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ABSTRACT 

Diversity techniques have been found in the literature to be suitable for 

compensating channel uncertainties such as multipath fading.  In this thesis, we exploit 

spatial and frequency diversity techniques for improving accuracy in locating stationary 

and mobile objects in the indoor environment.  First, spatial and frequency diversity 

techniques are introduced for small scale and temporal variation compensation of 

received signal strength and it is demonstrated analytically that it in fact enhances 

location accuracy.  A novel metric is introduced in selection combining in order to 

achieve location accuracy through the addition of diversity upon two of the available 

location determination schemes. The results are evaluated experimentally against the case 

where there is no diversity for reception by using low cost wireless RF devices such as 

motes.  An asset location tracking system is then devised to both improve accuracy and 

predict asset movement. Spatial diversity on the order of twice the wavelength and 

frequency diversity in terms of channel spacing of 55 MHz are evaluated and shown to 

provide a reduction in location determination error of 36% and 20%, respectively, when 

compared to a system without diversity. Finally, results from frequency diversity are 

compared against the spatial diversity techniques in terms of improvement in location 

accuracy, transmitter power consumption, and hardware and processing costs. 
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PAPER 1 

ABSTRACT— The literature indicates that spatial diversity can be utilized to 

compensate channel uncertainties such as multipath fading.  Therefore, in this paper, 

spatial diversity is exploited for accuracy improvement in locating stationary and mobile 

objects in the indoor environment.  First, space diversity technique is introduced for small 

scale and temporal variation compensation of received signals and demonstrated 

analytically that it in fact enhances location accuracy.  A novel metric is introduced for 

selection combining in order to improve location accuracy through the addition of spatial 

diversity upon two of the available location determination schemes. The results are 

evaluated experimentally against a single antenna system for reception by using low cost 

wireless RF devices such as motes.  Alternatively, the impact of the number of location 

determination devices in a probabilistic WLAN network based on pre-profiling of signal 

strength is analyzed and it is demonstrated analytically that location accuracy improves 

with the number of receivers used.  An asset location tracking system is then devised to 

both improve accuracy and predict asset movement. Spatial diversity in terms of the 

antenna spacing of 2λ is evaluated and shown to provide a reduction in location 

determination error between 30 % and 40 % when compared to a single antenna system. 

Finally, it is shown that it is cheaper to create diversity compared to increasing the 

number of locating devices.   

 

Key words—Indoor Geo-location, WLAN Location Determination, Spatial Diversity, 

Location Accuracy. 
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I. INTRODUCTION 

In industrial and service sectors, real-time locating, tracking of assets and 

personnel is fast becoming a necessity. Several technologies have been developed and 

implemented with varying degrees of success. While efforts started with infrared and 

ultrasonic technologies [1], [2], it was recognized that use of radio frequency (RF) 

technologies, being easily scalable and deployable, was the option of choice [3], [4] due 

to low cost and minimal safety concerns because of the absence of wiring.  Subsequently, 

different location determination schemes in the RF domain were developed, which 

include time of arrival (TOA), time difference of arrival (TDOA), angle of arrival 

(AOA), and received signal strength (RSSI) etc. [5], [6].  

Built-in RF networks now exist in most indoor environments for communication 

and networking applications and therefore it would be advantageous to utilize the same 

networks for location determination in the manufacturing shop floor, buildings and other 

places. Towards this end, time and angle based systems have been developed but they 

([5],[6]) are difficult to implement because they require specialized hardware. Signal 

strength based systems, on the other hand, can be used on all RF networks without 

additional hardware and are therefore being addressed by many researchers as a cost 

effective solution for location determination. 

The fundamental premise of signal strength-based location determination is that 

received signal strength indicator (RSSI) at a receiver is a function of the location of the 

transmitter and thus can be used to identify the location of objects or assets.  Therefore, 

for the past few years, considerable interest has evolved in using RSSI for location 

determination.  RSSI-based location determination systems are classified into 
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infrastructure and client based systems depending upon where the location determination 

occurs. In a client-based system, the tracked object measures signal strength received 

from various access points and using prior information about the position of the access 

points and pre-profiled data, location determination is performed. RADAR and HORUS 

are examples of the client based system. RADAR was developed as a deterministic 

location determination system based on average signal strength received from each 

reference location [7].  On the other hand, HORUS [8] uses a probabilistic algorithm for 

location determination.   

It is important to notice that, in the client-based location determination system, 

each tracked object computes its own location. While this option has the advantage of 

distributed computation, each tracked object platform must have sufficient computational 

power to identify its location. This might be difficult to implement in power constrained 

devices such as active RTLS tags which are normally being used for indoor location 

determination environments, for instance, on a manufacturing shop floor.  In addition, the 

requirements on prior storage are also large. Another issue is that it is difficult to make 

location information on all assets available in a centrally available interface. There is also 

a security issue in allowing each device to find its own location since each device would 

then be aware of coordinates of the area and the radio map.  

By contrast, in infrastructure-based location determination, the asset tags / mobile 

units either report the received signal strength vectors or they act as transmitters and the 

received signal strength from them are recorded at sniffers placed around the area. The 

location computation is performed on a central server and is made accessible globally. 

Such an option enables the use of power constrained transmitter tags to remain in very-
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low-power standby modes and transmit their information periodically. Therefore, an 

infrastructure-based system is addressed in [9]. The work in this paper refers to an 

infrastructure based system because the current trends in industrial applications warrant 

the need for such a technology since it minimizes security concerns. We consider the 

system in which the electronics on the tracked asset act as a transmitter sending its own 

identity periodically, where the frequency varies depending on how often the application 

requires updated location information.  Additionally, in the available works such as 

RADAR and HORUS, the effect of the number of receivers on location accuracy is not 

discussed and analytical justification is not included. By contrast, in the proposed work, 

we analytically prove that accuracy improves with the number of receivers even though 

this may be costly.  Therefore, we show that by using spatial diversity the cost is 

minimized while achieving the desired location accuracy. 

One of the major challenges facing WLAN location determination is that signal 

strength of received radio signals is a dynamic parameter and varies widely with changes 

in the environment due to fading, shadowing etc. [10]. These factors include both small-

scale and temporal effects, and such variation puts a limit on the resolution achievable by 

the location determination system.  The developers of HORUS suggest a small scale 

compensation method [11] based on observing the determined location of each object and 

perturbing the signal strength vector to better suit a reference location.  However, there 

are several issues with such an approach applied to an infrastructure based system. First, 

the object has to be located either continuously or often to detect unexpected changes in 

location. Unfortunately, tags attached to assets for tracking in manufacturing shop floor 

environments are often energy-constrained and do not transmit frequently [12], making 
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the perturbation based continuous tracking a practically unviable solution. Second, the 

suggested perturbation technique is not based on any true physics of radio 

communication. Finally, the computational overhead due to the perturbation technique is 

significantly high. By contrast, a novel approach based on space diversity and modified 

selection combining is introduced in order to overcome the above limitations. 

Diversity has been a well-researched topic in the field of communications with the 

view of combating fading.  It involves combining multiple uncorrelated signal envelopes 

in order to obtain a signal with a higher signal to noise ratio (SNR).  Several methods for 

signal combining have been developed [13] targeting SNR improvement. For location 

determination, achieving higher SNR does not automatically result in better accuracy 

unless consistent received signal strength is achieved.   

In the proposed work, it is demonstrated that spatial diversity can be employed to 

effectively reduce the variation in received signal strength values and as a result, 

improved accuracy is achieved in location determination. A new combining method is 

introduced and is shown to reduce variance in signal strength when used with spatial 

diversity. The combination of spatial diversity and the proposed combining is shown to 

enhance the location accuracy of objects or assets.  The impact of the number of receivers 

on location determination accuracy is analyzed and it is shown that diversity techniques 

provide an effective method for compensating small scale and temporal variations and 

locating objects accurately. It is shown that, for a given number of receivers, a system 

using spatial diversity with the proposed combining will perform better than one without 

diversity. Experimental results using wireless UMR motes are included and demonstrate 

highly satisfactory performance, which indeed verifies our theoretical conjecture. 
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The paper is organized as follows. Section II presents the background on spatial 

diversity. Section III presents the proposed methodology, analytical results and the 

implementation. Section IV presents and discusses hardware results. Section V concludes 

the paper and discusses avenues for future work. 
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II. BACKGROUND 

In order to proceed, the following definitions are required.  Subsequently, an 

overview of spatial diversity is discussed. 

A. Definitions 

RSSI (Received Signal Strength Indication): The average received signal strength 

at a given receiver during the reception of a packet, expressed in dBm, is known as RSSI.  

Diversity: The use of multiple signal sources in order to improve the quality of the 

received signal is known as diversity. The different signal sources are referred to as 

diversity branches. 

Spatial Diversity: An antenna configuration of two or more signal sources that are 

physically spaced apart (spatially diverse) to combat signal fading is known as Spatial 

Diversity. 

Uncorrelated fading envelopes: When a diversity scheme is capable of ensuring 

minimal correlation between the received signal strength values from multiple input 

signal sources (multiple antennas in case of spatial diversity), such a scheme is said to 

result in uncorrelated fading envelopes. When the input channels in a diversity scheme 

are uncorrelated, effective mitigation of fading can be accomplished. 

Selection Combining: The method of selecting one out of multiple signal sources 

in a diversity scheme by using SNR (select the one with higher SNR) as a criterion is 

known as Selection Combining. 

In the proposed approach, the SNR criterion is replaced by RSSI (select the one with 

higher RSSI) since RSSI, and not SNR, is a representative function of transmitter location. 
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B. Overview of Spatial Diversity 

The variations in signal strength can be classified into large-scale, small-scale and 

temporal variations [8]. Signal strength dependent location determination is based on 

large-scale variations of signal strength with distance, since this allows distinction 

between different locations. Small-scale variations in signal strength are caused by asset 

movements of the order of a fraction of a wavelength and are detrimental to accuracy in 

location determination. Additionally, temporal variations happen over time due to human 

activity and environmental changes.  In other words, the source of error in both small-

scale and temporal variations in terms of significant reduction in received signal strength 

is caused by destructive fading occurring at the receiver from multiple paths. To combat 

such fading of wireless signals, multiple uncorrelated fading channels are employed at 

each receiver.  

Motivation for use of diversity techniques stems from the fact that the probability 

of simultaneous deep fading occurring on two uncorrelated fading envelopes (resulting 

from spatial diversity) is much lower than the probability of a deep fading occurring on a 

single branch system [15]. Thus, employing a new selection combining approach on top 

of any diversity technique which assures sufficiently uncorrelated channels will reduce 

the variance in signal strength owing to small scale factors which appears to be the major 

source of location determination errors.  

The normalized correlation coefficient ( )ρ ξ between the two fading envelopes 

from the input sources provided by spatial diversity is expressed as a function of antenna 

separation [16] as 

2

0( ) (2 )Jρ ξ πξ≅          (1) 
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whereξ  is the separation between two vertical monopole antennas expressed in terms of 

multiples of the wavelength in use, in our case 2.4 GHz, and 0J is the Bessel function of 

the first kind and order zero [17]. Based on this derivation, the normalized correlation 

coefficient between the fading envelopes drops with antenna separation k  as depicted in 

Fig. 1.  
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Fig. 1. Normalized correlation coefficient between fading envelopes as function of 

separation between the antennas 

 

 

From Fig. 1, it is clear that for a separation of 2λ  between the antenna elements, 

the correlation coefficient is around 0.025 and hence the fading envelopes can be shown 

to be uncorrelated. Further, in [18] experimental results at 1800 MHz indicate that 2λ  is 

an acceptable value of separation to ensure almost totally uncorrelated channels. 
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Hence, in the proposed work, spatial separation of 2λ  (25 cms for 2.4 GHz) is 

used to ensure uncorrelated fading channels. Section III shows how the proposed 

selection combining, employed with a two-branch diversity system, lowers the variation 

in received signal strength. Consequently, it will be proven that reduced variance in 

signal strength renders improved location accuracy. 
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III. PROPOSED METHODOLOGY 

We prove that use of selection combining over two uncorrelated channels results 

in reduced variance in signal strength provided the selection combining is performed by 

using the appropriate metric and in an adequate manner. Alternatively, it is demonstrated 

that by increasing the number of receivers the accuracy can be further enhanced but with 

an increased cost. Based on this line of thought, actual implementation details of spatial 

diversity are given. RSSI values from the transmitter are used to arrive at an estimate of 

its location. An asset location tracking system is developed to determine whether the 

located asset is moving or stationary. Averaging of consecutive estimated locations of the 

transmitter is performed to improve location accuracy. For mobile assets, a prediction 

scheme is developed to identify future location of the asset for tracking applications.  

First, the source of errors in locating objects is discussed. 

A. Source of Location Determination Errors  

The work described in [14] discusses location accuracy for identifying two given 

points referred to in Fig. 2 (a) as Location A  and B  with one receiver. Let us consider 

this basic system for error analysis. Initially, a transmitter is placed at location A  and 

made to transmit repeatedly for a period of time, during which the RSSI values observed 

at the receiver are recorded. These values are now stored as a signal strength distribution 

with probability density function (PDF)
A

f . Similarly, the transmitter is placed at location 

B and made to transmit for the same period of time and the observed RSSI values at the 

receiver are stored as a probabilistic distribution with the PDF
B

f . This completes the 

offline phase. In the online phase, the receiver is placed at location A  and made to 



 

 

12

transmit. Let us assume this transmission is collected at the receiver with a RSSI value 

of
A

S . Now, based on the stored signal strength distributions at the receiver from a 

transmitter placed at locations A  and B , the likelihood of the transmission having 

originated from a transmitter located at A  or B  can be evaluated. Let ( )
A A

f S  and 

( )
B A

f S  be the values on the PDFs
A

f  and
B

f , respectively, at the RSSI value of
A

S . Now, 

if ( ) ( )
B A A A

f S f S>  for the observed RSSI value of
A

S , then the location determination 

system would wrongly decide that the transmission has originated from location B . Such 

a case is shown as example in Fig. 2 (b). The integral of ( )
A A

f S  over the range of 
A

S for 

which ( ) ( )
B A A A

f S f S> gives the probability of wrong identification of a transmission 

from location A  as if it is originating from the location B . This probability is expressed 

by the shaded area in Fig. 2 (b). 

 

 

fA

fB

Signal Strength

Location A Location B

Receiver i 

(a) (b)

Receiver i+1

SA
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Fig. 2. (a) Two locations A  and B  and a single receiver i  (b) probability density 

functions of signal strength received from each location at the receiver 
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This probability can be mathematically expressed as 

( )1 ( ) ( )A B

A A B A
P P f S f S

→ = <        (2) 

where 1

A B
P

→  is the probability of wrongly identifying a transmission arriving from 

location A  as if it is arriving from location B while using one receiver for distinction, 
A

S , 

the observed RSSI from location A , is a random variable obeying the PDF
A

f  of the 

RSSI, ( )
A A

f S  is the value of the PDF 
A

f  at the RSSI value 
A

S ; and ( )
B A

f S  is the value 

of the PDF 
B

f  at the RSSI value 
A

S .  

Now let us add one more receiver to the scenario. In the offline phase, the RSSI 

values from a transmitter at both locations A  and B  observed at both receivers are 

individually recorded and stored as PDFs. Let 1

A
f  and 1

B
f  represent the PDFs of observed 

RSSI values at receiver 1 from locations A  and B , respectively, and 2

Af  and 2

Bf  be the 

PDFs of observed RSSI values at receiver 2 from locations A  and B , respectively. These 

are depicted in Fig.  3. The receivers are assumed to be linked to a central server through 

a backbone network. The RSSI values are brought to the server for building and storing 

the distributions as well as computing the location in the online phase.  

In the online phase, the transmitter is placed at location A  and made to transmit. 

Let the observed signal strength values at receivers 1 and 2 be 1

A
S  and 2

A
S  respectively. 

These values follow the PDFs 1

Af  and 2

Af  respectively. Here, 1 1( )
A A

f S  and 1 1( )
B A

f S  are the 

values of the PDFs 1

A
f  and 1

B
f  at the observed RSSI value 1

A
S  at receiver 1 and 2 2( )

A A
f S  

and 2 2( )
B A

f S  are the values of the PDFs 2

A
f  and 2

B
f  at the observed RSSI value 2

A
S  at 

receiver 2. 
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Fig.  3. Probability Density Functions of RSSI from locations A and B (a) at Receiver 1 

and (b) at Receiver 2 

 

 

Unlike the single receiver case, here, the product of 1 1( )
B A

f S  and 2 2( )
B A

f S  has to be 

greater than the product of 1 1( )
A A

f S  and 2 2( )
A A

f S  for the transmission from location A  to 

be wrongly identified as if it is originating from location B . This probability can be 

represented mathematically as  

1 1 2 2 1 1 2 2

2 ( ( ) ( ) ( ) ( ))A B

A A A A B A B A
P P f S f S f S f S

→ = • < •      (3) 

where 2

A B
P

→ is the probability of wrongly identifying a transmission from location A  as 

being originated from location B . 

Now, the scenario is scaled to k  receivers which are assumed to be linked to the 

central server. In the offline phase, the transmitter is placed at both of the reference 

locations and made to transmit for a period of time. The received RSSI values on the k  

receivers are brought to the central server and RSSI PDFs are computed for both 

reference grid locations at each receiver. These PDFs are labeled as i

Af  and i

Bf  where 

1i k= L  is the receiver number and i

Af  represents the PDF of the RSSI from a 



 

 

15

transmitter placed at location A  observed at receiver i  and i

Bf  represents the PDF of the 

RSSI from a transmitter placed at location B  observed at receiver i . In the online phase, 

the transmitter is placed at location A  and made to transmit. RSSI values i

AS  are received 

at receivers 1i k= L , where i

AS  follows PDF i

Af . By induction from (3), the probability 

of wrongly identifying a transmission originating from location A  as if it is originating 

from location B  can now be expressed as 

1 1

( ) ( )
k k

A B i i i i

k A A B A

i i

P P f S f S
→

= =

 
= < 

 
∏ ∏        (4) 

where A B

k
P

→  is the probability of wrongly identifying a transmission from location A  as if 

it is coming from location B  with k  receivers in use; i

A
S  is the RSSI observed at 

receiver i  from location A ; ( )i i

A A
f S  is the value of the PDF i

A
f at the RSSI value i

A
S ; and 

( )i i

B A
f S  is the value of the PDF i

B
f  at the RSSI value i

A
S . Equation (4) quantifies 

probability of erroneous identification in a probabilistic location determination system. 

This equation helps in further analysis of the location error with and without spatial 

diversity and to understand the impact of number of receivers on the location accuracy, 

which are presented in subsequent sections. Next we present analytical results with our 

proposed scheme with spatial diversity where we demonstrate that spatial diversity 

enhances location accuracy and minimizes error. 

B. Spatial Diversity and Location Determination 

Lemma 3.1 (Variance Reduction with Spatial Diversity): For an indoor transmitter 

and receiver location pair with Rayleigh distribution of signal strength, the variance in the 

signal strength distribution is reduced when the proposed selection combining approach 
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with highest RSSI being the criterion is employed on two uncorrelated fading envelopes, 

compared with using a single input source. 

Proof: Let the PDFs of RSSI from a given transmitter location for the two 

uncorrelated fading channels be given by 1f and 2f , and the cumulative distribution 

functions (CDF) by 1F  and 2F . But since the spatially diverse antennas providing the 

uncorrelated fading channels are closely located, we assume that these two antennas 

share similar probability distributions of RSSI for a given transmitter location. Hence, 

1 2 1 2( ) ( ); ( ) ( );f S f S F S F S S= = ∀        (5) 

It is to be noted that though the distributions are similar, the signal strength at any 

given time from the distributions resulting from the antennas inputs is completely 

independent and uncorrelated (different) due to separation between them. At any given 

time t , let 1( )S t  and 2( )S t  represent the observed RSSI values on the two independent 

uncorrelated channels. By application of the proposed selection combining approach 

where the antenna with higher instantaneous RSSI is selected at all times, we now evolve 

a new RSSI parameter ( )
select

S t from the RSSI values observed on the two antennas where 

1 2( ) max( ( ), ( ))
select

S t S t S t=         (6) 

Let the PDF and CDF of this resulting RSSI parameter ( )
select

S t from the proposed 

selection combining be given by
new

f and
new

F respectively. By definition of the cumulative 

distribution function, if F represents the CDF of a random variable x , for any 

value
i

x , ( )
i

F x  represents the probability that the random variable x is less than
i

x . Hence 

by definition, the CDF ( )
new

F S  represents the probability that ( )
select

S t is less than S .  
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Since, ( )
select

S t is the maximum of 1( )S t and 2( )S t , it follows that both 1( )S t and 

2( )S t have to be less than S . Therefore, 

2

1 2 1( ) ( ) ( ) ( ( ))
new

F S F S F S F S= • =        (7) 

where ( )
new

F S is the cumulative distribution function of RSSI of the new parameter from 

the proposed selection combining approach and 1( )F S is the CDF of RSSI on either of the 

input sources. 

It has been shown in the literature that indoor propagation follows a Rayleigh 

model and results in a Rayleigh distribution of received signal strength [19]. Let us 

assume, therefore without loss of generality, that the RSSI distributions on the input 

sources follow a Rayleigh distribution with a scale factor of s. Then the cumulative 

distribution function [20] can be defined as  

2

22
1( ) 1

S

sF S e

−

= −          (8) 

Substituting (8) into (7)results in  

2 2

2 22 2( ) ( ( )) 1 2

S S

s s
new s

F S F S e e

− −

= = − +       (9) 

Differentiating (9) yields 

2
( ) 2 ( ) ( )

new s s
f S f S f S= −         (10) 

where 
2
( )

s
f S  is the PDF of the Rayleigh distribution with the scale parameter of 2s  

and ( )
s

f S  is the PDF of the Rayleigh distribution with a scale parameter of s  which is 

the same as 1( )f s .  The original distribution with a scale parameter of s  and probability 

density function 1( ) ( )
s

f s f s=  has a variance of 2 2 2

1 s 2- =0.4292
2

s
π

σ
 

= • • 
 

 while the 
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probabilistic distribution of the evolved RSSI parameter from the proposed selection 

combining method with probability density function
2

( ) 2 ( ) ( )
new s s

f S f S f S= −  can be 

shown to have variance of 2 2 2(12+(4 2-9) )
0.3743

4
new

s s
π

σ
•

= • = • . Since the scale 

parameter of the Rayleigh distribution, s , is a real number, it is obvious that ( )
new

f S has a 

lower variance than 1( )f S . Thus, the proposed method of selection combining of two 

uncorrelated fading channels with similar signal strength probability distributions results 

in a lower variance with a factor of approximately 13% compared to the single branch 

case.    � 

Theorem 3.1 (Improved Location Determination with Spatial Diversity): For a 

given number of receivers, use of spatial diversity renders improved location accuracy for 

a pre-profiling based probabilistic WLAN location determination system.  

Proof: Let us consider a simple location identification system again with two 

locations A  and B  and a single receiver i .  Let the signal strength distributions from 

both locations A  and B  be profiled at receiver i  in the offline phase as detailed in 

Section III A. Let these distributions have probability density functions i

A
f  and i

B
f , as 

shown in Fig. 4  Let the mean of i

A
f  be i

A
µ  and its standard deviation be i

A
σ . Similarly, 

let the mean of i

B
f  be i

B
µ  and its standard deviation be i

B
σ . Let us initially 

assume i i

A B
µ µ<  (The opposite case is also handled later). We define ( )i i

A B
S f f=  as the 

value of RSSI at which ( ) ( )i i

A B
f S f S= .  
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i

A
f

i

B
f

( )i i

A B
S f f=

i

B new
f −

( )
i i

A B newS f f −=
 

Fig. 4. Reduction in error area from spatial diversity 

 

 

As derived in Section III A, the probability that a transmission from location A  is 

wrongly identified as originating from location B using only the single receiver i  in the 

online phase is given by the probability of obtaining an RSSI value
i

A
S  from location A  at 

receiver i , for which the condition ( ) ( )
i i i i

B A A A
f S f S>  is satisfied. It can be seen from Fig. 4 

that the range of 
i

A
S  over which ( ) ( )

i i i i

B A A A
f S f S> is given by ( )

i i i

A B A
S f f S= < < ∞ . The 

probability of observing an RSSI value in this range at receiver i  from a transmitter 

placed at location A  is given by the integral of ( )
i

A
f S  over this interval. The integral is 

given as 

( )

( )
i i
A B

A B i

A

S f f

P f S dS→

=

∞

= •∫         (11) 

where A BP → represents the probability of identification of a transmitter at location A  as if 

it is at location B  based on the previously recorded signal strength distributions from 
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locations A and B  at receiver i , ( )
i i

A B
S f f=  represents the RSSI value at the receiver 

where the PDFs from locations A  and B are equal to each other, and ( )i

A
f S represents the 

PDF of the RSSI distribution at the receiver from location A .  

Now, consider that by a suitable method (in our case, spatial diversity and the 

proposed selection combining approach), the variance of the signal strength distribution 

at the receiver i from location B is reduced to 
i

B new
σ −  and the PDF corresponding to this 

distribution is
i

B new
f −  as shown in Fig. 4 where  

i i

B new B
σ σ− <           (12) 

We also define the RSSI value at which the PDF 
i

B new
f −  meets 

i

A
f  

as ( )
i i

A B new
S f f −= . 

Now,  

( ) ( )
i i i i

A B new A B
S f f S f f−= > =        (13) 

On similar lines as in (11), the probability of wrongly identifying a transmission 

from location A as originating from location B can be derived as  

( )

( )
i i
A B new

A B i

new A

S f f

P f S dS

−

∞
→

=

= •∫         (14) 

where 
A B

new
P

→
 is the probability of identification of location A as location B based on the 

new signal strength distribution from a transmitter at location B at receiver i  with 

reduced variance. But, from (13) and since ( )
i

A
f S is always positive, 

A B

new
P

→
< A BP → .         (15) 
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Now consider the second case where 1 2µ µ> .  The error is given by  

( )

( )

i i
A BS f f

A B i

A
P f S dS

=

→

−∞

= •∫         (16) 

Once again, we assume that the signal strength distribution at the receiver i from 

location B is by suitable means (in our case, Spatial diversity), altered to 
i

B new
f −  with 

variance 
i

B new
σ −  where  

i i

B new B
σ σ− <           (17) 

Then it follows that 

( ) ( )
i i i i

A B new A B
S f f S f f−= > =        (18) 

The error now becomes  

)(

( )

i i
A B newf

i

A

S f

A B
newP f S dS

−=

→

−∞

= •∫        (19) 

But from (18) and since ( )
i

A
f S  is always positive, 

A B A B

new
P P

→ →< . Thus for 

both 1 2µ µ> and 1 2µ µ< , the probability of location A  being wrongly identified as 

location B  is shown to be reduced if the variance of the RSSI distribution from 

location B  is reduced. Similarly, it can be shown that reducing the variance of ( )
A

f S  will 

reduce the probability of wrongly identifying a transmission from an object at location B  

as originating from location A . Thus, reduction in variance of both distributions is proven 

to effectively reduce location determination error. 

Lemma 3.1 indicates that the proposed method of selection combining of two 

uncorrelated input sources from application of spatial diversity reduces the variance of 

the received signal strength distributions. On the other hand, Theorem 3.1 shows that by 
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using spatial diversity, the accuracy of determining location of an asset equipped with a 

transmitter is enhanced.  Hence, use of spatial diversity with proposed method of 

selection combining is shown to reduce error in location determination in signal strength 

based systems.          � 

Next we present how increasing the number of receivers will indeed enhance the 

location accuracy. 

C. Number of Receivers 

Theorem 3.2 (Location Accuracy with Number of Receivers): For a pre-profiled 

signal strength based probabilistic WLAN location determination system, the location 

accuracy with k+1 receivers is better than the location accuracy with k  receivers for all 

0k > . 

Proof: Consider first the simple case of a system with two locations A  and B  and 

k  receivers. As derived in (4), the probability
A B

k
P

→
of a transmission originating from a 

transmitter at location A  being wrongly identified as originating at location B  in this 

system with k  receivers is given by 

1 1

( ) ( )
k k

A B i i i i

k A A B A

i i

P P f S f S
→

= =

 
= < 

 
∏ ∏       (20) 

where
i

A
f  is the PDF of the pre-profiled RSSI distribution at receiver i  from a transmitter 

at location A  obtained in the offline phase, 
i

B
f  is the PDF of the pre-profiled RSSI 

distribution at receiver i from a transmitter at location B obtained in the offline phase, 
i

A
S  

is the RSSI value received from location A  at receiver i  in the online phase, ( )
i i

A A
f S  is 

the value of the probability density function 
i

A
f  at RSSI value of

i

A
S , and ( )

i i

B B
f S  is the 
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value of the probability density function 
i

B
f  at RSSI value of

i

A
S . Now, consider adding a 

receiver to the system resulting in 1k +  receivers. The probability of a transmitter located 

at A  being wrongly identified as at B  is given by 

1 1

1

1 1

( ) ( )
k k

A B i i i i

k A A B A

i i

P P f S f S
+ +

→
+

= =

 
= < 

 
∏ ∏      (21) 

where 1

A B

k
P

→
+  is the probability of wrongly identifying a transmission from location A  as 

if it is coming from location B with 1k +  receivers in use. Let 
1k

A
S

+
 be the observed RSSI 

value at receiver 1k +  from location A  in the online phase, and thus also a random 

variable following the distribution with PDF 
1k

A
f

+
. Since 

1k

A
S

+
 follows the distribution 

with PDF 
1k

A
f

+
, it can be proved that 

( ) ( )1 1( ) ( )k k

B A A A
E f S E f S+ +≤        (22) 

From (20) through (22), it follows that 

1

A B A B

k k
P P

→ →
+ ≤          (23) 

Hence, for a system with two locations, the probability of a location being 

identified wrongly as the other reduces with an increase in the number of receivers.  

Now, consider a system with l locations 1A , 2A , 3A L
l

A and k  receivers. In this system, 

when a transmission is observed, the measured RSSI values at each receiver are conveyed 

to and compiled at a central server. For each reference point, the probability of the 

transmission having originated at that point is calculated. This probability is given by the 

product of individual probabilities of observing the measured RSSI values at each 

receiver individually when the transmitter is at the specific location. Finally, the reference 

point with the maximum probability is selected as the estimated location of the 
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transmitter. For a transmission from location
i

A  to be correctly identified with k  

receivers in the system, the estimated probability of receiving the observed set of RSSI 

values at the k  receivers must be greater than the estimated probability of receiving them 

from any of the reference locations ; 1,2 ;
j

A j l j i∈ ≠L . This is mathematically given as  

1,2, ;

(1 )i ji i
A AA A

k k

j l j i

P P
→→

∈ ≠

= −∏
L

       (24) 

where i jA A

k
P

→
is the probability of identifying location

i
A  as 

j
A  with k  receivers in the 

system. The above equation states that the probability of correct identification is the 

product of complement of the probability of all possible wrong identifications. 

Now, by adding a receiver to the system, the probability of correct identification 

becomes 

1 1

1,2, ;

(1 )i ji i
A AA A

k k

j l j i

P P
→→

+ +
∈ ≠

= −∏
L

       (25) 

where 1

i jA A

k
P

→

+ is the probability of identifying location
i

A  as
j

A  with 1k +  receivers. But 

for any ; 1 , ,j j l j i∈ ≠L  

1

i j i jA A A A

k k
P P

→ →

+ ≤          (26) 

Hence 

1

1,2, ; 1,2, ;

(1 ) (1 )i j i jA A A A

k k

j l j i j l j i

P P
→ →

+
∈ ≠ ∈ ≠

− > −∏ ∏
L L

      (27) 

Therefore, 

1
i i i iA A A A

k k
P P

→ →

+ ≥          (28) 

Hence, it is proven that the probability of a location being correctly identified 

improves with an increase in the number of receivers.                � 
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The theorems presented above show that the accuracy improves both with spatial 

diversity and increasing the number of receivers.  Next the proposed location 

determination schemes are introduced, which are built upon the known schemes, 

deterministic and probabilistic methods, from the literature. 

D. Location Determination Algorithm  

Both probabilistic and deterministic techniques from the literature are evaluated 

with and without spatial diversity. Further, the application of diversity and the proposed 

method of selection combining on top of either technique is discussed.  

1) Probabilistic technique 

A simplified version of HORUS [8], which is a probabilistic technique, is 

considered in this work. A grid is initially constructed to provide the reference points for 

profiling. The coordinates of these reference points on the grid are measured and 

recorded for mapping RSSI values to the location. The technique begins with an offline 

phase where the grid points are profiled for a period of time to record n  samples of the 

signal strength value at each receiver from each of the l  reference grid points. To 

simplify the storage problem, the signal strength values received from each of the 

reference grid points at each receiver are mapped to a Gaussian distribution. The mean 

and variance of each of these distributions is stored rather than storing all the RSSI values 

received at each receiver from each reference point. In other words, given n signal 

strength samples from location X at receiver i, the estimate for mean signal strength at 

receiver i from any location X is given by 

1

1
ˆ ( )

n
i

X

k

S k
n

µ
=

= ∑          (29) 
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where µ̂ is the estimated mean of the RSSI distribution and ( )i

X
S k is the k

th
 signal strength 

sample from location X at receiver i. The variance is estimated as 

2 2

1

1
ˆ ˆ[ ( ) ]

n
i

X

k

S k
n

σ µ
=

= −∑         (30) 

where 2σ̂ is the estimated variance of the RSSI distribution and ( )i

X
S k is the k

th
 signal 

strength sample from location X at receiver i. 

Actual location determination is accomplished in the online phase by using the 

mapping constructed from the offline phase. For each receiver, the probability of 

receiving the observed RSSI value from each of the reference locations is calculated 

using the Gaussian probability function as 

�

2 2
0.5

ˆ ˆ( ) /(2 )

0.5

1
( / )

2

i i i
x xj j

i j

S
s

i j i

S x

P S x e ds
µ σ

σ π

+
− −

−

= •∫       (31) 

where ˆ
j

i

x
µ and ˆ

j

i

x
σ are the pre-profiled estimates for mean and standard deviation of 

received signal strength at receiver i  from location 
j

x  and ( / )
i j

P S x is the probability of 

receiving RSSI value 
i

S  from location
j

x at receiver i . Since the XBee modules quantize 

the RSSI values, the PDF values are integrated over a range of RSSI values between – 0.5 

to + 0.5. The process is repeated for all ; 1
j

x j N∈ L  and for all receivers ; 1i i k∈ L . 

Now, the overall probability ( / )
j

P S x that the set of observed RSSI values at all receivers 

originates from a reference location
j

x , is given as 

1

( / ) ( / )
k

j i j

i

P S x P S x
=

= ∏         (32) 

where { }; 1iS S i k= ∈ L  and 
i

S is the observed RSSI at the th
i  receiver.   
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In the end, a sorted list of the locations is generated in descending order of their 

probabilities. The coordinates of only the four reference locations with the highest 

probabilities are used in location determination. The use of four locations makes intuitive 

sense since any point can be enclosed by a square with four closest neighbors. The 

coordinates of each of these four locations are multiplied with their corresponding 

probabilities and a weighted averaging is performed. The result of this operation is 

returned as the location. This process is similar to the center-of-mass technique [24].  

2) Deterministic technique 

The first step in the deterministic technique [7] also involves construction of a 

reference grid and generating coordinates of reference grid points. In the offline phase, 

RSSI signature vectors are collected from all reference grid points at different times in a 

day and during the week. These different profiles are used to arrive at the average signal 

strength value from each reference point on the grid at each receiver. In the online phase, 

a signal strength vector is constructed from the RSSI values observed from a transmitter 

at each of the receivers. The Euclidean distance from this vector to each of the averaged 

profile entries is taken. The reference points are now arranged in the order of descending 

Euclidean distances. The four reference points with the lowest Euclidean distance from 

their RSSI vectors recorded in the offline phase to the measured RSSI vector in the online 

phase are used in location determination. The coordinates of these four points are 

averaged to provide a location. 

E. Diversity and Combining 

There are two methods of implementing the proposed method of selection 

combining on top of spatial diversity using the probabilistic and deterministic schemes. It 
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can be implemented on the hardware level using a switch for selecting the antenna with 

higher RSSI and using a single receiver as shown in Fig. 5 (a). A second method of 

implementation would be at the software level, where signal strength values are recorded 

on two spatially separate receiver units and the higher RSSI value is selected while 

processing as shown in Fig. 5 (b). We use the latter implementation in our testbed as it is 

much easier to implement, but from the view of cost-effective implementation, not 

requiring additional processing, the former implementation is more suitable to a true real-

time location determination.  

 

 

 

Fig. 5. (a) Hardware implementation of spatial diversity and proposed selection 

combining approach  (b) software implementation 

 

 

In location determination without using diversity, only one receiver from each 

pair is used in analysis, in both the online and offline phases.  By contrast, in using the 

system with diversity applied, each pair of receivers is viewed as a single receiver. For 

every packet received and RSSI reported, the maximum of the two RSSI values is taken 
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for each pair. This software-level selection is applied before using the RSSI values for 

processing in both online and offline phases. Thus, the location determination algorithm 

becomes a higher layer of processing when the combining layer is added as shown in Fig. 

6. 

 

 

 

Fig. 6. Layered representation of the proposed method of selection combining 

 

 

F. Tracking, Averaging and Prediction 

Detection of movement of an asset, tracking it and predicting its location are areas 

relevant to location determination. The first application of location tracking can be 

understood from [25] where a viterbi-based scheme is developed to limit unusual asset 

movement patterns by limiting mobility between consecutive locations in time. While 

such an approach will enhance the accuracy for a stationary or slow-moving asset, assets 

possessing considerable mobility are likely to suffer from a loss of accuracy since the 

system works on the basis of selecting the path that ensures least distance of travel of the 

tracked asset. Further, the approach does not detect whether the asset is in motion or not.  
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Location determination based on signal strength results in scattering of estimated 

locations around a small area over time. Over a small interval of time, such random 

scattering may exhibit directivity in motion. Using a small time window to observe 

estimated location coordinate variations of a stationary asset to detect directed motion 

may lead to misinterpreting asset movement status as moving. Increasing the observation 

window size to a large value will improve detection accuracy but will cause a sluggish 

response in the motion detection algorithm. To solve this problem, we introduce a two-

level system of observation and averaging. Estimated motion trends over multiple 

consecutive, yet overlapping observation windows are averaged. This process, while 

eliminating the sluggishness of response, ensures sufficient certainty in determining 

movement status. The proposed algorithm is introduced as follows. 

In the motion detection algorithm, cumulative motion in either the x  or 

y direction is observed for determining movement status. RSSI values are obtained from 

the asset every second and location determination is carried out using either the 

probabilistic or deterministic method with or without applying diversity. Only continuous 

cumulative directed motion in the x or y direction or both is treated as motion. At the 

observing level, a window size of n  is employed and at the averaging level, the window 

is of size m . The mobile transmitter is made to transmit once every second, resulting in 

one set of located coordinates every second. A buffer of the last n  sets of estimated 

location coordinates is maintained in the system. The x and y coordinate variation 

between each pair of consecutive locations in this buffer is added up over all 1n −  

intervals between the n  locations. Mathematically, at time t , these summed values can 

be evaluated as  
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( )( ) ( ) ( 1)nx t x t x t n∆ = − − +        (33) 

where ( )x t  is the located x  coordinate at time t  and ( 1)x t n− +  is the located x  

coordinate at time 1t n− + . Similarly, 

( )( ) ( ) ( 1)ny t y t y t n∆ = − − +        (34) 

where ( )y t  is the located y  coordinate at time t  and ( 1)y t n− + is the 

located y coordinate at time 1t n− + . This completes the lower level moving window 

average. Now, for the next level, the last m calculated values of 
n

x∆ and 
n

y∆ are stored in 

a second buffer. The mean values from these buffers provide the motion trend variables 

_mean x∆  and _mean y∆ for the system. These are formulated as  

1

1
_ ( )

t

n

i t m

mean x x i
m = − +

∆ = ∆∑         (35) 

where _mean x∆  is the estimated trend for the x coordinate variation over 1n −  time 

intervals. Similarly, 

1

1
_ ( )

t

n

i t m

mean y y i
m = − +

∆ = ∆∑         (36) 

where _mean y∆  is the trend for the y coordinate variation over 1n −  time intervals. The 

resultant total movement from the trended x  and y  is calculated as the square root of the 

sum of squares of the two trend values. If this value is above a given threshold, it 

indicates continuous cumulative directed motion of the tracked asset in a certain 

direction. Hence, we determine that the asset is moving. If the total trended movement is 

below the threshold, the asset is declared stationary. This status reporting is based on the 

current and previous 2m n+ −  estimated location coordinates and hence results in a delay 
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of 1
2

m n+
−  time units in motion status reporting. In the system under test, we use a 

value of 10 for both n and m . This value results in substantially sized averaging windows 

at both levels while not resulting in a huge delay in reporting the movement status of the 

asset. For example, a value of 10 for both n and m  would result in a delay of nine time 

units (seconds) in reporting the movement status, while using a value of 15 for both n and 

m  would result in a delay of fourteen time units (seconds). Further, a higher averaging 

window size results in a sluggish response in the motion detection algorithm when the 

state of the asset changes from moving to stationary or vice versa  Thus a trend of x and 

y direction movement of the asset over nine ( 1)n −  time intervals is obtained as 

_mean x∆  and _mean y∆ , respectively. The process is detailed in Fig.  7. 

A similar method is developed for averaging located coordinates to improve 

accuracy. Once again, an averaging system of small window size will not provide 

sufficient accuracy while a large averaging window will enhance accuracy, but result in 

sluggish response in updating the location when the tracked asset moves. To both 

improve accuracy and location update response time, we devise a lower averaging level 

to remove the small-time-scale scattering of located coordinates, and perform further 

averaging of the resulting averaged coordinates to enhance accuracy while ensuring a 

quick system update when the asset location changes. Here, n  and m  are used as 

window sizes for two levels of moving window averaging. In the first moving window, at 

any given time, the set of current estimated location coordinates as well as the 1n −  

previous located coordinates are averaged. This averaging process is mathematically 

depicted as  
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1

1
( ) ( )

t

mean

i t n

x t x i
n = − +

= ∑         (37) 

where ( )
mean

x t is the mean of the current and last 1n −  located x  coordinate values, and 

( )x i is the located x  coordinate value at time t i= . 

 

 

 

Fig.  7. Calculation of averaged cumulative x and y motion for nine time units 

 

 

Similarly, 

1

1
( ) ( )

t

mean

i t n

y t y i
n = − +

= ∑         (38) 
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where ( )
mean

y t is the mean of the current and last 1n −  located y  coordinate values, and 

( )y i is the located y  coordinate value at time t i= . In the higher level moving window 

average, the mean of the current and previous 1m −  averaged x  and y  coordinate values 

is used as the estimated location. This secondary level of averaging is given as 

1

1
_ ( )

t

mean

i t m

mean x x i
m = − +

= ∑         (39)

where _mean x  is the averaged location x  coordinate resulting as a function of x  

coordinate values from the current and previous 2m n+ −  location estimates. Similarly, 

1

1
_ ( )

t

mean

i t m

mean y y i
m = − +

= ∑         (40) 

where _mean y  is the averaged location y coordinate resulting as a function of 

y coordinate values from current and previous 2m n+ −  locates. Thus, the reported 

location suffers a time lag of 1
2

m n+
−  time units from the current location in location 

reporting, thus offering improved accuracy at the cost of delayed location reporting. In 

the system under test, parameters m and n are set to 10, resulting in a nine time unit delay 

in location reporting. The averaging is detailed in Fig.  8. 

The reported trend variables _mean x∆  and _mean y∆  represent the expected 

movement in the x  and y  directions from the averaged location estimate over a period 

of 1n −  seconds. To calculate the current location from the averaged location with a 

delay of 1
2

m n+
−  seconds, we assume linear motion of the asset and proportionately 

scale the x and y movement trend values to account for x and y motion over 1
2

m n+
−  
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time units. Thus, adding these scaled trend values directly to the averaged location allows 

an estimation of the current position of the asset with a higher level of accuracy. Thus, 

the current position is predicted based on the averaged location estimate as  

1 1
2 2_ ( ) [ _ _ , _ _ ]

1 1

m n m n

asset location t mean x mean x mean y mean y
n n

+ +
− −

= + • ∆ + • ∆
− −

 (41) 

where _ ( )asset location t  represents the estimate of the position of the asset at time t , 

_mean x  and _mean y  represent the located coordinates of the asset at time 1
2

m n
t

+
− +  

based on averaging, and _mean x∆  and _mean y∆ are the expected trend values in asset 

movement for a period of 1n −  time units. 

 

 

 

Fig.  8. Averaging of located coordinates to report position (lag of 9 units) 
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By similar linear scaling and assumption of linear asset movement, a trend value 

can be developed for more than 1
2

m n+
−  seconds. Let us assume that we intend to 

predict the asset location k  time units into the future. This prediction requires an 

estimation of the asset movement for a time period of 1
2

m n
k

+
+ −  time units from the 

averaged estimate since it suffers a lag of 1
2

m n+
− units. Thus, the x and y  movement 

trends are scaled by a factor of 
1

2

1

m n
k

n

+
+ −

−
 for this prediction. Thus, the position of the 

asset k  time units into the future is given as 

1 _ 1 _
2 2

_ ( ) [ _ , _ ]
1 1

m n m n
k mean x k mean y

asset location t k mean x mean y
n n

+ +   
+ − • ∆ + − • ∆   

   + = + +
− −

 (42) 

where _ ( )asset location t k+  is the estimated location of the asset k  time units into the 

future. For demonstration, in the system under consideration, we predict the asset 

location one time unit into the future. This implies a scaling factor 

of

10 10
1 1 1

102 2

1 10 1 9

m n
k

n

+ +
+ − + −

= =
− −

. Using this scaling factor and assuming linear 

motion of the asset, the asset location one second into the future is estimated as 

10 _ 10 _
_ ( 1) [ _ , _ ]

9 9

mean x mean y
asset location t mean x mean y

• ∆ • ∆
+ = + +  (43) 

where _ ( 1)asset location t +  is the estimated location of the asset one time unit into the 

future (time t+1), _mean x and _mean y  represent the located coordinates of the asset 

based on averaging at time 9t −  and 
10 _

9

mean y• ∆
 and 

10 _

9

mean y• ∆
are the scaled 
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trend values in asset movement in the x  and y  directions, respectively, for a period of 

ten time units. The advantages of such a prediction are several. One of the possible 

applications is enhancement of network performance by optimizing access point 

handovers based on estimated future position.  

Accuracy of the motion detection, tracking and prediction schemes are discussed 

in Section IV for stationary and moving targets for probabilistic and deterministic 

methods with and without applying spatial diversity. 
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IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Testbed and Implementation 

G4-SSN motes developed at UMR, shown in Fig.  9, were used for testing. They 

have been used in prior work relating to wireless sensor networks [21], [22]. The wireless 

networking medium chosen was IEEE 802.15.4 PHY. All nodes are equipped with XBee 

pro radios from Maxstream [23]  with 18 dBm of transmit power. To generate spatial 

diversity, two motes were placed at a distance of 25 cm ( 2λ ) from each other, as shown 

in Fig.  10. 

 

 

 

Fig.  9. UMR G4-SSN embedded wireless sensor networking platform 

 

 

 

Fig.  10. UMR-SLU G4-SSN motes arranged for creating spatial diversity with a 

separation of 25 cms 
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Two floors of the Engineering Research Laboratory (ERL) building were used for 

the purpose of testing location accuracy. Only corridors were used in the evaluation. A 

total of 133 points were marked as reference grid points in a total area of 3624 sq. ft. of 

corridor area. Further, 44 test points are marked as off-grid points for accuracy 

evaluation. The offline training phase for both deterministic and probabilistic methods 

involve profiling from the 133 reference grid points. For testing on-grid accuracy, 

transmissions from the reference grid points themselves are tracked by using both 

methods. For testing off-grid accuracy, transmissions from the 44 off-grid test points are 

attempted to be located. Five spatially separated pairs of receivers are used for spatial 

diversity implementation, two on the third floor and three on the second floor.  The floor 

plans of the ERL are given in Fig.  11 and Fig. 12 and the positions of the receiver pairs 

are marked with circled squares 

 

 

 

Fig.  11. Floor plan of ERL third floor. Receiver pair positions are marked with circled 

squares 
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Fig. 12. Floor plan of ERL second floor. Receiver pair positions are marked with circled 

squares 

 

 

B. Algorithm Pseudocode 

The pseudocode for probabilistic location determination is presented in Table I.  

 

 

Table I : Pseudocode  for probabilistic location determination 

RSSI Signature vector received 

for all reference points, do 

   Calculate probability of receiving given RSSI vector from               

   location 

end for 

Sort list of points in descending order of probability 

Weight the coordinates with their respective probabilities 

Return mean of weighted coordinates of best four reference points 

end 
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The pseudocode for deterministic location determination is given in Table II.  

 

 

Table II : Pseudocode  for deterministic location determination 

RSSI Signature vector received 

for all reference points, do 

   Calculate Euclidean distance between profiled average  

   SS vector and received RSS vector 

end for 

Sort list of points in ascending order of Euclidean distance 

Return mean of coordinates of best four reference points 

end 

 

 

C. Asset Location Tracking and Averaging 

For evaluating the location tracking and averaging system, a continuous path is 

set up on the second floor of ERL, including 96 points each 27 inches apart from the 

previous point. The transmitter is allowed to move along this path and made to transmit at 

the marked points. The received readings are assumed to be one second apart resulting in 

a velocity of 27 inches per second along the corridor, which is approximately half the 

average pace of human walking. The averaging, tracking and prediction algorithms are 

executed on the obtained consecutive location coordinates. The accuracy results are 

discussed next.  
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D. Results and Analysis 

Now the results are given followed by the analysis. 

1) Spatial diversity and location determination accuracy 

Hardware results are classified into two scenarios based on the application of 

probabilistic and deterministic techniques. Each of these is classified into offgrid and 

ongrid results. The mean accuracy in each case is plotted against the number of receivers 

used in the analysis. Accuracy with and without applying the diversity technique is 

compared. In each case, the cumulative distribution function of the location error is also 

presented with and without applying diversity. Finally, four sample offgrid points from 

the testing are taken and determined locations in each case are provided. A summary 

table is also included providing mean, median, and 90
th

 percentile accuracy levels for 

each case. Finally, the two techniques are compared; and improvement in accuracy due to 

introduction of spatial diversity is demonstrated. 

It can be seen from Fig. 13 (a) that use of spatial diversity with proposed selecting 

combining performs better than without diversity. The improvement in accuracy with 

diversity during the worst error case is very significant. Fig. 13 (b) shows that the 

improvement from the use of diversity is consistent irrespective of the number of 

receivers in use. Further, accuracy improves with the number of receivers used, from 127 

inches to 93 inches and from 97 inches to 63 inches in the single branch case and the 

spatial diversity case, respectively. 

Similar investigation for ongrid points shows improvement in location error from 

15 inches to 7 inches in case of spatial diversity, and from 30 inches to 10 inches for the 

single branch case. 
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Fig. 13. Probabilistic technique- offgrid points - (a) cumulative distribution function of 

location error (b) location error as a function of number of receivers 

 

 

On grid points should have better accuracy as they are used for profiling 

compared to an offgrid point. Fig. 14 (a) shows the improvement of spatial diversity with 

location accuracy. A consistent reduction in error is observed with both ongrid cases and 

with an increase in number of receivers as depicted in Fig. 14 (b). 
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Fig. 14. Probabilistic technique, ongrid points - (a) cumulative distribution function of 

location error (b) location error as a function of number of receivers 
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Now, we analyze the deterministic method, starting with the offgrid points. Fig. 

15 (a) shows significant improvement in location error which is even more noticeable at 

worst case scenarios. Worst case errors with and without diversity are 200 and 500 inches 

respectively indicating a 60% reduction. Fig. 15 (b) presents the reduction in mean error 

with number of receivers and with and without diversity. The difference in error after the 

application of spatial diversity is even more significant with number of receivers used. 

For instance, with five receivers in the system, the mean errors are 87 and 60 inches, 

respectively, without and with spatial diversity. 
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Fig. 15. Deterministic technique, offgrid points - (a) cumulative distribution function of 

location error (b) location error as a function of number of receivers 

 

 

Fig.16 depicts this analysis for on grid points. Improvement in the CDF is still 

present but not as noticeable, due to the fact that only temporal variations cause error in 

the case of on-grid testing. Further, Fig.16 (b) depicts that mean error improves with the 

number of receivers regardless of whether spatial diversity is applied or not. With five 
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receivers, the mean errors are 85 and 57 inches, respectively, without and with spatial 

diversity, displaying similar levels of accuracy for on and off grid points for deterministic 

profiling. This shows that the deterministic technique is scalable and more resilient to 

small-scale effects than the probabilistic technique. Improvement due to spatial diversity 

is clearly seen. 
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Fig.16. Deterministic technique, ongrid points - (a) cumulative distribution function of 

location error (b) location error as a function of number of receivers 

 

 

Table III presents location results for four points. From the table, it can be seen 

that the use of diversity results in a closer location estimate every time. Table IV presents 

the summary of accuracy levels in all cases. Mean, median, and 90
th

 percentile levels of 

location error are presented. In general, error levels are reduced by 30% to 40%. Worst 

case error levels show that better improvement can be seen from the CDF plots. Further, 

comparing the computational complexity, there is no improvement in accuracy resulting 

from the application of the probabilistic method over the deterministic technique. 
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Table III : Performance comparison with and without spatial diversity and number of 

receivers 

 

 

Point 1 Point 2 Point 3 Point 4 

x y x y x y x y 

True coordinates 1121.5 366.1 1152.5 451.1 199.4 748.1 1121.7 633.0 

Probabilistic  

single branch 
1147.2 548.0 1137.4 150.7 232.4 726.9 1123.5 465.6 

Probabilistic  

spatial diversity 
1134.3 321.8 1152.3 386.3 233.3 745.2 1130.1 531.1 

Deterministic 

single branch 
1149.2 336.0 1155.1 493.3 240.3 737.6 1134.8 490.3 

Deterministic 

spatial diversity 
1145.2 340.6 1148.0 491.4 204.2 730.7 1144.7 543.7 

 

 

Table IV: Summary of location determination error levels  

 

Mean error (inches) 
Median Error 

(inches) 

90
th
 percentile error 

(inches) 

Single 

Branch 

Spatial 

Diversity 

Single 

Branch 

Spatial 

Diversit

y 

Single 

Branch 

Spatial 

Diversit

y 

Probabilistic 

on-grid 
15.2 7.30 0.00 0.00 0.00 0.00 

Probabilistic 

off-grid 
93.2 63.4 73.9 64.20 205.31 165.73 

Deterministic 

on-grid 
90.33 56.32 45.00 0.00 270.00 180.00 

Deterministic 

off-grid 
87.20 60.30 64.20 52.50 200.40 116.20 
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2) Comparison of HORUS vs. spatial diversity 

In comparing HORUS [8] to the method including spatial diversity, only the most 

simplified form of HORUS is used. This includes the part of building the radio map 

based on recording the signal strength distributions at each receiver from each reference 

location as a Gaussian distribution and using these in the online phase to locate assets. 

The HORUS method consists of several other modules, which can be applied to the 

location determination system to improve accuracy, independent and irrespective of the 

use of spatial diversity,.  Spatial diversity in the present work investigates exactly same 

concerns addressed by the perturbation method [11] for mitigating small-scale factors. In 

comparing this method with the proposed work, it is worth mentioning that while 

perturbation is a software level solution to small – scale compensation, our method is a 

hardware-level solution. Implemented with multiple antennas and selection switching, the 

diversity technique would add only very minimal cost to the system.  

In terms of cost, the perturbation technique [11] appears to increase computational 

complexity by a factor ranging from 100% to 300 % or more, depending on how many 

access points are perturbed and results in approximately 20 – 25 % reduction in location 

determination error as compared to a 35% to 40% reduction in location error brought 

about by the proposed diversity technique. Ignoring the hardware or software cost in 

implementing the methods, a direct comparison of the proposed work with the 

perturbation technique shows that while spatial diversity is analytically shown to improve 

location determination accuracy by combating multipath fading, the cause of both small-

scale and temporal variations, the perturbation technique is a heuristic technique that does 

not take radio communication physics into account.  
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While use of spatial diversity attempts to effectively reduce the effect of fading on 

signal strength and makes the RSSI more a representative function of location, the 

perturbation technique in [11] attempts to fix a percentage value for perturbation based 

on observed improvement in performance. Thus, whether the additional cost in terms of 

hardware or processing is taken into account or not, the proposed work exploiting spatial 

diversity outperforms the perturbation technique on all counts. In addition, expanding the 

idea of diversity to selecting channels, frequency diversity may allow a similar level of 

improvement in location accuracy without any increase in hardware or processing cost. 

3) Location tracking, averaging and prediction 

The motion detection algorithm works extremely well and it is able to detect 

moving assets 99% of the time. After testing with a stationary asset, the algorithm reports 

a false alarm of only 3%. The technique is tested with both probabilistic and deterministic 

techniques, with and without applying diversity. The results are shown in Fig. 17. 

Further, we evaluate the accuracy of the averaged location, the estimate of the 

current location, and the predicted location one second into the future. It is seen that for a 

mobile asset, the accuracy of the averaged coordinate is much better than the calculated 

location based on a single set of RSSI values. Even the estimate of current location based 

on averaging and motion trending appears to be better than the single set RSSI locations. 

The predicted location one second into the future is on the average not as accurate as the 

single set RSSI location, but considering that this is a prediction, the values are 

reasonable. In the case of the stationary node, none of the schemes result in significant 

improvement in accuracy. No loss in accuracy is noticed as well. The mean accuracy 

levels in inches are shown in Fig. 18 and Fig. 19. 
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Fig. 17. Successful detection of mobile and stationary assets 
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Fig. 18. Accuracy levels of averaging and prediction techniques for mobile assets 
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Accuracy of averaging and prediction techniques for stationary assets
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Fig. 19. Accuracy levels of averaging and prediction techniques for stationary nodes 
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V. CONCLUSIONS 

It is observed that spatial diversity using the proposed method of selection 

combining is effective in improving accuracy in both probabilistic and deterministic 

location determination schemes. A novel method of improving location accuracy at 

minimal additional hardware cost and no additional processing has been presented and 

demonstrated. Comparing against the increase in the number of location sensors, which 

resulted in improved accuracy, the use of spatial diversity is suggested to affect drastic 

improvements in accuracy without significantly increasing the cost of the system when 

the number of sensors is increased. Motion detection, averaging, and prediction 

techniques are developed and implemented. Substantial accuracy improvements are seen 

to result from addition of these methods as well, over and above the improvements from 

spatial diversity. In fact, improvement of 30 – 40% in average location error is noticed. 

Further work would involve investigation of using frequency diversity instead of 

spatial diversity in reducing the effect of small scale and temporal variations in signal 

strength on location determination accuracy.  
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PAPER 2 

ABSTRACT— The literature indicates that frequency diversity can be utilized to 

compensate channel uncertainties such as multipath fading.  Therefore, in this paper it is 

exploited for improving accuracy in locating stationary and mobile objects in the indoor 

environment.  First, the frequency diversity technique is introduced for small scale and 

temporal variation compensation of received signals and it is demonstrated analytically to 

enhance location accuracy.  A novel metric is introduced in selection combining in order 

to achieve location accuracy through the addition of frequency diversity upon two of the 

available location determination schemes. The results are evaluated experimentally 

against the case where there is no frequency diversity for reception by using low cost 

wireless RF devices such as motes.  An asset location tracking system is then devised to 

both improve accuracy and predict asset movement. Frequency diversity in terms of 

channel spacing of 55 MHz is evaluated and shown to provide a reduction in location 

determination error between 18% and 23% when compared to a system without 

frequency diversity. Finally, results from frequency diversity are compared against the 

spatial diversity technique in terms of improvement in location accuracy, transmitter 

power consumption, and hardware and software costs. 

 

Key words—Indoor Geo-location, WLAN Location Determination, Frequency Diversity, 

Location Accuracy. 
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I. INTRODUCTION 

In manufacturing and service sectors, locating and tracking of assets and 

personnel in real-time is an area of great interest. Such technology would result in huge 

cost savings in terms of faster searching as well as allowing monitoring of operation time 

cycles. Several technologies have been developed and implemented with varying degrees 

of success. Initial efforts with ultrasound and infrared based techniques [1] [2] were 

recognized to be inferior to radio frequency (RF) technologies [3], [4], which are easily 

scalable and deployable. Further, low cost and minimal safety concerns due to absence of 

wiring also make RF technologies the preferred platform for developing locating systems.  

Subsequently, different location determination schemes in the RF domain were 

developed, which include time of arrival (TOA), time difference of arrival (TDOA), 

angle of arrival (AOA), and received signal strength (RSSI) etc. [5], [6].  

Most indoor environments are now equipped with built-in RF networks for 

communication and networking applications and therefore it would be advantageous to 

utilize the same networks for location determination on the manufacturing shop floor, 

buildings, and other places. On such pre-existing RF hardware, it is difficult to build time 

and angle based systems for location determination owing to requirement for specialized 

hardware. Signal strength based systems, on the other hand, can be used on all RF 

networks without additional hardware and therefore are being addressed by many 

researchers as a cost effective solution for location determination. 

The basis of signal strength-based location determination is that received signal 

strength indicator (RSSI) at a receiver is a function of the location of the transmitter and 

thus can be used to identify the location of assets equipped with a transmitter.  
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Consequently, for the past few years, RSSI based location determination has generated 

considerable interest. RSSI-based location determination systems are classified into 

infrastructure and client based systems depending upon where the location determination 

algorithm resides and executes. In a client-based system, the tracked object is equipped 

with a receiver and measures signal strength received from various access points and 

using the resident algorithm, performs location determination. RADAR and HORUS are 

examples of the client based system. RADAR was developed as a deterministic location 

determination system based on average signal strength received from each reference 

location [7].  On the other hand, HORUS [8] uses a probabilistic algorithm for location 

determination.   

It is important to notice that, in the client-based location determination system, 

each tracked object computes its own location. While this option has the advantage of 

distributed computation, each tracked object platform must have sufficient computational 

power to identify its location. This might be difficult to implement in power constrained 

devices such as active RTLS tags that are normally being used for indoor location 

determination environments, for instance, on the manufacturing shop floor.  In addition, 

the requirements on prior storage are also large. Another issue is that it is difficult to 

make location information on all assets available in a centrally available interface. There 

is also a security issue in allowing each device to find its own location since each device 

would then be aware of coordinates of the area and the radio map.  

By contrast, in infrastructure-based location determination, the location 

determination algorithm resides on a central server to which the asset tags / mobile units 

either report the received signal strength vectors or they act as transmitters and their 
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received signal strength from them are recorded at sniffers placed around the area and 

reported to the server. Location computation is performed here and made accessible 

globally. This option enables power constrained transmitter tags to remain in very-low-

power standby modes and transmit their information periodically. Such an infrastructure-

based system is addressed in [9].  

The work in this paper refers to an infrastructure based system because the current 

trends in industrial applications warrant the need for such a technology since it minimizes 

security concerns. We consider the system in which the electronics on the tracked asset 

act as a transmitter sending its own identity periodically, where the frequency varies 

depending on how often the application requires updated location information.  

Additionally, in the available works such as RADAR and HORUS, the effect of the 

number of receivers on location accuracy is not discussed and analytical justification is 

not included. By contrast, in the proposed work, we analytically prove that accuracy 

improves with the number of receivers even though this may be costly.  Therefore, we 

show that use of frequency diversity minimizes the cost while achieving better location 

accuracy. 

A major challenge facing WLAN location determination is the dynamic nature of 

received signal strength and its wide variation with changes in the environment due to 

fading, shadowing etc. [10]. The factors include both small-scale and temporal effects, 

and such variation puts a limit on the achievable accuracy of the location determination 

system. The developers of HORUS suggest a small scale compensation method [11] 

based on observing the determined location of each object and perturbing the signal 

strength vector to better suit a reference location.  However, there are several issues with 
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such an approach applied to an infrastructure based system. First, the object has to be 

located either continuously or often, to detect unexpected changes in location. 

Unfortunately, tags attached to assets for tracking in manufacturing shop floor 

environments are often energy-constrained and cannot transmit frequently [12] making 

the perturbation based continuous tracking unfeasible. Second, the suggested perturbation 

technique is not based on any true physics of radio communication. Finally, the 

computational overhead due to the perturbation technique is significantly high. By 

contrast, a novel approach based on frequency diversity and modified selection 

combining is introduced in order to overcome the above limitations. 

Diversity has been a well-researched topic in the field of communications with the 

view of combating fading.  It involves combining of multiple uncorrelated signal 

envelopes in order to obtain a signal with a higher signal to noise ratio (SNR).  Several 

methods for signal combining have been developed [13] targeting SNR improvement. For 

location determination, achieving higher SNR does not necessarily result in better 

accuracy unless consistent received signal strength is achieved.   

In the proposed work, it is demonstrated that frequency diversity can be employed to 

effectively reduce the variation in received signal strength values and as a result, 

improved accuracy is achieved in location determination. A new metric for selection 

combining is introduced and shown to reduce variance in signal strength when used with 

frequency diversity. The combination of frequency diversity with selection combining is 

shown to enhance the location accuracy of objects or assets.   

The impact of number of receivers on location accuracy is analyzed and it is 

shown that diversity techniques provide an efficient alternative for compensation of small 
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scale and temporal variations and thus locating objects accurately. It is also presented 

that, for a given number of receivers, a system using frequency diversity with the 

proposed selection combining will perform better than a system without diversity.   

Experimental results from hardware verification by using wireless UMR motes 

demonstrate highly satisfactory results, validating our theoretical conjecture. 

The paper is organized as follows. Section II presents the background on 

frequency diversity. Section III presents the proposed methodology, analytical results, 

and the implementation. Section IV presents and discusses hardware results. Section V 

concludes the paper and discusses paths for future work. 
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II. BACKGROUND 

In order to proceed, the following definitions are required.  Subsequently, an 

overview of frequency diversity is discussed. 

A. Definitions 

RSSI (Received Signal Strength Indication): The average received signal strength 

at a given receiver during the reception of a packet, expressed in dBm, is known as RSSI.  

Diversity: The use of multiple signal sources in order to improve the quality of the 

received signal is known as diversity. The different signal sources are referred to as 

diversity branches. 

Frequency Diversity: When a signal is transmitted on multiple frequency channels 

and received on multiple channels by using a single antenna, the diversity created is 

called Frequency Diversity. 

Uncorrelated fading envelopes: When a diversity scheme is capable of ensuring 

minimal correlation between the received signal strength values from multiple input 

signal sources (multiple channels in case of frequency diversity), such a scheme is said to 

result in uncorrelated fading envelopes. When the input channels in a diversity scheme 

are uncorrelated, effective mitigation of fading can be accomplished. 

Selection Combining: The method of selecting one out of multiple signal sources 

in a diversity scheme by using SNR (select the one with higher SNR) as a criterion is 

known as Selection Combining. 

In the proposed approach, the SNR criterion is replaced by RSSI (select the one with 

higher RSSI) since RSSI, and not SNR, is a representative function of transmitter 

location. 
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B. Overview of Frequency Diversity 

There are three kinds of variations in signal strength: large-scale, small-scale, and 

temporal variations [8]. Location determination based on RSSI is dependent on large-

scale variations of signal strength with distance, since this allows distinction between 

different locations. Small-scale variations in signal strength are caused by asset 

movements on the order of a fraction of a wavelength and are detrimental to accuracy in 

location determination. Additionally, temporal variations happen over time due to human 

and other activities, and environmental changes.  In other words, location determination 

error due to both small-scale and temporal variations is caused by destructive fading 

occurring at the receiver from multiple paths. To combat such fading of wireless signals, 

multiple uncorrelated fading channels (multiple frequency channels) are employed at 

each receiver.  

Motivation for use of diversity techniques stems from the fact that the probability 

of simultaneous deep fading occurring on two uncorrelated fading envelopes (in our case, 

resulting from frequency diversity) is much lower than the probability of a deep fade 

occurring on a single branch system [15]. Thus, employing a new selection combining 

approach on top of any diversity technique, which assures sufficiently uncorrelated 

channels, will reduce the variance in signal strength owing to small scale factors, which 

appears to be the major source of location determination errors.  

The normalized correlation coefficient ( )fρ ∆ between the two fading envelopes 

from the input sources provided by frequency diversity (two separate frequency channels) 

is expressed as a function of frequency separation f∆ [16] as 

( )( )
1

2 2( ) 1 2f T fρ π
−

∆ ≅ + ∆         (44) 
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where f∆  is the separation between the two frequency channels in use, and T is the 

maximum delay spread of the environment. For a typical indoor environment, at a carrier 

frequency of 2.4 Ghz, the delay spread is shown to be of the order of 10 to 50 ns and 50 

to 100 ns for typical indoor environment for Line-of-sight (LOS) and Non-line-of-sight 

(NLOS) environments respectively in literature [17]. For LOS situations, the LOS path is 

dominant and ensures that small scale and temporal variations do not affect signal 

strength. Hence, we take the value of 50 ns as representative of the worst case NLOS 

situations, for which case we propose the frequency diversity approach, since it can be 

seen that the lower the delay spread, the higher the correlation between the two fading 

envelopes.  

In commercially deployable 802.11 systems for location determination using three 

non-overlapping channels of the 11 available channels, the maximum frequency channel 

separation available is 50 MHz. In the 802.15.4 physical layer specification used in the 

testing, the maximum value available is 55MHz. This realistic value is used so that 

results from the work are applicable to 802.11 networks as well, and provide an upper 

limit benchmark since the frequency separation of 55 MHz is higher than available in the 

802.11 case. For this value of frequency separation, we can see from (1) that the 

normalized correlation coefficient ( )fρ ∆ is 0.0578.  

While this is theoretically sufficient to ensure uncorrelated fading envelopes on 

the signals from the two frequency channels, the correlation value is almost twice for a 

spatial diversity scheme involving an antenna separation of 2λ  [18]. Further, work in 

[19] indicates that the true correlation is often higher than the expected theoretical value. 

Hence, we can expect that while theoretically, a separation of 55 MHz is sufficient for 
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uncorrelated fading envelopes, practically, there still might be a fair degree of correlation 

and the accuracy improvement may not be as significant as seen with the spatial diversity 

scheme. 

In the proposed work, two channels with frequency separation of 55 MHz are 

used to ensure uncorrelated fading channels. Section III shows how the proposed 

selection combining, employed with a two-branch diversity system, affects variation in 

received signal strength and lowers this variation. Consequently, it will be proven that 

reduced variance in signal strength renders improved location accuracy. 
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III. PROPOSED METHODOLOGY 

We prove that use of selection combining over two uncorrelated channels from 

frequency diversity results in reduction of variance in signal strength if the selection 

combining is performed by using an appropriate metric and in an adequate manner. 

Alternatively, it is demonstrated that an increase in the number of receivers can further 

enhance accuracy but at an increased cost. Actual implementation details of frequency 

diversity are given. RSSI values from the transmitter are used to arrive at an estimate of 

its location. An asset location tracking system is developed to determine whether the 

located asset is moving or stationary. Averaging of consecutive estimated locations of the 

transmitter is performed to improve location accuracy. For mobile assets, a prediction 

scheme is developed to identify future location of the asset for tracking applications.  

First, the source of errors in locating objects is discussed. 

A. Source of Location Determination Errors  

The location determination error in a probabilistic system is characterized in [18] 

in terms of probability distribution functions (PDF) of RSSI at each receiver from each 

reference grid location. For a system with k receivers trying to identify whether the 

transmission is originating from one of the two locations A and B , [18] derives the 

probability
A B

k
P

→

of wrongly identifying a transmission from location A as if it is coming 

from location B  is 

1 1

( ) ( )
k k

A B i i i i

k A A B A

i i

P P f S f S
→

= =

 
= < 

 
∏ ∏        (1) 

where
i

A
S  is the RSSI observed at receiver i  from location A , 

i

A
f  is the PDF of RSSI observed 
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at receiver i  from location A , ( )i i

A A
f S  is the value of the PDF 

i

A
f at the RSSI value 

i

A
S , 

i

B
f  is 

the PDF of RSSI observed at receiver i  from location B , and ( )i i

B A
f S  is the value of the PDF 

i

B
f  at the RSSI value 

i

A
S . Equation (1) quantifies probability of erroneous identification in a 

probabilistic location determination system. This equation helps in further analysis of the location 

error with and without frequency diversity and to understand the impact of number of receivers 

on the location accuracy, which are presented in subsequent sections. Next we present analytical 

results with our proposed scheme where we demonstrate that frequency diversity enhances 

location accuracy and minimizes error. 

B. Frequency Diversity and Location Determination 

Lemma.3.1 (Variance Reduction with Frequency Diversity): For an indoor 

transmitter and receiver location pair with Rayleigh distribution of signal strength and 

frequency diversity, the variance in the signal strength distribution is reduced when the 

proposed selection combining approach with highest RSSI being the criterion is 

employed on two uncorrelated fading envelopes, compared with using a single input 

source. 

Proof:  It is shown in [18] that application of selection combining with selection 

of highest instantaneous RSSI from the two uncorrelated fading envelopes resulting from 

spatial diversity results in a reduction of variance in the RSSI distribution for a receiver-

transmitter location pair by a factor of 13% compared to the single branch case. Since the 

use of frequency diversity is shown here to result in uncorrelated fading envelopes as is 

the case for spatial diversity, the proof follows exactly the same for frequency diversity 

as well.          � 
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Theorem 3.1 (Improved Location Determination with Frequency Diversity): For a 

given number of receivers, use of frequency diversity renders improved location accuracy 

for a pre-profiling based probabilistic WLAN location determination system.  

Proof: Lemma 3.1 indicates that the proposed method of selection combining of 

two uncorrelated input sources from the application of frequency diversity reduces the 

variance of the received signal strength distributions. On the other hand, it is proven in 

[18] that reduction of variance in RSSI distributions from spatial diversity results in 

reduced location error. In case of frequency diversity also, it is indicated that the same 

level of variance reduction occurs. Therefore, frequency diversity reduces location 

determination error.  Hence, it is shown that by using frequency diversity, the accuracy of 

determining location of an asset equipped with a transmitter is enhanced similar to the 

case of spatial diversity.            � 

Next we present how increasing the number of receivers will indeed enhance the 

location accuracy. 

C. Number of Receivers 

Theorem 3.2 (Location Accuracy with Number of Receivers): For a pre-profiled 

signal strength based probabilistic WLAN location determination system, the location 

accuracy with k+1 receivers is better than the location accuracy with k  receivers for all 

0k > . 

Proof: Analytical work in [18] shows that increasing the number of receivers 

always results in equal or better location determination accuracy. The case of 

1k + receivers is considered and shown to yield equal or lower location determination 

error compared to the case of k receivers for all 0k > . The proof applies in our case since 
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the same location determination system is considered for enhancement by addition of 

frequency diversity.          � 

The theorems presented above show that the accuracy improves both with 

frequency diversity and increasing the number of receivers.  Next, the proposed location 

determination schemes are introduced, which are built upon the known schemes, 

deterministic and probabilistic methods, from the literature. 

D. Location Determination Algorithm  

Both probabilistic and deterministic techniques from the literature are evaluated 

with and without frequency diversity. Further, the application of diversity and proposed 

method of selection combining on top of either technique is discussed.  

1) Probabilistic technique 

A simplified version of HORUS [8], which is a probabilistic technique, is 

considered in this work. A grid is constructed to provide reference points, the coordinates 

of which are measured and recorded for mapping RSSI values to the location. The 

technique begins with an offline phase where the grid points are profiled and the signal 

strength distributions from each reference point at each receiver are parameterized and 

stored as the mean and variance. The process is detailed in [18]. 

Location determination is accomplished in the online phase by using the mapping 

constructed from the offline phase. The coordinates of the four reference locations with 

the highest probabilities of resulting in the obtained signal strength values are multiplied 

with the corresponding probabilities and a weighted averaging is performed to obtain the 

location estimate. This process is based on the center-of-mass technique [24]. Four 

locations are used since any point is enclosed by a square with four closest neighbors. 
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2) Deterministic technique 

The first step in the deterministic technique [7] also involves construction of a 

reference grid and generating coordinates of reference grid points. In the offline phase, 

RSSI signature vectors are collected from all reference grid points at different times in a 

day and during the week. These different profiles are used to arrive at the average signal 

strength value from each reference point on the grid at each receiver. In the online phase, 

a signal strength vector is constructed from the RSSI values observed from a transmitter 

at each of the receivers. The Euclidean distance from this vector to each of the averaged 

profile entries is taken. The coordinates of the four reference points with the lowest 

Euclidean distance from their RSSI vectors recorded in the offline phase to the measured 

RSSI vector in the online phase are averaged to provide the location estimate. 

3) Diversity and combining 

There are two methods of implementing the proposed method of selection 

combining and frequency diversity using the probabilistic and deterministic schemes. It 

can be implemented on the hardware level using a time-based channel switching scheme 

where the receiver and the transmitter operate in one frequency channel for half of the 

time and another frequency channel for the rest as shown in Fig. 1(a). A second method of 

implementation would be at the software level, where two co-located receiver units 

operating at separate frequency channels are used and the higher RSSI value is selected 

while processing as shown in Fig. 1(b). We use the former implementation in our testbed 

as it is much easier to implement, uses fewer hardware components, and is representative 

of a real-life cost-effective implementation.  
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Fig. 1. (a) Timer-based implementation of frequency diversity and proposed selection 

combining approach (b) dual receiver implementation 

 

 

In the location determination without using diversity, only RSSI values from one 

frequency channel from each pair is used in analysis, in both the online and offline stage.  

By contrast, in using the system with diversity applied, for each transmitter, the 

maximum of the two previously received RSSI values on each frequency channel is used 

in both stages. This selection is applied at the software level before using the RSSI values 

for processing in both online and offline stages. Thus, the location determination 

algorithm becomes a higher layer of processing when the combining layer is added as 

shown in Fig. 2. 

 

 

 

Fig. 2. Layered representation of the proposed method of selection combining 
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E. Location Update Rate and Power Consumption 

Let us consider a normal location determination system not employing any kind 

of diversity. In this case, to maintain a location update rate of P per hour, the transmitter 

has to transmit only P times in an hour since the receivers are always available. Now, let 

us consider that the system utilizes spatial diversity of order n ( n spatially diverse 

antennas per receiver) but with individual receivers at each antenna or with one receiver 

and RSSI monitoring at each antenna and persistent instantaneous switching to the 

antenna with highest RSSI at all times. To maintain the same location update rate P in 

this case, every transmission from the transmitter must be recorded at each of the 

spatially diverse antennas. But since each spatially diverse antenna in this case is 

equipped with a separate receiver or RSSI monitoring, the transmitter needs to maintain 

only a transmission rate of P transmissions per hour.  

In a real life scenario, the instantaneous RSSI monitoring at each antenna is not 

feasible, hence in the single receiver case, the receiver would be forced to implement a 

round-robin switching between the antennas based on timers to implement spatial 

diversity. In such case, to maintain an update rate of P updates per hour, the transmitter 

will need to transmit n P• times per hour. A similar analysis can be performed for 

frequency diversity implementations. Let us consider frequency diversity of order 

n ( n frequency channels). First, we consider the case where n separate co-located 

receivers reside in the n frequency channels.  

To result in one location update, the transmitter will now need to transmit n times, 

once in each channel. Similarly, to maintain an update rate of P per hour, the transmitter 

will need to make a total of n P• transmissions per hour, P in each frequency channel. 
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Now, we use a single receiver switching between the n frequency channels. In this case, 

to result in one location update, a transmission from the transmitter has to be received by 

the receiver in each frequency channel. When a transmission is being made in a particular 

frequency channel i , the probability of the receiver being in that channel is given by1 n . 

Therefore, on the average, n transmissions need to be made in each channel to ensure 

reception. To complete a location update, reception must be ensured in all n frequency 

channels, hence 2
n  transmissions must be made in total to result in one location update. 

Extending, to maintain a location update rate of P per hour, 2
n P• transmissions need to 

be made per hour. The above analysis is carried forward into a derivation for power 

consumption by the transmitter based on the type of diversity used, the type of 

implementation, the length of data packets, the required update rate, and other related 

variables. 

We define the following variables for the power consumption analysis. 

� P = Required location update rate in the system (no. of transmissions per hour) 

� b = Bits per packet. 

� R = medium communication rate (bps) 

� 
t

P = Power consumed while transmitting. 

� 
s

P = Power consumed in standby/sleep mode 

� n = Order of spatial / frequency diversity employed J = Initial energy of 

transmitter battery (Joules) 

The transmission time in seconds per hour n

t
T  for a transmitter in a non-diversity 

system or a spatial diversity system with individual receivers per antenna or RSSI 

monitoring per antenna for a location update rate of P is given as  
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n

t

P b
T

R

•
=           (2) 

For the spatial diversity system with one receiver switching between the antennas 

or the frequency diversity system with individual receivers assigned to each channel, the 

transmission time in seconds per hour s

t
T can be given as  

s

t

P b n
T

R

• •
=          (3) 

Similarly, for a frequency diversity system with one receiver switching between 

the frequency channels, the transmission time in seconds per hour f

t
T is given as 

2
f

t

P b n
T

R

• •
=          (4) 

Generally, in each case, the standby time of the transmitter in seconds per hour 

s
T is given as  

3600
s t

T T= −          (5) 

where 
t

T  can be substituted with n

t
T , s

t
T  or f

t
T depending on the system configuration. In 

continuation, the power consumed in Watts W can be given as  

3600

t t s s
T P T P

W
• + •

=          (6) 

From the initial available energy in the battery, the lifetime of the battery L in 

seconds of operation can be calculated as 

/L J W=           (7) 

It can be deduced that transmission power levels will be much higher than 

standby / sleep power levels. Further, frequency diversity implementation with a single 

receiver switching between channels has n times the transmission rate of spatial diversity 



 

 

75

implementation with a single receiver switching between antennas; it can be seen that 

power consumption will be much higher for the former. The magnitude of the difference 

will depend on the number of channels in use. Detailed calculation results for power 

consumption analysis based on realistic variable values are presented in Section IV. 

F. Tracking, Averaging and Prediction 

The two-step motion detection process detailed in [18] is used here. Irrespective 

of whether diversity is used and which diversity technique is employed, the technique 

renders itself applicable to location determination in general. The process involves 

recording cumulative motion in x and y directions over short time intervals, and 

averaging these cumulative motion values over a larger time interval to detect directed 

motion. The developed trend values can be used to estimate a trend of asset movement as 

well. Since the algorithm is independent of diversity, the process follows the motion 

detection detailed in [18]. 

The method for averaging located coordinates from [18] is also used here to 

improve accuracy. The process includes a small time-scale averaging of x and y 

coordinates to compensate scattering due to temporal variations in the channel and a 

larger time-scale averaging of the averaged values for improved location accuracy. The 

averaging results in a higher accuracy in location reporting but at the cost of delayed 

location reporting. The averaging follows the process detailed in [18]. 

Further, the movement trend evolved from the motion detection algorithm and the 

averaged location estimate are combined to evolve an estimate for current location, at a 

better accuracy level than the non-averaging based system, while compensating for the 

additional delay introduced by averaging. Further, the same technique can be extended to 
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predicting future locations based on the estimated current location and the motion trend. 

This trending and prediction scheme follows the work in [18]. 

Accuracy of the motion detection, tracking and prediction schemes is discussed in 

Section IV for stationary and moving targets for probabilistic and deterministic methods 

with and without applying frequency diversity. 
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IV. EXPERIMENTAL RESULTS AND ANALYSIS 

First, we discuss the test bed followed by the results and analysis. 

A. Testbed and Implementation 

All experiments were conducted using G4-SSN motes developed at UMR, shown 

in Fig. 3. They have been used in prior work relating to wireless sensor networks [21], 

[22].  

 

 

 

Fig. 3. UMR G4-SSN embedded wireless sensor networking platform 

 

 

The wireless platform chosen was IEEE 802.15.4. All nodes are equipped with 

XBee pro radios from Maxstream [23]  with 18 dBm of transmit power. With reference to 

frequency diversity, the XBee pro radios support 12 non-overlapping channels, where 
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each channel is separated by 5 MHz from the next one. Thus, we obtain a maximum 

frequency deviation of 55 MHz which is shown to be adequate in Section II B. Further, 

the XBee pro allows quick switching of channels by simply issuing a ‘channel switch’ 

command from the microcontroller. In the testbed, the transmitter is made to switch every 

100 milliseconds while the receivers switch between the channels every 500 

milliseconds. The transmission interval must be an odd multiple of the transmitter 

switching interval to ensure that alternate transmissions occur from alternate channels. In 

addition, the transmission rate in the diversity case has to be higher than in the non-

diversity case to maintain the same location update rate in the system. This will be 

evolved in Section IV. C and the implications on transmitter power consumption will be 

dealt with. 

Two floors of the Engineering Research Laboratory (ERL) building were used for 

the purpose of testing location accuracy. Only corridors were used in the evaluation. A 

total of 133 points were marked as reference grid points in a total 3624 sq. ft. of corridor 

area. Further, 44 test points are marked as off-grid points for accuracy evaluation. The 

offline training phase for both deterministic and probabilistic methods involves profiling 

from the 133 reference grid points. For testing accuracy, transmissions from the 44 off-

grid test points are attempted to be located. Five receivers are used in the system, two on 

the third floor and three on the second floor.  The floor plans of the ERL are given in Fig. 

4 andFig. 5 and the positions of receivers are marked with circled squares. 

 



 

 

79

 

Fig. 4. Floor plan of ERL third floor. Receiver pair positions are marked with circled 

squares 

 

 

 

Fig. 5. Floor plan of ERL second floor. Receiver pair positions are marked with circled 

squares 
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B. Algorithm Pseudocode 

The pseudocode for probabilistic location determination is presented in Table I 

and the pseudocode for deterministic location determination is given in Table II.  

 

 

 

Table I Pseudocode for probabilistic location determination 

RSSI Signature vector received 

for all reference points, do 

   Calculate probability of receiving given RSSI vector from location 

end for 

Sort list of points in descending order of probability 

Weight the coordinates with their respective probabilities 

Return mean of weighted coordinates of best four reference points 

end 

 

 

 

Table II Pseudocode for deterministic location determination 

RSSI Signature vector received 

for all reference points, do 

   Calculate Euclidean distance between profiled average SS vector 
and received RSS vector 

end for 

Sort list of points in ascending order of Euclidean distance 

Return mean of coordinates of best four reference points 

end 

 

 

C. Asset Location Tracking and Averaging 

For evaluating the location tracking and averaging system, a continuous path is 

set up on the second floor of ERL including 96 points each 27 inches apart from the 
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previous point. The path consists of three linear sections separated by two corners to 

introduce non-linear path into the accuracy evaluation. The transmitter is allowed to 

move along this path and made to transmit at the marked points at one second intervals. 

The averaging, tracking, and prediction algorithms are executed on the obtained 

consecutive location coordinates. The accuracy results are discussed next.  

D. Results and Analysis 

Now the results are given followed by the analysis 

1) Frequency and spatial diversity and location determination accuracy 

Hardware results are classified into two scenarios based on the application of 

probabilistic and deterministic techniques. The mean accuracy in each case is plotted 

against the number of receivers used in the analysis. Accuracy without applying the 

diversity technique is compared with accuracy when spatial and frequency diversities are 

employed. In each case, the cumulative distribution function of the location error is also 

presented with and without applying diversity. Finally, four sample offgrid points from 

the testing data set are taken and determined locations in each case are provided using 

either technique without diversity, with spatial diversity, and with frequency diversity. A 

summary table is also included providing mean, median, and 90
th

 percentile accuracy 

levels for each case. Finally, the two techniques are compared and improvement in 

accuracy due to introduction of frequency and spatial diversity is demonstrated and 

evaluated. 

It can be seen from Fig. 6(a) that use of spatial or frequency diversity outperforms 

the single branch case consistently. For 40 % of the time, frequency diversity provides 

lower error than spatial diversity also, but its worst case error performance is low, around 
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the same level as the single branch case. Fig. 6 (b) shows that improvement from the use 

of diversity is consistent irrespective of the number of receivers in use; and the accuracy 

in the frequency diversity case is clearly seen to be between the single branch and spatial 

diversity cases. Further, with an increase in the number of receivers, the mean location 

error decreases from 178 to 87 inches, 170 to 78 inches and from 128 to 60 inches in the 

single branch case, frequency diversity case, and the spatial diversity case, respectively. 
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Fig. 6. Deterministic technique (a) cumulative distribution function of location error (b) 

location error as a function of number of receivers 

 

 

For the probabilistic method, a similar trend can be observed again. While 

frequency diversity performs better than or almost as good as spatial diversity, the worst 

case error shoots up to meet the values in the single branch case. Both diversity 

techniques outperform the single branch case here as well as indicated in Fig. 7(a).  On 

the other hand, Fig. 7 (b) presents the reduction in mean error with the number of 

receivers both with and without diversity. Frequency diversity once again performs 
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between the single branch case and the spatial diversity case.  Diversity techniques are 

seen to result in substantial accuracy improvement. For instance, with five receivers in 

the system, the mean errors are 95, 78, and 64 inches in the single branch case, the 

frequency diversity case, and the spatial diversity case, respectively. 
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Fig. 7. Probabilistic technique - (a) cumulative distribution function of location error (b) 

location error as a function of number of receivers 

 

 

Table III presents location results for four points in the profiling. In general, 

frequency diversity based location estimation is closer to the actual location compared to 

the single branch case, but is not as accurate as the spatial diversity case.  

Table IV presents the summary of accuracy levels in all cases. Mean, median, and 

90
th

 percentile levels of location error are presented. It is seen that frequency diversity on 

the average results in a reduction of 20% in location error while spatial diversity is able to 

reduce it by an additional 20% to 22% over frequency diversity. Performance of 

frequency diversity is seen to lie between that of the single branch case and the spatial 
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diversity case. This can be explained by the higher level of correlation between the signal 

sources as derived in Section II A. 

 

 

Table III: Performance comparison with and without diversity and number of receivers 

 

 

Point 1 Point 2 Point 3 Point 4 

x y x y x y x y 

True coordinates 1121.5 366.1 1152.5 451.1 199.4 748.1 1121.7 633.0 

Probabilistic  

single branch 
1147.2 548.0 1137.4 150.7 232.4 726.9 1123.5 465.6 

Probabilistic  

spatial diversity 
1134.3 321.8 1152.3 386.3 233.3 745.2 1130.1 531.1 

Probabilistic  

frequency diversity 
1137.4 489.6 1146.3 375.2 223.7 702.2 1125.4 506.4 

Deterministic 

single branch 
1149.2 336.0 1155.1 493.3 240.3 737.6 1134.8 490.3 

Deterministic 

spatial diversity 
1145.2 340.6 1148.0 491.4 204.2 730.7 1144.7 543.7 

Deterministic  

frequency diversity 
1143.1 330.9 1142.3 432.2 228.1 732.2 1138.1 601.4 

 

 

Table IV: Summary of location determination error levels  

  
Probabilistic 

Technique 

Deterministic 

Technique 

Mean error 

(inches) 

Single 

Branch 
93.2 87.2 

Spatial 

Diversity 
63.4 60.3 

Frequency 

Diversity 
77.36 78.43 

Median error 

(inches) 

Single 

Branch 
73.9 64.2 

Spatial 

Diversity 
64.2 52.5 

Frequency 

Diversity 
57.0 57.2 

90
th

 percentile 

error (inches) 

Single 

Branch 
205.3 200.4 

Spatial 

Diversity 
165.7 116.2 

Frequency 

Diversity 
172.0 169.2 
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2) Location update rate and power consumption 

In order to analyze the battery lifetime variation with the different configurations, 

we use the following realistic values for the variables. P  (update interval) = (1 sec, 15 

sec, 1 minute, 1 hour, 4 hours), b (bits per packet) =  256 bits, R (data rate) = 250 kbps, 

t
P  (transmission power) = 500 mW, 

s
P (standby / sleep power) = 0.05 mW, n (number of 

channels) = (2,11), J (available energy at start) = 30 KJ. Fig. 8 gives the battery lifetime 

statistics for different levels of diversity with the above parameters. 

It can be seen from Fig. 8 that the system with frequency diversity performs worst 

in terms of battery lifetime. While in the normal system, a transmitter can have almost 

two years of life with a one second transmit interval, use of diversity schemes reduces the 

life to one year for the two branch case and to almost zero for the eleven-branch case.  
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Fig. 8. Battery lifetime vs. location update interval 
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The gap between spatial and frequency diversity can be seen to grow with the 

order of diversity employed. When eleven channels are employed, even with an update 

interval of four hours, the frequency diversity system with timer-based channel switching 

still falls three years short on life. It has been shown that with an ideal battery (no 

degradation other than charge depletion due to usage), a transmitter can last as long as 18 

years even with use of diversity, with a location update rate of once every four hours. 

3) Location tracking, averaging and prediction 

The motion detection algorithm works extremely well and it is able to detect 

moving assets 99% of the time. After testing with a stationary asset, the algorithm reports 

a false alarm of only 2%. The algorithm is tested with both the probabilistic and 

deterministic techniques, with and without applying diversity. The results are shown in 

Fig. 9. 

Further, we evaluate the accuracy of the averaged location, the estimate of the 

current location and the predicted location one second into the future. It is seen that for a 

mobile asset, the accuracy of the averaged coordinate is much better than the calculated 

location based on a single set of RSSI values. Even the estimate of current location based 

on averaging and motion trending appears to be better than the non-averaged RSSI 

locations. The predicted location one second into the future is on the average as accurate 

as the single set RSSI location, and considering that this is a prediction, the values are 

reasonable. The mean accuracy levels in inches are shown in Fig. 10 and Fig. 11. 
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Fig. 9. Successful detection of mobile and stationary assets 
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Fig. 10. Accuracy levels of averaging and prediction techniques for mobile assets             

(Deterministic technique) 
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Fig. 11. Accuracy levels of averaging and prediction techniques for mobile assets 

(Probabilistic technique). 
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V. CONCLUSIONS 

It is observed that while frequency diversity with the proposed method of 

selection combining is effective in improving accuracy in both probabilistic and 

deterministic location determination schemes, the performance does not meet the 

improvement resulting from spatial diversity. Implementation of frequency diversity is 

cheaper since it does not require any additional hardware. Comparing against the increase 

in the number of location sensors, which resulted in improved accuracy, the use of 

frequency diversity is suggested to affect drastic improvements in accuracy without 

adding any cost to the system. In fact, improvement of 18 – 23% in average location error 

is noticed from introduction of frequency diversity alone.  

Motion detection, averaging, and prediction techniques are developed and 

implemented. Substantial accuracy improvements are seen as a result of addition of these 

methods as well, over and above the improvements from frequency diversity. Further, 

detailed analysis of power consumption for single branch, spatial diversity, and frequency 

diversity based systems show that frequency diversity significantly reduces battery 

lifetime on the transmitter. Hence, in selecting frequency or spatial diversity for a 

location determination system, a compromise must be evolved between battery life, 

location accuracy, and increased hardware cost. 



 

 

90

REFERENCES 

[1] Priyantha, N. B., Chakraborty, A., and Balakrishnan, H. 2000. “The Cricket 

location-support system,” Proceedings of the 6th Annual international Conference 

on Mobile Computing and Networking (Boston, Massachusetts, United States, 

August 06 - 11, 2000). MobiCom '00. ACM Press, New York, NY, 32-43. 

[2] Want, R., Hopper, A., Falcão, V., and Gibbons, J. 1992. “The active badge 

location system,” ACM Trans Inf. Syst. 10, 1 (January 1992), 91-102.  

[3] Hightower, J., and Borriello, G. "Location systems for ubiquitous computing," 

Computer, vol.34, no.8pp.57-66, August 2001. 

[4] Zeimpekis, V., Giaglis, G. M., and Lekakos, G. 2002. “A taxonomy of indoor and 

outdoor positioning techniques for mobile location services”, SIGecom Exch. 3, 4 

(December 2002), 19-27. 

[5] Li, X., and Pahlavan, K., "Super-resolution TOA estimation with diversity for 

indoor geolocation," IEEE Transactions on Wireless Communications, vol.3, 

no.1pp. 224- 234, January 2004. 

[6] Caffery, J.J., and Stuber, G.L. "Overview of radiolocation in CDMA cellular 

systems," IEEE Communications Magazine, vol.36, no.4pp.38-45, April 1998. 

[7] Bahl, P., and Padmanabhan, V.N. "RADAR: an in-building RF-based user location 

and tracking system", Proceedings of the IEEE Nineteenth Annual Joint 

Conference of Computer and Communications Societies, INFOCOM 2000 , vol.2, 

pp.775-784, 2000. 

 



 

 

91

[8] Youssef, M., and Agrawala, A.  “The Horus WLAN location determination 

system,” Proceedings of the 3rd international Conference on Mobile Systems, 

Applications, and Services (Seattle, Washington, June 06 - 08, 2005). MobiSys '05. 

ACM Press, New York, NY, 205-218. 

[9] Ganu, S., Krishnakumar, A.S., and Krishnan, P. "Infrastructure-based location 

estimation in WLAN," Proc. of the Wireless Communications and Networking 

Conference, vol.1, no.pp. 465- 470 vol.1, 21-25 March 2004. 

[10] Kaemarungsi, K., Krishnamurthy, P. "Properties of indoor received signal strength 

for WLAN location fingerprinting," Proc. of the First Annual International 

Conference on Mobile and Ubiquitous Systems: Networking and Services, 

(MOBIQUITOUS 2004), vol., no.pp. 14- 23, August 2004 

[11] Youssef, M., and Agrawala, A. "Small-scale compensation for WLAN location 

determination systems," Proc. of the IEEE Wireless Communications and 

Networking, 2003 , vol.3, no.pp. 1974- 1978 vol.3, March 2003. 

[12] Aeroscout Enterprise Visibility Solutions., “http://www.aeroscout.com” 

[13] Eng, T., Ning, K., Milstein, L.B. "Comparison of diversity combining techniques 

for Rayleigh-fading channels," IEEE Transactions on Communications, vol.44, 

no.9, pp.1117-1129, September 1996. 

[14] Youssef, M., and Agrawala, A. “On the Optimality of WLAN Location 

Determination Systems”, Technical Report UMIACS-TR 2003-29 and CS-TR 

4459, University of Maryland, College Park, March 2003. 



 

 

92

[15] Parsons, J.D., Henze, M.. Ratliff, P.A., and Withers, M.J. "Diversity techniques for 

mobile radio reception," IEEE Transactions on Vehicular Technology, vol.25, 

no.3,pp. 75- 85, August 1976. 

[16] Clarke. R.H., “A statistical theory of mobile radio reception,” Journal of Bell Syst. 

Tech., vol. 47, no. 6, pp. 957-1000, July-August 1968 

[17] Zepernick, H.-J., Wysocki, T.A. "Multipath channel parameters for the indoor 

radio at 2.4 GHz ISM band," Vehicular Technology Conference, 1999 IEEE 49th , 

vol.1, no.pp.190-193 vol.1, July 1999 

[18] Ramachandran A., and Jagannathan, S., “Accuracy Improvement Using Spatial 

Diversity for Signal Strength based WLAN Location Determination Systems,” 

Internal Reports, Embedded Systems and Networking Laboratory, Department of 

Electrical and Computer Engineering, University of Missouri – Rolla, September 

2006. 

[19] Corazza, G.E., Degli-Esposti, V., Frullone, M.; Riva, G. "A characterization of 

indoor space and frequency diversity by ray-tracing modeling," , IEEE Journal on 

Selected Areas in Communications, vol.14, no.3pp.411-419, April 1996 

[20] Saleh, A., Valenzuela, R. "A Statistical Model for Indoor Multipath Propagation," 

IEEE Journal on Selected Areas in Communications, vol.5, no.2, pp. 128- 137, 

February 1987 

[21] Hayter, A.J. Probability and Statistics for Engineers and Scientists, PWS 

Publishing Company, Boston, 1996. 

 



 

 

93

[22] Fonda, J., Zawodniok, M., Jagannathan, S., and Watkins, S.E. “Adaptive 

Distributed Fair Scheduling and Its Implementation in Wireless Sensor Networks,”  

Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, pp. 

3382-3387, October 2006. 

[23] Fonda, J., Zawodniok, M., Jagannathan, S., and Watkins, S.E. “Development and 

Implementation of Optimized Energy-Delay Sub-network Routing Protocol for 

Wireless Sensor Networks,” Proc. of the IEEE International Symposium on 

Intelligent Control, pp. 119-124, Oct 2006. 

[24] Maxstream XBee and XBee pro OEM RF modules., http://www.maxstream.net. 

[25] Youssef, M., and Agrawala, A. "Continuous space estimation for WLAN location 

determination systems," Proceedings of the 13th International Conference on 

Computer Communications and Networks, 2004. ICCCN 200., vol., pp. 161- 166, 

October 2004. 

[26] Bahl, P., Balachandran, A., Padmanabhan,V. N. "Enhancements to the RADAR 

User Location and Tracking System," Microsoft Research Technical Report, 

February 2000. 



 

 

94

VITA 

Anil Ramachandran was born in Pandalam, Kerala, India on March 27, 1983. He 

completed his Bachelor of Technology degree in Electronics and Communication from 

Cochin University of Science and Technology in May 2004. He joined University of 

Missouri-Rolla in Spring 2005 for a Master of Science program and received the degree 

in May 2007. 

 



 

 

95

 


	Diversity techniques for signal-strength based indoor location determination
	Recommended Citation

	Diversity techniques for signal-strength based indoor location determination Accuracy improvement using spatial diversity for signal strength based WLAN location determination systems. Diversity techniques for signal strength based indoor location determi

