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ABSTRACT

Bio-inspired techniques are fields of study that are inspired from topics of
connectionism, social behavior and emergence. Researchers have ventured into the
intricacies involved with the techniques and devised algorithms based on their study,
Such techniques are the focus of this thesis. The two bio-inspired techniques used for
simultaneous design of power system stabilizers (PSSs) in this study are —Particle Swarm
Optimization (PSO) and Bacteria Foraging Algorithm (BFA). The work in this thesis is
presented in three papers as follows:

Paper | — This paper introduces an improved PSO called Small Population based
PSO (SPPSO) with less number of particles and unique regeneration concept. The
efficacy of the algorithm is evaluated for the simultaneous design of power system
stabilizers (PSSs) on the two-area and 16 machine power systems.

Paper 2 — The second paper presents a new algorithm-Bacterial Foraging
Algorithm (BFA) for simultaneous tuning of multiple PSSs on a 16 machine power
system. The variants of the BFA like the run length and the swarming are explored for
better performance for two different design techniques and the results are compared.

Paper 3 — The third paper compares SPPSO and BFA towards simultancous
tuning of mulfiple PSSs on two-area and Nigerian power system. This paper presents
both algorithms as a first step towards online optimization and proposes to implement

these algorithms in real power systems in near future.
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PAPER 1

COMPUTATIONALLY EFFICIENT SPPSO ALGORITHM FOR DESIGN OF
POWER SYSTEM STABILIZERS

Tridib K. Das, Student Member, IEEE and
Ganesh K. Venayagamoorthy, Senior Member, IEEE

Abstract—The disturbances occurring in power systems induce electromechanical
oscillations. These oscillations need to be damped in order to maintain power system
stability. Power System Stabilizers (PSSs) can damp these oscillations by providing
auxiliary feedback signals to excitations of generators. This paper presents Particle
Swarm Optimization (PSO) with a small population called Small Population based
PSO (SPPSO) as a novel technique for optimizing/tuning the parameters of several
PSSs in two different power systems. The small population reduces the
computational cost and thus can be considered as a first step towards online
optimization. A regeneration concept is introduced in SPPSO to have the
advantages of PSO. The cost function used in this study takes into account the
eigenvalues of the electromechanical modes of the generators. The efficacies of PSO
and SPPSO based PSSs designs are compared with conventional PSS design on two
power systems in terms of the closed foop system eigenvalues, the transient energies
experienced for different operating conditions and the computational complexities
of the algorithms. This paper also presents additional results that show improved

damping when only critical PSSs are selected for tuning.




Index Terms — damping ratio, eigenvalue, particle swarm optimization, participation
factors, power system stabilizer, optimization, small population and transient

stability.

L. INTRODUCTION

The demand for electric power has been increasing with time and therefore, to
satisfy the power demand, power systems are becoming more interconnected and thus
becoming more and more complex. With this type of environment and higher loading of
transmission lines, the power system is forced to operate closer to its stability limits. This
results in electromechanical oscillations which can threaten the system stability by
curtailing the electric power transfers. To maintain system stability, generators are
equipped with Power System Stabilizers (PSSs) which modulate the generator output by
adding an auxiliary signal to the voltage reference set point. The PSS is endowed with the
task of providing phase shift in the frequency range of power system oscillations;
typically between the ranges of 0.2Hz-2Hz. It accomplishes this by the presence of lead-
lag compensators that shift the electromechanical modes to the left hand side of the s-
plane.

Researchers have proposed several modern approaches for PSS design [1]-[3].
However, utilities still prefer the conventional lead-lag compensator structure [4], [5].
This is because of the ease of tuning the parameters during commissioning. Conventional
PSS (CPSS), the first in the sequential design process, could not provide effective

damping for different operating conditions. To have the PSS provide good damping over




a wide range of operating conditions, its parameters need to be fine-tuned in response to
all modes of oscillation present in the system, Traditional optimization techniques [6]-[9]
have been proposed as solutions; having the above mentioned drawbacks. However,
when the cost function is epistatic and the parameters to be optimized are large in number,
these techniques exhibit premature convergence and thus cannot guarantee an optinum
solution.

Particle Swarm Optimization (PSO) is a popular, evolutionary like algorithm
which has been shown to have great potential for single and multi-objective optimization
[10], [11]. Optimization of PSS parameters using PSO has been reported in literature [12].
Evolutionary PSO (EPSO) has also been proposed as an optimization technique towards
PSS tuning [13]. PSO and EPSO employ larger number of particles to explore the search
space and thus present a high burden on computational resources and time. These
techniques cannot be conceptualized for online optimization where the state of the system
changes over time. To make the PSO feasible for online optimization, the first thing to be
done is to reduce the number of individuals employed thus reducing the number of fitness
evaluations.

A Small Population based PSO (SPPSO) is presented in this paper as a feasible
online implementation tool and is illustrated using Power System Toolbox (PST) [14]. A
unique regenecration concept is introduced in SPPSO to overcome the drawback of having
a small population. SPPSO is implemented for simultaneous tuning of PSS parameters on
a two area (4 generators) and the New England-New York (16 generators) power system.
These studies involve tuning parameters of all PSSs and selective critical PSSs. The

critical PSSs are selected based on the generator participation factors in the inter-area




modes. The latter one provides better damping to the power system oscillations. The cost
function used in all these studies is the eigenvalues of the electromechanical modes of the
generators.

The rest of the paper is organized as follows: Section II describes the formulation
of the cost function used in determining the PSSs parameters by the optimization
techniques; Section 11l elaborates PSO and SPPSO algorithms; Section IV describes the
two power systems used in this study; Section V compares the performance of the
optimized PSSs; Section VI presents some transient simulation results and finally, the

conclusion and future work is given in Section VII.

II. OPTIMAL PSS DESIGN

The generators in the power systems under study have PSS1As [15], as shown in
Fig. 1, connected to them. The PSSs provide additional input signals (V) to the voltage
regulators/excitation systems to damp out the power system oscillations. Some
commonly used input signals are rotor speed deviation {Aw), accelerating power and
frequency. It consists of an amplifier block of gain constant, K, a block having washout
time constant, Tw, and two lag-lead compensators with time constants T1 to T4. The gain
K and the four time constants T1 to T4 are the five PSS parameters that need to be
optimally selected for each (generator to provide effective damping to power system

oscitlations under a wide range of operating conditions and disturbances.
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Fig. 1. Block diagram of power system stabilizer (PSS).

The objective in the optimal PSS design is to maximize damping; in other words
minimize the overshoots and settling time in system oscillations. An eigenvalue based
objective function reflecting damping factor of each of the electromechanical eigenvalues
at number of different operating conditions is formulated. The optimization algorithm

minimizes the cost function given by:

M=(1M1+(Ima)M2 n
where
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a is the weighing factor which is 0.1 for this study. Several values of « have been tried
but with 0.1provides the best results. This is because with this value of @, M; does not
dominate M and vice-versa in magnitude ratio. NP is the number of operating points
considered in the design. o;;1s the real part of the i" eigenvalue under j* operating
condition considered. The value of o, determines the relative stability in terms of

damping factor margin provided for constraining the placement of eigenvalues during the




process of optimization. The closed loop eigenvalues are placed in the region to the left
of the line as shown in Fig. 2 (a). If M, is to be taken as the objective function then it
limits the maximum overshoot of the eigenvalues as shown in Fig. 2 (b). In case of M3, &
is the minimum to be achieved for all electromechanical modes of oscillations, When the
cost function is as given by (1), it takes into account both damping and overshoot and the

eigenvalues are restricted by design to the D-shaped area as shown in Fig. 2 (c).
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Fig. 2. Regions of eigenvalues location for different objective functions.
(a) Region where ¢;; <0y (b) Region where {; ;> {p
(¢) Region where oy ; < ap and &, > (o

A flowchart as shown in Fig. 3 explains the steps involved in the optimal PSS
design. The PSSs parameters to be optimized should be restricted to certain limits. The
maximum and the minimum values of these parameters are chosen so that the system
may not lose iis stability during optimization when the PSSs parameters attain any of
these limits.

Kmm = K = Kma.t: T, Tmin =< TI = T, Imaxs T 2min < T 2 = T 2maxs

T Jmin = T3 < T Imax » T 4min = T4 < T4max-




Randomize X, T, T,, T;, T,within certain limits

Specify ¢, and g,

-

v
Determine the eigenvalues of the closed loop system

(Power System +PSSs)

Is

{<{, orcza,?

Run the optimization
algorithm to determine
better PSS parameters

A

Evaluate (1), M=aM +(I-a)M,

Is
fitness (1) = zero

or
iteration # = max iteration 7
Yes

'
>

A
Che

Fig. 3. Flowchart explaining the methods involved in the optimal PSS design,

II1. PSO AND SPPSO ALGORITHMS

Particle swarm optimization is a form of evolutionary computation technique (a
search method based on natural systems) developed by Kemnedy and Eberhart [11])-[12].
PSO like GA is a population (swarm) based optimization tool. However, unlike in GA,
individuals are not eliminated from the population from one generation to the next. One

major difference between particle swarm and traditional evolutionary computation
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methods is that particles’ velocities are adjusted, while evolutionary individuals’
positions are acted upon; it is as if the “fate” is altered rather than the “state” of the
particle swarm individuals [16].

The system initially has a population of random solution's. Each potential solution,
called particle, is given a random velocity and is flown through the problem space. The
particles have memory and each particle keeps track of previous best position and
corresponding fitness. The previous best value is called the pbest of the particle and
represented as py. Thus, pyg is related only to a particular particle /. The best value of all
the particles’ pbests in the swarm is called the gbest and is represented as pgq. The basic
concept of PSO technique lies in accelerating each particle towards its pis and the pgy
locations at each time step. The amount of acceleration with respect to both piy and pgy
locations is given random weighting,

Fig. 4 illustrates briefly the concept of PSO, where x(k) is current position, x(k+1)
is modified position, vk} is initial velocity, vi.q(k} is modified velocity, vpa(k) is
velocity considering piq and vpea(k) is velocity considering pes at k™ iteration in a unit
interval.

The velocity and the position of the particles are computed according to (4) and (5)
respectively. v;; and x;z represent the velocity and position of i particle in ¢ dimension

respectively and, rand; and rand, are two uniform random functions.

Vig (k + 1) = wx v (k) + ¢ xrand  x(pig (k) - x4 (k))

+c, xrand | X (pgq (k) — x;q (k) “

Xid (k+1)= Vid (k+1)+x,-d (]C) (5)




Fig. 4. Movement of a PSO/SPPSO particle in two dimensions from one instant & to
another instant k+/.

The PSO parameters in (4) are as follows: w is called the inertia weight, which
controls the exploration and exploitation of the search space; and ¢; and ¢; are the
cognition and social acceleration constants.

The modifications proposed to the standard PSO in this paper mainly include two
ideas. The first idea is the use of a small population of particles, five or less; calling this
algorithm the small population based particle swarm optimization. The second idea is a
regeneration concept where new particles are randomly created after every N iteration to
replace all but the gbest particle in the swarm. In the addition to keeping the ghest’s
particle parameters, the population pbest attributes are also transition from one set of
population to the next every N iterations, The concept of PSO with regeneration is
incorporated to make the convergence faster like it would with a large population of PSO.

Randomizing the positions and velocities of the particles helps the particles escape local
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minima and find the global optimum. The involvement of small population of particles
reduces the number of fitness evaluations makes each evaluation less computational
intensive than standard PSO algorithm. A flowchart explaining the steps in PSO and

SPPSO is shown in Fig, 5.
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T I
|
I
Update the velocities and positions I
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of the particles :
]
]
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i
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1
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|
3
!
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Fig. 5. Flowchart for PSO and SPPSO algorithms.
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Clerk [17] has proposed the use of constriction factor for faster and guaranteed
convergence of the PSO algorithm. For implementing PSO with constriction factor, (4) is

multiplied by K [18].

where K = 2 (6)

2-p-~o? —4p

p=c;te; , ¢>4

The constriction functionality in PSO can be realized by using (4) with w=0.729,

and ¢;=c;=1.494, and is referred to as CPSO and CSPPSO in rest of this paper.

IV.STUDY STSTEM

The design of multiple optimal PSSs simultaneously using PSO and SPPSO is

studied on two different power systems described below.

A. System 1

The system 1 is the two area power system [19] which consists of two fully
symmetrical areas linked together by two transmission lines. Each area is equipped with
two identical synchronous generators rated 20 kV/900 MVA. All the generators are
equipped with identical speed governors and turbines, exciters and Automatic Voltage
Regulators (AVRs), and PSSs. The loads in the two areas are such that Area 1 is
exporting an appreciable amount of power to Area 2. This power network is specifically

designed to study low frequency electromechanical oscillations in large interconnected
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power systems. Three electro-mechanical modes of oscillation are present in this system,
two inter-plant modes, one in each area, and one inter-area low frequency mode.

The two-area power system being symmetrical, 5 parameters in total are to be

tuned by the optimizing algorithm for the different operating conditions as given in Table

1. The optimal parameters are given in Table A.1.

B. System 2

System 2 is a 16 machine, 68 bus, five area power system. It is reduced order
model of the New England and New York interconnected power systems of the 1970s
[20]. The generators, G1-GY are representation of the New England Test System (NETS)
and generators, G10-G13 represent the New York Power System (NYPS). The last three
machines G14-G16 are the representation of the three interconnected areas in the NYPS.
All the generators have exciters and governors connected to them. The system
experiences four inter-area modes of oscillations (0.39Hz, 0.5 Hz, 0.64 Hz and 0.78 Hz).
First three of these are the critical modes. Mode 4 is a higher frequency mode which
settles down faster than the other three modes. This last mode settles within the allowed
settling time for the system, hence three inter-area modes are the modes to be damped.
The system is such that Area 2 imports power from Arca 5. The data used for the 16
machine system is taken from [20]. Two cases for PSSs parameters tuning for this system

is carried out as described below,
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1) Case I — Tuning All PSSs:
The parameters of all 16 PSSs in the system are determined by the PSO and
SPPSO algorithms; in total therefore 80 optimal parameters are determined for the

operating conditions in Table 1. These parameters are given in Table A.2,

2) Case 2 — Tuning Selected PSSs:

The critical generators for PSS tuning are identified based on their participation
factors in the inter-area modes. The participation factors are high for generators G9 and
(GG13-G16 for the 0.39Hz mode, G14 and G16 for the 0.5 Hz mode, G13 for the 0.64 Hz
mode and G14 and G15 for the 0.78 Hz mode. Hence, PSSs to be tuned are connected to
these five critical generators (G9 and G13-G16) and thus, 25 parameters are optimized.
The remaining 11 generators have the conventional designed PSSs [20] connected to
them. These PSSs [20] have K=10.0, 7,=0.08, T,=0.015, T3= 0.08 and T,= 0.015
respectively. The PSO and SPPSO techniques optimize the cost function for the operating

conditions given in Table I. The 25 optimal PSS parameters are given in Table A.3.

Table I
Operating Conditions
Operating Power Transfer in
System Condition (MW)

I 246

I 398

i 111 446
v 476

I 2471
2794

5 11

11 3153
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V. PERFORMANCE COMPARISON

This section compares the performance of the optimized PSSs with each other,
and with CPSS and PSS [20] on system 1 and system 2 respectively under different
operating conditions, given in Table I. The number of particles used in PSO and SPPSO
are 20 and 5 respectively. The PSSs performances are compared in terms of closed loop

system eigenvalues and computational complexities as described below.

A. Eigenvalue Analysis

The following subsections present the closed loop system eigenvalues and the

damping ratios of the two power systems with tuned PSSs.

1) System 1:

The values of {p and ¢y used in the optimal PSS design are 0.4 and -1.0
respectively. The frequency ranges used for optimization in this system are 0.4 Hz-1.2 Hz
to account for the inter-area modes and 2.85 Hz-3Hz to damp the high frequency
oscillations observed in the speed responses of generators: Table A.4 shows the damping
ratios and eigenvalues of the systems averaged over 20 CPSO and CPPSO trials for the
four operating conditions given in Table 1. The PSO and SPPSO with constriction factors
give better damping, hence the parameters used further in this study are the PSSs
optimized by PSO and SPPSO with consfriction factors (CPSO and CSPPSQ). The
CSPPSO optimized PSSs have real parts of the closed loop system eigenvalues more left

to the line gy = -1 than CPSO optimized PSSs and Kundur’s PSSs [19]. The damping




15

provided by the CSPPSO optimized PSSs are comparable to the damping provided by

CPSO optimized PSSs for any of the operating conditions.

2) System 2 (Case 1):

The cost function used for optimization in this system takes into consideration (5=
0.2 and. g9 = -1.0. This being a large system, the value of {y is taken to be 0.2. The
optimization is carried out in the frequency range of 0.3 Hz-0.9 Hz and 2.9 Hz-3.2 Hz so
that the four inter-area modes lying in this range are damped properly. The average
damping and eigenvalues averaged over 20 trials are given in Table A.5 for operating
condition I and II. Similar results are seen for operating condition 111 but are not shown to
limit the length of the paper.

CSPPSO tuned PSSs gives the best damping. Effectiveness of the CPSO and
CSPPSO optimized PSSs can be seen in the Tables A.4 and A.5 as the generators do not
exhibit local modes of oscillations. The damping ratios within the braces show the

minimum and the maximum damping for a given operating condition.

B. Computational Complexities

The computational complexities involved with CPSO and CSPPSO based PSSs

design is examined for systems 1 and 2 below.

1) System 1:
Table II shows the computational complexities of the algorithms towards the

optimal PSSs design. The average number of iterations to aftain 0 fitness over 20 trials
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with CPSO and CSPPSO are 13.25 and 22.8 respectively. The number of fitness
evaluations in CPSO is more than two times the number of fitness evaluations in
CSPPSO. The number of additions and multiplications in CSPPSO is reduced by 60%
compared to CPSO. To attain the same fitness, CSPPSO requires lesser number of fitness

evaluations than CPSO (Fig. 6).

o orso
= CSPPSO

100

80}

60 L

40|

Average Fitness of the best particle

20}

b e e e s, .t . o

o ! L X e
0 50 100 150 200 250 300 350 400
Number of fithess evaluations

Fig. 6. Average fitness of the best particle over 20 trials (System 1).

2) System 2:

The average number of iterations required to reach 0 fitness over 20 trials for
CPSO and CSPPSO are 3.9 and 4.65 respectively. Hence, the computational complexities
involved with the algorithms can be quantified as per Table II. The number of fitness
evaluations in CPSO is more than five times the number of fitness evaluations in

CSPPSO. The number of additions and multiplications in CPSO in comparison to
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CSPPSO are increased by 235% for system 2. The average fitness of the best particle
over 20 trials is shown in Fig. 7. CSPPSO takes fewer fitness evaluations to reach the
desired fitness than that of CPSO.

The lesser number of fitness evaluations makes CSPPSO computationally less
intensive. For online optimization where time plays a vital role, CSPPSO is suitable
algorithm compared to CPSO which requires more calculations and time to attain a

desired fitness.

Table I1
Comparison of Computational Complexities of PSO and SPPSO on Systems 1 and 2
{d = number of dimensions)

Algorithms Number of Number of Number of
Fitness Evaluations Additions Multiplications
PSO —m particles | mX number of | 5% mx dX number | 5 x mX d number of
iterations of iterations iterations
CPSO-20 particles
(system 1) 265 6625 6625
CPSO-20 particles
{(system 2) 78 31200 31200
CSPPSO — nX mumber of |5 x nX dX pumber | 5xuX dX number
n particles iterations of iterations of iterations
CSPPSO —
5 particles 114 2850 2850
( system 1)
CSPPSO —
5 particles 23.25 9300 9300
(system 2)
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Fig. 7. Average fitness of the best particle over 20 trials (System 2).

VI. TRANSIENT SIMULATION RESULTS

The challenging task of tuning multiple PSSs simultaneously using swarm
algorithms in PST is reported in this paper. The responses of the system with CPSO and
CSPPSO optimized PSSs are compared with Kundur’s PSSs [19] in system 1 and PSSs

[20] in system 2 respectively.

A, System 1

The system is subjected to two contingencies for each of the operating conditions

given in Table I and the responses are studied for the PSSs parameters given in Table A.1.
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1) Contingency 1:

A 150ms duration 3-@ short circuit is applied at bus 8 of system 1. The speed
responses of generators in the two areas for operating conditions I and IV are shown in
Figs. 8 and 9. Responses of all the generators on this system for different operating
conditions are not shown to limit the length of the paper. The speed oscillations of the
generators are better damped with CPSO and CSPPSO optimized PSSs than with
Kundur’s PSSs {19]. Responses of the CPSO and CSPPSO optimized PSSs are similar.
The robustness of CPSQ and CSPPSO optimized PSSs can be clearly seen from the
damping provided to the generators in both areas of system 1 for these operating

conditions.

2) Contingency 2:

The system is subjected to a permanent line outage of a tie lime between buses 7
and 8. Fig. 10 shows the speed oscillations of G1 and G3 under operating condition IV.
The CPSO and CSPPSO optimized PSSs provide better damping to the oscillations than

Kundur’s PSS.
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B. System 2 (Case 1)

The system is subjected to two contingencies for three different conditions as

mentioned in Table I and the responses are studied for the PSSs parameters given in

Table A.2. The speed differences between generators of different areas are studied to

observe the efficacies of the PSS design techniques. The results show that the CSPPSO

designed PSSs provide better damping to the speed oscillations than the CPSO designed

one. Both CPSO and CSPPSO optimized PSSs exhibit better performance than PSSs {20].

The responses of the generators for contingencies 1 and 2 for operating conditions are as

shown below.




1) Contingency 1:
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A 150 ms 3-® short circuit is applied at bus 50 with an auto recloser. Figs. 11 and

12 shows the speed responses of (G10-G14) and (G3-G13) for operating condition I and

(G15-G14), (G15-G16) for operating condition 1I. The responses exhibit the superiority

of CPSO and CSPPSO optimized PSSs over PSSs [20] towards damping power system

oscillations.

2) Contingency 2:

The system is subjected to 150 ms 3-® short circuit at bus 1 and then the fault is

removed by taking out the transmission line between buses 1 and 2 thus changing the

system topology. The speed responses of (G15-G16) and (G15-Gl14) for operating

condition IIT as shown in Fig. 13 corroborate superiority of CPSO and CSPPSO

optimized PSSs over PSSs [20] in damping system oscillations.

.....
+ ",

0.6 r : .
s PSS [20]
e4t == CPSO optimized PSS
CSPPSO optimized PSS
0.2t

.................

Speed differences of (G10-G14)

0 e
0.2 | | : | i ok ]
0 0.5 1 15 2 2.5 3 35 4 4.5
Time in seconds
01— —— 4
0.05F &

-0.05-

S|

o PSS [20]

o e

CPSO optimized PSS
CSPPSO optimized PSS
i ki SR

Speed differences of (G3-G13)

0.1 - l 1
0

2

2.5 3 3.5 4 4.5

Time in seconds

Fig. 11. Speed differences of (G10-G14) and (G3-G13) in rad/sec for a 150 ms 3-O short
circuit fault at bus 50 for operating condition 1.

5




Speed differences of {G15-G186)

Fig. 12. Speed differences of (G15-G14) and (G15-G186) in rad/sec for a 150 ms 3-O
short circuit fault at bus 50 for oper

Speed differences of (G15-G16)

Speed differences of (G15-G14)

s
& 04 : : : : ‘ .
o ] e PSS [20]
g, ) S e CPSO optimized PSS
g - CSPPSO optimized PSS
8 0 YT TTT TP
| =
p
£ 0.2 g i
'U v|l'
-
$ -04! ! ol ! I \ L : [ P R
(% 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time in seconds
0-5 1 T T t

o

PRTTA LA

ey
-----------

CPSO optimized PSS !

CSPPSO optimized PSS E

o
[

0.5 1 1.5 2 2.5 3
Time in seconds

35 4 4.5 5

ating condition II.

_02 H 1 E | t 1 L. i
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time in seconds
0.4 . - : , —
........... PSS [20]
0.2t e et CPSO optimized PSS
CSPPSO optimized PSS
0 B ey

l'.
A

A

2.5 3
Time in seconds

SRV I S

05 1 15 2

23

Fig. 13. Speed differences of (G15-G16) and (G15-G14) in rad/sec for a 150 ms 3-®
short circuit fault at bus 1 followed by opening of the line between buses 1 and 2 for
operating condition II1.




24

C. Performance Measure of the PSSs in System 1 and 2

A brief comparison of the CPSO and CSPPSO optimized PSSs designs with
CPSS [19] and PSS [20] design for the two-area and the NETS-NYPS power system
respectively based on their performance indices are shown in this section. The transient
energy of each of the generator for the first 3 seconds of the fault has been calculated
using equation (7)

1 tg 43 2
Cen ; B ?HGE” i jf;: Aa; dt (7)

where 7 is the generator number and fy, is the time the fault is triggered. The performance
index (P.I), given in (8), is a measure of how the system performs under the given
conditions with the different set of PSS parameters. The higher the performance indices,
better the controller damping performance.

Performance Index (P.1} =1/ TE (8)

1) System 1:

Table A.6 presents the normalized performance indices of Areas 1 and 2 for the
system subjected to contingencies 1 and 2 for different operating conditions mentioned in
Table I. The normalized performance index is obtained by dividing the P.Is by the P.I of
Kundur’s in that row. The PSSs parameters used for obtaining these results are the best
parameters for four operating conditions averaged over 20 trials, The performance indices
as seen in Table A.6 are best in case of system having CPSO and CSPPSO optimized
PSSs. The overall performance of the system under different operating conditions

improves drastically for the system having CPSO and CSPPSO optimized PSSs.
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2) System 2 (Case 1):

The performance indices are evaluated in the same manner as described in (7) and
(8). Table A.7 shows the performance indices of the system subjected to contingencies 1
and 2 under different operating conditions. The value of the PSSs parameters used in this
study is taken from Table A.2. The overall performance of the system having CPSO and
CSPPSO optimized PSSs is better than the system having PSSs [20]. The swarm
optimized PSSs parameters give better damping to the system oscillations after a

disturbance.

D. Comparison of Tuning of All PSSs (Case 1) and Selected PSSs (Case 2} on System 2

Comparison of tuning of all and selected PSSs towards damping of
electromechanical modes for two above mentioned contingencies are shown from Figs.
14-16. The speed responses clearly depict the superiority of Case 2 (tuning selected PSSs)
over Case 1 (tuning all PSSs). Speed oscillations get damped faster in the former than the
latter.

The study cases are further compared with respect to the oscillatory modes in
system 2 for different operating conditions. The damping shown in Table A.8 is the
average damping of the electromechanical modes obtained over 20 trials. It is observed
that the damping of the system in Case 2 is better than Case 1 for operating conditions
given in Table I. This corroborates the superiority of tuning selected PSSs (Case 2) over
tuning all 16 PSSs (Case 1). The five critical generators are mainly responsible for the

inter-area modes; hence optimizing PSSs parameters at these locations provide improved
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damping. The tuning of selected PSSs based on the generators participation factors are
computationally intensive than tuning of all PSSs as seen from Table III. The PSSs are
enfrusted with the task of optimizing the electromechanical modes, such that all of them
within the desired frequency range have their { =2;. This process takes longer time in
Case 2 than in Case 1. This is because the degree of freedom for the particles in case 2

(25 parameters) is lower compared to Case 1 (80 parameters).

Tuning selected PSSs
Tuning all PSSs

0 05 1 15 2 25 3 35 4 45 5
Time in seconds

Speed differences of G10-G16

o T - T

Tuning selected PSSs

Speed differences of G14-G15

D2l L [ — : = B E
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time in seconds

Fig. 14. Speed differences of (G10-G16) and (G14-G15) in rad/sec for a 150ms 3-® short
circuit fault at bus 50 for operating condition 1.
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Fig. 15. Speed differences of (G10-G14) and (G1-G10) in rad/sec for a 150ms 3-@ short
circuit fault at bus 50 for operating condition II.
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Fig. 16. Speed differences of (G15-G16) and (G10-G15) in rad/sec for a 150ms 3-@ short
circuit fault at bus 1 followed by opening of the line between buses 1 and 2 for operating
condition 1IL
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As seen from Table I, the computations involved with the tuning of PSSs in
Case 2 involving optimization of 5 parameters of the selected PSSs (25 parameters) is
more than the computations involved with tuning of parameters of 16 PSSs (Case 1).
Table III also shows the average time required for evaluating the fitness function in each
of the proposed design techniques over 10 trials. The processor used in this study is of
1.63GHz and Pentium III processor. It clearly can be seen that the time required to
optimize 16 PSSs parameters is comparatively at least three times less than the time
required for optimizing the 5 selected PSSs parameters. But, better damping performance

can be achieved at the expense of computation overhead.

Table 11
Computational Complexities of the Two PSS Case Studies on System 2
Algorithms Number of Number of Number Average
Fitness Additions of Multipli- | computation
Evaluations cations time
(seconds)
SPPSO - 104.5 13062.5 13062.5 1662.91
25 parameters
SPPSO- 23.25 9300 9300 512.193
80 parameters
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VII. CONCLUSION

The successful implementation of swarm intelligence techniques for simultaneous
design of multiple optimal PSSs has been presented in this paper. The constriction factor
based particle swarm optimization and small population based PSO (CPSO and CPPSO)
algorithms give robust damping performance for various operating conditions and
disturbances as illustrated on the two power systems. The CSPPSO with a small
population and the regeneration concept is seen to have faster convergence with few
fitness evaluations compared to CPSO. The SPPSO/CSPPSO algorithms are promising
techniques for optimizing parameters of a large number of PSSs (example 100)
simultaneously on real world power systems. In addition, the selected PSSs tuning can
provide improved damping to the inter-area modes in large interconnected systems.

The paper has demonstrated these algorithms as an optimization tool in the PST
environment. This is a first step towards online optimization/tuning of PSSs and future
work can involve developing these algorithms for real-time dynamic optimization. The
potential of these algorithms have been demonstrated for optimal PSS design but can be

extended to the design of external damping controllers for FACTS devices.
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Abstract—Electromechanical oscillations are a major concern for power systems
since they affect the power flow and stability. Damping these oscillations under a
wide range of operating conditions is a challenge to the power system engineers.
Power System Stabilizers (PSSs) are effective damping devices which provide
auxiliary control signals to the excitations of generators. However, the proper
selection of the PSSs_parameters to accommodate variations in the power system
dynamics is crucial, This paper presents Bacterial Foraging Algorithm (BFA) as a
technique for simultaneous design of multiple optimal PSSs and is illustrated on the
New England-New York power system. The classical BFA based search can get
trapped in local optima and thus fail to provide an optimal solution in a complex
environment. This paper investigates three BFA variants for improving the global
search capability with regard to the simultaneous tuning of multiple PSSs. The
objective function used in this study is the eigenvalues of the electromechanical
modes in the system. The three BFA variants are evaluated for damping system
oscillations under different contingencies and operating conditions. The variants are
compared with respect to their computational complexities, closed loop system

eigenvalues and transient energies. In addition, this paper also presents a strategy
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for providing improved damping to the power system oscillations by selecting a few

critical generators for their PSS tuning.

Index Terms—bacterial foraging, fuzzy scheme, multi-machine power systems,

optimization, particle swarm optimization, power system stabilizers.

I INTRODUCTION

The output power of generators is affected by the presence of low frequency
oscillations, Power oscillations come into existence when the transmission lines are
operated close to their stability limits. A Power System Stabilizer (PSS) in conjunction
with Automatic Voltage Regulators (AVRs) can damp these inter-area oscillations by
responding to changes in the generator output power and controls the excitation to reduce
the power swings rapidly. For large power systems comprising of many machines, the
PSS design is a tedious exercise due to the involvement of large number of controller
parameters and system dynamics,

Designing and tuning optimal PSSs to satisfy different system requirements has
been an active research area for many years [1]-[10]. The widely used Conventional PSSs
(CPSSs) are designed using the theory of phase compensation in frequency domain and
are used as lead-lag compensators [8]. The power system being a non-linear system, fixed
parameter PSS damping performance degrades with varying operating conditions. To
have a fixed parameter CPSS provide good damping over a wide range of operating

conditions, its parameters need to be fine tuned to satisfy the system requirements to
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various modes of oscillations. Most of the techniques [6], [7], [9], [10] proposed to
eliminate the drawbacks of the CPSS suffered from complexity, computational
overburden and memory requirements. Some of them cannot guarantee robustness as they
are capable of using limited number of parameters and optimization functions. Genetic
algorithm [6] and simulated annealing [10] are subjected to revisiting of the suboptimal
solutions and premature convergence during the optimization.

This paper presents an evolutionary technique called Bacterial Foraging
Algorithm (BFA) for the simultaneous design of multiple optimal PSSs on part of a real
world power' system. This algorithm was proposed in [11] and further enhancements to it
are reported in [12]-[14] for applications in power systems. This paper investigates the
effect of BFA processes, namely, swarming and the runlength of chemotactic step, on the
performance and complexity of simultancous PSS tuning. Further, the optimization of the
fuzzy membership function parameters [12] using Particle Swarm Optimization (PSO) to
expedite the BFA search process using an adaptive fuzzy runlength is introduced. The
performance of the BFA optimized PSSs for different operating conditions is
demonstrated on a New England-New York (16 generator-68 bus) power system [15]
simulated in the Power System Toolbox (PST) environment [16]. In addition, the
possibilities of tuning selected critical PSSs of generators that participate in inter-area
modes are investigated and performance and computational complexities are reported in
comparison to tuning all PSSs in the power system. In all these studies, the objective
function to be optinized by BFA and its variants is based on the closed loop system

eigenvalues.




35

The rest of the paper is organized as follows: Section IT explains the bacterial
foraging algorithm used; Section III elaborates the variants of BFA used in this study;
Section 1V describes the formulation of the cost function used in determining the PSSs
parameters by BFA; Section V describes the power system used in this study; Section VI
compares the performance of the optimized PSSs; Section VII presents transient

simulation results; finally, the conclusions and future work are given in Section VIIL

II. BACTERIAL FORAGING ALGORITHM

Animals with poor foraging strategies (methods for locating, handling and
ingesting food) are eliminated by the process of natural selection. This process in turn
favors the propagation of genes of those animals that have been successful in their
foraging strategies. Species who have better food searching ability are capable of
enjoying reproductive success and the ones with poor search ability are either eliminated
or reshaped. The BFA mimics the foraging behavior of the F. coli bacterium present in
our intestines. The foraging consists of four processes: Chemotaxis, Swarming,
Reproduction and Elimination-Dispersal [11], and these are briefly explained below.

More information on the BFA is given in [11].

A. Chemotaxis:
This stage mimics the bacteria’s ability to climb to regions of nutrient

concentration, avoiding noxious substances, and searching for way out of neutral media.
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The bacterium usually takes a tumble followed by a tumble or a swim to carry out this
search. For N, number of chemotactic steps the direction of movement after a tumble is

given by:

0 (j+ 1Lk, 1) =0(j,k, 1)+ C()x¢()) (1

where C(i) is the step size taken in direction of the tumble by the i bacterium, j is the

index for the chemotactic step taken, £ is the index for the number of reproduction step, /
is the index for the number of elimination and dispersal event and ¢(j) is the unit length
random direction taken at each step.

If the cost at 8 '(j+1,k1) is better than the cost at 8 (k1) then the bacterium takes
another step of size C(i} in that direction (swimming). This process is continued until the
number of steps taken is not greater than N;. This is done to prevent the bacteria trapped
in local minima. There should be a tradeoff between the values of N; to be chosen. It

could be half of the value of NL,.

B. Swarming:

The bacteria in times of stresses release attractants to signal other bacteria to
swarm together. It however also releases a repellant to signal others to be at a minimum
distance from it. Thus all of them have a cell to cell attraction via attractant and cell to
cell repulsion via repellant. The equation given below represents the swarming behavior

in the bacteria foraging.
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where, doyae = depth of the attractant effect, Wameer = measure of the width of the
attractant, Mrepetans =  danraee = height of the repellant effect, Wyepenan = measure of the
width of the repellant, p = number of parameters that need to be optimized, § = number of
bacteria.

The total cost function to be optimized by the BFA can be represented by:
J, j ok y+ J,.(8,P) (3)

where J(i, j ,k 1) is the cost function for the optimization process. The value of dygree and
Hrepettans Should be same so that after certain number of iterations after the bacteria
converge there should not be any contribution from the swarming part (/..=0). The value
of Wanraer a0 Wiepettan: should be such that when the bacteria move farther from each other

the penalty added to the cost function by J,. should be large.

C. Reproduction:
After all the N, chemotactic steps have been covered, a reproduction step takes place. S,
(S=5/2) bacteria having a lower survival value (less healthy) die and the remaining S; are

allowed to split into two thus maintaining a constant population size.
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D. Elimination and Dispersal:

Environment changes for the bacteria all the time. Bacteria are either destroyed or
moved to different parts of the intestine resulting in positive and negative influences on
their lives. This process is incorporated in the BFA. For each elimination and dispersal
event each bacterium is eliminated with a probability of p.s. A low value of N,z (number
of elimination and dispersal events) dictates that the algorithm will not rely on random
elimination and dispersal events to try to find favorable regions. A high value increases
computational complexity but allows bacteria to find favorable regions. The p.s should
not be large either or else it would lead to an exhaustive search.

The flowchart describing the BFA algorithm is shown in Fig. 1. BFA due to the
above unique processes can find favorable regions during search [11}. Hence, it is applied

as an optimization tool for simultaneous design of multiple PSSs in this paper.
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Fig. 1. Flowchart for BFA.
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III. VARIANTS OF BFA

Swarming and runlength are the two main factors which affect the performance of
BFA. The entire study on the effects of these factors on BFA’s performance is
categorized into six cases as follows:
¢ (Case I BFA with fixed runlength with swarming
e Case 2: BFA with fixed runlength without swarming,
¢ (Case 3. Fuzzy adaptive BFA with swarming
* (Case 4: Fuzzy adaptive BFA without swarming,
» Case 5: PSO optimized fuzzy adaptive BFA with swarming.
» Case 6: PSO optimized fuzzy adaptive BFA without swarming.

The following sub-sections describe swarming, fuzzy adaptive runlength and
optimized fuzzy adaptive runlength. In all of these studies, the healthiest bacteria is
decided by taking the minimum value of each of the bacteria with the chemotactic stages

instead of sum of fitness of all chemotactic steps [14].

A. Swarming

Swarming in the BFA, (2), makes it computationally intensive. To evaluate this,
the BFA search is carried out with and without swarming between the bacteria. The total
cost function to be optimized by BFA is given by (3) and for BFA without swarming,

Je=0.
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B. Fuzzy Adaptive Runlength

Classical BFA can potentially get trapped in local optima due to the fixed
runlength of the chemotaxis step. To provide BFA with a global optimization capability,
the runlength can be made adaptive by using fuzzy concepts [12]. Fig. 2 shows a typical
mput membership function for a fuzzy inference system. This fuzzy inference is made up -
of four rules as follows:

Ry: If min (J) is very small (V8), u;= a; min (J),

Ry: If min (J) is small (S), #2= a; min (J).

R;: If min (J) is medium (M), u#3= a; min (J).

Ry U min (J) is large (L), uy= a4 min (J).
where u (1, 1y, u3 ty) are the outputs of fuzzy inference system. The constants a;, @z, a;,
and a, in the rules and the fuzzy membership ranges ¢;-fs, in Fig. 2, are usually

determined on a trial and error basis.

VS

T —k

ininilnut‘n.(l) _—

Fig. 2. Membership function used for input [12].
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The firing of a particular rule is determined by passing the minimum value of the
fitness function (/), given in (3). The chemotactic step as given in (1) is modified and

replaced as

O (j+1,k,D)=0(j,k,)+uxC@)x¢(Jj) 4)

C. Optimized Fuzzy Adaptive Runlength

Instead of determining the vales of «;-a4 and )-t4 on a trial and error basis,
particle swarm optimization [17], [18] is proposed as a technique for optimizing the
parameters of the membership function and rule set. PSO is an evolutionary like
technique developed by Kennedy and Eberhart. The two basic equations involved in PSO

are

Vid = WX Vid +c¢; X rand 7 X (Pid — Xid )

‘ (%)
te, xrand 5 x(ped — Xid )

Xid = Vid * ¥id ©)

where vy is the velocity of the d" dimension of the i particle with which it flies through
the search space, x;y is the new position of the d" dimension of the i particle, w is the
inertia weight and ¢; and c¢; are the cognitive and social acceleration constants which
changes the velocity of a particle towards particle’s best (p;y) and best of all particle’s

best (pgq) respectively.
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IV. OPTIMAL PSS DESIGN

The generators in power systems under study have PSS1As [19] as shown in Fig.
3 connected to them. The PSSs provide additional input signals (Vpss) to the voltage
regulators/excitation systems to damp out the power oscillations. Some commonly used
input signals are rotor speed deviation (Aw), accelerating power and frequency. It
consists of an amplifier block of gain constant, K, a block having washout time constant,
Tw, and two lag-lead compensators with time constants T1 to T4. The gain K and the
four time constants T1 to T4 are the five PSS parameters that need to be optimally
selected for each generator to provide effective damping to power system oscillations

under a wide range of operating conditions and disturbances.

Aw sT, 14T, 4Ty | Vi

14T 14T, [+sT,

W

Fig. 3. Block diagram of power system stabilizer (PSS).

The objective in the optimal PSS design is to maximize damping; in other words
minimize the overshoots and settling time in system oscillations. An eigenvalue based
objective function reflecting damping factor of each of the electromechanical closed loop
system eigenvalues at number of different operating conditions is formulated. The

optimization algorithm minimizes the cost function given by:
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M=aM1+(I-a)M2 (7
where
NP 2 (8)
M, = Z Z [Ui,j Hco)
J=1 01,1'20'0
My= X > (s0)-50) ©)
j:j gi-ngo

a is the weighing factor which is 0.1 for this study. Several Number values of a have
been tried but 0.1 provides the best results. This is because with this value of a, M, does
not dominate M; and vice-versa in magnitude ratio. NP is the number of operating points

h

* eigenvalue under /'

considered in the design. oy, is the real part of the i operating
condition considered. The value of o, determines the relative stability in terms of
damping factor margin provided for constraining the placement of closed loop system
eigenvalues during the process of optimization. The closed loop eigenvalues are placed in
the region to the left of the line as shown in Fig. 4 (a). If M, is to be taken as the objective
function then it limits the maximum overshoot of the eigenvalues as shown in Fig. 4 (b).
In the case of M;, {y is the minimum damping required for all electromechanical modes
of oscillations. When the cost function is as given by (7), it takes into account both

damping and overshoot and the eigenvalues are restricted by design to the D-shaped area

as shown in Fig. 4 (¢).
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(a) () (c)
Fig. 4. Regions of eigenvalues location for different objective functions.
(a) Region where o;; < gy (b) Region where {; ; > {p
(c) Region where oy j < gy and §;, > {p
The parameters should be restricted to certain limits. The maximum and the

minimum values of these parameters are chosen so that the system may not lose its

stability when the PSSs parameters attain any of these limits.

Kmin < KS Kmux, Timin ST! < Tlmax, TZmin < TZ = T2max,

T 3Intin < T3 = Tjnmx; T. Imiin < T4 < Y:}’max-

A flowchart shown in Fig. § explains the steps involved in the optimal PSS design.
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Randomize X, T, T,, T, T,within certain limits

Specify {, and g,

Determine the eigenvalues of the closed loop system

(Power System +PS8Ss)

Run the optimization
algorithm to determine
better PSS parameters

A

Evaluate (1), M=aM,+(1-a)M,

No
fitness (1) = zero
or

iteration # = max iteration 7

> Yes

End

Fig. 5. Flowchart explaining the methods involved in the optimal PSS design.

V. CASE STUDY

A 16 machine-68 bus, five area power system as shown in Fig. 6 is considered for
study. It is reduced order model of the New England and New York interconnected
power systems of the 1970s [15]. The generators, G1-G9 are representation of the New
England Test System (NETS) and generators, G10-G13 represent the New York Power
System (NYPS). The last three machines G14-G16 are the representation of the three

interconnected arcas in the NYPS. All the generators have exciters and governors
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connected to them. The system experiences four inter-area modes of oscillations (0.39Hz,
0.5 Hz, 0.64 Hz and 0.78 Hz). First three of these are the critical modes. Mode 4 is a
higher frequency mode which settles down faster than the other three modes. This last
mode settles within the allowed settling time for the system, hence three inter-area modes
are the modes to be damped. The system is such that Area 2 imports power from Area 5.
The data used for the 16 machine system is taken from [15]. Two design approaches are

carried out for the PSS tuning on the 16 machine power system as described below.,

A. PSS Design Approaches

Two cases for PSSs parameters tuning for this system is carried out as described
below:

1) Approach A: Tuning All PSSs

The parameters of all 16 PSSs in the system are determined by the BFA; in total
therefore 80 optimal parameters are determined for the operating conditions in Table I.

These parameters are given in Table A.1.
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Fig. 6. 16 machine power system.

2) Approach B: Tuning Selected PSSs

The critical generators for PSS tuning are identified based on their participation
factors in the inter-area modes. The participation factors are high for generators G9 and
G13-G16 for 0.39Hz mode, G14 and G16 for 0.5 Hz mode, G13 for 0.64 Hz mode and
G114 and G15 for 0.78 Hz mode. Hence, PSSs to be tuned are connected to these five
critical generators (G9 and G13-G16) and thus, 25 parameters are optinmzed. The

remaining 11 generators have the unoptimized PSS [15] connected to them. The
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parameters of PSS [15] are K= 10.0, T; =0.08s, T; =0.015s, T3= 0.08s, Ty =0.015s

respectively. BFA optimizes the cost function for the operating conditions given in Table

I. The 25 optimal PSS parameters are given in Table A.2.

Table I
Summary of Operating Conditions
Condition Power Transfer from Area 2 to Area 5
(MW)
I _ 2471
11 2794
111 3153

A. PSO Optimized Fuzzy Inference System

The PSO optimized BFA membership parameters are as shown in Figs. 7 and 8

for design approaches A and B respectively. PSO is implemented in optimizing 10

parameters of the membership function.

a,= 0.1167, a,= 0.0134, a,= 0.001, a,= 0.0001

+ " 3 —
0.0153 0.4186 0,445 0.466 0.746 0.931
t

Fig. 7. PSO optimized membership function for Case A.
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a=12.91, a,= 11.78, a,= 9.316, a,= 3.714

0.499 0.740 0.793 0.905 0.968 1,08
t - W

Fig. 8. PSO optimized membership function for Case B.
The trial and error parameters for the tuning of all PSSs (Approach A) and tuning

of selected PSSs (Approach B) respectively are

Approach A: £,=0.01, 1,=1.1x%¢;, 1370.1, t,=1.1%¢83, t5=1, t=1.1%t5
a;=1.0, a;=0.1, a3=0.01, a,=0.001.
Approach B: £,=0.001, £;=1.1x¢;, 1;=0.01, t,=1.1x¢t, t=0.1, t&=1.1%t5 a;=130.0, ¢»=35,

a;=10, a;=11.

The PSO optimized BFA membership parameters as seen from Figs, 7 and §
clearly depict the fact that the parameters need not to be in any multiples of other, like
assumed in the trial and error parameters above. The parameters in Figs. 7 and 8 are the
best PSO gbest parameters obtained over 10 trials which took least number of iterations

to converge to zero fitness (given by (3)) over 20 BEA trials,

VI. PERFORMANCE COMPARISON

This section evaluates the performance of the proposed PSSs for the six cases of
BFA on the 16 machine power system with respect to the computational complexities and

closed loop system eigenvalues as described below.
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A. Computational Complexities

In BFA, for every reproduction and elimination-dispersal cycle, a fitness
evaluation is carried out after all the chemotactic steps are covered; hence SN,
evaluations are performed. Table I gives a comparison perspective in general on the
computational complexities for the six case studies.

Table IT
Comparison of General Computational Complexity of BFA
(S = Number of bacteria, N, = Number of Chemotactic Loops, &,, = Number of

Reproduction Loops, Nes = Number of Elimination and Dispersal Loops, p = Number of
parameters to be optimized by BFA)

Variants Number of Fitness Number of Number of
Evaluations Additions Multipiications
Case 1 S X N XNy % (5])"]) X5 Nc (4+2p) x§ x Nc
Ned X Nre x Ned' X ]Vre x Ned
Case 2 S X N, xN,, x P XS N, XN 2p x§ X N, %
Ne{i X Ne{f M‘e x Ned
CaSC 3 S X NC XNre X (5p']) XSX Nc (4+3p) XS X Nc
Ned X Nre X Ned x Nre X Ned
Casc 4 8§ % Ne XNpe X P XSX N, X N 3p xS x N, %
Nea X Neg Nye % Neg
Case 5 S X N XN X (5p-1} xSx N, (4+3p) x§ * N,
Ned X M'e X Ned x M'e = Ned
Case 6 S X Ny XNy ¥ P XSX N, XN 3p X§ x N, %
Ned X Ned M‘e x Ne(i'

1) Approach A: Tuning All PSSs
The average number of iterations over 20 trials required to converge to fitness of
zero are 11.35, 13.3, 8.3, 9.15, 7.1 and 7.94 for Cases 1, 2, 3, 4, 5 and 6 respectively.

Inclusion of swarming in the BFA increases the number of additions and multiplications
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as can be scen from Table II. The number of additions is higher in Case 1 compared to
Case 2; Case 3 compared to Case 4 and Case 5 compared to Case 6. The number of
multiplications involved with Cases 2, 4 and 6 is more than that with Cases 1, 2 and 3
respectively because the average iterations required in both cases are very close to each
other. Adaptive runlength improves the convergence speed of BFA. BFA in Case 5
exhibits the least number of fitness evaluations. This means that PSO optimized fuzzy

inference system based BFA with swarming achieves faster convergence.

Table HI
Comparison of Computational Complexities of BEA Variants for Approach A

Variants Number of Number of Number of
Fitness Evaluations Additions Multiplications
Case 1 181.60 1507.28 21779.2
Case 2 212.80 17024.0 34048.0
Case 3 132.80 52987.2 32403.2
Case 4 146.40 11712.0 35136.0
Case 5 113.60 45326.4 27718.4
Case 6 127.04 10163.2 30489.0

Fig. 9 shows that the average number of fitness evaluations required in Cases 1-6
to converge to zero fitness over 20 trials. The number of fitness evaluations is the least in
Case 5. This result corroborates the fact that PSO is capable of optimizing parameters of

the fuzzy inference system which expedites the search process.
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Fig. 9. Average fitness of the best bacterium over 20 trials (Approach A).

2) Appoach B: Tuning Selected PSSs

Table 1V shows the computational complexities involved with cach of the BFA
varianis for optimizing éelected 5 PSSs parameters of the 16 machine power system.
Inclusion of swarming in BFA (Cases 1, 3 and 5) increases the computation in
comparison to BFA without swarming (Cases 2, 4 and 6). The number of additions of
Case | increases by 324% and number of fitness evaluations decreases by 11.64% than
Case 2. The number of multiplications increases by making the runlength adaptive.
Multiplications in Case 3 are 8.43% higher than multiplications in Case 1. The number of

fitness evaluations, additions and multiplications is higher in Cases 1, 3 and 5 than in
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Cases 2, 4 and 6 respectively. The average number of iterations required to reach zero
fitness are 20.04, 24.05, 15.75, 18.6, 14.8 and 17.25 for Cases 1, 2, 3, 4, 5 and 6
respectively.

The fitness of the best bacterium over 20 trials for Cases 1-6 is shown in Fig. 10.

The least number of fitness evaluations are seen in Case 5
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Fig. 10. Average fitness of the best bacterium over 20 trials (Approach B ).




Table 1V

@]
N

Comparison of Computational Complexities of BFA Variants for Approach B

Variants Number of Fitness Number of Number of
Evaluations Additions Multiplications
Case 1 320.64 39759.36 17314.56
Case 2 384.8 9620 19240
Case 3 252 31248 19908
Case 4 297.6 6300 18500
Case 5 236.8 29363.2 18707.2
Case 0 276 6896 20700

B. Eigenvalue Analysis

The system is linearized about different operating points as mentioned in Table I. The

oscillation modes of interest to be damped are in ranges of 0.3Hz-1.0 Hz and 2.9-3.2 Hz

in the 16 machine power system [15]. The closed loop system eigenvalues obtained with

approaches A and B are discussed below.

1) Approach A: Tuning Al PSSs

Table A.3 shows the closed loop system eigenvalues with the 16 BFA optimized

PSSs for the operating condition 1. BFA optimized PSSs provide better damping to the

electromechanical oscillations than the conventional designed PSS [15] for the same

operating condition. The damping provided in BFA Cases 3 and 5 is better than with
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other cases. This corroborates the superiority of the swarming, adaptive runlength and
PSO optimized fuzzy BFA. It is observed that all the BFA cases achieve a damping
greater than the minimum 20% specified in the design. The damping is more in Case 1

than in Case 2; Case 3 than in Case 1; Case 5 than Case 6 and Case 3 than Case 4.

2) Appraoch B: Tuning Selected PSSs

The damping provided by the BFA op—timized PSSs are better than the damping
provided by conventionally designed PSS [15]. BFA with swarming is better than BFA
without swarming. Improved damping can be exhibited by BFA optimized PSSs with
adaptive runlength and swarming. PSO optimized fuzzy inference system based BFA
brings about improvement to damping than the BFA with trial and error parameters.

Table A.4 corroborates the above mentioned facts..

VII. TRANSIENT SIMULATION REULTS

This section shows the transient responses of the system with two proposed PSS
design approaches under three operating conditions for two different contingencies as

below.

A. Time Domain Simulations

The challenging task of tuning multiple PSSs using the different BFA variants in

PST environment is reported in this paper.
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Contingency I: A 3-O short circuit of 150 ms is applied at bus 1 with an autorecloser.
Contingency 2. The system is subjected to 150 ms 3-® short circuit at bus 9 and then the
fault is removed by taking out a transmission line between buses 8 and 9, thus changing
the topology of system.

The speed differences of different generators under the two contingencies for the

two proposed PSS design approaches are as below.

1) Approach A: Tuning All PSSs
The responses of the generators for PSSs tuned with the different BFA variants

(parameters are given in Table A.1) are discussed below:

a) Swarming
S Swarming improves the performance and the speed of convergence of BFA.
Bacteria in this case gather information from the swarm and search for food. This section
compares the responses of the generators with and without swarming. Swarming
expedites the search process. The difference in speed of the generators for two
contingencies gets damped faster in Case 1 than in Case 2. Both the responses are better
than the response with conventionally designed PSS [15]. The responses of the generators

are shown in Figs. 11-12,

b) Fuzzy Adaptive Run Length
Making the runlength adaptive using a fuzzy inference system improves the

performance of the BFA as shown in Figs. 13 and 14. PSSs in Cases 1-6 provide better
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circuit fault at bus 1 for operating condition 11.
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¢} PSO Optimized Fuzzy Adaptive Runlength
PSO optimized fuzzy inference system based BFA PSS design (Cases 5 and 6)
provides better damiping than the BFA PSS design with trial and error parameters (Cases

3 and 4). The responses of the generators are shown in Figs. 15 and 16.
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2) Approach B: Tuning Selected PSSs
The responses of the generators for PSSs tuned with the different BFA variants

(parameters are given in Table A.2) are discussed below.

a) Swarming
BFA optimized PSSs in Case 1 damps out the oscillations of the generators faster
than the PSSs in Case 2. The responses of the speed differences of the generators are
shown in Figs. 17 and 18. The responses depict that swarming improves the performance

of the system.
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Fig. 17. Speed differences of (G3-G13) and (G14-G15) in rad/sec for an 150 ms 3-@
short circuit fault at bus 1 for operating condition I .




63

0.2 ‘ | weeanss PSS [15] ]

I
e Case 3
0.1¢ }\ ——=-Cased4 |

0.1t

Speed differences in rad/sec
[

A H .
0.5 1 1.5 2 25 3 3.5

e — e

[&]

? ....... PSS [15] 1
c — Case 3

‘@ e = CRig € 4

@ |
2

oL

o I

© B L
T

i 4
8__ o 1 1 e SR 1 i L SRR B I |
o 0 0.5 1 1.5 2 2.5 3 3.5

Time in seconds

Fig. 18. Speed differences of (G15-G16) and ((G12-(G16) in rad/sec for a 150 ms 3-@
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b} Fuzzy Adaptive Runlength
Adaptive the runlength using a fuzzy inference system improves the performance
of the BFA as shown in Figs. 19 and 20. PSSs in Cases 1-6 provide better damping to the
system oscillations than the conventionally designed PSS [15]. Case 3 is better in

damping the oscillations than Case 1.




¢) PSO Optimized Adaptive Fuzzy Runlength

Optimization of the fuzzy inference system parameters gives better capability to

BFA to perform better than that unoptimized case and than the conventional PSS design.

The responses of the generators are shown in Figs. 21 and 22..
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Similar responses can be seen for contingencies 1 and 2 for the three operating
conditions given in Table 1. The responses are not shown to limit the length of the paper.
The responses in the above figures clearly show that the BFA optimized PSSs

independent of the type of variants used in optimization performs better than the

conventionally designed PSS [15] for any disturbance and operating conditions.

B. Transient Energy Analysis of the Damping Performance

This section compares the BFA variants in PSS tuning in terms of the transient
energies. The {ransient energy of each of the generator for the first 3 seconds of the fault
has been calculated using (10) and the total transient energy (TE) of all the generators in

a given area is given by (11).
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1 tt+3

= L A
TEGen . ZHGeH i'[

Aa)i‘zdt (10)
: i

where 7 is the generator numbet, fy, is the time at which the fault is triggered.

N
TE = Z TE Gen (11)

=1

where N is the number of generators present in a given area of a system. The performance
index (P.I), given in (12), is a measure of how the system has performed under the given
conditions with the different set of PSS parameters. The higher the performance index the

better the controller damping performance.
Performance Index (P.1}) =1/ TE (12)

The P.Is in each case in each area is normalized. The P.Is are normalized by
dividing each P.Is with the P.Is of PSS [15] of the corresponding row. The transient
energies of the system are analyzed for two PSS design approaches below:

1) Approach A: Tuning All P§Ss

Table A.5 shows the P.Is for each area for each of the variants used in this study.
In each of the cases of study, the P.I of the system is better than the P.I of the system
having conventionally designed PSS [15]. The overall improvement in P.I provided by
BFA optimized PSSs (Case 1) over conventionally designed PSS [15] is 48%, 6%, 76%,
59% and 55% for Areas 1-5 respectively for operating condition I. Similarly making the
run length adaptive in Case 3 improves the P.I over Case 1 by 7.92% for Area 3.
Optimizing the BFA parameters by PSO further improves the P.I of Case 5 over Case 3

by 6.08% and 45.28% for Area 1 and Area 2 respectively. Improvement in damping can
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be seen in the system having PSO optimized fuzzy inference system based BFA for Cases
1, 3 and 5 compared to PSSs in Cases 2, 4 and 6 respectively. These results suggest that
swarming is important for better performance of BFA. Interaction amongst the bacteria
makes the search process faster. The performance can be further improved by making the
runlength adaptive in which the bacteria takes a small step when it is closer to the nuirient
and a larger step when it is farther away from it. Performance can further be improved by

optimizing the fuzzy inference system parameters by PSO. These inferences can be

drawn from the Tables A5,

2) Approach B: Tuning Selected PSSs

The P.s of the arcas is compared by subjecting the system two different
contingencies as mentioned previously. BFA optimized PSSs provide better damping to
the system oscillations than the conventionally designed PSS [15]. Overall P.Is of Areas
1 and 4 in Case 1 improves by 3.84% and 2.17% respectively than the P.Is in Case 2 for
operating condition I. Overall P.Is of Areas 1, 3, 4 and 5 in Case 3 improves by 6.9%,
76.8%, 43.4% and 27.6% respectively for the same areas in Case 1. This can be seen

from the Table A.6.

C. Comparison of PSSs Approaches A and B
This section compares two different PSSs design approaches proposed in this
paper. The two studies are compared in terms of eigenvalues and transient energy

analysis for different operating conditions as given in Table I.
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The improvement in the speed responses of the generators employing 5 PSSs over 16
PSSs can be seen in Figs. 23 and 24 for the two contingencies. Tuning selected PSSs (25

parameters) gives better damping to the oscillations than tuning all PSSs (80 parameters).

Tables A.3 and A.4 shows the eigenvalues of the system under two PSSs design
approaches. Selected 5 PSSs tuning is better than tuning all 16 PSSs in providing
damping to the oscillations. Tables I1I and I'V shows the computations involved with the
two PSS design approaches. The number of fitness evaluations in Approach B is higher
than Approach A. With 11 conventionally designed PSS on the 16 machine power system,

Approach B has a lesser degree of freedom compared to Approach A.

Approach B performs better than Approach A for most of the cases. In Approach
B, the critical generators are selected based on their participation factors in the
electromechanical oscillations. Thus, the BFA is able to find parameters of PSSs

connected to these critical generators and thus improved damping
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VIII. CONCLUSION

This paper has demonstrated BFA as a useful optimization tool in the PST environment.
The robusiness of the optimization technique can be seen from the damping provided to
all the generators when subjected to disturbances. This study of the effects of the
different BFA variants is quite helpful in optimizing the BFA search performance.
Inclusion of swarming and adaptive runlength improves its performance. PSO optimized
fuzzy inference system based BFA provides better damping than the unoptimized BFA
PSSs. Damping, closed loop system eigenvalues and transient energies are the few areas
which corroborated BFA to be an efficient optimization technique.

For larger systems employing multiple generators (example 100), PSSs to be
tuned can be identified based on the participation factors of the generators in the electro-
mechanical modes. This would bring about improved damping and thus better transient
response. Future work can involve developing BFA for the design of external controllers

to FACTS devices
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PAPER 3

BIO-INSPIRED ALGORITHMS FOR THE DESIGN OF MULTIPLE OPTIMAL
POWER SYSTEM STABILIZERS: SPPSO AND BFA
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Usman O. Aliyu, Member, IEEE

Abstract— Damping intra-area and inter-area oscillations are critical to optimal
power flow and stability in a power system. Power System Stabilizers (PSSs) are
effective damping devices as they provide auxiliary control signals to excitation
systems of generators. The proper selection of PSS parameters to accommodate
variations in the power system dynamics is important and is a challenging task
especially when several PSSs are involved. Two classical bio-inspired algorithms,
Small Population based Particle Swarm Optimization (SPPSO) and Bacterial
Foraging Algorithm (BIFA), are presented in this paper for the simultaneous design
of multiple optimal PSSs in two power systems. A classical PSO with a small
population of particles is called SPPSO in this paper. The SPPSO uses the
regeneration concept, infroduced in this paper, to attain the same performance as a
PSO algorithm with a large population. Both algorithms use time domain
information to obtain the objective function for the determination of the optimal
parameters of the PSSs, The effectiveness of the two algorithms are evaluated and
compared for damping the system oscillations during small and large disturbances
and their robustness is illustrated using the fransient energy analysis. In addition,

the computational complexities of the two algorithms are also presented.
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Index Terms—Bacterial foraging, computational complexity, multi-machine
power systems, Nigerian power system, particle swarm optimization, power system

stabilizers, regeneration stability, small population and transient energy analysis.

L INTRODUCTION

In power systems, reliability and transfer capability are often limited by stability
constraints like transient stability, oscillatory stability and voltage stability. Maintaining
system stability presents new challenges as power systems are operating today under
more stressed conditions and uncertainty than in the past. If stability problems are
accurately identified and properly mitigated, significant economic gains can be realized.
Power System Stabilizers (PSSs) are used as supplementary control devices to provide
extra damping and improve the dynamic performance of the power system. PSSs are very
effective controllers in enhancing the damping of low-frequency oscillations; since they
can increase damping torque for inter -area modes by introducing additional signals into
the excitation controllers of the generators. These oscillations come into existence when
generators fall out of step from each other. Depending on their location in the system,
some generators participate in a single mode of oscillation, while others participate in
more than one mode.

Researchers have been putting lots of efforts in the design of optimal PSSs to
satisfy different system requirements. Several PSS design techniques have been reported
[1]-[3]. These algorithms employ large number of particles or individuals in the

optimization. The involvement of large number of particles takes a significant amount of
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computation time. This may pose a serious problem for systems which desire faster
convergence. To avoid burden on time and resources, the need for developing small
population based algorithms like the Micro-Genetic Algorithm (u-GA) [4] comes into
mind, p-GA with its small population size and re-initialization process is capable of
improving the exploitation characteristics of the GA without affecting its exploration
characteristics. The involvement of fewer numbers of particles can be considered as first
step towards online optimization, where fast plugging of updated parameters is desired.
However, studies have revealed that GA has a degraded performance if the function to be
optimized is epistatic (where parameters to be optimized are highly co-related) [5]. The
GA algorithm also has the demerit of prenAlature convergence. This paper therefore,
explores the efficacies of two new small population based algorithms for the tuning of
PSS parameters.

Two bio-inspired algorithms, a Small Population based Particle Swarm
Optimization (SPPSQ) and Bacterial Foraging Algorithm (BFA), for the simultaneous
design of multiple optimal PSSs is presented. SPPSQO is capable of exploration and
exploitation like PSO. The involvement of a number of stages in BFA greatly reduces the
possibility of getting trapped in the Jocal minima during the search process. This
approach is a sincere effort by the authors towards determining efficacies of small
population based algorithms as a first step towards online optimization. These algorithms
are selected in an effort to overcome computational overburden. The objective function
formulated for the optimization takes into consideration time domain information from
the PSCAD/EMTDC models [6], making it suitable for future online optimization. The

effectiveness of SPPSO and BFA as optimization algorithms for simultaneous multiple




optimal PSSs design are evaluated on a two- area benchmark system [7] and the Nigerian
power system [8)]. The robustness of the optimally tuned PSSs is further compared using
the transient energy analysis.

The rest of the paper is organized as follows: Section II presents the power
systems considered in this study. Section III describes the bio-inspired algorithms used.
Section IV explains the design of an optimal PSS. Section V presents some simulation
results. Section VI presents some analysis and discussions on SPPSO and BFA. Finally,

the conclusions and future work are given in Section VII.

II. TWO MULTI-MACHINE POWER SYSTEMS

In this study, two different power systems are considered. The first one is an 11

bus and 4 machine system and the second one is a 25 bus and 7 machine system.

A. Two Area Multi-Machine Power System

The two area power system used in this study is simulated in the
PSCAD/EMTDC environment which allows detailed representation of the power system
dynamics. The small two area power system shown in Fig. 1, consists of two fully
symmetrically arecas linked together by two transmission lines. Each area is equipped
with two identical synchronous generators rated 20kV/900 MVA. All generators are
equipped with identical speed governors and turbines, exciters and Automatic Voltage

Regulators (AVRs) and PSSs. The loads in the two areas are such that Area 1 is exporting
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about 413 MW to Area 2. This power network is specifically designed to study low

frequency electromechanical oscillations in two interconnected power systems {7].
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Fig. 1. Two area multi-machine power system.

The PSSs provide additional input signal (V) to the voltage regulators/excitation
systems to damp out the power oscillations. Some commonly used input signals are rotor
speed deviation (Aw,), accelerating power and frequency. A typical PSS block diagram is

shown in Fig. 2. Tt consists of an amplifier block of gain constant X, a block having a
washout time constant T, and two lead-lag compensators with time constants 7; to 7.

The gain and the four lead-lag compensator time constants are to be selected for optimal

performance over a wide range of operating conditions.
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Fig. 2. Block diagram of a power system stabilizer.




79
B. Nigerian Power System

The Nigerian 330kV, 25 bus grid power system is shown in Fig. 3 above. It
consists of 7 generating units in two distinct areas (4 thermal units and 3 hydro units), 7
generator step-up transformers equipped with tap changers, and compensation reactors of
different discrete values Jocated at 8 different nodes. This system has two inter-area
modes (hydro and thermal) and several intra-area modes (hydro and thermal) [8]. There is
a damping of 3.8 % for 1.223 Hz mode experienced by the hydro generating units and
damping of 3.4 % for 1.225 Hz mode experienced by the thermal generating units. This
makes the system potentially unstable when experiencing large disturbances. Thus, the
need for design of optimal PSSs for the hydro and thermal areas. Hence, two PSSs of the

form in Fig. 2 are added to the excitations of generators at Shiroro and Egbin power

stations (Fig. 3).
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Fig. 3. The Nigerian 330kV, 25 bus grid power system.
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II1. BIO-INSPIRED ALORITHMS WITH SMALL POPULATION

The beauty of particle swarm optimization lies in its ability to explore and exploit
the search space by varying its parameters {inertia weight and acceleration constants).
Bacterial foraging algorithm due to its unique operators (elimination and dispersal events)
can find favorable regions during search. These unique features of the algorithms
overcome the premature convergence problem and enhance the search capability. Hence,
they are suitable algorithms for simultaneous design of multiple optimal PSSs.
Improvements over the classical PSO and BFA algorithms have been reported in the
literature [9]-[12]. Improvements to the classical PSO are reported by modifying the PSO
parameters using adaptive critics [9] or by introducing a mutation operator [10]. Similarly,
improvements to the classical BFA are reported by varying the run step length using
fuzzy [11] or adaptive [12] techniques. The authors in this paper however compare the
classical BFA [13] and PSO [14] with algorithms employing a small population. The
comparison is made in terms of their computational complexities and speed for the design
of multiple optimal PSSs. The two classical bio-inspired algorithms used in this paper are

described below,

A. Small Population Based Particle Swarm Optimization (SPPSQ) Algorithm

The SPPSO algorithm is derived from the PSO algorithm. PSO is a form of
evolutionary computation technique (a search method based on natural systems)
developed by Kennedy and Eberhart [9], [10}. PSO like GA is a population (swarm)
based optimization tool. However, unlike in GA, individuals are not eliminated from the

population from one generation to the next. One major difference between particle swarm
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and traditional evolutionary computation methods is that particles’ velocities are adjusted,
while evolutionary individuals’ positions are acted upon; it is as if the “fate” is altered
rather than the “state” of the particle swarm individuals [11].

Each potential solution, called particle, is given a random velocity and is flown
through the problem space. The particles have memory and each particle keeps track of
previous best position and corresponding fitness, The previous best value is called the
Prest 0f the particle and represented as piy. Thus, pis is related only to a particular particle /.
The best value of all the particles’ ppy in the swarm is called the gy, and is represented
as pgq. The basic concept of PSO technique lies in accelerating each particle towards its
Pia and the pgy locations at each time step. The amount of acceleration with respect to
both p;q and pgq locations is given random weighting,

Fig. 4 illustrates briefly the concept of PSO, where x; is current position, xi4; is
modified position, vy, is initial velocity, v is modified velocity, vpe is velocity
considering pis and v,y is velocity considering pgs. The following steps explain the
procedure in the classical PSO algorithm.

1) Imitialize a population of particles with random positions and velocities in d

| dimensions of the problem space.

2) For each particle, evaluate the desired optimization fitness function.

3) Compare every particle’s fitness evaluation with its pp.y value, py. If current
value is better than p;, then set py; value equal to the current value and the py
location equal to the current location in 4-dimensional space.

4) Compare the updated py., values with the population’s previous gpes value, pgq. If

any of ppes; values is better than pgy, then update pgs and its parameters.
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5) Compute the new velocities and positions of the particles according to (1). v;¢ and

X represent the velocity and position of i particle in ¢ dimension respectively

and, rand; and rand; are two uniform random functions.

Xig(k +1) = x5 (k) +wxvyg (k) +cpxrand | x (pig (k) — x5 (k)
+Cy x rand 5 % (pgd (k)— Xid (k))

(1)

6) Repeat from step 2 until a specified terminal condition is met, usually a

sufficiently good fitness or a maximum number of iterations.

Fig. 4. Movement of a PSO particle in two dimensions from one instant & to another
instant k+/.

The PSO parameter w in (1) is called the inertia weight, which controls the

exploration and exploitation of the search space. Local minima are avoided by small local
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neighborhood, but faster convergence is obtained by larger global neighborhood and in
general, global neighborhood is preferred.

The velocity is restricted to a certain dynamic range. vy, is the maximum
allowable velocity for the particles i.e. in case the velocity of the particle exceeds Vi
then it is reduced to v, Thus, resolution and fitness of search depends on vygy. I Vygy 18
too high, then particles will move beyond good solution and if vy, is too low, then
particles will be trapped in local minima. ¢; and ¢; termed as cognition and social
components respectively are the acceleration constants which change the velocity of a
particle towards p;y and pgq (generally somewhere between pyy and pgq).

The SPPSO is a classical PSO algorithm but with a small population. The concept
of regeneration is infroduced by the authors to give particles the ability to keep carrying
out the search despite a small population. The particles are regenerated after every N
iterations retaining their previous gpes (Peq) and pres (Pig) fitness values and positions. The
selection of the value N is crucial in realizing an efficient SPPSO algorithm. If the value
of N is low, the new particles may be regenerated too quickly and in turn disturb the
search process. Thus the particles will move erratically in the search space. On the other
hand, if the particles are regenerated at a higher value of N the search process will be
delayed. Randomizing the positions and velocities of the particles every N iterations aids
the particles in avoiding local minima and finding the global minimum. The regeneration
concept drastically reduces the number of evaluations required to find the best solution
and each evaluation is less compufational intensive compared to the classical PSO

algorithm.




B. Bacterial Foraging Algorithm (BFA)

Animals with poor foraging strategies (methods for locating, handling and
ingesting food) are eliminated by the process of natural selection. This process in turn
favors the propagation of genes of those animals that have been successful in their
foraging strategies. Species who have better food searching ability are capable of
enjoymg reproductive success and the ones with poor search ability are either eliminated
or reshaped. The BFA mimics the foraging behavior of the E. coli bacterium present in
our intestines. This algorithm has been successfully demonstrated as an optimization tool
in power system harmonic estimation [11-12]. The foraging process consists of four
stages: chemotaxis, swarming, reproduction and elimination [13] and these are briefly

explained below. More information on the BFA is given in [13].

1) Chemotaxis:

This stage mimics the bacteria’s ability to climb to regions of nutrient
concentration, avoiding noxious substances, and searching for way out of neutral media.
The bacterium usually takes a tumble followed by a tumble or a swim to carry out this
search. For N number of chemotactic steps the direction of movement after a tumble is
given by:

O"(j+ Lk, y=0(0jk, 1)+ C>)x$()) (2)

where C(i) is the step size taken in direction of the tumble by the i™ bacterium, j is the
index for the chemotactic step taken, k is the index for the number of reproduction step, 1
is the index for the number of elimination and dispersal event and §(j) is the unit length

random direction taken at each step. In other published applications [11-12], the number
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of bacteria is reported to be eight or more in the BFA. In this study, the authors
experimented with the step size for a small population of bacteria (five or less) and found
that using a linearly decreasing step size resulted in faster convergence for the BFA. Thus,
the population of the BFA and SPPSQ are comparable.

If the cost at § {(j+1,k,1) is better than the cost at 8 '(j,k,1) then the bacterium takes
another step of size C(i) in that direction (swimming). This process is continued until the
number of steps taken is not greater than N  (counter for number of swim steps). This is
done to prevent the bacteria trapped in local minima. There should be a tradeoff between

the values of N; to be chosen. Tt could be half of the value of N..

2) Swarming:

The bacteria in times of stresses release attractants to signal other bacteria to
swarm together. It however also releases a repellant to signal others to be at a minimum
distance from it. Thus all of them have a cell to cell attraction via attractant and cell to
cell repulsion via repellant. The equation given below represents the swarming behavior

in the bacteria foraging.
: S, i i
Jee (0, P(J, kD) = X Joe (0,0 (), k1))
i=1

P .
[_ d attract exp( - W attract Z (5 m e m l )2 )} (3)

m =1

+

1 Mer 1 M

—

p .
iy2
[ A repellant exp( - w repellant 2 (0 =0, )7
m =1

.

where, dugrae= depth of the attractant effect, Wauee~ measure of the width of the
attractant, Ayepeftan™ danrac = height of the repellant effect, Wreperanr=measure of the width

of the repellant, p = number of parameters to be optimized, § = number of bacteria.




The total cost function to be optimized by the BFA can be represented by:

J(i)j!kll)+‘]c((69p) (4)
where J(i, j & 1} is the cost function for the optimal PSS design described in Section TV

and given by (5). The value of dayaee a0d firepeitan should be same so that after certain
number of iterations after the bacteria converge there should not be any contribution from
the swarming part (Jo.= 0). The value of Wauracr a0 Wyeperian: should be such that when the
bacteria move farther from each other the penalty added to the cost function by J. should

be large.

3) Reproduction:
After all the N, chemotactic steps have been covered, a reproduction step takes
place. S; (S;/=S/2) bacteria having a lower survival value (less healthy) die and the

remaining S; are allowed to split into two thus maintaining a constant population size.

4) Elimination and Dispersal:

Environment changes for the bacteria all the time. Bacteria are either destroyed or
moved to different parts of the intestine resulting in positive and negative influences on
their lives. This process is incorporated in the BFA. For each elimination and dispersal
event each bacterium is eliminated with a probability of p.s. A low value of N, (number
of elimination and dispersal events) dictates that the algorithm will not rely on random
elimination and dispersal events to try to find favorable regions. A high value increases
computational complexity but allows bacteria to find favorable regions. The p.s should
not be large either or else it would lead to an exhaustive search. The number of
reproduction and elimination and dispersal events is problem specific. The values used in

this study are decided by trial and error.
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IV. OPTIMAL PSS DESIGN

This section describes how the bio-inspired algorithms are used to determine the
optimal parameters of the PSSs for the power systems in Figs. 1 and 3. For each PSS, the
optimal parameters are determined by the SPPSO and BFA, i.e. 20 parameters (4 PSSs)
in total for the small two area multi-machine power system and 10 parameters (2 PSSs)
for Nigerian power system. Just like any other optimization problem, a cost or an
objective function needs to be formulated for the optimal PSS design. The objective in
the optimal PSS design is to maximize damping; in other words minimize the overshoots
and settling time in system oscillations.

The integrated transient response area of the speed deviation of the generators is
used as the cost function to be minimized by the bio-inspired algorithms. This in turn
means improved system damping. Since in an interconnected power system there are
several generators that experience the impact of a transient, a single objective function is

formulated that accounts for the impact seen by all generators and is given by (5)
N m

FP= Yy ¥ Ja (5)

=1 Gn
where
NP t, 1At

Jo =) Y (Awg, (1)) x (4 x(t-t,)x At) )

j=1 1=t
where NP is the number of operating points for which optimization is carried out, N is the
number of faults for which the optimization is carried out, A is a weighing factor, m is the
number of generators in the system, Awg, is the speed deviation of the generator Gn, fp is

the time the fault is cleared, #, and ¢, are the start and end times of the simulation

respectively considered for the transient area calculation, At is the speed signal sampling
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period, ¢ is the simulation time in seconds. Limits are placed on the PSSs parameters to
keep the system within the stability margin during the online optimization. The PSS
parameter limits used for the two area multimachine power system (Fig. 1) and the
Nigerian power system (Fig. 3) are given in Table I.

Table |
Parameters Limits Used in the Optimization

Two Area Power Nigerian Power
System System

5 <K =30 0.05 < K =30

0.005<T; <2 0.005<T; <2

0.001 < T; <1 0001 =T, =<1

001 <£T; €10 0.01 <13 £10

0.005 < Ty <15 0.005 < Ty <15

The optimization is carried out by subjecting the power systems to a small
disturbance and a large disturbance. In this study, first, a temporary 200ms duration
transmission line outage is placed (on one of the tie lines) and when the system returns to
steady state, a three phase short circuit of 200ms duration is applied at the middle of tie
lines. The value of J ' is computed using (5) for a given set of parameters for the PSSs

and the bio-inspired algorithms are applied to compute the new set of parameters.

V. SIMULATION RESULTS

The entire simulation is carried out with the power systems simulated in the
PSCAD/EMTDC environment and the bio-inspired algorithms implemented in

FORTRAN. The challenging task of using the bio-inspired algorithms to tune multiple
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PSSs in PSCAD from the time domain information is reported for the first time to the
knowledge of the authors. The number of particles used in SPPSO is five and the number
of bacteria in BFA is four. The values of parameters used in this study are: N. = 4, N,.=
15, Nea= 10, Ns= 4, doy= 0.01, Iy = 0.01, woy= 0.4, wyp=0.42, w= 0.8, ¢; = 2.0 and ¢;
= 2.0. The fitness evaluations of the particles and the bactetia are carried out online. The
performance of the PSSs optimized by the PSO, SPPSO and BFA algorithms are
evaluated on Kundur’s two area and the Nigerian power systems for small and large

disturbances.

A. Two Area Multi-Machine Power System

Three tests are carried out and the responses are studied for the five cases
mentioned below. The respective optimized PSS parameters for these cases are given in
Table A.1

e No PSS: In this case, the power system is without any PSSs.

» Conventional PSS (CPSS): The PS8Ss parameters in this case are those obtained
from [17]. These parameters are the same for all four generators and are as
follows: K=20.00, T;=0.05s, T,=0.02s, T3=3.00s and T,=5.40s respectively.

s  PSO optimized PSS: The PSSs parameters in this case are the optimized
parameters obtained using the PSO algorithm.

e  SPPSO optimized PSS: The PSSs parameters in this case are the optimized
parameters obtained using the SPPSO algorithm.

e BFA optimized PSS: The PSSs parameters in this case are the optimized

parameters obtained using the BFA algorithm.
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1) Single Fault — Temporary Transmission Line Outage:

A 200ms transmission line outage is applied between buses 8 and 9 in Fig.1. This
is a small type of disturbance for a power system where a transmission line between
buses 8 and 9 is removed for 200ms. The speed responses of generators G2 and G3 for
the above mentioned cases are shown in Figs. 5 and 6 respectively. Similar responses are
observed for generators G1 and G4 and are not shown to limit the length of the paper.
The addition of PSSs improved the damping in the system oscillations. Response of G2
clearly shows that the response of PSO and SPPSO are comparable. PSO and SPPSO
optimized PSSs exhibit better damping than BFA optimized PSSs which in turn exhibits
better damping than CPSS. For generator (3, the performances of SPPSO and PSO

optimized PSSs are comparable and better than those with BFA optimized PSSs and

CPSS.
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Fig. 5. Speed response of generator G2 for a 200ms line outage between buses 8 and 9.
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Fig. 6. Speed response of generator G3 for a 200ms line outage between buses 8 and 9.

2) Single Fault — Three Phase Short Circuit:

A three phase short circuit of 200ms duration is applied at bus 8 in Fig.1. This is a

severe fault compared to the transmission line outage of 200 ms. The speed responses of

generators Gl and G4 for the above mentioned cases are shown in Figs. 7 and 8

respectively. Similar responses are observed for generators G2 and G3. It is clear from

these figures once again that the PSSs improve the damping in the system; system having

CPSS/ BFA optimized PSSs/SPPSO/PSO optimized PSSs show better damping than the

system without PSSs. Damping is best with systems having PSOQ and SPPSO optimized

PSS followed by BFA optimized PSSs and CPSSs. The speed responses for PSO and

SPPSO optimized PSS have a settling time of about a second faster than BFA optimized

PSSs,
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3) Combined Fault — Short Circuit Followed by a Transmission Line OQutage:

A double cascaded fault is now applied to test the robustness of the different
optimized PSSs parameters. A 100ms three phase short circuit at bus 8 is applied
followed immediately by a 100ms line outage between buses 8 and 9 immediately in Fig,
1. The speed responses of generators G1 and G3 for the above mentioned cases are
shown in Figs. 9 and 10 respectively. Similar responses are observed for generators G2
and G4. The damping of the system improves from system having no PSS to SPPSO
optimized PSSs, The system without any PSS have minimum or no damping hence the
oscillations are sustained. The system with SPPSO and PSO optimized PSSs is the best.
The performance of the system with the SPPSO optimized PSSs is much better than the

system having BFA optimized PSSs to provide damping during multiple faults.
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Fig. 9. Speed response of generator G1 for a 3 phase 100ms short circuit applied at bus 8,
followed by immediate 100ms line outage between buses 8 and 9.
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Fig. 10. Speed response of generator G3 for a 3 phase 100ms short circuit applied at bus
8, followed by immediate 100ms line outage between buses 8 and 9.

B. Nigerian Power System

The following three tests are carried out and the responses are studied for three
cases mentioned below and the respective optimized PSS parameters for these cases are
given in Table A.2.

e No PSS: In this case, the power system is without any PSSs.

e PSO optimized PSS: The PSSs parameters in this case are the optimized
parameters obtained using the PSO algorithm.

e SPPSO optimized PSS: The PSSs parameters in this case are the optimized

parameters obtained using the SPPSO algorithm.
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s  BFA opfimized PSS: The PSSs parameters in this case are the optimized

parameters obtained using the BFA algorithm,

1) Single Fault — Temporary Transmission Line Outage:

A temporary 200ms duration transmission line outage is placed on the tie-lines
connecting the hydro and thermal areas between buses 9 and 11. The speed responses of
the generators in both hydro and thermal areas for the above mentioned cases are shown
in Figs. 11 and 12 respectively. The Nigerian power system without PSS for a short
duration transmission line outage exhibits minimum damping and maximum overshoot
with many oscillatory modes. The overshoot and the settling time are minimized with the
SPPSO optimized PSSs. Here, it is clear that even for disturbances not as severe as a
three phase short circuit, the SPPSO outperforms the BFA. This is because the PSO and

SPPSO optimized PSSs gains are greater than the BFA optimized PSSs gains.

2) Single Fault — Three Phase Short Circuit:

A three phase short circuit of 200ms duration is applied at the middle of the tie
line (bus 25) connecting the thermal area to the hydro area in Fig. 3. The speed responses
of two generators, one in the thermal area (Delta) and the other in the hydro area (Shiroro)
are shown in Figs. 13 and 14 respectively. The PSSs with SPPSO optimized parameters
exhibit the best performance followed by PSO optimized parameters further followed by
BFA optimized parameters. The settling time is minimized and the system gets damped
quickly within 3 to 4 seconds of the disturbance for PSO and SPPSO optimized PSSs

parameters.
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3) Combined Fault — Short Circuit Followed by a Transmission Line Outage:

A double cascaded fault is now applied to test the robustness of the different
optimized PSSs parameters. A 100ms short circuit is applied at the middle of the tie lines
connecting thermal area to the hydro area (bus 25) immediately followed by a 100ms line
outage of the tie lines between buses 9 and 11. The speed responses of the generators n
hydro and thermal areas for the above mentioned cases are shown in Figs. 15 and 16
respectively. The performance of the system with PSO and SPPSO optimized parameters
is the best. The oscillations in the system settle down faster and overshoot minimized for

PSS parameters obtained using PSO and SPPSO.
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Fig. 15. Speed response of Shiroro (hydro area) for a 3 phase 100ms short circuit applied
at bus 25 followed by immediate 100ms line outage of the tic lines between the buses 9
and 11 (Fig. 3).
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Fig. 16. Speed response of Egbin (thermal area) for a 3 phase 100ms short circuit applied
at bus 25 followed by immediate 100ms line outage of the tie lines between the buses 9
and 11 (Fig. 3).

VI. DISCUSSIONS ON SPPSO AND BFA PSS DESIGNS

This section compares the two bio-inspired algorithms for the design of multiple
optimal PSS in terms of their computational complexities and performances of the

optimized PSSs using the transient energy analysis.

A. Computational Complexities

The number of fitness evaluations involved in BFA is more than those involved in

SPPSO for a single iteration. In BFA, for each bacterium, the fitness is evaluated a
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number of times. The number of stages involved makes the algorithm computationally
intensive. In addition, the number of factors invoived in BFA is twice as much as in
PSO/SPPSO as shown in Table IT and this makes BFA more complex. These factors need
to be properly chosen for the algorithm to perform optimally. The dependence of the
algorithm on so many parameters makes it handicapped in finding out the global
optimum. Performance of the BFA can be improved by choosing the parameters
effectively [12]. Similarly, PSO performance can also be improved [9]. However, this
paper mainly focuses in comparing the classical BFA with the classical PSO. In BFA, for
every reproduction and elimination and dispersal stage, a fitness evaluation is carried out
after all the chemotactic steps are covered; hence S*N, evaluations are performed. This is
equivalent to one PSO iteration. In the case of SPPSO/PSO, m/n fitness evaluations are

carried out for m/n particles respectively.

Factors Affecting the Perfomllﬂgztl:z I;f SPPSO & BFA Algorithms
No. of factors PSO/SPPSO | BFA
1 w Aattract ]
2 cj Wartract
e
3 2 Drepetiant
4 Vinax Wrepeltant
s Vain N,
T T -N Nre
7 - K Nea
8 - . N
9 - i)
10 - Peg
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The average fitness over ten trials of best bacterium (BFA) and best particle (PSO
and SPPSO) versus the number of iterations during the optimization process is shown in
Figs. 17 and 18 for the two multimachine power systems respectively. It can be seen that
fitness of best particle in SPPSO and PSO converges faster as compared to fitness of best
bacterium in BFA for same number of iterations (150) in both power systems under study.
PSO and SPPSO are faster in finding lower fitness values than BFA. For the two-area
power system, PSO converges to a lower average fitness than SPPSO. The fitness
however is close to the fitness at which SPPSO converges. The x-coordinate is the
number of iterations, which if interpreted in terms of fitness evaluations would be high
for PSO. If fitness closer to what PSO achieves in 150 iterations can be achieved in fewer
computations and less time, then the algorithm could be a considered as a potential online

optimization tool. Computational burden is reduced drastically in SPPSO.
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Fig. 17. Average fitness of the best particle in PSO, SPPSO and the best bacterium in
BFA for the study on the two-area multi machine power system.
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Fig. 18. Average fitness of the best particle in PSO, SPPSO and the best bactetium in
BFA for the study on the Nigerian power system.

Table I gives a general comparative analysis on the computational complexities
of the PSO, SPPSO and the BFA algorithms. Table TV shows specifically the
computational complexities of the algorithms in the optimal PSSs design for the two area
multimachine power system in Fig. 1. The number of fitness evaluations in PSO is higher
than the number of fitness evaluations in BFA and SPPSQ; the number of additions and
multiplications in SPPSO is lower in comparison to that of the PSO and BFA. For
example, from Fig, 17 for the two area multimachine power system, to attain a fitness of
15.57, PSO takes 5 iterations; SPPSO takes 19 iterations while BFA takes 19 iterations.
This translates to PSO carrying out 100 fitness evaluations, 10000 additions and 10000

multiplications while SPPSO carrying out 95 fitness evaluations, 9500 additions and
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9500 multiplications while BFA carrying out 304 fitness evaluations, 24016 additions
and 13376 multiplications respectively.

Likewise from Fig. 18 for the Nigerian power system, it can be seen that to attain
a fitness value of 43.97, PSO, SPPSO and BFA take 9, 4 and 63 iterations respectively.
This translates to the PSO carrying out 180 fifness evaluations, 18000 additions and
18000 multiplications ; SPPSO carrying out 20 fitness evaluations, 2000 additions and
2000 multiplications while BFA carrying out 1008 fitness evaluations, 39312 additions
and 24192 multiplications. This clearly shows that the SPPSO is much less
computationally intensive, at least twice as fast on a small power system (Fig.1) and at
least an order faster in the Nigerian power system (Fig. 3) as compared to the BFA
algorithim.

SPPSO along with PSO and BFA are allowed to run on a Intel (R) 4, 2.79 GHz
processor and time required to finish 150 iterations in PSCAD platform are tabulated in
Table V. Table V also includes the computation time involved in optimizing the PSS
parameters on Power System Toolbox(PST) platform [ 18]. 1t can be clearly seen thai the
SPPSO takes least amount of time in its row to finish 150 iterations in PSCAD and to
reach zero fitness in PST. For the Nigerian power system the time required to finish 150
iterations on the PSCAD platform is 766325 s 37908.35s and 481539.23s, for PSO,
SPPSO and BFA respectively. Thus systems employing SPPSO can save considerable
amount of time and therefore is feasible for online optimization with high speed

Processors.
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Comparison of General C0mputatiorflzllﬂgolllrliplexities of PSO, SPPSQO, and BFA
Algorithms Number Number of Number of Number of
of stages Fitness Additions  {Multipli-cations
involved Evaluations
PSO - 1 n Xiterations | 5 * nxd % 5 x pxd x
n particles iterations iterations
i SPPSO — 1 m Xiterations| 5 * mxd x 5 xmxd x
m particles iterations iterations
BFA — 4 S x N, XN,o X| (4p-1) xS* N {(4+2p) xS % N,
S bacteria (Chemotaxis, Nog X Nye X Neg | *Npe X Neg
Swarming, (I PSO
Reproduction, | jferation = S %
and Elimination N,)
and Dispersal)
I S
Table IV

Comparison of Computational Complexities of PSO, SPPSO and BFA for PSS Design
for Two Area Power System (N, = 4, Ngg = 15, Ngp = 10)

Algorithms Number Number of | Number of Number of
of stages Fitness Additions |} Multipli-cations
involved Evaluations '

PSO- —

20 particles 1 3000 300000 300000

SPPSO — ]

5 particles 1 750 75000 75000
BFA —

4 bacteria 4 2400 189600 105600
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Table V
Computation Time for PSO, SPPSO and BFA for Two Area Power System
Platform Time (seconds)
PSO SPPSO BFA
I ——
PSCAD 227557.00 12544.15 48638.93
PST 202.28 102.25 407.04

B. Transient Energy Analysis of the Damping Performance

A brief comparison of the two algorithms based on the transient energy
calculations is shown in Tables VI and VII. The transient energy of each generator for the
first 5 seconds of the fault has been calculated using (7) and the total transient energy (TE)
of all the generators in a given area is given by (8).

1

_ ! +5 2
TE Gen . 2 Gen Lﬂ: dt @)

I
where 7 is the generator number, # is the time at which the fault is triggered and Hgem 18

the moment of inertia of the generator i.

TE = TE Gen

I

,- ®)

I Mz

I
where N is the number of generators present in a given area of a system. The performance
index (P.I), given in (9), is a measure of how the system has performed under the given
conditions with the different set of PSS parameters. The higher the performances index

the better the controller damping performance.

Performance Index (P.1.) =1/ TE (9)
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Table VI presents the normalized performance indices of Area 1 and Area 2 for
the different disturbances for the two area multi-machine power system. The normalized
performance index is obtained by dividing the P.Is by the P.I obtained with no PSS in the
system. The results show that the performance indices are best when the PSSs use the
SPPSO optimized parameters. The overall performance row indicates that the bio-
inspired optimization techniques improve the damping and minimize the overshoot in the
oscillations for small and large disturbances. There is 19.17% , 24.65% and 16.43%
overall improvement in damping in Area 1 with the PSO, SPPSO and BFA respectively
optimized PSS parameters compared to the PSS parameters in [17]. Simularly, the overall
improvement in the damping provided in Area 2 is 20.6%, 28.75%, and 33.47% with the
PSO, SPPSO and BFA respectively optimized PSS parameters compared to the PSS
parameters in [17].

Table VII shows the P.Is of the hydro and the thermal areas under different
operating conditions for the Nigerian power system. P.1. is best with SPPSO optimized
parameters followed by PSO and then the BFA optimized parameters. This corroborates
the superiority of the SPPSO algorithm over the BFA for same operating conditions.
There is an overall improvement of 48%, 90% and 99% in damping in Hydro area with
the BFA, PSO and SPPSO respectively optimized PSS parameters compared to the case
without any PSS in the system. Similarly, an overall improvement in the damping
provided in Thermal area is 87%, 248% and 245% with the BFA, PSO and SPPSO
respectively optimized PSS parameters compared to the case without any PSS in the

system.



107

Table VI
Normalized P.1. for Two Area Multi-Machine Power System
Disturbance Areas | No PSS CPSS PSO SPPSO BFA
1 1.0 1.56 1.88 1.96 1.96
Short Circuit 2 1.0 1.94 2.40 2.66 2.60
1 1.0 1.40 1.50 1.63 1.63
Line Outage 2 1.0 3.02 3.64 3.68 4.06
Short Circuit and | 1.0 1.49 1.84 1.92 1.89
Line Outage 2 | 1.0 2.05 2.39 2.66 2.68
Overall 1 1.0 1.48 1.74 1.84 1.82
Performance 2 1.0 2.33 2.81 3.00 3.11
S
Table VII
Normalized P.I for the Nigerian Power System
Disturbance Areas No PSS PSO SPPSO BFA
Hydro 1.0 1.53 1.54 132 |

Short Circuit Thermal 1.0 4.20 4.07 1.57

Hydro 1.0 2.55 2.75 1.66

Line Outage Thermal 1.0 2.38 2.55 2.06

| Short Circuitand | Hydro 1.0 1.62 1.68 1.47

Line Outage Thermal ;‘1-0“‘l 3.88 WW
Overall Hydro 1.0 190 | 199 | 148
Performance Thermal 1.0 3.48 3.45 1.87
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PSO in each of the transient energy calculations is comparable with SPPSO.
However, PSO after certain number of iterations can be trapped in local optima as the
velocity of the particle becomes zero when the same particle is both the pyes and the gpes.
When the velocity of the particle is zero, the position of the particle cannot be updated
and thus the search will be trapped in a local optimum. SPPSO owing to its regeneration
can generate new particles after every N iteration thus eliminating the drawback of zero

velocity.

C. Eigenvalue Analysis

Prony Analysis [19-20] is used to determine the eigenvalues of the systems under
study. Tables VI to XI list the complex eigenvalues of all the generators in the two area
and the Nigerian power system. The best eigenvalue of each of the generator for each
mode is highlighted in all the tables. In summary, the eigenvalues generated by system
having bio-inspired optimized PSSs have the highest negative real part in that row and
thus improve system stability, SPPSO and BFA optimized PSSs exhibit best results for
the inter-area and local modes in the different areas, for the two area power system as
shown in Tables VIII and IX. The SPPSO optimized PSSs exhibit the best damping for
most of the modes in the different areas in the Nigerian power system as shown in

Tables X and XI.
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Table VIII
Eigenvalues, Frequencies and Damping Ratios of Generating Units in Area 1 in Two
Area Power System

Area Power System

Type of PSSs Eigenvalues | Frequency (Hz) | Damping Ratio (%)
-0.14 + j4.20 0.67 3.35
No PSS -0.4 +£j6.39 1.02 6.25
-0.92 +17.48 1.20 12.21
-0.86 + j4.24 0.69 19.07
CPSS -1.08 £ j6.31 1.02 17.31
-2.294+§7.31 1.22 30.01
N -1.76 + 4.02 0.72 40.21
BFA optimized -1.82+ j5.55 0.93 31.22
-1.82+37.25 1.19 24.35
-1.50+j4.13 0.7 34.11
SPPSO optimized| -1.60+£]5.55 0.92 27.79
-2.74 £ j7.55 1.28 34.13

Table IX

Type of PSSs Eigenvalues | Frequency (Hz)| Damping Ratio (%)
No PSS -0.14 + j4.20 0.67 3.41
-0.41 £36.52 1.04 6.64
-0.63 +j8.52 1.36 7.44
CPSS -0.82 +£j4.25 0.69 19.10
-0.95+ j6.14 0.99 15.37
-2.16:+)7.22 1.20 28.77
BFA optimized -1.76+ j3.59 0.67 42.01
-1.11 £ 6.05 0.98 18.08
-2.45+j7.78 1.30 30.08
SPPSO optimized | -1.704 j4.05 0.70 38.86
-1.43+ j5.53 0.91 25.07
-2.29+17.51 1.25 29.23

Eigenvalues, Frequencies and Damping Ratios of Generating Units in Area 2 in Two



Table X
Eigenvalues, Frequencies and Damping Ratios of Hydro Generating Units in Nigerian
Power System

Type of PSSs Eigenvalues | Frequency (Hz) | Damping Ratio(%)
No PSS -0.55 43 5.51 0.88 10.07
-0.34+77.63 1.21 4.44
-0.60£j9.12 1.45 6.57
BFA 0.62+] 5.46 0.87 1128
optimized -094+j6.52 1.04 14.36
-1.38+j8.79 1.41 15.56
T SPPSO 113 5.04 0.82 21.99
optimized -1.67 £ j 7.69 1.25 21.32
-2.10 £ §10.52 1.70 19.66
L
Table XI
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Eigenvalues, Frequencies and Damping Ratios of Thermal Generating Units in Nigerian
Power System

Algorithms Eigenvalues | Frequency (Hz) r”Damping Ratio(%)
No PSS -047 £ 5.67 0.90 08.40
-0.25+5 7.62 1.21 03.30
-0.91 +£§9.51 1.52 09.54
BFA -0.60::j 5.42 0.86 11.00
optimized -1.62 £ j 6.56 1.07 24,02
-0.87 +j 8.34 1.33 10.42
SPPSO -1.15+§5.75 0.93 19.60
optimized -0.83 +£§ 6.66 1.06 12.48
-1.58+39.76 1.57 16.04
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VII. CONCLUSION

The successful implementation of the two bio-inspired algorithms for
simultaneous design of the multiple optimal PSSs has been presented in this paper. The
SPPSO and BFA algorithms give robust damping performance for various operating
conditions and disturbances. The SPPSO with the regeneration concept 1s shown to have
faster convergence using lower number of fitness evaluations and algebraic operations.
BFA owing to its unique processes can find good optimal solutions. The SPPSO however
is found to be superior to the BFA and PSO in terms of computational complexity,
transient energy analysis, convergence speed and damping performances.

The paper has presented the SPPSO and the BFA as optimization tools in the
PSCAD/EMTDC environment. This is a first step towards online optimization and future
work can involve developing these algorithms further for real-time optimization in power

systems.
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System 1 PSS Parameters

Generator | Kundur’s parameters CPSO optimized CSPPSO optimized
parameters parameters
G1-G4 | K=20.0,T,=0.05, | K=26.49,Ti=0.061, | K=21.21, T;=0.062,
T,=10.02, T3=3.0, To= 0.01, T3=5.11, | T,= 0.01, T3=3.74,
Ts=5.4 Ts=5.55 T4 =3.247
Table A.2
Parameters of the 16 Tuned PSSs in System 2 (Case 1)
| Generator | CPSO optimized parameters CSPPSO optimized parameters
Gl | K=14.67, T,=0.02, T,=0.01, [ K=10.37, T;=0.06, T,= 0.01,
T;=10.01, T4 =0.01 T3=0.08, T4 =0.01
G2 K =14.20, T;=0.01, T, =0.01, K =18.53, Ty=0.07, T,= 0.01,
T3=0.04, T4= 0.01 T3=0.05. T4=0.01
G3 K =16.20, T,=0.06, T,=0.01, K=19.21, Ty =0.07, T,= 0.01,
T1=0.05, T4=0.01 T3=0.06, T4 =0.01
G4 K=13.47T,=0.02, T,=0.01, K=10.02, Ty=0.06, T,=0.01,
T3=0.01, T4= 0.01 T3=0.07,, Ts=0.01
G5 K=17.76, T;=0.06, T,=0.01, K=15.49, T=0.07, T,=0.01,
T3=0.01, T4~ 0.01 T3=0.05. T4 = 0.01
G6 K=18.32, Ty=0.05, T,=0.01, K=12.16, T;=0.06, T,= 0.01,
T3 =10.06, T4=0.01 T3=0.08, T4=0.01
G7 K=10.97 T,=0.01, T,=0.01, K =19.66, Ty=0.06, T;=0.01,
T3=0.01, T4= 0.01 T3=10.07, T4 =0.01
G8 K=15.30,T,=0.05,T,=0.01, K=11.11, T, =0.08, T, = 0.01,
T3=0.063, Tsy=0.01 T3=0.08. T4 = 0.01
Go K =13.56, T{=0.01, T,=0.01, K =19.36, T;=0.06, T,=0.01,
Ty=0.04, Ty= 0.01 T3=0.06. T4 = 0.01
G100 | K=18.62,T;=0.06, T,=0.01, K=11.21, Ty=0.07, T,=0.01,
T5=0.05, T4=0.01 T3=10.05. T, =0.01
Gl1 K=1246,T,=0.04, T,= 0,01, K=18.21, T;=0.08, T,=0.01,
T3=0.04, T,=0.01 Ty=0.07. T4 = 0.01 ]
Gl2 | K=17.27, T;=0.07, T,= 0.01, K=15.96, Ty=0.08, T;=0.01,
L T3=0.02, T4=0.01 T3 =0.06, T4 = 0.01
G13 | K=17.06, Ty=0.01, T,=0.01, K =19.46, T;=0.07, T,= 0.01,
T3=0.01, T4= 0.01 T3=0.06. T4 = 0.01
Gl4 | K=13.54T,=0.07,T,=0.01, K =18.20, T,=0.05, T,= 0.01,

T3 =0.07, T4= 0.01

T3;=0.07, T4 = 0.01
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Table A.2 (Cont’d)
Parameters of the 16 Tuned PSSs in System 2 (Case 1)
Generator CPSO optimized CSPPSO optimized
parameters parameters
G15 { K=15.89, Ti=0.06, T,=0.01, K=1811, T;=0.07, T,=0.01,
Ty=0.01,T&=0.01 Ty=0.05.,T4= 0.01
Gl6 { K=18.67,Ti=0.04, T,=0.01, K =18.86, T;=0.06, T,=0.01,
T3=0.01, Ts= 0.01 T3;=0.08, T4 =0.01
Table A3
Parameters of the 5 Tuned PSSs in System 2 (Case 2)
Generator CPSO optimized CSPPSO optimized
paramelers parameters
G9 K=19.45T,=093,T,=0280, | K=2091,T,=0.67, T,=0.55,
T;=10.64, T+= 037 T3=097.T,=1.18
Gl13 K=1847T,=122,T,=0.83, | K=2338T,=0.88, T,=0.39,
T3=0.98, T4=0.46 T3=0.91.T4=0.96
Gl4 K =19.50, T,=10.74, T,= 0.55, K=19.81, T; =040, T,= 0.49,
Ty =0.86, T4=0.52 T3=0.97, T4=1.13
G15 K=19.10,T1=0.98, T,=0.18, K=2647,Ti=0.58, T,=0.57,
T;=0.52,T4=0.70 T3=1.27,T, =0.60
Gl16 K=2043,T=074, T,=0.97, K=21.03,T,=126,T,=099,
T;=0.94, T4= 049 T3=1.37, T, =092
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Table A4
Oscillatory Modes of System 1 for Different Operating Condition
Operating Parameters Eigenvalues Frequency Damping (%)
Condition (Hz) + std (min, max)
Kundur -0.96 4 4.22 0.67 22.2
-6.28 £ 7.00 1.12 66.3
-5.64+77.26 1.15 61.3
PSO -1.724§ 3.65 0.58 41.56 £ 0.58
- (40.87 , 42.76)
[ SPPSO -1.71+j 3.68 0.58 41,54 +0.48
(40.86, 42.3)
CPSO -1.74 £13.64 0.58 41.72 £0. 74
(40.8, 43.25)
CSPPSO -1.74+53.61 0.57 42,060, 80
(40.81, 43.55)
Kundur -0.95 £ 4.05 0.64 22.9
-6.27 £j 7.12 1.13 66.8
-5.43 +£37.38 1.17 59.2
PSO -1.71+53.52 0.56 42.65+ 0.60
(41,91, 43,87)
SPPSO -1.74 £ 3.51 0.56 42.80 +0. 81
II (41.85, 44.38)
CPSO -1.74+3 3.50 0.55 42.82 £0.75
(41.87, 44.54)
CSPPSO 21,74k 1 3.47 0.55 43.10+0. 85
| (41.87,44.74)
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Table A.4 (Cont’d)

Oscillatory Modes of System 1 for Different Operating Condition
Operating Parameters Eigenvalues Frequency Damping (%)
Condition (Hz) % std (min, max)

Kundur -0.92+i4.14 0.65 21.6
-6.26 £ 7.13 1.13 65.9
-5.62+£j7.26 1.15 61.2
PSO -1.69+§3.62 0.57 40.85+ 0.54
(40.16, 41.71)
SPPSO -1.69£73.6 0.57 41.05 +0, 78
1 (40, 42.56)
CPSO -1.7+£j 3.6 0.57 41.04 £0.73
(40.13, 42.7)
CSPPSO -1.7+£33.56 0.56 41.3+0. 83
(40.01, 42.88)
Kundur -091:+j4,12 0.65 21.5
-6,25:£j7.14 1.13 65.8
-5.61+)7.26 1.15 61.1
PSO -1.67+§3.61 0.57 40.78+ 0.54
(40.0, 41.97)
SPPSO -1.68 £§3.58 0.57 40.98 £0. 78
v (40.0, 42.48)
CPSO -1.69+ 1 3.58 0.57 40.95 £0.73
L (40.0, 42.63)
CSPPSO -1.68 £ 3.55 0.56 41.22+0. 83
(40.0, 42.8)
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Table A.5
Oscillatory Modes of System 2 With 16 Tuned PSSs (Case 1)
Operating Parameters Figenvalues |Frequency (Hz) | Damping (%) +
Condition std (min, max)
PSS [20] -0.77 £ 2.59 0.41 28.53
-0.79 4 3.42 0.54 22.7
-0.82 +74.05 0.64 19.70
-1.63 £ 7.12 1.13 223
-233+£§7.32 1.17 30.0
PSO -1.05 £ 2.59 0.41 37.05+0.68
Constriction (35.12,37.89)
! CPSO) 072342 0.57 29 86 0.92
(28.09, 31.19)
-1.34£422 0.67 28.02+1.59
(23.74,31.24)
SPPSO -1.01+j 2.48 0.39 37,194+ 0.81
Constriction (34.29, 38.16)
(CSPPSO) -1.04+ 7 3.30 0.52 30.13:£1.22
(27.45,32.53)
-1.16+£33.92 0.62 28.00+1.25
(24.37.29.30)
PSS [20] -0.77+j2.62 0.41 28.21
-0.80:£73.45 0.54 22.66
-0.82 +£54.08 0.65 19.76
-1.63+)7.12 1.13 22.38
2354737 1.17 30.30
PSO -1.05 43 2.62 0.41 36.60 + 0.65
Constriction (34.78, 37.43)
CPSO) 1 | 03345 0.54 29.90+ 0,93
10 (28.15, 31.28)
-1.35+;4.23 0.67 28.07+1.59
(23.71, 31.20)
SPPSO 101251 0.40 36.75£0.78 |
Constriction (33.98, 37.68)
(CSPPSO) |1 0as332 0.52 30.1741.20
(27.57, 32.54)
-1.16+j3.93 0.62 28.05£1.25

(24.39, 29.39)
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Table A.6
Normalized P.I of System 1 for Operating Condition 1, 11 and 11}
Operating Disturbances Areas Kundur CPSO [CSPPSO
Condition

Short Circuit Area 1 1.0 1.79 1.81

Area 2 1.0 2.36 2.28

1 Line Outage T Areat 1.0 1.60 1.53

Area 2 1.0 1.53 1.44
Overall Area 1 1.0 170 | 167

Performance =70y 10 193 | 186

Short Circuit Area | 1.0 2.01 1.72,

Area?2 1.0 1.94 1.97

Line Area 1 1.0 1.43 1.35

I Outage Area?2 1.0 1.45 1.36

Overall Arca | 1.0 172 | 154

Performance Area 2 1.0 1.70 1.66

Short Circuit Area 1 1.0 2.05 2.06

Area 2 1.0 2.19 2.14

Line Area 1 1.0 1.44 1.36

111 Outage Area 2 1.0 1.45 1.34
Overall Area | 1.0 174 [ 171

Performance Area 2 1.0 1.82 1.74
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Table A.7
Normalized P.] of System 2 for Operating Condition Iand II
Operating | Disturbances Areas PSS [20] CPSO  [CSPPSO
Condition J ‘J
Contingency 1 Area 1 1.0 1.52 {139
Area 2 1.0 1.52 | 1.43
Area 3 1.0 128 (130
Area 4 1.0 1.02 | 1.05
[ Areas 1.0 1.58 | 1.47
Contingency 2 Area 1 1.0 1.27 (142
Area 2 1.0 1.87 |1.70]
I Area 3 1.0 1.38 | 1.42
Area qd 1.0 1.60 1.54
Arca 5 1.0 1.88 {1.58
Overall | Areal 1.0 140 | 1.40
Performance Ar;ea 2 1.0 1.69 1.56
Area 3 1.0 133 ] 1.36
Area 4 1.0 131 | 1301
Area 5 1.0 (73 [153]
Contingency 1 Area l 1.0 1.50 [ 1.37
Area2 1.0 151 | 1.42
Area 3 1.0 128 |1.30
Arca 4 10 103 | 1.07
" Areas 1.0 160 | 1.48]
i Contingency 1 Area 1 1.28 143 |1.28
Area 2 1.86 1.70 [ 1.86
‘ Area 3 139 145|139
Area 4 1.62 1.56 |1.62
Area 5 1.92 1.60 |1.92




Table A.7 (Cont’d)
Normalized P.1 of System 2 for Operating Condition 1 and 11

Operating

Condition
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Disturbances Areas | PSS[20] | CPSO |[CSPPSO
Overall [ Areal | 1.0 139 | 1.40
Performance Arca 2 1.0 | 168 | 1.6
| Arca3 | 1.0 134 | 1.38

Area 4 1.0 133 | 1322

Area 5 1.0 1.76 | 1.54

]
Table A.8

Oscillatory Modes of the Two PSS Tuning Cases on System 2

Condition

Operating

11

Parameters Eigenvalues | Frequency | Damping (%) = std

(Hz) {min, max)
37.19+ 0.81

csppso | 1011248 0.39 (34.29, 38.16)
optimized 30.13%1.22

l6psss | TLOHII0 052 (27.45, 32.53)
116£j392 | 062 28.00+1.25

(24.37.29.30)
40,68 £6.41

5 PSSs -1.64:&] 323 0.51 (26.38, 45_35)
27.07 £2.44

117+ 3.78 0.60

(23.38, 30.53)

i B 37195081 |
csppso | 101248 1039 (34.29, 38.16)
optimized 30.1341.22

16 psss | T104EI330 0.52 (27.45, 32.53)
-1.16£j 3.92 0,62 28.004:1.25
(24.37.29.30)




'_y(_)m;;:i'ating
_Eondition

11

Table A.8 (Cont’d)

__ Oscillatory Modes of the Two PSS Tuning Cases on System 2

Parameters

-—

CSPPSO
optimized

5 PSSs

e
I

CSPPSO
optimized

16 PSSs

CSPPSO
optimized

5 PSSs
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Eigenvalues | Frequency | Damping (%) & std
(Hz) (min, max)
034 40.30 +£6.41
-1.45+§ 2,21 - (30.43, 57.84)
051 31,77 £4.47
-1.68+3.25 | (26.06, 45.98)
£3.
1.86£j3.25 | g 60 27.67+3.11
(23.51, 35.70)
37.73 +0.85
-1.01+j2.44 0.38
(34.66, 38.74)
30.11 +1.21
1,03+ 3.28 0.52
(27.52,32.54)
27.95+1.24
1LI5£§391 | 0.62
(24.36, 29.26)
41,17 +6.41
-1.49+§2.04 0.32
(31.17, 59.00)
32.20 +7.01
-1.61+53.22 0.51
(26.77, 44.70)
2691 +2.39
1,164 3.78 0.60
(23.24, 30.30)
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Table B.1
Parameters of the PSSs used in Approach A

M/c{ Casel Case 2 Case 3 Case 4 Case 5 Case 6
- [ K=17.00 | K=12.64 | K=1098 | K=19.88 | K=1037 | K=18.58
Gl T]ZO.OS T}Z 0.05 T;: 0.08 T[ﬁ 0.08 T1: 0.09 T1= 0.06
T,=0.01 T=0.01 Ty=0.01 Ty=0.03 T,=0.01 ] T,=0.01
T,=0.05 | T:=0.08 | T:=0.08 Ty=0.01 | T1=0.07 | T3=0.11
T4=0.01 T4=0.01 T,=0.04 | T4=0.01 T4=0.01 | Ty=0.01
K=1480 | K=13.09 | K=1484 | K=1247 | K=17.89 | K=16.12

G2 | =005 | T=006 | T=009 | T;=0.06 { T\=0.06 | T,=0.05
Ty=0.01 T,=0.01 Ty=0.01 T,=0.01 Ty=0.01 { T,=0.02
Ty=0.05 Ty=0.07 T3=0.02 Ts= (.01 T:=0.09 | T=0.06
Ta=001 | Ts=0.01 Ty=0.02 | T4=001} T4=005] T4=0.01
K=15.69 | K=1740 | K=1447 | K=18.90 { K=15.05 | K=17.97

G3 | T=0.06 T,=0.06 T4=0.06 T:=0.06 T1=0.05 T=0.09
T,=002 | T,=0.01 T,=0.02 | T,=002 | T,=0.01 | T,=0.04
T3=002 | Ty=005) T:=001| T:=0.09{ T3=0.03 ] T;=0.04
T4=0.01 | T,=0.01 | T4=002 | T,=0.01 § T4,=0.01 { T;,=0.01
K=1646 | K=12.37 | K=1820 | K=10.31 K=1920 | K=12.18

G4 | T1=0.04 T=0.06 T=0.04 T=0.07 T=0.05 T1=0.08
To=0.01 T=0.01 Ty=0.01 Tr=0.01 T,=0.01 T,=0.01
Ty=0.09 | T5=008 | T:=0.03 | T3=0.06 | T+=0.07 | T3=0.06
Ty=002 | T4=0.02 | T4=002} T4=0.01] T4=0011} T;=0.01
K=14.84 | K=17.07 | K=16.99 | K=16.79 { K=16.37 | K=15.30
G5 1 T4=0.07 | T=006 | T,=0.04 | Ti=0.07 | T=0.08 | T=0.06
To=0.01 T,=0.01 Tr=0.01 T>=0.01 To=0.04 | T,=0.01
Ty=0.08 Ty=0.05 Ty=0.01 T3=0.06 T:=0.03 } T:=0,06
T4+0.01 T4=0.01 T4=0.02 T4=0.01 T4=0.03 T4=0.02
K=19.16 | K=18.85 } K=18.56 | K=12.15 | K=19.64 : K=15.86

G6 | T1=0.07 T,=0.05 T,=0.08 T,=0.08 T:=0.11 T=0.03
Ty=0.01. ] Ty=0.01 Ty=0.01 T,=0.03 Tp=0.01 T,=0.01
T3=0.05 Ty=0.05 T3=0.01 T3=0.05 T3=0 06 T;=0 07
T4=0.01 T4=0.01 T=0.02 | T4=002 | T4=002 | T=0.02
K=1379 ;| K=1548 [ K=19.92 | K=17.11 K=15.42 | K=14.65

G7 | T,=0.04 T=0.05 T:=0.10 T,=0.05 T,=0.02 T1=0.01
T,=0.01 T,= 0.01 Ty=0.01 T,=10.01 To=0.01 | Ty=0.02
T=0.07 { T:=0.07 | T:=0.01 T:=0.06 | T,=0.03 | T:=0.07
T4=0.01 T4=0.01 T4=0.02 | Ts=0.01 T4s=0.03 | T#=0.01
K=11.7 K=1797 | K=10.07 | K=1542 | K=12,05 | K=12.43

a8 | T,=0.05 T,=0.08 T,=0.10 T,=0.08 T:=0.05 T=0.07
T»=0.01 T,=0.01 T,=0.01 T,=0.04 T=0.02 T,=0.01
Ty=0.01 T3=0.08 | Ts=0.01 T3=0.05 | T3=0.08 | T:=0.06
T4=0.01 T4=0.01 T4=0.01 Ts=0.01 Ta=0.02 | T4=0,02




Table B.1 (Cont’d)
Parameters of the PSSs used in Approach A
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M/c | Casel Case 2 Case 3 Case 4 Case 5 Case 6
K=14.5 K=18.28 K=16.53 | K=13.99 | K=16.27 | K=15.73
G9 | T=0.06 T1=0.05 T1=0.06 T1=0.07 T1=0.06 T,=0.02
T=0.01 T,=0.01 Ty=0.01 { T»=0.03 | T,=0.01 | T,=0.01
T5=0.07 | T3=0.06 T=0.01 { T:=0.06 | T,=0.09 | T:=0.06
Ts=0.01 T4=0.01 T4=0.03 T4=0.02 T4=0.03 T4=0.01
K=13.49 | K=17.17 K=18.11 | K=11.28 | K=12.47 | K=10.77
G110 | T=0.05 T1=0.07 T1=0.06 T1=0.10 T=0.07 T=0.09
T,=0.01 T,=0.01 T,=0.01 | T=0.04 | T,=0.01 | T,=0.02
T:=0.07 { T3=0.05 T:=0.01 | T:=0.00 | T3=0.10 | Ty=0.08
| | T=001] Te=001 | T4=0.01 | T»=001 | T4=003 | T4=0.03
K=17.89 | K=15.93 K=18.43 { K=16.15 | K=12.87 | K=12.26
Gil | T,=0.07 T,=0.07 T=0.06 T=0.05 T=0.10 T,=0.08
T,=0.03 T,=0.01 T,=0.03 T,=0.02 T,=0.01 T,=0.01
T3=0.07 T3: 0.05 Ty”—0.0l T3=0.05 T3=0.06 T3= 0.06
T4=001 ] T;=001 T4=0.02 | T&=003 | T4=002 | T&=0.02
K=1947 | K=17.41 K=19.27 | K=1794 | K=15.08 | K=17.89
Gl12 | T=0.06 { Ty=0.06 Ti=009 | T;=003 | T;=0.08 | Ty=0.06
T,=0.02 | T»=0.01 T2=0.02 | To=001 § T,=001 | T,=0.01
T3=0.06 T3=0.08 T3=10.01 T:=0,00 | T3=0.03 | T3=0.09
T4y=0.03§ T&~0.03 T4=0.01 | T&=0.01 | Ts=0.04 | T4=0.01
K=19.86 | K=16.60 K=19.93 | K=19.79 | K=1696 | K=19.45
G13 | T;=0.08 T,=0.07 T1=0.09 Ty=0.09 T1=0.08 T=0.04
T,=0.02 T,=0.01 Ty=0.02 T,=0.02 T,=0.01 T,=0.01
T3=0.076 T3=0.05 T3=0.01 | T3=007 | T3=0.04 | Ty=0.09
T4=0.026 T4=0.01 T4=0.01 T4=0.03 T4=0.01 T4=0.02
K=19.66 | K=19.72 K=1934 | K=19.17 | K=14.95 | K=19.31
Gl4 ) T=0.08 T=0.07 T1=0.03 T,=0.07 Ty=0.07 T=0.05
T,=0.01 T,=0.01 T,=0.01 T,=0.02 T,=0.04 T,=0.03
T3=0.069 | T3=008 | T3=004 | T3=0.07 | T3=0.07 | T;=0.00
T4=0.033 ¢ T4=0.01 T4=0.01 | T4=0.02 | T4&=0.03 | T4=0.01
K=17.63 K=19.28 K=19.07 | K=19.53 | K=17.38 | K=13.50
G15 [T=0.077 T:=0.05 T,=0.06 T1=0.08 Ty=0.07 T1=0.10
Ty=0.01 T,=0.01 Ty=0.01 | T,=0.02 | T,=001 | T,=0.01
T5=0.04 Ty=0.05 T3=0.01 | T:=0.04 | T:=0.08 | T3=0.09
T4=0.01 T4=0.01 Ta=004 | T,=0.01 | T,=001 | Ty=0.02
K=19.73 K=19.71 K=18.35 | K=19.70 | K=19.71 | K=18.90
G116 | T=0.071 T=0.07 T1=0.08 T=0.09 T=0.01 T1=0.10
T,=10.01 Ty=10.01 T=0.01 | To=0.02 | T,=001 | T=0.06
T3=0.09 T3=10.06 T3=0.06 | T:=0.05 | T3=004 | T:=0.02
T4=0.02 T4=0.01 T4=0.03 T4=0.02 T4=0.02 T4=0.02
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Table B.2
Parameters of the PSSs used in Approch B
M/c | Case | Case 2 Case 3 Case 4 Case § Case 6
K=13.98 | K=15.80 | K=1094 | K=1091 | K=14.03 | K=18.35
GY9 | T\=0.18 | T=0.24 T=0.67 | T,=0.36 | T,=0.10 | T,=2.37
Ty=0.11 Tz 0.15 | T;=0.80 | T=1.92 | Ty=0.55 | T=0.67
T3=046 | T:=005 | T:=123 | T,=174 | T3=0.58 | T3=0.97
T=0.23 | T4=0.02 T4=029 | T4=0.08 | T4=0.17 | T4=2.52
K=14.40 | K=1391, | K=15.94 | K=16.38 | K=20.03 | K=13.83
GI13 | T\=043 | T,=0.38 Ti=1.40 | T,=3.02 | T;=0.01 T=0.63
T,=0.09 | Ty=0.12 T,=0.80 | T,=048 | T,=0.41 T,=0.23
T3=0.01 T3=0.02 T3=0.50 [ T:=0.69 | T:=1.10 | Tz:=1.36
T4=0.16 | T4=0.09 Ty=1.10 | T4=2.00 | T4=0.01 T4=1.96
K=16.07 | K=19.66 | K=11.75 | K=13.67 | K=11.33, | K=19.70
Gl4 | T\,=047 | T,=0.15 T\=237 | T\=243 | T,=042 | T,=1.08
Ty=0.11 T,=0.29 Ty=2.13 | Ty=1.25 | Ty=0.25 Ty=1.43
T3=0.01 T3=0.08 | T3=2.10 | T3=0.10 [ T3=0.53 | T3=1.29
Ty=0.12 | Ts=0.03 | T4=087 | T,=335 | T4=040 | Ty=04I
K=20.19 | K=18.68 | K=17.76 | K=16.01 | K=11.36 | K=13.04
G15 | T,=0.56 | T;=0.29 T=0.72 | T,=0.70 | T,=0.54 | T;=0.01
T;=0.18 | T=0.15 | T,=0.87 | T,=0.16 | T,=0.75 | T=1.95
T3=003 | T:=0.05 | T3=1.60 | T;=0.81 | T:=0.08 | Ts=1.12
qu 0.30 T4= 0.16 T4= 0.60 T4= 0.62 T4: 0.90 T4: 2.10
K=13.77 | K=20.13 | K=13.69 | K=18.06, | K=16.65 | K=20.30
Gl6 | T=0.25 | T=0.57 T=161 | T\=0.74 | T,=0.02 | T,=1.43
T,=008 | T,=0.12 | Ty=0.04 | T;=0.62, | T,=0.19 | T,=1.84
Ts=0.01 | T;=017 | T>=001 | T5=1.65 | T3=094 | T:—=1.59
T4=0.06 | T4=0.37 T4=0.61 | T4=1.01 T=0.22 | T&=033




Table B.3
Oscillatory Modes of the 16 Machine Power System (Approch A) for Operating
Condition I.
Parameters Eigenvalues Frequency (Hz) | Damping (%) +
std
PSS [15] -0.77 43 2.59 0.41 28.53
-0.79+£j3.42 0.54 22.7
-0.82 34,05 0.64 19.70
BFA (Case 1) -1.05+£j2.47 0.39 37.20 +0.77
(35.75, 38.76)
-1.06 £ 3.27 0.52 29.57+1.00
(27.17,31.11)
-1.20 47 3.89 0.61 28.53+1.44
(25.42, 32.15)
BFA (Case 2) -1.03 £ 2.49 0.39 37.07 £0.85
(34.19, 38.48)
-1.07+j3.28 0.52 29.8140.87
(27.87,31.66)
-1.22 £33.97 0.63 28.77+0.95
| (27.39, 31.01)
BFA (Case 3) -1.054:j 2.47 0.39 37.12 +0.66
(36.32, 39.25)
-1.05+£j3.31 0.52 29.81+0.89
(27.87, 31.66)
-1.26+373.89 0.61 28.83+0.93
| (27.39,31.01)
BFA (Case 4) -1.02 +] 2.49 0.39 36.79 +0.51
(35.96, 37.98)
-1.06+j3.34 0.53 29.30+£1.02
(27.52, 30.99)
-1.204:j 3.91 0.62 28.54+1.04
(26.67, 29.90)
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Table B.3 (Cont’d)
Oscillatory Modes of the 16 Machine Power System (Approach A) for Operating
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Condition [
[ Parameters Eigenvalues Frequency (Hz) Damping (%) + std |
BFA (Casc 5) 1.03%j2.51 0.40 36.87 +0.48
(36.08, 37.84)
-1.08+£73.36 0.53 29.66+1.13
(28.07, 31.48)
-1.27+§3.97 0.63 28.53+1.23
(25.73, 30.62)
BFA (Case 6) -1.014j2.47 0.39 36.69 £0.56
(35.39, 37.91)
-1.01 5325 0.51 29.40+1.03
(27.49, 31.50)
-1.19+j 3.95 0.63 28.04+1.02
(25.26, 28.99)




Table B.4
Oscillatory Modes of the 16 Machine Power System (Approach B) for Operating
Condition I1.
Parameters Eigenvalues Frequency (Hz) | Damping (%)+ ]
std
PSS [15] -0.77 £ 2.59 0.41 28.53
-0.79 +j 3.42 0.54 227
-0.82 £ 4.05 0.64 19.70
BFA (Case 1) -1.014j253 0.40 35.85 £0.64
(34.32,37.31)
32.2543.89
-1.22+j3.29 0.52 (26.93, 38.73)
-1.05+£j 3.96 0.63 25.6+1.23
(23.93, 27.92)
BFA (Case 2) -1.01 £ 2.49 0.39 35.61:+0.84
(34.41, 37.55)
-1.11 £ 3.28 0.52 30.85+3.01
(27.25, 38.48)
-1.21 £73.95 0.62 26.21:£1,46
(23.42,29.38)
BFA (Case 3) -1.06 +£j2.15 0.34 41.49 +4,53
(33.83, 54.72)
-1.75 4§ 3.00 0.47 34.13+6.18
(25.64, 50.34)
-1.08 +3 3.72 0.59 26.98+2.71
(23.42,32.3)
BFA (Case 4) -1.31+j2.44 0.38 41.69 3,90
(36.25, 48.23)
-1.35%j3.6 0.57 35.95+5.31
(26.22, 47.78)
-1.03 %3 3.79 0.59 26.81:£1.87
(23.91, 31.28)
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Table B.4 (Cont’d)
Oscillatory Modes of the 16 Machine Power System (Approach B) for Operating

Condition IL
Parameters Eigenvalues Frequency (Hz) Damping (%)
std

BFA (Case 5) -1.28+372.02 0.32 41.96 +4.76
(36.41, 53.62)

-1.12+7 2,77 0.44 34.81:£6.55
(27.03, 51.21)

-1.07+j 3.74 0.59 27.11%1.86
(23.60, 30.09)

BFA (Case 6) -1.05+372.24 0.35 40.91 £2.72
(36.96, 46.96)

-121+£j2.54 0.40 32.8514.53
(25.04, 43.41)

-1.02+j 4.02 0.64 27.04+2.84
(24.12,35.13)
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Table B.S
Overall Normalized P.L for Approach A.
Disturbance Variants Areas PSS 16
[15] PSSs design
Opl Op2 Op3
Overall Case | hﬁAj_{:a I 1.0 1.48 1.48 1.48
Performance Area 2 1.0 1.06 1.05 1.05
Area 1.0 1.76 1.69 | 170 )
| Arca 4 1.0 159 | 1.56 | 1.55
Area s 1.0 1.55 1.53 1.53
Case2 | Areal | 1.0 146 | 147 | 146
Area 2 1.0 1.31 1.31 131
Area 3 1.0 1.62 1.62 1.62
Aread 1.0 1.52 1.53 1.52
Area 5 1.0 1.49 1.48 1.»49_4ﬁ
Case 3 Area l 1.0 1.57 1.57 1.57
Area 2 1.0 1.54 1.55 1.54
Area 3 1.0 1.64 1.64 1.64

Area 4 i.0 1.55 1.55 1.55
Area 5 1.0 1.50 1.50 1.51

i

Case 4 Area l 1.0 1.42 1.42 1.42
Area 2 1.0 1.12 1.12 1.11
| alea s | Y
Area 3 1.0 1.61 1.61 1.61
Area 4 1.0 1.49 1.50 1.57
Area 5 - 1.0 1.49 1.48 1.52
Case 5 Area | 1.0 1.55 1.56 1.55
Arca 2 1.0 1.22 1.22 1.22
Aread | 1.0 1.77 1.61 1.60
Areca 4 1.0 1.52 1.52 1.524
Area 5 1.0 1.51 1.51 1.51 |
Case 6 Area 1.0 1.58 1.58 | 1.58
L Area 2 1.0 0.95 0.95 0.94
Area3 1.0 1.67 1.67 1.67

Area 4 1.0 1.52 1.53 1.52
Area 5 1.0 1.47 1.47 1.47
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Table B.6
Overall Normalized P.1. for Approach B.
Disturbance Variants Areas PSS 5
[15] PSSs design
Opl Op2 Op 3
Overall Case 1 Area 1 1.0 1.08 1.08 1.08
.

Performance Area 2 1.0 1.03 1.04 1.03

Area 3 1.0 1.52 1.53 1.52
Area 4 1.0 138 § 1.38 1.38
Area 5 1.0 1.30 1.30 1.31

Case 2 Areal 1.0 1.04 l_xl.OS 1.04
T Area2 | 1.0 104 | 1.05 | 1.04

Area 3 1.0 1.49 1.48 1.49

Area 4 1.0 1.41 1.40 1.43

Area s 1.0 1.27 1.30 1.31

Case 3 Areal 1.0 1.03 1.07 0.99
Area 2 1.0 | 1.10 1.11 1.10

Area 3 1.0 2.44 | 230 | 2.14

Area 4 1.0 1.98 1.76 1.81

Area s 1.0 1.66ﬁ% 1.57 1.61

Case 4 Area | 1.0 0.98 (.98 0.98

HArea 2 1.0 1.05 1.06 1.05
Area 3 1.0 i.54 1.55 1.54
Area d 1.0 1.53 1.53 1.52

Area s 1.0 1.53 1.53 1.55

Case 5 Area 1 1.0 | 098 0.92 0.91
| _Area 2 1.0 1.08 1.09 1.08

[ Arca3 1.0 181 | 159 | 1.74

Area 4 1.0 1.70 1.73 1.67

Area 5 1.0 | 146 1.46 1.45

Casc6 | Areal 1.0 1.07 1.08 1.07
. Arca 2 1.0 1.07 | 108 1 1.07

[ Arca3 | 1.0 177 | 186 | 1.78

Area 4 1.0 1.52 1.54 1.51

Area 5 1.0 1.26 1.25 1.26
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APPENDIX C
APPENDIX FOR PAPER 3



Table C.1
Two Area Power System Optimized PSS Parameters

| Generator | PSO optimized | SPPSO optimized] ~ BFA optimized |

parameters parameters parameters
Gl K =30.00 K =23.71 K = 23.84
T, =117s Ti=1.28s T,=2.00s

T»=0.39s T,=0.50s T2=1.00s

Ty=5.77s T1=377s Ty =6.16s

Ty=1500s T4=7.03s Ty=825s

G2 K =30.00 K =22.76 K =21.48
Ty=121s Ti=154s T,=2.00s

T,=034s T,=0.49s T,=1.00s

Ti= 436s T3=3.61s T;=493s

Ts=14.665s T4=8.45s Ts=8.195s

G3 K=17.71 K = 23.88 T K=18.22
T, =0.83s T,=125s T;=2.00s

T,=036s T2=0.75s T,=1.00s

T;=10.00s T3=5.35s T,=4.87s
T;=15.00s Ts4=8.57s Ty=724s

G4 K =2977 K =27.31 K =20.71
Ty=090s T,=117s Ty=2.00s

Ty=0.55s Ty=1.00s T,=1.00s

T3=4.10s T3=2.96s Ts=4,74s

T4=15.00s T,=8.18s T4=892s




Table C.2
Nigerian Power System Optimized PSS Parameters
Generator PSO optimized | SPPSO optimized BFA optimized

parameters parameters parameters

Egbin K =30.00 K =25.830 K =1.250
Ti=0.210s Ti=0.380s T;=0.290s
T>,=0.001 s T,=0.990s T,=0.030s
T:=10.00s T3;=0.350s T3=0.220s
T;=10.70s Ts4=0.005s T4=0.005s

Shiroro K = 6.44 K=28210 K =1.950
T1=0.670s Ty=0.690 s T,=0.250s
T,=0.001s T;=0.770s T,=0.050s
T3=10.010s T3=0.230s T3=0.280s
T4=0.050s Ts=0.005s T4=0.030s
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