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ABSTRACT 

 The aggregation process of amyloid beta from monomeric peptide to oligomers and 

fibrils is believed to be connected with the neurological disorder Alzheimer’s disease.  The focus 

of this research is the synthesis of alpha, alpha-disubstituted amino acids and peptide inhibitors 

of amyloid beta aggregation.  The inhibitors are designed to interrupt (or alter) this process by 

binding to amyloid beta’s central hydrophobic core region (residues 17-20, Leucine-Valine-

Phenylalanine-Phenylalanine).  Target specificity is achieved via self recognition by basing the 

inhibitors on the sequence in this region.  The inclusion of disubstituted amino acids in the 

sequence of the inhibitors will provide a blocking face (or side) to prevent further disease linked 

aggregation.  This thesis describes the experimental investigations that were conducted to 

evaluate design elements that can be added to enhance inhibitor designs and methods for 

improving the synthesis of disubstituted amino acids.   
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CHAPTER 1 

ALZHEIMER’S DISEASE – A PEPTIDE AGGREGATION PREDICAMENT 

A few of the major human disorders, such as Alzheimer’s disease, Type II diabetes, 

Parkinson’s disease and Huntington’s disease, have been linked to a peptide or protein 

aggregation process.1  The identification of the peptide or protein responsible for each these 

disorders has been key to understanding how to prevent, slow down or even reverse the 

aggregation.  Amyloid beta peptide, which can vary from 39 to 43 amino acid residues in length, 

is believed to be the initiator of the neurological disorder in Alzheimer’s disease.  It is produced 

in the central nervous system, primarily in the brain, by a succession of two proteolytic cleavages 

of the amyloid precursor protein (APP) and has no known biological role.  Interestingly, the 

manufacturing of this amyloid beta appears to be a normal process that occurs in individuals that 

do not exhibit the symptoms associated with Alzheimer’s disease.2  Why is this peptide, which 

appears to be useless, being created, how is production of it being physiologically regulated and 

what do we do about the disease-linked aggregation?  These are just some of the complexities to 

the problem associated with amyloid beta.  The riddle behind the creation and regulation of 

amyloid beta has yet to be solved.  However, researchers have made some headway into 

developing methods to deal with the aggregation.3 

Ideally, preventing the production of amyloid beta would be the best remedy to the 

situation.  The responsible parties, β- and γ-secretase, have been identified for the cleavage from 

the precursor, APP (see Figure 1.1).  If we can prevent the N-terminus cleavage associated with 

β-secretase, the production of amyloid beta would not occur.  However, this might lead to trading 

one problem for another by increasing probability for the formation of another disease-linked 

peptide.  That peptide, known as “p3”, is a short fragment created by the cleavages of APP with 

α- and γ-secretase.  It has a role in formation of nonfibrillar deposits or lesions associated with 
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Down’s syndrome, another neurological disorder that progresses at a faster rate than Alzheimer’s 

disease.4  The trouble with inhibiting the γ-secretase associated with the C-terminus cleavage is a 

possible adverse affect on the roles it is playing elsewhere.  One of the known roles of γ-

secretase is the proteolysis of the notch protein.5, 6  The notch protein is instrumental in the 

cellular signaling essential to cell development.2   Therefore, if preventing the creation of 

amyloid beta is too difficult without creating other problems, what shall we do? 

 

Figure 1.1.  Cleavage sites of α-, β- and γ-secretase within the APP protein sequence which 
result in the formation of either amyloid beta or p3 peptides.2 

 

This is where the design of short peptide inhibitors that bind to amyloid beta and prevent 

the aggregation process comes in.  Using the same self-recognition that assists the assembly of 

peptide aggregates into oligomers and fibrils (see Figure 1.2), researchers have been able to 

design inhibitors that bind to a specific region within amyloid beta’s sequence and disrupt the 

propensity for further aggregation.7  The approach we have used in our inhibitors is to 

incorporate disubstituted amino acids in alternating positions which will target the hydrophobic 

core of the amyloid beta peptide sequence (See Figure 1.3).  The alternating approach will allow 

the inhibitor to have a binding face consisting of natural amino acids identical to the target and a 

blocking face that will consist of disubstituted amino acids (See Figure 1.4).  

 

 

Figure 1.2.  The aggregation process of amyloid beta peptide from monomers to fibrils. 
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Figure 1.3.  The hydrophobic core (residues 17-20, LVFF) of amyloid beta peptide. 

 

Figure 1.4.  Illustration of inhibitor (AMY-1) binding to the hydrophobic core of amyloid beta 
on one face while blocking on the opposite face with disubstituted amino acids 
(adapted from figure in reference 8).  

 
 

This thesis will report the synthesis of α,α-disubstituted amino acids and peptide 

inhibitors as well as the important factors that influence peptide aggregation and inhibitor 

designs.  Also included in this document are preliminary investigations using surface plasmon 

resonance instrument to measure inhibitor binding affinities and future directions for this project. 
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CHAPTER 2 

THE INFLUENCE OF AROMATIC RESIDUES IN PEPTIDE AGGREGATION 
AND A SYNTHETIC STRATEGY TO MANIPULATE π-STACKING 

2.1 Introduction 

 What is the major factor contributing to a peptide’s propensity to aggregate into amyloid 

fibrils?  Is it aromaticity or hydrophobicity?  The experts, who have clearly expressed their bias 

by downplaying one over the other, are in disagreement. 

The significance and role of π-stacking of aromatic rings in peptide and protein self 

assembly have been reviewed.1  It was demonstrated that the aggregation of a peptide fragment 

(residues 22 to 29, H-Asn-Phe-Gly-Ala-Ile-Leu-Ser-Ser-OH) from the sequence for islet 

amyloid polypeptide (IAPP), which forms morphologically similar fibrils as the full sequence, 

can be altered to only producing non-fibrillic amorphous aggregates by the simple replacement 

of phenylalanine (indicated in red) with alanine. The aggregates were determined to be non-

fibrillic as shown by the absence of gold-green birefringence, or double refraction, when stained 

with the dye Congo Red under polarized light which is an established method for detecting 

amyloid fibrils.  The author also points out that there is at least one aromatic residue within most 

of the identified regions that are critical to aggregation within amyloid disease-linked peptides.  

Aromatic amino acids are also present in the shortest peptide fragments based on the sequences 

of amyloid related peptides that still aggregate into fibrils.2  Gazit hypothesized that the aromatic 

rings are the major molecular recognition elements that hastens the transition of the peptide to a 

beta sheet secondary structure.  X-ray diffraction shows that the structure of amyloid fibrils is 

ordered which suggests that the aggregation could not be simply due to nonspecific hydrophobic 

interactions.1, 2  The importance in molecular recognition may also explain why several inhibitors  
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Figure 2.1. The aromatic structure of Congo Red, a dye which is widely used in the detection of 
amyloid fibrils. 

 
 

 

Phe Ala Leu 
(0.88) (0.74) (0.85) 

 
Figure 2.2.  Zwitterionic form of phenylalanine, alanine and leucine with respective 

hydrophobic values3 (higher values indicate an increase in hydrophobicity). 
 

 

of peptide aggregation (including Congo Red, see Figure 2.1 for structure) contain at least one 

aromatic ring.4 

Another hypothesis on what controls peptide/protein fibrillogenesis is local 

hydrophobicity.  Advocates of this belief would argue that the phenylalanine to alanine mutation 

is a large change in hydrophobic surface area and thus is an “illegal substitution”.  Therefore, the 

conclusions made by Gazit are misleading.  Tracz et al. demonstrated that making the 

substitution with leucine, a more conservative non-aromatic replacement (see Figure 2.2) in side 

chain size and hydrophobicity, results in the formation of fibrils which were confirmed to be 

fibrillic using Congo Red.5   
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Another contradicting study by Raleigh and co-workers using the entire islet amyloid 

polypeptide sequence (H-Lys-Cys-Asn-Thr-Ala-Thr-Cys-Ala-Thr-Gln-Arg-Leu-Ala-Asn-Phe-

Leu-Val-His-Ser-Ser-Asn-Asn-Phe-Gly-Ala-Ile-Leu-Ser-Ser-Thr-Asn-Val-Gly-Ser-Asn-Thr-

Tyr-NH2) replaced all three aromatic amino acids (indicated in red) with leucine to study the 

role that intramolecular aromatic interactions may play in the aggregation process.  Based on the 

conclusions drawn from thioflavin-T fluorescence assays, circular dichroism (CD), transmission 

electron microscopy (TEM) and atomic force microscopy (AFM), the authors found that 

aromatic residues are not needed to form amyloid fibrils.  However, the rate of fibrillogenesis is 

five times slower.6  This aggregation slow-down was also observed by Chiti and co-workers in 

their systematic replacement of aromatic residues within the 98 residue sequence for human 

muscle acylphosphatase (see Figure 2.3 for sequence).  All of their substitutions lead to 

decreased aggregation rate.  But what is most interesting to note about their kinetic data is that 

their substitutions of phenylalanine or tyrosine with leucine resulted in slower rates of 

aggregation than the corresponding substitutions with the less hydrophobic alanine.  Despite the 

conflicting results, they still champion the hydrophobicity over aromaticity.7   

 

H-Ser-Thr-Ala-Gln-Ser-Leu-Lys-Ser-Val-Asp-Tyr-Glu-Val-Phe-

Gly-Arg-Val-Gln-Gly-Val-Cys-Phe-Arg-Met-Tyr-Thr-Glu-Asp-

Glu-Ala-Arg-Lys-Ile-Gly-Val-Val-Gly-Trp-Val-Lys-Asn-Thr-Ser-

Lys-Gly-Thr-Val-Thr-Gly-Gln-Val-Gln-Gly-Pro-Glu-Asp-Lys-

Val-Asn-Ser-Met-Lys-Ser-Trp-Leu-Ser-Lys-Val-Gly-Ser-Pro-Ser-

Ser-Arg-Ile-Asp-Arg-Thr-Asn-Phe-Ser-Asn-Glu-Lys-Thr-Ile-Ser-

Lys-Leu-Glu-Tyr-Ser-Asn-Phe-Ser-Ile-Arg-Tyr-NH2 

 
Figure 2.3.  Full sequence of human muscle acylphosphatase (aromatic residues indicated in 

red). 
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Gazit and co-workers made this timing observation by alluding to the huntingtin protein 

associated with Huntington’s disease.8  The normal version of this protein is 3,144 amino acids 

in length and contains a long sequence of glutamines starting at the 18th residue from the N-

terminus.  Through mutation, the repetition of glutamine residues gets longer and longer.  These 

increases in length of a hydrophilic domain correlates directly with a higher probability and 

earlier onset of the disease, and a higher propensity for the protein to aggregate into fibrils.9  

However, the aggregation process is longer by orders of magnitude.8   

If that is not convincing enough, Gazit’s group also published work demonstrating fibril 

formation from hydrophilic peptide fragments (such as H-Asp-Phe-Asn-Lys-Phe-OH) of the 

human calcitonin hormone.  The hydrophobicity of this short peptide, which was increased by 

the addition of two phenylalanines, is lost by the inclusion of three hydrophilic residues; 

aspartate, asparagine and lysine (see Figure 2.4).  The full length hormone sequence is useful in 

calcium homeostasis in its native peptide structure, but harmful when it aggregates into fibrils 

linked to medullary thyroid carcinoma.  This study concludes that there is no correlation between 

hydrophobicity and the formation of amyloid fibrils.10 

 

Asp Asn Lys 
(0.62) (0.63) (0.52) 

 
Figure 2.4.  Zwitterionic form of aspartate, asparagine and lysine with respective hydrophobic 

values3 (higher values indicate an increase in hydrophobicity). 
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Based on these findings, we decided it would be prudent to spend more time working on 

the synthesis of aromatic disubstituted amino acid.  Previous work (published11 and unpublished) 

has shown that the difficulty lies in the dibenzylation step of ethyl nitroacetate (see Figure 2.5).  

Efforts were made to determine how to improve this process.  We had also previously 

demonstrated the dialkylation of a few benzyl halides that containing electron withdrawing 

groups (nitro, cyano and methylcarboxy) in the para position.11  We thought it would be 

interesting to see if benzyl halides with para electron donating groups (methylthio and methoxy) 

could also be used in the dibenzylation step.  Our reasoning behind this interest is to see if para 

substituents can influence any π-stacking or hydrophobic interactions that may be essential for 

the interaction of peptide based inhibitors and the amyloid beta peptide containing aromatic 

amino acids.  Based on previous theoretical calculations and experimental results, this can be 

done by manipulating the electron density of the π system of the aromatic ring via substituent 

effects regardless of the exact π-π orientation (i.e. face-face stacked, offset stacked, or edge-face 

as shown in Figure 2.6).12-14 

 

Figure 2.5.  General scheme of the dibenzylation of ethyl nitroacetate with a benzyl halide. 
 

 

Figure 2.6.  Representation of face-face stacked, offset stacked, or edge-face orientations. 
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2.2 Results and Discussion 

 Based on well-established literature precedent, the use of electron donating groups in the 

para position of benzyl bromide should promote a nucleophilic attack on the benzyl carbon atom 

by an ethyl nitroacetate anion, which was formed by deprotonation at the alpha carbon with N,N-

diisopropylethylamine (see Figure 2.7 for mechanism).  If this was true, the dialkylation with 4-

(methylthio)benzyl bromide followed by cleavage of the methylthio groups could help overcome 

the moderate yields of 63 % when using benzyl bromide.  But much to my chagrin, the yields 

using 4-(methylthio)benzyl bromide, 24 to 29 % (Entry 1, Table 2.1 and Figures 2.8, 2.9), were 

about half the amount reported for benzyl bromide under the same conditions.11  Alterations to 

reagent equivalents and reaction temperature led to similar results (Entry 2-4, Table 2.1).  The 

methylthio groups also proved to be resistant to removal under hydrogenation conditions with 

Raney nickel or reduction conditions with zinc dust and acetic acid.  Efforts using 4-

methoxybenzyl bromide as the benzyl halide were also in vain as no desired dibenzylated 

product was formed (Entry 12 & 13, Table 2.1).  This was very puzzling since it had been 

reported by Baker that the rate of the reaction when using p-methoxy substituted benzyl halides 

was so high that it could not be measured (via the Volhard titration method of determining the 

concentration of chlorides and bromides with silver nitrate and ammonium thiocyanate).15  This 

contrary result suggested perhaps that this reaction was not going by the proposed SN2 

mechanism. 

Trying to sort out these disappointing yields, I proceeded to experiment with benzyl 

bromide and found that, in my hands, only 26 to 32 % yields could be obtained (Entry 5, Table 

2.1 and Figures 2.10, 2.11).  I tried changing the order of addition of reagents as done in one of 

our previous publications11 with no avail (data not shown).  Increasing the amount of electrophile 

and base from 2.1 to 2.5 equivalents did not help the cause (Entry 6, Table 2.1).  Nor did the 



 11

substitution of N,N-diisopropylethylamine (pKa 11.4) with N,N,N′,N′-tetramethyl-1,8- 

naphthalenediamine (pKa 12.3), which is also known as Proton Sponge, make matters better 

(Entry 7, Table 2.1).  One of the named reactions, the Finkelstein reaction, proved to be quite 

handy in improving my yields.  The classic example of this reaction converts alkyl bromides and 

chlorides to iodides using either potassium or sodium iodide, which are both soluble in acetone.  

The insoluble salt product that is formed precipitates out of solution and shifts the reaction 

towards completion by following Le Châtelier’s principle.16, 17  However, this halogen exchange  
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Figure 2.7.  General mechanism of the dibenzylation of ethyl nitroacetate with a benzyl halide. 
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Table 2.1.  Dialkylation of ethyl nitroacetate under various experimental conditions  

 
Entry Electrophile Method T (°C) Yield %* 

1 p-CH3SPhCH2Br A 0-25 24-29 

2 p-CH3SPhCH2Br B 50 24 

3 p-CH3SPhCH2Br B 70 23 

4 p-CH3SPhCH2Br C 25 27 

5 PhCH2Br C 25 26-32 

6 PhCH2Br D 25 32 

7 PhCH2Br E 25 26 

8 PhCH2I F 25 19-28 

9 PhCH2Br G 25 39 

10 PhCH2Br H 25 34 

11 PhCH2Cl G 25 29 

12 p-CH3OPhCH2Br A 0-25 0 

13 p-CH3OPhCH2Br I 60 0 

14 p-CH3OPhCH2I F 25 0 

15 p-CH3OPhCH2Br G 25 0 

16 p-CH3OPhCH2Br H 25 15 

17 p-CH3OPhCH2Cl H 25 15 
 

* Yields are based on product obtained after recrystallization 
 
Method A:  Electrophile (2.05 eq.), Bu4NBr (0.1 eq.) and DIEA (2.05 eq.) in DMF 
Method B:  Electrophile (2.25 eq.), Bu4NBr (0.1 eq.) and DIEA (2.25 eq.) in DMF 
Method C:  Electrophile (2.1 eq.), Bu4NBr (0.1 eq.) and DIEA (2.1 eq.) in DMF 
Method D:  Electrophile (2.5 eq.), Bu4NBr (0.1 eq.) and DIEA (2.5 eq.) in DMF 
Method E:  Electrophile (2.5 eq.), Bu4NBr (0.1 eq.) and Proton Sponge (2.1 eq.) in DMF 
Method F:  Electrophile (2.5 eq.) and DIEA (2.5 eq.) in DMF 
Method G:  Electrophile (2.5 eq.), KI (3.2 eq.) and DIEA (2.5 eq.) in DMF 
Method H:  Electrophile (2.5 eq.), KI (3.2 eq.) and DIEA (2.5 eq.) in Acetonitrile 
Method I:  Electrophile (3.7 eq.), Bu4NBr (0.1 eq.) and DIEA (2.05 eq.) in DMF 
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Figure 2.8.  ORTEP representation (ellipsoids 50 %) of ethyl 2-(4-(methylthio)benzyl)-3-(4-

(methylthio)phenyl)-2-nitropropanoate (2.4.2). 
 
 
 

 
 
Figure 2.9.  Dendritic crystals of ethyl 2-(4-(methylthio)benzyl)-3-(4-(methylthio)phenyl)-2-

nitropropanoate (2.4.2). 
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Figure 2.10.  Ethyl 2-benzyl-2-nitro-3-phenylpropanoate crystals (2.4.1). 
 
 
 

 

Figure 2.11.  Size of ethyl 2-benzyl-2-nitro-3-phenylpropanoate crystal (2.4.1). 
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could be capitalized on during the dibenzylation step in a different solvent, N,N-

dimethylformamide.  Yields under these conditions rose as high as 55 % after purification with a 

silica gel column and 39 % post-crystallization in ethanol (Entry 9, Table 2.1).  Note: I have a 

preference in reporting the crystalline yields since I have greater confidence in the purity of the 

product. 

The previously unreactive 4-(methylthio)benzyl bromide was reevaluated to see if 

halogen exchange could remedy the situation.  Unfortunately, the result was still the same (Entry 

14 & 15, Table 2.1).  However, success was made when the solvent was changed to acetonitrile, 

resulting in a 15 % yield of crystalline disubstituted product (Entry 16, Table 2.1 and Figures 

2.12, 2.13).  Similar results were obtained when using p-methylthiobenzyl chloride (Entry 17, 

Table 2.1). 

 
Figure 2.12.  ORTEP representation (ellipsoids 50 %) of ethyl 2-(4-methoxybenzyl)-3-(4-

methoxyphenyl)-2-nitropropanoate (2.4.3). 
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Figure 2.13.  Crystals of ethyl 2-(4-methoxybenzyl)-3-(4-methoxyphenyl)-2-nitropropanoate 

(2.4.3). 
 

2.3 Conclusions 

 It was demonstrated that benzyl halides containing electron donating substituents in the 

para position could be successfully dialkylated onto the α-carbon of ethyl nitroacetate albeit with 

more difficulty than previously anticipated.  There was also progress made on improving the 

yields by halogen exchange à la Finkelstein type reaction.  However, the conversion to iodides is 

not always a good thing for dibenzylation as will be shown in Chapter 3 with para electron 

withdrawing groups.  Optimized protocols for preparing ethyl 2-benzyl-2-nitro-3-

phenylpropanoate, ethyl 2-(4-(methylthio)benzyl)-3-(4-(methylthio)phenyl)-2-nitropropanoate 

and ethyl 2-(4-methoxybenzyl)-3-(4-methoxyphenyl)-2-nitropropanoate provided in the 

following experimental section, 2.4. 

2.4 Experimental 

2.4.1 Ethyl 2-benzyl-2-nitro-3-phenylpropanoate 

 The reaction was carried out under argon at room temperature and monitored by thin-

layer chromatography.  Ethyl nitroacetate (1.0 g, 7.51 mmol), potassium iodide (4.0 g, 24.1 
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mmol) and benzyl bromide (3.2 g, 18.8 mmol) were added to a round-bottom flask containing 

anhydrous N,N-dimethylformamide (5 mL).  Then N,N-diisopropylethylamine (2.4 g, 18.8 

mmol) was added slowly to the reaction mixture (without cooling) while stirring.  After diluting 

in diethyl ether (100mL), impurities were extracted by washing with 1N HCl (2 x 40 mL), 

saturated sodium carbonate solution (2 x 40 mL), and water (5 x 20 mL) in a separatory funnel.  

Magnesium sulfate was used to dry the organic layer and later removed by paper filtration.  The 

filtrate was then concentrated on a rotary evaporator and the desired product was isolated using a 

silica gel column (hexanes-ethyl acetate, 90:10).  Recrystallization in hot ethanol followed by 

slow cooling resulted in colorless crystals.  Yield, 0.91 g (39%); mp 81 – 83 °C; 1H-NMR (250 

MHz, CDCl3) δ 7.32 – 7.16 (m, 10H), 4.12 (q, J=7.2 Hz, 2H), 3.49 (s, 4H), 1.13 (t, J=7.2 Hz, 

3H); 13C-NMR (250 MHz, CDCl3) δ 166.2, 133.1, 130.0, 128.5, 127.7, 97.1, 62.6, 40.0, 13.4; 

MS (ESI) calculated for C18H19NO4 [M + H]+ 314.1, found 314.1; Crystal data (Mo Kα 

radiation) for C18H19NO4 confirmed match by performing lattice check of reported literature 

values.18 

2.4.2 Ethyl 2-(4-(methylthio)benzyl)-3-(4-(methylthio)phenyl)-2-nitropropanoate 

 This compound was synthesized with 4-(methylthio)benzyl bromide (4.1 g, 18.8 mmol) 

as the benzyl halide and tetrabutylammonium bromide (0.24 g, 0.75 mmol), instead of potassium 

iodide.  The same basic procedure was followed as written in previous section (2.4.1).  Yield, 

0.82 g (24%); mp 99 – 101 °C; 1H-NMR (250 MHz, CDCl3) δ 7.18 (d, J=8.2 Hz, 4H), 7.07 (d, 

J=8.3 Hz, 4H), 4.14 (q, J=7.1 Hz, 2H), 3.42 (s, 4H), 2.47 (s, 6H), 1.15 (t, J=7.1 Hz, 3H); 13C-

NMR (250 MHz, CDCl3) δ 166.1, 138.3, 130.4, 129.6, 126.4, 96.9, 62.7, 39.5, 15.5, 13.5; MS 

(ESI) calculated for C20H23NO4S2 [M + H]+ 406.1, found 406.2; Crystal data (Mo Kα radiation) 

for C20H23NO4S2: Mr = 405.51, Monoclinic, P21/n, a = 16.029 (2) Å, b = 6.1465 (5) Å, c = 
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21.146 (3) Å, V = 1986.6 (4) Å3, Z = 4, λ = 0.71073 Å, T = 170 K, R[F2 > 2σ(F2)] = 0.048, 

wR(F2) = 0.123. 

2.4.3 Ethyl 2-(4-methoxybenzyl)-3-(4-methoxyphenyl)-2-nitropropanoate 

 This compound was synthesized with 4-methoxybenzyl bromide (3.8 g, 18.8 mmol) as 

the benzyl halide and anhydrous acetonitrile (5 mL) as the solvent.  The same basic procedure 

was followed as written in previous section (2.4.1).  Yield, 0.41 g (15%); mp 72 – 73 °C; 1H-

NMR (250 MHz, CDCl3) δ 7.09 (d, J=8.6 Hz, 4H), 6.84 (d, J=8.6 Hz, 4H), 4.14 (q, J=7.1 Hz, 

2H), 3.79 (s, 6H), 3.41 (s, 4H), 1.16 (t, J=7.1 Hz, 3H); 13C-NMR (250 MHz, CDCl3) δ 166.3, 

159.1, 131.1, 125.0, 113.9, 97.3, 62.5, 55.1, 39.1,13.5; MS (ESI) calculated for C20H23NO6 [M + 

H]+ 374.2, found 374.2; Crystal data (Cu Kα radiation) for C20H23NO6: Mr = 373.39, 

Orthorhombic, Pna21, a = 18.0681 (9) Å, b = 17.1151 (6) Å, c = 6.0216 (3) Å, V = 1862.10 (15) 

Å3, Z = 4, λ = 1.54178 Å, T = 90 K, R[F2 > 2σ(F2)] = 0.022, wR(F2) = 0.056. 
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CHAPTER 3 

RADICAL BENZYLATION WITH ELECTRON WITHDRAWING GROUPS 
ON THE BENZYL HALIDE 

3.1 Introduction 

 It seemed unusual that benzyl bromides with electron donating group (such as methoxy 

and methylthio) in the para position would have lower or equivalent yields than the 

unsubstituted benzyl bromides for the dialkylation experiments mentioned in Chapter 2.  It was 

expected that these groups would help promote a SN2 reaction (see Figure 3.1) by stabilizing the 

positive charge on the carbon between the halide and the aromatic ring.  While comparing the 

yields to our previous publication,1 another unusual observation was made.  The benzyl bromides 

that contained electron withdrawing groups (such as nitro, cyano and methylcarboxyl) in the 

para position had higher yields than the unsubstituted benzyl bromides.  This also seemed 

contrary to what one would expect.  Shouldn’t electron withdrawing groups inhibit a SN2 

reaction by destabilizing the positive charge on the carbon site for nucleophilic attack?  (See 

Figure 3.2)  What’s going on here? 

From the literature, it has been shown experimentally that both benzyl bromides 

containing electron donating and electron withdrawing groups in the para position promote 

benzylation.  Swain and Langsdorf also noted that based on the “U” or “V” shape of the Hammet 

plot of various para substituents that there must be a difference in mechanism behind 

phenomena.2  They rationalized the transition state favoring “bond breaking” with electron 

donating groups and “bond making” with electron withdrawing groups.  This rationale was 

supported also by Bowden and Cook.3  Hudson and Klopman reported that the unusual effect of 

the electron withdrawing groups may be due to a promoted conjugation between the phenyl ring  
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group (EWG) in the para position. 
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and the “pseudo” p-orbital of the “CH2” group connected to the ispo carbon.4  But how does all 

this translate into a possible second benzylation mechanism? 

In a review article with the p-nitrobenzyl “system”, the mystery around the speculated 

change in mechanism is unraveled in detail.5  There are two major forms of benzylation that can 

transpire during the substitution reaction between a deprotonated aliphatic nitro compound and 

alkyl halides.  Since a lone pair of electrons can resonate between the nitro group and the 

adjacent carbon atom, a competition between O-alkylation, which ultimately leads to the 

formation of an aldehyde, versus C-alkylation exists.  The balance between these two alkylations 

depends on both the substituent on the aromatic ring and the leaving group for the substitution.  

In the case of the p-nitrobenzyl “system”, it became evident that C-alkylation dominants when a 

poorer leaving group is employed, which is contrary to the normal trends observed in both SN2 

and SN1 reactions.  Hence, it is better to perform C-alkylation with a 4-nitrobenzyl chloride 

instead of a bromide or iodide.  For this reversal of the trend to occur, a different route or 

mechanism must be occurring.5 

In the case of the p-nitrobenzyl “system”, it has been proposed that a radical anion 

intermediate was the root cause for C-alkylation’s preference for poor leaving groups.  To prove 

this idea that a single electron transfer was taking place between a deprotonated aliphatic nitro 

compound, such as 2-nitropropane, and 4-nitrobenzyl chloride, a known electron capturer, 1,4-

dinitrobenzene, was added to the reaction in order to steal an electron away from the α-nitro 

radical anion.  This electron capture should be able to occur faster than the rate of the 

displacement of the chloride and, therefore, inhibit the possibility of C-alkylation.  The addition 

of 1,4-dinitrobenzene in the same equivalents of 4-nitrobenzyl chloride led to a major reduction 

from 92 % to 2 % for C-alkylation.5 
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To test Kornblum’s conclusions, a similar synthesis was performed to see if 4-nitrobenzyl 

chloride would be more reactive than the bromide version for the dialkylation of ethyl 

nitroacetate.  To verify that a radical anion intermediate was being formed, C-alkylation 

inhibition with 1,4-dinitrobenzene was also evaluated with the more reactive 4-nitrobenzyl 

chloride. 

3.2 Results and Discussion 

 4-Nitrobenzyl bromide was used for the dibenzylation of ethyl nitroacetate under similar 

reaction conditions as previously reported.1  The only change was not adding 

tetrabutylammonium bromide to the reaction.  This compound was previously used in catalytic 

amounts and it was suggested that this additive helped promote the dialkylation.  But I did not 

know if it would help to the same degree (or hurt) when switching from a benzyl bromide to a 

benzyl chloride.  Therefore, it was removed from the procedure since I was only interested in the 

influence of para substituents and halogen leaving groups on the dibenzylation.  The previously 

reported yield of 75 % was not reproduced in this experiment.1  In my hands, the reaction only 

yielded 29 % of dialkylated product. 

 Despite getting lower than expected yields, I pressed on with my experiments by 

switching to the chloride.  After working up the reaction and purifying the desire product, I was 

quite pleased with the results.  The effect of using 4-nitrobenzyl chloride for the dialkylation 

caused the yields to increase to 50 %.  If this type of substitution was a normal SN2 reaction, or 

SN1 for those who believe otherwise, such an increase in reactivity would not happen.  

Something else is going on here.  All signs point to a different mechanism (see Figure 3.3). 

To evaluate the possibility of a mechanism involving a radical anion intermediate, the 

same electron scavenger was used.5  When 1,4-dinitrobenzene was added in the same number 

equivalents as 4-nitrobenzyl chloride, no dialkylated product was formed.  It is also interesting to 
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note that no trace of mono-benzylated product was observed based on NMR.  It would appear 

that 1,4-dinitrobenzene shut down the possibility of any C-alkylation.  This also gives credibility 

to the proposed radical anion intermediate mechanism. 

 

 

Figure 3.3.  Reaction between ethyl nitroacetate and 4-nitrobenzyl chloride (adapted from the 
SRN1 mechanism reported in the publication by Kim and Bunnett).6 



 25

3.3 Conclusions 

 It was quite rewarding to unravel this mystery by digging into the literature with the aid 

of Dr. Crowe.  This knowledge will aid our synthetic methodology in designing dibenzylated 

analogs with para substituents.  This unique change in mechanism that involves a radical anion 

intermediate has been shown with other electron withdrawing substituents, such as the cyano 

group.7  It would be interesting to see if our previously reported dibenzylation yields using 4-

cyanobenzyl bromide could be improved by switching to the chloride version.1 

 The formation of an aldehyde via O-alkylation has long been suspected as one of the 

reasons we have been plagued with mediocre yields when attempting dibenzylation of ethyl 

nitroacetate (see Figure 3.4).  Attempts to dibenzylate with 4-(methylsulfonyl)benzyl chloride  

 
 

Figure 3.4.  Mechanism for the formation of a benzaldehyde via O-alkylation of ethyl 
nitroacetate. 
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Figure 3.5.  ORTEP representation (ellipsoids 50 %) of 4-(methylsulfonyl)benzaldehyde (which 

has not been previously reported).  Crystal data (Mo Kα radiation) for C8H8O3S: Mr 
= 184.20, Monoclinic, P21/c, a = 6.0820 (6) Å, b = 7.9205 (9) Å, c = 16.639 (2) Å, 
V = 801.51 (15) Å3, Z = 4, λ = 0.71073 Å, T = 90 K, R[F2 > 2σ(F2)] = 0.037, wR(F2) 
= 0.104. 

 
 

provides rock solid evidence that benzaldehyde is being produced (see Figure 3.5).  

Unfortunately, in the case of using 4-(methylsulfonyl)benzyl chloride, no traces of  C-alkylated 

product was obtained. 

3.4 Experimental 

3.4.1 Ethyl 2-nitro-2-(4-nitrobenzyl)-3-(4-nitrophenyl)propanoate (Using NO2BzBr) 

 Ethyl nitroacetate (1.0 g, 7.51 mmol) and 4-nitrobenzyl bromide (4.1 g, 18.8 mmol) were 

added to a round-bottom flask containing anhydrous N,N-dimethylformamide (5 mL).  The 

reaction mixture was then cooled to 0 °C in an ice bath and N,N-diisopropylethylamine (2.4 g, 

18.78 mmol) was added slowly while stirring.  The reaction was carried out under argon at room 
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temperature.  After diluting in diethyl ether (100mL), impurities were extracted by washing with 

1N HCl (2 x 40 mL), saturated sodium carbonate solution (2 x 40 mL), and water (5 x 20 mL) in 

a separatory funnel.  Magnesium sulfate was used to dry the organic layer and later removed by 

paper filtration.  The filtrate was then concentrated on a rotary evaporator and the desired 

product was isolated using a silica gel column (hexanes / ethyl acetate 90:10).  Recrystallization 

in hot ethanol followed by slow cooling resulted in colorless crystals.  Yield, 0.87 g (29%); 1H-

NMR (250 MHz, DMSO-d6) δ 8.21 (d, J=8.8 Hz, 4H), 7.51 (d, J=8.8 Hz, 4H), 4.12 (q, J=7.1 Hz, 

2H), 3.72 (d, J= 3.8 Hz, 4H), 1.05 (t, J=7.1 Hz, 3H); 13C-NMR (250 MHz, DMSO-d6) δ 174.9, 

147.5, 141.5, 132.0, 123.8, 97.3, 63.5, 28.4, 13.7 

3.4.2 Ethyl 2-nitro-2-(4-nitrobenzyl)-3-(4-nitrophenyl)propanoate (Using NO2BzCl) 

This compound was synthesized with 4-nitrobenzyl chloride (3.22 g, 18.8 mmol) using 

the same procedure as written in previous section (3.4.1).  Yield, 1.50 g (50%); 1H-NMR (250 

MHz, DMSO-d6) δ 8.21 (d, J=8.9 Hz, 4H), 7.51 (d, J=8.9 Hz, 4H), 4.12 (q, J=7.1 Hz, 2H), 3.72 

(d, J= 3.8 Hz, 4H), 1.05 (t, J=7.1 Hz, 3H) 

3.4.3 Benzylation Experiment with 4-nitrobenzyl Chloride and 1,4-dinitrobenzene 

This experiment was conducted using 4-nitrobenzyl chloride (3.22 g, 18.8 mmol) and 

1,4-dinitrobenzene (3.16 g, 18.8 mmol) using the same procedure as written in previous section 

(3.4.1).  The desired product, Ethyl 2-nitro-2-(4-nitrobenzyl)-3-(4-nitrophenyl)propanoate, was 

not formed and bulk of the final reaction mixture appears to be the benzyl halide starting 

material, 4-nitrobenzyl chloride (see Figure 3.6).  Even before purification, the excessive 

amount of 4-nitrobenzyl chloride that remains can be seen visually if the crude reaction mixture 

is allowed to crystallize (see Figure 3.7).   
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Figure 3.6.  ORTEP representation (ellipsoids 50 %) of 4-nitrobenzyl chloride.  Crystal data (Cu 

Kα radiation) for C7H6ClNO2: Mr = 171.58, Orthorhombic, P212121, a = 4.6952 (2) 
Å, b = 6.3691 (2) Å, c = 24.5393 (8) Å, V = 733.83 (5) Å3, Z = 4, λ = 1.54178 Å, T 
= 90 K, R[F2 > 2σ(F2)] = 0.041, wR(F2) = 0.119.8 

 

 

 

Figure 3.7.  4-Nitrobenzyl chloride (starting material) crystallizing out of the crude reaction 
mixture. 
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CHAPTER 4 

PALLADIUM-ASSISTED ALKYLATION WITH ALLYL METHYL CARBONATE AND 
SYTHESIS OF Nα-(9-FLUORENYLMETHOXYCARBONYL)-2,2-DIPROPYLGLYCINE 

 
4.1 Introduction 

2,2-Dipropylglycine, or Dpg, (see Figure 4.1) along with two other disubstituted amino 

acids (2,2-diisobutylglycine, or Dibg, and 2,2-dibenzylglycine, or Dbzg) have been previously 

incorporated into our inhibitors designed to bind to the central hydrophobic core within the 

amyloid beta peptide sequence and impede the aggregation process that is believed to be play an 

important role in Alzheimer’s disease.1  In vitro experiments have demonstrated AMY-1 

inhibitor (sequence: H-Lys-Dibg-Val-Dbzg-Phe-Dpg-(Lys)6-NH2) can prevent peptide 

aggregation into fibrils at sub-stoichiometric concentrations (i.e. 5 µM AMY-1 : 50 µM amyloid 

beta).  This is a boast few can claim.  Most inhibitors developed by other research groups have 

only been successful at concentrations of at least one equivalent or higher.  Therefore, we are 

confident that disubstituted amino acids should be included in future inhibitor designs.  In order 

to continue our ongoing efforts to improve of our inhibitor design, it is necessary to maintain our 

supplies of disubstituted amino acids and explore experimental changes to improve the synthetic 

yields to produce each one in the most efficient manner. 

 

 

Figure 4.1. Three disubstituted amino acids: Dpg, Dibg and Dbzg (from left to right). 
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4.2 Results and Discussion 

This synthesis was not really novel – the palladium-assisted alkylation to form the 

precursor to Dpg and the subsequent steps to convert it to an amino acid has already been 

reported by our research group (see Figure 4.2 for overall reaction scheme).2  However, the 

catalytic amounts (or mol %) of Pd(PPh3)4 truly needed for complete dialkylation has not been 

thoroughly investigated.  My efforts focused on minimizing the amount of palladium catalyst and 

changing the electrophile from allyl acetate to allyl methyl carbonate.   

Based on the work done by Tsuji,3 there are three main advantages in using allyl methyl 

carbonate.  In the case of using allyl acetate, every step is reversible (see Figure 4.3).  This is not 

true for the catalytic cycle when employing allyl methyl carbonate as the alkylation reagent (see 

Figure 4.4).  The irreversibility advantage that occurs between 6 and 7 comes from the 

decarboxylation step (conversion of methyl carbonate anion to methoxide anion) and the 

protonation step (methoxide anion is basic enough to pick up a proton from ethyl nitroacetate to  
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Figure 4.2. Previously reported reaction scheme for the synthesis of Fmoc (or 9-

fluorenylmethoxycarbonyl) protected Dpg.2 



 32

 
 
Figure 4.3. Catalytic cycle of palladium-assisted alkylation with allyl acetate. 
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Figure 4.4. Catalytic cycle of palladium-assisted alkylation with allyl methyl carbonate. 
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form methanol).  The protonation step leads to a second advantage.  The acetate anion (conjugate 

acid pKa 4.75)4 generated when using allyl acetate can not serve as a base to deprotonate the 

alpha carbon of a nucleophile, such as ethyl nitroacetate (pKa 5.75).5  Therefore, the reaction 

would need to be run under basic conditions.  In previous experiments with allyl acetate, we have 

added N,N-diisopropylethylamine (pKa 11.4)6 as the base.  Since methoxide anions (conjugate 

acid pKa 15.5)4 are being generated with each catalytic cycle, alkylation with allyl methyl 

carbonate can be done under neutral conditions.7  A third advantage is that the oxidative addition 

step between 4 and 5 is enhanced by the leaving group ability (due to its basicity, conjugate acid 

pKa 5.61)8 of the carbonate group.  By having a higher propensity to undergo oxidative addition, 

the reaction can be pushed toward the irreversible steps mentioned earlier. 

Evidence of higher reactivities of carbonates over acetates was demonstrated by Tsuji and 

co-workers by an alkylation competition reaction of methyl 2-methyl-3-oxopentanoate with 

equal amounts of methallyl methyl carbonate, which is more sterically hindered than allyl methyl 

carbonate, and allyl acetate.  Under neutral conditions at room temperature, the alkylated product 

favored the addition of an allyl from the carbonate vs. the acetate 84% to 16% using Pd(PPh3)4 as 

the catalyst.  The carbonate advantage was increased even further by changing the catalyst to 

Pd(P(OEt)3)4 (97% to 3%).3 

My findings demonstrated that the successful dialkylated product could be obtained in 

high yields (94%) when the amount of catalyst, Pd(PPh3)4, was reduced by an order of 

magnitude (0.5 mol %, instead of 5 mol %).  Incomplete dialkylation was observed when the 

catalytic amounts were further reduced (0.05 mol %) – thus indicating the limits of the 

effectiveness of Pd(PPh3)4 has been reached.  The two products isolated via silica gel column 

were the dialkylated (72%) and the monoalkylated product (21%). 
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Before proceeding in the discussion of the subsequent steps, it should be noted that there 

was an omission in the previously reported experimental for this palladium-assisted dialkylation.  

A strict interpretation of the synthetic write-up without prior experience working with 

polystyrene resins would lead to insufficient resin swelling when using ethyl acetate as the 

solvent.  The importance of this swelling requirement, which allows the resin’s functional groups 

to be more accessible for chemical bonding, cannot be understated as crucial to the palladium 

scavenging ability of polystyrene-triphenylphosphine.  A more suitable solvent that maximizes 

swelling as well as dissolve the crude mixture into solution is dichloromethane.  This will greatly 

enhance the scavenger’s ability to remove the remaining palladium catalysts within the allowed 

parts per billion set by the pharmaceutical industry.9 

The remaining steps were 1) hydrogenation with Raney nickel / H2 (50 psi) to reduce the 

nitro and allyl groups, 2) hydrolysis of the ester by refluxing by refluxing in KOH / ethanol and 

3) N-terminus protection with 9-fluorenylmethoxycarbonyl chloride after treatment with a 

temporary C-terminus protecting group, chlorotrimethylsilane.  No deviation from the published 

procedures was attempted for these final steps since they have been well established as “tried and 

true”.  The hydrogenation step did not have the high 90 plus % yields as anticipated and only 

converted 79% of the starting compound, ethyl 2,2-bis(allyl)-2-nitroacetate.  This may have been 

caused by a loss in “freshness” via oxidation of the Raney nickel that had a little age – the 

reagent’s label indicated it was opened in 2003.  The saponification went according to plan.  

After isolating the free amino acid, Dpg, with Dowex ion-exchange resin, nice synthetic yield of 

94% was obtained.  On the other hand, the Fmoc protection step proved to be problematic.  

Although the desired product is clearly present in the 1H-NMR spectrum, its physical appearance 

resembles a sticky beige tar-like substance.  Efforts to transform it to the typical white fluffy or 

clear crystalline solid were in vain, even with the assistance of a veteran graduate student.  
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Therefore, accurate product yields were never determined and the product was ultimately 

disposed of. 

Additional work was done to try to indentify the origin of the unsuccessful Fmoc 

protection step.  After the crude product was redissolved in ethyl acetate and diluted in water 

(ethyl acetate / water 2:1 v/v), it was noted that the pH was moderately acidic (~3).  Typically at 

this point the pH should be neutral or just slightly basic.  Under the suggestion of my advisor, the 

Fmoc protection step was repeated using a commercially available free amino acid, proline.  The 

acidic pH was the same.  Although, I had been temporary reassigned to work on surface plasmon 

resonance (SPR) inhibitor binding experiments, I still kept researching this matter.  My findings 

ultimately led me to believe that in my inexperience, I was overlooking the production of HCl 

gas that was forming during the reflux with chlorotrimethylsilane.  Periodic purging of the 

reaction with inert gas during the addition of the temporary acid labile trimethylsilyl protecting 

group to the C-terminus should remedy this situation and keep the pH from getting too low.  

Unfortunately, I never got around to testing this hypothesis by myself.  However, an 

undergraduate student, Amber Scroggs, working with me demonstrated that this works well for 

the Fmoc protection of Dibg and Dbzg. 

4.3 Conclusions 

 The limits of the Pd catalyst was investigated and found to be around 0.5 mol %.  At this 

lower catalytic limit, a very small increase in yield (i.e. 1%) was achieved when using allyl 

methyl carbonate instead of allyl acetate.  It would be interesting to test how well these two new 

reaction variables would fair at a larger synthetic scale.  Also the allylic alkylation should be 

evaluated under neutral conditions at room temperature as done by Tsuji.  The ability to use 

carbonates in the absence of base and heat was not realized until ex post facto. 
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4.4 Experimental 

4.4.1 Ethyl 2,2-bis(allyl)-2-nitroacetate (Using 0.5 mol % Pd Catalyst) 

 Ethyl nitroacetate (2.0 g, 15.0 mmol), allyl methyl carbonate (3.7 g, 31.5 mmol) and 

tetrakis(triphenylphosphine)palladium(0) (0.17 g, 0.15 mmol) were added to a round-bottom 

flask containing anhydrous tetrahydrofuran (20 mL).  N,N-Diisopropylethylamine (4.1 g, 31.5 

mmol) was then added slowly to the mixture while stirring.  The reaction was carried out under 

argon at 50 °C for approximately 7 hours.  After filtering the reaction mixture through a fritted 

glass funnel containing Celite, the filtrate was concentrated on a rotary evaporator and then 

redissolved in ethyl acetate (15 mL).  Impurities were extracted by washing with 10% potassium 

carbonate (10 mL) in a separatory funnel.  Palladium catalyst was scavenged from the organic 

layer by allowing it to shake for half an hour with polystyrene-bound triphenylphosphine resin 

(0.14 g, 2.15 mmol/g).  (Note: It was pointed out later that ethyl acetate is not a good PS resin 

swelling solvent.)  After filtering off the resin using a fritted glass funnel, the desired product 

was isolated using a silica gel column (hexanes / ethyl acetate 90:10) and concentrated to a 

yellow oil.  Yield, 3.0 g (94%); 1H-NMR (250 MHz, CDCl3) δ 5.71 – 5.55 (m, 2H), 5.24 – 5.17 

(m, 4H), 4.27 (q, J=7.3 Hz, 2H), 3.02 – 2.85 (m, 4H), 1.29 (t, J=7.1 Hz, 3H); 13C-NMR (250 

MHz, CDCl3) δ 166.3, 129.8, 121.8, 95.2, 63.1, 38.4, 14.3; GC/MS (EI) cald for C10H15NO4 [M 

+ H]+ 214.1, found 213.8. 

4.4.2 Ethyl 2,2-bis(allyl)-2-nitroacetate (Using 0.05 mol % Pd Catalyst) 

 This compound was synthesized with tetrakis(triphenylphosphine)palladium(0) (0.017 g, 

0.015 mmol) using the same procedure as written in previous section (4.4.1).  Yield, 2.3 g (72%); 

1H-NMR (250 MHz, CDCl3) δ 5.71 – 5.54 (m, 2H), 5.24 – 5.16 (m, 4H), 4.27 (q, J=7.1 Hz, 2H), 

3.02 – 2.85 (m, 4H), 1.29 (t, J=7.1 Hz, 3H); 13C-NMR (250 MHz, CDCl3) δ 166.4, 129.8, 121.8, 

95.2, 63.2, 38.5, 14.3; GC/MS (EI) calculated for C10H15NO4 [M + H]+ 214.1, found 213.8. 
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4.4.3 Ethyl 2-amino-2,2-bis(propyl)acetate 

 Ethyl 2,2-bis(allyl)-2-nitroacetate (2.3 g, 10.8 mmol) and glacial acetic acid (2 mL) were 

added to a hydrogenation reaction vessel containing anhydrous ethanol (15 mL).  50% (w/w) 

slurry of Raney Nickel in water (1.0 g) was added carefully.  The reaction was carried out under 

hydrogen (50 psi) for approximately 24 hours.  Drops in hydrogen pressure were monitored as 

hydrogen was consumed and refilled as needed.  After filtering the reaction mixture through a 

fritted glass funnel containing Celite, the filtrate was concentrated on a rotary evaporator and 

then redissolved in diethyl ether (40 mL).  Impurities were extracted by successive washings 

with saturated sodium carbonate solution (30 mL) and brine (30 mL) in a separatory funnel.  

Sodium sulfate was used to dry the organic layer and later removed by paper filtration.  The 

filtrate was then concentrated to a yellow oil.  Yield, 1.6 g (79%); 1H-NMR (300 MHz, CDCl3) δ 

4.16 (q, J=7.1 Hz, 2H), 1.76 – 1.62 (m, 4H), 1.56 – 1.31 (m, 4H), 1.27 (t, J=7.1 Hz, 3H), 0.91 (t, 

J=7.2 Hz, 6H); 13C-NMR (250 MHz, CDCl3) δ 177.8, 61.4, 61.2, 42.8, 17.6, 14.7, 14.7; GC/MS 

(EI) calculated for C10H21NO2 [M + H]+ 188.2, found 188.0. 

4.4.4 2,2-Dipropylglycine 

 Ethyl 2-amino-2,2-bis(propyl)acetate (1.6 g, 8.55 mmol) was added to a round-bottom 

flask containing 3M potassium hydroxide (40 mL) and ethanol (20 mL).  The reaction was 

refluxed under argon for approximately 24 hours.  After reducing the volume of the reaction 

mixture on a rotary evaporator to 20 mL, the pH was lowered (or acidified) to 6.5 using 12N 

HCl.  The crude product was then concentrated again and redissolved in water (10 mL).  The 

desired product was isolated using Dowex 50x8-400 ion-exchange resin.  This isolation process 

began by first washing and activating the resin (500 g) with water (2 L), 2N hydrochloric acid (2 

L), water (4 L), 2N ammonium hydroxide (2 L), water (4 L) and methanol (2 L).  Then the crude 

mixture was loaded on the resin and impurities were washed out of the resin with water (4 L) 
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leaving behind the bound amino acid product.  Once all the impurities were removed, the 

remaining amino acid was eluted from the resin column using 2N ammonium hydroxide (2 L).  

The ammonium hydroxide filtrates were then heated to remove ammonia gas and concentrated to 

a white powder.  Yield, 3.0 g (94%). 1H-NMR (250 MHz, DMSO-d6) δ 7.27 (bs, 3H) 1.57 – 1.46 

(m, 4H), 1.42 – 1.09 (m, 4H), 0.81 (t, J=7.2 Hz, 6H). Elemental Analysis calculated for 

C8H17NO2: C, 60.35; H, 10.76; N, 8.80.  Found: C, 59.96; H, 10.53; N, 8.58. 

4.4.5 Nα-(9-Fluorenylmethoxycarbonyl)-2,2-dipropylglycine 

 2,2-Dipropylglycine (1.2 g, 7.8 mmol) and chlorotrimethylsilane (1.7 g, 15.9 mmol) were 

added to a round-bottom flask containing anhydrous dichloromethane (15 mL).  This mixture 

was refluxed under argon at 50 °C for approximately 8 hours while stirring.  Then N,N-

diisopropylethylamine (2.1 g, 15.9 mmol) and 9-fluorenylmethoxycarbonyl chloride were added 

slowly to the mixture.  The reaction was continued at room temperature for approximately 20 

hours.  After the reaction mixture was concentrated on a rotary evaporator, redissolved in ethyl 

acetate (45 mL) and diluted with water (22.5 mL), the pH was lowered (or acidified) to 2.0 using 

2N HCl.  The organic layer was isolated using a separatory funnel and dried with magnesium 

sulfate.  The drying agent was removed by paper filtration and the filtrate was then concentrated 

to a yellow solid.  Impurities were further removed by triturating in hexanes overnight.  Yield, 

undetermined; 1H-NMR (250 MHz, DMSO-d6) δ 7.88 (d, J=7.3 Hz, 2H), 7.69 (d, J=7.3 Hz, 2H), 

7.40 (t, J=7.3 Hz, 2H), 7.31 (t, J=7.4 Hz, 2H), 6.91 (s, 1H), 4.28 (d, J=5.8 Hz, 2H), 4.19 (t, J=6.3 

Hz, 1H), 1.78 – 1.70 (m, 4H), 1.25 (t, J=6.3 Hz, 6H). 
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CHAPTER 5 

DESIGN OF SHORT PEPTIDE INHIBITORS 

5.1 Introduction 

Peptide mimics of the same length as its target can be used to inhibit the formation of 

fibrils, which has been associated with amyloid diseases.1  However, the synthetic advantages of 

using short peptides are several fold.  Peptides with less than ~20 residues typically results in 

higher yields due to the fewer couplings necessary.  In addition, aggregation of the inhibitor 

during short peptide synthesis is not as susceptible as peptide chain grows.  Also, it is more 

probable for short peptides with a molecular weight below 400 to 700 g/mol to pass through the 

highly selective blood brain barrier.2-4  The lower molecular weight requirement translates into a 

limit of peptide sequences between 4 to 6 amino acids residues.  Inhibitors of higher molecular 

weight can overcome this limitation if it is conformationally flexible.2  But most often, the key to 

an inhibitor’s ability to prevent or reduce peptide aggregation is the incorporation of 

conformationally restricted residues,5 which will be discussed in this chapter.  Another critical 

factor in drug delivery is permeability.  The rule of thumb is that with each additional hydrogen 

bonding element (i.e. functional groups such as hydroxyls, carboxylic acids, amines, etc.) in a 

peptide sequence, the blood brain barrier permeability drops by an order of magnitude.2-4  

Therefore, it is unavoidable to have lower permeability with longer peptide sequences.  It is best 

to keep it short.  The next variable to consider is the selection of the sequence. 

When searching for the shortest peptide sequence with the most affinity to amyloid beta 

peptide, Nordstedt and co-workers identified the peptide sequence H-Lys-Leu-Val-Phe-Phe-NH2 

(see Figure 5.1) as the highest binding fragment based on the native sequence by comparing 

results from a combination of radioligand binding and surface plasmon resonance (SPR) 

experiments.6  Since this identification, several modifications of this peptide motif have been 
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suggested and evaluated in order to design inhibitors of peptide aggregation that leads to the 

formation of amyloid fibrils linked to the neurologically degenerative disorder, Alzheimer’s 

disease. 

 

Figure 5.1.  Peptide sequence H-Lys-Leu-Val-Phe-Phe-NH2. 
 
 

The incorporation of proline, a well known beta-sheet breaker,7 into this hydrophobic 

sequence has been used in conjunction with the charged amino acid residues, arginine and 

aspartate, by Soto et al. (see Figure 5.2).8  Due to proline’s sidechain that uniquely reconnects to 

the residue’s amine terminus, it is both conformationally restricted, which decreases the 

propensity to form beta-sheets, and hydrogen bonding limited.9  Its ability to inhibit peptide 

aggregation is so highly regarded that even removable pseudoproline derivatives have been 

recently used in the synthesis of aggregation prone peptide sequences, such as human islet 

amyloid polypeptide (IAPP).10 

The addition of charged residues can improve the inhibitor in three ways.  First, it will 

cause the hydrophobic sequence become more soluble.11  Second, it can serve as a disruptor, 

especially in the case of a connecting a tetramer or hexamer of lysines or glutamates to the 

inhibitor’s C-terminus, that can potentially impose electrostatic interactions with other charged 

residues in the target peptide.12  Finally, it has the ability to prevent inhibitor self-aggregation.13  
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This is a common major problem with short hydrophobic peptide fragments that share the same 

propensity to form fibrils as the full-length target peptide sequence. 

 

Figure 5.2.  Peptide sequence H-Arg-Asp-Leu-Pro-Phe-Phe-Pr-Val-Pro-Ile-Asp-NH2 (iAβ1). 
 
 

Peptide solubility can also be increased, surprisingly, by substituting in a few N-

methylated residues in spite of increases in hydrophobicity and decreases in hydrogen bonding it 

causes.14  The decrease in hydrogen bonding created by N-methyl groups can provide a 

“blocking” face to avoid interaction with another monomer of peptide that could potentially lead 

to amyloidic aggregation.15  The effectiveness of incorporating N-methylated amino acids in 

order to reduce aggregation and toxicity depends heavily on position within the sequence and 

works best when placed as every other residue.16  The capacity for self-recognition of the 

“binding” face is retained by having all the N-methyl groups on the opposite face, or side, of the 

inhibitor.  Interestingly, the reduction in aggregation when using this method is linked more to a 

decline in hydrogen bonding capacity than to the conformational restrictions it places on the 

peptide backbone as demonstrated by Gordon and Meredith (see Figure 5.3).17  This was 

confirmed by replacing the N-methyl groups with ester groups in the sequence without a decline 

in inhibition.  N-methylated inhibitors have also been used for other amyloid disease-linked 
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peptides, such as IAPP,18 and shown to be protease resistant when the natural peptide version 

was not.14 

 

Figure 5.3.  Peptide sequence H-Lys-(Me)Leu-Val-(Me)Phe-Phe-(Me)Ala-Glu-NH2. 
 
 

Moving closer to an approach similar to our inhibitor designs, the incorporation of 

disubstituted amino acids in alternating positions of the short peptide sequence has been very 

effective in reducing the propensity for fibril formation.  Gilead and Gazit used the disubstituted 

analog of alanine, α-aminoisobutyric acid or Aib (see Figure 5.4), in the synthesis of three 

inhibitors of IAPP, which is strikingly similar in sequence to amyloid beta peptide.19  Aib is a 

strong beta-sheet breaker and possesses a more restricted allowable conformation than the amino 

acid proline.  Evaluation of the φ, ψ torsion angles for this disubstituted residue explains why it 

favors alpha-helical formation.  This beta-sheet breaker in alternating positions works in similar 

fashion (i.e. the two-faced approach) as demonstrated with inhibitors containing N-methylated 

residues.  Evidence obtained from transmission electron microscopy (TEM), Congo red 

birefringence and Fourier transformed infrared (FTIR) assays shows the effectiveness in using 

disubstituted amino acids by an absence of amyloidic fibrils. 
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Figure 5.4.  Disubstituted amino acid Aib (left) and illustration of the φ, ψ torsion angles (right). 
 

With the incorporation of three disubstituted amino acids, dipropylglycine (Dpg), 

diisobutylglycine (Dibg) and dibenzylglycine (Dbzg), the Hammer group has developed a potent 

inhibitor of the harmful fibrillization associated with amyloid beta peptide by promoting the 

formation of non-fibrillic amorphous aggregates.20, 21  This inhibitor, called AMY-1 (see Figure 

5.5), has a “binding” face with the natural amino acid residues and a “blocking” face with the 

sterically bulky disubstituted amino acid residues.22  The “two-faced” peptide works so well that 

inhibition of peptide aggregation can be achieved even with sub-stoichiometric amounts of 

inhibitor (i.e. 50 µM amyloid beta : 5µM AMY-1).23  In my efforts to build on this success and 

address three major issues, inhibitor blood brain barrier permeability, cellular toxicity and 

protease resistance, I have worked on the design of a few new short peptide sequences using 

standard Fmoc solid phase peptide synthesis techniques.24 

 

Figure 5.5.  Peptide sequence H-Lys-Dibg-Val-Dbzg-Phe-Dpg-(Lys)6-NH2 (AMY-1). 
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5.2 Results and Discussion 

To address the issue of blood brain barrier permeability and cellular toxicity, my first 

peptide sequence (H-mPEG-Val-Phe-Phe-Ala-mPEG-NH2, see Figure 5.6) was shorter in length 

and used polyethylene glycol chains (“miniPEG” or mPEG) for solubility, instead of a hexamer 

of lysines as used in the inhibitor, AMY-1.  Although it is not a requirement, peptides of shorter 

lengths have a higher probability of passing through the highly selective blood brain barrier.2-4  

Passage through this barrier might also be hampered by an abundance of charged residues, such 

as lysine.  Large cationic polylysine peptides (greater than 900 g/mol), which can be used to 

increase the uptake of neutral molecules, are believed to specifically bind to the surface of brain 

microvessels that are saturated with anionic sialic acid residues.25  To maintain the solubility the 

chain of lysines provides to the hydrophobic sequence (Val-Phe-Phe-Ala), PEG chains with 

amine and carboxylic termini, which are sold under the trademark name of “mini-PEG”, were 

utilized.  Wantanabe et al. found a series of these PEG chains could serve as a better disruptor of 

fibril formation and preventer of cytotoxicity than lysine repeats because of the conformational 

flexibility they provide.26  The added flexibility could also allow for higher peptide molecular 

weight as discussed at the opening of this chapter.  This peptide was synthesized without the 

inclusion of disubstituted amino acids for two reasons.  First, it was important to evaluate its 

capacity to bind to amyloid beta peptide with a shorter self-recognition motif.  A significant 

reduction in binding was reported for the tetrapeptide, H-Leu-Val-Phe-Phe-NH2, by Nordstedt 

and co-workers in comparison to the pentapeptide, H-Lys-Leu-Val-Phe-Phe-NH2, as determined 

by their surface plasmon resonance (SPR) experiments.6  Interestingly, the peptide sequence, H-

Val-Phe-Phe-Ala-NH2, was not evaluated in their study, hence it would be prudent to evaluate 

the effect of a decrease in length without adding the additional variable of disubstituted amino 

acids.  Coupling each residue by hand, the synthetic yields (18%) and peptide purity were both 
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quite good (see Figure 5.7 and 5.8).  A sample of this peptide, along with a similar peptide 

sequence (H-mPEG-Leu-Val-Phe-Phe-mPEG-NH2, see Figure 5.9) that was synthesized by a 

former undergraduate student (Sarah Curtis) working with me, was sent off to one of our 

collaborators at Winthrop University for aggregation studies. 

 

Figure 5.6.  Peptide sequence H-mPEG-Val-Phe-Phe-Ala-mPEG-NH2. 
 
 

 
 
Figure 5.7.  MS of H-mPEG-Val-Phe-Phe-Ala-mPEG-NH2 showing the [M + H]+ (772.4246) 

and [M + 2H]+ (386.7157). 
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Figure 5.8.  HPLC (Preparative) of H-mPEG-Val-Phe-Phe-Ala-mPEG-NH2. 
 
 

 
 
Figure 5.9.  Peptide sequence H-mPEG-Leu-Val-Phe-Phe-mPEG-NH2 (synthesized by former 

undergraduate student, Sarah Curtis). 
 
 

D-Amino acids have a proven track record to be protease resistant and have been used in 

the design of inhibitors of amyloid diseases.27-30  The peptide sequence of amyloid beta peptide 

contains peptide bonds that are subject to cleavage by proteases.  Examples of this type of 

proteolysis are cleavage on the carboxyl side of aromatic amino acids with chymotrypsin and 

after the positively charged amino acids, lysine and arginine, with trypsin.  It has been proposed 

that in its effort to become more protease resistant, that the peptide alters its conformation which 

inevitably leads to the aggregation process.31  There is a temptation to go au un-naturel with the 



 49

use of an inhibitor with D-amino acids.  This added protease resistance does come at a price.  It 

has been reported that D-amino acids sequences have a significant decrease in brain influx via the 

blood brain barrier and might not be delivered to its target in the necessary concentration levels.  

Poduslo and co-workers reported the average permeability based on the “permeability 

coefficient-surface area product” (PS) of the L-enantiomer of amyloid beta (1-40) across the 

blood brain barrier was almost 25 times higher than the D-version when examining various 

regions of the brain.32  However, this set back in permeability can be reversed by coupling of a 

putrescine29 or cholyl30 functional group on the N-terminus.  The PS of a D-version of the peptide 

inhibitor iAβ11 (H-Arg-Asp-Leu-Pro-Phe-Phe-Pro-Val-Pro-Ile-Asp-NH2) was increased by four 

fold with the addition of putrescine.  Interestingly, the bioactivity of the inhibitor’s ability to 

reduce fibril formation and disassemble preformed fibrils in vitro was significantly enhanced 

when used in excess (0.5 µg/µL amyloid beta : 1 µg/µL inhibitor and 0.5 mg/ml amyloid beta : 2 

µg/µL inhibitor, respectively).29  Peptides with D-amino acids and cholyl groups, on the other 

hand, can be effect inhibitor in submolar equivalents while having an order of magnitude 

higher “brain uptake index” (BUI), which is another type of permeability measurement, than 

sucrose and cholic acid.  This union of an organic group and the D-version of the peptide 

sequence (H-Leu-Val-Phe-Phe-Ala-NH2) was used by Findeis et al. (see Figure 5.10) in 1.6 µM 

concentration for an inhibition assay with 50 µM of amyloid beta (1-40).30 

 

Figure 5.10.  Peptide sequence Cholyl-Leu-Val-Phe-Phe-Ala-NH2. 



 50

In order to see the affects of D-amino acids for designs closer to the ones we have 

experimented with, two more peptides were synthesized.  The first peptide was a D-version 

similar to the previous one discussed earlier in this chapter.  An additional modification to this 

sequence is the replacement of two amino acids, the second phenylalanine from C-terminus and 

alanine, with the disubstituted amino acid, Aib (see Figure 5.11).  Aib is a conservative 

disubstituted amino acid incorporation in terms of size, or bulk.  This could help us understand 

the necessity of disubstituting with larger and/or aromatic sidechains as done for the inhibitor, 

AMY-1.  Based on the crude MS results (see Figure 5.12), this peptide was successfully 

synthesized (calculated [M + H]+ 724.4240, found 724.4253).  However, there was difficulty in 

the attempts to purify the crude product by HPLC due to the solubility of the peptide.  Based on 

the work of a former group member, we believe the solubility problems arise from the 

incorporation of Aib residues in the sequence.  We may be able to overcome this problem by 

adding longer PEG chains to this sequence. 

A second sequence attempted was a D-analog of AMY-1 with all the disubstituted amino 

acids replaced with Aib (see Figure 5.13).  This would give us another indication of the possible 

improvements that might occur by going to the shorter peptide sequence with PEG chains instead 

of lysines.  The synthesis of this peptide appeared to proceed without any complications.  But 

once again, the same solubility issue using Aib residues occurs.  Based on the crude MS results, 

which shows several mass peaks (see Figure 5.14), this peptide was not successfully synthesized 

(calculated [M + H]+ 1423.0446, found 1415.9964).  Efforts were made to determine the 

problems that may have occurred during the synthesis by match up calculated mass values to the 

actual mass values (see Table 5.1).  The differences between the highest actual masses indicate 

successful couplings were still occurring toward the end of the peptide sequence (i.e. 1228.8263 

- 1129.7757 = 99.0506, addition of Val; 1313.8816 - 1228.8263 = 85.0553, addition of Aib).  
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However, these mass values are off by ~ 20 amu.  This would suggest that something occurred in 

the middle of the sequence, such as a residue deletion or coupling of wrong amino acid by 

mistake. 

 

Figure 5.11.  Peptide sequence H-mPEG-(DVal)-Aib-(DPhe)-Aib-mPEG-NH2. 
 
 

 
 
Figure 5.12.  MS of crude mixture for H-mPEG-(DVal)-Aib-(DPhe)-Aib-mPEG-NH2 showing 

the [M + H]+ (724.4253) and [M + 2H]+ (362.7165).  Internal standards (or 
reference compounds) are indicated by the peaks at 121.0508 and 922.0116. 
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Figure 5.13.  Peptide sequence H-(DLys)-Aib-(DVal)-Aib-(DPhe)-Aib-(DLys)6-NH2. 
 
 

 

Figure 5.14.  MS of crude mixture for H-(DLys)-Aib-(DVal)-Aib-(DPhe)-Aib-(DLys)6-NH2 
indicates that the peptide synthesis was not successful due to incomplete couplings 
(calculated [M + H]+ 1423.0446, found 1415.9964).  Internal standards (or 
reference compounds) are located at 121.0510 and 922.0105. 

 



 53

Table 5.1.  Comparison of the calculated mass with the nearest found mass in the MS (Figure 
5.14) for all the possible peptide fragments that could result during the synthesis of 
the peptide sequence H-(DLys)-Aib-(DVal)-Aib-(DPhe)-Aib-(DLys)6-NH2.  The mass 
associated with the final amino acid coupling for each fragment is also indicated.  

 

Peptide Sequence Calculated 
Mass (amu) 

Nearest Found 
Mass (amu) 

Last Coupled 
Amino Acid 

H-(DLys)-NH2 147.1361 153.1429 Addition of DLys 
(129.10 amu) 

H-(DLys)2-NH2 276.2383 283.1987 Addition of DLys 
(129.10 amu) 

H-(DLys)3-NH2 405.3405 410.2854 Addition of DLys 
(129.10 amu) 

H-(DLys)4-NH2 534.4428 565.3948 Addition of DLys 
(129.10 amu) 

H-(DLys)5-NH2 663.5450 708.5068 Addition of DLys 
(129.10 amu) 

H-(DLys)6-NH2 792.6473 - Addition of DLys 
(129.10 amu) 

H-Aib-(DLys)6-NH2 877.7000 - Addition of Aib 
(85.06 amu) 

H-(DPhe)-Aib-(DLys)6-NH2 1024.7684 - Addition of DPhe 
(147.07 amu) 

H-Aib-(DPhe)-Aib-(DLys)6-
NH2 

1109.8212 1129.7757 Addition of Aib 
(85.06 amu) 

H-(DVal)-Aib-(DPhe)-Aib-
(DLys)6-NH2 

1208.8896 1228.8263 Addition of DVal 
(99.07 amu) 

H-Aib-(DVal)-Aib-(DPhe)-
Aib-(DLys)6-NH2 

1293.9424 1313.8816 Addition of Aib 
(85.06 amu) 

H-(DLys)-Aib-(DVal)-Aib-
(DPhe)-Aib-(DLys)6-NH2 

1423.0446 1415.9964 Addition of DLys 
(129.10 amu) 
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5.3 Conclusions 

 Three new peptide inhibitors have been synthesized, but only one has been successfully 

purified.  It is speculated that the Aib residues are the cause of the purification problems by their 

influence on the solubility of the peptide.  Precipitation of peptide in cold ether (see experimental 

for details) did not occur with the peptides containing Aib as it did with the peptide containing 

all natural L-amino acids.  But it would be exciting to see if these new modifications can lead to 

a better understanding of the design elements needed for highly effective inhibitors of peptide 

aggregation. 

5.4 Experimental 

5.4.1 H-mPEG-Val-Phe-Phe-Ala-mPEG-NH2 (0.2 mmol Scale Synthesis) 

Each amino acids or residue (Fmoc-mini-PEG, Fmoc-Val-OH, Fmoc-Phe-OH and Fmoc-

Ala-OH) was weighed out in the desired amounts (4.4 equivalents) and mixed with the coupling 

reagents, TBTU (0.26 g, 4.0 equivalents) and HOBt (0.12 g, 4.4 equivalents).  Then H-Rink-

Amide ChemMatrix resin (0.39 g, 0.52 mmol/g) was weighed out into a 10 mL polypropylene 

disposable syringe containing a polypropylene fritted disc (20 – 40 μm pore size, 0.125 in tk.) 

flush to the bottom of the syringe barrel (i.e. the injection outlet).  The resin was allowed to swell 

for 30 minutes in dichloromethane (~ 3 times the resin volume) with periodic stirring with the 

polyethylene plunger from a 1 mL disposable syringe.  The solvent was removed by vacuum 

aspiration and the resin was washed several times with dimethylformamide.  While the resin is 

still wet, the amino acid / coupling reagent mixture are dissolved to 0.2 M concentration in 

dimethylformamide (4.4 mL), combined with N,N-diisopropylethylamine (0.23 g, 8.8 

equivalents) and immediately transferred to the syringe containing the resin.  The coupling 

process was allowed at least one hour with a combination of gentle shaking and stirring of the 

reaction mixture.  The completeness of the amine coupling was accessed by visual inspection  



 55

 

293 nm 
UV 

 

410 nm 
UV 

 

580 nm 
UV 

 

 

 

 

Resin with Fmoc 
Protected Amines 
Solvent - DCM 

 Resin with Free Amines 
Solvent - DCM 

 

Figure 5.15.  Monitoring the completion of coupling (left picture with yellow resin beads) and 
deprotection (right picture with blue resin beads) with the aid of bromophenol 
blue.33 

 

(bromophenol blue test, see Figure 5.15).  Between couplings, the “Fmoc” (or 9-

fluorenylmethyloxycarbonyl) protecting groups were removed from the N terminus by a 

deprotection cocktail (1,8-diazabicyclo[5.4.0]undec-7-ene / piperidene / dimethylformamide 

2:5:93).  The bromophenol blue test was also used after deprotection to make certain all the 

terminal amines had been exposed.  This coupling / deprotection process (with generous 

dimethylformamide washings in between the steps) was continued until the peptide sequence 
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Figure 5.16.  Fmoc solid phase peptide synthesis.24 
 
 
was complete (see Figure 5.16).  After the final “Fmoc” deprotection, the peptide was released 

from the resin by reacting it for 3 hours in a cleavage mixture (trifluoroacetic acid / 

triisopropylsilane / phenol / water 88:2:5:5).  The peptide solution was removed from the syringe 

by vacuum aspiration and the resin is washed with neat trifluoroacetic acid twice.  The filtrate 

was concentrated by evaporation under a stream of nitrogen to a volume of 1 mL.  Then the 

peptide was precipitated in cold ether (20 mL) and immediately centrifuged for 10 minutes at 

4000 rpm.  After carefully decanting out the ether, a gummy peptide residual remained.  It 

proven that the peptide got purer by repeating the process of dissolving in trifluoroacetic acid, 

precipitating in cold ether and centrifuging.  After checking its purity by MS, the desired peptide 

was isolated by HPLC (solvent gradient of 10:90 to 70:30 acetonitrile/water at a percent change 
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of 1% per minute).  The collected fractions were lyophilized until completely dry.  Yield, 27.9 

mg (18%); MS (ESI) calculated for C38H57N7O10 [M + H]+ 772.4240, found 772.4246. 

5.4.2 H-mPEG-(DVal)-Aib-(DPhe)-Aib-mPEG-NH2 (0.2 mmol Scale Synthesis) 

 This peptide was prepared in similar fashion as previously described in section 5.4.1 

using D-amino acids (Fmoc-DVal-OH and Fmoc-DPhe-OH), a disubstituted amino acid (Fmoc-

Aib-OH) and PEG chains (Fmoc-mini-PEG).  Each residue was coupled once and appeared to be 

successfully attached (based on bromophenol blue test).  There was difficulty getting the crude 

peptide to the precipitate out in cold ether and isolating the desired product on the HPLC.  

Therefore, the peptide was concentrated and lyophilized twice in acetonitrile and water to 

produce white solid.  Crude yield, 0.35 g (theoretical yield, 0.15 g); crude MS calculated for 

C34H57N7O10 [M + H]+ 724.4240, found 724.4253. 

5.4.3 H-(DLys)-Aib-(DVal)-Aib-(DPhe)-Aib-(DLys)6-NH2 (0.2 mmol Scale Synthesis) 

 This peptide was prepared in similar fashion as previously described in section 5.4.1 

using D-amino acids (Fmoc-DLys(Boc)-OH, Fmoc-DVal-OH and Fmoc-DPhe-OH) and a 

disubstituted amino acid (Fmoc-Aib-OH).  Each residue was coupled once and appeared to be 

successfully attached (based on bromophenol blue test).  There was difficulty getting the crude 

peptide to the precipitate out in cold ether.  Therefore, the peptide was concentrated and 

lyophilized twice in acetonitrile and water to produce solid particles in an oily film.  Crude yield, 

0.33 g (theoretical yield, 0.28 g); crude MS does not show signs of the calculated 

C68H133N20O12
7+ [M + H]+ 1423.0446, found 1415.9964. 
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CHAPTER 6 

AFFINITY EXPERIMENTS WITH SURFACE PLASMON RESONANCE (SPR) 
OF DESIGNED INHIBITORS OF PEPTIDE AGGREGATION 

6.1 Introduction 

 Widely used qualitative techniques such as transmission electron microscopy, atomic 

force microscopy, and circular dichroism have been used to characterize the nature of the 

inhibitors for amyloid beta aggregation.  However, the results from these methods may not 

represent the bulk characteristics and the nature of the inhibitor binding.  Surface plasmon 

resonance (SPR) is a promising technique because mechanisms and kinetics of inhibitors binding 

to substrate can be evaluated.  Furthermore, this technique requires very low peptide amounts (5-

10 µg) and real time molecular interactions can be obtained without labeling. This detection 

method is not particularly wide-spread in part because of the variables involved in sample 

preparation and detection.1, 2 

Surface plasmon resonance is a very sensitive optical technique where a light of 

frequency below the plasma frequency is reflected off the surface of a metal (see Figure 6.1).  A 

light source (λ = 800 nm) can be directed towards a thin metal surface (50 nm thick) that causes 

total internal reflection.3  Because of the sensitivity to the material’s surface, any change in the 

intensity of the refracted light can be measured.  When light strikes the surface of a metal, a 

portion of its energy is transmitted and surface plasmons are propagated to the sample.  The 

transmitted energy can in turn excite the valence electrons of the metal.  These mobile electrons, 

which are known collectively as surface plasmons, can resonate at the frequency of the incident 

light and form an electron cloud or sea of electrons on the metal surface opposing the light 

source.  If the thin surface is placed on top of the fluidic media whose refractive properties can 

be manipulated, the intensity can be correlated to the nature of the media.1, 4 
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Flow Cell

Sensor Chip

 

Figure 6.1.  Illustration of the setup used for surface plasmon resonance (adapted from figure in 
Biacore Sensor Surface Handbook).5 

 
 

Instruments using SPR for measuring protein interactions take advantage of these 

plasmons and the sensitivity of the detector to measure very small changes in the electron density 

on the surface.  Through a variety of surface chemistry techniques, such as amine bond coupling 

(see Figure 6.2), the refractive environment can be modified by the attachment of protein or 

peptide of interest within the plasmonic domain (roughly within 300 nm of the metal’s surface).  

The change in intensity recorded by the detector in “response units” (RU) is related to the 

amount of protein successfully bound to the surface.  This protein, which is often referred to as 

the “ligand” in the literature, is permanently stuck to the surface under normal operating 

conditions and its affinity to other molecules of interest, or “analyte”, and can be detected 

multiple times by simply flowing them across the modified surface at a set flow rate and 

concentration.  Since the changes in response units are measured in real-time, the instrument can 

obtain very useful kinetic information describing the protein interaction.1, 2, 6 
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Figure 6.2.  Scheme for peptide immobilization to a gold surface via amine coupling. 
 
 

We attempted to model our affinity experiments on the work done by Cairo et al. using a 

fragment of the peptide sequence, amyloid beta [10-35] amide.7  For direct comparison, our 

initial studies began with using one of their inhibitors, which we call “Murphy”, as a reference.  

The “Murphy” inhibitor has similarities in sequence to our reported successful inhibitor, 

“AMY1”.8  It was anticipated that the use of SPR would help us screen and in turn design 

inhibitors by determining the peptide features that enhance a strong interaction with the target 

region (i.e. hydrophobic core) of amyloid beta. 

6.2 Results and Discussion 

 Freshly prepared monomeric amyloid beta [10-35] amide peptide (H-Tyr-Glu-Val-His-

His-Gln-Lys-Leu-Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-

Met-NH2) was coupled to the carboxymethyl dextran matrix of a gold surface, Biacore CM5 

sensor chip.  Based on the Biacore X Surface Plasmon Resonance (SPR) instrument response 

units (20,886 RU, see Figure 6.3), it was estimated that approximately 25 ng of peptide has been 

immobilized within a 1.2 mm2 surface area.  This measurement was almost 8 times the amount 

reported by Cairo et al. on a CM5 sensor chip and over 26 times for the B1 sensor chip which 

has 10-fold lower amount of carboxylic groups than the CM5 version.7  This gross overshot in 

peptide density was attributed to an omission in the reference paper and the inexperience we had 

using the instrument.  Unfortunately, it was also noted that the flow was not diverted from going 
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over the reference (or control) surface during the peptide coupling process.  This meant that 

“background” responses, such as nonspecific binding, injection noise and instrument drift, could 

not be subtracted to give a more accurate affinity response.2  Despite these challenges, the 

decision was made to press on to see what information could be gleaned under these 

circumstances. 
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Figure 6.3.  Biacore SPR sensorgram of the immobilization of Amyloid Beta peptide to the 
surface of CM5 sensor chip via amine coupling. 

 
 

Interactions between the “Murphy” inhibitor (H-Lys-Leu-Val-Phe-Phe-(Lys)6-NH2) at 

various concentration levels (see Section 6.4.4) and the permanently bound peptide were 

observed through a series of injections over the peptide saturated surface (see Figure 6.4 and 

6.5).  The responses seemed reasonable when compared to those reported in the reference paper.  

However, the Biacore software statistical analysis of the calculated dissociation constant, KD 

(4.62 µM), which is an order of magnitude lower than reported by Cairo et al., shows a very poor 



 65

3000

R
es

po
ns

e 
(R

U
)

2000

1000

500

0

-500
0 100 200 300 400 500 600 700 800

Time (s)

50 µM
70 µM
100 µM
200 µM

300 µM
400 µM
700 µM
1000 µM

2000 µM
1500

2500

3500

 

Figure 6.4.  1st series of injection with “Murphy” inhibitor at various concentration levels. 
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Figure 6.5.  2nd series of injection with “Murphy” inhibitor at various concentration levels. 
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goodness-of-fit (χ2 = 36,000) to the data (i.e. all the “Murphy” injections).  This means that we 

cannot use this information as a reliable assessment of the binding affinity for the “Murphy” 

peptide.  Further study on this matter has led us to believe that the over-saturated surface, which 

cause rebinding, mass transport, aggregation and steric hindrance, may be the root of this 

problem.2, 6, 9 

In our efforts to achieve better results, the idea of using competition between the amyloid 

beta [10-35] amide and ethanolamine as a means of reducing the amount of peptide coupled to 

the sensor chip surface emerged.  The rationale behind this approach was to not only lower the 

bound peptide, but also make sure that it was uniformly spread throughout the available surface 

area.  A series of injections were tested with mixtures of amyloid beta [10-35] amide and 

ethanolamine at certain mole ratios.  As the concentration of ethanolamine increased, the 

response units decreases indicating that the competition approach was achieving the desired 

results.  Our final injection of amyloid beta [10-35] amide and ethanolamine at a 1:40 mole ratio 

lead to 3,276 RU or 4 ng of peptide (see Figure 6.6). 

6.3 Conclusions 

It was hoped that SPR could be used as a screening tool in the amyloid beta aggregation 

inhibitor design process.  Experts agree that the instrument’s ease of use is very deceiving.1, 6, 9  

We gained some expertise on how to avoid or reduce potential pitfalls in using this technique.  

Should this approach be retried in the future, there is now some knowledge base to build from.  It 

is also recommended that future studies include trials with the B1 sensor chip.  With a lower 

carboxylic groups surface density (10-fold lower than the CM5 sensor chip), it should help 

alleviate the problems associated with over-saturating the surface with amyloid beta peptide. 
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Figure 6.6.  Biacore SPR sensorgram of the competition between the amyloid beta [10-35] 
amide and ethanolamine at a 1:40 mole ratio. 

 

6.4 Experimental 

6.4.1 Preparation of Amyloid Beta [10-35] Amide10 

 Amyloid beta [10-35] amide (peptide sequence: H-Tyr-Glu-Val-His-His-Gln-Lys-Leu-

Val-Phe-Phe-Ala-Glu-Asp-Val-Gly-Ser-Asn-Lys-Gly-Ala-Ile-Ile-Gly-Leu-Met-NH2, MW: 

2902.4) was removed from -20 °C storage and allowed to warm to room temperature in a 

dessicator for 30 minutes.  The peptide (1.0 g, 0.34 mmol) was weighed out in test tubes, 

dissolved in trifluoroacetic acid (1 mL), sonicated for 15 minutes.  The acid was removed by 

evaporation under a stream of nitrogen to a thin peptide film.  This film was redissolved in 

hexafluoroisopropanol (1 mL) and incubated at 38 °C for an hour.  After evaporating the peptide 

back down to a thin film, it was redissolved in hexafluoroisopropanol (1 mL).  This evaporation 

followed by redissolving in hexafluoroisopropanol (1 mL) was done one more time.  At this 
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point, the peptide solution was split equally (0.5 mL) into two test tubes and evaporated again to 

a thin film.  The peptide was then lyophilized for 2 hours and mixed with 10 mM sodium acetate 

(0.5 mL, pH 5.0).  The peptide solutions were centrifuged overnight (~50,000 G) to pellet 

peptide aggregates (dimers, trimers, etc.) and leave monomer in solution.  The supernate 

containing monomeric peptide was removed and stored in -80 °C freezer until needed.  Amino 

acid analysis (AAA) of peptide concentration: 0.052 ± 0.003 mM (or 0.15 ± 0.01 mg/mL). 

6.4.2 Amine Coupling of Peptide to Carboxymethyl Dextran Matrix on Gold Surface7 

 The carboxymethyl dextran matrix on the gold surface of a Biacore CM5 sensor chip was 

“activated” by converting the carboxylic groups to esters by injecting a 1:1 (v/v) mixture of N-

ethyl-N’-[(dimethylamino)propyl]-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) (70 

μL, 200 mM EDC, 50 mM NHS) into a Biacore X Surface Plasmon Resonance (SPR) 

instrument, which was set to a flow rate of 5 μL/min.  (Note: EDC and NHS should remain 

separate until ready to use.)  The surface was then washed with a recommended running buffer 

solution, HBS-EP (0.01 M HEPES pH 7.4, 0.15 M NaCl, 3 mM EDTA, 0.005% v/v Surfactant 

P20).  The peptide mixture (100 μL, 0.052 mM or 0.15 mg/mL) prepared in section 6.4.1 was 

injected over the surface and washed with HBS-EP.  (It should be noted that the actual peptide 

mixture volume was not stated in the reference paper.  Therefore, we choose 100 μL under the 

advisement of others with prior experience.)  Any remaining esters on the surface were 

“deactivated” by amine coupling with 1M ethanolamine (70 μL, pH 8.0).  The surface was 

washed a final time with HBS-EP and the amount of peptide bounded to the surface was 

calculated by converting the response units (RU) to nanograms.  (1000 RU is approximately 1 ng 

protein/mm2; surface area is 1.2 mm2)1, 2  Results: 20,886 RU or ~25 ng. 

 It is very important to note that each sensor chip has two individual surface areas that can 

be used for experiments.  The SPR instrument allows the user to control the flow over one 
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surface area at a time or flow over both.  One of the surface areas should be used as a reference 

surface during binding experiments.  Therefore, peptide should not be coupled in this area.  It 

should be “activated” and “deactived” to provide a surface coupled with ethanolamine.  The 

response units for the reference surface will be subtracted from the response units for the peptide 

bound surface during the binding experiments which will be described in section 6.4.4. (This 

subtraction is similar to removing background in IR, UV, etc.) 

6.4.3 Peptide / Ethanolamine Competition to Lower Peptide Amount on Chip Surface  

 The same basic procedure was following as written in section 6.4.2 with one exception.  

The peptide solution (0.052 mM or 0.15 mg/mL) prepared in section 6.4.1 was mixed with 10 

mM ethanolamine (in 10mM sodium acetate, pH 5.0) to achieve a desired peptide / ethanolamine 

mole ratio.  An example of this mixing is combining 95 μL of 0.052 mM peptide solution and 5 

μL of 10 mM ethanolamine solution to get a 1:10 mole ratio (peptide / ethanolamine).  This 

example resulted in 11,641 RU or 14 ng. 

6.4.4 Procedure for Binding Experiments with “Murphy” Inhibitor7  

 “Murphy” inhibitor (peptide sequence: H-Lys-Leu-Val-Phe-Phe-(Lys)6-NH2, MW: 

1420.9) was removed from -20 °C storage and allowed to warm to room temperature in a 

dessicator for 30 minutes.  A 3000 μM inhibitor stock solution was made that was diluted to the 

concentrations tested.  Those concentrations were 3000, 2000, 1000, 700, 400, 300, 200, 100, 70, 

and 50 μM.  With the flow rate set to 5 μL/min, each concentration (40 μL) was injected across 

both surface areas on the sensor chip (the peptide bound surface and the reference surface) for 5 

minutes.  In between the injection of various inhibitor concentrations, the surfaces areas where 

then washed with the running buffer (HBS-EP), regenerated with 4 M guanidine-HCl in 10 mM 

Tris-HCl (pH 8.0) and washed again with HBS-EP.  By regenerating the surfaces, the response 
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units (RU) recorded by the instrument returned to the original baseline (or 0 RU if instrument 

was re-zeroed prior to injection of inhibitor solutions).  Results: KD = 4.62 µM, χ2 = 36,000 
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CHAPTER 7 

FUTURE DIRECTIONS 

 Based on the inhibition results of the AMY-1 peptide and the similarity in peptide 

sequence between amyloid beta and islet amyloid polypeptide (IAPP), it seems logical that 

incorporation of disubstituted amino acids into short peptide inhibitors for Type II diabetes 

research should be a viable area to explore.  The 20-29 region of IAPP has been the most 

investigated as the source of aggregation.1  A possible first candidate would be based on the 

peptide sequence for residues 22-27 (H-Asn-Phe-Gly-Ala-Ile-Leu-NH2).  The disubstituted 

amino acid replacements could be 1) Dbzg for phenylalanine, 2) Dpg or Aib for alanine and 3) 

Dibg for leucine (see Figure 7.1).  Another region that have been targeted within the IAPP 

sequence is 8-20.  The peptide sequence for residues 12-17 (H-Leu-Ala-Asn-Phe-Leu-Val-NH2) 

has been demonstrated to form fibrils.2  The disubstituted amino acid replacements could be 1) 

Dpg or Aib for alanine, 2) Dbzg for phenylalanine and 3) Dibg for valine (see Figure 7.2). 

 

Figure 7.1.  Inhibitor idea based on residues 22-27 of IAPP. 
 

 
 
Figure 7.2.  Inhibitor idea based on residues 12-17 of IAPP. 
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Due to hydrophobicity of these two sequences, these inhibitors will need additional solubility 

elements (such as charges residues and PEG chains) added to one or both of the peptide’s 

termini. 

 Also it would be interesting to synthesize peptide inhibitors that contain aromatic amino 

acids which have either electron withdrawing groups or electron donating groups in the para 

position.  As discussed in Chapter 2, this would serve as an evaluation of the role of aromaticity 

within peptide interactions, such as π-stacking.  The possibility of being able to tune an inhibitors 

binding on one face and blocking on the other by exchanging the para substituent would be 

worth investigating. 

7.1 References 
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2. Scrocchi, L. A.; Ha, K.; Chen, Y.; Wu, L.; Wang, F.; Fraser, P. E., Identification of 
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APPENDIX A - NMR SPECTRA 

A.1 1H-NMR (250 MHz, CDCl3) 

Ethyl 2-benzyl-2-nitro-3-phenylpropanoate (2.4.1) 
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A.2 13C-NMR (250 MHz, CDCl3) 

Ethyl 2-benzyl-2-nitro-3-phenylpropanoate (2.4.1) 
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A.3 1H-NMR (250 MHz, CDCl3) 

Ethyl 2-(4-(methylthio)benzyl)-3-(4-(methylthio)phenyl)-2-nitropropanoate (2.4.2) 
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A.4 13C-NMR (250 MHz, CDCl3) 

 Ethyl 2-(4-(methylthio)benzyl)-3-(4-(methylthio)phenyl)-2-nitropropanoate (2.4.2) 
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A.5 1H-NMR (250 MHz, CDCl3) 

Ethyl 2-(4-methoxybenzyl)-3-(4-methoxyphenyl)-2-nitropropanoate (2.4.3) 
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A.6 13C-NMR (250 MHz, CDCl3) 

Ethyl 2-(4-methoxybenzyl)-3-(4-methoxyphenyl)-2-nitropropanoate (2.4.3) 
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A.7 1H-NMR (250 MHz, DMSO-d6) 

Ethyl 2-nitro-2-(4-nitrobenzyl)-3-(4-nitrophenyl)propanoate (3.4.1) 
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A.8 13C-NMR (250 MHz, DMSO-d6) 

Ethyl 2-nitro-2-(4-nitrobenzyl)-3-(4-nitrophenyl)propanoate (3.4.1) 
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 A.9 1H-NMR (250 MHz, CDCl3) 

Ethyl 2,2-bis(allyl)-2-nitroacetate (using 0.5 mol % Pd catalyst) (4.4.1) 
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A.10 13C-NMR (250 MHz, CDCl3) 

Ethyl 2,2-bis(allyl)-2-nitroacetate (using 0.5 mol % Pd catalyst) (4.4.1) 
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A.11 1H-NMR (250 MHz, CDCl3) 

Ethyl 2,2-bis(allyl)-2-nitroacetate (using 0.05 mol % Pd catalyst) (4.4.2) 
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A.12 13C-NMR (250 MHz, CDCl3) 

Ethyl 2,2-bis(allyl)-2-nitroacetate (using 0.05 mol % Pd catalyst) (4.4.2) 
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A.13 1H-NMR (300 MHz, CDCl3) 

Ethyl 2-amino-2,2-bis(propyl)acetate (4.4.3) 
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A.14 13C-NMR (250 MHz, CDCl3) 

Ethyl 2-amino-2,2-bis(propyl)acetate (4.4.3) 
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A.15 1H-NMR (250 MHz, DMSO-d6) 

2,2-Dipropylglycine (4.4.4) 

 

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

0.
81

0.
83

1.
09

1.
11

1.
14

1.
16

1.
19

1.
21

1.
28

1.
31

1.
33

1.
36

1.
39

1.
40

1.
42

1.
46

1.
47

1.
50

1.
52

1.
55

1.
57

2.
48

2.
48

2.
49

2.
50

2.
50

3.
31

7.
27

6.
00

2.
56

2.
73

3.
84

3.
03  



 88

A.16 1H-NMR (250 MHz, DMSO-d6) 

Nα-(9-Fluorenylmethoxycarbonyl)-2,2-dipropylglycine (4.4.5) 
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APPENDIX B - X-RAY DIFFRACTION DATA 

B.1 Single Crystal X-ray Diffraction Data 

 Ethyl 2-(4-(methylthio)benzyl)-3-(4-(methylthio)phenyl)-2-nitropropanoate (2.4.2) 

EtO

O
NO2

MeS SMe  

 
GregMc1.cif 
 
Crystal data 
C20H23NO4S2 Dx = 1.356 Mg m−3 
Mr = 405.51  

Monoclinic, P21/n Mo Kα radiation  
λ = 0.71073 Å 

Hall symbol: -P 2yn Cell parameters from 4532 reflections
a = 16.029 (2) Å θ = 2.5–27.1° 
b = 6.1465 (5) Å µ = 0.29 mm−1 
c = 21.146 (3) Å T = 170 K 
β = 107.533 (6)°  
V = 1986.6 (4) Å3 Lath, colorless 
Z = 4 0.37 × 0.12 × 0.05 mm 
F000 = 856  
 
Data collection 
Nonius KappaCCD (with Oxford Cryostream) 
diffractometer 23907 measured reflections 

Radiation source: fine-focus sealed tube 4393 independent reflections 
Monochromator: graphite 2985 reflections with I > 2σ(I) 
 Rint = 0.037 
T = 170 K θmax = 27.2° 
 θmin = 2.8° 
ω scans with κ offsets h = −20→20 
Absorption correction: multi-scan 
HKL Scalepack (Otwinowski & Minor 1997) k = −7→7 

Tmin = 0.899, Tmax = 0.986 l = −27→26 
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Refinement 
Refinement on F2 Secondary atom site location: difference Fourier map 
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites 
R[F2 > 2σ(F2)] = 0.048 H-atom parameters constrained 

wR(F2) = 0.123   w = 1/[σ2(Fo
2) + (0.0475P)2 + 1.1258P]  

where P = (Fo
2 + 2Fc

2)/3 
S = 1.04 (Δ/σ)max = 0.001 
4393 reflections Δρmax = 0.50 e Å−3 
247 parameters Δρmin = −0.44 e Å−3 

 Extinction correction: SHELXL, 
Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 

Primary atom site location: structure-invariant direct 
methods Extinction coefficient: 0.0017 (5) 

 
Special details 
 
Geometry. All e.s.d.’s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix. The cell e.s.d.’s are taken into account individually in the estimation of e.s.d.’s in distances, 
angles and torsion angles; correlations between e.s.d.’s in cell parameters are only used when they are defined by 
crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.’s is used for estimating e.s.d.’s involving l.s. 
planes. 
 
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based 
on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 
2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-
factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will 
be even larger. 
 
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

 x y z Uiso*/Ueq  

S1 −0.00793 (4) 0.50965 (13) 0.74859 (3) 0.0486 (2)  

S2 0.72810 (4) 0.41894 (12) 0.67240 (3) 0.0482 (2)  

O1 0.31241 (12) 0.0526 (3) 0.61851 (9) 0.0461 (5)  

O2 0.28667 (12) 0.0447 (3) 0.51272 (9) 0.0511 (5)  

O3 0.16399 (11) 0.5994 (3) 0.49121 (10) 0.0528 (5)  

O4 0.12729 (11) 0.2708 (3) 0.51829 (10) 0.0539 (5)  

N1 0.29296 (12) 0.1403 (3) 0.56448 (11) 0.0328 (4)  

C1 0.27736 (13) 0.3869 (3) 0.55935 (11) 0.0265 (5)  

C2 0.29302 (13) 0.4885 (4) 0.62836 (11) 0.0283 (5)  

H2A 0.3420 0.4094 0.6598 0.034*  

H2B 0.3124 0.6406 0.6264 0.034*  

C3 0.21656 (13) 0.4906 (3) 0.65682 (10) 0.0266 (5)  
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C4 0.16279 (14) 0.6716 (4) 0.64747 (12) 0.0330 (5)  

H4 0.1733 0.7901 0.6220 0.040*  

C5 0.09367 (15) 0.6841 (4) 0.67443 (12) 0.0356 (5)  

H5 0.0578 0.8103 0.6675 0.043*  

C6 0.07727 (13) 0.5124 (4) 0.71143 (10) 0.0309 (5)  

C7 0.13106 (14) 0.3308 (4) 0.72110 (11) 0.0336 (5)  

H7 0.1205 0.2121 0.7465 0.040*  

C8 0.19977 (14) 0.3200 (4) 0.69436 (11) 0.0315 (5)  

H8 0.2359 0.1943 0.7017 0.038*  

C9 −0.06535 (17) 0.7573 (5) 0.72069 (15) 0.0522 (7)  

H9A −0.0259 0.8809 0.7363 0.078*  

H9B −0.1152 0.7686 0.7383 0.078*  

H9C −0.0865 0.7583 0.6721 0.078*  

C10 0.33985 (14) 0.4805 (4) 0.52328 (11) 0.0301 (5)  

H10A 0.3284 0.4063 0.4799 0.036*  

H10B 0.3265 0.6368 0.5144 0.036*  

C11 0.43538 (13) 0.4572 (3) 0.56086 (11) 0.0286 (5)  

C12 0.48217 (14) 0.2709 (4) 0.55591 (11) 0.0330 (5)  

H12 0.4528 0.1542 0.5288 0.040*  

C13 0.57087 (14) 0.2508 (4) 0.58959 (11) 0.0348 (5)  

H13 0.6011 0.1211 0.5856 0.042*  

C14 0.61531 (14) 0.4204 (4) 0.62906 (11) 0.0331 (5)  

C15 0.56904 (15) 0.6080 (4) 0.63469 (12) 0.0360 (5)  

H15 0.5984 0.7244 0.6619 0.043*  

C16 0.48080 (14) 0.6261 (4) 0.60097 (12) 0.0335 (5)  

H16 0.4505 0.7556 0.6051 0.040*  

C17 0.76385 (18) 0.1557 (5) 0.65550 (15) 0.0576 (8)  

H17A 0.7312 0.0436 0.6711 0.086*  

H17B 0.8265 0.1398 0.6785 0.086*  

H17C 0.7534 0.1395 0.6076 0.086*  

C18 0.18082 (15) 0.4077 (4) 0.51948 (12) 0.0353 (5)  
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C19 0.0705 (2) 0.6499 (7) 0.4592 (2) 0.1078 (17)  

H19A 0.0441 0.5308 0.4281 0.129*  

H19B 0.0404 0.6543 0.4937 0.129*  

C20 0.0565 (2) 0.8404 (6) 0.4257 (2) 0.0812 (11)  

H20A 0.0875 0.9575 0.4549 0.122*  

H20B −0.0063 0.8721 0.4108 0.122*  

H20C 0.0781 0.8297 0.3871 0.122*  

 
 
Atomic displacement parameters (Å2) 

 U11 U22 U33 U12 U13 U23 

S1 0.0377 (4) 0.0676 (5) 0.0491 (4) 0.0088 (3) 0.0261 (3) 0.0136 (3) 

S2 0.0311 (3) 0.0641 (5) 0.0480 (4) 0.0022 (3) 0.0100 (3) −0.0052 (3) 

O1 0.0600 (11) 0.0293 (9) 0.0560 (12) 0.0086 (8) 0.0279 (9) 0.0129 (8) 

O2 0.0634 (12) 0.0378 (10) 0.0558 (12) −0.0062 (9) 0.0235 (9) −0.0196 (9) 

O3 0.0304 (9) 0.0556 (12) 0.0677 (13) 0.0020 (8) 0.0076 (8) 0.0273 (10) 

O4 0.0351 (9) 0.0511 (12) 0.0700 (13) −0.0116 (9) 0.0075 (9) 0.0021 (10) 

N1 0.0307 (10) 0.0239 (10) 0.0471 (13) −0.0043 (8) 0.0169 (9) −0.0043 (9) 

C1 0.0262 (10) 0.0202 (11) 0.0344 (12) −0.0006 (9) 0.0111 (9) 0.0008 (9) 

C2 0.0262 (11) 0.0248 (11) 0.0358 (12) −0.0035 (9) 0.0123 (9) −0.0028 (9) 

C3 0.0241 (10) 0.0274 (11) 0.0296 (11) −0.0027 (9) 0.0101 (9) −0.0033 (9) 

C4 0.0370 (12) 0.0266 (12) 0.0406 (13) 0.0001 (10) 0.0197 (10) 0.0039 (10) 

C5 0.0338 (12) 0.0321 (13) 0.0436 (14) 0.0051 (10) 0.0160 (11) 0.0033 (11) 

C6 0.0252 (11) 0.0430 (13) 0.0259 (11) −0.0009 (10) 0.0100 (9) −0.0004 (10) 

C7 0.0335 (12) 0.0360 (13) 0.0329 (13) −0.0006 (10) 0.0127 (10) 0.0079 (10) 

C8 0.0301 (11) 0.0308 (12) 0.0332 (13) 0.0042 (10) 0.0090 (10) 0.0040 (10) 

C9 0.0388 (14) 0.0567 (17) 0.0695 (19) 0.0088 (13) 0.0288 (13) −0.0043 (15) 

C10 0.0320 (11) 0.0294 (12) 0.0323 (12) 0.0005 (9) 0.0150 (9) 0.0038 (10) 

C11 0.0288 (11) 0.0295 (12) 0.0334 (12) −0.0009 (9) 0.0180 (9) 0.0033 (10) 

C12 0.0354 (12) 0.0307 (12) 0.0386 (14) −0.0032 (10) 0.0196 (10) −0.0033 (10) 

C13 0.0355 (13) 0.0339 (13) 0.0405 (14) 0.0071 (10) 0.0200 (11) 0.0015 (11) 

C14 0.0308 (11) 0.0412 (14) 0.0319 (12) −0.0009 (10) 0.0164 (9) 0.0007 (10) 
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C15 0.0356 (12) 0.0337 (13) 0.0430 (14) −0.0066 (10) 0.0186 (11) −0.0061 (10) 

C16 0.0352 (12) 0.0268 (12) 0.0442 (14) 0.0009 (10) 0.0206 (11) −0.0009 (10) 

C17 0.0408 (15) 0.073 (2) 0.0560 (18) 0.0224 (14) 0.0099 (13) 0.0002 (15) 

C18 0.0333 (12) 0.0380 (14) 0.0353 (13) −0.0022 (11) 0.0114 (10) 0.0009 (11) 

C19 0.0322 (16) 0.117 (3) 0.150 (4) 0.0022 (19) −0.0091 (19) 0.076 (3) 

C20 0.0490 (18) 0.072 (2) 0.101 (3) 0.0110 (17) −0.0108 (18) 0.005 (2) 

 
 
Geometric parameters (Å, °) 

S1—C6 1.769 (2) C9—H9A 0.9800 

S1—C9 1.785 (3) C9—H9B 0.9800 

S2—C14 1.764 (2) C9—H9C 0.9800 

S2—C17 1.788 (3) C10—C11 1.505 (3) 

O1—N1 1.216 (2) C10—H10A 0.9900 

O2—N1 1.220 (2) C10—H10B 0.9900 

O3—C18 1.312 (3) C11—C12 1.390 (3) 

O3—C19 1.479 (3) C11—C16 1.398 (3) 

O4—C18 1.197 (3) C12—C13 1.391 (3) 

N1—C1 1.535 (3) C12—H12 0.9500 

C1—C18 1.528 (3) C13—C14 1.390 (3) 

C1—C2 1.537 (3) C13—H13 0.9500 

C1—C10 1.541 (3) C14—C15 1.395 (3) 

C2—C3 1.519 (3) C15—C16 1.383 (3) 

C2—H2A 0.9900 C15—H15 0.9500 

C2—H2B 0.9900 C16—H16 0.9500 

C3—C4 1.384 (3) C17—H17A 0.9800 

C3—C8 1.390 (3) C17—H17B 0.9800 

C4—C5 1.393 (3) C17—H17C 0.9800 

C4—H4 0.9500 C19—C20 1.352 (5) 

C5—C6 1.385 (3) C19—H19A 0.9900 

C5—H5 0.9500 C19—H19B 0.9900 

C6—C7 1.388 (3) C20—H20A 0.9800 
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C7—C8 1.383 (3) C20—H20B 0.9800 

C7—H7 0.9500 C20—H20C 0.9800 

C8—H8 0.9500   

C6—S1—C9 103.61 (12) C1—C10—H10A 108.7 

C14—S2—C17 103.94 (13) C11—C10—H10B 108.7 

C18—O3—C19 115.9 (2) C1—C10—H10B 108.7 

O1—N1—O2 123.9 (2) H10A—C10—H10B 107.6 

O1—N1—C1 119.65 (19) C12—C11—C16 117.6 (2) 

O2—N1—C1 116.4 (2) C12—C11—C10 121.7 (2) 

C18—C1—N1 103.77 (17) C16—C11—C10 120.7 (2) 

C18—C1—C2 109.79 (18) C11—C12—C13 121.8 (2) 

N1—C1—C2 110.95 (18) C11—C12—H12 119.1 

C18—C1—C10 113.37 (18) C13—C12—H12 119.1 

N1—C1—C10 106.67 (17) C14—C13—C12 120.0 (2) 

C2—C1—C10 111.95 (17) C14—C13—H13 120.0 

C3—C2—C1 117.33 (18) C12—C13—H13 120.0 

C3—C2—H2A 108.0 C13—C14—C15 118.8 (2) 

C1—C2—H2A 108.0 C13—C14—S2 124.59 (18) 

C3—C2—H2B 108.0 C15—C14—S2 116.62 (18) 

C1—C2—H2B 108.0 C16—C15—C14 120.7 (2) 

H2A—C2—H2B 107.2 C16—C15—H15 119.7 

C4—C3—C8 117.94 (19) C14—C15—H15 119.7 

C4—C3—C2 119.48 (19) C15—C16—C11 121.2 (2) 

C8—C3—C2 122.54 (19) C15—C16—H16 119.4 

C3—C4—C5 121.6 (2) C11—C16—H16 119.4 

C3—C4—H4 119.2 S2—C17—H17A 109.5 

C5—C4—H4 119.2 S2—C17—H17B 109.5 

C6—C5—C4 119.9 (2) H17A—C17—H17B 109.5 

C6—C5—H5 120.0 S2—C17—H17C 109.5 

C4—C5—H5 120.0 H17A—C17—H17C 109.5 

C5—C6—C7 118.76 (19) H17B—C17—H17C 109.5 
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C5—C6—S1 124.15 (18) O4—C18—O3 125.1 (2) 

C7—C6—S1 117.08 (17) O4—C18—C1 123.6 (2) 

C8—C7—C6 121.0 (2) O3—C18—C1 111.19 (19) 

C8—C7—H7 119.5 C20—C19—O3 114.0 (3) 

C6—C7—H7 119.5 C20—C19—H19A 108.7 

C7—C8—C3 120.8 (2) O3—C19—H19A 108.7 

C7—C8—H8 119.6 C20—C19—H19B 108.7 

C3—C8—H8 119.6 O3—C19—H19B 108.7 

S1—C9—H9A 109.5 H19A—C19—H19B 107.6 

S1—C9—H9B 109.5 C19—C20—H20A 109.5 

H9A—C9—H9B 109.5 C19—C20—H20B 109.5 

S1—C9—H9C 109.5 H20A—C20—H20B 109.5 

H9A—C9—H9C 109.5 C19—C20—H20C 109.5 

H9B—C9—H9C 109.5 H20A—C20—H20C 109.5 

C11—C10—C1 114.39 (17) H20B—C20—H20C 109.5 

C11—C10—H10A 108.7   

O1—N1—C1—C18 −115.9 (2) C2—C1—C10—C11 56.5 (2) 

O2—N1—C1—C18 65.8 (2) C1—C10—C11—C12 87.0 (2) 

O1—N1—C1—C2 2.0 (3) C1—C10—C11—C16 −94.6 (2) 

O2—N1—C1—C2 −176.39 (17) C16—C11—C12—C13 0.3 (3) 

O1—N1—C1—C10 124.2 (2) C10—C11—C12—C13 178.7 (2) 

O2—N1—C1—C10 −54.2 (2) C11—C12—C13—C14 −0.6 (3) 

C18—C1—C2—C3 27.6 (3) C12—C13—C14—C15 0.8 (3) 

N1—C1—C2—C3 −86.5 (2) C12—C13—C14—S2 −178.12 (17) 

C10—C1—C2—C3 154.41 (18) C17—S2—C14—C13 −2.5 (2) 

C1—C2—C3—C4 −93.6 (2) C17—S2—C14—C15 178.58 (19) 

C1—C2—C3—C8 88.8 (3) C13—C14—C15—C16 −0.8 (3) 

C8—C3—C4—C5 −0.1 (3) S2—C14—C15—C16 178.22 (17) 

C2—C3—C4—C5 −177.9 (2) C14—C15—C16—C11 0.5 (3) 

C3—C4—C5—C6 −0.2 (4) C12—C11—C16—C15 −0.3 (3) 

C4—C5—C6—C7 0.4 (3) C10—C11—C16—C15 −178.7 (2) 
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C4—C5—C6—S1 179.59 (18) C19—O3—C18—O4 3.8 (4) 

C9—S1—C6—C5 4.5 (2) C19—O3—C18—C1 −171.6 (3) 

C9—S1—C6—C7 −176.31 (19) N1—C1—C18—O4 26.5 (3) 

C5—C6—C7—C8 −0.1 (3) C2—C1—C18—O4 −92.2 (3) 

S1—C6—C7—C8 −179.40 (18) C10—C1—C18—O4 141.8 (2) 

C6—C7—C8—C3 −0.3 (3) N1—C1—C18—O3 −158.0 (2) 

C4—C3—C8—C7 0.4 (3) C2—C1—C18—O3 83.3 (2) 

C2—C3—C8—C7 178.0 (2) C10—C1—C18—O3 −42.7 (3) 

C18—C1—C10—C11 −178.64 (19) C18—O3—C19—C20 −174.4 (4) 

N1—C1—C10—C11 −65.1 (2)   
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B.2 Single Crystal X-ray Diffraction Data 

Ethyl 2-(4-methoxybenzyl)-3-(4-methoxyphenyl)-2-nitropropanoate (2.4.3) 

EtO

O
NO2

MeO OMe  

 
GregMc2.cif 
 
Crystal data 
C20H23NO6 Dx = 1.332 Mg m−3 
Mr = 373.39  

Orthorhombic, Pna21 
Cu Kα radiation  
λ = 1.54178 Å 

Hall symbol: P 2c -2n Cell parameters from 9431 reflections
a = 18.0681 (9) Å θ = 4.9–69.3° 
b = 17.1151 (6) Å µ = 0.82 mm−1 
c = 6.0216 (3) Å T = 90 K 
V = 1862.10 (15) Å3  
Z = 4 Needle fragment, colorless 
F000 = 792 0.25 × 0.19 × 0.15 mm 
 
Data collection 
Bruker Kappa Apex-II CCD area detector 
diffractometer 12499 measured reflections 

Radiation source: fine-focus sealed tube 3188 independent reflections 
Monochromator: graphite 3156 reflections with I > 2σ(I) 
 Rint = 0.018 
T = 90 K θmax = 69.9° 
 θmin = 3.5° 
phi and ω scans h = −19→21 
Absorption correction: multi-scan 
SADABS (Sheldrick, 2002) k = −19→20 

Tmin = 0.822, Tmax = 0.887 l = −6→7 
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Refinement 
Refinement on F2 Hydrogen site location: inferred from neighbouring sites 
Least-squares matrix: full H-atom parameters constrained 

R[F2 > 2σ(F2)] = 0.022   w = 1/[σ2(Fo
2) + (0.0293P)2 + 0.3528P]  

where P = (Fo
2 + 2Fc

2)/3 
wR(F2) = 0.056 (Δ/σ)max = 0.001 
S = 1.06 Δρmax = 0.19 e Å−3 
3188 reflections Δρmin = −0.10 e Å−3 

249 parameters Extinction correction: SHELXL, 
Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 

1 restraint Extinction coefficient: 0.0027 (2) 
 Absolute structure: Flack (1983) 
Primary atom site location: structure-invariant direct 
methods Flack parameter: −0.11 (11) 

Secondary atom site location: difference Fourier map  
 
Special details 
 
Geometry. All e.s.d.’s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix. The cell e.s.d.’s are taken into account individually in the estimation of e.s.d.’s in distances, 
angles and torsion angles; correlations between e.s.d.’s in cell parameters are only used when they are defined by 
crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.’s is used for estimating e.s.d.’s involving l.s. 
planes. 
 
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based 
on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 
2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-
factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will 
be even larger. 
 
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

 x y z Uiso*/Ueq  

O1 0.81432 (5) 0.18357 (5) 0.15178 (15) 0.0216 (2)  

O2 0.73974 (5) 0.08486 (5) 0.13668 (16) 0.0226 (2)  

O3 0.73377 (5) 0.24610 (4) 0.73410 (15) 0.01741 (19)  

O4 0.69771 (5) 0.26502 (5) 0.37989 (15) 0.01869 (19)  

O5 0.39950 (5) 0.14728 (5) 0.42791 (16) 0.0239 (2)  

O6 0.97920 (4) −0.15767 (5) 0.49657 (15) 0.0192 (2)  

N1 0.77133 (5) 0.13745 (6) 0.23703 (18) 0.0160 (2)  

C1 0.75967 (6) 0.14492 (6) 0.4875 (2) 0.0142 (2)  

C2 0.70475 (6) 0.08297 (7) 0.5752 (2) 0.0160 (3)  

H2A 0.7182 0.0320 0.5090 0.019*  
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H2B 0.7118 0.0784 0.7377 0.019*  

C3 0.62297 (6) 0.09715 (6) 0.5312 (2) 0.0164 (2)  

C4 0.58630 (7) 0.06336 (7) 0.3526 (2) 0.0183 (3)  

H4 0.6130 0.0303 0.2544 0.022*  

C5 0.51116 (7) 0.07689 (7) 0.3138 (2) 0.0194 (3)  

H5 0.4869 0.0525 0.1922 0.023*  

C6 0.47225 (6) 0.12629 (7) 0.4548 (2) 0.0187 (3)  

C7 0.50772 (7) 0.15894 (7) 0.6381 (2) 0.0210 (3)  

H7 0.4810 0.1916 0.7373 0.025*  

C8 0.58193 (7) 0.14373 (7) 0.6757 (2) 0.0188 (3)  

H8 0.6054 0.1655 0.8027 0.023*  

C9 0.36264 (7) 0.11869 (8) 0.2357 (3) 0.0268 (3)  

H9A 0.3909 0.1332 0.1029 0.040*  

H9B 0.3130 0.1415 0.2273 0.040*  

H9C 0.3587 0.0617 0.2443 0.040*  

C10 0.83718 (6) 0.13657 (6) 0.5959 (2) 0.0146 (2)  

H10A 0.8707 0.1761 0.5304 0.018*  

H10B 0.8329 0.1479 0.7565 0.018*  

C11 0.87155 (6) 0.05644 (6) 0.5670 (2) 0.0142 (2)  

C12 0.91199 (6) 0.03703 (7) 0.3770 (2) 0.0147 (2)  

H12 0.9161 0.0738 0.2594 0.018*  

C13 0.94616 (6) −0.03508 (7) 0.3576 (2) 0.0155 (2)  

H13 0.9735 −0.0474 0.2275 0.019*  

C14 0.94054 (6) −0.08946 (6) 0.5285 (2) 0.0150 (2)  

C15 0.89882 (6) −0.07247 (7) 0.7161 (2) 0.0156 (2)  

H15 0.8933 −0.1101 0.8308 0.019*  

C16 0.86507 (6) 0.00048 (7) 0.7341 (2) 0.0153 (2)  

H16 0.8370 0.0123 0.8632 0.018*  

C17 0.97914 (7) −0.21297 (7) 0.6751 (2) 0.0218 (3)  

H17A 0.9954 −0.1872 0.8119 0.033*  

H17B 1.0129 −0.2560 0.6398 0.033*  
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H17C 0.9290 −0.2336 0.6957 0.033*  

C18 0.72741 (6) 0.22691 (6) 0.5215 (2) 0.0146 (2)  

C19 0.69671 (7) 0.31798 (7) 0.8043 (2) 0.0191 (3)  

H19A 0.6902 0.3172 0.9676 0.023*  

H19B 0.6470 0.3204 0.7357 0.023*  

C20 0.74002 (7) 0.38986 (7) 0.7396 (3) 0.0226 (3)  

H20A 0.7911 0.3848 0.7922 0.034*  

H20B 0.7172 0.4361 0.8069 0.034*  

H20C 0.7398 0.3953 0.5776 0.034*  

 
 
Atomic displacement parameters (Å2) 

 U11 U22 U33 U12 U13 U23 

O1 0.0241 (4) 0.0246 (4) 0.0160 (5) 0.0002 (3) 0.0029 (4) 0.0037 (4) 

O2 0.0268 (4) 0.0250 (4) 0.0161 (5) −0.0002 (4) −0.0024 (4) −0.0074 (4) 

O3 0.0231 (4) 0.0149 (4) 0.0142 (4) 0.0059 (3) −0.0001 (3) −0.0027 (4) 

O4 0.0209 (4) 0.0178 (4) 0.0173 (5) 0.0037 (3) −0.0031 (3) 0.0014 (4) 

O5 0.0157 (4) 0.0300 (5) 0.0260 (5) 0.0017 (3) −0.0012 (4) −0.0058 (4) 

O6 0.0224 (4) 0.0130 (4) 0.0221 (5) 0.0039 (3) 0.0025 (4) 0.0005 (4) 

N1 0.0175 (5) 0.0169 (5) 0.0137 (5) 0.0049 (4) −0.0010 (4) 0.0003 (4) 

C1 0.0180 (5) 0.0151 (5) 0.0096 (6) 0.0023 (4) 0.0003 (4) −0.0009 (5) 

C2 0.0178 (6) 0.0157 (5) 0.0145 (6) 0.0009 (4) −0.0009 (5) 0.0006 (5) 

C3 0.0164 (5) 0.0154 (5) 0.0174 (6) −0.0010 (4) 0.0004 (5) 0.0026 (5) 

C4 0.0190 (6) 0.0164 (5) 0.0193 (7) 0.0019 (4) 0.0013 (5) −0.0014 (5) 

C5 0.0204 (6) 0.0187 (6) 0.0191 (7) −0.0027 (5) −0.0027 (5) −0.0022 (5) 

C6 0.0156 (5) 0.0182 (6) 0.0222 (7) −0.0008 (4) 0.0009 (5) 0.0032 (5) 

C7 0.0193 (6) 0.0229 (6) 0.0208 (7) 0.0001 (5) 0.0042 (5) −0.0040 (6) 

C8 0.0206 (6) 0.0207 (6) 0.0150 (6) −0.0025 (4) −0.0006 (5) −0.0014 (5) 

C9 0.0170 (6) 0.0331 (7) 0.0305 (8) −0.0001 (5) −0.0050 (6) −0.0075 (7) 

C10 0.0157 (5) 0.0157 (5) 0.0124 (6) 0.0005 (4) −0.0004 (4) −0.0014 (5) 

C11 0.0127 (5) 0.0150 (5) 0.0149 (6) −0.0017 (4) −0.0024 (4) −0.0012 (5) 

C12 0.0139 (5) 0.0154 (5) 0.0147 (6) −0.0022 (4) −0.0012 (5) 0.0012 (5) 
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C13 0.0133 (5) 0.0180 (5) 0.0151 (6) −0.0009 (4) 0.0006 (4) −0.0028 (5) 

C14 0.0131 (5) 0.0131 (5) 0.0188 (6) 0.0002 (4) −0.0022 (5) −0.0027 (5) 

C15 0.0157 (5) 0.0158 (5) 0.0154 (6) −0.0013 (4) −0.0023 (4) 0.0017 (5) 

C16 0.0143 (5) 0.0189 (6) 0.0129 (6) −0.0012 (4) 0.0005 (4) −0.0018 (5) 

C17 0.0247 (6) 0.0163 (6) 0.0246 (7) 0.0035 (5) 0.0015 (5) 0.0048 (5) 

C18 0.0147 (5) 0.0151 (5) 0.0142 (6) −0.0003 (4) 0.0004 (5) 0.0001 (5) 

C19 0.0216 (6) 0.0168 (6) 0.0188 (7) 0.0069 (5) 0.0013 (5) −0.0045 (5) 

C20 0.0231 (6) 0.0178 (6) 0.0268 (7) 0.0020 (5) −0.0011 (5) −0.0058 (6) 

 
 
Geometric parameters (Å, °) 

O1—N1 1.2207 (13) C9—H9A 0.9800 

O2—N1 1.2251 (14) C9—H9B 0.9800 

O3—C18 1.3267 (16) C9—H9C 0.9800 

O3—C19 1.4632 (13) C10—C11 1.5155 (15) 

O4—C18 1.2002 (15) C10—H10A 0.9900 

O5—C6 1.3722 (14) C10—H10B 0.9900 

O5—C9 1.4224 (16) C11—C16 1.3941 (17) 

O6—C14 1.3739 (13) C11—C12 1.3979 (17) 

O6—C17 1.4322 (15) C12—C13 1.3849 (16) 

N1—C1 1.5284 (16) C12—H12 0.9500 

C1—C18 1.5331 (15) C13—C14 1.3911 (17) 

C1—C2 1.5452 (15) C13—H13 0.9500 

C1—C10 1.5514 (15) C14—C15 1.3890 (18) 

C2—C3 1.5206 (15) C15—C16 1.3938 (16) 

C2—H2A 0.9900 C15—H15 0.9500 

C2—H2B 0.9900 C16—H16 0.9500 

C3—C4 1.3894 (18) C17—H17A 0.9800 

C3—C8 1.3939 (17) C17—H17B 0.9800 

C4—C5 1.3969 (17) C17—H17C 0.9800 

C4—H4 0.9500 C19—C20 1.5093 (17) 

C5—C6 1.3891 (18) C19—H19A 0.9900 
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C5—H5 0.9500 C19—H19B 0.9900 

C6—C7 1.3935 (19) C20—H20A 0.9800 

C7—C8 1.3846 (17) C20—H20B 0.9800 

C7—H7 0.9500 C20—H20C 0.9800 

C8—H8 0.9500   

C18—O3—C19 116.59 (10) C1—C10—H10A 108.8 

C6—O5—C9 117.03 (10) C11—C10—H10B 108.8 

C14—O6—C17 117.14 (10) C1—C10—H10B 108.8 

O1—N1—O2 124.34 (11) H10A—C10—H10B 107.7 

O1—N1—C1 116.65 (10) C16—C11—C12 118.14 (10) 

O2—N1—C1 118.96 (10) C16—C11—C10 120.30 (11) 

N1—C1—C18 105.11 (9) C12—C11—C10 121.54 (11) 

N1—C1—C2 111.60 (9) C13—C12—C11 120.91 (11) 

C18—C1—C2 109.77 (9) C13—C12—H12 119.5 

N1—C1—C10 106.43 (9) C11—C12—H12 119.5 

C18—C1—C10 111.81 (9) C12—C13—C14 120.10 (11) 

C2—C1—C10 111.89 (9) C12—C13—H13 120.0 

C3—C2—C1 117.06 (9) C14—C13—H13 120.0 

C3—C2—H2A 108.0 O6—C14—C15 124.58 (11) 

C1—C2—H2A 108.0 O6—C14—C13 115.33 (11) 

C3—C2—H2B 108.0 C15—C14—C13 120.08 (10) 

C1—C2—H2B 108.0 C14—C15—C16 119.23 (11) 

H2A—C2—H2B 107.3 C14—C15—H15 120.4 

C4—C3—C8 117.89 (11) C16—C15—H15 120.4 

C4—C3—C2 122.13 (11) C15—C16—C11 121.50 (12) 

C8—C3—C2 119.96 (11) C15—C16—H16 119.3 

C3—C4—C5 121.58 (12) C11—C16—H16 119.3 

C3—C4—H4 119.2 O6—C17—H17A 109.5 

C5—C4—H4 119.2 O6—C17—H17B 109.5 

C6—C5—C4 119.39 (12) H17A—C17—H17B 109.5 

C6—C5—H5 120.3 O6—C17—H17C 109.5 
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C4—C5—H5 120.3 H17A—C17—H17C 109.5 

O5—C6—C5 124.89 (12) H17B—C17—H17C 109.5 

O5—C6—C7 115.40 (11) O4—C18—O3 126.14 (11) 

C5—C6—C7 119.70 (11) O4—C18—C1 124.93 (11) 

C8—C7—C6 119.96 (11) O3—C18—C1 108.81 (10) 

C8—C7—H7 120.0 O3—C19—C20 111.92 (10) 

C6—C7—H7 120.0 O3—C19—H19A 109.2 

C7—C8—C3 121.38 (12) C20—C19—H19A 109.2 

C7—C8—H8 119.3 O3—C19—H19B 109.2 

C3—C8—H8 119.3 C20—C19—H19B 109.2 

O5—C9—H9A 109.5 H19A—C19—H19B 107.9 

O5—C9—H9B 109.5 C19—C20—H20A 109.5 

H9A—C9—H9B 109.5 C19—C20—H20B 109.5 

O5—C9—H9C 109.5 H20A—C20—H20B 109.5 

H9A—C9—H9C 109.5 C19—C20—H20C 109.5 

H9B—C9—H9C 109.5 H20A—C20—H20C 109.5 

C11—C10—C1 113.90 (9) H20B—C20—H20C 109.5 

C11—C10—H10A 108.8   

O1—N1—C1—C18 61.58 (12) C2—C1—C10—C11 56.38 (13) 

O2—N1—C1—C18 −120.99 (10) C1—C10—C11—C16 −96.30 (13) 

O1—N1—C1—C2 −179.49 (9) C1—C10—C11—C12 85.40 (13) 

O2—N1—C1—C2 −2.06 (14) C16—C11—C12—C13 −1.55 (16) 

O1—N1—C1—C10 −57.16 (12) C10—C11—C12—C13 176.79 (11) 

O2—N1—C1—C10 120.27 (10) C11—C12—C13—C14 0.04 (17) 

N1—C1—C2—C3 −76.58 (13) C17—O6—C14—C15 −3.35 (15) 

C18—C1—C2—C3 39.54 (15) C17—O6—C14—C13 175.75 (10) 

C10—C1—C2—C3 164.28 (10) C12—C13—C14—O6 −177.23 (10) 

C1—C2—C3—C4 96.52 (13) C12—C13—C14—C15 1.92 (17) 

C1—C2—C3—C8 −85.19 (14) O6—C14—C15—C16 176.78 (10) 

C8—C3—C4—C5 1.71 (18) C13—C14—C15—C16 −2.28 (16) 

C2—C3—C4—C5 −179.96 (11) C14—C15—C16—C11 0.74 (17) 
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C3—C4—C5—C6 1.06 (19) C12—C11—C16—C15 1.17 (16) 

C9—O5—C6—C5 −2.83 (18) C10—C11—C16—C15 −177.20 (10) 

C9—O5—C6—C7 176.51 (11) C19—O3—C18—O4 4.38 (17) 

C4—C5—C6—O5 176.54 (12) C19—O3—C18—C1 −171.78 (9) 

C4—C5—C6—C7 −2.78 (18) N1—C1—C18—O4 20.09 (15) 

O5—C6—C7—C8 −177.67 (11) C2—C1—C18—O4 −100.06 (13) 

C5—C6—C7—C8 1.71 (19) C10—C1—C18—O4 135.16 (12) 

C6—C7—C8—C3 1.15 (19) N1—C1—C18—O3 −163.69 (9) 

C4—C3—C8—C7 −2.83 (18) C2—C1—C18—O3 76.16 (12) 

C2—C3—C8—C7 178.81 (12) C10—C1—C18—O3 −48.63 (13) 

N1—C1—C10—C11 −65.77 (12) C18—O3—C19—C20 −78.20 (13) 

C18—C1—C10—C11 179.98 (10)   

 



 105

B.3 Single Crystal X-ray Diffraction Data 

 4-(methylsulfonyl)benzaldehyde (3.5) 

S

H
O

OMe

O

 

 

GregMc3.cif 
 
Crystal data 
C9H11NO2 Dx = 1.303 Mg m−3 
Mr = 165.19  

Monoclinic, P21/c Mo Kα radiation  
λ = 0.71073 Å 

Hall symbol: -P 2ybc Cell parameters from 1901 reflections
a = 7.1823 (15) Å θ = 2.5–27.8° 
b = 4.6410 (10) Å µ = 0.09 mm−1 
c = 25.425 (6) Å T = 90 K 
β = 96.583 (9)°  
V = 841.9 (3) Å3 Needle, colorless 
Z = 4 0.40 × 0.05 × 0.05 mm 
F000 = 352  
 
Data collection 
Nonius KappaCCD (with Oxford Cryostream) 
diffractometer 1951 independent reflections 

Radiation source: fine-focus sealed tube 1514 reflections with I > 2σ(I) 
Monochromator: graphite Rint = 0.025 
 θmax = 27.8° 
T = 90 K θmin = 2.8° 
 h = −9→9 
ω scans with κ offsets k = −5→5 
Absorption correction: none l = −32→32 
9151 measured reflections  
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Refinement 
Refinement on F2 Secondary atom site location: difference Fourier map 
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites 

R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of 
independent and constrained refinement 

wR(F2) = 0.095   w = 1/[σ2(Fo
2) + (0.0375P)2 + 0.2775P]  

where P = (Fo
2 + 2Fc

2)/3 
S = 1.06 (Δ/σ)max = 0.001 
1951 reflections Δρmax = 0.25 e Å−3 
114 parameters Δρmin = −0.18 e Å−3 

 Extinction correction: SHELXL, 
Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 

Primary atom site location: structure-invariant direct 
methods Extinction coefficient: 0.015 (3) 

 
Special details 
 
Geometry. All e.s.d.’s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix. The cell e.s.d.’s are taken into account individually in the estimation of e.s.d.’s in distances, 
angles and torsion angles; correlations between e.s.d.’s in cell parameters are only used when they are defined by 
crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.’s is used for estimating e.s.d.’s involving l.s. 
planes. 
 
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based 
on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 
2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-
factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will 
be even larger. 
 
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

 x y z Uiso*/Ueq  

O1 0.81792 (13) 0.0643 (2) 0.79301 (4) 0.0206 (2)  

O2 0.18744 (13) 1.1567 (2) 0.96729 (4) 0.0200 (2)  

N1 0.30768 (15) 0.7295 (3) 0.94386 (4) 0.0168 (3)  

H1N 0.297 (2) 0.547 (4) 0.9459 (6) 0.020*  

C1 0.55120 (18) 0.6417 (3) 0.88528 (5) 0.0169 (3)  

C2 0.72556 (18) 0.5319 (3) 0.90460 (5) 0.0186 (3)  

H2 0.7821 0.5912 0.9385 0.022*  

C3 0.81961 (18) 0.3365 (3) 0.87540 (5) 0.0183 (3)  

H3 0.9389 0.2638 0.8892 0.022*  

C4 0.73657 (18) 0.2495 (3) 0.82583 (5) 0.0162 (3)  

C5 0.55973 (18) 0.3531 (3) 0.80618 (5) 0.0180 (3)  
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H5 0.5017 0.2899 0.7727 0.022*  

C6 0.46938 (18) 0.5479 (3) 0.83565 (5) 0.0178 (3)  

H6 0.3496 0.6193 0.8220 0.021*  

C7 0.45527 (19) 0.8607 (3) 0.91653 (5) 0.0202 (3)  

H7A 0.5491 0.9522 0.9429 0.024*  

H7B 0.3999 1.0130 0.8923 0.024*  

C8 0.18841 (18) 0.8891 (3) 0.96709 (5) 0.0169 (3)  

H8 0.0972 0.7924 0.9849 0.020*  

C9 1.00418 (19) −0.0300 (3) 0.81032 (6) 0.0246 (3)  

H9A 1.0868 0.1377 0.8163 0.037*  

H9B 1.0488 −0.1539 0.7832 0.037*  

H9C 1.0047 −0.1385 0.8434 0.037*  

 
Atomic displacement parameters (Å2) 

 U11 U22 U33 U12 U13 U23 

O1 0.0188 (5) 0.0216 (5) 0.0220 (5) 0.0044 (4) 0.0049 (4) −0.0025 (4) 

O2 0.0214 (5) 0.0146 (5) 0.0251 (5) 0.0007 (4) 0.0071 (4) 0.0004 (4) 

N1 0.0183 (5) 0.0125 (6) 0.0207 (5) −0.0012 (5) 0.0066 (4) 0.0001 (5) 

C1 0.0188 (6) 0.0133 (6) 0.0198 (6) −0.0029 (5) 0.0068 (5) 0.0008 (5) 

C2 0.0202 (7) 0.0184 (7) 0.0172 (6) −0.0034 (6) 0.0022 (5) −0.0006 (5) 

C3 0.0149 (6) 0.0193 (7) 0.0206 (6) −0.0001 (5) 0.0014 (5) 0.0020 (5) 

C4 0.0179 (6) 0.0130 (6) 0.0188 (6) 0.0001 (5) 0.0070 (5) 0.0013 (5) 

C5 0.0188 (6) 0.0170 (7) 0.0182 (6) −0.0014 (5) 0.0026 (5) 0.0005 (5) 

C6 0.0147 (6) 0.0173 (7) 0.0215 (6) 0.0013 (5) 0.0032 (5) 0.0031 (5) 

C7 0.0208 (7) 0.0172 (7) 0.0241 (7) −0.0037 (6) 0.0094 (6) −0.0009 (6) 

C8 0.0162 (6) 0.0176 (7) 0.0172 (6) −0.0018 (5) 0.0030 (5) 0.0008 (5) 

C9 0.0196 (7) 0.0250 (8) 0.0301 (7) 0.0067 (6) 0.0068 (6) 0.0005 (6) 

 
Geometric parameters (Å, °) 

O1—C4 1.3744 (15) C3—H3 0.9500 

O1—C9 1.4282 (16) C4—C5 1.3958 (18) 

O2—C8 1.2423 (17) C5—C6 1.3826 (18) 
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N1—C8 1.3218 (17) C5—H5 0.9500 

N1—C7 1.4648 (17) C6—H6 0.9500 

N1—H1N 0.853 (17) C7—H7A 0.9900 

C1—C2 1.3885 (19) C7—H7B 0.9900 

C1—C6 1.3989 (18) C8—H8 0.9500 

C1—C7 1.5048 (18) C9—H9A 0.9800 

C2—C3 1.3945 (19) C9—H9B 0.9800 

C2—H2 0.9500 C9—H9C 0.9800 

C3—C4 1.3908 (18)   

C4—O1—C9 116.93 (11) C5—C6—C1 121.17 (12) 

C8—N1—C7 121.38 (12) C5—C6—H6 119.4 

C8—N1—H1N 117.4 (10) C1—C6—H6 119.4 

C7—N1—H1N 121.2 (10) N1—C7—C1 111.71 (11) 

C2—C1—C6 118.26 (12) N1—C7—H7A 109.3 

C2—C1—C7 120.67 (12) C1—C7—H7A 109.3 

C6—C1—C7 121.06 (12) N1—C7—H7B 109.3 

C1—C2—C3 121.50 (12) C1—C7—H7B 109.3 

C1—C2—H2 119.2 H7A—C7—H7B 107.9 

C3—C2—H2 119.2 O2—C8—N1 124.48 (13) 

C4—C3—C2 119.18 (12) O2—C8—H8 117.8 

C4—C3—H3 120.4 N1—C8—H8 117.8 

C2—C3—H3 120.4 O1—C9—H9A 109.5 

O1—C4—C3 124.32 (12) O1—C9—H9B 109.5 

O1—C4—C5 115.51 (11) H9A—C9—H9B 109.5 

C3—C4—C5 120.17 (12) O1—C9—H9C 109.5 

C6—C5—C4 119.70 (12) H9A—C9—H9C 109.5 

C6—C5—H5 120.2 H9B—C9—H9C 109.5 

C4—C5—H5 120.2   

C6—C1—C2—C3 1.0 (2) C3—C4—C5—C6 1.6 (2) 

C7—C1—C2—C3 −177.71 (12) C4—C5—C6—C1 −0.7 (2) 

C1—C2—C3—C4 −0.1 (2) C2—C1—C6—C5 −0.59 (19) 
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C9—O1—C4—C3 −3.66 (18) C7—C1—C6—C5 178.08 (12) 

C9—O1—C4—C5 175.81 (12) C8—N1—C7—C1 −170.00 (12) 

C2—C3—C4—O1 178.26 (12) C2—C1—C7—N1 −101.81 (14) 

C2—C3—C4—C5 −1.2 (2) C6—C1—C7—N1 79.56 (15) 

O1—C4—C5—C6 −177.93 (11) C7—N1—C8—O2 1.3 (2) 

 
 
Hydrogen-bond geometry (Å, °) 

D—H···A D—H H···A D···A D—H···A 

N1—H1N···O2i 0.853 (17) 2.071 (16) 2.8785 (16) 157.6 (14) 

Symmetry codes: (i) x, y−1, z. 

 



 110

B.4 Single Crystal X-ray Diffraction Data 

4-nitrobenzyl chloride (3.6) 

NO2

Cl

 

 
GregMc4.cif 
 
Crystal data 
C7H6ClNO2 Dx = 1.553 Mg m−3 
Mr = 171.58  

Orthorhombic, P212121 
Cu Kα radiation  
λ = 1.54178 Å 

Hall symbol: P 2ac 2ab Cell parameters from 2876 reflections
a = 4.6952 (2) Å θ = 3.6–68.7° 
b = 6.3691 (2) Å µ = 4.17 mm−1 
c = 24.5393 (8) Å T = 90 K 
V = 733.83 (5) Å3  
Z = 4 Lath fragment, colorless 
F000 = 352 0.49 × 0.48 × 0.04 mm 
 
Data collection 
Bruker Kappa Apex-II CCD area detector 
diffractometer 2970 measured reflections 

Radiation source: fine-focus sealed tube 1211 independent reflections 
Monochromator: graphite 1192 reflections with I > 2σ(I) 
 Rint = 0.040 
T = 90 K θmax = 69.2° 
 θmin = 3.6° 
phi and ω scans h = −5→5 
Absorption correction: multi-scan 
SADABS (Sheldrick, 2002) k = −7→7 

Tmin = 0.234, Tmax = 0.851 l = −28→27 
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Refinement 
Refinement on F2 Hydrogen site location: inferred from neighbouring sites 
Least-squares matrix: full H-atom parameters constrained 

R[F2 > 2σ(F2)] = 0.041   w = 1/[σ2(Fo
2) + (0.0779P)2 + 0.1713P]  

where P = (Fo
2 + 2Fc

2)/3 
wR(F2) = 0.119 (Δ/σ)max = 0.001 
S = 1.16 Δρmax = 0.58 e Å−3 
1211 reflections Δρmin = −0.55 e Å−3 
101 parameters Extinction correction: none 
 Absolute structure: Flack (1983) 
Primary atom site location: structure-invariant direct 
methods Flack parameter: 0.15 (3) 

Secondary atom site location: difference Fourier map  
 
Special details 
 
Geometry. All e.s.d.’s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix. The cell e.s.d.’s are taken into account individually in the estimation of e.s.d.’s in distances, 
angles and torsion angles; correlations between e.s.d.’s in cell parameters are only used when they are defined by 
crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.’s is used for estimating e.s.d.’s involving l.s. 
planes. 
 
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based 
on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 
2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-
factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will 
be even larger. 
 
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

 x y z Uiso*/Ueq  

Cl1 0.25257 (14) 0.04947 (9) 0.77434 (2) 0.0244 (3)  

N1 0.8797 (5) 0.6679 (3) 0.94692 (8) 0.0134 (5)  

O1 0.9984 (4) 0.5876 (3) 0.98609 (8) 0.0179 (4)  

O2 0.9324 (4) 0.8457 (3) 0.93026 (8) 0.0186 (5)  

C1 0.6628 (5) 0.5443 (4) 0.91772 (10) 0.0124 (5)  

C2 0.5988 (5) 0.3444 (4) 0.93669 (10) 0.0121 (5)  

H2 0.6886 0.2897 0.9683 0.015*  

C3 0.4005 (6) 0.2271 (4) 0.90822 (10) 0.0131 (5)  

H3 0.3525 0.0901 0.9204 0.016*  

C4 0.2700 (6) 0.3087 (4) 0.86158 (9) 0.0123 (5)  

C5 0.3358 (5) 0.5108 (4) 0.84403 (10) 0.0149 (6)  

H5 0.2440 0.5671 0.8128 0.018*  
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C6 0.5351 (5) 0.6303 (4) 0.87206 (10) 0.0146 (6)  

H6 0.5826 0.7679 0.8602 0.018*  

C7 0.0636 (5) 0.1777 (4) 0.82953 (10) 0.0158 (6)  

H7A −0.0895 0.2679 0.8146 0.019*  

H7B −0.0247 0.0711 0.8535 0.019*  

 
 
Atomic displacement parameters (Å2) 

 U11 U22 U33 U12 U13 U23 

Cl1 0.0304 (5) 0.0259 (4) 0.0170 (4) −0.0019 (3) −0.0002 (3) −0.0089 (2) 

N1 0.0157 (11) 0.0146 (10) 0.0100 (11) −0.0005 (9) 0.0012 (9) −0.0033 (9) 

O1 0.0198 (9) 0.0200 (9) 0.0140 (10) −0.0010 (8) −0.0051 (7) −0.0003 (7) 

O2 0.0241 (10) 0.0137 (9) 0.0178 (10) −0.0048 (8) 0.0020 (8) 0.0017 (7) 

C1 0.0140 (11) 0.0141 (11) 0.0092 (12) −0.0015 (9) 0.0002 (9) −0.0006 (10) 

C2 0.0141 (12) 0.0143 (12) 0.0079 (12) 0.0026 (10) −0.0001 (9) −0.0009 (10) 

C3 0.0155 (12) 0.0131 (11) 0.0106 (13) −0.0007 (10) 0.0032 (10) 0.0007 (9) 

C4 0.0137 (12) 0.0147 (10) 0.0085 (12) 0.0014 (11) −0.0003 (10) −0.0020 (9) 

C5 0.0188 (13) 0.0163 (11) 0.0094 (12) 0.0021 (10) 0.0001 (9) 0.0022 (10) 

C6 0.0159 (12) 0.0149 (12) 0.0131 (13) 0.0008 (10) 0.0005 (10) 0.0015 (9) 

C7 0.0165 (13) 0.0173 (11) 0.0135 (13) −0.0026 (10) 0.0025 (10) −0.0019 (10) 

 
 
Geometric parameters (Å, °) 

Cl1—C7 1.814 (3) C3—H3 0.9500 

N1—O1 1.223 (3) C4—C5 1.392 (4) 

N1—O2 1.229 (3) C4—C7 1.501 (3) 

N1—C1 1.473 (3) C5—C6 1.389 (4) 

C1—C6 1.384 (4) C5—H5 0.9500 

C1—C2 1.389 (3) C6—H6 0.9500 

C2—C3 1.383 (4) C7—H7A 0.9900 

C2—H2 0.9500 C7—H7B 0.9900 

C3—C4 1.398 (3)   

O1—N1—O2 123.7 (2) C3—C4—C7 120.3 (2) 
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O1—N1—C1 118.3 (2) C6—C5—C4 120.2 (2) 

O2—N1—C1 118.0 (2) C6—C5—H5 119.9 

C6—C1—C2 122.7 (2) C4—C5—H5 119.9 

C6—C1—N1 118.8 (2) C1—C6—C5 118.4 (2) 

C2—C1—N1 118.5 (2) C1—C6—H6 120.8 

C3—C2—C1 118.1 (2) C5—C6—H6 120.8 

C3—C2—H2 120.9 C4—C7—Cl1 109.01 (17) 

C1—C2—H2 120.9 C4—C7—H7A 109.9 

C2—C3—C4 120.5 (2) Cl1—C7—H7A 109.9 

C2—C3—H3 119.7 C4—C7—H7B 109.9 

C4—C3—H3 119.7 Cl1—C7—H7B 109.9 

C5—C4—C3 120.0 (2) H7A—C7—H7B 108.3 

C5—C4—C7 119.7 (2)   

O1—N1—C1—C6 −177.5 (2) C2—C3—C4—C7 177.6 (2) 

O2—N1—C1—C6 2.1 (3) C3—C4—C5—C6 1.3 (4) 

O1—N1—C1—C2 1.3 (3) C7—C4—C5—C6 −177.4 (2) 

O2—N1—C1—C2 −179.1 (2) C2—C1—C6—C5 −0.3 (4) 

C6—C1—C2—C3 0.5 (4) N1—C1—C6—C5 178.5 (2) 

N1—C1—C2—C3 −178.3 (2) C4—C5—C6—C1 −0.6 (4) 

C1—C2—C3—C4 0.2 (4) C5—C4—C7—Cl1 84.1 (3) 

C2—C3—C4—C5 −1.1 (4) C3—C4—C7—Cl1 −94.6 (2) 
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B.5 Single Crystal X-ray Diffraction Data 

N-(4-methoxybenzyl)formamide 

 

 

 

GregMc5.cif 
 
Crystal data 
C8H8O3S Dx = 1.527 Mg m−3 
Mr = 184.20  

Monoclinic, P21/c Mo Kα radiation  
λ = 0.71073 Å 

Hall symbol: -P 2ybc Cell parameters from 3791 reflections
a = 6.0820 (6) Å θ = 2.5–36.3° 
b = 7.9205 (9) Å µ = 0.36 mm−1 
c = 16.639 (2) Å T = 90 K 
β = 90.547 (7)°  
V = 801.51 (15) Å3 Needle fragment, colorless 
Z = 4 0.25 × 0.17 × 0.12 mm 
F000 = 384  
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Data collection 
Nonius KappaCCD (with Oxford Cryostream) 
diffractometer 18757 measured reflections 

Radiation source: fine-focus sealed tube 3774 independent reflections 
Monochromator: graphite 3439 reflections with I > 2σ(I) 
 Rint = 0.016 
T = 90 K θmax = 36.3° 
 θmin = 2.8° 
ω scans with κ offsets h = −9→10 
Absorption correction: multi-scan 
HKL Scalepack (Otwinowski & Minor 1997) k = −13→13 

Tmin = 0.905, Tmax = 0.958 l = −27→27 
 
Refinement 
Refinement on F2 Secondary atom site location: difference Fourier map 
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites 

R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of 
independent and constrained refinement 

wR(F2) = 0.104   w = 1/[σ2(Fo
2) + (0.0487P)2 + 0.3939P]  

where P = (Fo
2 + 2Fc

2)/3 
S = 1.08 (Δ/σ)max < 0.001 
3774 reflections Δρmax = 0.70 e Å−3 
114 parameters Δρmin = −0.59 e Å−3 

 Extinction correction: SHELXL, 
Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 

Primary atom site location: structure-invariant direct 
methods Extinction coefficient: 0.020 (4) 

 
Special details 
 
Geometry. All e.s.d.’s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix. The cell e.s.d.’s are taken into account individually in the estimation of e.s.d.’s in distances, 
angles and torsion angles; correlations between e.s.d.’s in cell parameters are only used when they are defined by 
crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.’s is used for estimating e.s.d.’s involving l.s. 
planes. 
 
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based 
on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 
2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-
factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will 
be even larger. 
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Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

 x y z Uiso*/Ueq  

S1 0.75956 (4) 0.55565 (3) 0.328970 (13) 0.01469 (7)  

O1 0.60022 (15) 0.46206 (11) 0.28158 (5) 0.02440 (17)  

O2 0.94738 (14) 0.46614 (10) 0.36146 (5) 0.02142 (15)  

O3 0.11445 (14) 0.95140 (10) 0.60157 (5) 0.02330 (16)  

C1 0.40855 (15) 0.80778 (11) 0.53594 (6) 0.01526 (15)  

C2 0.61667 (16) 0.73782 (13) 0.54798 (6) 0.01697 (16)  

H2 0.6847 0.7431 0.5996 0.020*  

C3 0.72500 (15) 0.66025 (12) 0.48451 (5) 0.01542 (15)  

H3 0.8673 0.6130 0.4921 0.019*  

C4 0.62101 (14) 0.65319 (11) 0.40982 (5) 0.01355 (14)  

C5 0.41248 (15) 0.72340 (13) 0.39671 (6) 0.01715 (16)  

H5 0.3444 0.7175 0.3452 0.021*  

C6 0.30648 (15) 0.80199 (13) 0.46026 (6) 0.01682 (16)  

H6 0.1656 0.8514 0.4523 0.020*  

C7 0.29828 (17) 0.89007 (13) 0.60491 (6) 0.01929 (17)  

H7 0.382 (3) 0.894 (2) 0.6550 (10) 0.023*  

C8 0.85351 (17) 0.72538 (13) 0.27034 (6) 0.01864 (17)  

H8A 0.9507 0.7971 0.3030 0.028*  

H8B 0.7276 0.7918 0.2512 0.028*  

H8C 0.9347 0.6817 0.2242 0.028*  

 

Atomic displacement parameters (Å2) 

 U11 U22 U33 U12 U13 U23 

S1 0.01545 (11) 0.01553 (10) 0.01311 (10) 0.00019 (7) 0.00093 (7) −0.00131 (6) 

O1 0.0247 (4) 0.0279 (4) 0.0207 (3) −0.0078 (3) 0.0006 (3) −0.0090 (3) 

O2 0.0226 (3) 0.0216 (3) 0.0201 (3) 0.0091 (3) 0.0019 (3) 0.0010 (3) 

O3 0.0241 (4) 0.0226 (3) 0.0234 (4) 0.0058 (3) 0.0053 (3) −0.0015 (3) 

C1 0.0159 (3) 0.0143 (3) 0.0156 (3) 0.0004 (3) 0.0018 (3) 0.0007 (3) 

C2 0.0173 (4) 0.0201 (4) 0.0135 (3) 0.0025 (3) −0.0009 (3) 0.0000 (3) 

C3 0.0139 (3) 0.0182 (4) 0.0141 (3) 0.0025 (3) −0.0006 (3) 0.0009 (3) 
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C4 0.0127 (3) 0.0150 (3) 0.0129 (3) 0.0001 (3) 0.0004 (2) 0.0005 (3) 

C5 0.0134 (3) 0.0227 (4) 0.0153 (4) 0.0016 (3) −0.0019 (3) −0.0006 (3) 

C6 0.0135 (3) 0.0197 (4) 0.0173 (4) 0.0019 (3) 0.0001 (3) 0.0000 (3) 

C7 0.0229 (4) 0.0180 (4) 0.0171 (4) 0.0021 (3) 0.0037 (3) −0.0010 (3) 

C8 0.0201 (4) 0.0210 (4) 0.0149 (4) −0.0003 (3) 0.0028 (3) 0.0020 (3) 

 

 
Geometric parameters (Å, °) 

S1—O2 1.4450 (8) C3—C4 1.3901 (13) 

S1—O1 1.4477 (8) C3—H3 0.9500 

S1—C8 1.7596 (10) C4—C5 1.4001 (13) 

S1—C4 1.7716 (9) C5—C6 1.3907 (13) 

O3—C7 1.2198 (13) C5—H5 0.9500 

C1—C2 1.3944 (13) C6—H6 0.9500 

C1—C6 1.3994 (13) C7—H7 0.972 (17) 

C1—C7 1.4854 (13) C8—H8A 0.9800 

C2—C3 1.3929 (13) C8—H8B 0.9800 

C2—H2 0.9500 C8—H8C 0.9800 

O2—S1—O1 118.38 (6) C5—C4—S1 119.44 (7) 

O2—S1—C8 108.81 (5) C6—C5—C4 119.02 (8) 

O1—S1—C8 107.96 (5) C6—C5—H5 120.5 

O2—S1—C4 108.05 (4) C4—C5—H5 120.5 

O1—S1—C4 108.43 (5) C5—C6—C1 119.60 (8) 

C8—S1—C4 104.31 (5) C5—C6—H6 120.2 

C2—C1—C6 120.70 (8) C1—C6—H6 120.2 

C2—C1—C7 118.64 (9) O3—C7—C1 124.05 (10) 

C6—C1—C7 120.66 (8) O3—C7—H7 120.0 (10) 

C3—C2—C1 120.11 (8) C1—C7—H7 116.0 (10) 

C3—C2—H2 119.9 S1—C8—H8A 109.5 

C1—C2—H2 119.9 S1—C8—H8B 109.5 

C4—C3—C2 118.75 (8) H8A—C8—H8B 109.5 

C4—C3—H3 120.6 S1—C8—H8C 109.5 
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C2—C3—H3 120.6 H8A—C8—H8C 109.5 

C3—C4—C5 121.81 (8) H8B—C8—H8C 109.5 

C3—C4—S1 118.73 (7)   

C6—C1—C2—C3 −0.36 (15) O1—S1—C4—C5 −39.48 (9) 

C7—C1—C2—C3 −179.77 (9) C8—S1—C4—C5 75.39 (8) 

C1—C2—C3—C4 −0.48 (14) C3—C4—C5—C6 −0.15 (15) 

C2—C3—C4—C5 0.74 (14) S1—C4—C5—C6 −179.02 (7) 

C2—C3—C4—S1 179.62 (7) C4—C5—C6—C1 −0.70 (14) 

O2—S1—C4—C3 12.15 (9) C2—C1—C6—C5 0.96 (14) 

O1—S1—C4—C3 141.61 (8) C7—C1—C6—C5 −179.64 (9) 

C8—S1—C4—C3 −103.52 (8) C2—C1—C7—O3 −178.10 (10) 

O2—S1—C4—C5 −168.94 (8) C6—C1—C7—O3 2.48 (16) 
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