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ABSTRACT 

A tetraphosphine ligand rac-et,ph-P4 (Et2PCH2CH2(Ph)PCH2P(Ph)CH2CH2PEt2) is used 

for the formation of a highly active and regioselective bimetallic hydroformylation catalyst. The 

proposed active catalytic species in acetone, [Rh2H2(µ-CO)2(rac-et,ph- P4)]
2+

, is formed in situ 

under H2/CO pressure. This is one of the most impressive examples of cooperativity in 

homogeneous catalysis. The fragmentation of this catalyst by CO has been investigated and 

confirmed by in situ NMR spectroscopic studies. A new tetraphosphine ligand rac-et,ph-P4-Ph 

(et,ph-P4-Ph = Et2P(o-C6H4)P(Ph)CH2(Ph)P(o-C6H4)PEt2) has been synthesized to combat this 

fragmentation problem. However, the inability to successfully separate the meso and racemic 

diastereomers led to the attempted alteration of the et,ph-P4 tetraphosphine ligand.  Where the 

et,ph-P4-Ph ligand attempts to change the traditional ligand via altering the carbon system between 

internal and external phosphines, these systems attempt to replace the methylene linker between 

the internal phosphines with an amine linker. 

 Experimentation has been conducted on the basis of a retrosynthetic analysis with the 

possibility of two pathways for formation of these aza-bridged ligands. The first synthetic route 

involves a simple Grignard-mediated phosphorus-carbon coupling reaction between an amine 

bridge of the type RN(PhPCl)2 with the “small arm” phosphine moiety Et2P(o-C6H4)I.  Impurities 

in the starting material and decreased reactivity of the amine bridge led to results that were 

undesirable. The second synthetic route relies upon coupling of the “large arm” phosphine moiety 

Et2P(o-C6H4)PPhCl with a primary amine to afford the desired ligand.  This route was also 

unsuccessful due to the inability to obtain the pure phosphorus compound due to the “large arm” 

reaction not consistently going to completion.   
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CHAPTER 1:  INTRODUCTION TO HYDROFORMYLATION 

1.1 History 

Otto Roelen’s transition from the Kaiser-Wilhelm Institute to Rurchemie in 1934 was a 

significant milestone for aldehyde synthesis.  While working there he was given the task of 

recycling “gasol”, short chain alkenes (C2-C4), by their incorporation with ammonia into higher 

order hydrocarbons used in the Fischer-Tropsch process.
1
  Near the end of 1937 while working 

on this project he discovered a white propionaldehyde-ammonia product coating the walls of the 

reactor; experiments were performed to optimize reaction conditions for the synthesis of  

propionaldehyde and on September 20, 1938 the first patent for the “oxo process” was filed.
1
  

The oxo proces, also known as hydroformylation, synthesizes a mixture of linear and branched 

aldehydes by reacting alkenes, carbon monoxide (CO), and hydrogen in the presence of a 

catalyst under pressure as depicted in Scheme 1.1.  

 

Scheme 1.1.  General depiction of the hydroformylation reaction. 

1.2 Cobalt Catalyzed Hydroformylation 

The first industrial scale hydroformylation reactions were begun by Ruchemie in 1942 

utilizing the catalyst precursor Co2(CO)8 as seen in Heck’s accepted catalytic cycle for this 

process in scheme 1.2.  The dicobalt species A is hydrogenated to the key active catalytic 

intermediate HCo(CO)4, B.  Dissociative substitution occurs between a CO ligand and an alkene, 

yielding C. The alkene then inserts into the Co-H bond forming an alkyl carbonyl complex D. 
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Scheme 1.2.  Heck and Breslow’s proposed Co hydroformylation mechanism. 

The alkyl ligand of complex D undergoes a migratory insertion with a cis-CO ligand.  A 

carbonyl ligand adds to the newly formed 16 e- complex to give the 18 e- acyl species E. Heck 

proposed two ways to complete his catalytic cycle.  Via the monometallic pathway, CO 

dissociates from the saturated complex to allow oxidative addition of H2 F.  This is then followed 

by the reductive elimination of the acyl group with a hydride yielding the aldehyde product and 

returning to species B.  For his intermolecular bimetallic ending, E and B perform an 

intermolecular reductive elimination, yielding the aldehyde product and returning to the dicobalt 

cluster A.  Species A is again hydrogenated to yield the key catalytic intermediate.  The 

bimetallic pathway is only possible in high CO concentrations which would be needed to sustain 
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these species.  With standard conditions ranging from 160-200 
o
C and pressures from 100-300 

atm being unable to provide sufficient CO for its stability, its likelihood was abandoned.   

Around the same time Heck proposed the Co hydroformylation mechanism, Shell 

researchers Slaugh and Millineaux found that alkyl phosphines increased catalyst regio-

selectivities for linear product.
2-4

  Though their findings did increase l:b ratios from 3-4:1 to 8-

9:1 they also significantly increased the amount of undesirable hydrocarbon side products.
2,5

  Co 

catalysts also tend to reduce aldehydes to alcohols which were often the end destination of the 

aldehydes. But due to Co’s relatively poor chemoselectivity to the aldehyde itself, the other 

metals of group 9 as well as the surrounding metals on the periodic table were investigated to 

determine their viability for hydroformylation catalysis.   

1.3 Rhodium Catalyzed Hydroformylation  

It took nearly two decades from the inception of hydroformylation to make its way to the 

exploration of  rhodium as a potential metal for catalysis.
6
  In the early 1950’s it was known that 

rhodium was more active than cobalt for hydroformylation under significantly less harsh 

conditions, which would balance out the cost difference between Co and Rh.  The earliest 

investigations into Rh hydroformylation were performed with alkyl phosphines and halogenated 

Rh precursors.  At the time it was unknown that both of these reactants impede hydroformylation 

due to alkyl ligands making stable complexes due to increased π-backbonding of CO and 

halogens essentially poisoning the active catalyst.
6-8

   It was not until the research of Wilkinson 

in 1968 and Pruett in 1969 that we gained a true sense of rhodium’s potential.
5,7

  They 

discovered that combining Rh and aryl phosphines would not only yield better chemo- and 

regioselectivities, but would also be capable of operating under milder conditions:
7
  70-120 

o
C 
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and H2/CO (syngas) pressures ranging from 5-25 atm; today’s standard conditions. These 

findings made possible the first industrial process using ligand modified rhodium catalysts by 

Celanese in 1974.
6
  Today hydroformylation is one of industry’s largest homogenous processes, 

yielding 10
6 

tons of aldehyde per year.
2,6,9,10

  Today most reactions are performed by rhodium-

modified catalysts for C8 and lower olefins but for longer chain alkenes cobalt is still the metal of 

choice due to larger alkanes usually being in mixtures of isomers rather than pure and the ability 

of Co to isomerize internal alkenes to their terminal analogues.
2
   

 

Scheme 1.3.  Proposed and accepted mechanism for Rh catalyzed hydroformylation.  

Scheme 1.3 depicts Wilkinson’s mechanism for hydroformylation using a PPh3 modified 

rhodium catalyst which is nearly identical to the mechanism proposed by Heck.
7
  Starting with 

an active 5-coordinate complex, a carbonyl ligand dissociates to yield a 16 e- species and 

initiates the catalytic cycle.  From this point on, the catalyst runs through the following sequence 
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of steps:  1) the coordination of an alkene to the catalyst, 2) insertion of the alkene into the metal-

hydride bond producing the metal alkyl complex, 3) formation of an acyl complex via migratory 

insertion of CO into the metal-alkyl bond, 4) oxidative addition of molecular hydrogen to the 

meal complex, and 5) reductive elimination of the aldehyde and bringing us back to our 4-

coordinate species ready for association of an  alkene to continue the cycle.  Throughout the 

intermediates of the catalytic cycle one thing that remains constant is the attachment of two 

phosphines, the importance of which can be seen in Scheme 1.4.   

 

Scheme 1.4.  Relationship between Rh-PPh3 dissociation and selectivity. 

At greater carbonyl concentrations with little to no phosphine we get a very active but not 

selective catalyst.  On the other extreme, if we have only phosphine ligands attached we get no 

catalysis at all due to the bulk around the metal center not allowing an alkene to coordinate.  

With selectivity being of the upmost importance, there must be a balance between the steric and 

electronic properties of the ligand to obtain the highest l:b ratios.  The most common ligands 

traditionally used for commercial rhodium catalyzed hydroformylation are monodentate 

phosphines, especially PPh3.  Because of the ease at which these ligands dissociate from the 

metal complex large excesses upwards of 400 equivalents per mmol Rh are required to maintain 

this balance.
6
  For inexpensive and easily synthesized tertiary ligands such as PPh3 this is not a 

major concern.   
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With the realization of the importance of coordination of two phosphorous species on the 4-

coordinate active complex, researchers began investigating diphosphines and diphosphites as 

possible ligands.  As early as 1966 bidentate ligands were used for catalysis with promising 

results with the use of Ph2PCH2CH2CH2PPh2 (dppp).  In 1975 Weinkauff and associates reported 

promising results using diphosphines for hydrogenation.
11

  The earliest bidentate ligands used to 

study hydroformylation were similar in structure to dppp; but none of these ligands showed any 

improvement over PPh3.  It wasn’t until the efforts of Devon in 1987 at Eastman Chemicals that 

diphosphines became applicable to large scale hydroformylation.
12,13

   

To understand the delay of implementing bidenate ligands productively to hydroformylation 

we must consider the trigonal bipyramidal structure of the 5-coordinate complex; consisting of  

 

Figure 1.1.  Basic diphenylphosphino- backbone and Devon’s BISBI ligand  

three ligands in an equatorial plane and two axial ligands dissecting that plane at 90
o
.  For 

species similar to dppp, the angle formed between the metal and the two phosphines is roughly 

90
o
.  These ligands were only able to bind in an axial-equatorial (ae) fashion whereas Devon’s 

BISBI ligand with a 124
o
 bite angle coordinates bis-equatorially (ee) which has been found to 



7 

 

 

increase l:b selectivity.
13,14

   Since this discovery there has been enough research to support this 

general rule; whether it be a phosphine or phosphite, bidentate ligands with a bite angle closer to 

120
o
 yield higher l:b ratios than those with angles near 90

o
.  

1.4 Polymetallic Catalysis 

When changes to a catalyst for a desired product are needed or researched, these adjustments 

are often done by either modifying the ligand or using a different ligand all together.  In 

hydroformylation these changes do not necessarily change how the metal behaves in the 

reaction; but the rates at which ligands and olefin associate/dissociate, as well as the position of 

the olefin R-group in respect to other ligands through steric effects.  But there have been 

investigations into the performance of metal clusters as catalysts.  Heck himself proposed 

bimetallic cooperativity between HCo(CO)4 and Co(acyl)(CO)4 complexes to perform an 

intermolecular hydride transfer and subsequent reductive elimination of the aldehyde and 

formation of Co2(CO)8.
4
  In the mid 1970’s the idea of metal cluster catalysis was enhanced 

through the efforts of Muetterties through his cluster-surface analogies and his catalysis with 

Ni4[CNC(CH3)3]7.
15-19

  Soon after, there were reports of Rh cluster catalyzed oxidation and Co 

and Rh Carbonyl clusters being viable catalyst precursors for hydroformylation.   

In 1977 Pittman and reported the use of cobalt clusters performing hydroformylation with 

indications that no fragmenting was taking place.
20

  Subsequent spectroscopic studies provided 

further evidence that little or no cluster fragmentation was taking place in these systems.
21

 There 

have been studies of [HRu3(CO)11]

 performing hydroformylation with l:b ratios as high as 

98.6:1.4.
22

  This system’s rates, however, are very poor and average less than 50 turnovers over 
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66 hrs, which isn’t surprising considering the activity of transition metals for hydroformylation; 

Rh >> Co >> Ir, Ru > Os > Pt > Pd > Fe >Ni.   

Though there have been a few studies of metal cluster catalysis without fragmenting taking 

place, none of these studies have clear proof of metal cooperativity taking place.  For the cases 

where Rh clusters were used for hydroformylation, most rates and selectivities are similar to, and 

did not rule out the possibility of fragmenting to their monometallic analogues.   

1.5 Rhodium Bimetallic Catalysis with et,ph-P4 

To minimize fragmentation and to enhance the likelihood of bimetallic cooperativity, 

Stanley tethered two rhodium centers together with the tetraphosphine ligand 

Et2PCH2CH2(Ph)PCH2P(Ph)CH2CH2PEt2 (et,ph-P4).
23-28

  This system remains the only known 

example of hydroformylation with extremely strong evidence for bimetallic cooperativity.  This 

system rivals the best monometallic systems for a combination of rate and selectivity as seen in 

Table 1.1.   

Because of the chiral centers of the two internal phosphines, et,ph-P4 exists as meso- and 

racemic diastereomers.  Reacting rac- or meso-et,ph-P4 with 2 equivalents of [Rh(nbd)2]BF4 

produces the catalyst precursor [rac- or meso-Rh2(nbd)2(et,ph-P4)]
2+

 seen in Figure 1.2.  In 

addition to the racemic closed-mode species [rac-Rh2H2(-CO)2(CO)2(et,ph-P4)]
2+

, 2, being 

more than 20 times faster than the meso-complex for hydroformylation, it also has far fewer 

alkene isomerization and hydrogenation side reactions.  This species prefers bimetallic 

cooperativity via an intramolecular hydride transfer that allows the reductive elimination of the 

aldehyde with a l:b ratio of 25:1. The [rac-Rh2H2(-CO)2(CO)2(et,ph-P4)]
2+

 catalyst is far 

superior to the meso complex and equal or better than most of the best monometallic systems.   
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Table 1.1  Comparison of Stanley’s catalyst with some of the best known monometallic catalysts 

in pure acetone solvent and a 30% water acetone mixture.  Conditions:  90°C; 90 psig 1:1 

H2/CO; 1 M 1-hexene; 1 mM catalyst).
29

 

Catalyst % H2O Initial TOF* (min
1

) Aldehyde l:b % iso 

rac-et,ph-P4 0 20 25:1 2.5 

rac-et,ph-P4 30 73 33:1 <0.5 

Rh/PPh3 0 13 9:1 <0.5 

Rh/PPh3 30 17 14:1 1.0 

Rh/BISBI 0 25 70:1 <0.5 

Rh/BISBI 30 37 80:1 2.0 

Rh/Naphos 0 27 120:1 1.5 

Rh/Naphos 30 35 100:1 2.2 

Rh/Xantphos 0 13 80:1 5.0 

Rh/Xantphos 30 28 60:1 <0.5 

 * TOF = turnover frequency 

 

 

Figure 1.2.  [rac-Rh2(nbd)2(et,ph-P4)]
2+

 and the free racemic and meso ligands.   

One notable difference is that it does not require excess ligand unlike virtually all monometallic 

phosphine catalysts.   It should be noted the meso-catalyst can do an intramolecular hydride 

transfer, but it is far more difficult for it to form the lower energy doubly-bridged edge-sharing 

bioctahedral closed-mode intermediates.   
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Scheme 1.5  Proposed mechanism for the bimetallic catalyst rac-et,ph-P4.  

Stanley’s proposed mechanism begins with the oxidative addition of H2 giving species A of 

Scheme 1.5.  This complex then performs an intramolecular hydride transfer between the two 
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rhodium centers giving the first bimetallic cooperativity step, generating the key catalytic species 

2 through the intermediate 2*. Complex 2 undergoes a dissociative substitution between CO and 

an alkene to generate species B.  Migratory insertion of the alkene into the rhodium-hydride 

bond followed by the association of CO produces the alkyl species C.  Another migratory 

insertion occurs, with CO entering the alkyl-rhodium bond forming the acyl complex D.  The 

second key cooperative step occurs with the intramolecular hydride transfer to reductively 

eliminate the final aldehyde product.  Addition of two CO ligands produces the bridged complex 

[rac-Rh2(μ-CO)2(CO)2(et,ph-P4)]
2+

, 4*, which can also react with another CO to reform 3 or 

directly react with H2 to form 2*.  

Evidence for the proposed bimetallic mechanism was provided partly through the synthesis 

of the following P2 ligand based catalysts where bimetallic cooperativity would be highly 

unlikely:  [Rh(nbd)(P2)](BF4) where P2 = Et2PCH2CH2PEt2, Et2PCH2CH2PMePh, 

Et2PCH2CH2PPh2, or Ph2PCH2CH2PPh2).  Using these species for hydroformylation resulted in 

only very small amounts of hydroformylation with very poor l:b ratios and 50 to 70% alkene 

isomerization and hydrogenation side reactions. 

One shortcoming of this catalyst system is that CO promotes fragmentation of the 

dirhodium catalyst generating complexes that are very poor at hydroformylation.  The 

fragmentation of this catalyst is different than that experienced by monometallic Rh-phosphine 

catalysts where an unsaturated Rh- center can add P-Ph, P-OR, or even P-CH2Ph bonds through 

oxidative addition, ultimately leading to phosphine and catalyst degradation.  We believe that our 

dirhodium catalyst fragments by losing one of the Rhodium atoms to product the inactive 18e- 

saturated monometallic complex 5, and the double-P4 coordinated dirhodium complex 6 seen in 

scheme 1.6.   
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Scheme 1.6.  Proposed fragmentation equilibria for the dirhodium rac-et,ph-P4 catalyst 

The root of the problem appears to be the facile dissociation of the chelating arms from Rh.  

The flexibility of the ethylene-bridged chelate combined with the higher oxidation state of the 

Rh(II) centers appears to be working against the effectiveness of the chelate effect.  David Aubry 

found that using a 30% water/acetone solvent system inhibits the loss of Rh keeping the 

equilibrium between 2, E, and B.  Darina Polakova showed that water also promotes the loss of 

H
+
 from the dicationic dihydride 2 to produce the more stable and less reactive monocationic 

dirhodium catalyst [rac-Rh2H(-CO)2(CO)(et,ph-P4)]
+
.
30

  This monocationic species is far less 

susceptible to loss of Rh.  Although it is less active than the dicationic system, there is more 

present with higher resistance to deactivation leading to the improved rates and selectivity in 

aceton-water solutions.   

This equilibrium is strongly influenced by both H2 and CO and nicely explains H2/CO 

pressure and ratio results from Bobby Barker.
31

 Species E should be less regioselective than 2 
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due to the dissociation of the sterically directing PEt2 group.  The observed aldehyde 

regioselectivity observed reflects the relative amounts of 2 and E present.  At low CO and high 

H2 pressures the highly selective dirhodium catalyst 2 is most abundant, but under normal 

conditions selectivity is diminished by the less selective but more active catalyst E.   

The primary focus of this dissertation is the investigation of impeding the fragmentation of 

the dirhodium catalyst.  Chapter 2 will address this by describing the reason, methods and results 

of experiments related to synthesizing a stronger chelating ligand by modifying the bridge 

between the internal and external phosphine.  Attempts to modify the traditional et,ph-P4 by 

augmenting the phenylene linker of the internal phosphine will also be discussed.  These 

experiments will be aimed toward product-catalyst separation by changing the solubility of the 

traditional tetraphosphine catalyst and reducing leaching into the product liquor.  Chapter 3 will 

discuss attempts at synthesizing aza-bridged tetraphosphine ligands.  It is believed that the amine 

bridge would afford an increased diastereoselectivity for the racemic rather than meso- 

diastereomer.     
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CHAPTER 2:  SYNTHESIS OF A STRONGER CHELATING TETRAPHOSPHINE 

LIGAND 

 

2.1  Introduction 

One shortcoming of our catalyst system is that under higher CO concentrations, the catalyst 

undergoes fragmentation.  The fragmentation of this catalyst is different than that experienced by 

monometallic Rh-phosphine catalysts.  Usually, Rh-center can add P-Ph, P-OR, or even P-

CH2Ph bonds through oxidative addition, ultimately leading to phosphine and catalyst 

degradation.  We believe that our dirhodium catalyst fragments by losing one of the rhodium 

centers to produce the inactive 18e- saturated monometallic complex 5, and the double-P4 

coordinated dirhodium complex 6 seen in scheme 2.1.   

 

Scheme 2.1.  Proposed fragmentation equilibria for the dirhodium rac-et,ph-P4 catalyst. 

 

The root problem appears to be the facile dissociation of the chelating arms from Rh leading 

to loss of one of the rhodium centers and loss of bimetallic cooperativity.  The flexibility of the 
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ethylene-bridged chelate combined with the cationic charge on the Rh(II) centers appears 

weaken the Rh-P bonding and the effectiveness of the chelate effect.   

The primary focus of this chapter is the synthesis and attempted isolation of the stronger 

chelating tetraphosphine ligand et,ph-P4-Ph.  The intent of this stronger chelate between the 

internal and external phosphines is simply to reduce the likelihood of a reductive elimination of 

H2 and subsequent formation of the electron deficient Rh metal center F of scheme 2.1.     

 

Figure 2.1.  Depiction of the et,ph-P4-Ph and  traditional et,ph-P4 tetraphosphine ligands 

 

2.2 Synthetic Strategies 

The synthesis of et,ph-P4-Ph was challenging and  required the development of different 

strategies encompassing a variety of organic transformations pioneered by Alex Monteil.
1
  Our 

synthesis of the original et,ph-P4 ligand required a simple and neat photochemical reaction to 

couple the easily synthesized (Ph)(H)PCH2P(H)(Ph) building block with 2.0 equiv. of the readily 

prepared  Et2P(CH=CH2).  In marked contrast, the difficulties in the synthesis of et,ph-P4-Ph lie 

in preparing two 1-(Et2P)-2- phenylphosphinobenzene moieties tethered via a methylene bridge.  

Although there arze many 1,2-bisphopshinobenzene ligands reported in the literature, in every 

case in which the phosphines are ortho to one another we also found the ligand to be comprised 
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of phosphines that were identical.
2-9

   With this in mind, we had to create a rather different 

approach to synthesizing this novel species.  The approaches taken are based on the 

retrosynthesis of the desired et,ph-P4-Ph complex with the route receiving zthe most focus being 

directly related to the three starting components A, B, and C of Scheme 2.2.  The logical 

approach for us is based on using the easily synthesized bis(phenylphosphino)methane.  Multiple 

approaches have been taken based upon these 3 components with varying degrees of success.  

The results of those being discussed in the following sections will be based on organomagnesium 

and organolithium chemistry.   

 

Scheme 2.2  Retrosynthesis of et,ph-P4-Ph to three reagent components. 

2.3 Development of 1-Dialkylphosphino-2-halobenzene Moieties   

The basis of our work stems from the work of Hart in the synthesis of 1-(diethylphosphino)-

2-chlorobenzene from o-dichlorobenzene.  His monophosphine product is prepared by treating 

dichlorobenzene with nBuLi.  While he reported yields as high as 50% with dichlorobenzene and 
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66% with dibromobenzene, attempts to reproduce his works with o-dibromobenzene have only 

given maximum yields of 22%.  An explanation for the low yield was provided by Chen et al.
10 

in their study of the thermal decomposition of o-bromophenyllithium.  They found that the 

metallated intermediate was stable at 110 
o
C in ether:THF (1:1) for only 2 h.  Allowing the 

reaction mixture to warm up to 90 
o
C resulted decomposition to benzyne and a multitude of 

other compounds.  More recently, Bennett et al.
11 

have developed a route to synthesize A in 

much larger yields (70%) by reaction of EtMgI with 1-(dichlorophosphino)-2-bromobenzene in 

diethyl ether (Scheme 2.3).   

 

Scheme 2.3.  Bennet’s Synthesis of 1-diethylphopshino-2-bromobenzene(A) 

This route requires the multistep synthesis of 1-(dichlorophosphino)-2-bromobenzene from 

o-bromoaniline with yields of only 24%.  A viable and possibly easier route involving a Grignard 

reagent intermediate was also reported by Hart
9 

for the synthesis of 1-(diethylphosphino)-2-

chlorobenzene from o-dichlorobenzene in 50% yield.  In this method he treated magnesium with 

1,2-dichlorobenzene while refluxing.  Unreacted Mg was separated and the resulting Grignard 

intermediate was treated with PEt2Cl at 0 
o
C.  We have attempted this route for the preparation of 

compound A using the starting material o-dibromobenzene.  Again we were unable to attain 

Hart’s yields:  our isolated yields being less than 10% using Mg turnings and a slightly better 

20% with Mg powder.   



20 

 

 

 

Scheme 2.4.  In situ Grignard synthesis of 1-diethylphopshino-2-bromobenzene(A).  

We discovered an interesting alternative in the work of Boymond et al
13

 who applied an 

iodine-magnesium exchange mechanism for the preparation of highly functionalized aryl 

Grignard reagents.  In particular, they reported the preparation of the Grignard reagent Br(o-

C6H4)MgBr in high yield (95%) via this powerful method, which has been utilized in the 

preparation of aromatic aldehydes and allylic compounds
13

,
 
as well as polyfunctional unsaturated 

amines.
14

  But its utilization in the synthesis of aryl phosphines has not been reported.   

We believed that this synthetic route would be suitable for the synthesis of compounds 

similar to A by reaction of iPrMgBr with the appropriate o-dihalobenzene reagent, followed by 

addition of the PEt2Cl.  Various reaction conditions have been investigated in the preparation of 

compound A, and the results of this study are summarized in Table 2.1.  We decided upon the 

use of iPrMgBr as a source of Mg as opposed to the reportedly more reactive iPr2Mg due to the 

easier preparation of the former reagent.
14,15 

The synthesis of A was performed with 1-bromo-2-

iodobenzene (entries 1 and 2), o-dibromobenzene (entries 3-8), and o-diiodobenzene (entries 9 

and 10)  on the reaction.   When 1-bromo-2-iodobenzene was used, the yield appeared highly 

dependent on the addition temperature.  Thus, the yield went from 60% when reaction additions 

were performed at 40
o
C and 78

o
C to only 40% when both additions were performed at 25 

o
C 

and the aryl Grignard intermediate was allowed to warm up to room temperature (entries 1 and 

2).   
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Table 2.1.  Dependence of the halide-magnesium exchange reaction on starting reagent and 

the reaction conditions for the preparation of arylphosphines. 

 

 

Entry Substrate Reaction Conditions Product % Yield 

1 
 

1.1 eq. iPrMgBr , 40 
o
C, 1h 

1.1 equiv. PEt2Cl, 78 
o
C 

A 60 

2 

 

1.1 eq. iPrMgBr, 25 
o
C, 2h; 25 

o
C, 1h 

1.1 equiv. PEt2Cl, 78 
o
C 

A 40 

3 

 

1.1 eq. iPrMgBr, 40 
o
C, 1h 

1.1 equiv. PEt2Cl, 78 
o
C 

A 9 

4 

 

1.1 eq. iPrMgBr, 0 
o
C, 16h 

1.1 equiv. PEt2Cl, 27 
o
C 

None None 

5 

 

1.1 eq. iPrMgBr, 0 
o
C, 2h 

1.1 equiv. PEt2Cl, 0 
o
C 

A 43 

6 

 

1.1 eq. iPrMgBr, 0 
o
C, 2h 

1.1 equiv. PEt2Cl, 25 
o
C 

A 64 

7 

 

1.1 eq. iPrMgBr, 0 
o
C, 4h 

1.1 equiv. PEt2Cl, 25 
o
C 

A 66 

8 

 

1.1 eq. iPrMgBr, 0 
o
C, 6h 

1.1 equiv. PEt2Cl, 25 
o
C 

A 77 

9 

 

1.1 eq. iPrMgBr, 0 
o
C, 2h 

1.1 equiv. PEt2Cl, 25 
o
C 

A 68 

10 

 

1.1 eq. iPrMgBr, 0 
o
C, 6h 

1.1 equiv. PEt2Cl, 25 
o
C 

A 81 
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The lack of reactivity of o-dibromobenzene at low temperature led us to investigate higher 

reaction temperatures.  Performing the additions at 25 
o
C and 0 

o
C did not generate any product 

(entry 4), but performing the additions at 0
o
C and 25

o
C gave much better results (entries 5-8).  

It is important to note that the temperature of the second addition appears to be more important as 

yields are more affected when this part of the reaction is allowed to occur at temperatures at or 

above 0 
o
C (entries 4-6).  No product is observed when it is performed at room temperature 

(entry 4) and yields begin to increase as this addition occurs between 0 
o
C and 25 

o
C with yields 

being slightly higher as this temperature was closer to 25 
o
C.  In contrast, the best results are 

obtained when the addition of iPrMgBr is performed at 0 
o
C, which avoids crystallization of the 

Grignard intermediate, followed by stirring at 0 
o
C for 6 h to allow the reaction to proceed to 

completion, and finally, addition of Et2PCl at 25 
o
C (entries 7 and 10).  In addition to giving the 

best results, this method also has the advantage of generating a very clean reaction mixture by 
31

P 

NMR seen in figures 2.2 and 2.3.   

 

Figure 2.2.  Crude 
31

P NMR of 1-diethylphosphino-2-bromobenzene synthesized  

from o-dibromobenzene.   
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Figure 2.3.  Crude 
31

P NMR of 1-diethylphosphino-2-iodobenzene synthesized  

from o-diiodobenzene.  

Equipped with this knowledge we undertook the task of changing the alkyl groups directly 

attached to the phosphorus atom.  With alkyl groups consisting of 2 carbons or greater, we made 

the R2PCl precursor and simply attached them to the (2-iodophenyl)magnesium bromide 

intermediate as was done to synthesize 1-diethylphosphino-2-bromobenzene.  This synthesis 

worked for dicyclohexyl-, ditertbutyl-, disecbutyl-, and dineopentyl(2-iodophenyl)phosphine.   

Attempts using this same method to synthesize (2-iodophenyl)dimethylphosphine were 

successful but only gave 50% yields (Scheme 2.5b).  This was mainly a consequence of not 

being able to separate Me2PCl from its THF reaction solvent.  Uncertainties about the exact 

amount of Me2PCl being used is the reason isolated yields are low for this phosphine.  The 
31

P 

NMR of the crude reaction mixture, however, is fairly clean so qualitatively this reaction is 

proceeding in high yield.  Using the synthesis of the dichloro(2-iodophenyl)phosphine complex, 

which could be isolated, and substituting chloro-groups for methyl groups on the phosphine 

resulted in a 20% increased yield for this compound.  The crude NMR for dimethyl(2-
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iodophenyl)phosphine can be seen in figure 2.4.  The product peak can be seen at δ = 43.1 ppm 

with a minor volatile impurity at 22.9 ppm.   

   

Scheme 2.5.  a) Initial synthesis for (2-iodophenyl)dimethylphosphine and  

b) the modified preparation. 

 

 

 

Figure 2.4.  Crude 
31

P NMR of dimethyl(2-iodophenyl)phosphine 

2.4.  Synthesis of Methylenebis(chlorophenylphosphine) 

The preparation of methylenebis(chlorophenylphosphine), C, has been accomplished in two 

different ways via the methodologies developed by Stelzer et al,
16 

(Scheme 2.6a), and 
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Schmidbaur and Schnatterer
17 

(Scheme 2.6b).  While these methods give acceptable yields, they 

are lengthy and necessitate the preparation of too many intermediates.  

 

Scheme 2.6.  Synthesis of methylenebis(chlorophenylphosphine) by (a) Stelzer  

and (b)Schnatterer.   

 

We have opted for an easier and efficient method, namely the chlorination with C2Cl6 which 

was developed by Weferling,
17

 which Alex Monteil
1
 has applied, with success, to the preparation 

of chlorinated bisphosphine compounds in our group (Scheme 2.7).   

 

Scheme 2.7.  Synthesis of methylenebis(chlorophenylphosphine) utilizing C2Cl6 Reflux 
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     The reaction was attempted under different conditions as reported in table 2.2.  We first 

utilized toluene (entry 1) as the reaction solvent in an identical manner as previously described. 

A solution of the methylenebis(phenylphosphine) in toluene was added at to a concentrated (1.0 

M) solution of C2Cl6 also in toluene, which resulted in a yellow mixture.  Upon heating at 140 
o
C 

for 18 h, the reaction medium became black, and its content was then analyzed by 
31

P NMR 

spectroscopy.  The desired chlorinated product is present with a major resonance at δ = 81.7 ppm 

(s) (lit.= 81.8 ppm, s), but we also observe two resonances at δ= 161.8 ppm (s) and δ= 86.8 

ppm (s) representing 40% of the phosphorus nuclei as determined upon integration of the signals.  

Schmidbaur and Schnatterer
18 

have reported that compound C is subject to thermolability which 

results in its decomposition, at temperatures above 100 
o
C, into volatile PhPCl2 and a polymer 

residue, thus preventing its distillation in vacuo. 

 Table 2.2.  Conditions for the synthesis of methylenebis(chlorophenylphosphine) via  

         Werferling’s procedure. 

 

Entry Solvent Conditions % Yield 

1 Toluene 140 
o
C for 18h None isolated 

2 THF 80 
o
C for 18h None isolated 

3 Et2O 45 
o
C for 18 h 80-90 % 

 

The formation of by-products in toluene at high temperatures prompted us to utilize a 

low-boiling point solvent that would allow us to purify the product, provided the reaction was 

cleanly conducted, by simple removal of the solvent in vacuo with the minimal heat applied 

(i.e., lower than 80 
o
C).  Hexachloroethane is soluble in THF and diethyl ether and thus these 

solvents appeared attractive as they would allow its facile removal in vacuo.  THF was 

subsequently (entry 2) used, yielding a 
31

P NMR similar to that of reactions conducted in 
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toluene.   The reaction in (entry 3) was performed by mixing the reagents at 25 
o
C prior to 

applying heat (45 
o
C) for 24 h.  The completion of the reaction was indicated by the 

appearance of a pink coloration, and 
31

P{
1
H} NMR spectroscopy of the crude reaction 

medium showed the product C as the primary phosphorus-containing product (Figure 2.5). 

However, upon cooling to ambient temperature, a white solid deposited on the walls of the 

Schlenk flask, but its nature could not be determined, although it does not contain phosphorus 

nuclei by 
31

P NMR spectroscopy, leading us to speculate that it is unreacted C2Cl6.  

  

Figure 2.5.  Crude 
31

P NMR of methylenebis(chlorophenylphosphine).  

Purification of the product was attained through filtration of the reaction medium through a 

plug of Celite to remove the solid by-product(s), and concentration in vacuo at 65-70 
o
C gave a 

pink oil which was pure compound C as confirmed by 
31

P, 
1
H, and 

13
C NMR spectroscopies. 
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2.5.  Synthesis of bis((2-(diethylphosphino)phenyl)(phenyl)phosphine)methane 

2.5.1.  Organolithium P-C Coupling Reactions 

The metallation of phosphine B to the lithium phosphine is the logical next step in the 

preparation of rac,meso-et,ph-P4-Ph (Scheme 2.8). The preparation of o-lithiophenyldiphenyl-

phosphine, o-LiC6H4PPh2, has been reported on different occasions. It was first reported by 

Hartley et al.
19 

via the lithium- bromide exchange reaction between nBuLi and 1-bromo-2-

(diphenylphosphino)benzene in diethyl ether (Scheme 2.9).   

 

Scheme 2.8.  Lithiation of diethylphosphino-2-halobenzene 

 
 

Scheme 2.9.  Preparation of o-LiC6H4PPh2 via Li-Br exchange reaction 

Tunney and Stille
20

, on the other hand, have reported its preparation in THF at 78 
o
C.  

Finally, Bennett et al.
11 

have also prepared this lithium complex in diethyl ether in 87% yield.  

Harder and co-workers
21 

have isolated the lithium complex and have been able to determine its 

structure by single crystal X-ray diffraction.  Thus, they found that the compound consists of 

dimeric aggregates in which the Li ions are solvated by an additional diethyl ether molecule.  

They also reported its slow decomposition in THF at 20 
o
C. 
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The o-lithium-phenylenediphenylphosphine compound has been utilized in conjunction with 

PhPCl2 to produce (o-C6H4PPh2)2PPh (Scheme 2.10a),
18 

as well as with Ph2PCl to generate o-

C6H4(PPh2)2 (Scheme 2.10b),
19 

and it was also utilized as a bridging ligand in the preparation of 

digold(I) complexes.
17

   

 
 

Scheme 2.10.  Preparation of (a) bis-(o-diphenylphosphinophenyl)phosphine,
 
and 

(b) o-bis(diphenylphosphino)benzene.   

Hart
9 

demonstrated that B readily undergoes facile lithium-bromide exchange with n-BuLi 

in diethyl ether at room temperature to give the etherate precipitate.  He also used this lithiated 

arylphosphine in the preparation of o-phenylenebis(diethylphosphine) in moderate yields 

(Scheme 2.11).   

 

Scheme 2.11.  Preparation of Li etherate and conversion to o- phenylenebis(PEt2). 

Additionally, Bennett et al.
11 

have prepared this lithium complex in diethyl ether with 

nBuLi, and utilized it as bridging ligand in the preparation of digold(I) complexes.  We have 
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attempted the preparation of the Li-etherate via the lithiation of B, and its use in situ in 

conjunction with chlorinated bisphosphine C for the preparation of the tetraphosphine ligands 

rac,meso-et,ph-P4-Ph (Table 2.3).   

Table 2.3.  Attempted preparation of rac- and meso-et,ph-P4-Ph via Li mediated P-C coupling. 

Entry  Solvent Temperature Results 

   Step 1 Step 2  

1 

 

THF 78 
o
C/1h  Decomposition 

2 

 

THF 35 
o
C/1.5h  Decomposition 

3 

 

Et2O 
0 

o
C/1h 

 

0
o
C/1h 

25 
o
C/1h 

80 
o
C/24h 

Decomposition 

4 

 

Et2O 25 
o
C/30 min 25 

o
C Decomposition 

5 

 

THF 78 
 o
C/6h 78 

o
C/6h Decomposition 

 

The addition of an n-hexane nBuLi solution to B in THF (entries 1 and 2) or diethyl ether 

(entries 3 and 4) led to the formation of a yellow/orange to red coloration.  The subsequent 

addition of a solution of C in the same solvent gave rise to a brown (entries 1 and 2) or mustard 

(entries 3 and 4) precipitate.  Isolation of the lithiated intermediate was attempted, but without 

success, and 
31

P NMR spectroscopy of the solution did not yield a clean enough spectrum for 

interpretation.   
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In entries 1, 3, and 4, we observe the decomposition of B to Et2PPh.  The reaction performed 

in THF at 78 
o
C (entry 1) generates an undetermined resonance at δ= 19.8 ppm (s), while the 

reactions in diethyl ether (entries 3 and 4), with or without heating, gives rise to resonances in 

the region δ= 25.0 to 32.0 ppm, which have not been assigned due to the poor resolution of 

the spectra.  When the formation of the Li-etherate is conducted at 35 
o
C in THF followed by 

the addition of C at 0 
o
C (entry 2), we obtain a clean spectrum with only two resonances at δ= 

22.6 ppm (s) and δ= 31.8 ppm (s), but the simplicity of these signals does not support the 

presence of rac- or meso-et,ph-P4-Ph, as this species has a complex second order coupling 

pattern.
1
 Performing the reaction with B in THF (entry 5) did not yield the desired tetraphosphine 

ligands, but generated instead a sharp resonance at δ= 20.4 ppm (s) and broad resonances in 

the regions δ= 13.0 to 16.0 ppm and 28.0 to 33.0 ppm (Figure 2.6). 

 

Figure 2.6.  
31

P NMR spectrum from the lithium-mediated P-C coupling reaction of B with C. 
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2.5.2. Grignard-Mediated P-C Coupling Reaction 

 
The last strategy we have devised for the synthesis of rac,meso-et,ph-P4-Ph employs 

Grignard-mediated phosphorus-carbon coupling reactions.  The first step is a halide-magnesium 

exchange reaction and is essentially identical to that proposed previously in this work, followed 

by the phosphorus-carbon coupling reaction between the arylphosphine Grignard intermediate 

and the dichlorobisphosphine C.  This reaction was attempted with B, and the results are 

summarized in table 2.4.   

Table 2.4.  Results of the Grignard-mediated P-C coupling reaction of B and C. 

Entry Substrate Conditions Results 

1 B 
1.0 eq.  iPrMgBr, 0 

o
C/5 h 

0.5 eq. C, 25 
o
C, 25 

o
C/18h 

Unreacted B and Et2PH 

2 B 
2.0 eq.  iPrMgBr, 0 

o
C/5 h 

0.5 eq. C, 25 
o
C, 25 

o
C/18h 

rac,meso-et,ph-P4-Ph 

 

The addition of 1.0 equiv. of a THF solution of iPrMgBr to a solution of B (entry 1) in THF 

at 0 
o
C generated an orange reaction mixture, which, C in THF, became yellow as it was allowed 

to warm to ambient temperature.  The 
31

P{
1
H} NMR spectrum of the products shows the 

presence of a main resonance at δ= 13.8 ppm (s), which could correspond to either unreacted B 

or the product resulting from the decomposition of B (i.e., Et2PH). 

Two additional resonances are also observed at δ= 11.7 ppm (s) and δ= 12.1 ppm (s).  

The nature of these resonances was ascertained through a simple reaction conducted in an NMR 

tube which consisted in the treatment of a solution of C in THF with a few drops of the iPrMgBr 

solution to produce the bisphosphine methylenebis(isopropylphenylphosphine), C’.  Analysis of 
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the mixture by 
31

P{
1
H} NMR spectroscopy revealed two resonances at δ= 11.6 ppm (s) and 

δ= 12.0 ppm (s), thus confirming the nature of one of the products as being the two 

diastereomeric forms of C’.  The Grignard reagent iPrMgBr appears to react preferentially with 

C, and we can conclude that B is not reactive enough and will remain unchanged in the reaction 

medium. 

The addition of 1.0 equiv. of a THF solution of iPrMgBr to a solution of B in THF at 0 
o
C 

produced a beige solution.  The reaction mixture was stirred at 0 
o
C for 8 h in order to allow the 

iodide-magnesium exchange reaction to complete, and a solution of C in THF was subsequently 

added at 25 
o
C, which generated a light green mixture.   

Upon allowing the reaction medium to slowly warm to room temperature, the solution 

turned beige and was stirred an additional 18 h at room temperature until completion.  The 
31

P 

NMR spectroscopic analysis of the intermediate arylphosphine Grignard p (Figure 2.7) exhibits 

one major resonance at δ= 10.3 ppm (s), which is likely compound p, and two minor 

resonances at δ= 13.4 ppm (s) and δ= 15.3 ppm (s), which appeared to be impurities.    

  

Figure 2.7.  
31

P{
1
H} NMR spectrum of the reaction of B with iPrMgBr. 
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The NMR spectrum obtained in THF upon reaction of p with Cl(Ph)PCH2P(Ph)Cl exhibits a 

second order pattern, which indicates the presence of rac- and meso-et,ph-P4-Ph (Figure 2.8, 

expansion).  Indeed, the resonances at δ= 23.0 to 33.0 ppm shows a second order coupling 

pattern which is consistent with an AA′BB′ spin system for rac- and meso-et,ph-P4-Ph.  The 

spectrum shows the presence of unreacted B at δ= 0.5 ppm (s), as well as the decomposition 

product B′ at δ= 15.0 ppm (s).   

  

Figure 2.8.  
31

P{
1
H} NMR spectrum of the crude reaction mixture of  

o-(PEt2)(MgBr)C6H4 (p) and Cl(Ph)PCH2P(Ph)Cl. 

Purification of the product mixture was performed by distillation in vacuo removed 

unreacted B and Et2PH byproduct.  The distillation residue was obtained as a highly viscous and 

thick white paste, which was then dissolved in EtOH and cooled to 70 
o
C for purification by 

precipitation.  A white powder which dissolved in EtOH at room temperature was obtained, and 

its separation from the EtOH solvent was attempted via cold filtration via a cannula equipped 
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with a glass tube that had filter paper on one end and a small septum on the other, but with little 

success.  Centrifugation of the solution led to partial isolation of the solid prior to it melting.  The 

31
P NMR spectrum of the solid is shown in Figure 2.9.  The spectrum exhibits resonances 1-12 

(shown in the expansion in Figure 2.7), but these appear with a slightly different coupling pattern 

than that observed in the crude reaction mixture.  But the position and pattern is consistent with 

rac,meso-et,ph-P4-Ph.
1
    

  

Figure 2.9.  
31

P{
1
H} NMR spectrum of the distillation residue upon  

crystallization from EtOH. 

The solubility of the solid residue in various solvents was tested in order to select an 

adequate recrystallization solvent.  The solubility was found to be in the following decreasing 

order:  CH2Cl2 ~ EtOH ~ DMF > THF > benzene ~ hexanes > H2O.  Further purification was 

attempted by recrystallization using two well-known techniques:  (i) recrystallization at low 

temperatures (i.e. 25 
o
C or 0 

o
C, depending on the solvent employed);  and (ii) recrystallization 
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by slow evaporation of the solvent.  Both techniques were attempted with CH2Cl2, EtOH, DMF, 

THF, and benzene, as well as with THF/hexanes and EtOH/H2O solvent mixtures with no 

success. 
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CHAPTER 3.  SYNTHESIS OF AMINE BRIDGED TETRAPHOSPHINE LIGANDS 

3.1.  Introduction 

     As mentioned in the previous chapter the fragmentation problem motivated Prof. Stanley to 

design a new ligand that would have a more rigid framework using o-phenylene linked arms to 

hold the external phosphines in closer proximity to the metal center.  We call this ligand et,ph-

P4-Ph, or P4-Ph.  Using a 1,2-disubstituted phenylene bridge instead of the rotationally more 

flexible ethylene groups in the P4 framework generates an extremely strong chelating 

bisphosphine compound.  The synthetic scheme to build this ligand was designed by Dr. Alex 

Monteil and features Mg-I exchange reactions (Scheme 3.1).
1  

  

Scheme 3.1.  Synthetic scheme for the et,ph-P4-Ph ligand. 

We worked out an improvement in which 1,2-diiodobenzene has been replaced by 1-bromo-

2-iodobenzene to ensure that the first reaction of iPrMgBr and the aryl halide only occurs at one 

site on the benzene ring to decrease the chance of byproducts.  Personal attempts to separate the 
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meso- and racemic diastereomers of the P4-Ph ligand have been unsuccessful.  Attempts were 

made to make derivatives of the P4-Ph ligand by adding different groups onto the para position 

on the internal phenyl rings (Fig. 3.1).  This was done in hopes of achieving the desired 

separation of the racemic and meso- isomers of the ligand by recrystallization.  We have been 

successful in forming the –NMe2 and –t-Bu para-substituted primary halophosphines (83% 

yield).   

 

Figure 3.1.  et,ph-P4-Ph with para-substituted internal phenyl rings. 

Reduction of these compounds to the primary phosphines was attempted with lithium 

aluminum hydride, but only the phenylphosphine ring with the t-Bu moiety could be reduced. 

Having accomplished this, the next step was to form the bisphosphine bridge.  The overall yield 

for the synthetic scheme was extremely low (9%) so higher yield routes to this general ligand 

framework are still needed.   

The next step of ligand evolution came in the form of “PNP” type ligands.  By replacing the 

methylene bridge with a tertiary amine bridge might allow an easier isomer separation (Fig. 3.2). 

It could also simplify the synthesis due to higher yielding routes to P-N(R)-P bridges. 
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Figure 3.2.  The new aza-bridged et,ph-P4-Ph ligand. 

 
3.2.  Changes in the Catalyst by Ligand Variation 

3.2.1.  The et,ph-P4 Ligand 

The original tetraphosphine ligand, et,ph-P4, is a coordinating ligand that strongly binds to 

the metal centers.  Normally, an alkylated phosphine ligand is too strong a  donor to use 

successfully in rhodium-catalyzed hydroformylation.  It causes the CO ligands to bond too 

strongly to the rhodium centers because of the increased electron density on the metal center and 

increased -backdonation to the CO ligands.  Dissociation of a CO ligand is vital to allow a 

saturated 18-electron complex to form a reactive 16-electron complex allowing coordination of 

the alkene or H2.  To allow facile dissociation of a CO ligand, the strong donor ability of the P4 

ligand is compensated by having a dicationic (or monocationic when water is present) dirhodium 

catalyst.
3
 

3.2.2.  The et,ph-P4-Ph Ligand 
 

The new et,ph-P4-Ph is a weaker -donor/better -acceptor due to the ethylene linkages 

being replaced by mildly electron-withdrawing ortho-phenylene linkages.  This should decrease 

the electron density on the rhodium centers allowing for faster dissociation of CO ligands.  More 

electron deficient metal centers typically lead to a more active hydroformylation catalyst. 
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Regioselectivity of the product should not be a major concern with the P4-Ph ligand because our 

catalyst containing the et,ph-P4 is not subjective to the normal distortion of monometallic 

catalysts upon alkene addition due to the rigid structure enforced by the ligand, Rh-Rh bonding, 

and bridging CO ligands.  The closer proximity of the external phosphorus atoms to the metal 

centers caused by the ortho-phenylene linkages may not completely inhibit dissociation of the 

arms due to the decreased donor ability of all the phosphorus atoms of the ligand, but it should 

coordinate orders of magnitude more strongly than our first generation et,ph-P4 ligand. 

3.2.3. The RN-P4-Ph Ligands 

Replacing the methylene bridge with an amine bridge can have interesting electronic and 

steric effects on the catalyst.  The flexibility of the bridge should change a little due to the 

amine’s ability to adopt a trigonal planar geometry.  Peterson and coworkers
2 performed an ab 

initio study comparing diphosphinomethane (dpm) and diphosphinoamine (dpa). It showed that 

the optimal central angle for dpm is 113° while the optimal angle for dpa is 122° as it adopts a 

trigonal planar geometry (sp
2 hybridized N atom).  These calculations are in agreement with 

solid state structures of bis(diphenylphosphino)amine (dppa) and bis(diphenylphosphino)methane 

(dppm).   

The tension placed on the ligand when chelating a single metal due to the larger natural 

central angle of the PNP-ligand may explain why these ligands have a stronger tendency to 

bridge two metal centers rather than chelate a single metal center.  The central angle for dpa, 

122°, is closer to the angle needed to bridge two metal centers, 125°-130°.  Conforming to this 

ideal bridging geometry only requires a 1.3 kcal mol
1

 distortion for dpa, while 5.6 kcal mol
1

 is 

required for dpm.  Favoring binuclear coordination is exactly what we want for our catalyst, 
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since one of the fragmentation pathways leads to a chelated and thermodynamically very stable 

mononuclear complex (see Scheme 1.6).  The ability to easily add a wide variety of central R 

groups to the N-atom of the PNP ligand is also a big advantage that we do not have with the P-

CH2-P-based ligands.  Adding a bulkier group to the central N-atom could favor closed-mode 

bimetallic structures that we believe are important in catalysis. 

These PNP ligands can also be tuned to favor chelation.  Recently, Butcher and coworkers
5
 

have reported diphosphazanes with bulky groups attached to the phosphorus atoms, 

EtN[P(OR)2]2 (R = bulky C6H3
i
Pr2-2,6 and C6H3Me2-2,6).  These groups cause a decrease in the 

central PNP bond angles to bring them closer to the angles needed to chelate one metal center, 

109.5° and 113.1° respectively.  The phenyl rings on the internal phosphorus atoms can be 

substituted in the ortho positions with methyl, ethyl, or isopropyl substituents to possibly 

decrease the PNP angle.  Adding the amine bridge will cause the internal phosphines to be better 

electron donors than the methylene bridged phosphines, and the alkyl group attached to the amine 

can be altered to tailor the donation of the internal phosphines.  This added donor tunability could 

be used, if necessary, to combat some of the decrease in the donation caused by the ortho- 

phenylene linkages. 

As stated previously, the rac-ligand is the desired form and makes the active catalytic 

species.  Norman and coworkers reported 9-12:1 meso:rac ratio for the synthesis of 

iPrN[PhP(iPrNH)]2.
6
  Our normal et,ph-P4 ligand racemizes at 120°C to give a 48%/52% 

meso/rac mixture after approximately 12 hours.  The new PNP ligands may not be able to 

withstand these temperatures which could lead to decomposition of the ligand.  This might pose a 

serious problem in ligand synthesis if we cannot obtain a good quantity of the racemic ligand.   
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Replacement of the methylene bridge with an amine bridge can cause significant changes in 

the coordination and structural features of the formed complexes.  With suitable substituents on 

the P and N atoms, these ligands can stabilize metal-metal bonds, which we believe is important 

in our hydroformylation catalysis.  A review by Balakrishna et al. highlights a large variety of 

PNP-Mx complexes.
7  As seen in Figure 3.3, PNP ligands can cause formation of clusters, 

bridged species without M-M bonds, bridged species with multiple metal-metal bonds, and metal 

centers containing bidentate and monodentate ligands. 

 

Figure 3.3. Some examples of PNP-metal complexes. 

 
3.3. Fragmentation and Side Reactions of PNP Ligands 

 

Several problems may arise with the use of PNP ligands. These ligands are susceptible to 

metal assisted cleavage when complexed with transition metals to give undesired products (Fig. 

3.4).
8
  Cleavage of a P-N bond can lead to iminophosphane type bridging ligands that donate to 

the metal centers through the phosphorus and nitrogen of the fragmented ligand and a separate 



44 

 

 

bridging phosphide ligand.  It has recently been reported that the reaction of P(III)-N bonds of 

PNP compounds with aldehydes can lead to phosphine oxidation accompanied by C-insertion 

into the P-N bond or formation of a-hydroxy phosphine oxides.
9
   

 

Figure 3.4. Some examples of metal assisted cleavage of PNP ligands. 

As seen in Scheme 3.2, when bis(diphenyl- phosphino)alkylamines were treated with 2 

equivalents of furfural, benzaldehyde or paraformaldehyde, C-insertion of the carbonyl carbon 

occurred in the P-N bond with oxidation of phosphorus from P(III) to P(V).   

 

Scheme 3.2.  Fragmentation of PNP ligands via reaction with aldehydes.   

 

This is similar to the Pudovik reaction (Scheme 3.4a).  The proposed mechanism for this 

reaction is illustrated in Scheme 3.3.  It begins with nucleophilic attack on the carbon by the 
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nitrogen atom to form species B.  The lone pair of electrons on the phosphorus atom attacks the 

R group on the positively charged ammonium ion, which forms species C.  The negatively 

charged oxygen attacks the positive phosphorus center to form a 1,3,2- oxazaphosphorine 

compound (D).  The oxazaphosphorine then forms a phosphine oxide (E) and an imine (G).  

Electrophilic addition of F onto the N-C double bond leads to the formation of complex H which 

has electron deficient nitrogen.  The positive charge on the nitrogen can be stabilized by the 

adjacent phosphorus atom (I) to allow carbonyl migration of the R group and give the final 

product (J).   

 

Scheme 3.3.  Proposed Mechanism for C-insertion into a P-N bond 

Another possible reaction that can occur with aldehydes is the formation of a- hydroxy 

phosphine oxides, similar to the Abramov reaction (Scheme 3.4b).  This reaction occurs from an 

initial P-N bond similar to the cleavage to form cleavage to form Ph2P(O)H, which reacts with 

the aldehyde to form the a-hydroxy phosphine oxide.  These reactions (Scheme 3.2) have not yet 

been shown to occur while the ligand is bound to a metal center, which we find encouraging. 

But, if our catalyst does lose a rhodium center as proposed in Scheme 2.6, formation of the -
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hydroxy phosphine oxide or C-insertion could occur when complex G is in solution with the 

aldehyde product of the hydroformylation reaction. 

 

Scheme 3.4.  (a) Pudovik and (b) Abramov reactions.   

3.4.  Applications 

After extensive searching, no literature results were obtained in which PNP ligands were 

effectively used in hydroformylation catalysts.  This is most likely due to the fact that simple 

PNP bridging or chelating ligands make poor hydroformylation catalysts.  They are however 

used in several other reactions.  In 1999, Gimbert and coworkers used a dicobalt compound 

containing a bridging PNP ligand with various substituents on the N and P atoms for use in 

asymmetric Pauson-Khand reactions.
10

  These ligands were very effective in the reaction with 

yields >98% with the bimetallic complex shown in Figure 3.5.   

 

Figure 3.5.  Bimetallic cobalt catalyst for asymmetric Pauson-Khand reactions. 
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These catalysts were also useful in providing the expected adduct from the less reactive 

indene in 72% yield, which is much higher than the best literature describing a 52% yield for this 

reaction.   

PNP ligands have been utilized as polymerization/oligomerization catalysts.  In 2001, Wass 

and coworkers reported a nickel(II) complex containing a bis(diarylphosphino)-methylamine 

ligand that was highly active toward the polymerization of ethylene yielding high molecular 

weight polymers (Fig. 3.6a).
11

  Its performance was near that of the best nickel-based systems.
12 

Another feature of this catalyst was that it was poison tolerant exhibiting activity with up to 10% 

(by volume) water content.  In 2007, they also reported up to 95% isoprene trimerisation with 

PNP-chromium catalysts (Fig. 3.6b).
13

  The activity, 660 h
1

, was more than two orders of 

magnitude higher than all previously reported isoprene trimerization catalysts. 

 

Figure 3.6.  (a) Isoprene trimerization catalyst;  (b) Ethylene polymerization catalyst. 

3.5.  Retrosynthesis of the Aza-Bridged Ligand  

To form the aza-bridged ligands, there are two possible disconnection points that would 

allow the ligand to be synthesized (Scheme 3.5).  Most of the synthesis relies on the work 

performed by Alex Monteil.
1
  His work, based on that of Boymond et al.,

14
 employed a simple 

iodine-magnesium exchange that was very effective in the synthesis of the arms of P4-Ph and 

produced yields in excess of  90%.  This technique was used to build both the “large arm” and 
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“short arm.”  At disconnection point 1 in Scheme 3.5, the large arm and a primary amine are 

coupled by a Sn2 reaction to form the aza-bridged ligand.  At disconnection point 2, the short 

arm is coupled with an “amine bridge” through a Grignard-mediated reaction to form the aza-

bridged ligand. 

 

Scheme 3.5  Retrosynthetic analysis of RN-P4-Ph ligands. 

3.5.1.  Synthesis of RN-P4-Ph by “Large Arm” Amine Coupling 

The short arm, (2-bromophenyl)diethylphosphine, is easily synthesized from 1-bromo-2- 

iodobenzene, iPrMgBr, and Et2PCl in excellent yield (>85%) and is isolated by distillation under 

reduced pressure (Scheme 3.6a).  To form the large arm chloro(2-(diethylphosphino)phenyl)-

phenylphosphine, the same basic procedure is followed and Et2PCl is reacted with the Grignard 

species (Scheme 3.6b).  Attempts were made with several solvents (heptane, hexane, pentane, 

benzene, petroleum ether, CH2Cl2, and THF) to isolate the desired large arm from the crude 
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reaction mixture (white paste-like substance) but all were unsuccessful in giving a pure 

compound.   

 

Scheme 3.6  Preparation of (a) (2-bromophenyl)diethylphosphine and (b) chloro(2- 

(diethylphosphino)phenyl)phenylphosphine utilizing halide-magnesium exchange reactions. 

 

Distillation of the compound under an inert atmosphere at reduced pressure (0.25 Torr) was 

unsuccessful and caused the product to decompose in the distilling flask due to the excessive 

heating (up to 280 °C).  One way to combat the isolation problem is to replace PhPCl2 with the 

mono protected species, (N,N-diethylamino)-chlorophenylphosphine.  A problem faced when 

trying to extract the large arm is that it cannot be treated with water to remove magnesium salts 

and quench unreacted Grignard reagent due to the reactive halophosphine, making solvent 

extractions difficult.  Professor Stanley suggested quenching with an organic soluble anhydrous 

[HNR3][anion] salt followed by an organic extraction.  This has not been performed, but may be 

worth researching.   

If the large arm is made in which the P-Cl bond is replaced with P-NEt2, a successful 

extraction could be performed and a pure compound isolated.  The protected phosphine is then 

treated with 4 equivalents of ethereal HCl to obtain the large arm.   
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Figure 3.7.  
31

P{
1
H} NMR spectra of products obtained from the deprotection of the mono- 

protected large arm. 

Initial results seemed impressive for the synthesis of the mono-protected large arm.  When 

the compound was deprotected with HCl, two products formed, a clear liquid and translucent 

crystals, both of which showed resonances in 
31

P{
1
H} NMR (Fig. 3.7).  The crystalline solid has 

been recrystallized by vapor diffusion, but has not been analyzed by x-ray crystallography.  It is 

likely that the solid is the same species as the liquid product that has been protonated by the large 

excess of HCl to make a phosphonium complex.  This reaction was performed again with a 

stoichiometric amount of ethereal HCl so that a protonated phosphorus species will be avoided. 

This reaction produced the same results.   

The Grignard reaction was performed a second time and it was confirmed by 
31

P NMR that 

the reaction did go to completion.  (N,N-diethylamino)chlorophenylphosphine was added 

dropwise at 25 °C and the solution was stirred overnight.  Upon quenching with water, a thick 

white precipitate formed in the aqueous layer.  The organic layer was removed and the aqueous 
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layer was extracted with diethyl ether.  The 
31

P{
1
H} NMR spectra (Fig. 3.8) of the crude organic 

extraction is somewhat different from the spectra obtained when it was first performed.  Though 

the peaks are in the same positions the intensities of those peaks have changed.  The aqueous 

quench layer needs to be analyzed to determine what species makes up the white precipitate.  

This may give some insight on whether the peak at 14 ppm is really the starting material that 

reformed during quenching or if it’s just a coincidence that the peak has the same chemical shift 

as the starting material.  Once this arm is attained coupling with a primary amine should afford 

the desired ligand, RN-P4-Ph. 

 

Figure 3.8.  
31

P{
1
H} NMR of what might be (N,N- diethylamino) 

[2(diethylphosphino)phenyl]phenylphosphine. 

 

3.5.2  Synthesis of RN-P4-Ph by Grignard-mediated “Small Arm” Amine Bridge Coupling 

The second synthetic approach to the aza-bridged ligands is using a Grignard-mediated 

coupling of the small arm and an amine bridge.  The amine bridge is synthesized from a primary 

amine slowly treated with 2 equivalents of PhPCl2 at 0°C while trapping liberated HCl with 

excess pyridine or NEt3 (Scheme 3.7a).  Filtration of the ammonium salts and removal of the 
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solvent in vacuo affords the amine bridge in 30-40% yield.  It was then discovered that the 

reaction to synthesize the amine-bridges never went to completion.  Some PhPCl2 was always 

present in the final solution.   

 

Scheme 3.7.  PNP bridge synthesis and attempted Grignard-mediated coupling. 

To correct this, the final mixture was treated again with 1 equivalent of the primary amine 

and excess pyridine or triethylamine.  This additional reaction was used to synthesize the tert-

butyl amine bridge and Figure 3.9 shows a large increase in the product peak (~120 ppm) and  

 

Figure 3.9.  
31

P{
1
H} NMR of t-butyl amine bridge after the initial reaction  

and second amine addition. 
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decrease in the the PhPCl2 peak (~162 ppm).  

The ethyl and cyclohexyl amine bridges need to be resynthesized according to this procedure 

in order to obtain pure compounds. The most recent amine bridge to be attempted is para-tert-

butyl aniline as the primary amine used.  The crude 
31

P{
1
H} NMR for this bridge (Fig. 3.10) 

shows two possible product peaks (112 ppm, 126 ppm) and a PhPCl2 peak (~162 ppm).   

 

Figure 3.10.  
31

P{
1
H} NMR of the initial reaction to form p-tert-butyl aniline  

bridge and after distillation. 

 

An attempt to remove the PhPCl2 by vacuum distillation (heated only to 85 °C to prevent 

decomposition) was made, but without success.  However, all the peaks in the NMR spectra 

changed.  There was a decrease in the PhPCl2 peak, an increase of the peak at 126 ppm, and a 

decrease in the peak at 112 ppm.  It is possible that the reaction requires more vigorous 

conditions to go to completion and that the peak at 112 ppm is the intermediate compound to the 

amine bridge.  The coupling step (Scheme 3.7b) was attempted between the cyclohexyl and tert-
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butyl amine bridges (both not purified) and the short arm but was unsuccessful after stirring at 

room temperature for 24 hours.  The crude reaction mixture contained only the initial reactants 

when analyzed by 
31

P{
1
H} NMR.  Refluxing the mixture for an additional 24 hours was 

attempted.in hopes that more vigorous reaction conditions would cause the desired reaction to 

occur, but with no success. 

        P(III)-N bonds are displayed as single bonds but analysis of the bond length shows that 

there is some double bond character present.  A P-N single bond is approximately 1.75 Å – 1.80 

Å, whereas the P-N bond lengths in PNP ligands are approximately 1.60 Å – 1.69 Å.  Partial 

double bond character most likely occurs because of the -interaction between the p orbital of the 

nitrogen and an empty d orbital of each of the phosphorus atoms.  Furthermore, the decrease in 

reactivity of the phosphorus atoms on the bridge is due to the presence of the nitrogen center.  

The lone pair on the nitrogen atom increases the nucleophilicity of the phosphorus atoms. 

Normally, the phosphorus can act as an electrophile in a substitution reaction because of the 

empty d orbitals, but an increase in nucleophilicity will make the phosphorus, in turn, less 

susceptible to nucleophilic attack. 

The Finkelstein reaction is a reaction in which an alkyl chloride or alkyl bromide is treated 

with sodium iodide (or potassium iodide) in acetone to afford an alkyl iodide.
3,15

  The 

transformation can occur by an SN1 or SN2 reaction depending on the nature of the alkyl halide.  

This reaction is an equilibrium reaction that follows Le Chatelier’s principle.  Sodium iodide is 

much more soluble in acetone than sodium chloride and bromide and the precipitation of these 

salts drives the reaction to completion by removing the chloride and bromide ions from solution. 

This same methodology was applied to the amine bridge in hopes that the phosphorus centers 

would be more reactive to nucleophilic attack with replacement of the chlorines for the better 
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leaving group, iodine.  The amine bridge was allowed to stir in the presence of KI for 24 hours in 

THF (Scheme 3.8a).  As time progressed, the solution became more orange and a yellow 

precipitate formed, which is indicative of the less soluble KCl.  The reaction was monitored by 

31
P{

1
H}NMR, but due to poor spectra, proof of a halide exchange is not definitive.  The last 

coupling step (Scheme 3.8b) has been performed without purification of the iodine-containing 

bridge and isolation of the product was attempted.  

 

Scheme 3.8.  Synthesis of RN-P4-Ph utilizing the Finkelstein reaction. 

The product that was formed from this reaction was more soluble in the aqueous layer than 

the organic layer and remained in the aqueous layer after workup.  This was not noticed until the 

aqueous layer was neutralized with bleach before discarding.  This sequence of reactions needs to 

be performed again and careful isolation of each intermediate must done in order to obtain clear 

evidence that the desired products are being made.  Also, the amine bridge was thought to be 

pure when the initial Finkelstein-type reaction was performed, however there was unreacted 

PhPCl2 present from the synthesis of the bridge that could have affected the reaction.   

3.6. Future Work 
 

This work has not yet afforded us with the RN-P4-Ph ligands, which is the ultimate goal for 

this project.  Synthesis of the large arm through the protected derivative followed by direct 

coupling with the primary amine has been performed, but cleaner methods of separating the 

deprotected moiety should be studied.  The Finkelstein-type reaction to give the desired ligand has 
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been done, but more work is needed to demonstrate whether the RN-P4-Ph ligand was indeed 

made.   

If one of these paths is successful, separation of the isomers is the next challenge.  Solvent 

crystallization will be attempted first since it gives a reasonable separation of the et,ph-P4 ligand. 

Separation of the isomers may be possible by HPLC, which should also be attempted.  To date, 

no real effort has been made to achieve a resolution of the ligand isomers with chiral resolving 

agents.  Diastereomeric crystallization of chiral molecules by way of chiral resolving agents is an 

older, well known method to obtain the desired compound.  This process is performed by a trial-

and-error basis due to the large number of resolving agents and solvent variations.  The most 

likely chiral compounds to give the desired separation are carboxylic acids, such as tartaric acids 

and amino acids.  This may be a good project to invest time into as it might prove very beneficial 

to our ligand separation problems. 
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CHAPTER 4.  EXPERIMENTAL 

4.1  General Notes 

All synthetic procedures were performed using standard Schlenk and dry box techniques.  

All solvents and chemicals used were purchased from Aldrich, Alfa Aesar, or Matrix scientific 

and used without further purification unless otherwise noted. 
1
H and 

31
P NMR spectra were 

recorded on a Bruker 250 MHz and 400 MHz (1H) spectrometer. All 
13

C NMR spectra were 

recorded on a bruker 400 MHz spectrometer.  
31

P chemical shifts are reported relative to H3PO4 

(external standard) and dichlorophenylphosphine(internal standard where applicable).   

4.2  Synthetic procedures related to the synthesis of et,ph-P4 

4.2.1 Phenylphosphine 
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In a 250 mL Schlenk flask, Dichlorophenylphosphine (36.3 g, 203 mmol) and 150 mL of 

tglyme were added.  To a separate 500 mL Schlenk Flask equipped with a stirbar, LAH (9 g, 237 

mmol) and 300 mL of tglyme were added.  Both flasks were placed in an ice bath 20 minutes 

prior to the addition of the dichlorophenylphosphine solution to the vigorously stirring LAH 

solution at a rate of 2-3 drops per second with a large bore cannula.  Upon completion of the 

addition, the reaction flask was allowed to come to room temperature and stir overnight and the 

product was obtained by trap-to trap distillation.  Acceptable yields are between 80-83% and 

greater than 99% purity.   

4.2.2 Methylenebis(phenylphosphine)  

  In a 250 mL Schlenk flask potassium hydroxide (28.6g, 477mmol) was dissolved in 

sufficient water to give a 56% solution.  This solution is to be placed in an ice bath and degassed 

for at least 20 minutes.  In a 500 mL Schlenk flask equipped with a stirbar phenylphosphine 
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(15g, 136mm), dichloromethane (5.79g, 68.1mm), and 150 mL of DMF were added and cooled 

in an ice bath as well.  With both flasks in an ice bath the KOH solution was added to the 

vigorously stirring phenylphosphine solution at a rate of 2-3 drops per second with a medium 

bore cannula.  Upon completion of the addition, the reaction flask was allowed to warm to room 

temperature and continue stirring for 6 hours.  100mL of degassed distilled water was added to 

the solution to quench the reaction as well as dissolve the produced salts.  The product was 

extracted from the aqueous solution with pentane or low boiling petroleum ether. The organic 

fractions were dried over sodium sulfate and concentrated to yield the semi-pure product.  

Stirring the crude mixture under vacuum removes volatile impurities gives the pure desired 

product.  Acceptable yields are between 40-50% and >90% purity. 

4.2.3 Diethylchlorophosphine 
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 In a Schlenk flask equipped with a stirbar, phosphorous trichloride (30.24g, 220mmol) 

and 40 mL of tglyme were added and cooled to 0 C.  To a separate Schlenk flask a diethyl zinc 

(29.93g, 242mmol) and 50 mL of tglyme were added and cooled to 0 C--A 10% excess of the 

diethyl zinc must be used or yields will be poor.  While maintaining ice baths the zinc solution 

was added to the vigorously stirring phosphine solution by cannula at a rate of 2 drops per 

second.  After completion of the addition, the resulting solution was allowed to warm to room 

temperature and the product was collected by trap-to-trap distillation.  Acceptable yields are 

>80% and >99% purity.   

4.2.4 Vinyldiethylphosphine 

 

 To a solution of vinyl magnesium bromide (137mL of a 1M THF solution), an equal 

volume of tglyme was added to a Schlenk flask equipped with a stirrbar.  Vacuum distillation 

was used to remove at least 95% of the THF.  To a separate Schlenk flask, 

diethylchlorophosphine (12.32 g, 101mmol) and 30 mL of tglyme were added.  Both solutions 

were placed in ice baths and the phosphine solution was added to the vigorously stirring 
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Grignard solution by cannula at a rate of 2-3 drops per second.  Upon completion of the addition, 

the reaction was allowed to warm to room temperature and the product was collected by trap-to-

trap distillation.  Acceptable yields are >70% with >99% purity  

4.2.5  Et, Ph-P4 

 

 In a Schlenk flask equipped with a stirbar, vinyldiethylphosphine (8.3g, 71.5mmol) and 

methylene bis(phenylphosphine) (7.96g, 34.5mmol) were added.  The sealed flask was placed in 

in the beam of UV light (xenon bulb) with stirring for a minimum of 8 hours.  Excess vinyl was 

removed by reduced pressure to give the rac, meso mixture of the ligand.  Yields are typically 

quantitative with >97% purity.   

4.2.6  Separation of the rac/meso-et,Ph-P4 diastereomers 

A mixture of racemic and meso ligand were diluted with approximately three times its 

volume in hexane and the resulting solution was placed in a freezer overnight.  While keeping 
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the flask at ice bath temperatures, the racemic ligand and hexanes transferred to a different flask 

via cannula to leave approximately 70% meso ligand behind—white solid at temperatures below 

-15.  Hexane was again added to the flask containing the meso and both flasks were placed in the 

freezer again overnight.  This process of separating the diastereomers from one another is 

performed until the racemic ligands purity is >80% purity.   

4.3 Synthetic procedures related to the synthesis of et,ph-P4-Ph  

4.3.1  General Considerations 

Phenylphosphine and methylene bis(phenylphosphine) are prepared by the same methods 

listed in 5.2 and will not be repeated.  Most of these reactions are light as well as moisture and 

air sensitive and required wrapping flasks in aluminum foil works to minimize exposure to light.  

(ls) will be at the end of the experiment name indicating light sensitive precautions must be 

taken. 

4.3.2 Methylenebis(chlorophenylphosphine) 
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  Methylene bis(phenylphosphine) (5.62g), hexachloroethane(12.23g), and 50 mL of diethyl 

ether were added to a Schlenk flask equipped with a stirbar.  This solution was allowed to reflux 

for at least 24 hours.  Crude NMR should be taken to determine the completion of the reaction.  

Upon completion of the reaction approximately half the solvent used was removed under 

vacuum leaving behind the solvent and initiating the precipitation of byproducts.  The solid 

byproducts were removed by gravity filtration with a celite plug.  The remaining solvent was 

removed under vacuum. It should be noted that this reaction should not be allowed to approach 

70 
o
C at any point.  Temperatures above this mark will begin to decompose the chlorinated 

bridge product.  Yields were quantitative with >90% purity. 

4.3.3 1-diethylphosphino-2-iodobenzene 

 

 A 1M THF solution containing diiodobenzene(15.087g, 45.7mmol) was cooled to 0 
o
C 

and slowly treated with a 0.73M(62.6 ml, 45.7mmol) isopropylmagnesium bromide solution by 
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cannula at a rate of 2 drop per second.  The reaction was kept at 0 C with moderate stirring for a 

minimum of 4 hours.  This reaction flask was subsequently cooled to -25 C.  A cooled 1M THF 

solution containing diethylchlorophosphine (5.7g, 45.7mmol) was slowly added to the Grignard 

solution by cannula at the previously stated rate.  Upon completion of the addition, this reaction 

was allowed to warm to room temp and stir overnight and subsequently quenched with degassed 

water. The product was obtained alkane solvent extraction and concentrated by vacuum 

distillation.  The product was further purified by purified by a short path vacuum distillation with 

a boiling point between 116-122 
o
C at 0.8 torr.  Product yields are typically 70-75% with >99% 

purity.   

4.3.4 1-diethylphosphino-2-bromobenzene  

 

  A 1M THF solution containing 1-bromo-2-iodobenzene (60.45g, 214mmol) was cooled to 

0 
o
C and subsequently treated with 203 mL(221mmol) of  1.09M isopropylmagnesium bromide 

by cannula at a rate of 2-4 drops per second.  The reaction is allowed to stir at 0 
o
C for a 
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minimum of 4 hours and then cooled to -25 
o
C.  A cooled 1M THF solution containing 

diethylchlorophosphine (26.61g, 214 mmol) was slowly added to the Grignard solution via 

cannula at the previously stated rate.  Upon completion of the addition, this reaction was allowed 

to warm to room temp and stir overnight, followed by quenching unreacted Grignard reagent 

with degassed water. The product was obtained via solvent extraction and concentrated by 

vacuum distillation.  The product was further purified by short path vacuum distillation with a 

boiling point of 110 
o
C.  Product yields are typically 70-72% with >99% purity.   

4.3.5 1-diethylphosphino-2-fluorobenzene  

 

  This compound was prepared using the same methods for species 5.3.3 and 5.3.4.  Product 

yields are typically 70-73% with >99% purity.   
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4.3.6  Attempted synthesis of rac,meso-et,ph-P4-Ph  

  A 1M THF solution of 1-diethylphosphino-2-iodobenzene (4g) was slowly treated with a 

0.5M THF isopropylmagnesium bromide (26mL) solution.  After stirring at 0 C for 6 hours, the 

Grignard solution was held at 0 C and added to a 1M Methylene 

bis(chlorophenylphosphine)(2.g) solution which had a maintained temperature of -25 C.  

Distilled water was added to the solution to quench unreacted Grignard.  The organic layer was 

extracted and the aqueous layer was washed with three 10mL equivalents of diethyl ether.  The 

combined organic layers were combined, dried over sodium sulfate, and run through an alumina 

column.  Solvents were removed by vacuum distillation and unreacted iodobenzene was 

removed via short path distillation, leaving behind a white paste with a slightly brown hue.  
31

P 

NMR yielded second order coupling, but the desired product was confirmed via a crystal 

structure by Dr. Alexandre Monteil. 
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4.3.7 Attempts toward the separation of the rac,meso-et,ph-P4-Ph diastereomers 

Ethers, toluene, pentane, hexanes, petroleum ether, C1-C4 alcohols, and mixed ratios of 

these various solvents were unsuccessfully used in the method commonly used to separate the 

et,ph-P4 diastereomoers.  At the milligram scale some successes were made in better purifying 

P4, but when approaching the multi-gram scale there were no promising results.  Neutral and 

basic alumina columns, as well as nickel complexation were used to separate the diastereomers 

but met no success.  Attempting to distill the neat product resulted in the decomposition of the 

product.   

4.4 Synthetic procedures related to modifying the traditional methylene bridge 

4.4.1 General Considerations 

To avoid writing a separate experimental for each modified phenylphosphine species, [R] 

will be used 5.4.2A to summarize the following:  N,N-dimethyl, tert-butyl, ethyl ester, and nitro. 

5.4.2B and onward [R] Tert-butyl and N,N-dimethyl substituted phenylphosphines as they were 

the only successfully synthesized species.  Though synthesis of bis((4-(tert-

butyl)phenyl)phosphino)methane was successful by 
31

P NMR, the product could not be isolated 

from any crude yield, making further exploration into ligands derived from bridges of this type 

unable to be performed.   
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4.4.2 bis(diethylamino)chlorophosphine 

 

  This addition was carried out at -78 
o
C.  A 10M, Diethylamine (147g, 2010 mmol) 

petroleum ether solution was slowly added to a vigorously stirring 0.1M phosphorus 

trichloride(43.8mL, 502 mmol) petroleum ether solution at a rate of 2 drops per second with a 

large bore cannula.  Upon completion of the addition, the reaction was allowed to warm to room 

temperature and stir overnight.  Ammonium salts were filtered of and washed with additional 

petroleum ether. The liquid product was concentrated and vacuum distilled at 90 
o
C to acquire 

the protected phosphine.  Yields were between 70-75% with greater than 90% purity.   
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4.4.3 Modification of phenylphosphine 

4.4.3A 4-(dichlorophosphino)-N,N-dimethylaniline 

 

 

 

 

  A 1M THF solution containing 4-bromo-N,N-dimethylaniline(10g, 49.9mmol) was cooled 

to 0 
o
C and slowly treated with 0.894M isopropylmagnesium bromide (55.9 ml, 49.9mmol) by 

cannula at a rate of 2 drop per second.  The reaction was kept at 0 C with moderate stirring for a 

minimum of 4 hours.  This reaction flask was subsequently cooled to -25 C and slowly added to 

a 1M THF solution containing phosphorous trichloride (7.55, 54.89mmol).  Upon completion of 

the addition, this reaction was allowed to warm to room temp and stir overnight. The product 

concentrated by vacuum distillation and filtered by suction with a fine fritted funnel.  The 
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product was further purified by purified by a short path vacuum distillation with a boiling point 

between 70-75 
o
C at 0.8 torr.  Product yields were typically 60-63% with >98% purity.   

4.4.3B 1-(4-(tert-butyl)phenyl)-N,N,N',N'-tetraethylphosphinediamine 

 

  A 2M ethereal solution of bis(diethylamino)chlorophosphine (39.58g, 188mmol) was 

added to a 0.9M ethereal solution of 4-tertbutylmagnesium bromide (179ml, 188mmol) at 
-
78 

o
C.  

The mixture was allowed to warm to room temperature and stir overnight.  The reactants were 

then filtered with a coarse fritted funnel and concentrated by vacuum distillation.  Pure product 

was obtained by short path distillation with a boiling point range of 145-150 
o
C(0.8torr).  Product 

yields were typically 72-75% with >99% purity.   
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4.4.3C (4-(tert-butyl)phenyl)dichlorophosphine  

 

A 1M (4-(tert-butyl)phenyl)-N,N,N',N'-tetraethylphosphinediamine (42.5g, 138mmol) ethereal 

solution was slowly added to a vigorously stirring 2M ethereal HCl solution (276 mL, 

551mmol).  The resulting solution was allowed to warm to room temperature and stir for at least 

18 hours.  The crude product was separated from the resulting ammonium salts with a coarse 

fritted funnel and concentrated.  Product was purified by short path distillation with a boiling 

point of 93-95 
o
C(0.8torr) with yields of 77-80% with >99% purity. 
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4.4.3D (4-(tert-butyl)phenyl) phosphine 

  

In a 250 mL Schlenk flask, (4-(tert-butyl)phenyl)dichlorophosphine (15g, 63.8mmol) and 

sufficient THF to afford a 1M solution were added.  To a separate 500 mL Schlenk Flask 

equipped with a stirbar, LAH (2.91g, 76.6mmol) and double the volume of THF used for (4-

(tert-butyl)phenyl)dichlorophosphine were added.  Both flasks were placed in an ice bath 20 

minutes prior to the addition of the 4-r-dichlorophenylphosphine solution to the vigorously 

stirring LAH solution at a rate of 2-3 drops per second via a large bore cannula.  Upon 

completion of the addition, the reaction flask was allowed to come to room temperature and stir 

overnight. The THF solvent was exchanged for hexane, followed by quenching of excess LAH 

with degassed H2O.  Product was removed from the crude mixture via solvent extraction and 

purified by short path distillation.  Yields were typically 70% and >99% purity. 
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4.4.4 Attempted Synthesis of Chloro(2-(diethylphosphino)phenyl)phenylphosphine 

 

A solution of (2-bromophenyl)diethylphosphine (5.87 g, 24.0 mmol) in THF (80 mL) was cooled 

to 0 oC.  A 0.67 M THF solution of isopropylmagnesium bromide was added to the phosphine 

mixture via cannula.  The resulting solution was stirred at 0 
o
C for 6H.  This solution was then 

slowly added via cannula to a -78 
o
C THF solution of chloro(N, N-

diethylamino)phenylphosphine (5.23g, 24.3 mmol, 50 mL THF).  The resulting mixture was 

allowed to warm to room temperature as it stirred overnight.  This reaction was quenched with 

DI water and the organic portion was collected.  The aqueous layer was extracted with 3 50 mL 

portions of diethyl ether.  The combined organic extracts were dried over sodium sulfate and 

filtered through a funnel. Solvent was removed by vacuum distillation.  Yields varied between 

30-50% but NMR results were consistent. 
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4.5 Catalytic Runs 

4.5.1.   General Considerations 

All solvents and chemicals were purchased from Aldrich and used without further 

purification (aside from degassing) unless otherwise noted. Rh(acac)(CO)2 was donated by 

Celanese, [Rh(nbd)2](BF4) and [rac-Rh2(nbd)2(et,ph-P4)](BF4)2were prepared according to the 

procedure described in section 4.2.7, and the purity was checked by 
1
H NMR 

 

spectroscopy. PPh3 and PEt3 ligands were purchased from Aldrich. All procedures were 

performed under inert atmosphere of nitrogen gas unless noted otherwise. 

4.5.2.   Catalytic Experiments  

 
 Catalytic experiments were performed in 150 mL stainless steel autoclaves from 

Parr and operated by Parr 4850 controllers.  The autoclaves were loaded under inert atmosphere 

with 1.0 mM catalyst, 80 mL solvent (75 mL of acetone and 5.0 mL of toluene as an internal 

standard). PPh3 (0.5 to 400 equiv.) was then added, and in the case of monometallic catalysts 

(Table 3.2, entries 3-6 and 9-10), PEt3 (1.1 or 2.2 equiv. to compensate for its volatility and 

sensitivity to oxygen) was also added. The autoclaves were then purged three times with 1:1 

H2/CO, closed, and the catalyst solution soaked with stirring (1000 rpm) for 20 min under 45 

psig 1:1 H2/CO as the temperature was progressively increased to 90 
o
C. 

 After 20 min, the pressure of the reaction vessel was decreased to ~45 psig and 1000 

equivalents (1.0 M) of 1-hexene (99+%, passed through a neutral alumina column immediately 

prior to use in order to remove peroxides, 8.9 μ 10
-2 

mol, 11.2 mL) were pressure added to the 

autoclave by 90 psig of H2/CO. The progress of the reaction was monitored by gas uptake from 

the higher pressure gas storage reservoir connected to a two- stage regulator delivering synthesis 

gas at a constant pressure of 90 psig to the reaction vessel (see Figure 4.37). Pressures in the 
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autoclave and gas storage reservoir were monitored by electronic pressure transducers. Reaction 

conditions (pressure of autoclave and reservoir, temperature of autoclave and reservoir, and time) 

were monitored and logged by the Parr 4850 controller during the entire length of the catalytic 

run, transferred to a PC, and analyzed using Microsoft Excel. Data was typically collected every 

1 min during a run. 

Products were analyzed using a Hewlett Packard 5890 Series II Gas Chromatograph 

equipped with a DB-1 capillary column for calculation of final conversion, regioselectivity, 

isomerization, and hydrogenation. Chromatography data was collected using National 

Instruments Virtual Bench software, converted to usable format using Microsoft Excel, and 

analyzed using GRAMS 32 version 5 by Galactic Software. Further confirmation of reactant and 

product characterization was performed on a Hewlett Packard 5890 Series II Gas 

Chromatograph/Mass Spectrometer equipped with a DB-5 capillary column as well as 
1
H NMR 

spectroscopy on a Bruker DPX-250 spectrometer (250 MHz). Occasional blank autoclave runs 

confirm that no impurities or deposits inside the autoclave were causing any competing catalytic 

reactions. 
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