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ABSTRACT 

 

During the 2003-present Iraq war, Improvised Explosive Devices (IEDs) are 

being used extensively by the terrorists against the coalition forces and these IEDs were 

responsible for 40% of coalition force casualties, by the end of 2007.  As these IEDs are 

not based on standard production formulae, their tracking and detection becomes 

extremely complicated. Laser Induced Breakdown Spectroscopy (LIBS) and Raman 

Spectroscopy are among the many techniques that have shown promise in detection of 

explosive compounds. However, the performance of these systems is dependent on the 

concentration of explosives and ambient noise.  

The research presented in this thesis applies signal processing techniques to 

Raman spectra of a sample to detect the presence of explosives in trace quantities, at a 

standoff distance. Partial least squares-Discriminant analysis (PLS-DA) was used to 

identify peaks in the Raman spectra of the sample, which could better differentiate 

explosive and non-explosive samples. Since peak strengths are vulnerable to noise, our 

algorithm uses peak energies instead, by fitting Lorentzian or Gaussian curves about the 

peak locations. An automatic peak detection and fitting algorithm was developed for this 

purpose. Also, a wavelet based signal denoising algorithm was implemented to remove 

noise from the Raman Spectra.  Further, a multi-sensor fusion algorithm was developed 

to combine the results from Laser Induced Breakdown Spectroscopy (LIBS) and Raman 

Spectroscopy to generate more accurate detection results.  

The multi-sensor fusion algorithm gave more accurate detection results, a higher 

probability of detection and lower probability of false alarms, as compared to the results 

obtained from individual spectroscopic techniques, i.e. Raman Spectroscopy and Laser 

Induced Breakdown Spectroscopy alone. 
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1    INTRODUCTION 

 

The advent of the 21st century saw rapid technological advancements, both in 

hardware and software. Research and development was at its peak, with countries striving 

hard to utilize state of the art technology to fight the war against terrorism.  On the other 

hand, terrorists were using similar technology to develop deadlier weapons and 

explosives. Improvised Explosive Devices (IEDs) became the weapon-of-choice of 

terrorists around the world and were frequently used against national armies during war 

and against civilians to spread terror. The popularity of IEDs among terrorists can be 

based on the fact that IEDs can be prepared almost anywhere with materials acquired 

from agricultural and medical supplies and do not require high technical knowledge. 

Also, the detection of IEDs becomes extremely complicated since they are not based on 

standard production formulae. Currently available detection techniques provide 

satisfactory results for bulk quantities of explosive but fail when the quantity of 

explosives is in trace amounts, i.e. in the order of micrograms. IED precursors are trace 

amount of explosives left behind usually while handling or transporting IEDs. Detection 

of such IED precursors becomes increasingly difficult through currently available 

techniques because of the concentration of explosives available for analysis and the 

environment in which they are present. Contaminants such as dust, oil, moisture, etc. 

hinder the explosive detection process further by affecting the SNR of the spectrum 

obtained for analysis.  

The research presented in thesis is based on a standoff explosive detection 

technique using Raman spectroscopy to collect spectral data for analysis. “Standoff 

explosive detection involves passive and active methods for sensing the presence of 

explosive devices when vital assets and those individuals monitoring, operating, and 

responding to the means of detection are physically separated from the explosive device. 

The physical separation should put the individuals and vital assets outside the zone of 

severe damage from a potential detonation of the device” [1]. Using Raman 

spectroscopy, samples can be investigated from a safe distance without putting 

individuals and vital assets in the damage zone. The spectral data collected using Raman 
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spectroscopy provides information on molecular structure and chemical composition of 

the sample. For this research work, the standoff distance is in the range of 20 [m] and the 

concentration of explosive is on the order of micro-grams. Raman spectroscopy has the 

following advantages:  

 Specificity: Raman Spectroscopy exhibits high specificity. Several varying 

resonance Raman spectra of the same molecule can be collected by varying the 

wavelength of the laser used for sample excitation. The Raman spectra of a 

particular part of the molecule will be enhanced if the excitation wavelength 

matches the absorption of that specific part of the molecule.  

 Aqueous system analysis: The IR spectrum of water is strong and complex. IR 

spectroscopy of water based samples becomes impossible since the water bands 

produces heavy interference and overlaps with the spectrum of the sample. The 

Raman spectrum of water is weak and so it allows good spectrum of the water-

based samples to be collected.  

 Non-destructive: Raman spectroscopy does not require sample preparation unlike 

other spectroscopic techniques.  Raman involves only illuminating the sample 

from a distance using a laser and collecting the scattered photons.  

 Real-Time: Raman spectroscopy can be used in real time applications because the 

Raman spectrum can be acquires in a matter of seconds.  

A literature review about existing and potential standoff explosive detection 

techniques is done in Sec 2. Several explosives in varying concentrations were analyzed 

as a part of this research. The complete set of data used for analysis and the hardware 

used for Raman spectral data collection is described in Sec 3. The spectral data collected 

has many outliers which needed to be removed before further analysis. As a part of 

preprocessing of data, a signal denoising algorithm was implemented which removes 

noise from the Raman spectra using a wavelet transformation and Partial Least Squares-

Discriminant Analysis (PLS-DA) was used to find peaks which would better discriminate 

explosive and non explosive samples. Section 4 provides details about all the techniques 

used for preprocessing the spectral data. Automatic curve fitting is an extension to the 
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local curve fitting described by Shah in [3] and is one of the signal processing techniques 

described in this thesis work. Multi-sensor fusion was used to combine decision values 

obtained from Laser Induce Breakdown Spectroscopy (LIBS) and Raman in an attempt to 

increase the Probability of Detection (PD) and reduce the Probability of False Alarm 

(PFA). Signal processing techniques are described in Sec 5. A detailed discussion of the 

results is provided in Sec 6. Figure 1.1 below summarizes the IED precursor detection 

process proposed in this thesis work. LIBS operations were developed and performed as a 

part of the research work done by Shah [3], and the LIBS decision value was directly 

used for the Multi-Sensor Fusion algorithm.  
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Figure 1.1. The proposed IED detection process 
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2 BACKGROUND AND RELATED WORK 

 

Several explosive detection techniques exist based on a wide variety of current 

and developing technologies. Explosive detection solutions can be broadly classified into 

bulk detection techniques and trace detection techniques. Bulk detection techniques 

utilize the form factor of the explosives by imaging characteristic shapes of the 

components of the explosive like detonators, wires etc. or by analyzing the chemical 

properties of the explosive composition. One of the pre-requisite to bulk detection 

techniques is high concentration of explosives. In the case of trace amount of explosives, 

the performance of bulk detection techniques degrades considerably. Trace detection 

techniques are primarily focused on providing IED detection solutions for explosives 

present in trace amounts. Trace explosive detection techniques are based off the vapors 

emitted by the explosive or residue of explosives which are deposited on surfaces during 

handling. Section 2.1 and Section 2.2 below explain in detail the techniques for bulk and 

trace detection of explosives.  

For standoff explosive detection techniques, the operating distance depends on the 

size of the explosive and the amount of standoff distance is 10 [m] or more [1].  An ideal 

explosive detection technique would classify all explosive samples as explosives and 

would not misclassify any non-explosive sample as explosive, i.e. the explosive detection 

technique would show 100 % probability of detection (PD) and 0% probability of false 

alarms (PFA). Due to environmental variations, ambient noise, etc. such ideal explosive 

detection techniques do not exist and systems with a high probability of detection and a 

low probability of false alarms are considered satisfactory for explosive detection. 

Explosive detection is usually a very complex process with the technique varying 

depending upon the scenario of the explosive state.  Each explosive detection technique 

has to compensate for several limitations, some of which are caused by fundamental 

physics while some are the result of the scenario of the particular explosive.  
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2.1 BULK EXPLOSIVE DETECTION 

Imaging techniques integrated with computer tomography have been successfully 

used to estimate the densities of objects, which forms the basis of Bulk explosive 

detection techniques. Typical high explosives like PETN and RDX have total densities 

between 1.2 and 1.8 g/cm
3
 [1]. Moreover, the form factor of bulk explosives can be 

captured by means of imaging techniques like X-Rays, infrared imaging, etc. and be used 

for detection. Bulk explosives have characteristic spatial features and are composed of 

unique components like metal parts, batteries and wires. These features are often good 

indicators of the presence of bulk explosives. The optical properties of explosives – 

reflection, absorption and scattering, are used to create a database for different spectral 

bands using different imaging techniques. This database is then used for image analysis 

for several bulk explosive detection techniques. Sections below give a brief description of 

promising bulk detection techniques. 

X-Rays have been widely used for detection of explosives and other smuggled 

objects like drugs, illegal weapons, etc. The two modes in which X-Ray imaging can be 

used for detection are transmission and backscatter. In the transmission mode, a detector 

is required on the opposite side of the transmitter to capture images. An inexpensive 

wireless camera is used to monitor the detector. An image is captured on the detector 

because of the absorption of the X-Rays by denser objects like explosives and concealed 

weapons. In the backscatter X-Ray imaging mode, both the transmitter and detector are 

located on the same side of the object being imaged. The backscattered X-Ray imaging 

mode generates images in which objects can be differentiated based on their density. For 

heavier elements like metals, the atoms contain more electrons as compared to lighter 

elements. The incident and backscattered X-Rays penetrate deep inside the material and 

generate images based on the electron density of atoms. Thus, heavier element materials 

can be differentiated from lighter element materials in backscattered X-Ray images. Yang 

et al. [6] have successfully combined dual energy X-Ray imaging and photoneutron 

induced γ-ray analysis to improve the capability of contraband detection. X-Ray imaging 

techniques can identify different materials based on atomic number like organic, 

inorganic, heavy metal, etc. and γ-ray analysis is then performed on the organic material 
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area. Although the X-Ray imaging technique has shown promise in the field of standoff 

explosive detection, the harmful ionization effects of X-Rays are unavoidable and remain 

one of the major shortcomings of the X-ray imaging technique.    

Electromagnetic imaging techniques like Infrared (IR) imaging and terahertz 

imaging, have shown promise for bulk detection of explosives.  IR imaging can be used 

to detect thermal radiation of objects using simple low-cost IR cameras. Such thermal 

imaging techniques prove to be useful for detecting suicide bombers, where the explosive 

is often covered by clothing. The IR imaging techniques have been successful at 

detection of explosives at standoff distances but lack the specificity required for 

discriminating explosive types. IR imaging techniques are often used in conjunction with 

other detection techniques, where the IR imaging technique is used to perform 

preliminary detection of potential explosive carriers. Along with bulk explosive 

detection, infrared photo-thermal imaging has shown promise for trace explosive 

detection [7].   Furstenberg et al. have used miniature quantum cascade lasers (QCLs) to 

illuminate trace explosive sample and captured the thermal signal using an infrared 

camera. The selectivity and sensitivity of this technique can be increased by varying the 

incident wavelength of the laser to match the strong absorption bands in the explosive 

traces. Another electromagnetic imaging technique which has shown promise in detection 

of trace amount of explosives at standoff distances is Terahertz (THz) Time-Domain 

Spectroscopy [8]. Kong and Wu have successfully demonstrated a Terahertz Time-

Domain Spectroscopy (THz-TDS) technique for detection of low-density explosives as 

well as bulk explosives. The THz pulses which are reflected or transmitted through the 

sample are collected and the change in electric field of the pulses is measured using THz-

TDS technique. For radiation frequency in the Terahertz range i.e. wavelengths between 

100 micrometer and 1 millimeter, several materials like clothing, paper, plastic etc 

become nearly transparent. At such high frequencies, the radiation can easily penetrate 

several dielectric materials.  Moreover, THz waves have very low photon energies as 

compared to X-Ray photons, so they do not cause harmful ionization effects like X-Ray 

and nuclear detection methods. Techniques involving THz radiation usually suffer from 

low sensitivity because of the low absorption peaks in the THz band. Also, absorption of 

THz radiation by water vapor in the air is another major issue with detection techniques 
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involving THz spectrum band. Other techniques for bulk detection of explosives have 

been proposed like neutron and γ-ray, magnetic resonance techniques, etc. Harmful 

ionization effects, insufficient sensitivity and/or specificity and degradation of 

performance at standoff distances are the main reasons which have hindered the progress 

for these techniques for standoff bulk explosive detection.  

 

2.2 TRACE EXPLOSIVE DETECTION 

Detection of explosives in trace amounts and at standoff distances becomes 

extremely challenging because of the low concentration of explosives available for 

analysis and the presence of environmental contaminants like dust, oil, etc. which further 

hamper the detection process. Griffy[9] has shown that sampling surfaces for explosive 

residue is more efficient than probing the air around the explosive for vapors.  Several 

techniques have been proposed and have been extensively researched for trace explosive 

detection, which essentially involves inspecting the surface for explosive residues and 

performing further analysis for accurate explosive detection.   Electronic and chemical 

techniques like mass spectroscopy, surface acoustic wave, electron capture detector, etc. 

have shown promise for trace explosive detection but suffer from low sensitivity and low 

selectivity.  Techniques involving biosensors like dogs, bees, etc. have been successful in 

trace detection but human intervention prevents these techniques to be applied at standoff 

distances. Optical absorption techniques use their UV electronic and infrared vibrational 

resonances to identify explosive molecules. Such techniques usually require expensive 

and fragile apparatus to capture and analyze large samples in order to increase the signal-

to-noise ratio to the desired level. Techniques involving optical fluorescence have been 

used for standoff explosive detection. A laser is used to induce fluorescence in the 

explosive particles in the UV where they strongly absorb and decompose into fragments 

which exhibit fluorescence properties. These patterns can then be captured at standoff 

distance and used for detection. The lack of very high sensitivity and problems of 

removing the fluorescence with environmental contaminants are the major disadvantages 

of this technique.  
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Linear optical techniques like laser, light detection and ranging (LIDAR), 

differential absorption LIDAR (DIAL) and differential reflectance LIDAR (DIRL) have 

been successful in trace detection of explosives. The basic principle involved in LIDAR 

is that the explosive molecules absorb when the source light is tuned to a molecular 

resonance which is typically a vibrational resonance in the IR spectral range. Thus, the 

radiation from the illuminating source is backscattered to a detector with the explosive 

molecules absorbing some radiation. This absorption tends to attenuate the radiation 

indicating presence of an explosive. Because of backscattering resulting from particulates 

in the air at standoff distances, the sensitivity of such systems are limited and are usually 

used for sensing rather than imaging. Other spectroscopic techniques like Laser Induced 

Breakdown Spectroscopy (LIBS) and Raman Spectroscopy have shown promise in 

detection of explosive residues at standoff distances. In LIBS process, the plasma created 

by laser-induced breakdown is analyzed for spectral emission from ionic, atomic and 

molecular species [11]. The LIBS spectra are analyzed and the presence of an individual 

element in the sample is based on the existence of an emission line in the spectra. The 

strength of the emission line determines the relative abundance of the individual element 

in the compound. The compound (sample) interrogated can be identified based on the 

presence of individual elements and the relative abundance of those elements in the 

plasma. Such explosive identification process is complicated by the fact that some 

compounds have similar elemental content and may produce similar signature spectra. 

Gottfried et al. [12] have shown that LIBS can be successfully used for detection of trace 

amount of explosive samples at standoff distances of 50 m. They have used LIBS along 

with chemometric techniques like Principal Component Analysis (PCA) and Partial Least 

Square – Discriminant Analysis (PLS-DA) for detection of explosive samples. Alexander 

et al. [13] have used LIBS for detection of heavy metals like As, Cd, Cr, Hg, Pb and Zn 

in soil and water. They have used a Nd:YAG laser operating at 50-100 mJ at λ = 1.06 µm 

for generating the plasma on the surface of the sample and recorded the atomic emission 

lines using an optical multichannel analyzer (OMA). They suggest the use of Si emission 

lines as a reference for heavy metal emission lines to generate intensity ratios. The 

dependence of LIBS on experimental conditions like variation of laser pulse energy or 

alignment of spectra collection system can be reduced used intensity ratio for detection.       
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Another approach for molecular analysis of compounds at standoff distanced is 

Raman spectroscopy which uses a laser to excite different vibrational modes of a 

molecule. The laser beam when impinged upon the sample causes the photons to be 

absorbed by the material and scattered. The incident photon causes an electron to jump to 

a virtual higher energy state and then the electron decays to a lower energy level emitting 

a scattered photon with corresponding wavelength dependent upon the final state of the 

electron. Majority of the scattered photons have the same wavelength as the incident 

photons (Rayleigh scattering) but few photons, approximately 1 in 10
7
, are shifted to a 

different wavelength (Raman scattering). If the Raman scattered photons are shifted to 

longer wavelengths they are called Stokes shift, whereas the Raman scattered photons 

shifted to shorter wavelengths are called Anti-stokes shift. Usually, Stoke shift photons 

are more dominant than Anti-stoke shift photons and are frequently used in spectroscopy. 

These energy transitions arise from molecular vibrations and can be used to identify the 

molecule. The energy of the transitions is plotted as emission spectrum and analyzed to 

find the presence of explosive compounds. A typical Raman spectrum is a plot of the 

intensity of Raman scattered radiation as a function of its frequency difference from the 

incident radiation (usually in units of wavenumbers, cm
-1

). In the Raman spectra, the 

dominant Rayleigh scattered photons tend to overlap the relatively weaker Stoke shift 

photons. Gaft and Nagli [14] have proposed the use of UV-gated Raman techniques to 

counter the effect of Rayleigh scattering masking the weak Raman signal. UV excited 

Raman signals tend to be 100-200 times stronger compared to Raman signal generated by 

green laser (532 nm) and can be used to obtain strong Raman signals of trace explosive 

samples at standoff distances. They successfully applied gated Raman spectroscopic 

techniques for detection of explosive residuals at standoff distances up to 30 m. It can be 

inferred that several industrial and homemade explosives have very specific Raman 

fingerprints which makes Raman spectroscopy one of the more suitable technique for 

standoff trace explosive detection.    

 

Although both LIBS and Raman spectroscopy have been successful in detection 

of trace explosives at standoff distances, individually they suffer from some inherent 

disadvantages which limit the performance of the individual sensing system. The 
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orthogonal nature of LIBS and Raman spectroscopy and the complementary information 

provided by each spectroscopic technique makes them ideal candidates for sensor fusion 

process. The Raman system is characteristic of highly specific molecular analysis 

whereas LIBS is characteristic of highly sensitive elemental analysis. The combination of 

LIBS and Raman spectroscopy causes a trade-off between the high sensitivity of LIBS 

and high specificity of Raman to increase the overall Probability of Detection and 

decrease Probability of False Alarms of the system. Wentworth et al. [14] have 

successfully demonstrated detection of trace explosive at moderate standoff distances 

using Raman hyperspectral imaging. They have developed a concept of combining LIBS 

and Raman standoff optical sensor into a single system for detection of hazardous 

materials. Miziolek et al. have applied LIBS and Raman fusion technique to CBE 

materials and have demonstrated the effectiveness of a combined system over individual 

spectroscopic techniques.  
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3 DESIGN OF EXPERIMENT 

 

3.1 HARDWARE DESCRIPTION 

The data used for study in this thesis work has been collected using the 

experimental setup described by Waterbury et al. [2]. Raman spectra of explosive and 

non-explosive samples have been recorded using a fully integrated UV Townsend Effect 

Plasma Spectroscopy (TEPS) -Raman system. TEPS Raman Explosive Detection System 

(TREDS-2) hardware, shown in Figure 3.1, which implements TEPS because of the 25-

300 times increase in signal strength compared to single pulse LIBS. This tremendous 

signal enhancement provides sufficient design margin thereby allowing the laser 

wavelengths to be shifted to the UV for λ
-4

 Raman Enhancement and Eye Safety 

implications. The TREDS-2 system consists of a Q-switched 266 nm 4x Nd:YAG laser 

(Frequency Quadrupled Quantel Brilliant B) for Raman excitation and TEPS plasma 

ignition. The laser is focused onto the target using a custom designed beam expander and 

focusing optics. The plasma produced on the target was collected using a 14 in diameter 

telescope (Meade LX200-14) which was fiber coupled to an Andor Spectrometer 

(Shamrock SR303) and ICCD Camera (DH740-18F).  

 

 

 

(a) Model of TREDS-2 TEPS/Raman system    (b)  TREDS-2 in a field test 

Figure 3.1.  The TREDS-2 system used for data collection 
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3.2 DATA 

 Analysis was performed on two sets of Raman data. The first dataset consisted of 

four types of explosive in this dataset with varying concentrations. There were no bare 

substrate samples in this dataset. The low concentration samples of all four explosives 

were combined to generate a common non-explosive dataset. All low concentration 

samples were included in the training dataset, during training for a particular explosive 

type. For e.g., during training for specimen A samples, the training dataset included low 

concentration samples of specimen A, B, C and D along with high concentration samples 

of specimen A. The distribution of explosive and non-explosive sample types is shown in 

Table 3.1. 

 

 

Table 3.1. Distribution of data by sample type and concentration 

Sample Low Concentration (Non-explosive) High Concentration (Explosive) 

A 7 11 

B 17 10 

C 17 23 

D 9 10 

TOTAL 50 54 

 

 

 

Spectra of each of the explosive types are shown below in Figure 3.2. The DC 

baseline and saturated peaks were removed from each spectrum before performing 

further analysis. Section 4 describes the data pre-processing methods in detail. The 

second dataset included the Raman data used for multi-spectral fusion analysis. This set 

of data had Specimen E samples and did not contain any non-explosive samples. Again, 
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the low concentration samples were treated as non-explosives and higher concentration 

samples were treated as explosives. The Raman fusion data is described in detail in 

Section 3.2 below. Due to the limited Raman data available for analysis, the training and 

testing was performed on the same dataset. 

 

3.3 FUSION DATA 

Decision level fusion was performed on LIBS and Raman spectra of specimen E. 

For a particular concentration of explosives, the LIBS and Raman spectra were collected 

from the same region and not from the same spot. Although it is advisable to collect 

samples from the same spot for fusion algorithms, samples from the same region 

produced satisfactory results and showed the effectiveness of our multi-sensor fusion 

algorithm. The fusion algorithm is described in Section 5.4 and the results of multi-sensor 

fusion are discussed in Section 6.2. 

 

 

 

    (a) Specimen B                                            (b) Specimen C 

Figure 3.2. Raman spectra for different sample type 



14 
 

 

                         (c) Specimen A                                            (d) Specimen D 

Figure 3.2. Raman spectra for different sample type (cont.) 

 

 

 

 The specimen E fusion data samples were of varying concentrations. Since there 

were no samples from bare substrate, the samples with low concentration, were used as 

non-explosives whereas the samples with high concentration were used as explosives 

during analysis.  

 

 

Table 3.2. Distribution of fusion data by sample type and spectroscopic technique 

Data Type No. of Samples 

Raman Explosive 36 

LIBS Explosive 17 

Raman Non-explosive 32 

LIBS Non-explosive 18 
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The purpose of this evaluation was to show the effect of fusion in better 

discrimination between explosives and non-explosives or in this case, high concentration 

and low concentration samples.  Table 3.2 shows the distribution of the number of 

samples for LIBS and Raman. Figure 3.3 shows the Raman and LIBS spectra of 

explosive and non-explosive sample type used for multi-sensor fusion analysis. 

 

 

 

                     (a) Raman spectra                                               (b) LIBS spectra 

Figure 3.3. Fusion data for Raman and LIBS multi-sensor fusion 
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4 PRE-PROCESSING OF DATA 

 

Raman spectral data was collected by using the experimental setup described in 

Sec 3.  Data was collected on different days and different times and in varying 

environmental conditions. Several factors affect the spectral data collected like the 

concentration of samples, contaminants near samples, etc. The hardware used to collect 

data is also responsible for adding artifacts to the spectra. High intensity peaks can be 

cut-off due to limitations of the data collection equipment leading to saturated data. 

Variations in spectra like shifts in peak location, changes in peak intensities and widths 

are frequently observed. Also, CCD detectors inherit single shot noise which is 

characterized by variance proportional to the mean value of the measurement. Moreover, 

Raman spectra are plagued by high intensity spikes caused by cosmic ray events. Any 

high radiation event from local or extraterrestrial sources during data capture can lead to 

such cosmic spikes in the spectra. These cosmic spikes can overlap with discriminatory 

peaks in the spectra and vital information can be lost. It is essential to filter such artifacts 

and noise before performing further analysis.   

 

4.1 REMOVAL OF BAD DATA  

An outlier can be described as an observation which is present at an abnormal 

distance from other observations in the sample space. It is important to define what will 

be classified as an outlier and is largely dependent on the sample space available. We 

classified a data sample to be an outlier based on the absence of a discriminatory peak or 

if the discriminatory peak is saturated. Low intensity or complete absence of a peak at a 

certain location can be caused due to limitations of the equipment to capture a particular 

wavelength.  The nature of the plasma formed during the data collection process is the 

main cause of high intensity peaks. The data collection hardware can correctly record 

peaks in the spectra up to a certain maximum. If the intensity of the peaks is greater than 

this maximum, the equipment will clip the spectra leading to saturated peaks. The 

samples are classified as explosive or non-explosive based on peak energies of 
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discriminatory peaks. Thus, such outliers, if not removed from the training data set, 

severely affect the discriminating model. The discriminatory peaks were first identified 

using partial least squares – discriminant analysis (PLS-DA), which is explained in detail 

in Sec 4.2. The samples which had the discriminatory peaks either absent or saturated 

were removed from the training data set. If left in the training data, these outliers would 

bias the discriminating model and severely affect the performance.  

 

4.2 PARTIAL LEAST SQUARES – DISCRIMINANT ANALYSIS  

Statistical techniques like Principal Component Analysis (PCA) are useful for 

capturing variance within a certain class. Image compression applications use PCA to 

transform a large set of correlated variables into a smaller set of uncorrelated variables. 

PCA fails to discriminate classes because it does not make an attempt to find directions in 

the sample data space. Partial Least Square – Discriminant Analysis (PLS-DA) addresses 

this issue directly. PLS-DA is a multivariate discrimination method specifically used to 

classify samples.  It is essentially an inverse least squares approach to Linear 

Discriminant Analysis (LDA) and produces similar results but with noise reduction and 

variable selection which are characteristics of PLS.   

In PLS-DA, the model that predicts the class number for each sample is 

developed using the Partial Least Squares (PLS) method. In the data set, there are two 

modeled classes: explosive and non-explosive. A variable with value closer to one 

indicates that it belongs to the explosive class whereas variables with value of zero 

indicate that it belongs to the non-explosive class. The PLS model does not predict either 

one or zero value exactly. Hence, a threshold is set, above which the variable is 

considered to be in the explosive class and below which the variable is deemed as non-

explosive. By default, this threshold is set to 0.5. The training data set has known sample 

types, which help in estimating the threshold value. A PLS-DA model with a large 

number of latent variables can be used for discrimination between explosive and non-

explosive sample types. A large number of latent variables ensures maximum amount of 

variance being captured but would make the PLS model rigid and any variation in testing 
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data would lead to inaccurate discrimination. Thus, PLS-DA by itself is not suitable for 

detection especially when peak shifts in spectral data are common. Instead, the weights of 

the latent variables where used to identify discriminatory peaks.  

The PLS model was developed using PLS Toolbox 4.2 running under MATLAB. 

Three latent variables were used for creating the model. Three latent variables 

successfully captured around 90% - 95% of the variance, with the first two latent 

variables capturing 85% - 87% of the variance. Thus, the weights of the first two latent 

variables provided a good estimate about the regions in the spectra which could be used 

to discriminate the two classes. The peaks, in the regions indicated by the weights of the 

latent variables, were found to be better detectors of explosive sample type. The input 

data was first mean-centered and auto-scaled before generating the PLS model. During 

the mean-centering process, the mean of each column of the input matrix is calculated 

and subtracted from the respective column.  After mean-centering the data includes only 

how that row differs from the average sample in the original data matrix. The auto-

scaling process divides each column by the standard deviation of that column. The mean-

centering and auto-scaling process ensures that each column of the input matrix has as 

mean of zero and a standard deviation of one.  Figure 4.1 shows the weights of first two 

latent variables. The wavelength indices that had greater weights were considered to be 

symbolic of discriminatory peaks.  

 

 

 

Figure 4.1. Weight vector of latent variables for specimen B explosive samples 
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5 SIGNAL PROCESSING PROCEDURES 

 

 

5.1 SIGNAL DENOISING USING WAVELET TRANSFORM 

 

The Raman spectra, obtained by using the experimental setup discussed in Section 

3, contains noise along with the vital spectral information. The main sources of noise in 

Raman spectra are cosmic rays, shot noise and thermal noise. The statistics of the noise in 

the Raman spectra usually follows a Poisson process because of the random decay nature 

of the Raman process. Figure 5.1 shows an example of a noisy Raman spectrum. A 

denoising filter was implemented to remove the noise present in the spectra before 

performing further analysis.  A wavelet based signal denoising algorithm was 

implemented to attenuate the noise in the signal. The signal denoising algorithm based on 

wavelet shrinkage is discussed in further detail in this section.  

 

 

 

 

Figure 5.1. A noisy Raman spectra of specimen D explosive sample 
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5.1.1 Multi-Resolution Analysis. The wavelet transform based signal denoising 

approach attempts to remove the noise coefficients from the original signal by applying 

thresholding techniques. Signal denoising using wavelets is based on multi-resolution 

analysis [4]. The discrete wavelet transform (DWT) and the fast wavelet transform 

(FWT) are based on multi-resolution analysis. The multi-resolution analysis of the space 

L
2
(R) is discussed below, where L

2
(R) is the vector space of the one-dimensional function 

f(x). Z and R are the set of integer and real numbers respectively. 

 

L
2
(R) consists of a sequence of nested subspaces: 

 

 

where the basis of the subspace Vj is a set of orthonormal, translated functions, and each 

of these functions sets is a fixed dilation of the scaling function  .   

 

All the subspaces have the property: 

 

Vj-1 can be obtained in terms of Wj which is the orthogonal compliment of Vj .  

 

The orthogonal basis of the subspace Wj  is formed by the wavelet basis . For 

j < n0; 

 

and a signal x(n) can be decomposed by 

 

 

Where, 

 : Discrete detail coefficients of the signal at level j 

             : Approximation coefficients of the signal at level j 

 h(n) and g(n) : low pass and high pass filter respectively connected by  

 



21 
 

                                   g(n)=(-1)
-n

 
g(n)

 h(N-n), where N : length of the filter 

 

The signal reconstruction is based on 

 

 

 

5.1.2 Signal Denoising Process. The implemented signal denoising algorithm 

using wavelet thresholding can be summarized as shown in Figure 5.2. The MATLAB 

function „wavedec‟ was used to decompose the input signal into nL levels. The „wavedec‟ 

function returns a decomposition structure which contains the wavelet decomposition 

vector C and a bookkeeping vector L. The signal was decomposed using the Daubechies 

wavelet family.  

 

 

 

Decompose input signal into 

nL levels 

Separate detail and 

approximation co-efficients

Estimate noise variance V 

and calculate threshold T 

Apply hard thresholding on 

detail coefficients

Reconstruct signal using new 

detail and approximation 

coefficients
 

Figure 5.2. Signal denoising process 
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The decomposition vector C contains approximation and detail coefficients and has 

structure as shown in Figure 5.3 below.   

 

 

 

 

Figure 5.3. Structure of decomposition vector C and bookkeeping vector L 

 

 

 

After separating the detail and approximation coefficients from the decomposition 

structure C, the variance of the noise is estimated using the detail coefficients. Donoho 

and Johnstone [5] explained the process of estimating noise using the detail coefficients. 

Donoho and Johnstone applied the wavelet thresholding method to eliminate the detail 

coefficients, which constitutes the noise in the signal. The optimal threshold is considered 

to be σw sqrt(2log(N)), where σw
2
 is the noise variance and N is the data length. A hard 

thresholding technique was applied to the detail coefficients using the optimal threshold. 

Hard thresholding sets any coefficient less than or equal to the optimal threshold to zero. 

Hard thresholding was selected over soft thresholding because the sharp features of the 

signal are better represented in hard thresholding. Soft thresholding tends to smooth the 

signal which is not desirable. Soft thresholding shows better results when applied to 

natural images. After the detail coefficients have been thresholded, the signal is 

reconstructed using the „waverec‟ MATLAB function. Figure 5.4 below shows Raman 

spectra and denoised spectra of a single specimen E sample. 
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5.2 AUTOMATIC CURVE FITTING 

 

Shah [3] describes the need for curve fitting in case of LIBS spectra. Automatic 

curve fitting is essentially an extension of the curve fitting procedure described in [3] 

applied to the Raman spectra. The automatic curve fitting algorithm is a recursive process 

used for calculating peak energies in the Raman spectra.  This section describes the 

details of the automatic curve fitting process. For the Raman spectra, the location of 

peaks and their energy are the signature of a sample. Each peak in the spectra 

corresponds to an element which is unique in terms of strength and location for the 

sample type. The energy of the elemental peak corresponds to the concentration of the 

sample. Thus, energy of certain peaks or a combination of peaks (ratio) is often a good 

identifier of a sample type. Peak energies were considered instead of peak strengths 

because of the vulnerability of peak strengths to noise. Any change in DC level of the 

signal adversely affects the peak strengths. Using such vulnerable peak strengths as 

discriminators can lead to misclassification. Thus, peak energies need to be accurately 

calculated so that they can be used for discrimination of samples.  

 

 

 

 

Figure 5.4. Denoising of a specimen E Raman spectra 
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It has been observed that Lorentzian or Gaussian distribution functions can 

accurately represent peaks in the spectra and hence these distributions are often used in 

spectroscopy to calculate energy of peaks. The Lorentzian and Gaussian distribution are 

described below: 

 

  

               

             

                                                                                                   

As described in [3], the spectra of a sample can be expressed as a sum of Lorentzian 

and/or Gaussian peaks, the DC baseline and noise which are all functions of 

wavenumbers. Thus the model for the observed spectra, s(x) can be represented as: 

 

 

 

 

 

 

 

In manual fitting, initial values for pre-identified peak locations μ, and their 

corresponding peak widths γ values along with the locations where the dc baseline has to 

be estimated, have to be provided as input to the fitting algorithm. Considering the 

variations in peak locations and the constraint on range of wavelengths i.e. the selection 

of regions in manual fitting, peaks are often missed. Also, if a discriminatory peak is 

present close to another peak with significantly greater energy, it may not be fitted at all. 

Such peaks are called side-peaks. For these reasons, a fully automated and iterative fitting 
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algorithm was implemented. The input to this algorithm is the data to be fitted. The 

algorithm finds the locations of all existing peaks in a spectrum. The small peaks 

corresponding to noise are rejected by obtaining a signal-to-noise ratio for the spectrum. 

The algorithm also finds locations suitable for modeling of the dc baseline. Thus, the 

curve fitting process is fully automated with minimal user intervention. Figure 5.5 

Results of automatic fitting process for specimen A sample where peak locations and DC 

baseline are automatically picked (a), shows the fitting result after the first iteration. The 

residual signal is calculated and second fitting iteration is performed. Figure 5.5 Results 

of automatic fitting process for specimen A sample where peak locations and DC 

baseline are automatically picked (c), shows the residual signal and Figure 5.5 Results of 

automatic fitting process for specimen A sample where peak locations and DC baseline 

are automatically picked (b), shows the fitting result after the second iteration. It can be 

observed from the figures that peaks that are missed during the first iteration are dealt 

with in the second iteration. Thus, the automatic curve fitting process generates a 

complete set of peak energies for all the peaks in the spectra.   

Curve fitting is iteratively performed on the spectrum with these parameters. The 

first step is to fit the previously obtained peaks in the original spectrum as shown in 

Figure 5.5 Results of automatic fitting process for specimen A sample where peak 

locations and DC baseline are automatically picked (a). A signal comprising of these 

peaks is subtracted from the original spectrum and a residual signal is obtained and is 

shown in Figure 5.5 Results of automatic fitting process for specimen A sample where 

peak locations and DC baseline are automatically picked (c). The algorithm searches for 

any peaks in this residual signal and appends it to the list of peak locations obtained 

earlier. During this process, a new set of locations, which is an extension of the first set, 

for the removal of dc baseline is also obtained. Curve fitting is again performed on the 

original signal with the appended parameters. Figure 5.5 Results of automatic fitting 

process for specimen A sample where peak locations and DC baseline are automatically 

picked (b), shows the fitting result after the second iteration.  

The peak locations obtained by the curve fitting are scanned for existence of the 

pre-identified discriminating peaks. A fitted peak location within a constraint is selected 
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as the peak location corresponding to the required peak and its peak energy (α) value is 

used for discriminatory purposes. 

 

 

 

 

                (a) Result of first iteration                       (b) Result of second iteration 

 

(c) Residual signal obtained after first iteration 

Figure 5.5. Results of automatic fitting process for specimen A sample where peak 

locations and DC baseline are automatically picked 
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5.3 RAMAN DETECTORS 

 

The Raman dataset consisted of several explosives. Each explosive sample type 

had different sets of discriminators which were selected based on the weights vector 

obtained from the PLS-DA process. For specimen E Raman spectra, the presence or 

absence of a discriminatory peak was sufficient for classification. A combination of peak 

energies (α) was used as discriminators for other explosive samples. A normalizer peak 

can be defined as a peak in the spectrum whose energy remains constant for all sample 

types. Thus, a normalizer peak will have constant energy for explosive and non-explosive 

sample type. The energy of a discriminatory peak was normalized by the energy of a 

normalizer peak in order to negate the effects of experiment and ambient conditions. A 

normalized α value of a discriminatory peak is denoted as feature value or peak energy 

ratios [3].  

A combination of two or more feature values was used to form a linear 

discriminator. Although, adding more feature values to the linear discriminator increased 

the PD, it also increased the PFA which is undesirable. Thus, a maximum of three feature 

values were used to form the linear discriminator. Three linear discriminators for each 

type of explosive were selected with two or three feature values. Thus, each linear 

discriminator constitutes of two or more feature values.   Table 5.1 shows the linear 

discriminator list for specimen A, B, C and D respectively.  The terms (x + y + z) denotes 

the sum of energies of the peaks at locations x, y and z respectively. The feature values in 

Table 5.1 are ratios of peak strengths shown in a/b format and calculated as a/(a+b), in 

order to constraint the feature value between 0 and 1 [3]. 

The specimen E spectra used for multi-sensor fusion analysis did not require a 

linear discriminator.   The strengths of certain peaks were directly considered as 

discriminators and a decision was based on them. These peak strengths were converted to 

decision values using [10], 

  

Where, d: decision value 

x: peak strength 

σ: standard deviation of the spectra used as noise baseline   
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Table 5.1. Discriminator list and feature values for different explosive samples 

Discriminator no. Feature value 1 Feature value 2 Feature value 3 

1 187/(1260+1320+1380) 475/(1260+1320+1380)  

2 475/(1260+1320+1380) 878/(1260+1320+1380)  

3 187/(1575) 475/(1575) 878/(1575) 

(a)  Discriminator list for specimen A explosive sample type 

 

Discriminator no. Feature value 1 Feature value 2 Feature value 3 

1 232/(940) 840/(940)  

2 400/(1220) 840/(1220)  

3 232/(1220) 400/(1220) 840/(1220) 

(b)  Discriminator list for specimen B explosive sample type 

 

Discriminator no. Feature value 1 Feature value 2 Feature value 3 

1 146/874 228/874  

2 146/874 1291/874  

3 228/874 622/874 1291/874 

(c)  Discriminator list for specimen C explosive sample type 

 

Discriminator no. Feature value 1 Feature value 2 

1 192/1213 823/1213 

2 192/1535 1360/1535 

3 327/1213 823/1213 

(d)  Discriminator list for specimen D explosive sample type 

 

 

 

Table 5.2 below shows the list of discriminatory features for Raman and LIBS for 

specimen E fusion data. For the specimen E spectra, five peak locations were used for 

discrimination, located at wavenumbers 1050 cm
-1

, 1292 cm
-1

, 1415 cm
-1

, 1462 cm
-1
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and1660 cm
-1

. The maximum of their decision values was considered as the final decision 

corresponding to that sample. 

 

 

 

Table 5.2. LIBS and Raman features for fusion on specimen E samples 

LIBS features Raman features 

301/(333+344) 
1050 

1292 

248/(333+344) 

1415 

1462 

1660 

 

 

 

 

5.4 MULTI-SENSOR FUSION – DECISION LEVEL RAMAN AND LIBS FUSION 

 

As mentioned in Section 3, spectra used for multi-sensor fusion of LIBS and 

Raman were obtained from specimen E. The LIBS spectra were processed as discussed 

by Shah [3] and Raman spectra were processed as described in the above sections. The 

fusion LIBS data consisted of only specimen E samples and the normal LIBS data 

consisted of specimen A and D samples. Therefore, the feature values used for 

discrimination of fusion LIBS data were different than the feature values used for 

discrimination of normal LIBS data. The features used for fusion LIBS spectra are 

248/(333+344) and 301/(333+344). For Raman spectra, each feature was considered to be 

the peak value at locations 1050 cm
-1

, 1292 cm
-1

, 1415 cm
-1

, 1462 cm
-1

 and1660 cm
-1

 

respectively. Decision values for the Raman features were calculated using  Equation 5.3. 

Decision values obtained from LIBS and Raman detection from the same region were 

fused using multi-sensor fusion.  
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The sample space consisted of five spots with specimen E explosive of varying 

concentration, with spot 1 having highest concentration and spot 5 having lowest 

concentration. The spots with low concentration i.e. Spot 4 and 5 were considered to be 

non-explosive whereas the spots with higher concentration i.e. spots 1, 2 and 3, were 

treated as explosives. All available spectra for LIBS and Raman fusion data would belong 

to either one of the spots. LIBS fusion data was analyzed separately using the feature 

values mentioned above and decisions for each of the five spots were generated. 

Similarly, Raman ammonium nitrate fusion data was analyzed and a decision value for 

each spot was obtained. The decision values from both LIBS and Raman were used to 

train a two dimensional linear discriminator which was used for classification of each 

sample.  
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6 RESULTS 

 

6.1 RAMAN DETECTORS 

As discussed in Section 5.3, several Raman detectors (discriminators) were used 

for identifying explosive sample types. The Raman data set analyzed consisted of five 

explosive specimen – A, B, C, D and E. The discriminators depend upon the type of 

explosive and hence each explosive sample type has a specific set of detectors. The 

discriminators for each explosive type were selected based on the PLS-DA weights 

vector, as discussed in Section 4.2. Table 6.1 below shows the performance of detectors 

for each explosive type. For a particular explosive type, the table consists of three 

discriminators used for analysis and a comparison between manual fitting process and 

automatic fitting process in terms of Probability of Detection (PD) and Probability of 

False Alarms (PFA). All entries in the table are in the form of x ± y, where x is the base 

probability and y is the variance in the probability. A large value of y indicates higher 

uncertainty in the base probability x. In Table 6.1, the discriminators D1, D2 and D3 are 

equivalent to the discriminators in Table 5.1 for each explosive type. For each explosive 

type and discriminator combination, PD and PFA are calculated for automatic and 

manual fitting process. It can be observed that the results for automatic fitting process are 

equivalent or even better than the manual fitting process in some cases. 

Figure 6.1 below shows the Receiver operating characteristic (ROC) curves for 

the four types of explosives – specimen A, B, C and D. The curves plot the Probability of 

Detection against the Probability of False Alarms and are symbolic of the performance of 

the algorithm for different explosive sample types.  The figure shows the ROC curves for 

a single Discriminator type for each of the explosive sample types. In Figure 6.1, 

discriminator 1, discriminator 3, discriminator 3 and discriminator 2 were used for 

specimen A, B, C and D explosive types respectively. The list of discriminators for each 

sample type is shown in Table 5.1.  
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Table 6.1. Probability of Detection and Probability of False Alarms for different                    

explosive types 

 

Explosive 

Type 

 

Fitting 

Type 

Discriminators 

D1 D2 D3 

PD PFA PD PFA PD PFA 

 

A 

Automatic 0.82 ± 

0.18 

0.42 ± 

0.09 

1 ± 0 0.40 ± 

0.09 

1 ± 0 0.46 ± 

0.09 

Manual 1 ± 0 0.56 

±0.09 

1 ± 0 0.46 ± 

0.09 

1 ± 0 0.48 ± 

0.09 

 

B 

Automatic 0.90 ± 

0.17 

0.28 ± 

0.09 

1 ± 0 0.26 ± 

0.09 

0.90 ± 

0.17 

0.23 ± 

0.09 

Manual 1 ± 0 0.40 

±0.09 

1 ± 0 0.26 ± 

0.09 

1 ± 0 0.36 ± 

0.09 

 

C 

Automatic 0.70 ± 

0.21 

0.32 ± 

0.09 

1 ± 0 0.34 ± 

0.09 

0.90 ± 

0.17 

0.38 ± 

0.09 

Manual 0.60 ± 

0.22 

0.56 

±0.09 

1 ± 0 0.30 ± 

0.09 

1 ± 0 0.30 ± 

0.09 

 

D 

Automatic 0.86 ± 

0.12 

0.18 ± 

0.08 

0.73 ± 

0.13 

0.38 ± 

0.09 

0.86 ± 

0.12 

0.18 ± 

0.08 

Manual 0.69 ± 

0.14 

0.32 

±0.09 

0.95 ± 

0.09 

0.34 ± 

0.09 

0.69 ± 

0.14 

0.36 ± 

0.09 

 

 

 

6.2 MULTI-SENSOR FUSION 

Raman and LIBS ammonium nitrate spectra from the same region were used as 

observations for fusion. For decision level fusion, decision values from LIBS and Raman 

classifiers were used to train a two dimensional linear discriminator as discussed earlier 

in Section 5.4. Fusion of LIBS and Raman spectra results in improved overall results 
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which are better than either of the two sensors individually. As seen in Fig. 6.2, there is a 

noticeable decrease in the false alarm rate and increase in detection rate using fusion for a 

given detection level. However, it is important to note that the LIBS detection is 

significantly poorer as compared to Raman in this case due to poor detection of AN with 

LIBS. Also the results reported here are based on very limited data. 

 

 

 

Figure 6.1. ROC curves for different explosive types 
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Figure 6.2. ROC curve showing results of decision level Raman and LIBS fusion 
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7 CONCLUSION  

 

Raman spectra of various explosives types were analyzed with the goal to find the 

best discriminators for identification of different explosives samples in trace amounts at 

standoff distances. Signal pre-processing techniques were applied to remove outliers 

from the obtained Raman dataset and to find better discriminatory features in the spectra. 

Signal processing techniques like signal denoising, signal modeling, etc. were developed 

in order to compensate for the nature of the Raman spectra obtained. Furthermore, 

Raman and LIBS decision level multi-sensor fusion was developed and tested for the 

ammonium nitrate dataset. The specimen A detector successfully detected 100% of the 

samples with around 40% probability of false alarms. The specimen B detector produced 

100% probability of detection with the probability of false alarms around 26%. The best 

specimen C detector could detect 100% of the samples with a false alarm rate of 34%.  

The specimen D detector detected 86% of the samples with a probability of false alarm 

around 18%. Decision level multi-sensor fusion results showed that the combination of 

Raman and LIBS tend to increase the probability of detection and reduce the probability 

of false alarms as compared to LIBS and Raman alone. It was observed that the 

performance of automatic curve fitting process was comparable or in some cases better 

than the performance of manual curve fitting process.   

Thus, Raman spectroscopy proves to be effective in detection of trace explosives 

at standoff distances.  The performance of standalone Raman is better for certain 

precursors like specimen E, whereas LIBS performs better in case of specimen A and D 

explosive samples. By combining Raman and LIBS, the performance of the overall 

system can be increased for detection of a wider variety of explosive samples. 
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APPENDIX 

 

This section describes some of the important functions used while training and 

testing Raman data. Functions involved with Signal denoising and Automatic curve 

fitting process are explained.  

 

 [locsDC] = getBaseline(myWL, sig, res, minSTR); 

This function is used to estimate the DC baseline of the given signal. It returns a vector 

locsDC which is used during the automatic curve fitting process. The locsDC vector will 

always contain the first and last values of myWL and some selected valley locations.  

 

[pLocs, pidx, vLocs, vidx] = getPeakAndValleyLocs(myWL, mySig, minSTR, N) 

This is an important function used by several other functions to get locations of all peaks 

and valleys in the selected spectra. One of the inputs to the function is the minimum 

strength of the signal (minSTR), which is calculated before calling the function. The 

minimum strength of the signal is calculated based on the standard deviation of the 

elements of the high pass signal, whose absolute value is less than a certain threshold.  

  

Data = automaticFittingRaman(data) 

This is the main function used for performing automatic curve fitting. The input to this 

function is the structure data which has the signal on which curve fitting has to be 

performed. The function automatically selects the peaks to be fit and estimates the DC 

baseline. It performs recursive curve fitting where residue is calculated once a signal is 

fitted and fitting is again performed on the signal based on the peaks in the residual 

signal. The number of times curve fitting is to be performed can be changed through the 

code. After maximum number of times curve fitting is performed, the fitting results are 

added into the data structure. A new field spectra holds the fitting results.  

 

[alphasAll] = getAlphas (TrainData,peakSelectType,ExpType) 

This function takes as input the fitted data TrainData, automatic or manual peak 

select type peakSelectType and explosive type ExpType. Based on the inputs this 
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functions generates a matrix alphasAll which contains the peak energies (α) of all the 

fitted peaks for a particular explosive type and peak select type. This function sums up 

the alpha values of peak within a range and compensates for shifting peaks.     

 

[vals,idToUse,features]= getRamanFeatures(alphasAll,peakSelectType,ExpType) 

This function returns the description of the discriminatory features depending upon the 

inputs peakSelectType and ExpType.  

 

[vals, idToUse] = getFeatureVals(sigs, feats) 

The input to this function is sigs which is the alphasall matrix for automatic fitting 

process or sum of peak energies calculated in the getRamanFeatures function for the 

manual fitting process. The other input to this function is feats that contain the column 

numbers of the summed peak energies which are considered for a particular feature value.  

It returns the feature values vals  and idToUse containing the data ids used for training.  

 

  [func, AllCoeff] = trainThresh(myVals, discrim, myY, fitType) 

The inputs to this function include myVals which is returned by getRamanFeatures 

function, discrim contains the column numbers from myVals that should be combined in 

order to obtain the discriminator, myY contains the classification of the sample i.e. either 

0 or 1, fitType describes the discriminator to be used i.e. linear, quadratic or mahalanobis. 

This function is used to generate the discriminator.  

 

 [sigD] = getDenoisedSig_v2(sig,varargin) 

This function takes as input the original signal and returns the denoised signal. It can take 

a variable input which can be type of wavelet used for denoising the signal. By default, 

„sym8‟ wavelet type is used.  This function used „wavedec‟ and „waverec‟ MATLAB 

functions. 
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