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ABSTRACT 

 

The goal of this dissertation is to investigate electroosmotic flow (EOF) and electric field 

dynamics during capillary electrophoresis (CE) experiments using methods based on periodic 

photobleaching of fluorophores added to the separation buffer at nanomolar concentrations. The 

methods provide time resolved EOF and local electric field information during an experiment, 

which can be applied to fundamental studies to provide better understanding of CE techniques.  

The potential of the EOF monitoring method to improve CE migration reproducibility 

was investigated in Chapter 2. The EOF monitoring method and four other methods from the 

literature were applied to the same electrophoretic separations, and their performance for 

improving reproducibility was compared. The EOF monitoring method significantly improved 

migration reproducibility, in general; however, much simpler neutral marker method performed 

nearly well. 

Biological sample adsorption is a common cause of EOF variability and poor 

reproducibility for CE. In Chapter 3, the effects of biological samples on EOF dynamics were 

investigated. Model compounds representing major components of a biological cell and complex 

biological samples were introduced into the CE system while EOF was monitored continuously. 

Due to sample adsorption, EOF rates decreased and vacancy peak widths, used for EOF 

monitoring, increased. It was found that protein molecules had the greatest impact on EOF.

 Discontinuous solutions in a capillary (zones of different pH, ionic strength or 

composition) result in generation of different EOF and local electric fields down the length of the 

capillary. The EOF monitoring method was expanded by adding a charged marker (fluorescein), 

and this improved method was employed to investigate EOF dynamics and local electric field 

changes during CE with discontinuous solutions, which were generated by introducing a low 
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ionic strength buffer zone into the capillary. Faster EOF rates in the capillary and faster 

fluorescein electrophoretic velocities within the sample plug were observed due to high local 

electric field. Unexpected fluorescein concentration changes were observed during the 

experiments. These observations led to use of computer simulations in an attempt to understand 

and reproduce the electrophoresis results. The simulation results, which were obtained using 

Simul 5.0 indicated the experimental results are consistent with the CE theory. 
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CHAPTER 1 

INTRODUCTION  

 

1.1. Capillary Electrophoresis Reproducibility 

Capillary electrophoresis (CE) has become a well-established analytical separation 

technique, and several research groups have contributed to the development of this widely used 

method. In 1967, Hjerten developed rotating tube electrophoresis utilizing 1-3 mm internal 

diameter (i.d.) quartz capillaries and described the results in a report about free zone 

electrophoresis [1]. Later, Virtanen employed 0.2-0.5 mm i.d. glass capillaries with 

potentiometric detection [2], and Mikkers et al. reported rapid and highly efficient separations 

with a 0.2 mm i.d. Polytetrafluoroethylene (PTFE) narrow-bore tube and UV absorbance 

detection [3]. In 1981 Lukacs and Jorgenson employed 75 µm i.d. glass capillaries with 

fluorescence detection for amino acid and peptide separations [4]. This report is credited with 

introducing modern capillary electrophoresis to the scientific community and led to its 

widespread use.  

Capillary electrophoresis can be considered a hybrid separation technique combining 

aspects of gel electrophoresis separations in a planar format with the column format and 

detection approaches used for HPLC. In CE, analytes separate based on their electrophoretic 

mobilities under an applied electric field. Electrophoresis is a very common method for protein 

separations, but the separation medium is usually a slab gel. The basic mechanism for gel 

electrophoresis is related to the migration of different sized macromolecules through pores in the 

gel. The typical problems that occur when using gel electrophoresis such as Joule heating, 

quantification and long analysis times are greatly reduced when electrophoresis is carried out in a 

capillary [5-7]. The capillary employed for CE as a separation column typically has an inner 

diameter of 25-100 µm with two ends of the capillary placed in vials that contain buffered 
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aqueous solutions. The buffer solution also fills the capillary to provide a conductive separation 

medium. The vials house two electrodes, which are connected to a high voltage power supply to 

apply the electrophoretic potential as shown in Figure 1.1. 

 

 

 

Figure 1.1 Schematic showing components of a basic capillary electrophoresis system. 

 

Since the CE capillary has a high surface-to-volume ratio, problems associated with Joule 

heating are greatly reduced compared to gel electrophoresis. Additionally, the development of 

commercial CE instruments has included automation of sample handling and injection, which 

lessens total analysis times and improves reproducibility. Also, capillary array electrophoresis 

can further reduce total analysis times through parallel analysis of as many as 384 samples [5, 6, 

8]. Many aspects of CE separations, sampling and data treatment are similar to HPLC, including 

the figures of merit used for characterizing the separation and quantification of analytes.  
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Separation efficiency is directly related to plate height in chromatography. It can be 

represented by the van Deemter equation, which describes the relationship between plate height 

(H) and factors that affect it, as seen in Equation 1.1. One of the main differences and advantages 

of CE relative to HPLC is that there is no stationary phase for basic CE. As a result, two of the 

factors that cause band broadening and low separation efficiency in HPLC separations are 

eliminated. These factors are represented by the multiple path term (Ai), which is affected by the 

space between the packing material in the column and the mass transfer term (Cs), which is the 

time required for solutes to equilibrate between the stationary and mobile phase. The flat flow 

profile of electroosmotic flow (EOF) further reduces band broadening in CE. The plate height 

equation also takes into consideration the effects of longitudinal diffusion (B), mobile phase term 

(Cm) and the mobile phase flow rate (v). 

      
 

 
   

 

               
        (1.1) 

As seen from Equation 1.1, longitudinal diffusion is the only factor that should cause 

band broadening in CE because of the open tubular nature of the capillary and flat flow profile. 

This makes CE separations highly efficient with corresponding high peak capacities. 

Additionally, CE uses small injected sample volumes (typically 1-10 nL), which is important for 

volume-limited samples. 

Because of these advantages, CE has been applied to a broad range of scientific problems 

extending from biology to the environment [7, 9-11]. The most commonly used detection 

method for CE is UV absorbance. With this detection method, limits of detection (LOD) and 

limits of quantification (LOQ) in CE are generally higher (10
-5

-10
-6 

M) than for HPLC because 

of the relatively short optical path (50-100 µm) compared with HPLC (10 mm) [12]. There are 

several strategies used to improve detection limits for CE with UV absorbance detection, such as 
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sample stacking, using a bubble cell, increasing the capillary diameter and injection volume, and 

adjusting the detection wavelength to eliminate the background signal that is increased by the 

buffer’s absorbance [13]. In addition, the linear dynamic range of UV absorbance detection for 

CE is more restrictive than the range for HPLC because of the circular geometry of the capillary 

used for detection, which increases scattered light.  

The LODs in CE are better for fluorescence detection. It is possible to detect even a 

single molecule [14, 15]. The typical LOD values for CE/MS (low micromolar range) are similar 

to the values for UV absorbance detection [16]; however, with the development of more 

sophisticated approaches, the LOD can be reduced to the low nanomolar range [17]. 

Derivatization of the analyte is another way to increase the number of options for CE detection 

[18, 19].  In addition, indirect detection can be used [20, 21]. When utilizing indirect detection, 

the background buffer absorbs or fluoresces at the detection wavelength, and the analytes, which 

do not absorb or fluoresce, are detected as negative peaks. The LOD values for indirect detection 

methods are typically around 10
-6

 M [16]. 

It has been recognized since the early days of CE development that reproducibility 

(migration time and peak quantification) is a significant limitation for CE compared to other 

separation techniques, particularly HPLC [6, 16, 22-26]. The performance of HPLC and CE has 

been compared directly in some quantitative studies. In a bioassay, better precision for HPLC 

(2.7% RSD) than for CE (6.0% RSD) was reported [24]. For the determination of parabens in a 

cosmetic product, repeatability values of 0.4-1.1% RSD for HPLC and 0.8-2.2% RSD for CE 

(for five consecutive runs) was noted [27]. In another study, the performances of HPLC and CE 

were compared for determination of diazepam in pharmaceutical tablets, and RSD values of 0.4-

1.0 % for HPLC and 0.9-1.6 % for CE in ten successive experiments were obtained [28]. 
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Quantitative determination of ketoconazole in pharmaceutical products was performed with both 

methods, and HPLC provided better precision (0.2-1.2% RSD) than CE (2.2-3.0% RSD) [29]. 

One of the main reasons for CE not being utilized as extensively as HPLC in industry or as an 

approved separation method for analysis is its relatively poor reproducibility. 

Capillary electrophoresis is also carried out in channels based on microchip technology, 

which provides even smaller i.d. separation channels, reduced reagent consumption, low waste 

production, portability and fast separation times [7]. Reproducibility issues are also common in 

microchip electrophoresis and the fundamental causes of poor reproducibility and basic 

separation mechanisms are the same in capillaries and microchips. However, it is often 

preferable to carry out fundamental investigations of CE reproducibility in a capillary 

electrophoresis system, since capillaries are less expensive and simpler to use. 

1.2. Causes of Poor CE Reproducibility 

Relatively poor reproducibility for CE is a problem for both migration times and analyte 

quantification. Migration time reproducibility is important because it is crucial for the correct 

identification of peaks. This is particularly true for complex electropherograms, which are 

produced for complex biological and environmental samples. Analyte quantification typically is 

based on peak area, which is proportional to the sample concentration. The accurate 

determination of an analyte’s concentration in a sample mixture is critical for applications such 

as reporting drug impurity levels [30], determination of the quantity of an analyte in a 

commercial product [31-34], quantification of DNA in organelles [35], enzyme studies [36], 

proteomics [37] and quantification of an analyte in biological fluids [38]. There are several 

factors affecting CE reproducibility, which will be described in following sections of this 

chapter. 
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1.2.1. Migration Time Reproducibility 

When an electric field is applied to a capillary filled with a buffered solution, ions in the 

capillary migrate in the field depending on their electrophoretic mobilities (µep). Only molecules 

with a net charge have electrophoretic mobility, and neutral species do not migrate 

electrophoretically. However, the phenomenon called electroosmotic flow (EOF) makes 

migration of all species in the solution possible, regardless of their charge (Figure 1.2). 

 

 

 
            

 

 

Figure 1.2 Schematic representations of the mechanism of CE separations. As illustrated at the 

top of the figure, cations and anions separate based on their electrophoretic mobilities, which are 

related to their charge-to-size ratios. Neutral molecules do not have electrophoretic mobility. 

They move with EOF. Apparent mobilities include the influence of EOF as indicated in the 

figure. 
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The EOF is one of the important advantages of CE separations. In the presence of strong 

EOF, all ionic species, as well as neutral species, migrate in one direction due to a combination 

of electrophoresis and EOF. For typical CE separations, cations arrive at the detection window 

first, due to the combination of EOF and the molecules’ electrophoretic migration towards the 

cathode at the detection end of the capillary. Anion electrophoretic mobility is toward the anode, 

which is opposite to the detection point; however, the EOF typically is strong enough to transport 

anions toward the cathode. Anions reach the detection window last, since their mobility is the 

sum of the EOF and µep. All neutral molecules move toward the detector at the rate of the EOF. 

The migration time (t), which is the time that it takes for an analyte to pass the detection point 

after its injection, is related to the analyte electrophoretic mobility (μep), electroosmotic mobility 

(μeof), the total capillary length (Lt), the length to the detector (Ld) and the applied voltage (V). 

This relationship is summarized by the following equation:     

       
    

           
       (1.2) 

Changes in the applied voltage, electrophoretic mobility and electroosmotic mobility affect the 

overall migration time of an analyte. The electrophoretic mobility (μep) and electroosmotic 

mobility (μeof) are described by the following equations: 

         
 

    
      (1.3) 

          
  

   
      (1.4) 

In equations (1.3) and (1.4), q is charge of the analyte, η is viscosity of the buffer solution, r is 

analyte’s hydrodynamic radius, ε is dielectric constant of the buffer solution, and ζ is zeta 

potential. Electrophoretic mobility is affected by temperature changes due to its relation to the 
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viscosity of the solution. During a CE separation, the analyte charge and hydrodynamic radius 

are constant as long as the separation solution remains the same. Any change in solution pH can 

change the charge on the analyte. 

Electroosmotic mobility is also influenced by temperature changes, as well as changes in 

the surface chemistry of the capillary inner wall and the chemistry of the solution. This is due to 

the zeta potential dependency of electroosmotic mobility as indicated in Equation 1.4. The 

migration time reproducibility is highly affected by changes in EOF [39-43]. In some cases, the 

migration times of the analytes can change by 10-20% in a regular laboratory setting during a 

single day [41, 44]. 

 Migration time reproducibility is important for accurate analyte identification. Migration 

time reproducibility is mainly affected by EOF and temperature fluctuations which also influence 

the EOF. Additionally, the capillary, sample and buffer are important factors as well, since they 

have significant effects on EOF due to their relation to the zeta potential. These factors and their 

effects on separations in CE and migration times are discussed in the following sections. 

1.2.1.1. Electroosmotic Flow 

There are approximately three to seven ionizable silanol groups per square nanometer on 

a capillary wall [7]. The silanol groups on the capillary wall are negatively charged when the 

capillary is filled with buffer solution at pH values between 3 and 10. The amount of negatively 

charged groups differs depending on the pH and ionic strength of the separation buffer. A double 

layer occurs at the surface of the capillary wall due to coulombic attraction between positively 

charged ions from the buffer and the negatively charged silanol groups. This double layer has 

two regions, a fixed (Stern) layer and a diffuse layer (Figure 1.3). The fixed layer is immobile 
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even with an applied electric field. At the boundary plane (plane of shear) between the fixed 

layer and the diffuse layer, an electrical potential develops, which is called the zeta potential (ζ). 

 

 

Figure 1.3 Schematic representation of the electric double layer at the capillary wall. The red 

line represents the potential drop across the capillary wall.  

 

The zeta potential is a complex quantity that depends on the surface potential of the 

capillary wall and the composition of the electrolyte solution. It can be represented by Equation 

(1.5) where δ is the thickness of the double layer, e is the total excess charge in solution per unit 

area and ε is the dielectric constant of the separation buffer. 

       
    

 
      (1.5) 
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The double layer thickness (δ) is the reciprocal of the Debye-Huckel parameter (κ) and can be 

expressed using Equation 1.6 where ε0 is the permittivity of the vacuum, ε is the dielectric 

constant, R is the universal gas constant, T is the absolute temperature, F is the Faraday constant, 

and I is the ionic strength. 

        
     

   
      (1.6) 

The zeta potential drops exponentially to zero from the interface through the diffuse layer 

(Figure 1.3). The distance over which the zeta potential drops to zero is the thickness of the 

double layer, which typically is around 100 Å. Due to the applied field, the solvated cations in 

the diffuse double layer start to move toward the cathode, and they drag solvent with them. This 

phenomenon is called electroosmotic flow (EOF) which acts like a pump in HPLC but without 

the mechanical complexity of an HPLC pump [45]. One advantage of EOF relative to pressure-

driven flow is that the flow profile is relatively flat across the capillary diameter. This flow 

profile results in highly efficient separations for CE relative to HPLC [45]; however, EOF is a 

double-edged sword. It is very sensitive to chemical changes at the capillary surface and changes 

in the separation buffer as indicated in Equation 1.4, where µeof is the electroosmotic mobility 

and η is the viscosity of the solution. The surface chemistry of the silica surface, which is 

represented by the double layer thickness (δ) and charge in solution per unit area (e), affect the 

zeta potential. Interactions of sample molecules with the capillary wall, and differences in ionic 

strength of the buffer used cause a nonuniform zeta potential down the length of a CE capillary. 

In addition, temperature fluctuations play an important role in EOF, since temperature has an 

impact on the double layer thickness, as well as the viscosity of the solution. Due to its 
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sensitivity to changes in these factors, EOF is one of the main causes of poor reproducibility for 

CE [6]. 

1.2.1.1.1. Capillary 

The capillary is an essential part of a CE experiment. Its surface chemistry is the main 

reason for the EOF in CE. The capillary structure is not as complex as an HPLC column, but the 

interactions of the capillary with the electrolyte solution and analyte molecules have significant 

effects on CE separations and reproducibility. Fused-silica capillary used for CE is produced in 

batches by drawing the preform, which is a larger fused silica tube, through an oven at a certain 

drawing speed [46]. There are reports that indicate a concern about the batch to batch 

reproducibility of capillary production[46, 47]. Unfortunately, the capillary dimensions are not 

completely under the control of the operator. The inner diameter of the capillary, as reported by 

the manufacturer, is only a mean value and can vary significantly over several meters of capillary 

[24, 41]. The capillary is generally cut from the batch to a desired length. The edges of the 

capillary should be carefully trimmed to ensure that they are straight, which prevents the effects 

of sample carryover, diffusion and droplet formation [46]. The tip shape can also cause 

distortions in the shape of the sample zone and EOF, as well as baseline shifts, zone broadening 

and poor resolution [24, 48-50]. 

Charge characteristic of the inner wall of the capillary, which depend on the pH and 

chemical composition of the separation electrolyte, are essential to a CE separation. The 

capillary commonly is conditioned with NaOH, water and separation buffer before being used 

for the first time and before changing to a new buffer solution. The conditioning steps and 

amount of solution used should be the same for every conditioning [25]. As a general principle, 

the capillary should be rinsed with the separation buffer in between runs [51]. In addition, it may 
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be necessary to recondition or regenerate the capillary wall surface to maintain the same charge 

characteristics between the runs for experiments with adsorbing species [7, 25, 48, 51]. 

The inner wall of the capillary can be dynamically or permanently coated with molecules 

such as polymers to prevent sample adsorption to the inner wall for some applications [52, 53]. 

The permanent wall coating acts as a capillary wall, and it is important to have the same 

chemical structure for long periods of time for reproducible results. This coating can degrade 

over time and be more susceptible to adsorption of sample molecules, which impacts the quality 

of separation. For dynamic coatings, it is important to have a routine application and rinsing 

process in order to maintain the same coating quality between the runs. 

1.2.1.1.2. Sample 

Capillary electrophoresis is commonly used for biological applications. Biological samples 

such as proteins, DNA, biological fluids, cells, and tissue are common. The multiple charge sites 

on the molecules of these samples can result in adsorption to the capillary wall due to the 

columbic attraction between the molecule and negatively charged silanol groups on the capillary 

wall, even if the overall charge of the molecule is neutral. This adsorption changes the zeta 

potential at the shear plane, and it can cause charge reversal and magnitude increase [54]. 

Nonuniform zeta potential consequently affects the EOF and migration times of the analytes [25, 

45, 55-57]. Researchers have developed several strategies to prevent this problem such as 

working at extreme pHs [58], rinsing before and after each run [59], using buffer additives, and 

using dynamically or permanently coated capillaries [55]. 

1.2.1.1.3. Buffer 

The buffer solution filling the capillary during electrophoresis, which is also referred to 

as the background electrolyte, is a crucial component of a CE separation. It provides a separation 
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medium with constant pH, since the buffer solution can resist pH changes. The reproducibility is 

seriously affected by the changes in the pH and concentration of the buffer. The pH change 

affects the charge of the sample species and the magnitude of EOF [60-62]. Any fluctuation in 

the buffer concentration alters the double layer thickness and thus the zeta potential and EOF. 

Because of these detrimental impacts on the reproducibility, considerable care should be given to 

choosing and using a buffer solution for CE separations [63]. 

Changes in pH can be caused by buffer depletion over time due to the electrolysis of 

water that takes place at the electrodes. This causes OH
-
 ions to form at the cathode and H

+
 ions 

at the anode. According to Faraday’s Law, the quantity of the ions generated or consumed in 

electrolysis is proportional to the quantity of electricity transferred, which is the product of the 

electrolytic current and the elapsed time [64]. This leads to the buffer at the anode becoming 

more acidic and the buffer at the cathode becoming more alkaline as electrophoresis takes place 

[23, 61, 62, 64]. The buffer salts and modifiers are also subject to electrolysis, which results in 

the formation of degradation products that can influence the EOF by changing the composition 

of the electric double layer. Utilizing high voltage, high ionic strength buffers and long run times 

enhance the buffer depletion, which cause pH drift at the electrodes [59, 60]. The degree of 

electrolysis and its impact depend on the buffer capacity [64], the volume of the buffer vials [61], 

duration of the run and applied voltage [62]. Most importantly, high current generation causes 

Joule heating, which leads to formation of nonuniform temperature gradients and zone 

broadening.  

Low concentration buffers are not appropriate for eliminating the electrolysis effects, 

since they do not have enough buffer capacity to compensate for pH changes. One solution to 

this problem is the use of low mobility zwitterionic buffer solutions, which contain large 
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minimally charged ions, such as tris-(hydoxymethyl)methylamine (Tris) and 2-(N-

morpholino)ethanesulponic acid (MES) [61]. Zwitterionic buffers contain both positively and 

negatively charged groups; therefore, at the buffer pI value, the buffering ions will not migrate 

toward the electrodes and carry little or no current. These buffers allow for a ten-fold increase in 

buffer concentration without generation of excessive Joule heating [61, 65, 66]. One way to 

minimize the run-to-run changes in pH and EOF due to the electrode reactions is to use fresh 

buffer for each run [60, 64]. Replacing the buffer solution frequently makes separations more 

reliable and the capillary surface uniformly charged. Some adjustments such as replacing the 

buffer vials and rinsing the capillary with the fresh buffer can be included in the sequence of an 

instrument program [61]. 

Buffer concentration can change during CE experiments due to evaporation, which leads 

to poor reproducibility [67]. It is mainly caused by high temperatures in the room or in the 

autosampler tray. Evaporation is worsened by uncapped buffer vials and long run times. Recent 

instrumental developments included using capped vials and thermostated trays [24]. Also a thin 

layer of mineral oil can be placed on the surface of the buffer solution [68, 69]. 

One of the buffer related problems is buffer contamination during sample injection. 

Sample carryover, which is caused by adsorbed sample molecules on the outer capillary surface, 

can be problematic because it can cause contamination of the solutions, sample and buffer. This 

can be avoided by washing the capillary with water before the injection and injecting a water 

plug after the injection, removing the polyimide coating from the tip of the capillary, rinsing the 

capillary tip by dipping it into a fresh buffer solution [70] and renewing the electrolyte solutions 

regularly [24]. Using two buffer containers (one for conditioning, one for separation) is useful 

for more reproducible results [67]. 
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1.2.1.2. Temperature Fluctuations 

Inevitably, heat is generated when an electric field is applied to a capillary tube filled 

with a conducting solution. This heating is known as Joule heating. As Joule heating occurs in 

the capillary when the electric field is first applied, the electrical conductivity and current 

increase. Consequently, the temperature rises both radially and axially until a steady state is 

reached when the heat generation is balanced by the conduction of heat to the surroundings [45, 

71]. The heat generation is equal to the electrical power generated per unit length of the capillary 

as seen in Equation 1.7: 

      
       

         (1.7) 

where P is the power, K is the molar conductance of the buffer, rc is the capillary radius and E is 

electric field [45, 72]. Based on this equation, there is less thermal load which must be dissipated 

by the CE system when smaller capillary radius is employed, which provides a higher surface 

area to volume ratio and enhanced heat dissipation ability. 

                   
    

      (1.8) 

Viscosity is related to temperature according to Equation 1.8, where η is viscosity and T is 

temperature. [71]. The viscosity decreases with increasing temperature, which increases µeof and 

μep as indicated in Equations 1.3 and 1.4. The electrophoretic mobility of an analyte can change 

2% per °C because of the relationship of buffer viscosity to the mobilities [23]. In addition, 

temperature significantly affects the zeta potential as indicated by the following equation: 

       
   

 
        

  

        
 
 

     (1.9) 

where ζw is the charge density on the capillary wall and c is the buffer concentration. The 

magnitude of the zeta potential increases with increasing temperature [73]. When these factors 
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are taken into account, it is clear that temperature has a significant effect on the migration time of 

an analyte [25, 74].  

 In addition to its effect on the capillary wall chemistry, high temperatures in the capillary 

can cause superheating, boiling of the buffer and formation of microbubbles. Additionally, 

changes in pH and charge characteristics occur as a result of temperature increase. Depending on 

the structure of an analyte, the high temperatures can change the analytes’ net charge and 

configuration. This effect can be even more significant for bioanalytical applications since 

temperature increases could affect the stability of the analyte and cause protein denaturation. 

Consequently, temperature fluctuations affect both migration time and analyte quantification 

reproducibility [23, 24, 74, 75]. These affects can be prevented by lowering the electrophoretic 

current and enhancing the heat dissipation. Several approaches to achieve this are decreasing the 

ionic strength or conductivity of the buffer, using a smaller ID capillary, using a larger OD 

capillary and applying a lower separation voltage [24, 76, 77]. For commercial instruments, 

capillary thermostating using liquid cooling or forced air convection, offers a good solution to 

this problem [24, 74, 76, 78]. 

1.2.2. Reproducibility of Analyte Quantitation  

In CE, the procedures used to perform quantitative analysis are similar to HPLC methods 

[79]. Standard addition or construction of calibration curves are based on the detection response 

from the analyte and employed to determine its concentration. Usually, peak areas are used to 

construct the calibration curve instead of peak heights. It has been reported that the linear range 

of a calibration curve set up based on the peak heights is small, especially at high 

concentrations, due to peak broadening [6, 13, 22, 23, 47]. 
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Reproducibility of analyte quantification in CE has been a subject of several review 

papers [16, 23, 24, 79, 80]. Generally, HPLC provides better precision than CE. For example, 

HPLC offers 0.8% RSD for analyte peak areas whereas CE offers 1.6% RSD for quantification 

of insulin [69]. In the following sections in this chapter, the major factors that affect quantitative 

reproducibility for CE are discussed. 

1.2.2.1. Injection 

Quantitative reproducibility is closely related to the reproducibility of the sample 

injection [23, 25, 68]. Non-ideal injections can cause irreproducible results. Typical RSD values 

for an HPLC injection are about 1% due to the well controlled loop-fill type of injection with 

volumes on the order of 5-50 µL. On the other hand, for a CE instrument, 5-50 nL injection 

volumes are common, and loop injectors are not suitable for these small volumes which are 

typical in CE experiments due to small capillary size [6, 45, 68]. It is preferable to have small 

sample volumes in order to decrease band broadening; however, small sample volumes result in 

poor reproducibility. Precise control of the injection device is difficult and might be a problem 

for hydrodynamic injections, especially when using short injection times (~1 s). Diffusion of the 

analyte in and out of the capillary is problematic, resulting in reduced reproducibility. It has been 

reported in the literature [81] that solution can enter into a capillary after a brief contact, and this 

affects the separation efficiency by causing zone broadening. The nature of diffusion for the 

different sample molecules makes it hard to control; however, increasing the electrolyte viscosity 

is helpful. Reproducible and short delay times for the capillary end to move from one vial to 

another vial can be applied to control this effect. The diffusion effect is even more pronounced at 

shorter injection times and for smaller molecules, since they have higher diffusion coefficients 

than larger molecules [24, 82]. Longer injection times (~5 s) can be employed to overcome this 
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problem [59]; however, long injection lengths are undesirable due to problems with sample 

overloading such as peak distortion, low separation efficiency and poor precision. Therefore, the 

injection length should be short. Using a capillary with a larger i.d. can increase the sample 

volume [24, 83]. 

Moving the capillary tip from one solution to another during the sample introduction and 

electrophoresis processes causes exposure to air which can result in problems for the separation 

[59] such as evaporation, droplet formation, siphoning and sample movement on the outside of 

the capillary [68]. Sample evaporation can be problematic, especially when using an organic 

solvent to prepare the sample. An evaporation rate of 0.05 nL/s was observed for sample 

volumes about 5 µl [80]. Usually, the sample and buffer vials are not capped during the 

experiments to allow the capillary to go into the vial. Therefore, the solvent can evaporate and 

this changes the concentration. Vial caps can be placed on the vials and also a thin layer of 

mineral oil can be placed on the surface of the buffer solution as in the case for the separation 

buffer [50, 68, 69]. Droplet formation at the capillary tip when the capillary is removed from the 

sample solution is another cause of irreproducibility. It can be prevented or controlled by having 

a straight edged capillary, removal of the polyimide coating at the capillary tip, capillary surface 

roughness modification and reducing the noise and vibration within and around the instrument 

[24]. Furthermore, unwanted siphoning should be avoided since it causes variable injection 

volumes and band broadening [59, 68]. Siphoning is caused having height differences between 

the capillary tips at the inlet and outlet vials and by having different liquid levels at the inlet and 

outlet vials. The effects of siphoning can be reduced by taking some precautions such as leveling 

the liquid heights [82], usage of restrictors at the ends of capillaries [83], or using a viscous 

background electrolyte [82]. 
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Several methods were developed to improve injection performance such as using a split 

injector [84], auto sampler [85], on-column fracture/electrokinetic injection [86]. The two most 

commonly used sample introduction methods are hydrodynamic (HD) and electrokinetic (EK) 

injections [23, 85, 87]. 

1.2.2.1.1. Electrokinetic Injection 

An electrokinetic injection is performed by applying an electric field to a sample solution, 

and the analyte molecules enter into the capillary by electrophoretic migration and EOF. The 

amount of sample injected by electrokinetic injection is expressed by Equation 1.10; 

                     
    

      (1.10) 

where Q is the injected volume, cs is the sample concentration, U is the injection voltage, ti is the 

injection time, L is the capillary length, and r is the capillary inner radius. As seen in Equation 

(1.10), the factors affecting the EOF also affect the amount of sample injected and thus affect the 

reproducibility. The electrophoretic mobilities of analytes depend on analyte charge. 

Consequently, cationic species will be injected more compared to anionic species. This effect is 

referred to as injection bias and has been recognized since the early publications of CE [4, 88, 

89]. A second type of bias is due to the differences between the separation buffer and sample 

buffer [88]. The injected sample amount is dependent upon the nature of the sample matrix since 

the mobility of sample ions and EOF depend on pH and conductivity of the sample solution. 

Differences in sample matrices limit the comparability of peak areas of analytes, even though the 

sample concentration is constant. Thus, hydrodynamic injection is preferred over electrokinetic 

injection, especially when analyzing biological samples like plasma or urine with varying 

composition and conductivity [24]. Hydrodynamic injection provides reproducibility values of 

0.2-2 % for migration times and 2-5% for peak areas [88]. Additionally, as the current flows 
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through the sample during electrokinetic injection, an electrochemical reaction might occur, 

resulting in some products being formed, which will lead to the sample being contaminated and 

damaged, especially when one uses small sample volumes [85]. 

1.2.2.1.2. Hydrodynamic Injection 

Hydrodynamic injection utilizes pressure to inject the sample into the capillary. There are 

two ways to accomplish hydrodynamic injection. One is to use a pump to generate pressure or 

vacuum in the capillary, and another method is siphoning or gravity injection where the height 

difference between inlet and outlet vials is increased [45, 88]. Hydrodynamic injection is 

unbiased to the different components of the sample solution, so it is assumed to be the most 

reliable sampling method. It is affected if the viscosity of the buffer changes due to temperature 

differences between the buffer vial and the capillary caused by poor thermostating, as seen in the 

Equation (1.11) where Δp is pressure difference.  

       
       

     
          (1.11) 

In addition, this injection method’s reproducibility is crucially dependent on the ti and Δp 

and thus, a precise mechanism to control pressure is necessitated [45]. This usually requires the 

addition of complicated equipment to a very simple separation system. The hydrodynamic 

injection process causes large RSD values for short injection times [59]. Reproducibility values 

of 0.1-0.5% for migration times and 0.5-3% for peak areas were obtained by using this type of 

injection [88]. Additionally, the parabolic flow profile of the sample zone causes peak 

broadening and consequently difficult peak integrations due to low signal-to-noise ratios. 

1.2.2.2.  Peak Integration 

The precision of peak quantification for CE is related to the reproducibility of the peak 

integration. This could be more problematic when the electropherogram has asymmetric and 
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triangular shaped peaks [25]. Usually commercial CE instruments are available with built-in 

software for data analysis and system control. As a result, every commercial instrument uses its 

own software. This can be problematic when reporting figures of merit such as LOD and signal-

to-noise (S/N) ratio, and transferring a method for CE experiments between laboratories. Faller 

et al. [25] compared several commercial CE instruments’ software for precision in analyte 

quantification. These programs were grouped based on their generation. First generation 

software for CE instruments was initially used for HPLC instruments. Therefore, they do not 

take into account some specific situations for CE applications, such as small signal heights due to 

short detection path length and triangular shaped peaks. The new generation software was 

designed for CE instruments exclusively with the adjustments for integration and peak 

identification algorithms. The software that was specifically designed for CE produced lower 

RSD values compared to those designed for HPLC. All newer software produced similar RSD 

values within their group. The RSD values were very high when the sample concentrations were 

close to the LOD for all of the instruments. Additionally, it is essential to use a detection system 

with an optimum data sampling rate, since inadequate data sampling rates can lead to increased 

error in peak area determination [23]. 

1.3. Solutions to Poor CE Reproducibility 

1.3.1. Migration Time Reproducibility 

Improving the migration time reproducibility has been an important goal for CE 

practitioners since the beginning of CE. A number of methods have been proposed to address 

this issue and make CE a more widely used analytical separation method. In the following 

sections, these methods are discussed. 
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1.3.1.1. Markers 

Electroosmotic flow must be measured in addition to migration time in order to report 

analyte migration as electrophoretic mobility. The neutral marker method is the simplest and 

most commonly used technique to determine EOF to calculate μep [72, 90]. A neutral compound 

is injected with the sample, and electroosmotic flow is the only factor that affects the migration 

time of this neutral marker. Based on the migration time of the neutral marker peak, the average 

EOF rate can be determined. The neutral marker method has some fundamental limitations. For 

analytes migrating after the neutral marker (typically negatively charged compounds), any 

changes in EOF after the neutral marker peak is detected will not be accounted for in the 

calculation of analyte electrophoretic mobility. Likewise, for peaks migrating faster than the 

EOF, the average value of the EOF will include any flow changes after detection of the analyte 

until the neutral marker peak is detected. 

The neutral marker method only reduces the effects of variation of the EOF. Therefore, 

additional markers haven been employed. Vespalec et al. [42] have reported a method which 

permits the determination of the ―actual mobility‖ of the unknown. This can be determined from 

its migration time and the migration times of the two reference standards in the same 

electrophoresis run. The actual mobilities of the two reference standards, under a given set of 

conditions, must be known, as indicated in Equation 1.12, where µA and µB are mobilities of two 

standards, while tA and tB are migration times of the standards. This approach produces 

reproducible results under a variety of conditions and is reported to be independent of 

temperature. 

                 
  

  

     

     
     (1.12) 
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The standard mobilities must be known to correct for the migration changes in the 

experiments. This presents one of the challenges for the application of markers. Koller et al. [91] 

corrected the migration time of the analyte based on the migration times of two standards by 

using the following equations; 
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        (1.14) 

where tm1,s and tm2,s are the migration times of two markers in a standard electropherogram while 

tx, tm1, and tm2 are migration times of the sample, and two markers under non-standard conditions. 

Improvements in qualitative and quantitative reproducibility were noted. 

Jumppanen et al. employed 2, 3 and 4 marker compounds with known electrophoretic 

mobilities to correct the electrophoretic mobility of the analytes [92]. The chosen marker 

compounds were fully disassociated at the pH of the separation buffer, and their migration times 

covered the total run time of an electropherogram. In this method, electric field strength is 

assumed to be constant. For each marker technique, the time dependence of EOF was in a 

different approximation. For instance, for the two-marker technique, it is constant during the run, 

and it linearly increases for the three-marker technique. However, the acceleration is non-linear 

for the four-marker technique. The electrophoretic mobilities of analytes are solved based on 

various equations which change for each marker technique which are two-marker, three-marker 

and four-marker techniques. The coefficients of these equations were determined from the 

marker compounds’ electrophoretic mobilities and migration times. Excellent reproducibility 
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was obtained with their technique (0.01-0.03 %); however, identifying three or four suitable 

marker compounds could be a challenge for some applications. 

1.3.1.2. Migration Parameters 

Several migration parameters have been introduced as a means to minimize 

irreproducibility for CE separations. These parameters were proposed to be employed to identify 

the analytes and be used as communication tools between different laboratories. Several 

migration parameters were compared by Lacunza et al. [40] to accurately assign bands of EPO 

isoforms separated by CE: migration time, migration time relative to an internal standard, 

migration time relative to the EOF marker (relative migration time) and electrophoretic mobility 

(µep). It was mentioned that as the migration time difference between the analyte and the internal 

standard increased, the improvement in the reproducibility worsened for the internal standard 

method. They obtained very similar results for the relative migration time and µep which 

provided the best reproducibility. In a study by Palmer et al. [41] the reproducibility of the 

migration time, relative migration time (based on a migration time of a charged standard), 

electrophoretic mobility, relative mobility (by using one neutral and one charged standard) and 

actual mobility (by using two charged standard) were compared. The main reproducibility 

problems arose due to fluctuations in EOF and temperature. The relative mobility and actual 

mobility presented the greatest performance for providing more reproducible results. They are 

independent of all parameters which the user does not control [41]. In the following sections, 

several parameters will be introduced and discussed. 

1.3.1.2.1. Electrophoretic Mobility 

The relatively poor reproducibility of migration time for CE makes it an unsuitable value 

to be used to transfer data between different labs [39-43]. A quantitative parameter which is 
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more reproducible is necessary to permit transfer of methodology. Such a parameter should 

depend only on the buffer composition and analyte properties and should be independent of 

temperature, applied field, capillary dimensions and EOF [41]. The electrophoretic mobility is 

dependent on the characteristics of the analyte, buffer and temperature, but it is free from the 

effects of zeta potential changes as seen in Equation 1.2. Therefore, it is preferred as a migration 

parameter by many CE users [23, 43]. 

Boone et al. used corrected effective mobility as a new identification parameter for CE 

[39, 93]. They corrected the µep of analytes by interpolation between reference and measured µep 

values of standards. They compared intra- and interinstrument reproducibility obtained with 

different mobility parameters and demonstrated that µep is much more reproducible than the 

migration times and the use of corrected effective mobility did not improve reproducibility more 

than µep. 

1.3.1.2.2. Migration Time Ratio 

Usually, a neutral compound added to a sample or the migration time of the solvent is 

used to determine the EOF. Since EOF is the main reason for poor migration reproducibility for 

CE, elimination of its effects on the migration times has been attempted. Chen et al. introduced 

the relative migration time, where the analyte’s migration time is divided by the EOF marker’s 

migration time (tanalyte\tmarker) [94]. They demonstrated that the RSD values improved to 0.45% by 

using this parameter when the RSD’s of the analyte migration times and EOF were 3.4% and 

3.9%, respectively. A similar approach, using a mobility and migration time ratio, was 

introduced by Yang et al. [44]. The mobilities of the analyte and reference standard were 

divided, and the same procedure was repeated for the migration times as well. For their method, 



26 
 

the reference standard compound can be charged or neutral. In this report [44], a neutral 

compound (mesityl oxide) was used. 

1.3.1.2.3. Migration Indices 

Lee and Young introduced two parameters to express the migration of an analyte, 

migration index (MI) and adjusted migration index (AMI) [95]. The MI for an analyte is 

calculated by integration of i/L as a function of time, where i denotes current density (ratio of 

current to cross sectional area of the capillary) and L is the capillary length. By applying this 

index, it is possible to correct the fluctuations that occur in the temperature and electric field in 

the capillary; however, it requires use of capillaries with the identical zeta potentials which is 

very hard to control. Batch-to-batch differences occur for capillary characteristics even when the 

capillary is from the same manufacturer [46, 47]. For this reason, a second parameter, AMI, was 

further developed to include the MI of neutral marker in the calculations to eliminate the effect 

of EOF changes. This study reported reproducibility values as low as 0.05% by using AMI. This 

approach requires that the internal diameters of the capillaries be known within 0.5%, which 

presents a significant problem in the light of current capillary manufacturing technology [95]. 

1.3.1.3. Electropherogram Transformation 

Normally in a CE electropherogram, migration times of the analytes are represented. As 

mentioned in sections above, migration time of an analyte includes the influence of the EOF; 

hence, it has poor reproducibility. In order to reduce the migration time fluctuations, there are 

some reports to use different parameters in the axis of abscissa instead of time. Transforming the 

migration time axis to the mobility axis has been proposed [96-100]. Schmitt et al. presented the 

migration data based on electrophoretic mobility on the x axis [99]. They were able to improve 

the results qualitatively and quantitatively. With this method, direct comparison of complete 
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electropherograms was possible. Ikuta et al. used two conversion methods, one based on the 

temperature coefficient and another based on the delay time and the temperature coefficient 

[100]. They were able to eliminate hardware dependent parameters such as E, V, Ld, Lt and veof 

and obtain very low RSD values (0.3%) for the mobilities of the analytes. 

Iwata et al. made use of migration indices as reported by Lee and Yeung [95] by plotting 

the electropherograms as a function of quantity of electric charge (Q), which is product of 

migration index and volume of the capillary [101]. The RSD values of the migration times when 

this method was applied were between 0.9-4.1%. For the peak areas, the RSD values were 

between 4.7-9.4%. The authors indicated that voltage and temperature dependence of migration 

times and peak areas were eliminated by using the Q-electropherogram. In addition to 

aforementioned methods, Mammen et al. proposed to use 1/time instead of migration time on the 

x axis. They demonstrated that this presentation was useful since it presented information that 

would have otherwise been overlooked in a regular time domain plot [102]. 

1.3.1.4. EOF Monitoring 

Another approach to account for EOF fluctuations during a CE separation is to measure 

EOF during the entire separation and use this data to correct the electropherogram accordingly. 

Several approaches to measure EOF as a function of time have been reported in the literature. 

The heat index flow monitoring method is based on measuring a change in refractive index when 

a small heated volume enters the probe region [103, 104]. The heated zone is generated in a 

repetitive fashion by a laser [103] or by a heating coil [104]. The heated zone migrates with the 

EOF, thus the time it takes for this zone to travel within the capillary provides the EOF rate. 

However, the authors did not apply the EOF data to correct migration times in these reports. 

Saito et al. developed another method based on a heating zone generation in the capillary [105]. 
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The permanent change of composition in the electrolyte, which is referred as a thermal mark, is 

recorded by a contactless conductivity detector and used to monitor the EOF. This method was 

used to correct for the mobilities of analytes and RSD values smaller than 1% were obtained. In a 

recent study, Seiman et al. applied the thermal marks method to investigate EOF rates for non-

aqueous capillary electrophoresis in the presence of ionic liquids and obtained good 

reproducibility with a 1.3% RSD value [106]. 

Lee and Zare [107] monitored EOF by delivering a known amount of fluorescent dye to 

the buffer flowing out of the CE capillary, so that the dilution of the fluorophore was 

proportional to the EOF. They were able to detect flow changes as small as a 1% and obtain 

reproducible electrophoretic mobilities (2% RSD). 

Gilman and coworkers introduced a method that measures EOF rates continuously based 

on periodic photobleaching of a neutral dye, which provides precise measurements of EOF over 

an entire separation, with a time resolution of ~1 s [108, 109]. In this method, the neutral 

fluorophore is added to the sample and separation buffer at nanomolar concentrations. It is 

photobleached periodically by a laser beam, which is blocked by a computer controlled shutter 

(Figure 1.4). When the shutter is opened, a photobleached zone is generated at position F1, and 

light is collected by an optical fiber and directed to a photomultiplier tube. A positive peak is 

generated when the shutter is opened, and this is used to mark the beginning time for an 

individual EOF measurement. The photobleached zone migrates with the EOF and is detected as 

a negative peak at position F2 (Figures 1.4 and 1.5). The time difference for this zone to travel 

from the photobleaching point (F1) to the detection point (F2) is used to calculate the EOF rate. 

This procedure is repeated as many as times as desired during an experiment. It is possible to 

monitor the EOF rates and obtain a precise EOF profile (0.2-1.8%) for an entire CE run with a 
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Figure 1.4 Schematic of the instrumentation for continuous EOF monitoring. The laser beam is focused at two different points on the 

capillary, F1 and F2. The first point, F1, is where photobleaching takes place, and the second one, F2, is where detection occurs.
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Figure 1.5 Schematic of the continuous EOF monitoring method. 1) The capillary is filled with 

neutral dye, and the shutter is closed. 2) The shutter is opened, and a photobleached zone is 

generated at F1. A fiber optic collects the scattered light which is detected as a positive peak. 3) 

The photobleached zone migrates with the EOF and is detected at F2 as a negative peak. 4 and 5) 

The procedure in steps 2 and 3 is repeated throughout the CE experiment. The EOF rate is 

calculated by dividing the distance between F1 and F2 by the time difference between the positive 

and negative peaks. 

 

time resolution of 1 s using this method. This technique has been applied for fundamental studies 

of EOF dynamics [110, 111]. It has been demonstrated that this method can be applied 

simultaneously with other detection methods and does not affect the separation or detection. 

Figure 1.4 shows a UV absorbance detector in addition to the EOF monitoring CE system. There 

is potential to improve the reproducibility of CE using this method, since it is able to provide 

precise, time-resolved EOF information for an entire CE separation. 
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1.3.2. Analyte Quantification Reproducibility 

1.3.2.1. Peak Area Corrections 

Analytes travel and pass the detection window in CE at different rates in contrast to 

HPLC, where all the molecules have the same velocity after leaving the analytical column. The 

difference causes inaccurate peak areas because the slower analytes stay in the detection window 

for a longer period of time, and consequently, peak areas are overestimated [89, 112]. One way 

to overcome this effect is to normalize the peak areas by dividing them by their migration 

times[23, 30, 79, 89], as shown in the equation 1.15, where Ac is the corrected peak area, Ai is the 

peak area of an analyte, and ti is the migration time of the analyte. 

         
  

  
      (1.15) 

This correction is called the peak normalization or migration time-corrected peak area 

method. This quantity which is preferred over using peak area or peak heights because of its 

better precision, is also proportional to the sample concentration [24]. This method is required 

for cases where a significant drift in migration times exists, since the quantification will be 

inaccurate. It is common to compare results between HPLC and CE in order to report impurity 

levels in pharmaceuticals. Altria [30] reported that in order to have a good correlation between 

two separation methods, normalization of peak areas is crucial, especially when reporting the 

amount of drug impurities. In the case of peak tailing or fronting, application of an integration 

algorithm which uses a weighted integration system provides better RSD values than the regular 

peak area correction [25]. 

Most biological samples have solutions with different compositions than the separation 

medium. This decreases precision for electrokinetic injections due to differences in conductivity 

between the sample and the buffer. Leube et al. developed a calibration by regression using 
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matrix corrected peak areas (COPA) [113]. They aimed to compensate for all changes in the 

sample matrix using a normalized bias factor (FMxi), which describes the change of peak area of 

an analyte in a sample matrix of similar analyte concentration according to Equation (1.16): 

             
    

      
       (1.16) 

            
    

    
       (1.17) 

where PAxi is the peak area of the analyte i in the sample matrix x, and PAcali is the peak area of 

the analyte i in the sample solution used for calibration. Then matrix-corrected peak areas can be 

determined from the raw peak area data according to the Equation 1.17, where COPAxi is the 

matrix-corrected peak area of the analyte i in the sample matrix x, PArxi is the actual raw peak 

area data of the analyte i in the sample matrix x, and FMxi is the respective matrix factor 

calculated based on the Equation 1.17. By applying this method, the authors were able to 

improve precision and accuracy so that they were comparable to values obtained with 

hydrodynamic injection [113]. 

1.3.2.2. Internal Standards 

Employing internal standards to improve precision is frequently used for CE as it is for 

HPLC [47, 68, 79, 114, 115]. The reproducibility problems related to quantification are caused 

by poor injection reproducibility (spontaneous injection, short injection time, inappropriate 

injection procedure, and pressure variations), temperature variations, sample evaporation and 

carryover [68]. An internal standard is added to the sample mixture, and it is affected by the 

same experimental conditions as the analyte molecules in the sample. The analytes’ peak areas 

are corrected based on the internal standard peak areas by simply taking the ratio of the peak area 

of the analyte and the internal standard as was demonstrated by Fujiwara et al. [115] to 
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determine cinnamic acid. When using a single internal standard, it may be difficult to find a 

compound that has a migration time that is distinct from those of the analytes, but ideally the 

migration behavior of the internal standard should be similar to those of the analytes. Precision 

decreases as the difference between the migration time of the analyte and the internal standard 

increases [40, 68]. Using two internal standards is proposed to overcome this problem; however, 

it is desirable to have the migration times of the analytes fall between the migration times of the 

internal standards. This requirement makes it difficult to find proper standards and often 

increases the run times of the experiments.  Additionally an internal standard should not be found 

in samples (before the internal standard is added). Also, the addition of the internal standard can 

affect the sample properties resulting in reduced accuracy and precision. 

The Zare group employed an internal standard method to quantify low molecular weight 

carboxylic acids by conductivity detection [116]. They used Equation 1.18 to determine the 

concentration (C) of lactate based on the internal standard’s peak area (A), concentration (C) and 

migration time (t). 

                          
        

         

        

         
  (1.18) 

Choosing an internal standard for a CE experiment is easier when compared to HPLC, 

since elution times of each candidate for an internal standard should be determined first, which 

requires additional runs [68]. Since, the internal standard should migrate close to the analyte, in 

CE it should have a charge-to-size ratio similar to that of the analyte [47, 68], which is easier to 

predict for CE. The main requirement however, is that the standard should be well resolved from 

the analyte peaks. It should be stable in the solvents used for sample preparation and at the pH 

that is being used. As a general prerequisite, toxicity levels should be minimal. The internal 

standard should produce a high signal S/N (≥ 30 [69]), and, therefore, its absorbance (for UV 
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absorbance detection) and emission wavelengths (for fluorescence detection) should be suitable 

for the detection system used for the target analytes. 

As was mentioned before, using an internal standard is a common practice in HPLC. 

Several groups have compared CE to HPLC in terms of precision and sensitivity by employing 

internal standards [69, 117]. Kunkel et al. [69] were able to improve the precision for insulin 

analysis using CE to 0.5% RSD with internal standards. Williams et al. [117] demonstrated that 

CE was able to produce RSD values around 0.5% for the analysis of anthraquinone sulphonates. 

Dose et al. [118] investigated the application of an internal standard method to improve 

the quantitative reproducibility for both hydrodynamic and electrokinetic injection. They defined 

response ratios Ri/RA and Ri/RB from a single calibration run, where Ri is the response factor of 

the analyte, RA and RB are response factors of the first and second internal standards, 

respectively. Equation 1.19 was used to calculate the ratios, where Ai and Ci are the peak area 

and concentration of the analyte, AA and AB are peak areas of the internal standards, and CA and 

CB are the concentrations of internal standards. 

     
  

  
 

    

    
  and   

  

  
 

    

    
    (1.19) 

Then, these were used to calculate the concentration, Ci, of the analyte based on Equation 1.20. 

In the equation, ti is the migration time of the analyte, Fi is the interpolation factor, and tA and tB 

are the migration times of the internal standards. 

       
  

       
  

      
       

  
      

 
     (1.20) 

They were able to observe that using one internal standard for hydrodynamic injection is 

sufficient for good precision. The RSD values decreased from 5-6% for raw peak areas to 1% for 

corrected peak areas with one internal standard. However, for the electrokinetic injections, the 
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RSD values improved only slightly with one internal standard from 6.8% to 3.2 %. When a 

second internal standard was use, the improvement was significantly better (0.8 % RSD for two 

standards). It was also noted that larger RSD values were observed when the migration times of 

the analyte and the standard increased. They concluded that two internal standards are required 

to correct for the electrokinetic injection related errors, whereas for hydrodynamic injection, 

using a second internal standard might add systematic error to the analysis. 

Peak normalization or migration time-corrected peak area method is a common practice 

as mentioned in Section 1.2.2.1. Some groups have compared its performance to improve 

precision with the internal standard method [69, 117, 119]. Kunkel et al. [69] obtained 1.6% 

RSD for normalized peak areas and 1.3% RSD with internal standard correction. In another 

study, Williams et al. [117] reported 1.9-2.2% RSD values for peak normalization and 0.4-0.9% 

RSD values using an internal standard. For clenbuterol analysis, 0.8-2.1% RSD values were 

obtained when peak normalization was applied, whereas the internal standard correction yielded 

0.2-0.9% RSD values [119]. These reports indicate that while the normalization method offers 

acceptable precision values, the internal standard method improves the precision more. 

1.4. Questions To Answer 

1.4.1. Method Comparison 

Reproducibility is a fundamental requirement for all analytical techniques that are used in 

research or industrial laboratories. Capillary electrophoresis has been limited by its poor 

reproducibility relative to HPLC. As mentioned in the previous sections, many approaches have 

been developed to reduce or eliminate this problem; however, more direct comparisons of these 

approaches should be performed to better evaluate their relative ability to improve CE 

reproducibility. There are simple methods such as the neutral marker method, where the 
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correction is based on the migration time of the EOF marker. Also, there are complicated 

methods such as the heat index flow monitoring method, where time-resolved EOF data are 

provided. Comparison of these methods would provide insight as to what approaches CE users 

should consider for their experiments. 

1.5. Goals of This Research 

Electroosmotic flow is a major component of any CE experiment. It is sensitive to the 

changes in the CE system. Often, it is suppressed to avoid reproducibility problems. The 

dynamics of EOF during CE experiments are not completely understood. A method has been 

developed by the Gilman group [108, 109] to continuously monitor EOF during a CE 

experiment. It provides precise and time resolved EOF information throughout a CE experiment. 

This method has the potential to bring insight into EOF dynamics. 

The overall objective of this dissertation is to investigate EOF dynamics in capillary 

electrophoresis by using the continuous EOF monitoring method. The relationship between the 

research explained in Chapters 2-4 to the overall goal is described below. 

Chapter 2. A continuous monitoring of EOF method was developed based on periodic 

photobleaching of a dilute neutral fluorophore by the Gilman group [108, 109]. In Chapter 2, this 

method was applied to correct CE migration times for EOF fluctuations in order to improve 

migration reproducibility. This approach for improving reproducibility for CE also was directly 

compared to methods in the literature that utilize a single neutral marker [90], multiple markers 

[92], a migration time ratio [44] and an adjusted migration index [95]. 

Chapter 3. Capillary electrophoresis is a common technique to analyze biological 

samples. In Chapter 2, it was observed that basic protein molecules adsorb on the capillary wall, 

and consequently change the surface chemistry of the wall and the EOF. In Chapter 3, the sample 
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adsorption and changes in the capillary surface were investigated by introducing biological cell 

components (proteins, lipids, carbohydrates and DNA) to the CE system at different buffer pHs 

(neutral and basic) and at different concentrations. The continuous EOF monitoring method was 

used to observe the changes in EOF due to these cell components. 

Chapter 4. Discontinuous systems have been used in CE to concentrate sample solutions 

and carry out online enzyme reactions. EOF dynamics in sample stacking conditions were 

investigated by Pittman et al. [110] using the continuous EOF monitoring method. In Chapter 4, 

another marker, fluorescein, has been added to the EOF monitoring technique to monitor electric 

field changes in addition to EOF. Discontinuous systems were generated by using solutions that 

were prepared in a lower concentration buffer than the separation buffer. Computer simulations 

were performed in order to further investigate the results. 
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CHAPTER 2 

IMPROVING MIGRATION REPRODUCIBILITY IN CAPILLARY 

ELECTROPHORESIS: A QUANTITATIVE COMPARISON OF TECHNIQUES 

 

2.1. Introduction 

 

Capillary electrophoresis (CE) offers several important advantages compared to other 

common analytical separation techniques, including high separation efficiency, fast analysis 

times, and low sample volumes [6, 7]. Capillary electrophoresis has been applied to a broad 

range of scientific problems stretching from biology to the environment[6, 7];  however, it has 

been recognized since the early days of CE development that reproducibility (migration time and 

peak quantification) is a significant limitation for CE compared to other separation techniques, 

particularly HPLC [6, 24, 25, 44, 51, 80, 95, 120, 121]. There are various factors such as 

temperature fluctuations, analyte-wall interactions, and injection and detection methods that can 

contribute to poor precision for migration times and quantification [6, 24, 25, 51, 73, 80, 121]. 

Changes in electroosmotic flow (EOF) between experiments and during a separation are believed 

to be the most common cause of poor migration time reproducibility for CE [51, 80, 120]. The 

capillary surface chemistry, the chemistry of the solution filling the capillary as well as 

temperature and the potential field, all impact EOF and can be sources of EOF variability. 

The migration time of an analyte for CE results from a combination of electrophoretic 

migration and electroosmotic flow as given by Equation 1.2 in Chapter 1. Electrophoretic 

mobility, like electroosmotic mobility is affected by temperature changes, solution chemistry and 

the applied potential, but not by the capillary surface chemistry as seen in Equations 1.3 and 1.4. 

Therefore, electrophoretic mobility is more reproducible than electroosmotic mobility. Analyte 

migration is often reported as electrophoretic mobility rather than migration time since the 

migration time is affected by the relatively poor reproducibility of EOF [24, 51, 95, 97, 98, 122]. 
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Electroosmotic flow must be measured in addition to migration time in order to calculate 

the electrophoretic mobility. The neutral marker method is the simplest and most commonly used 

technique to determine EOF in order to calculate μep [90, 120, 123]. A neutral compound is 

injected with the sample, and electroosmotic flow alone affects the migration time of the neutral 

marker. Based on the migration time of the neutral marker, the average EOF rate can be 

determined [90, 120, 123]. The neutral marker method has some fundamental limitations. For 

analytes migrating after the neutral marker (typically negatively charged compounds), any 

changes in EOF after the neutral marker peak is detected will not be accounted for in the 

calculation of analyte electrophoretic mobility. Likewise, for peaks migrating faster than EOF, 

the average value of EOF will include any flow changes after detection of the analyte until the 

neutral marker peak is detected. 

An alternative to the neutral marker method for improving CE migration reproducibility 

is to use more than one marker compound, including charged standards with known 

electrophoretic mobilities [122, 124]. Jumppanen et al. employed 2, 3 and 4 marker compounds 

with known electrophoretic mobilities to correct the electrophoretic mobility of analytes [92]. 

The chosen marker compounds were fully disassociated at the pH of the separation buffer, and 

their migration times spanned the expected analyte migration times. Excellent reproducibility 

was obtained with their technique (0.01-0.03%); however, they did not directly compare their 

results with the results obtained using a single neutral marker under the same conditions. In 

addition, identifying three or four suitable marker compounds that don’t interfere with sample 

peaks can be challenging for many applications. 

In order to improve migration reproducibility, Lee and Young introduced two parameters 

to express the migration of an analyte, migration index (MI) and adjusted migration index (AMI) 
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[95]. The MI for an analyte is calculated by integration of i/Lt as a function of time, where i 

denotes current density (ratio of current to cross sectional area of the capillary) and Lt is capillary 

length. By applying this index, it is possible to correct for fluctuations that occur in the 

temperature and electric field in the capillary. The second parameter, AMI, was further 

developed to include the MI of a neutral marker in the calculations to eliminate the effect of EOF 

changes. This study reported reproducibility values as low as 0.05% using the AMI. Iwata et al. 

reported a related method based on the work of Lee and Yeung [101]. Hage and coworkers 

developed a simple method for improving CE migration reproducibility based on plotting the 

ratio of migration times of analyte peaks divided by the migration time of a neutral marker. They 

reported RSD values of 0.7% for this ratio for analyte peaks [44]. 

A more comprehensive experimental approach to correct CE migration data for EOF 

changes during a CE separation would be to continuously measure EOF during the entire 

separation and use this data to correct the electropherogram accordingly. Several approaches to 

measure EOF as a function of time have been reported in the literature [103, 104, 107, 109, 125]. 

Lee et al. monitored EOF by diluting a fluorophore solution with the effluent from the CE 

capillary [107]. They were able to correct for changes in EOF and obtain reproducible 

electrophoretic mobilities (2% RSD). Gilman and coworkers developed a technique to measure 

EOF continuously based on periodic photobleaching of a neutral fluorescent dye [109]. This 

technique provides precise measurements of EOF (0.2-1.8%) over an entire separation with a 

time resolution of ~1 s [108]. This technique has been applied for fundamental studies of EOF 

dynamics in capillaries and microfluidic devices [108, 110, 111, 126]. 

In this chapter, we report the application of the technique developed by Gilman et al. for 

continuous monitoring of EOF to correct CE migration times for EOF fluctuations in order to 



41 
 

improve migration reproducibility. In principle, this approach should provide improved results 

compared to methods based on single or multiple marker compounds by providing a more 

complete record of EOF during the entire separation. Results obtained using this approach for 

improving migration reproducibility for CE have also been compared directly to methods in the 

literature that based on a single neutral marker [90, 123], multiple markers [92], migration time 

ratio [44] and adjusted migration index [95]. 

2.2. Material and Methods 

2.2.1. Chemicals 

Laser grade coumarin 334 was obtained from Acros Organics (Morris Plains, NJ). 

Benzoic acid (BA), α-lactalbumin (from bovine milk), β-lactoglobulin (from bovine milk), 

lysozyme (from chicken egg white), myoglobin (from equine skeletal muscle), carbonic 

anhydrase (from bovine erythrocytes), sodium phosphate monobasic, diphenylacetic acid 

(DPAA) and triphenyl acetic acid (TPAA) were purchased from Sigma-Aldrich (St. Louis, MO). 

Sodium hydroxide and methanol were purchased from Fisher Scientific (Pittsburg, PA). Mesityl 

oxide was obtained from Alfa Aesar (Ward Hill, MA). 

2.2.2. Capillary Electrophoresis 

The instrument for CE with EOF monitoring and simultaneous UV absorbance detection 

was similar to that described previously [108, 110] (Figure 1.4). Fused-silica capillary (50-μm 

i.d./360-μm o.d.) was purchased from Polymicro (Phoenix, AZ) and cut to 127.1 cm. The 

polyimide coating was burned (~1 cm) to make detection windows at 45.2 cm (EOF monitoring 

by LIF) and at 86.8 cm (absorbance detection). The electrophoretic potential was applied with a 

Spellman CZE 1000R high voltage power supply (Hauppauge, NY). 
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The 457.9-nm laser line from an Ar
+
 laser (Coherent Innova 90C-5; Santa Clara, CA) was 

used as the light source for EOF monitoring. The laser beam passed through a beamsplitter, and 

the resulting two beams were focused on the capillary at two different positions. The first beam 

(31.1 mW) was used to bleach the neutral fluorophore (coumarin 334) at position F1 on the 

capillary (see Figures 1.4 and 2.1). The second beam (9.0 mW) was used for LIF excitation, and 

the emission was detected by a photomultiplier tube (PMT) (Hamamatsu HC 170; Bridgewater, 

NJ) biased at 750 V. The shutter (Uniblitz LS6Z2; Rochester, NY) was opened for 50 ms every 

1.0 s to generate the photobleached zones, and a small portion of the light from the bleaching 

beam was directed to the PMT by an optical fiber to indicate when the shutter was opened. The 

distance between the bleaching and detection points (dF1-F2) was determined to be 604.9 ± 0.6 μm 

as described previously [109]. For UV absorbance detection, a Linear Instruments UVIS-200 

detector (Thermo Electron Corporation, Waltham, MA) with an on-column capillary cell was 

used. A program written in LabView 5.0 (National Instruments, Austin, TX) was used to control 

the shutter and for data collection. The PMT signal was filtered with a 250 Hz low-pass filter. 

All data (UV and LIF detection) were collected using a National Instruments PCI-6024E (Austin, 

TX) data acquisition board at 1000 Hz. 

New capillaries were conditioned by rinsing with 0.10 mL of 1.0 M NaOH, 0.25 mL 

water, and 0.25 mL separation buffer (10.1 mM phosphate buffer at pH 7.51). Next the capillary 

was flushed with the separation buffer electrokinetically for 30 min. All stock solutions (except 

coumarin 334) were prepared by dissolving samples in ultrapure water (> 18 MΩcm, ModuLab 

water system, United States Corp.; Palm Desert, CA) and were stored at 4 °C. The separation 

buffer was prepared in the ultrapure water, adjusted to the desired pH with NaOH, and filtered 

with a 0.2 µm nylon filter (Whatman, Oregon). Coumarin 334 was dissolved in methanol and 
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Figure 2.1. A) The bleaching beam was focused on the capillary at F1, and the detection beam 

was focused on the capillary at F2. When the shutter opened to create a light pulse, the bleaching 

beam hit the capillary at F1, and a photobleached zone was generated. Light from the bleaching 

beam was directed by a fiber optic to the PMT (see Figure 1.4) and detected as a positive peak. 

The photobleached zone traveled with the EOF and was detected as a negative peak at F2. B) A 

sample of the EOF monitoring data where the capillary was filled with 25.0 nM coumarin 334, 

and the shutter was opened for 50 ms every 1.0 s. The time difference between each pair of 

positive and negative peaks was used to calculate EOF each second during a CE run. Other 

details are as listed in Section 2.2.2. 
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diluted with ultrapure water to 0.41 mM, and a working stock solution was prepared by diluting 

this solution with the separation buffer. The sample mixture (analytes and marker compounds) 

was prepared in separation buffer. Mesityl oxide was used as a neutral marker (absorbance 

detection) for all experiments. For the EOF monitoring experiments, 25 nM coumarin 334 was 

added to the sample mixture and to the separation buffer. All injections were electrokinetic (30.0 

kV, 236 V/cm) for 3.0 s. A separation potential of 30.0 kV (236 V/cm) was used for all CE 

experiments, and the electrophoretic current typically was 7.8 μA. 

2.2.3. Data Analysis 

Data for EOF monitoring experiments were analyzed with a program written in Matlab 

6.1 (Natick, MA), which was used for data smoothing, baseline subtraction, peak picking, and 

calculation of EOF rates for the EOF monitoring experiments. The program also determined 

FWHM values for the EOF monitoring peaks (Figure 2.1). Absorbance data were plotted using 

Origin 7.5 (Northampton, MA), and migration times of the analytes were determined using the 

peak picking function in this program. Calculations for the multiple marker method were 

performed using Mathematica 7 (Champaign, IL). Microsoft Excel (Microsoft Corp., Redmond, 

WA) was used to calculate migration time ratios, adjusted migration indices and to analyze the 

multiple marker data. 

2.3. Results and Discussion 

The initial objective of this work was to apply an EOF monitoring method [108-110] to 

improve the migration reproducibility of CE separations by correcting for changes in EOF that 

occurred throughout each run. The EOF monitoring technique based on periodic photobleaching 

of a dilute, neutral fluorophore has been shown to be capable of precisely measuring EOF (0.2-

1.8%) with a time resolution of ~1 s [108]. We hypothesized that this approach should be 
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superior to the neutral marker method for correction of CE migration data and that it might offer 

advantages relative to other published methods for correction of CE migration data based on 

multiple markers [92], migration time ratios [44] and adjusted migration indices of analytes [95]. 

In this study, several of these techniques were compared directly for the same electropherograms 

to determine which techniques provided the best results, in practice. 

2.3.1. Separation 

A mixture of proteins (myoglobin, carbonic anhydrase, α-lactalbumin, and β-

lactoglobulin) and small molecules (TPAA, DPAA, and BA) were separated and detected by CE 

with UV absorbance detection at 220 nm. During the separations, the EOF rates were monitored 

as discussed in Section 3.2. Five consecutive separations were performed (Figure 2.2), and these 

runs included the neutral marker, mesityl oxide. The capillary was rinsed with the separation 

buffer between each of the five runs for 10 min electrokinetically. The proteins used in this 

experiment all have pI values below the pH of the separation buffer (pH 7.51). These proteins 

will all have a net negative charge at this pH and are less likely to adsorb to the capillary wall 

compared to neutral or cationic species. The migration times and electrophoretic mobilities for 

the analytes were highly reproducible under these conditions with RSD values (average RSD for 

all 8 peaks) of less than 1.4% and 0.2% (calculated with the neutral marker method), 

respectively. The EOF monitoring data could be used to correct the data for these separations, 

but the results would be misleading. Excellent reproducibility values would be obtained after 

correcting the data for EOF changes, but similar values also would be obtained without 

correction. A less reproducible separation is required in order to more thoroughly test the new 

method for improving CE migration reproducibility and compare it to other techniques in the 

literature. 
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Figure 2.2. Electropherograms of the mixture of molecules used in this study. 1- mesityl oxide, 

2- myoglobin, 3- carbonic anhydrase, 4- α-lactalbumin, 5- β-lactoglobulin, 6- triphenyl acetic 

acid, 7- diphenyl acetic acid, 8- benzoic acid. Electropherograms for runs 1-4 were offset 

artificially (y-axis) so they could be viewed in one graph. 

 

To reduce the migration time reproducibility due to changes in EOF during the 

separation, a more basic protein, lysozyme (pI = 11.3), was added to the sample mixture at 0.5 

mg/ml. Figure 2.3 shows electropherograms from a series of five consecutive separations for this 

sample. The capillary was not rinsed between consecutive runs. With the addition of lysozyme, 

the migration times of the analytes increased for each run, and relative peak broadening is 

apparent. The adsorption of lysozyme to the capillary wall results in an uneven zeta potential 

down the length of the capillary, which leads to a parabolic flow profile and band broadening 

[56, 110]. A peak for lysozyme was not observed in the electropherograms, presumably due to 

strong adsorption to the capillary surface [56]. An additional series of CE separations were  
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Figure 2.3. Electrophoretic separation of a mixture of proteins and small molecules by CE with 

UV absorbance detection. 1-mesityl oxide, 2- myoglobin, 3- carbonic anhydrase, 4- α-

lactalbumin, 5- β-lactoglobulin, 6- TPAA, 7- DPAA, 8- benzoic acid .Lysozyme, was added to 

the mixture (0.5 mg/mL) but did not produce a peak. Electropherograms for runs 1-4 have been 

artificially offset (y-axis) so they can be plotted in one graph. The graph shows five consecutive 

runs. 

 

carried out using a sample containing 2.0 mg/ml lysozyme. The first three electropherograms for 

these experiments are presented in Figure 2.4. After three runs with this sample, the 

photobleaching peaks became so broad that it became impractical to analyze the EOF monitoring 

data. This broadening is caused by the same process that broadens analyte peaks detected by UV 

absorbance (uneven zeta potential, parabolic flow profile). The addition of lysozyme to the 

samples dramatically decreased the migration reproducibility for the other analytes. The 
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migration time RSD (average for all 8 peaks) increased to 10% in the runs with 0.5 mg/ml 

lysozyme addition from 1.4% (uncorrected data) without lysozyme. 

 

 

Figure 2.4. Electropherograms of the mixture of molecules with 2.0 mg/ml lysozyme added. 

Peak identities are the same as in Figure 2.2. Electropherograms for runs 1-4 were offset 

artificially (y-axis) so they could be viewed in one graph. 

 

2.3.2. Electroosmotic Flow Monitoring 

Electroosmotic flow was monitored during the separations presented in Figures 2.2, 2.3 

and 2.4 using the technique based on periodic photobleaching of a dilute, neutral fluorophore, 

coumarin 334 [110]. Coumarin 334 was added to the sample mixture and separation buffer at 25 

nM, and it was photobleached every 1.0 s for 50 ms throughout the separations. The EOF rate 

was determined from the time difference between the shutter opening at F1 (positive peak) and 
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the detection of the photobleached peak at F2 (negative vacancy peak), and this procedure was 

repeated every 1.0 s during the run (Figure 2.1). The sample compounds were detected by UV 

absorbance detection (at 86.8 cm) while EOF was monitored (at 45.2 cm). Previous studies 

demonstrated that the low concentration of fluorophore does not interfere with absorbance 

detection of analytes at higher concentrations [108, 110]. 

 

Figure 2.5. EOF vs. time for separations with 0.5 mg/mL lysozyme added to the sample mixture 

(Figure 2.3). The top trace is from the sample containing only the analyte mixture (no lysozyme, 

Figure 2.2). Each point is from a distinct EOF measurement made during the run (Figure 2.3). 

 

Figure 2.5 presents EOF measurements vs. time for one representative separation without 

lysozyme (all 5 separations are presented in Figure 2.2) and five consecutive separations with 0.5 

mg/mL lysozyme added to the sample (Figure 2.3). For the separations without lysozyme (top 

trace in Figure 2.5), the EOF remained constant throughout the runs with an RSD value of 0.7% 
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(average RSD for all 5 runs). This stable EOF is consistent with the observed migration time 

reproducibility for these separations, which ranged from 1.0 to 1.9% RSD for the different 

analyte peaks. For the five consecutive separations with the addition of 0.5 mg/ml lysozyme, the 

EOF decreased during each separation, and the initial EOF rate for the next separation was lower 

than that for the preceding separation. The EOF rate decreased 3.7% during the first run and a 

total of 18.3% over five runs. During each separation, the EOF decreased more rapidly during 

the first 40 s of the separation, due to adsorption of positively charged lysozyme to the capillary 

wall [56]. The vacancy (photobleached) peaks for coumarin 334 broadened 11% (FWHM) 

during the first run and a total of 97% over five runs as the EOF decreased. This result is 

consistent with adsorption of protein on the capillary surface causing an uneven zeta potential 

down the length of the capillary and a parabolic flow profile [56, 110]. Similar results were 

observed for the experiments with addition of 2.0 mg/ml lysozyme to the samples (Figure 2.6). 

The EOF rates decreased during the initial 140 s of the separation, and then they became 

relatively constant for the rest of the separation. The EOF rate decreased 4.0% during the first 

run and a total of 12% over three runs. The corresponding decrease over 3 runs for separations 

with 0.5 mg/mL lysozyme added was 10%. 

2.3.3. Comparison of Techniques to Improve Migration Time Reproducibility 

 The primary objective of this work was to test the hypothesis that continuous EOF 

monitoring will be effective for improving migration time reproducibility for CE (Section 2.3.2). 

In order to objectively evaluate the effectiveness this technique, it was directly compared to four 

other methods in the literature for improving CE migration reproducibility in addition to 

comparing it to the uncorrected electropherograms. These selected methods can all be applied to
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Figure 2.6. EOF vs time for separations with 2.0 mg/mL lysozyme added to the sample mixture. 

The top trace shows results from the sample mixture without lysozyme added (Figure 2.2). The 

lower 3 traces present changes in EOF rates with lysozyme added to the sample (Figure 2.4). 

 

the same electropherograms. The neutral marker method is the most routinely used technique by 

CE practitioners. In addition to that method, the multiple marker, migration time ratio, migration 

index and continuous EOF monitoring methods were applied, and their performance for 

improving the reproducibility of CE runs was compared. The migration reproducibility results 

for four analyte peaks obtained using each of the correction methods and for uncorrected data are  

presented in Figures 2.7-2.9 and. Tables 2.1-2.3 include the RSD values presented in Figures 2.7-

2.9 and the conversion of these values to time values. 
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Figure 2.7. Values for reproducibility (RSD) obtained with the five correction methods for the 

separations without lysozyme added to the sample. The RSD values for uncorrected data are 

calculated based on the migration times of the analytes. The migration time ratio method is 

unitless and adjusted migration index method provides RSD values with different units. 

 

Each of the five methods examined in this work uses a different approach to correct the 

fluctuations in analyte migration times. The equations used for application of these methods are 

provided in the Supplementary Content. The neutral marker method employs a single neutral 

compound in order to calculate the average EOF and the electrophoretic mobilities of the analyte 

[90, 120, 123]. The multiple marker method makes use of more than one compound of known 

electrophoretic mobility to determine the electrophoretic mobilities of the analytes. When using 

this technique, the compounds need to be chosen such that their migration times span the range 

of the analytes’ migration times [92]. The migration time ratio method uses the migration times  
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Figure 2.8. Values for reproducibility (RSD) obtained with the five correction methods for the 

separations with 0.5 mg/mL lysozyme added to the sample. The RSD values for uncorrected data 

are calculated based on the migration times of the analytes. The migration time ratio method is 

unitless and adjusted migration index method provides RSD values with different units. 

 

of the neutral marker and each analyte. The migration time ratio is calculated by dividing the 

migration time of the EOF marker by the migration time of the analyte [44]. The adjusted 

migration index method utilizes migration indices of the analytes and the EOF marker [95]. The 

migration index is calculated by integrating i/Lt over time for each analyte, where i is current 

density (ratio of current to cross sectional area of the capillary) and Lt is capillary length. The 

new method presented in this chapter is based on measuring EOF continually throughout the CE 

separation [108, 109]. It provides a precise (0.7% RSD) EOF measurement every second, which 

takes into account any changes in EOF that occur throughout the CE separation. 
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Figure 2.9. Values for reproducibility (RSD) obtained with the five correction methods for the 

separations with 2.0 mg/mL lysozyme added to the sample. The RSD values for uncorrected data 

are calculated based on the migration times of the analytes. The migration time ratio method is 

unitless and adjusted migration index method provides RSD values with different units 

 

Each method used here required marker compounds to be added to the sample mixture. 

Mesityl oxide was added to all sample mixtures, (with or without lysozyme) and was used for the 

neutral marker method, the migration time ratio and migration index methods. For the multiple 

marker method, carbonic anhydrase, β-lactoglobulin, and DPAA were chosen as the marker 

compounds since their migration times spanned the migration times of most of the other 

compounds in the mixture, which are referred to as the analytes. The migration times of 

myoglobin and benzoic acid (categorized as analytes for this work) fall outside the range 
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a
 Relative standard deviation value of electrophoretic mobility of analyte 

b
 Error in time that is converted from RSDM 

c
 Percent error of Ertime 

 

 

Table 2.1. Values for μep reproducibility (RSD), time difference and percent error values obtained with the five correction 

methods for the separations without  lysozyme added to the sample 

 
                

  myoglobin α-lactalbumin TPAA  benzoic acid 

 
RSDM

a Ertime
b %Ertime

c RSDM
a Ertime

b %Ertime
c RSDM

a Ertime
b %Ertime

c RSDM
a Ertime

b %Ertime
c 

Uncorrected Data - 11.6 1.0 - 17.1 1.2 - 22.4 1.4 - 43.1 1.9 
EOF monitoring 
Method 3.3 1.4 0.2 0.5 1.8 0.3 0.5 3.2 0.4 0.4 8.5 0.8 
Neutral Marker 
Method 2.2 0.9 0.2 0.1 0.3 0.0 0.2 1.7 0.2 0.4 7.6 0.7 
Multiple Marker 
Method 2.5 1.1 0.2 0.3 1.0 0.1 0.2 1.2 0.1 0.7 13.6 1.3 
Migration Time Ratio 
Method 0.1 0.9 0.1 0.2 3.7 0.5 0.4 8.9 0.8 1.0 34.8 2.0 



56 
 

 

Table 2.2. Values for μep reproducibility (RSD), time difference and percent error values obtained with the five correction methods 

for the separations with 0.5 mg/mL lysozyme added to the sample 

         

  myoglobin  α-lactalbumin TPAA benzoic acid 

 
RSDM

a Ertime
b %Ertime

c RSDM
a Ertime

b %Ertime
c RSDM

a Ertime
b %Ertime

c RSDM
a Ertime

b %Ertime
c 

 
Uncorrected Data - 95.2 7.1 - 136.8 8.3 - 190.7 9.8 - 449.3 15.5 
EOF monitoring 
Method 22.5 13.8 2.1 2.4 11.7 1.4 1.4 13.5 1.4 1.2 39.1 2.8 
Neutral Marker 
Method 13.7 8.3 1.3 2.0 9.7 1.2 1.1 11.2 1.2 1.3 44.6 3.1 
Multiple Marker 
Method 18.0 12.8 2.0 1.3 5.9 0.8 1.3 11.4 1.3 5.0 203.8 14.4 
Migration Time Ratio 
Method 1.1 14.1 2.1 2.2 39.6 4.3 3.9 102.8 7.6 10.4 460.7 19.4 

 

a
 Relative standard deviation value of electrophoretic mobility of analyte 

b
 Error in time that is converted from RSDM 

c
 Percent error of Ertime 
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Table 2.3. Values for μep reproducibility (RSD), time difference and percent error values obtained with the five correction methods 

for the separations with 2.0 mg/mL lysozyme added to the sample 

 
  

  myoglobin  α-lactalbumin  TPAA  benzoic acid 

 
RSDM

a Ertime
b %Ertime

c RSDM
a Ertime

b %Ertime
c RSDM

a Ertime
b %Ertime

c RSDM
a Ertime

b %Ertime
c 

Uncorrected Data             - 34.9 2.8 - 56.5 3.7 - 74.4 4.3 - 151.2 6.3 
EOF monitoring 
method 4.1 2.1 0.3 0.1 0.5 0.1 0.3 2.2 0.3 0.1 2.3 0.2 
Neutral Marker 
Method 7.7 3.6 0.6 0.7 2.7 0.4 0.3 2.1 0.2 0.5 11.6 1.0 
Multiple Marker 
Method 6.4 4.5 0.7 0.8 2.9 0.4 0.7 5.5 0.7 2.0 87.1 6.2 
Migration Time Ratio 
Method 0.2 2.4 0.4 0.8 13.1 1.6 1.3 31.0 2.6 3.3 123.3 6.6 

 

a
 Relative standard deviation value of electrophoretic mobility of analyte 

b
 Error in time that is converted from RSDM 

c
 Percent error of Ertime 
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spanned by the selected marker compounds and are useful for probing the effects of this 

extrapolation. The electrophoretic mobilities of the marker compounds were calculated based on 

the neutral marker migration time in preliminary runs, and the electrophoretic mobilities were 

used to determine the analytes’ mobilities. The neutral fluorophore, coumarin 334, was added to 

the sample mixture and to the separation buffer at 25.0 nM for the continuous EOF monitoring 

method. 

 The EOF monitoring method provided an EOF value for each second of the separation as 

shown in Figures 2.5 and 2.6. The EOF data were used to calculate μep for each analyte based on 

the average EOF value from the application of the separation potential to the detection of the 

analyte peak. Changes in EOF after the elution of the neutral marker were included, and EOF 

data after the detection of a particular analyte were excluded. The RSD values for the 

uncorrected migration times presented in Figures 2.7-2.9 show that reproducibility decreased as 

migration times of the analytes increased both with and without lysozyme added to the samples. 

-lactalbumin, TPAA and benzoic acid, the new EOF monitoring method resulted in low 

RSD values for µep with and without lysozyme added to the sample (Figures 2.7-2.9). For 

separations without lysozyme (Figure 2.7) an average 3 fold improvement in migration 

reproducibility (µep) was obtained for these three analytes relative to the uncorrected data 

(migration time). The average improvements when lysozyme was added at 0.5 mg/mL (Figure 

2.8) and 2.0 mg/mL (Figure 2.9) were 6-fold and 22-fold, respectively. Clearly this new method 

for improving migration reproducibility is effective for these analytes and separation conditions. 

While a comparison of the migration reproducibility obtained with the EOF monitoring 

method to the uncorrected migration data demonstrates that this new technique is effective, it is 

essential to directly compare this new method to other techniques in the literature for correcting 



59 
 

CE migration data. Such comparisons with competing techniques have seldom been made in the 

literature when new methods have been introduced for improving CE reproducibility [93, 95, 

99]. The most obvious technique to compare to is the neutral marker method because it is 

experimentally simple and widely used. The migration time of the neutral compound, mesityl 

oxide, was used to calculate, μeof for each separation (see Equation A2 in Appendix). The analyte 

migration time (t) and, μeof can then be used to calculate the electrophoretic mobility μep for each 

analyte and separation (See Equations 1.2 in Chapter 1, and A3, A4 and A5 in Appendix). When 

the RSD values of μep obtained with the neutral marker method are compared to those obtained 

with the EOF monitoring method, the improvements compared to uncorrected data are similar 

for the two methods. The average RSD values (for -lactalbumin, TPAA and benzoic acid) 

obtained with the neutral marker method were 0.2%, 1.5% and 0.5% for the runs without 

lysozyme, with 0.5 mg/mL lysozyme added and with 2.0 mg/mL lysozyme added, respectively. 

The corresponding values obtained with the EOF monitoring method were 0.5%, 1.7% and 0.2%. 

The neutral marker method provided slightly lower RSD values than the EOF monitoring 

method for the experiments without lysozyme and with 0.5 mg/mL lysozyme added; however, 

the EOF monitoring method produced lower RSD values for the runs with 2.0 mg/mL lysozyme 

added, when the capillary wall was affected the most by lysozyme adsorption. Overall, while the 

EOF monitoring method is effective for correcting CE migration data to account for EOF 

dynamics, the much older and simpler neutral marker method performs comparably well. 

The multiple marker technique was applied to the same data in order to evaluate its 

performance for improving reproducibility and to compare it to the other methods. Carbonic 

anhydrase, β-lactoglobulin, and DPAA were chosen as the marker compounds. The 

electrophoretic mobilities of the marker compounds were calculated from preliminary runs to 
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determine the coefficients for the multiple marker technique as described by Jumppanen et al. 

[92]. These coefficients were used to calculate μep for each analyte and to calculate an EOF 

profile for the separation. This method provided average RSD values (for -lactalbumin, TPAA 

and benzoic acid) of 0.4%, 2.5% and 1.2% for the separations with no lysozyme, 0.5 mg/ml 

lysozyme added, and 2.0 mg/ml lysozyme added, respectively. This method also is substantially 

more complicated than the neutral marker method. While it did improve the reproducibility of 

the separation, it did not outperform the neutral marker method or the EOF monitoring method. 

The neutral marker method provided better results both with and without lysozyme added to the 

sample. The multiple marker method performed similar to the EOF monitoring method when no 

lysozyme was added to the sample. Additionally, the RSD values for benzoic acid are 

substantially higher compared to the other two techniques, presumably due to lack of a marker 

compound after benzoic acid. 

Another relatively simple method for improving migration reproducibility uses a 

migration parameter for each analyte based on the ratio of the migration times of a neutral 

marker and that of the analyte. The migration time ratio for each analyte was calculated as 

described by Yang and Hage [44]. This method provided average RSD values of 0.5%, 5.5% and 

1.8% for separations with no lysozyme, 0.5 mg/ml lysozyme added, and 2.0 mg/ml lysozyme 

added, respectively. Additionally, the RSD values obtained with this method increased with the 

analyte elution time for all conditions. While this method does improve migration 

reproducibility, its performance was generally worse than the three techniques discussed above, 

including the similarly simple neutral marker method. 

The last method applied to these separations was the adjusted migration index method 

reported by Lee and Yeung [95]. Following their method, migration indices first were calculated 
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for each analyte and the neutral marker (mesityl oxide). Then, the adjusted migration index was 

determined using these migration indices for each analyte. Overall, the migration index method’s 

performance was similar to the neutral marker and the EOF monitoring methods. For separations 

without lysozyme it provided an average RSD 0.5% (for -lactalbumin, TPAA and benzoic 

acid), which is close to the values provided by the other methods with the exception of the 

neutral marker method (0.2%). The adjusted migration index method provided the best average 

RSD value (0.7%) for the separations with 0.5 mg/ml lysozyme added. For the separations with 

2.0 mg/ml lysozyme addition, the average RSD was 0.4%, which was only surpassed by the EOF 

monitoring method. The migration index method employs only a neutral compound as the 

neutral marker method does, and it does not require extra instrumentation like the EOF 

monitoring method does. The calculations of MI and AMI are not especially difficult, but they 

are not as simple as those for the neutral marker method. 

The preceding comparison of the methods for improving CE reproducibility does not 

include the results for myoglobin, which are presented in Figures 2.7-2.9. Surprisingly, the 

corrected RSD values for myoglobin are higher than for the uncorrected migration times using 

all of these methods except for migration time ratio method. This surprising outcome for 

myoglobin results from the way in which migration reproducibility is reported. For the neutral 

marker, multiple marker and EOF monitoring methods µep for each analyte is used to evaluate 

migration reproducibility, but the uncorrected migration data are reported in time units (s). The 

value for µep is obtained from the difference between net mobility (µnet) and EOF mobility (µeof) 

as shown in Equation 2.1  

                         (2.1) 
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Figure 2.10. Comparison of different representations (RSDM and %Ertime) of four 

methods’ performance to improve reproducibility of myoglobin. 

 

In the case of myoglobin, the absolute magnitude of µep is small (approaching 0) compared to the 

other analytes, and the total error for µep becomes relatively large as indicated by the relatively 

high RSD values for myoglobin (Figures 2.7-2.9). 

The error values reported in Figures 2.7-2.9 can be converted from electrophoretic 

mobility (cm
2
/Vs) to migration time (s) using Equation 1.2 in Chapter 1. Figure 2.10 presents the 

RSD values for separations with myoglobin with 0.5 mg/mL lysozyme in units of both 

electrophoretic mobility and time for the EOF monitoring method, the neutral marker method, 

the multiple marker method, and the migration time ratio method. The uncorrected data can only 

be expressed in units of time. As shown in Figure 2.10, all of these methods actually improve 

migration reproducibility for myoglobin 7 to 11 fold when considered in units of time. It is 

important to note that the mobility values produced by the migration ratio method are actually 
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are unitless, not electrophoretic mobility (cm
2
/Vs); however, these ratios can be easily converted 

back to time units. The data from the adjusted migration index method are not presented in 

Figure 2.10. The values obtained from the adjusted migration index method cannot be readily 

converted back to migration times. In fact, it is difficult to compare the results obtained with the 

adjusted migration index in a meaningful way to any of the other methods tested. Tables 2.1-2.3 

present all of the data presented in Figures 2.7-2.9 converted to units of time with the exception 

of the adjusted migration index method. For myoglobin, the migration ratio method provides the 

biggest improvements in migration reproducibility when compared to the other methods in time. 

In an effort to better understand the relative performance of each technique for improving 

CE migration reproducibility, the EOF profiles measured or assumed by the EOF monitoring 

method, the neutral marker method and the multiple marker method (using three markers) have 

been plotted and compared. The migration time ratio and adjusted migration index methods are 

based on the same EOF profile as the neutral marker method, so only the plot for the neutral 

marker method is considered. The EOF rates from a separation with 2.0 mg/ml lysozyme 

addition are presented in Figure 2.11 since the capillary surface and EOF were most affected by 

injection of this sample. The neutral marker method (also migration time ratio and migration 

index methods) assumes a constant EOF during the entire separation as shown in Figure 2.11. 

The multiple marker method assumes different EOF profiles depending on the number of marker 

compounds used [92]. This method assumes a constant EOF for the two-marker technique, a 

linearly accelerating EOF profile for the three-marker technique and a nonlinearly accelerating 

EOF for the four-marker technique. In our study, the three-marker technique was used, which 

resulted in an EOF profile that is linearly accelerating as shown in Figure 2.11. Equations A7,  
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Figure 2.11. Electroosmotic flow profiles of the methods used to improve CE migration 

reproducibility for a separation with 2.0 mg/mL lysozyme added to the sample. The inset shows 

and expanded view of the EOF profile for the EOF monitoring method and neutral marker 

method, which represents the other three method’s EOF profile as indicated in the text. Other 

data for the same experimental conditions are presented in Figures2.4, 2.6, and 2.9. 

 

A8, and A11 in Appendix were used to obtain the EOF profile for the multiple marker method 

[92]. The EOF profile obtained with the EOF monitoring method showed that the EOF rates 

decreased over the first 140 s, then stabilized for the rest of the run. The neutral marker method 

provides a profile that is relatively close to the real, measured EOF. The EOF profile assumed by 

the multiple marker method clearly is not an accurate representation of the EOF during the 

separation although the method still improves migration time reproducibility for these 

experiments. 
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Interestingly, the continuous EOF monitoring method provided the best RSD values for 

the separations with 2.0 mg/ml lysozyme added to the samples (average RSD of 0.2% RSD). The 

EOF monitoring method clearly offers superior reproducibility results when the capillary wall 

surface has been affected by concentrated protein samples (2.0 mg/ml lysozyme). The EOF 

changes in those runs are very striking as seen in Figures 2.5 and 2.6. The change in EOF 

occurred over longer times for the runs with more concentrated protein. During experiments with 

the less concentrated protein, the EOF rates became stable after 40 s, whereas it took 140 s for 

the rates to become constant for the more concentrated protein addition. The EOF monitoring 

method has the ability to observe the changes in EOF throughout a run, and especially when the 

capillary wall is affected by the sample. Additionally, the method is capable of correcting the 

mobilities of the analytes when the change in the chemistry of the capillary wall is very dramatic. 

2.4. Conclusion 

This study demonstrates that the continuous EOF monitoring method can be used to 

significantly improve migration reproducibility for CE experiments; however, based on direct 

experimental comparison, this new technique does not provide results that are superior to several 

other techniques in the literature for correcting CE migration times. The EOF monitoring method 

still provides a real-time EOF profile and can be a useful tool to observe and study changes in 

capillary surface that may occur during the CE separations. While this central hypothesis of the 

study (the EOF monitoring method would provide superior results) was not supported by these 

results, the direct experimental comparison between several methods for improving migration 

CE migration reproducibility is novel and valuable for CE practitioners. Perhaps the most 

important and surprising conclusion from this study is that for most of the separation conditions 

studied in this work, the neutral marker method [90, 123] provides results that are comparable to 
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those obtained with several more complicated and sophisticated techniques for improving CE 

migration reproducibility. 
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CHAPTER 3 

INVESTIGATION OF ELECTROOSMOTIC FLOW DYNAMICS IN RESPONSE TO 

BIOLOGICAL SAMPLE INTRODUCTION FOR CAPILLARY ELECTROPHORESIS 

 

3.1. Introduction 

 

 Capillary electrophoresis (CE) is widely used for bioanalytical applications, particularly 

those applications that require small sample volumes and rapid, highly efficient separations [7, 

10]. Capillary electrophoresis separations typically are carried out in aqueous solutions near 

physiological pH values, and often biological samples can be injected directly into a CE capillary 

for analysis with minimal sample preparation [10, 127]. Early in the development of CE, the 

technique was applied to the analysis of single cells as well as biological fluids such as serum 

and urine [128-133]. The use and development of CE for such applications continues today in 

both capillaries and microchip devices [9, 134]. 

 A major drawback for biological sample analysis with CE is unwanted adsorption of 

sample components to the capillary wall, which impacts the capillary surface charge, thereby 

altering electroosmotic flow (EOF) [56, 135-138]. Such sample-induced changes in EOF have 

long been recognized as a problem for CE [55, 56, 139]. Unwanted sample adsorption is one of 

the main causes of irreproducible migration times, sample loss, and compromised separation 

efficiency for CE [22, 56]. Equation 1.2 in Chapter 1 shows the relationship between 

electrophoretic mobility, electroosmotic mobility and migration velocity. Clearly changes in 

EOF will impact the migration times of all analytes, and variation during and between runs will 

impact migration reproducibility. Equation 1.4 in Chapter 1 shows the relationship between 

electroosmotic mobility and the zeta potential, ζ, which is related to the double layer structure on 

the capillary surface as indicated in Equation 1.5. When molecules from the sample adsorb to the 

capillary surface, they alter the surface charge, which affects the double layer and local zeta 
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potential [138]. This leads to changes in EOF, band broadening and degraded migration 

reproducibility [56, 137-139]. 

 There have been a handful of studies exploring how sample adsorption impacts EOF and 

CE separations, dating back to the early years of CE [56, 107]. Towns and Regnier 

experimentally confirmed that the sample adsorption affected the zeta potential and EOF [56]. 

They demonstrated that injections of basic protein molecules into a CE system caused sample 

adsorption, low sample recovery percentages, low separation efficiencies and irreproducible 

migration times. These studies suggest that EOF may be changing continuously from the time a 

sample is first introduced in the capillary until and perhaps even after sample components 

detected as peaks have eluted from the capillary. Ghosal [140] performed theoretical calculations 

for the experimental conditions that Towns and Regnier used in their report and confirmed the 

generation of space- and time-dependent zeta potential distribution while the sample zone travels 

through the capillary. Zare group observed similar EOF changes during experiments where 

human serum was injected at various dilutions [107]. In a more recent study, Fang et al. [141] 

investigated the adsorption properties of an autofluorescent protein by CE experiments, 

fluorescence microscopy and computer simulations. Electrophoretic mobility data (from the 

simulations and CE experiments) and calculations of capacity factor (based on the experiments 

and imaging) were compared to understand adsorption process and the basic separation 

mechanism of CE. In addition, adsorption characteristics of sample molecules have been 

investigated in microchips by using an enzyme-linked immunosorbent assay (ELISA) technique 

[142], fluorescence microscopy [143], and radiolabeling [144, 145] with various microchip 

materials. A study by Salim et al. [146] presented results confirming that the EOF rates are very 

sensitive to protein adsorption on the channel wall, which could result in reversed EOF. 
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 In order to understand the dynamics of these processes, it is necessary to measure EOF as 

a function of time. Zare and coworkers monitored the EOF by delivering a known amount of a 

fluorescent dye to the flow stream, where the dilution of the dye by EOF resulted in a change in 

fluorescence signal intensity proportional to the EOF rate [107].  

 They were able to detect flow changes as small as 1% and correct for the changes in 

electric field to calculate electrophoretic mobilities of the analytes when the sample (serum 

sample) had adsorbing species that altered EOF. Another EOF monitoring approach is based on 

measuring a change in refractive index when a small heated volume of solution travels over a 

short, defined distance. The generation of the heated zone is performed periodically by a laser 

[103] or by a heating coil [104]. The migration of the heated zone is due to the EOF, thus its 

migration behavior provides the EOF rates. Heated zone generation was employed in another 

study to change the electrolyte composition permanently, which was called a thermal mark, to 

monitor the EOF by contactless conductivity detection [105]. In a recent study, Seiman et al. 

applied the thermal marks method to investigate EOF rates for non-aqueous capillary 

electrophoresis in the presence of ionic liquids [106]. 

 The aforementioned techniques have measured the EOF as a function of time; however, 

they have rarely been applied to fundamental studies of EOF dynamics, which have potential to 

provide useful insights into CE separations and events related to EOF occurring during CE 

experiments. Gilman and coworkers developed a technique for studying EOF dynamics based on 

periodic photobleaching of a dilute, neutral fluorophore [108, 109] and later applied this 

technique to study EOF dynamics in capillaries and microchips. This technique can monitor EOF 

with a time resolution of ~1 s and with a precision below 1% [108]. Because the added neutral 

fluorophore is used at nanomolar concentrations, the method can be used with UV absorbance 
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detection of nonfluorescent analytes at higher concentrations [110]. The continuous EOF 

monitoring method was used to investigate EOF during sample stacking in capillaries and how 

the current monitoring method affects EOF in microchips. Frederick and coworkers applied this 

technique to detect deviations from ideal plug flow during the course of a CE experiment [126] 

and to investigate the stability of polyelectrolyte multilayer (PEM) coatings and their responses 

to different pH conditions based on observed changes in the EOF [147]. 

 In this study, we investigated the effects of biological samples on EOF dynamics in order 

to gain a better understanding of the interactions between the sample molecules and the capillary 

wall and their impact on CE separations. The continuous EOF monitoring method based on 

periodic photobleaching of a neutral dye was used for this work [108, 110]. Sample adsorption 

and its deleterious effects on CE separations have been observed during analysis of serum 

samples and even single cell analysis with CE [139]; however, it is not known which sample 

component or components most affect EOF and consequently, CE separations. Samples of pure 

molecules representing proteins, carbohydrates, lipids and DNA were studied individually along 

with lysed whole cells and serum samples. 

3.2. Materials and Methods 

3.2.1. Chemicals 

 Lysozyme (chicken albumin), cytochrome c (horse heart), ribonuclease A (bovine 

pancreas), myoglobin (equine skeletal muscle), sodium phosphate monobasic, sodium chloride, 

methanol, sodium decodecyl sulfate (SDS), d-galactose, d-cellobiose, maltoheptaose, cholesterol, 

tetrahydrofuran, acetonitrile, chloroform, DNA (calf thymus), nuclease free water, and fetal 

bovine serum (FBS) were purchased from Sigma-Aldrich (St. Louis, MO). Dipalmitoyl-L-α-

phosphatidylcholine (DPPC), dipalmitoyl-L-α-phosphatidylgycerol (sodium salt) (DPPG), and 
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1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) were obtained from Avanti Polar Lipids 

(Alabaster, AL). Boric acid and sodium hydroxide were obtained from Fisher Scientific (Fair 

Lawn, New Jersey). Laser grade coumarin 334 was from Acros Organics (Morris Plains, NJ). 

3.2.2. Capillary Electrophoresis and EOF Monitoring 

 The general design for the CE system was described previously [108, 110]. Fused-silica 

capillary (50-μm i.d./360-μm o.d.) was purchased from Polymicro (Phoenix, AZ) and cut to 72.0 

cm. The polyimide coating was removed (~1 cm) to make a detection window at 49.1 cm. The 

separation buffers (20.1 mM phosphate buffer at pH 6.91 and 20.0 mM borate buffer at pH 9.1) 

were prepared in ultrapure water (> 18 MΩ-cm, ModuLab water purification system, United 

States Filter Corp., Palm Desert, CA), adjusted to the desired pH with NaOH, and filtered with a 

0.2 µm nylon filter (Whatman, Oregon). Coumarin 334 was dissolved in methanol (0.41 mM) 

and diluted with ultrapure water, and a working stock solution was prepared by diluting this 

solution with the separation buffer. In order to monitor EOF, 50 nM coumarin 334 was added to 

the sample mixture and to the separation buffer for all samples. All injections were electrokinetic 

at 20.0 kV (278 V/cm) for 5.0 s. An electrophoretic potential of 20.0 kV (278 V/cm) was applied 

with a Spellman CZE 1000R high voltage power supply (Hauppauge, NY). The electrophoretic 

current was typically 5.4 μA for the phosphate buffer, and 17.8 μA for the borate buffer. 

The instrument for CE with EOF monitoring is similar to an instrument reported previously [108, 

110]. The 488.0-nm line of an argon ion laser (Melles Griot 543-AP-A01; Carlsbad, CA) was 

used as the light source. The laser beam was split with a broadband cubic beam splitter, and then 

the beams were focused on the capillary at two different positions, F1 and F2. The bleaching 

portion of the beam (54.2 mW) was directed by a computer controlled shutter (Uniblitz LS6Z2; 

Rochester, NY) and focused on the capillary at position F1. The shutter was opened for 50 ms 
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every 1.0 s to generate photobleached zones. Additionally, a small portion of the light was 

directed to a photomultiplier tube (PMT) (Hamamatsu HC 170; Bridgewater, NJ) by a fiber optic 

to mark the beginning of each individual flow measurement. The detection portion of the beam 

(10.0 mW) was used for fluorescence excitation. The beam was directed toward to the capillary 

by a dichroic mirror (505DRLPXR; Omega Optical; Brattleboro, VT) and was focused onto the 

capillary through a 20 x microscope objective (0.4 NA) at position F2. The fluorescence 

emission was collected at 180
o
 and residual scattering from the capillary was reduced by a band-

pass filter (520BP10; Omega Optical; Brattleboro, VT). Scattering light was spatially reduced by 

a pinhole (1.0 mm). The distance between the bleaching and detection points (dF1-F2) was 

determined to be 692.5 ± 0.6 μm using a method that was described previously [108, 109]. The 

emitted light was detected by the PMT biased at 850 V. The PMT signal was filtered with a 250 

Hz low-pass filter. A program written in LabView (National Instruments, Austin, TX) was used 

to control the shutter and to collect the data using a National Instruments PCI-6299 (Austin, TX) 

data acquisition board at a 300 Hz scan rate. 

3.2.3. Sample Preparation for Model Compounds, Cell Lysates and FBS 

 The stock solutions of compounds for protein and carbohydrate studies were prepared by 

dissolving samples in ultrapure water and were stored at 4 °C. Cholesterol was dissolved in 

tetrahydrofuran (THF) (62.5%), mixed with acetonitrile (ACN) (37.5%) and stored at 4 °C. 

DPPC/DPPG and DOTAP liposomes were prepared according to Burns et al. [148] and Bordi et 

al. [149], respectively, and the stock solutions were stored at 4 °C. Digital images of liposomes 

were taken with Nikon Microphot-FX-A optical microscope and with TEM (JEOL 100CX) 

instrument for size determination. DNA was dissolved in nuclease free water overnight and 

stored at -20 °C. The cultured human adipocyte cells were lysed using a freeze-thaw method 
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[150]. Separation buffer and coumarin 334 were added to the cell lysate for CE experiments. The 

fetal bovine serum was stored at 4 °C and diluted with separation buffer containing 50 nM 

coumarin 334 to the desired concentration for CE experiments. The following regeneration 

procedure for the capillary was applied after each protein, cell lysate and FBS injections. The 

capillary was rinsed with 0.10 ml of 1 M NaOH, 0.25 ml water, and 0.25 ml buffer by syringe 

pump. Then the capillary was rinsed electrokinetically with buffer for 30 min and with 60 mM 

SDS solution in buffer for 2 hr. Finally, the capillary was regenerated by injection of 0.25 ml 

water and 0.25 ml buffer by syringe pump and 30 min buffer by electrokinetic injection. 

3.2.4. Data Analysis 

 Data for the EOF monitoring experiments were analyzed with a program written in 

Matlab 6.1 (Natick, MA), which was used for data smoothing, baseline subtraction, peak 

picking, and calculation of EOF rates for the EOF monitoring runs. The program also determined 

FWHM values for the photobleached peaks. Microsoft Excel (Microsoft Corp., Redmond, WA) 

and Origin 7.5 (Northampton, MA) were used to present the results of the study. 

3.3. Results and Discussion 

The goal of this study was to understand how adsorption of biological sample components 

impacts EOF dynamics during a CE separation. Cultured cells and serum were studied as 

examples of biological samples that are known to cause reproducibility problems for CE 

analysis, presumably due to sample adsorption and EOF changes [56, 107, 128, 139, 151]. In 

addition, pure compounds representative of major components of a biological cell, were studied 

to determine how each class of biological molecule impacts EOF dynamics. The biological 

model compounds studied were proteins, carbohydrates, lipids and DNA. The experiments were 

carried out at two pH values (6.91 and 9.1) with a range of sample concentrations. 
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Electroosmotic flow dynamics were measured during CE after sample injection using a 

previously reported method that can measure EOF with a precision of less than 1% [109] and at a 

frequency of up to 1 Hz [108]. 

3.3.1. Protein Samples 

Proteins are diverse and complex amphoteric molecules. Their charge characteristics, 

structure and interaction with a surface can vary substantially with pH. The proteins used in this 

study were selected to have a range of pI values: lysozyme (pI 11.1), cytochrome c (pI 10.2), 

ribonuclease A (pI 9.3) and myoglobin (pI 7.3). They were injected into the CE system at 

different concentrations (0.5, 1.0, 2.0, and 2.5 mg/ml) and at two different pH’s, 6.91 and 9.1. 

Figure 3.1 shows the EOF versus time after injections of lysozyme at pH 9.1 at several 

concentrations. For an injection of just buffer (top trace), the EOF was constant (1.0% RSD) over 

the course of the run. When samples containing lysozyme were injected, the EOF rates decreased 

at the beginning of the run and became constant for the rest of the run. The drop in EOF 

increased in magnitude from 3.3% to 24% as the lysozyme concentration increased from 0.5 to 

2.5 mg/mL as shown in Table 3.1. The decrease in EOF rate is not surprising since the buffer pH 

is below the pI of lysozyme, and the protein has a net positive charge at this pH. Positively 

charged protein molecules adsorb to the negatively charged silanol groups on the capillary 

surface, which alters the zeta potential and reduces the EOF. 

Additionally, the time over which the EOF decreased was concentration dependent. The 

EOF drop time increased from 25 s to 100 s before reaching a relatively constant value as the 

lysozyme concentration was increased from 0.5 mg/ml to 2.5 mg/ml. This is an indication of a  
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Figure 3.1. EOF rate versus time plots for experiments in which lysozyme samples were 

electrokinetically injected for 5.0 s. The plots are for lysozyme concentrations of 0, 0.5, 1.0, 2.0 

and 2.5 mg/ml from top to bottom. The separation buffer and the sample solution was 20.0 mM 

borate buffer at pH 9.1. All solutions contained 50 nM coumarin 334. The applied potential was 

277 V/cm, and the current was 17.8 µA. The bleaching pulse duration was 50 ms every 1.0 s, and 

the bleaching beam power was 54.2 mW at F1, and the detection power at F2 was 10.0 mW. 

 

time that is required for zeta potential to reach a steady state which was also observed by Lee et 

al. in Figure 7 in ref [107]. Cytochrome c and ribonuclease A both have pI’s above this buffer 

pH, and the results for these proteins were similar to those for lysozyme as shown in Table 3.1. 

The relation between the percent changes in EOF rates with protein concentration is presented in 

Figure 3.2. 

At pH 6.91, injections of lysozyme also caused significant changes in EOF as expected 

(see Figure 3.3). As at pH 9.1, EOF rates decreased at the beginning of the run; however, the 

EOF continued to decrease slowly after the initial sharp drop unlike the experiments at pH 9.1.  
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Figure 3.2. Plots presenting the relation between the percent changes in A) EOF rates and B) 

FWHM values of the photobleaching peaks due to model protein runs for the experiments with 

pH 9.1.  
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Figure 3.3. EOF rate versus time plots for experiments in which lysozyme samples with various 

concentrations were electrokinetically injected for 5 s. The plots are for lysozyme concentrations 

of 0.5, 1.0, 2.0 and 2.5 mg/ml from top to bottom. For the separation buffer and the sample 

solution, 20.1 mM borate buffer at pH 6.91 was used (electrophoretic current was 5.4 µA)  

 

The initial, more rapid drop in EOF increased from 2.5% to 26.7% as the lysozyme concentration 

increased from 0.5 to 2.5 mg/mL, and the magnitude of the overall EOF decrease ranged from 

2.8% to 37.0%, again increasing with concentration as shown in Table 3.2. The times of the 

initial decrease in EOF were longer at pH 6.91, compared to pH 9.1 ranging from 45 s to 120 s. 

The differences in EOF dynamics observed between lysozyme injections at pH 6.91 and 9.1 are 

likely caused by increased electrostatic interaction for more positively charged proteins due to 

the larger difference between the pI and buffer pH, and consequently, more adsorption to the 

capillary wall [56]. The first sharp decrease in the EOF rates is presumably caused by the 

adsorption of available protein molecules; however, the continuing EOF decrease could indicate 
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Table 3.1. Summary of changes in EOF rates and FWHM for protein injections at pH 9.1*  
 

 
protein   lysozyme     

cytochrome 
c 

    
ribonuclease 

A 
  

concentration 
EOF rate 
decrease 

percentage 

drop 
time 
(s) 

FWHM 
increase 

percentage 

EOF rate 
decrease 

percentage 

drop time 
(s) 

FWHM 
increase 

percentage 

EOF rate 
decrease 

percentage 

drop time 
(s) 

FWHM 
increase 

percentage 

0.5 mg/ml 3.3 ± 2.2 25-35 s 7.2 ± 4.1 1.4 ±0.2 16-20 s 2.2 ±0.7 6.2 ± 0.5 34-39 s 12.0 ± 4.6 

1.0 mg/ml 10.8 ± 3.0 67-72 s 41.4 ± 18.8 7.4 ± 0.5 39-44 s 17.3 ± 1.3 12.3 ± 3.2 66-71 s 22.8 ± 6.4 

2.0 mg/ml 19.6 ± 0.4 73-78 s 91.8 ± 11.6 16.0 ± 0.5 80-85 s 72.7 ± 6.4 19.9 ± 1.3 90-100 s 70.8 ± 7.2 

2.5 mg/ml 24 ± 1.6 100-110 s 118.3 ± 7.8  18.8 ± 1.1 94-100 s 75.4 ± 5.1  24.2 ± 3.4 164-171 s 92.0 ± 27.3 

 

* Error values are standard deviations in three runs. 
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* Error values are standard deviations in three runs. 

 

 

Table 3.2. Summary of changes in EOF rates during the experiments with buffer at pH 6.91*                                                                                               
  

   protein lysozyme cytochrome c ribonuclease A 

concentration 
Initial EOF 
decrease 

percentage 

Overall EOF  
decrease 

percentage 

drop time 
(s) 

Initial EOF 
decrease 

percentage 

Overall EOF  
decrease 

percentage 

drop 
time (s) 

Initial EOF 
decrease 

percentage 

Overall EOF  
decrease 

percentage 

drop 
time (s) 

0.5 mg/ml 2.5 ± 0.7 2.8 ± 0.6 47-52 s -0.6 -0.7 - 2.4 7.9 ± 1.1 70-73 s 

1.0 mg/ml 8.7 ± 0.6 12.5 ± 1.1 70-75 s 4.2 ± 1.2 5.2 ± 1.6 40-45 s 12.7 ± 9.0 14.8 ± 1.4 100-103 s 

2.0 mg/ml 20.2 ± 0.5 26.3 ± 3.3 97-102 s 14.0 ± 0.7 18.4 ± 0.5 68-73 s 59.1 ± 17.0 27.7 ± 2.8 170-173 s 

2.5 mg/ml 26.7 ± 1.2  37.0 ± 5.0 120-125 s 19.4 ± 0.5  22.0 ± 0.2 97-102 s 92.2 ± 9.1  34.6 ± 1.5 200-203 s 
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changes in the structure of the already adsorbed protein molecules. On the other hand, as the 

charge on the protein molecules increase, the repulsion of adsorbed molecules with same charge 

also increases. In addition, less ionized silanol groups at the lower pH on the capillary wall 

decreases the electrostatic attraction and thus the degree of adsorption. When all of these factors 

are considered, the overall effect on the EOF rates is a combination of couple opposing effects 

and apparently, electrostatic interaction between counter charged capillary wall and protein 

molecules overcomes the other factors. Towns and Regnier [56] have provided insightful 

information and set a milestone to understand the protein adsorption in CE experiments. They 

have reported that biggest EOF change occurred at longer times of the CE experiment, however, 

we should point out that in our case, the most dramatic EOF change happened at the beginning of 

the experiments.  

The three model compounds (lysozyme, cytochrome c and ribonuclease A) for protein 

molecules presented similarities since they all caused decrease in the EOF rates. However, the 

degree of EOF change differs for each protein which has different structures, pI values, charged 

sites on the surface etc. which means the protein-capillary surface interaction is protein 

dependent [152]. For instance, the change in EOF rates occurred over a longer period of time for 

the ribonuclease A results (see Tables 3.1 and 3.2). But, the overall percent change in EOF rates 

is similar to the other protein results. Another interesting point for ribonuclease A is that even 

though, the buffer pH (9.1) is very close its pI value (9.3) the adsorption effects are still 

observed. Overall net charge of the protein molecule is zero, the adsorption is still achieved due 

to electrostatic attraction of local positively charged regions of the protein molecules with 

unequal charge distribution to the negatively charged capillary wall [153]. In addition, repulsion 

between the protein molecules is diminished since the overall charge is zero, thus the adsorption 
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is further supported [154]. It has also been reported in the literature that the adsorption process, 

otherwise an electrostatic interaction, becomes hydrophilic attachment when pH is close to the pI 

value of the protein [155]. 

The results for the experiments with myoglobin differed substantially from those with the 

other three proteins tested. At pH 9.1, injection of myoglobin resulted in no significant changes 

with EOF, suggesting that the protein was not adsorbing to the capillary surface under these 

conditions (see Figure 3.4). At 6.91, myoglobin has a net positive charge (pI is 7.3), and 

adsorption effect was expected. However, the flow profile was also constant with only 1.1% 

RSD in EOF rates as a verification of unchanged capillary wall chemistry. Similar observation 

was noticed in the report by Towns and Regnier that myoglobin presented very little adsorption 

effects when the buffer pH was varied (see Figure 3 in ref [56]). In addition, the myoglobin 

structure reveals that it is mostly neutral with a few charged sites [155]. It was reported that the 

myoglobin adsorbed the most at pH 6.5, not at the pH values above this. 

 

Figure 3.4. Changes in the EOF rates as a function of time for 5 s injections of myoglobin in 

20.1 mM phosphate buffer at pH 9.1.  
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Figure 3.5. FWHM versus time plots for experiments in which lysozyme samples with various 

concentrations were electrokinetically injected for 5 s. The traces are for lysozyme 

concentrations of 2.5, 2.0, 1.0, 0.5 mg/ml from the top and the bottom trace is for blank sample.  

All other experimental conditions are the same as those in Figure 3.1. 

 

As the EOF decreased after injection of lysozyme, broadening of the fluorescence 

vacancy peaks used for EOF measurement was apparent. Figure 3.5 shows the full width at half 

maximum (FWHM) values of these vacancy peaks versus time for different lysozyme 

concentrations at pH 9.1. Examples of EOF monitoring peaks for these experiments are 

presented in the Figure 3.6. Such broadening has been observed previously during EOF 

monitoring and has been attributed to a parabolic flow profile developing in the capillary due to a 

mismatch in zeta potential down the length of a capillary [110, 111] . Towns and Regnier 

reported hydrodynamic flow profile, band broadening and peak tailing when sample molecules 

adsorb to the capillary wall [56]. The EOF monitoring method used here allows for the  
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Figure 3.6. Development of band broadening due to protein injection to the CE system. Figure A 

presents photobleaching peaks at the beginning and Figure B shows the end of the experiment 

where 2.0 mg/ml lysozyme was injected for 5s in 20.0 mM borate buffer at pH 9.1. 

 

observation of this effect as a function of time. The FWHM values increased at the beginning of 

the runs and then became constant, following the pattern of changes for the EOF. The FWHM 

values increased 7.2%, 41.4%, 91.8% and 118.3% as protein concentration increased from 0.5 to 

2.5 mg/mL. Peak broadening was also observed in similar fashion for cytochrome c and 

ribonuclease A as a result of sample adsorption as seen in Table 3.1. 

Although it is natural to conclude that the observed broadening was primarily due to a 

mismatch in the zeta potential down the length of the capillary due to protein adsorption, 

diffusional broadening will also increase as the EOF decreases and the migration times of the 

vacancy peaks increases. The vacancy peak broadening was evaluated quantitatively in order to 

determine the importance of these two factors. Several factors are known to contribute to peak 

variance (σTot
2
) for CE experiments, including injection length (σinj

2
), detection length (σdet

2
), 

longitudinal diffusion (σLD
2
) and zone mismatch (σmis

2
) as shown in Equation 3.1. [156] 

 

         
      

      
     

      
      (3.1) 
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For the EOF monitoring experiments, σdet
2
 is defined by the focused laser beam used for LIF 

detection and should be both negligible and unaffected by protein adsorption in the capillary. 

The EOF monitoring peaks are actually coumarin vacancy peaks, and (σmis
2
) at the EOF 

monitoring area should be unaffected by protein adsorption near the injection end. The vacancy 

injection time (50 ms) was optimized to not impact the vacancy peaks widths, and (σinj
2
), will 

actually decrease as EOF decreases. Only longitudinal diffusion (σLD
2
) and the mismatch in zeta 

potential down the length of the capillary should contribute to significant changes in σTot
2
 in 

response to sample adsorption. 

The total variance for the EOF monitoring peaks (coumarin 334 vacancy peaks) was 

calculated for injections of 2.0 mg/ml cytochrome c at pH 6.91 and is shown in Figure 3.7 (top 

trace). The changes in (σLD
2
) were quantified by measuring the diffusion coefficient of coumarin 

by using a modified version of the stopped flow method that was developed by Walbroehl and 

Jorgenson [157]. The diffusion coefficient was then used to calculate (σLD
2
) as the EOF 

decreased. This is plotted in Figure 3.7 (bottom trace), and is clear that longitudinal diffusion is 

not a significant contributor to the observed changes in the EOF monitoring peaks. The middle 

trace in Figure 3.7 is the difference between σTot
2
 and σLD

2
, and large changes are due to the 

mismatch in capillary zeta potential caused by sample protein adsorption. any inhomogeneities in 

the axial direction cause an axial pressure gradient and hydrodynamic flow [158, 159]. 

Another potential contributor to the observed changes in EOF and vacancy peak 

broadening is solution viscosity due to high protein concentrations as indicated in Equation 1.4 

in Chapter 1. The experiments with myoglobin injections at 2.0, 4.0, 5.0, 6.0 and 8.0 mg/ml 

indicate that the solution viscosity is not a significant factor (see Figure 3.4). Also the EOF rates  
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Figure 3.7. Contributions from different factors to the peak variance as a function of time for the 

run with 5 s electrokinetic injection of 2.0 mg/ml cytochrome c in 20.0 mM borate buffer at pH 

9.1. Full blue circles (●), green circles (●), and orange circles (●) represent contributions from 

peak variance, mismatch factor and diffusion, respectively. All the other experimental conditions 

are the same as Figure 3.1. 

 

do decrease at the very high protein concentrations used there, however, the changes are small 

relative to those observed at lower protein concentrations (Figure 3.1), and the dynamics of these 

changes are quite different qualitatively. The results from continuous EOF monitoring data 

presented very stable EOF flow profile which is an indication of unchanged capillary wall 

surface and a stable zeta potential. 

Proteins are complex molecules that are composed of amino acids which have different 

structures, charges and degrees of polarity. Possible ways for protein molecules to interact with 

the capillary wall are through hydrophobic interaction, electrostatic interaction and formation of 
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hydrogen bonding [136]. Protein molecules favor to interact with a surface through hydrophobic 

relations, however, hydrophilic nature of the silanol groups on the capillary surface eliminates 

potential hydrophobic interactions [135, 160]. The formation of hydrogen bonds is dependent 

upon the degree of dissociation of hydroxyl groups on the silica which is related to pH of the 

separation medium. As the pH increases the dissociation increases which limits the hydrogen 

bond formation. Thus, the adsorption that was observed in this study is mostly due to the 

columbic attraction between negatively charged silanol groups on the capillary wall and 

positively charged sample molecules. The factors that affect the ionization of silanol groups and 

overall charge of the protein molecules will play important role in the degree of adsorption. 

Therefore, adsorption behavior of protein completely depends on the primary structure, 

conformation, availability of charged and polar sites on the surface of the protein, and pH of the 

solution. We should take into consideration the fact that once the protein molecules adsorb to the 

surface they will prevent further adsorption by other protein molecules due the repulsion effect 

of the same charges. The observed adsorption behavior of the protein molecules is a net result of 

these factors and it is specific to each protein. Therefore, it is hard to generalize these 

observations to every protein.   

3.3.2. Carbohydrate, DNA, Cholesterol and Lipids 

The effect of injection of some simple carbohydrates on EOF was studied using d-

galactose, d-cellobiose, and maltoheptaose with concentrations 3.0, 6.0 and 12.0 mM at pH 6.91 

and 9.1. The results of the experiments with the model compounds did not present any change in 

EOF rates or FWHM of the photobleached peaks (data not shown). Representative graphs for 

EOF and FWHM profiles for such experiments are shown in Figure 3.8. This was expected since  
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Figure 3.8. Plots of changes in A) EOF rates and B) FWHM values of the photobleaching peaks 

as a function of time to show sample plots for EOF and FWHM profiles for carbohydrate, 

liposome and DNA samples. The data of the plots are from the experiments with 5 s injection of 

DPPC/DPPG liposomes at 20.1 mM phosphate buffer at pH 6.91 with various concentrations 

(electrophoretic current was 5.4 µA). Blue circles (●), orange circles (●), and pink circles (●) 

represent samples with 5%, 10% and 20% (v/v) DPPC/DPPG liposomes, respectively. All the 

other experimental conditions are the same as Figure 3.1. 
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carbohydrates are neutral compounds, thus they do not interact with the negatively charged 

capillary wall.  

For our study, dsDNA samples were prepared at 15, 30, 60 and 120 µg/ml concentrations 

in different buffers with neutral and basic pHs, and after injection to the capillary the EOF rates 

were monitored. Figure 4 is a representation of the EOF rates and FWHM results for the samples 

that did not change the capillary wall chemistry. The EOF rates remained constant throughout 

the runs as expected as the negative charges on the DNA molecules prevent any interaction with 

the negatively charged capillary wall. 

It is often assumed that substance in a cell wall will adsorb to a capillary surface and 

significantly impact EOF for CE analysis of biological samples. We examined this hypothesis 

using samples containing lipids. Cholesterol which is part of the lipid family and cell membrane 

was dissolved in 62.5% THF and mixed with 37.5% ACN to improve miscibility of the two 

phases in concentrations of 2.0, 4.0 and 8.0 mg/ml. A blank solution containing the same ratio of 

THF and ACN as the sample solution was injected first. The results demonstrated that 

cholesterol does not affect the EOF. 

Phospholipids typically are not soluble in water and are often dissolved in organic 

solvents (like chloroform) that are known to cause problems for CE separations [161, 162]. To 

overcome this, liposomes of DPPC/DPPG and DOTAP were prepared. This is appropriate for 

overall objective to understand how different components of a biological sample contribute to 

changes in EOF due sample adsorption since most phospholipids can be expected to be present 

in cell walls, the wall of organelles or other structures similar to liposomes. Liposomes of 

DPPC/DPPG (3.24 mM DPPC and 0.36 mM DPPG)  were prepared according to Zuidam et al. 

[163] and solutions of 5%, 10%, 20% (v/v) in pHs 6.91 and 9.1. The sizes of the liposomes were 
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determined to be 5 µm by an optical microscope (Nikon Microphot-FXA) and TEM (JEOL 

100CX). Injection of these liposomes did not significantly change the EOF rate. The outer 

surfaces of the liposomes are negatively charged based on the structures of the lipids, and it is 

not surprising that these intact liposomes might not interact with the negatively charged capillary 

surface. In order to disrupt the liposomes and expose the surface to the hydrophobic part of the 

molecules, acetonitrile was injected immediately after the liposome samples. The zone of 

acetonitrile will partially mix with the liposomes after injection due to diffusion, and the 

acetonitrile zone will overtake the liposomes after electrophoresis begins. The injection of 

acetonitrile after the liposomes did not result in significant changes to the EOF. Next, a 

positively charged liposome, DOTAP was prepared [149] and injected at different concentrations 

(0.275 mM, 0.55 mM, and 1.1 mM). Injection of these liposomes also did not affect the EOF 

rates both with and without injection of acetonitrile to disrupt the liposomes. The DOTAP 

liposomes were studied at pH 6.91 only since they will not form liposomes at pH 9.1. 

3.3.3. Cell Samples 

Samples containing cultured mammalian cells were injected in order to study the effects of 

sample adsorption on EOF. Even the injection of single cells is known to impact the EOF and CE 

separations, presumably due to adsorption of components of the cells. Two types of cultured 

human adipocyte cells with different lipid content (low and high) were used. Injections without 

lysing did not affect the EOF dynamics. Therefore, the cells were lysed just before injection to 

the CE system by using a freeze-thaw method [150]. The cell lysate sample did have a smaller 

effect (8% decrease) on the EOF rates when the separation was carried out immediately 

following injection. To increase the effect a 1.0 min incubation time was included immediately 

after injection of the cells. The plots of EOF and EOF monitoring peak FWHM values are shown  
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Figure 3.9. Plots presenting changes in A) EOF rates and B) FWHM values as a function of time 

for the adipocyte cell sample (with less fat content) with 20.0 mM borate buffer at pH 9.1 buffer. 

Blank sample (orange circle (●)), cell lysate sample before incubation (red circle (●)) and cell 

lysate sample after incubation (blue circle (●)) are presented in the plots.  All the other 

experimental conditions are the same as Figure 3.1. 

 

in Figure 3.9A and 3.9B, respectively, for the low lipid content adipocytes at pH 9.1. The top 

trace in Figure 5A and bottom trace in Figure 5B present the results for control experiments 

(injection of separation buffer without cells). The results are qualitatively and quantitatively 



91 
 

similar to the experiments with proteins (lysozyme, cytochrome c, ribonuclease A). The EOF 

rates decreased 11% and FWHM increased 7% after the sample injection. The difference in lipid  

 

 

content did not seem to have a significant impact on the EOF decrease for the results of pH 6.91 

experiments as indicated in Table 3.3. However, a small difference is noticed for the pH 9.1 

results between cells with low fat content and high fat content which resulted in more changes in 

the EOF rates and FWHM values. Proteins and enzymes play important role in the pathway of 

expressing lipid molecules for adipocyte cells [164]. Differences in lipid content could cause 

differences in the content of lipid-binding proteins such as ALBP/aP2 which has pI value of 9.0 

[165]. Strong adsorption effects were observed when pH is close to the protein’s pI value during 

the experiments with ribonuclease A. This could be one of the factors that affected the observed 

different results for the cell sample with higher fat content at pH 9.1. Overall, the changes in the 

EOF rate are very similar for both types of cells which indicate fat content of the cell sample 

 

Table 3.3. EOF rate and FWHM value changes due to complex biological sample injections 
 

 
pH 6.91 pH 9.1 

Sample 
EOF 

Decrease 
FWHM 

increase 
EOF 

Decrease 
FWHM 

increase 

Cell sample with low fat 
content 

3% 4% 6% 2% 

Cell sample with high fat 
content 

6% 2% 11% 7% 

12.5% FB Serum 1% 1% 2% 4% 

25% FB Serum 4% 3% 5% 14% 

50% FB Serum 12% 15% 8% 30% 

75% FB Serum 16% 21% 19% 67% 
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does not affect the adsorption to the capillary wall. This is consistent with the results for 

injection of lipid samples (Section 3.3.2). 

3.3.4. Serum Samples 

Fetal bovine serum (FBS) was used to study the impact of serum on EOF. Diluted 

solutions 12.5%, 25%, 50%, and 75% (v/v) solutions were studies at both pH 6.91 and 9.1. The 

results for EOF rates and FWHM values for experiments at pH 6.91 are presented in Figures 

3.10A and 3.10B, respectively. The EOF rates decreased (1%, 4%, 12%, and 16% for increasing 

FBS concentrations) and FWHM values increased (1%, 3%, 15%, and 21% for increasing FBS 

concentrations) as an indication of sample adsorption to the capillary wall, the results are 

summarized in the Table 3.3. For the runs with pH 9.1 buffer, decrease in the EOF rates and 

apparent band broadening were observed with the increasing serum concentration in a similar 

fashion to the results at pH 6.91 (see Table 3.3). As it was noted from the model protein runs, 

these observations are indications of sample adsorption to the capillary wall, and serum proteins 

are suspected to be responsible for this adsorption effect. The serum solution consists of various 

protein molecules with different structures and pI values in a range of 3.75-10.0 [166]. At the pH 

values that the experiments were conducted, there is a mixture of positively and negatively 

charged proteins in the serum sample. The apparent adsorption effects are caused by these 

protein molecules. 

In addition to the observation of sample absorption, the serum sample results exhibited 

unusual features in the EOF and FWHM plots as clearly seen in the Figures 3.10A and 3.10B 

(also see Figure 3.11). EOF rates decreased and FWHM values increased during these features  
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Figure 3.10. Plots of changes in A) EOF rates and B) FWHM values of the photobleaching 

peaks as a function of time for 5 s injection of serum samples results with varying concentrations 

in 20.0 mM phosphate buffer at pH 6.91 (electrophoretic current was 5.4 µA). Red circle (●), 

green circle (●), orange circle (●), and blue circle (●) represent 75%, 50%, 25% and 12.5% FBS 

samples, respectively. All the other experimental conditions are as same as in Figure 3.1.  
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Figure 3.11. Raw data of 5 s injection of FBS sample at 12.5% dilution   

 

 

Figure 3.12. Changes in EOF rates as a function of time for 5 s injections of 15.1 mM NaCl (top 

trace) and FBS sample at 12.5% dilution (bottom trace) in 20.1 mM phosphate buffer at pH 6.91.  
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and then the values went back to the earlier values. Serum sample is a complex sample with 

various components, therefore, these features could be due to any of the components of the 

sample. The salt content is one of the major constituents of the serum. The salt ions can cause 

some changes in EOF due to the difference in their conductivity. In order to determine if the salt 

content of serum was responsible for the peaks, first the salt concentration in the FBS sample 

was determined, and then a conductivity study was carried out. The capillary was filled with 

several NaCl standards and12.5% (v/v) FBS solution then, the current in the capillary was 

measured for each sample. By using a calibration plot, the salt concentration in the serum sample 

was determined to be 121 mM. The runs with 121 mM NaCl had a very stable EOF profile, 

which shows that the salt content was not the cause of the unusual features that were observed in 

the FBS results (see the comparison of EOF rates for the experiments with NaCl and FBS sample 

in Figure 3.12). Possibly, the peaks were caused by other ions in the FBS sample, but they did 

not cause any adsorption effects. 

3.4. Conclusion 

Effects of biological samples on the EOF dynamics and capillary wall surface chemistry 

have been monitored using the continuous EOF monitoring method. Model compounds to 

represent biological cell components were used at two pH values (6.91 and 9.1). Protein 

molecules affected the EOF rates the most by adsorbing to the capillary wall which results in 

nonuniform zeta potential and slower EOF rates. The adsorption behavior is protein dependent. 

In addition, band broadening of the photobleaching peaks were observed as a direct result of 

sample adsorption. Similar adsorption effects were observed in the experiments with the cell 

lysate and serum samples. The continuous EOF monitoring method proved to be a useful and 

suitable tool to investigate such effects since it provided a real-time EOF profile for the CE runs.
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CHAPTER 4 

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATION OF 

ELECTROOSMOTIC FLOW AND ELECTRIC FIELD DYNAMICS FOR CAPILLARY 

ELECTROPHORESIS WITH DISCONTINUOUS SOLUTIONS 

 

4.1. Introduction 

 Capillary electrophoresis experiments are usually carried out using the same buffer for 

the sample and the separation. However, discontinuous systems are also part of CE applications, 

in which the sample is introduced to a CE system in a solution that differs from the separation 

buffer in terms of ionic strength, pH and composition. Discontinuous systems arise upon 

injection of any sample into an otherwise homogenous system. In electrophoretically mediated 

microanalysis (EMMA), there are often multiple discontinuities as zones enzyme and/or 

substrate are injected and then mixed by differences in their electrophoretic mobilities. The 

products and reactants then separate electrophoretically and products are detected [167]. In 

addition, sample stacking techniques employ discontinuous systems to increase the analyte 

concentration and lower the limit of detection [168-170]. Such systems have been used for 

applications in various fields such as biological, environmental, toxicology, food analysis and 

pharmaceutical fields [171, 172]. Several approaches have been implemented to achieve sample 

stacking. In field amplified sample stacking, the sample is prepared in a buffer that has a lower 

concentration than the separation buffer [173-175]. Whereas, for the isotachophoresis technique, 

the sample solution consists of leading and terminating buffer solutions with different mobilities 

than the separation buffer, in addition to analyte molecules [176-178]. Another approach uses a 

sample with a different pH than the buffer, generating a pH junction, so that the analyte 

molecules are stacked based on their isoelectric points [179-181]. In addition to sample stacking 

applications, discontinuous systems are observed when the sample is prepared in a matrix that 

includes an organic modifier. The organic additives are used to lower the conductivity of the 
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sample solution, to increase analyte solubility or to affect the acid-base properties of the sample 

components [182]. 

 Ionic discontinuities within an electrophoretic system cause non-uniform field 

distribution which give rise to dynamic changes in local ionic migration rates yielding sample 

concentration changes that would not occur in conditions of uniform electric field and EOF. This 

phenomenon is based on the basic principles of Ohm’s law and adjustment of the Kouhlrasch 

regulation function (KRF). According to Ohm’s law (Equation 4.1), the current density (j) is 

constant through the capillary column. The changes in zone conductivity, ζ, is compensated by 

the electric field (E), therefore, the low conductivity zone has a relatively high electric field.  

                (4.1) 

The Kouhlrasch regulation function (KRF) should be a constant value at any given point x along 

the migration path. This value (ω) depends on the concentration (ci) of the ions, their mobilities 

(μi) and relative charge (zi) as seen in Equation 4.2. [183] 

        
       

    
       (4.2) 

This function requires adjustment of the concentration of ions when there are changes in the 

ionic content and concentration in solution. If the KRF value of the sample plug, ωS, is lower 

than the KRF value of separation buffer, ωBGE, sample ions will stack at the boundary between 

the two zones. Additionally, the velocity of the analyte ions in the sample zone is higher than its 

velocity in the buffer zone, due to the higher field intensity in the sample zone, which has lower 

conductivity. With the influence of an applied field, the analyte molecules pass the boundary 

between the sample and the buffer, and then they are concentrated to a sharp zone to adjust to the 

KRF value of the buffer. The sharp sample zone migrates with its electrophoretic mobility and is 

detected at the detection point. Peak broadening occurs due to the normal dispersive factors 



98 
 

present in CE plus a pressure gradient that is caused by the mismatch between the low field and 

high field, which in time counteracts the zone sharpening effect of stacking. The concentration 

boundaries between the buffer and sample zones move with the EOF through the capillary. They 

can be detected as a peak if ωS>ωBGE or as a dip in the baseline if ωS<ωBGE [183]. 

 In 2003, Pittman et al. investigated EOF dynamics for sample stacking conditions 

experimentally by monitoring the EOF rates continuously [110]. The method is based on 

periodic photobleaching of a neutral dye which is added to the separation buffer and sample 

solution. A UV absorbance detector was employed to detect the analytes and observe sample 

stacking. The EOF dynamics were monitored using a laser induced fluorescence (LIF) detection 

system. This report showed that EOF rates decreased and peak widths broadened as a result of 

mismatch between different parts of the capillary. The EOF monitoring method was found to be 

an efficient method to obtain time-resolved EOF data and observe changes in the EOF dynamics 

during every second of a CE experiment. In addition, it was shown in recent reports that the EOF 

monitoring method can be employed to improve the reproducibility of CE and study fundamental 

aspects of CE.  

 In this study, we propose using two marker compounds to monitor field changes in 

discontinuous systems. The continuous EOF monitoring system that was used to investigate EOF 

dynamics during sample stacking experiments can be easily modified to monitor the field 

changes during a CE experiment. Two marker compounds, one neutral and one negatively 

charged, are added to the background electrolyte and sample solution. The neutral compound 

migrates only with the EOF and its migration data is used to calculate the EOF rates. A 

negatively charged compound has a negative electrophoretic velocity at the buffer pH, and its 

apparent velocity is a vectoral sum of the EOF rate and its own electrophoretic velocity. The 
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electrophoretic behavior is directly related to the electric field strength, so when the time 

resolved migration behavior of the negatively charged compound is obtained, it will provide 

some information about the field dynamics in the system. Obtaining this information allows us to 

learn more about complex systems in CE, which are part of every common application of CE. In 

this study, a continuous field and the EOF monitoring method was presented and applied during 

discontinuous system conditions. The results were compared to the simulation results of the same 

experimental conditions. 

4.2. Material and Methods 

4.2.1. Chemicals 

 Sodium phosphate (monobasic), fluorescein (sodium salt), ACES (N-[2-acetamido]-2-

aminoethanesulfonic acid), and acetonitrile were obtained from Sigma-Aldrich (St. Louis, MO). 

Sodium hydroxide was purchased from Fisher Scientific (Fair Lawn, New Jersey). Laser grade 

coumarin 334 was obtained from Acros Organics (Morris Plains, NJ). All aqueous solutions 

were prepared in ultrapure water (> 18 MΩ-cm, ModuLab water purification system, United 

States Filter Corp.; Palm Desert, CA). Coumarin 334 was dissolved in methanol and diluted with 

ultrapure water to 100 µM. Working stock solutions of coumarin 334 (500 nM) were prepared by 

diluting the 100 M solution with the separation buffer. A fluorescein stock solution (1.94 mM) 

was prepared in ultrapure water and diluted to 500 nM with the separation buffer to be used as 

working stock solutions. 

4.2.2. Capillary Electrophoresis 

 The general design of the CE system was described previously [108]. Fused-silica 

capillary (50-μm id/360-μm od) was purchased from Polymicro Technologies (Phoenix, AZ) and 

cut to 72.0 cm. The polyimide coating was removed (~1 cm) to make a detection window at 49.1 



100 
 

cm from the injection end of the capillary. All separation buffers used were filtered with a 0.2 

µm nylon filter (Whatman, Oregon) prior to use. In order to monitor EOF and the electric field, 

all solutions contained 100 nM coumarin 334 and 25 nM fluorescein. Injections of solutions for 

discontinuous solution measurements were performed hydrodynamically by lowering the 

detection end of the capillary 11.4 cm below the injection end. The injection length is calculated 

by using Pouiselle equation for hydrodynamic injection. An electrophoretic potential of 30.0 kV 

(417 V/cm) was applied with a Spellman CZE 1000R high voltage power supply (Hauppauge, 

NY) for all experiments. 

4.2.3. Electroosmotic Flow Monitoring 

 The instrument for CE with EOF monitoring is similar to one described previously [108]. 

The 488.0-nm line of an argon ion laser (Melles Griot 543-AP-A01; Carlsbad, CA) was used as 

the light source. The laser beam was split with a broadband cubic beam splitter, and then the 

beams were focused on the capillary at two different positions, F1 and F2. The bleaching portion 

of the beam (35.0 mW) was directed through a computer controlled shutter (Uniblitz LS6Z2; 

Rochester, NY) and focused at the F1 position on the capillary. The shutter was opened for 50 

ms every 1.0 s to generate photobleached zones. Additionally, a small portion of the light passing 

through the capillary at F1 was directed to a photomultiplier tube (PMT) (Hamamatsu HC 170; 

Bridgewater, NJ) by a fiber optic to mark the beginning of each individual flow and field 

measurement. The detection portion of the beam was attenuated to 8.4 mW by a neutral density 

filter and focused on the capillary at F2 by a microscope objective, which was used to collect 

fluorescence emission. The emitted light was directed through a dichroic mirror (505DRLPXR; 

Omega Optical; Brattleboro, VT), band-pass filter (520BP10; Omega Optical; Brattleboro, VT) 

and pinhole (1.0 cm) to the PMT biased at 850 V. The PMT signal was filtered with a 200 Hz 
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low-pass filter. A program written in LabView (National Instruments; Austin, TX) was used to 

control the shutter and to collect the data using a National Instruments PCI-6299 (Austin, TX) 

data acquisition board at a 1000 Hz scan rate. The distance between the bleaching and detection 

points (dF1-F2) was determined to be 1066 ± 2 μm using a previously described method [108]. 

4.2.4. Data Analysis 

 Data for the EOF monitoring experiments were analyzed with a program written in 

Matlab 6.1 (Natick, MA), which was used for data smoothing, baseline subtraction, peak 

picking, and calculation of EOF rates and electrophoretic mobilities based on the migration times 

for the neutral marker and fluorescein vacancy peaks. The program also provided FWHM values 

for both photobleached peaks. Microsoft Excel (Microsoft Corp.; Redmond, WA) and Origin 7.5 

(Northampton, MA) were also used to plot and present the data. 

4.2.5. Computer Simulations 

 The program, Simul 5.0, was used to perform the simulations, and was downloaded from 

www.natur.cuni.cz/gas [184]. Consistent with other work with computer simulations, to avoid 

mathematical instability and oscillations in the simulated concentrations, the field strength used 

in the simulations were much lower 0.857 V/cm, than the corresponding wet experiments, so the 

effects of diffusion are exaggerated in the simulated results. The simulated capillary was 35.0 cm 

in total length but only 72 mm of the tube was actively modeled (278 mm in ―fake‖ length), and 

the EOF was disabled to allow the observation of the developments of local changes within the 

modeled window. The initial injection zone was 8.5 mm in width. The electrophoretic mobility 

of sodium was available from the Simul 5.0 program which obtained from ref. [185]. The value 

of electrophoretic mobility of 10.0 mM ACES at pH 7.43 used was          mm
2
/Vs. It was 

determined by injecting sample zone containing different concentration of ACES. These mobility 

http://www.natur.cuni.cz/gas
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experiments were performed using a P/ACE MDQ with 32 Karat version 5.0 software from 

Beckman Coulter, Inc. and the UV absorbance wavelength was 230 nm. 10.0 mM and 1.0 mM 

ACES at pH 7.43 were injected hydrodynamically for 0.5 s at 5 psi into a capillary filled with 5.0 

mM ACES at pH 7.43. The ACES mobility was determined based on the migration time of the 

sample zone. The electrophoretic mobility of fluorescein in 10.0 mM ACES buffer at pH 7.43 

was determined based on the migration time of fluorescein in CE experiments using the same CE 

instrument described in section 2.2. 

4.3. Results and Discussion 

4.3.1. Development of a Two-Marker System for EOF and Electric Field Measurement 

The goal of this study was to develop a two-marker technique to simultaneously monitor 

EOF and electric field dynamics during CE experiments when the capillary contained 

discontinuous solutions. A discontinuous system consists of zones with different conductivity 

which could be caused by difference in ionic strength, composition and pH of the sample zone 

compared to the separation zone. Low ionic strength buffers generate low conductivity, high 

resistivity and high electric field, and the opposite is true for the high ionic strength buffers. The 

differences in the ionic strength result in discrete zones within local electric field. Equations 4.3 

and 4.4 show the relationship between field strength and differing resistivities of two buffers, 

where E1 and E2 are the field strengths of the high and low resistance solutions, respectively. E0 

is the field strength in a system of only buffer 1 or 2, γ is the ratio of the resistivities of the low 

concentration buffer to that of the high, and x is the fraction of the capillary filled with low 

resistance buffer. 

                             (4.3) 

                          (4.4) 
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In CE, net velocity of an analyte, vnet, includes contributions of the analyte’s electrophoretic 

velocity, vep, and the velocity of EOF, veof, as shown in Equation 4.5. The electrophoretic and 

electroosmotic velocity are directly proportional to E and analyte’s electrophoretic mobility, μep, 

and electroosmotic mobility, μeof, respectively, as shown in Equations 4.6 and 4.7. 

                       (4.5) 

                    (4.6) 

                      (4.7) 

The information about the EOF dynamics obtained from one marker (neutral) is an indication of 

EOF of the whole capillary system. However, the second marker’s (charged) electrophoretic 

velocity provides information about changes in the local electric field as seen in Equation 4.6. A 

two-marker system is developed by using coumarin 334 and fluorescein dyes. Coumarin 334 is 

neutral over a wide range of pH values (3.5-11.0), therefore, its migration is only influenced by 

the EOF and it was used as an EOF marker in previous [110, 111] and recent research [126]. 

Fluorescein has pKa values of 6.4, 4.3 and 2.2 [186] with fluorescence properties that are 

sensitive to pH changes. At pH= 7.43, the buffer pH that was used, fluorescein is in its dianion 

form. Due to its charge, fluorescein’s migration includes influences of EOF and electrophoretic 

mobility and it is possible to observe the field changes from its migration behavior.  

 The successful development of the two-marker system was accomplished by performing 

continuous periodic photobleaching of these two dyes in a buffer solution. As a result, two 

negative peaks were generated in the electropherogram, along with a positive peak that was used 

as a time stamp as seen in Figure 4.1. Although EOF information is useful, the two-marker  
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Figure 4.1. Data illustrating the EOF and electric field monitoring technique. The buffered 

solution filling the capillary (10.0 mM ACES at pH 7.43) contained 100 nM coumarin 334 

(neutral) and 25 nM fluorescein (negatively charged). Photobleached zones were generated by 

opening a shutter for 50 ms to produce a pulse from an Ar
+
 laser. The shutter was opened every 

1.00 s. The photobleaching and fluorescence excitation beams were 35.0 and 8.4 mW, 

respectively at 457.9 nm. The positive peak (A) is due to light from the bleaching pulse. The 

negative peaks are due to coumarin 334 (B) and fluorescein (C) vacancy peaks and were used to 

monitor EOF and the local electric field, respectively. A second measurement cycle is shown 

after the first cycle. For the experiment shown here, the field was 417 V/cm, and the 

electrophoretic current was 5.6 A. 

 

 

system can be used to observe a charged compounds’ migration behavior throughout an 

experiment which could provide more detailed information about CE separations. 

4.3.2. Application to Discontinuous Solution Studies 

A discontinuous system can be generated by preparing a sample in a more dilute buffer 

than the separation buffer. Changes in ionic strength of the sample zone result in a non-uniform 

electric field and the CE separation is affected by these changes. This type of discontinuous 
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system was used to investigate EOF dynamics during sample stacking conditions in a previous 

study by Pittman et al [110] with only one marker (neutral) compound. Preparing the sample 

solution in a more dilute buffer than the separation buffer to generate sample stacking is a 

common approach. In the previous study, the phosphate buffer system was used. In this study, an 

ACES buffer system was used to compare the EOF profile of such systems to a theoretical study 

performed by Thormann et al [187]. The sample with lower ionic strength buffer is introduced 

into the capillary by hydrodynamic injection to prevent sampling bias on negatively charged 

ions. EOF is sensitive to even small changes in the ionic strength of the sample introduced, so 

the bulk EOF will show that change in the flow. The sample was prepared in 0.1 mM ACES 

buffer at pH 7.43 where the separation buffer is 10.0 mM ACES buffer at pH 7.43. Both 

solutions contained 100 nM coumarin 334 and 25 nM fluorescein for EOF and field monitoring. 

The sample zone filled 4% of the capillary. Figure 4.2 presents the EOF for this experiment. As 

was observed by Pittman et al [110] for experiments with phosphate buffer and predicted by 

Thormann et al. [187] for the same solutions using computer simulation, the EOF decreased 

sharply at the beginning of the experiment, became constant for a time that corresponded to the 

time that it takes for the sample zone to leave the capillary, and then decreased and became 

constant again. The EOF rates increase in the low ionic strength buffer because the Debye layer 

thickness is inversely proportional to the buffer concentration. Then, the sample plug mixes with 

the separation buffer, which has high ionic strength, resulting in a decrease in the EOF rates due 

to this dilution. Finally, when the sample plug leaves the capillary, the EOF rates are slower 

because the high ionic strength buffer fills the capillary. These results with monitoring of EOF  
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Figure 4.2. EOF versus time for a zone of dilute buffer solution (0.1 mM ACES at pH 7.43) in a 

capillary filled with 10.0 mM ACES at pH 7.43. The dilute solution was injected 

hydrodynamically for 240 s to fill 4% of the capillary. Both solutions contained 100 nM 

coumarin 334 and 25 nM fluorescein. The applied field was 417 V/cm. The solid line is a 5-point 

moving average of the individual data points. Conditions for EOF and field monitoring were the 

same as in Figure 4.1. 

 

 

dynamics reaffirm the simulation results of Thormann et al. using ACES buffer as well as the 

earlier measurements by Pittman et al. using a phosphate buffer system. More importantly for 

this work, they serve as a starting point to apply the two-marker system to study both EOF 

dynamics and electric field dynamics for discontinuous solution conditions commonly used by 

CE practitioners. 

 The electrophoretic velocity of fluorescein is monitored simultaneously along with the 

EOF, and this allows for the observation of local field changes in the system. The velocity is  
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Figure 4.3. Fluorescein electrophoretic velocity versus time for the same experiment shown in 

Figure 4.2.The solid line is a 5-point moving average of the individual data points. 

 

calculated based on fluorescein’s migration time between the photobleaching point (F1) and the 

detection point (F2) for every second of the experiment. Using Equation 4.5 and the observed 

velocity can be converted into a voltage field, and results like those presented in Figure 4.3 can 

be obtained. The data for field strength shown in Figure 4.3 are for the same experimental 

conditions as for Figure 4.2. As seen in Figure 4.3, the electrophoretic velocity of fluorescein 

followed a similar trend in comparison to Figure 4.2. The existence of the discontinuous zone in 

the capillary causes a decrease in the fluorescein’s electrophoretic velocity values overall. As the 

discontinuous zone leaves the capillary, the velocity goes back its original value in high ionic 

strength buffer. The slow fluorescein velocities in the first section (0-13 s) of the plot are caused 

by slow increase of the electrophoretic current. The time constant of the system with uniform 

field is 1.3 s, but in the system where a discontinuous zone existed, the current accelerated at a 
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slower pace after an initial rapid increase, which resulted in longer times for current to reach its 

full value. Due to the time constant of the current, first couple seconds (0-3 s) of the 

electropherogram, electrophoretic current data are not available which was also observed in 

Pittman et al [110]. Additionally, because of the mismatch between the high field and low field 

regions, and the resulting pressure-driven flow, the two vacancy peaks are broadened to the 

extent that they are unresolved at the beginning of the electropherogram. 

 The data in Figures 4.2 and 4.3 for both EOF and the fluorescein velocity include two 

regions (between 187-222 s and 309-328 s) where data were not plotted. Those regions 

correspond to time when the dilute buffer and fluorescein zones to pass the detector. The regions 

provide important information since the local electric fields in these zones are expected to differ 

from the BGE. The electropherograms for this experiment and expanded plots for these two 

regions are presented in the Figure 4.4. At the time where the dilute buffer zone passed the 

detector, the fluorescence signal dropped and no bleaching peaks were observed for coumarin 

334 and fluorescein. When the fluorescein zone passed the detector, the fluorescence signal 

increased off-scale, making it impossible to detect any photobleaching peaks. The length of these 

regions is directly proportional to the dilute sample zone’s injection length. Pittman et al. [110] 

made similar observations during EOF monitoring with coumarin 334 and attributed the effect to 

high temperatures caused by locally increased Joule heating in the region of high resistance 

(dilute buffer, low conductivity).  

 In an attempt to mimic the Joule heating effect, solutions containing coumarin 334 (100 

nM) and fluorescein (25 nM) were brought to boil on a hot plate for a few seconds. Injection of 

these samples into the CE system with LIF detection did not indicate significant degradation of  
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Figure 4.4. A) Fluorescence versus time for a capillary containing a zone of dilute buffer (0.11 

mM ACES at pH 7.43) in a capillary filled with 10.0 mM ACES at pH 7.43. The dilute solution 

was injected hydrodynamically for 240 s to fill 4% of the capillary. Both solutions contained 100 

nM coumarin 334 (neutral) and 25 nM fluorescein (negatively charged). Expanded views of the 

regions in plot A show a broad negative peak (B) and a broad positive peak (C). Photobleached 

zones were generated by opening a shutter for 50 ms to produce a pulse from an Ar
+
 laser. The 

shutter was opened every 1.0 s. The photobleaching and fluorescence excitation beams were 35.0 

and 8.4 mW, respectively at 457.9 nm. The relatively narrow positive peaks are due to light from 

the bleaching pulse. The relatively narrow negative peaks are due to coumarin 334 and 

fluorescein vacancy peaks and were used to monitor EOF and the local electric field, 

respectively. For the experiment shown here, the applied field was 417 V/cm, and the average 

electrophoretic current was 4.4 A. 
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either molecule compared to samples that were not boiled. Thermal degradation cannot be 

completely ruled out since higher temperatures and pressures could be present inside the 

capillary during electrophoresis. On the other hand, the temperature of the boiled sample is 

limited by the boiling point of the buffer which could be well under the real temperatures 

occurring during electrophoresis. Therefore, it is still possible that the high temperatures change 

fluorescence properties of the dyes. 

 The primary objective of this study was to investigate electric field and EOF dynamics in 

discontinuous systems. However, the limitations mentioned above make doing so difficult with 

normal injection conditions. To further study the dynamics, the effect of small changes in the 

resistivities of a ―sample zone‖ were investigated by injecting diluted separation buffer that also 

contained the same concentration of the fluorogenic agents as in the BGE. The change is related 

to the ratio of the resistivities of the sample zone and the separation buffer and the ratio of 

capillary length filled with the low ionic strength buffer, as seen in Equations 4.3 and 4.4. A 

sample plug consisting of a lower ionic strength buffer has lower conductivity, higher resistivity 

and correspondingly higher local electric field than the rest of the capillary. The opposite is true 

for a sample zone comprising higher ionic strength buffer than the BGE. The degree of change in 

the EOF rates and fluorescein mobility was enhanced as the length of the capillary filled 

increased (data not shown). In addition, as the ionic strength difference between the sample and 

buffer was increased, the EOF rates and fluorescein electrophoretic velocity values were affected 

to a greater extent. The ionic strength of the sample zone was increased to 1.0 mM, 5.0 mM, 7.5 

mM and 9.0 mM, it was not possible to detect photobleaching peaks when the sample was <9 

mM ACES buffer. However, with an injection of 9.0 mM ACES at pH 7.43 filling only 4% of 
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Figure 4.5. A) Electropherogram for a capillary 4% filled with 9.0 mM ACES at pH 7.43 

(injected hydrodynamically for 240 s) with the remainder of the capillary filled with 10.0 mM 

ACES at pH 7.43. Expanded views of the regions in plot A show a broad negative peak (B) and a 

broad positive peak (C). All other experimental conditions are the same as those in Figure 4.4. 
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Figure 4.6. EOF versus time for a capillary 4% filled with 9.0 mM ACES at pH 7.43 (injected 

hydrodynamically for 240 s) with the remainder of the capillary filled with 10.0 mM ACES at 

pH 7.43. All other experimental conditions are the same as those in Figure 4.4. The solid line is a 

5-point moving average of the individual data points. 

 

the capillary otherwise filled with 10.0 mM ACES buffer at pH 7.43 allows well-resolved 

vacancy peaks. Figure 4.5 presents the electropherogram and the detailed views of the trough and 

the peak observed providing EOF and fluorescein velocity values for the whole experiment. The 

EOF rates were constant during the experiment, as might be expected with the small injection 

plug that does not significantly affect the overall EOF as seen in Figure 4.6. The electrophoretic 

velocity for fluorescein from the same experiment is presented in Figure 4.7. A small increase 

(% 5.4) in the fluorescein electrophoretic velocity was observed during the region of interest, 

seen as a dip at about 200 s in Figure 4.7. The low ionic strength buffer gave rise to a high 

electric field in the sample plug, which resulted in a higher observed velocity for fluorescein as 

the injection plug passed the detection region.  

0.16

0.18

0.2

0.22

0.24

0 100 200 300 400 500 600

EO
F 

(c
m

/s
)

Time (s)



114 
 

 

Figure 4.7. Fluorescein electrophoretic velocity versus time for the same experiment shown in 

Figures 4.5 and 4.6. 

 

 In the details of the electropherogram shown in the Figure 4.5, a decrease in the 

fluorescence signal was noticed when the low concentration buffer zone passed the detector, 

which is an indication of a low fluorescein concentration. In addition, a peak was observed at the 

point that matches the elution time of fluorescein, which suggests detection of a high fluorescein 

concentration. This was unexpected, since the separation and sample zones contained the same 

compounds, coumarin 334 and fluorescein. This pattern was observed with all experiments in 

which the sample zone was more dilute than the BGE. Injection of a zone of higher ionic 

strength buffer (but with the same concentration of the fluorophores as the BGE) gave rise the 

opposite effect: a peak in fluorescence marking the flow (as the sample plug passed the detector) 
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Figure 4.8. Electropherogram showing fluorescence versus time for a capillary 4% filled with 

12.5 mM ACES at pH 7.43 (injected hydrodynamically for 240 s) with the remainder of the 

capillary filled with 10.0 mM ACES at pH 7.43. The nature of the relatively narrow positive and 

negative peaks used for EOF and field monitoring are described in Figure 4.1. All other 

experimental conditions are the same as those in Figure 4.1. 

 

 

 

Figure 4.9. Fluorescein electrophoretic velocity versus time for the same experiment shown in 

Figure 4.8. The solid line is a 5-point moving average of the individual data points. 
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and a trough at the expected migration time for fluorescein (Figure 4.8). The EOF rate results 

demonstrated a constant EOF; however, as shown in Figure 4.9, the observed fluorescein 

electrophoretic velocity decreased as the high concentration buffer ―sample‖ zone passed the 

detection point. The low electric field strength in the sample plug resulted in lower field strength 

and velocity values for fluorescein. These results clearly demonstrate proof of concept for the 

continuous monitoring of electric field monitoring by this methodology; however, the method 

cannot currently be used for large concentration differences. 

4.3.3. Computer Simulations 

A comprehensive molecular-level description of any CE experiment is difficult to 

achieve owing to the complexities of considering the many ionic constituents and the very 

dynamic processes that occur during the separation [188]. Although the dynamic evolution of a 

CE separation is not linear or easily internalized, mathematical descriptions of ionic migration 

are available and rationalization of some complex electrophoretic phenomena such as system 

peaks [189, 190] has been achieved via aid of computer simulation [191, 192]. These computer 

programs have proven to be valuable tools for the investigation of electrokinetic separations 

because they can predict the complex and often unpredictable movement of ions in a solution 

under the influence of an electric field. The dynamic models are composed of a set of balance 

laws governing the transport of components in electrophoretic separations, and the mathematical 

solutions involve a series of non-linear differential equations. It is possible to obtain an 

electropherogram of a separation by using the simulations. More importantly, monitoring the 

entire separation at every second is feasible; this provides insightful information about the 

complex electrokinetic processes that occur during the separation. The simulations have been 
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Figure 4.10. View of Simul 5.0 page for a simulation in which a capillary 4% filled with 9.0 mM ACES at pH 7.43 with the 

remainder of the capillary filled with 10.0 mM ACES at pH 7.43. The main page has a window (dashed rectangle) to 

demonstrate the changes in pH, conductivity, concentration of sodium (added to adjust pH), ACES buffer and fluorescein 

during the simulation. The composition window (red dotted rectangle) contains the list of constituents and their pKa, 

concentration, electrophoretic mobility values and zone ratios. The main page also includes the simulation buttons (re 

rectangle) to control the simulation. 
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used in many modes of CE, such as moving boundary electrophoresis (MBE), isotachophoresis 

(ITP) [178, 193, 194], isoelectric focusing (IEF) [195, 196] and electrokinetic capillary 

chromatography (EKC) [197, 198] to explain chemical and physical processes in detail by 

simulating the same conditions used in the experiments. 

 Here, computer simulations were carried out by using the Simul 5.0 program [184] in 

order to further examine our unexpected results. The development of low and high concentration 

zones due the injection of 9.0 mM ACES into a capillary filled with 10 mM ACES buffer was 

investigated by the program. The simulation zones and buffer concentration (see Figure 4.10) 

were set to match the experimental conditions in Figures 4.5 and 4.7. The simulation results are 

plotted as change of fluorescein concentration vs. position in the capillary and the flow is from 

right to left (which is the reverse of a regular electropherogram). To more clearly present the 

development of zones, the x axis is reversed in Figures 4.11, 4.12 and 4.13 so that the simulated 

data follow the same trends as the experimental data. Figure 4.11 presents plots of simulated 

fluorescein concentration in the capillary at different times. Two peaks were generated as a result 

of differences in the ionic strength of the sample and separation zones. A decrease in the 

fluorescein concentration was observed as a negative peak, and a positive peak was observed as 

an indication of increase in the fluorescein concentration. Development of low and high 

concentration zones was clear at the beginning of the separation, and a corresponding trough and 

peak developed at the boundaries between the sample and buffer zones. At the final stage of the 

simulation (260 s), the zones were fully formed and distinguished clearly. The formation of 

depleted and enhanced zones was also observed during the wet experiments (Figures 4.4, 4.5 and 

4.8). This very interesting observation shows that modulation of ionic sample concentration 

occurs even when the difference in the ionic strength is as small as 10%. 
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Figure 4.11. Simulation results at different migration times for injection of 9.0 mM ACES buffer 

at pH 7.43 (4% of the total capillary length) into a capillary filled with 10.0 mM ACES buffer at 

pH 7.43. Both solutions in the simulation contained 25 nM fluorescein. The simulation was 

designed to match the experimental conditions shown in Figure 4.5. The simulations were 

vertically offset for clarity. The x axis was reversed to show the flow from left to right. 

 

The sample zone ionic strength was varied in the simulations from 0.01 mM to 100 mM 

to observe the changes in the fluorescein zones while the capillary was filled with 10.0 mM 

ACES at pH 7.43. Results for simulations at all of the concentrations studied are presented in 

Figure 4.12. Similar to Figure 4.11, two peaks were observed as a result of the differences in the 

ionic strength of the sample and separation zones. The order of these two peaks was switched as 

the ionic strength of the sample zone was increased. In addition, the change in the fluorescein 

concentration was more pronounced as the difference in the ionic strength between the two zones 

increased. Formation of negative and positive zones, the changes in the zone shapes in relation to 

the difference in ionic strength of the sample zone to the buffer zone and the change in the order 

in the electropherogram were observed in all the experiments as shown in Figures 4.4, 4.5 and 
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Figure 4.12. Simulation results that demonstrate the development of positive and negative peaks 

by injection of different ionic strength samples. Sample zone concentrations increase from the 

top to the bottom simulation (at the concentrations of 0.01, 0.1, 1.0, 5.0, 7.5, 9.0, 11.0, 12.5, 

15.0, 20.0, 50.0, and 100.0 mM ACES). The results show final point (260 s) of the simulation 

experiment. Buffer (10 mM ACES, pH 7.43) and sample zones (sample length is 4% of the 

capillary) contained 25 nM fluorescein and they were set to match the experimental conditions in 

Figure 4.2. The simulations were offset for clarity. The x axis was reversed to show the flow 

from left to right. 

 

4.8. Figure 4.13 presents a detailed plot for the transition from the negative peak to the positive 

peak for the injections of 5 mM to 15 mM ACES. The changes in fluorescein concentration due 

to the injection of dilute (or concentrated) sample zone are remarkable indications of the effect of 

field changes to the whole separation even though both zones contain fluorescein. The simulation 

results validate this behavior and bring valuable insight into the changes that happen during 

electrophoresis with discontinuous system. 
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Figure 4.13. Detailed view of the simulation results for injection (4% of the total capillary 

length) of solutions with different ACES concentrations into a capillary containing 10.0 mM 

ACES at pH 7.43. All simulation details are same as in Figure 4.12. The plots were vertically 

offset for clarity. The x axis was reversed to show the flow from left to right. 

 

4.4. Conclusion  

Changes in EOF and field dynamics in a separation where discontinuous systems exist 

have been monitored by periodic photobleaching of neutral and charged dyes added to the 

separation buffer and sample solutions. Injections of sample prepared in a 1:100 dilution of 

separation buffer, resulted in high electric field zone in the sample plug, corresponding to 

increased EOF rates in the capillary and increased electrophoretic velocity of fluorescein within 

the sample plug. When the difference between the separation buffer and sample buffer is 10% in 

ionic strength, the continuous EOF and field monitoring method was able to provide insightful 

details about the discontinuous system. The changes in the fluorescence signal indicating a 

fluorescein concentration adjustment during the experiments could not be easily explained. 
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Computer simulations have been used in the literature to understand fundamental behaviors of 

electrophoretic separation principles, chemical and physical processes involved in the separation 

[199], and allow the visualization of the reactant migration velocities and zone shapes [200]. 

With the aid of Simul 5.0, the experimental results presented here were supported by simulation 

results which also demonstrated the same changes in fluorescein concentration. The simulations 

proved to be an important and useful tool to obtain information about the sample zone behavior 

during CE separations with discontinuous systems. 
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CHAPTER 5 

CONCLUSION  

 

The research presented in this dissertation focuses on investigations of electroosmotic 

flow (EOF) dynamics in capillary electrophoresis (CE) experiments. A continuous EOF 

monitoring method developed by Gilman and coworkers was employed to investigate changes in 

EOF during CE experiments as a function of time. In Chapter 2, the continuous EOF monitoring 

method was used to improve migration reproducibility, which is a fundamental and significant 

issue for any CE experiment. This study demonstrates that the continuous EOF monitoring 

method can be used to significantly improve migration reproducibility for CE experiments; 

however, direct experimental comparison of this method to several alternate approaches for 

improving migration reproducibility in the literature (neutral marker method, multiple marker 

method, migration time ratio method, and adjusted migration index method) indicate that this 

new technique is not broadly superior when both improvements in migration reproducibility and 

method complexity are considered. Nevertheless, the dynamic EOF data provided by the 

continuous monitoring method can be a useful tool to observe and study changes in EOF that 

may occur during the CE separations. In addition, direct experimental comparison between 

methods for improving CE migration reproducibility is valuable for CE practitioners and rarely 

has been reported in the literature. One of the most important and surprising conclusions from 

Chapter 2 is that for most of the separation conditions studied in this work, the simple and older 

neutral marker method provides results that are comparable to those obtained with more 

complicated and sophisticated techniques for improving CE migration reproducibility. 

In Chapter 3, effects of injection of biological samples on the EOF dynamics and 

capillary wall surface chemistry were investigated using the continuous EOF monitoring method. 

Specific biological molecules representing cell components (proteins, lipids, carbohydrates and 



124 
 

DNA) were injected at different concentrations and at two pH values (neutral and basic). 

Injection of basic proteins had the largest impact on EOF since they adsorbed to the negatively 

charged silanol groups on the capillary surface, which resulted in a non-uniform zeta potential 

down the length of the capillary. The EOF rates decreased at the beginning of an experiment and 

then became constant for the rest of the run. Furthermore, broadening of the vacancy peaks used 

for EOF monitoring was observed due to parabolic flow caused by the mismatch of zeta potential 

in the capillary. As the concentration and basicity of the protein samples increased, the resulting 

effect on EOF and peak broadening increased. The model compounds for carbohydrates, DNA 

and lipids did not cause any significant changes in EOF in these experiments. The effects of 

injection of cell lysates (cultured adipocytes) and serum samples on EOF were also studied. Two 

types of cells with different lipid content (low and high) presented similar results, which indicate 

that the fat content of the cell sample does not affect EOF due to sample adsorption. This 

observation is in agreement with the results for injection of lipid samples, which resulted in no 

significant changes in EOF, and this is consistent with the hypothesis that protein adsorption is 

the major source of EOF changes after injection of these cells. In addition, large fluctuations 

were observed in the fluorescence signal without an indication of adsorption due to constant EOF 

rates during these experiments with fetal bovine serum (FBS). Possible effects of salts in the FBS 

sample were investigated; however, a very stable EOF profile indicated that the salt content was 

not the cause of the unusual fluctuations that were observed in the FBS results.  

In Chapter 4, the continuous EOF monitoring method was expanded to simultaneously 

monitor both the local electric field and EOF by periodic photobleaching of two markers, 

coumarin 334 (neutral) and fluorescein (negatively charged). The addition of the charged marker 

(fluorescein) was used to determine the local electric field (between the photobleaching and 
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detection zones) based on the electrophoretic velocity of the fluorescein vacancy zone. The 

improved method was employed to investigate EOF dynamics and local electric field changes 

during CE with discontinuous solutions, which were generated by introducing a low ionic 

strength buffer zone into the capillary. The EOF decreased sharply at the beginning of the 

experiment, stayed constant until the discontinuous zone left the capillary, and then decreased 

before becoming constant again. The fluorescein electrophoretic velocity values decreased in 

magnitude overall due to the discontinuous zone in the capillary, and they increased as the zone 

left the capillary. The velocity values were higher in magnitude when the low ionic strength 

buffer zone passed the detection point due to high electric field within the zone. 

Unexpected fluorescein concentration changes were observed during the experiments in 

Chapter 4. When the low ionic strength buffer zone passed the detector, a decrease in the 

fluorescence signal was observed, whereas an unexpected increase in the signal was noticed at 

the elution time of fluorescein. The photobleached vacancy peaks were not observable during 

these broader decreases and increases in fluorescence, and EOF and electric field information 

could not be obtained at these times. The vacancy peaks within the broader fluorescence 

increases and decreases were observed only when the difference in ionic strength between the 

sample zone and the buffer zone was decreased from 99% to 10%. We were unable to explain 

these changes in fluorescein concentration in a simple fashion based on typical electrophoretic 

behavior; however, these changes in fluorescein concentration could be reproduced by computer 

simulation using the program Simul5.0. Overall, both experiments and simulations produced 

these unexpected increases and decreases in fluorescein concentration even though the sample 

and buffer zones contained fluorescein and coumarin 334 at the same concentration. Overall, the 

study in Chapter 4 demonstrated principle of using neutral and charged markers for monitoring 
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both EOF and local electric field; however, for solutions with different ionic strengths, the 

technique only worked for small differences (e.g. 10%), and ultimately the application of this 

approach is limited by the interesting and unexpected electrophoretic behavior of the charged 

marker. 
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APPENDIX: EQUATIONS USED IN DATA ANALYSIS  

Neutral marker method 

(from ref [120]) 

          
  

  
      (A1) 

          
       

 
     (A2) 

           
  

  
      (A3) 

                       (A4) 

                                (A5) 

 

veof: electroosmotic flow velocity 

Ld: capillary length to the detection point 

tm: migration time of EOF marker 

µeof: electroosmotic flow mobility 

Lt: total capillary length 

V: applied voltage 

vnet: net electrophoretic velocity  

tr: migration time of analyte 

µnet: net mobility 

µep: electrophoretic mobility 

E: electric field 

 

 

 



147 
 

EOF monitoring method 

 

                       (A6) 

vave(eof): average EOF velocity at the migration time of the analyte 

 

Multiple marker method  

(from ref [92]) 

      

 

 
  
       

 

 
  
       

 

 
  
       

        (A7) 

 

      

    
    
    

         (A8) 

 

      
 
 
 

           (A9) 

t1:  migration time of first marker 

t2: migration time of second marker 

t3: migration time of third marker 

µ1: electrophoretic mobility of first marker 

µ2: electrophoretic mobility of second marker 

µ3: electrophoretic mobility of third marker 

          
    

  
  

   
              (A10) 

µep(x): electrophoretic mobility of analyte x 
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tx: migration time of analyte x 

                    (A11) 

 

Migration time ratio method  

(from ref [44]) 

     Migration time ratio=
  

  
      (A12) 

 

tm: migration time of EOF marker 

tr: migration time of analyte 

 

Migration index method  

(from ref [95]) 

        
 

  
  

 

 
      (A13) 

        
          

        
        (A14) 

 

MI: migration index 

i: current density 

Lt: capillary length 

AMI: adjusted migration index  

MIeof: migration index of EOF marker 
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