluri pathogenesis.  Further analysis of the putative 

hemolysin/adhesin cluster is required to define its role in the disease process.  

 The location of the mobile DNA sequences at either end of the eac complex suggests the 

generation of the PAI by horizontal transfer.  The similarity of the G+C content is not typical of 

many pathogenicity islands, where the G+C content is often different than the core genome.  

This is not the case, however, if the donor of the PAI has a similar or identical G+C content as 
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the recipient.  It is also possible that the acquired DNA assumed properties similar to the rest of 

the genome during the evolution of the pathogen (Hacker and Kaper 1999). 

Figure 11 displays the location of the two mutations located in the carboxy terminus of 

eacf.  In 233PR, there are 1,386 bp encoding 46% of the total functional protein, while in 

EacF::Km there are 1,608 bp of functional protein, with both insertions located towards the 

carboxy terminus.  The extra 222 bp translated into functional protein in EacF::Km appears to 

reduce the level of attenuation compare to the more truncated 233PR, but at the same time is less 

virulent than the WT strain.   Because the carboxy terminus of many adhesins are the portion of 

the protein that is involved in attachment to the bacterial surface (Choudhury et al. 1999), 

truncating the C- terminal domain often affects binding of the protein to the bacterium.  In this 

instance, the slightly shorter 233PR product may encode less of the EacF receptor binding 

domain.  Alternatively, the shorter 233PR protein may be stearically hindered from attachment to 

the host receptor.  Although a differential effect of protein length on pathogenicity was seen in in 

vivo studies, it did not affect results of the in vitro assays. 

A study that analyzed FimH from commensal E. coli found that gentle shaking of guinea 

pig erythrocytes in the presence of E. coli allowed rapid agglutination, indicating that shear flow 

can allow commensal FimH derivatives to bind erythrocytes (Thomas et al. 2002).  This 

indicates the potential of shear flow analysis in cell and tissue culture, if the special static needs 

of cell culture methods can be overcome.  One last limitation that must be considered when 

dealing with cell culture assays is that immortalized cells invariably have unstable genotypes and 

develop genetic mutations that differentiate them from their starting tissue’s phenotype (Drexler 

et al. 1999; Daniele et al. 2002; Ben-Porath and Weinberg 2004).  Based on the level of 

attenuation in vivo, eacF is involved in E. ictaluri pathogenesis, but changes in experimental 
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ATGCACAGCG ACTATGCCTC GGTGGAGAGC CAGAGCGGCA TCTTTGCCGG 
TACCGGTGGC TTTGATATCA CCGTGGGTAA TCATACCCAG CTGGACGGCG 
CGGCCATTGC CAGCGCGGCC GGTCAGGAGA GCAACCGCTT AGATAGCGGA  
ACCCTGGGCT TTGCCGATAT CGACAACCGC GCTGAGTTCA GGGCGCAGCA 
CCAGGGGTTT GGCCTTAGCT CCGGCGGCAG CATTGGCGGC CAGTTCGCGG  
GCAATATGGC CAATAGCCTG TTGGCGGGCG CCAATCATCA GGAGCGCGCC 
CGCGGCACCA CCCAGTCGGC TATCGCCGAC GGCGCGATCG TCGTGCGCGA  
TCGGGCCAAC CAGCAGCAGG ATGTCGCCGG GTTAGCGCGC GACACGGAGC 
GGGCGCACCA GCCCCTCACC CCTATCTTCG ACAAGGAGAA AGCGCAGCGG  
CGCCTGCAGC AGGCCCGGCT GATCGGTGAG ATTGGCAATC AGGTGGCCGA 
TATTGCACGG ACAGAGGGCG AGATCGCCGG GGAAAAAGCC CGGCGTGACC  
CGACGGCCCT GAATCAGGCG CGTACCGCAC TGGAAGCCAG CGGTAAACCG 
TTTACCGAGA AGGATGTAGC GCAGCGGGCG TATAACACCG GCATGCGCGA  
TTCCGGGTTT GGCACCGGAG GGCAATACCA GCAGGCGATT CAGGCGGCCA 
CGGCGGCGGT ACAGGGGCTG GCGGGCGGCA ACCTGCAGGC GGCGCTGGCG  
GGCGGCGCGG CGCCGTATAT TAGTGAGATA ATCAAGCAGA GCACCCCGGA 
CGGCGCGGGG CGTGTGGCGG CCCATGCGGT GGTAAATGCG GCGCTTGCCG  
CAGCACAGGG GAATAACGCC CTTGCCGGAG CCGCGGGTGC GGCCACCGGC 
GAAATCGTCG GCATGCTGGC CACGGAGATA TACCAGAAAC CGGTCGCTGA  
GCTCAGCGAA AGCGAGAAAC AGACCGCTTC AACACTGGCC ACCGTTGCCG 
CCGGACTGGC CAGTGGTCTG GTGGGCGACG CGGGGGCTTC CGCGCTCGCC  
GGGGCAGAGT CGGGTAAGAC GACGGTGGAG AATAATTTCC TTGGGACAAA 
ATCGTCCAGC AAGCTAGATA AAATTATCGA AAAAATACAG CATGGTGATA  
AGACGTTAGC GACGGCGAAA GAGTTACTTC AATTAGAAAA CGCAGACAAA 
CGGAGTGACA TACTTATCAC GAAGTTTGTG TCAGATCCTA CCCAACTGAA  
TAGCGCTGAA CGAAGCGAAT TAGCTGGTTA TTTGCGTATT TACGCAGCAG 
AGATGGAGAC GGAATATGGT ACAGGTGTTG CTCAGGAGCT AGTCAATGGA  
TTGCTTTCAG GGAGCGACTA TCTAAAACGA GGCCCAGACT CTGATGTAAT 
GGCTGAGGCG CAAAATATAA TGAGGGCATG GGTATATCAT AAATCCAATG  
CGAGTATTGG TGATGCACCG CTGCTGTTTT CTGGCAGTAT GCTGGGTATT 
ACAATAAAAG GAGGTATGGC TGTTAATGCG GCGATAGGCA TAGGTGTCAA  
CACTGTGGTT CAATTAAGTG GAGACGATCC TTTCAGTTAT GTGGATGCAA 
GTATTGCGGG ATTGATATCA GCCGCGACGA CAGGAAAAGG TTGGCAGGCT  
TCCGCAGCCA TTAATATGGG TGGGGCCGCC GTTAGCAGTG CACTTAAAGG 
AGAGGATCCA ACTAATGCAG TGATCGGAGC TGGAATTGGT AGTGTGGGTG  
GTAGTATAGG AGGGAAAACT GTTGACTCAT TATCTACAAT AACAAATCAA 
GCAGTAAAGG ATGTTATTGG TACAGTTACT GGTTCTACAC TTAATGAAGT  
CACAGGAAAG ATAGTGAAAG ATGAATTAGA TGGAACTAAT AACAATGAAT 
AG 
 
 
Figure 11  Location of 233PR and EacF::Km mutations in the eacf gene sequence.  The bold 
letters indicate where the STM 233PR transposon insertion alters the gene sequence.  The 
underlined letters indicate where the mini-Tn5-Km resistance cassette truncated the protein in the 
EacF::Km mutant.  The EacF::Km knockout is located 221 nucleotides downstream from the 
original 233PR transposon insertion.  
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conditions, using shear forces and/or different cell types cultures may be required.  The 

hemolysin/adhesin cluster located in a PAI of locus of enterocyte effacement (LEE) –negative 

strain of E. coli CL3, described by Shen et al. (2004) represents potential virulence genes.  When 

S1 was used as a marker for the cluster, however, it was not present in strains associated with 

uremic syndrome or epidemic disease in humans, but was found in 5 of 11 strains that were only 

isolated from cattle (Shen et al. 2004).  The identification of this cluster as a factor in E. ictaluri 

pathogenesis and the negative correlation to human disease suggests a role in animal pathogens.  

Although the gene encoding the hemolysin/adhesin cluster is only proposed as a potential 

virulence gene by Shen et al. (2004), the research presented here suggests that the homologous 

genes in E. ictaluri are virulence genes that play a role in pathogenesis.  
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CONCLUSION 

An isogenic E. ictaluri EacF::Km mutant was constructed based on a specific attenuated 

mutant, 233PR, carrying a transposon insertion in a gene encoding a putative adhesin.  The 

EacF::Km was constructed so that the Km-resistance cassette that interrupts the gene’s function 

was located downstream from the transposon insertion found in 233PR for the purpose of 

examining protein truncation function differences.  Analysis of the sequence encoding the 233PR 

mutation and surrounding open reading frames (ORF’s) using BLAST revealed a 

hemolysin/adhesin cluster in E. ictaluri that is similar to the hemolysin/adhesin cluster located in 

a PAI of LEE–negative strains of E. coli CL3, described by Shen et al. (2004).  The location of 

the mobile DNA sequences at either end of the eac complex suggests the generation of the PAI 

by horizontal transfer.  The putative hemolysin/adhesin cluster in E. ictaluri encodes 8 open 

reading frames (ORF’s) that have been named EacA-H for Edwardsiella attenuation cluster.    

Both the 233PR and the EacF::Km mutations are located in the carboxy terminus of EacF at 

5,632 and 5,404 bp, respectively.  

  In vivo results were presented that demonstrated the importance of the putative 

adhesin’s role in E. ictaluri pathogenesis, but in vitro data was unable to support a role in 

adhesion, invasion, or intracellular replication under the experimental conditions that were used.  

The 233PR and EacF::Km mutant strains were shown to be attenuated in the natural host, 

channel catfish, with respect to the WT parental strain.  Both mutants were able to invade the 

host at relatively the same levels as the WT, but were unable to persist in host tissue for more 

than 8 days for the 233PR strain and 13 days for the EacF::Km strain.  Infection with the 233PR 

strain resulted in no mortalities over a 12 day study, infection with the EacF::Km strain resulted 

in a total 36% mortality rate, and infection with the WT strain resulted in a total 98% mortality 
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rate over the same time period.  Results from a competitive challenge calculated a competitive 

index (CI) of 0.25 for EacF::Km and a CI for 233PR from a previous study (Thune et al. 2007) 

of 0.00089 indicating that the EacF::Km mutant was less attenuated than 233PR.  In vivo results 

are all consistent with differential attenuation of 233PR and EacF::Km based on the degree of 

truncation of EacF.  The extra 222 bp translated into functional protein in EacF::Km appears to 

reduce the level of attenuation compare to the more truncated 233PR, but at the same time it is 

less virulent than the WT strain.   This study has proven that eacF is a virulence factor, but 

further analysis of the putative hemolysin/adhesin cluster is required to define its role in the 

disease process. 
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