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ABSTRACT 

Blends of a PG 64-22 asphalt with a range of load levels (0.2 — 20 wt %) of 

Sasobit® wax and a single loading of 2 wt % Elvaloy AM® were prepared and 

characterized.  Sasobit® wax is a high molecular weight paraffinic wax produced 

commercially through the Fischer-Tropsch process.  Elvaloy AM® is a reactive elastic 

terpolymer, comprised of ethylene, butyl acrylate and glycidyl methacrylate monomeric 

units. The blends were analyzed by gel permeation chromatography (GPC), differential 

scanning calorimetry (DSC), x-ray diffraction, epifluorescence microscopy, scanning 

laser confocal microscopy, and dynamic shear rheology.  Sasobit (1 wt %) composite 

material showed little difference in aging characteristics with respect to the aging 

chromatograms of the un-modified asphalt cement.  Aging of Elvaloy (2 wt %) composite 

material leads to increased concentrations of asphaltene and asphaltene aggregate 

components at a greater rate than that observed with the Sasobit composites and 

unmodified asphalt cement. Analysis of DSC heating curve enthalpies revealed that 

Sasobit composites at loadings above 4% that the Sasobit was completely crystalline.  

X-ray diffraction confirmed that ambient temperature Sasobit composite samples 

maintained their crystalline form down to the level of 0.2 wt % loading.  Evidence for the 

additives presence could be seen within the asphalt matrix through epifluorescence and 

scanning laser confocal microscopy imaging of each of the composite systems 

investigated.  Bright point-sources of fluorescence, most easily picked out in the Elvaloy 

(2 wt %) composite images, are believed to be asphaltene micelles.  Evidence of 

improved G* performance in both Sasobit and Elvaloy composite master curves with 

respect to the neat asphalt cement master curves is presented.  The dynamic viscosity 

data at 1 Hz shows that original and TFOT data doesn’t clearly differentiate between 

Sasobit composites and neat asphalt cement until after PAV aging.  At that stage the 
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Sasobit composite shows truly linear dynamic viscosity response suggesting that 

Sasobit inclusion leads to better dispersion of the viscosity building asphaltene 

component throughout the asphalt cement.  It is believed that the Elvaloy AM composite 

experienced some degree of crosslinking during aging and this is most evident following 

the PAV aging in the rheological data. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

 Within this thesis there are two different asphalt cement grading systems 

discussed, the viscosity grading system (AC) and the currently employed performance 

grading system (PG).  The viscosity grading (AC) system is based on the viscosity of the 

asphalt cement in its original or un-aged form and the specifications can be found in 

ASTM D3381.1  The viscosity grading system is based on the measured asphalt cement 

viscosity in poise (P) at 60 oC and ranges from AC-2.5 (250P) to AC-70 (7000P).  This 

grading system was found to be deceptive since the asphalt cement was not graded in 

terms of its required in-service performance.2 

In 1987, the Strategic Highways Research Program (SHRP) was initiated to 

develop new testing protocols for grading asphalt cement in terms of its resistance to 

rutting, fatigue cracking and thermal cracking.  The performance grading system 

specifications, also referred to as the Superpave® (Superior Performing Asphalt 

Pavements) specifications, can be found in AASHTO MP1.3  The performance grading 

system (PG) specifies the average 7-day ambient pavement high temperature as the 

first value, followed by the minimum environmental pavement temperature to be 

experienced in-service.  For example, a PG 64-22 asphalt cement is intended for an 

environment in which the 7-day average maximum pavement temperature is not to 

exceed 64 oC and the minimum expected pavement temperature is not expected to be 

lower than -22 oC.  The maximum pavement temperature states that this asphalt cement 

will be stiff enough to resist rutting below that temperature, while the minimum 

temperature states that the material will be elastic and strong enough to be able to resist 

low temperature cracking down to that temperature value.3 
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Pg 64-22 (Marathon Oil Corp) was chosen as the asphalt cement mixed with the 

additives to form the composites investigated in this study.  This grade of asphalt cement 

is produced without any polymeric reinforcement.  Neat asphalt cement is a colloidal 

system consisting of a rigid multi-aromatic ring structured asphaltene discontinuous 

phase, dispersed in a lower molecular mass maltene continuous phase.  The percentage 

of asphaltenes in asphalt cement is approximately 29 % or less, depending on the 

asphalt cement source.5b  The asphaltene phase is more polar than the maltenes phase 

and has reactive functional groups through which it can form aggregates with itself or 

form bonds to stone aggregate and reactive functional groups on some reinforcing 

additives.  The asphaltene phase has the most influence over the system viscosity in 

asphalt cement.2 

Corbett reported that when asphalt cement is dissolved in n-heptane (at 100 oC), 

the asphaltene fraction will precipitate out and can be separated through filtration using 

filter paper, leaving the maltene potion of the asphalt cement sample in solution with n-

heptane.5a  The asphaltenes appear as brown to black solid.  The recovered solution 

was further fractionated using an alumina filled chromatographic column.  Two of the 

three fractions making up the maltene portion will absorb to the alumina.  When excess 

n-heptane is run through the column the saturated fraction will elute, leaving a colorless 

liquid upon removal of the solvent.  Benzene is then used as the elution solvent for the 

naphthalene-aromatic fraction and will appear as a yellow to red liquid upon removal of 

the solvent.  The final polar-aromatic fraction can be eluted using a 50 % 

methanol/benzene solution followed by excess trichloroethylene.  When the solvents are 

removed, the polar-aromatic fraction will be a black solid.  This method has been 

adopted with some changes by the American Society for Testing and Materials as ASTM 

D4124.5b 



 3

Unmodified asphalt cement as a paving material has been used for more than 

100 years.  While there are naturally occurring deposits in areas of the world in which 

pools of asphalt cement can be found, most of the asphalt cement used in paving 

projects is derived through the processing of crude oil residue.3  Asphalt cement is also 

referred to as bitumen and asphalt binder in publications and must be differentiated from 

hot mix asphalt (HMA) or mixture which specifies that asphalt cement has been mixed 

with stone aggregate and sand.  The distresses of unmodified asphalt cement such as 

embrittlement with age, low temperature cracking, fatigue cracking and rutting at high 

temperature curtail its use in many of today’s roadways and other paving applications.6  

In order to reduce the influence of these distresses, various performance enhancing 

additives are added to asphalt cement to improve the performance of pavement and give 

longer service life.7-9  Since 1994 the Louisiana Department of Transportation has used 

polymer modified asphalt cement in the majority its hot mix asphalt cement paving 

projects.10  These projects are now coming due for re-paving and new technologies such 

as warm mix asphalt (WMA) may be utilized in the pavement construction.11, 12   

Conventional hot mix asphalt production takes place between 120-163 oC and 

placement followed by compaction occurs in the range of 130-150 oC.  During the 

production and construction period, the asphalt cement experiences the greatest 

oxidation rate it will experience over its service life.2  If the temperature the asphalt 

cement experiences during production and construction can be reduced, there will be a 

lower initial oxidation rate which can lead to longer paving service life and better overall 

pavement performance. 

 The use of WMA technology can result in a reduction of asphalt cement 

production temperature by an estimated 40 %.12, 13  The reduced production temperature 

cost savings can be realized by the production contractor in the form of an approximately 

30 % reduction in fuel consumption.13  Along with the reduced production temperature 
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and the fuel consumption the emissions of odor and greenhouse gasses will also be 

reduced.  The reduction of emissions can lead to its own cost savings in that the 

production facilities might be sited in areas closer to the paving projects, thus reducing 

the haul distances, delivery time and associated costs.13  

Whole asphalt cement is a thermoplastic material and therefore the viscosity is 

directly dependent on the material’s temperature.  At high temperatures asphalt cement 

softens and is more apt to flow, while at low temperatures the asphalt cement hardens 

becomes more brittle.  Through a reduction of asphalt cement viscosity the material can 

be worked with at lower temperatures.13  Also, with reduced asphalt cement viscosity the 

HMA aggregates are still effectively coated without experiencing the high rate of 

oxidation in higher temperature processes.  This reduction of material viscosity is the key 

to WMA technology.  There are currently four processes by which WMA material used in 

the United States is produced:13, 14-17 

1) Hydrothermally crystallized synthetic zeolite (sodium aluminum silicate), 

when added to asphalt cement at temperatures of 85 oC or greater, will 

release a fine spray water molecules to the asphalt cement in which it is 

mixed.  The release of the water droplets then creates foam within the 

asphalt cement which causes a volume expansion and reduces the asphalt 

cement viscosity.  There are two commercial hydrothermally crystallized 

synthetic zeolite products currently on the market:  Aspha-min® (Eurovia 

Services GmbH, Bottrop, Germany) and Advera® (PQ Corporation, Malvern, 

PA).  The manufacturers recommend that these products be added to asphalt 

cement at 0.25 – 0.3 % by mass of the asphalt cement.  These zeolite 

products are fully miscible with reclaimed asphalt paving, polymer modified 

and unmodified recycled asphalt cements.  Zeolites are silicate framework 

structures with many void spaces.  These voids are largely interconnected 
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and form channels throughout the crystalline matrix.  It is within these 

channels that that water molecules can be trapped and firmly held within the 

zeolite crystalline structure through ionic interactions.  Water held within 

these zeolite crystals is reported to be 21 % by weight.  Heating to 

temperatures of 85 oC or greater causes the expulsion of the water molecules 

and produces the WAM material.  Releasing the water does not destroy the 

zeolite crystalline framework structure. 

2) WAM-foam® was developed through a joint venture between Shell 

International Petroleum Company, London UK and Kolo-Veidekke, Oslo, 

Norway.  This technology involves separation of the asphalt cement into soft 

and hard components in a proprietary process.  The two components are 

then added to the aggregate in separate production stages.  The first stage 

involves mixing the soft asphalt cement component with the aggregate at 

approximately 110 oC until complete and intimate coverage has been 

achieved.  The hard asphalt cement component is then introduced to the first 

stage mixture along with injection of cold water, producing a rapid volume 

expansion within the hard asphalt cement component and achieving the 

reduction in overall product viscosity.  Care mast be taken in selecting the 

soft and hard asphalt cement components for production of a high-quality 

final product and thus may make this product incompatible with as wide of a 

range of asphalt cements as the other WMA technologies. 

3) EvothermTM (MeadWestvaco Asphalt Innovations, Charleston, SC)) utilizes 

emulsified asphalt cement combined with non-proprietary chemical additive 

packages to achieve an approximately 38 % reduction in production 

temperature.  MeadWestvaco reports that the chemical additive package is 
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customized to be uniquely compatible with the specific aggregate used to 

construct the paving project. 

4) Additives such as Sasobit® wax (Sasol Wax, South Africa), which has a 

melting point of 85 – 115 oC.  Sasobit® wax differs from the naturally 

occurring bituminous waxes in that the average carbon chain length of 

naturally occurring bituminous waxes is on the order of 19 – 45 carbon chain 

length compared to an average carbon chain length of 40 – 115 carbons for 

Sasobit wax.  The longer carbon chain length found in Sasobit wax results in 

a higher melting point than many naturally occurring bituminous waxes. 

Sasobit wax has been reported to be fully miscible with polymer modified, 

unmodified and recycled asphalt cements.  When combined with asphalt 

cement at temperatures above Sasobit wax melting point, the wax liquefies 

and greatly lowers the overall HMA viscosity, reducing production and 

placement temperature by up to 50 oC.  

The first two foam-related technologies along with EvothermTM require extensive 

production equipment, making these studies beyond the scope of the current 

investigation.  Material handling equipment for safe Sasobit composite production is 

available within our laboratory facilities.  For this reason Sasobit has been chosen as 

one of the asphalt cement additives investigated in this study. 

1.2. Sasobit® 

Sasobit® wax is a paraffinic, brittle and highly crystalline hydrocarbon wax.16  

Sasobit wax is manufactured by the Fischer-Tropsch process from hydrogen and carbon 

monoxide through an iron (or cobalt) catalyzed, high-pressure reaction at 150-300 oC.  

Using the Fischer-Tropsch process, Sasol Corp. can maintain control over chain length, 

avoid branching and produce a wax free from contaminants (such as sulfur) often found 

in natural hydrocarbon sources.  It is believed that the absence of double bonds along 
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the molecular chain backbone will alleviate oxidative chain scission in Sasobit wax and 

give long in-service life for this additive in asphalt pavings. 

Sasobit wax is marketed by Sasol Corporation as a flow improvement and a low 

temperature deformation resistance additive.17  The reduced mixture viscosity also 

improves compaction, as the placed HMA is less stiff with inclusion of Sasobit wax.  

Sasol Corporation reports that adding Sasobit wax at a 3 % loading on the total asphalt 

cement mass can also significantly improve deformation resistance in the Hamburg 

Wheel tracking test performed at 50 oC. 

Kanitpong et al. investigated a 3 % loading of Sasobit wax (referred to as LCAH in the 

figures 1 – 3) in both AC 60/70 and a 5 % styrene – butadiene – styrene (SBS) polymer-

modified asphalt cement of unknown PG grade along with control samples of each 

asphalt cement containing no Sasobit.18  Their goal was to evaluate the energy required 

to achieve two different levels of mixture densification.  They found remarkably improved 

performance from the Sasobit samples compared to the control samples.  The most 

improvement came in the form of reduced energy expenditure to achieve the required 

compaction for opening the paving to general traffic flow. 

The Maine(USA) Department of Transportation (MDOT) evaluated lab mixtures in 100 % 

reclaimed asphalt paving (RAP) prepared with two types of PG 64-28 ( an emulsion 

asphalt cement of PG 64-28 base grade and a neat asphalt cement).22  Sasobit 

formulations in 75% RAP were also conducted in a more robust laboratory mixture 

investigation by the same research group.  Each investigation reported an average of 25 

oC decrease in compaction temperature to achieve comparable densification as control 

samples along with a marked improvement in workability of the Sasobit loaded samples.   

Edwards et al. have published literature on the rheological effects of Sasobit wax 

/ asphalt cement mixtures on low and medium temperature performance.24  They 

reported that at low temperatures, Sasobit modified asphalt cement increased in 
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complex modulus as measured through dynamic mechanical analysis (DMA) and 

increased stiffness under bending beam rheometer (BBR) creep testing.  At medium 

temperatures, dynamic creep testing indicated an improvement in rut resistance in some 

of the Sasobit wax / asphalt cement samples tested.25 

Sasobit wax has a high heat of fusion, and when mixed with a compatible 

polymer can become a phase change material (PCM).26  Sasobit wax, as a PCM, can 

readily release energy to or store energy from the polymeric surroundings through 

melting or crystallization.  When mixed with low density polyethylene (LDPE), Sasobit 

wax co-crystallizes with the polymer on cooling.  The mixture of Sasobit wax / LDPE has 

been shown to reinforce the system in solid state at up to 50 % wax loading and was 

shown to reduce impact of both thermal and dynamic stress. 

 

1.3. Elvaloy AM® 

 Elvaloy AM® (E. I. DuPont Nemours and Co.) is described as a reactive elastic 

terpolymer which binds with the asphalt to give excellent asphalt mixture 

reinforcement.27  The term terpolymer refers to three different monomers comprising the 

polymeric chain.  The monomeric units in this product are ethylene, butyl acrylate and 

glycidyl methacrylate (Figure 1.1).  Glycidyl methacrylate has epoxide functionality and 

will readily react with thiyl, hydroxyl, amine or carboxylic acid functionalities on the 

asphaltenes to form a covalent bond of considerable strength.  The ethylene (hard) and 

butyl acrylate (soft) monomers are used to adjust the glass transition of the polymer.  

Polacco et al. have reported the monomer composition as 66.7% ethylene, 28% butyl 

acrylate and 5.3% glycidyl methacrylate by mass.28 
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Figure 1.1 The polymeric structure of Elvaloy AM28 

 

 Currently the two most popular asphalt modification additives are styrene-

butadiene-styrene (SBS) and crumb rubber.29  Each of these materials has been shown 

to increase elastic recovery in the pavement which fades with oxidation. The double-

bonds along these polymer backbones make them both vulnerable to oxidation.  Both 

modifiers have also been shown to phase separate (when not crosslinked with sulfur 

during mixing with the asphalt in the case of SBS) from the asphalt paving over time 

resulting in reduced service life of that pavement.  Elvaloy AM has the epoxide 

functionality through which it will form a covalently bonded network with the asphaltenes 

throughout the pavement making phase separation much less likely.  The high rigidity of 

pavements modified with Elvaloy AM makes this an excellent additive for airport runway 

pavements and other high performance paving applications.  Elvaloy Am’s polymer 

backbone consists of sigma bonded monomer units and thus is not vulnerable to 

oxidative chain scission on the backbone chain. 

 Polacco et al. investigated the rheological aspects of Elvaloy AM modified 

asphalts and reported that there were two likely scenario’s for this polymer’s 

reinforcement of the colloidal system.28  Bonding of the Elvaloy AM to the asphaltenes is 

primarily occurring within the pavement matrix.  The polymer chain can also bond to 
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itself through cross-linking at the epoxide rings.  The authors report that the inter-chain 

crosslinking reaction can be promoted though heat, a catalyst (polyphosphoric acid) or 

water molecules opening the epoxide ring and forming ester linkages with asphaltenes 

and ring-opened functional sites on the polymer backbone.  This would result in a very 

robustly bonded system matrix and could easily result in an insoluble asphalt gel at too 

high a polymer load.  The study warns that each composite of Elvaloy AM / asphalt 

cement should be carefully studied in terms of performance enhancement vs. gelation of 

the pavement. 

 Bhurke et al. investigated Elvaloy AM modification of an AC-5 asphalt cement 

HMA’s through environmental scanning electron microscopy (ESEM) and low 

temperature fracture methods.30  They found that at a loading of 2% Elvaloy AM (by 

weight of asphalt cement), the system achieved much greater stiffness compared to a 

range of styrenic co- and terpolymeric asphalt performance additives.  The authors 

reported that the cured 2% Elvaloy AM modified binders exhibited comparatively 

reduced viscoelastic behavior and the fractures occurred with low fibril density.  

Cohesive failure (failure within the binder) was not observed and fracture was reported 

predominantly at the binder-aggregate interface. 

In 2007, Khattak et al. also investigated Elvaloy AM in low temperature fracture 

and imaged the results of lap shear tensile tests with ESEM.31  They also report that 

Elvaloy AM modified HMA’s attained high stiffness and fracture resulted in course 

fracture faces exhibiting moderate fibrils.  They also report that polymer concentration 

was not significant in terms of imaged effects on fracture morphology; with low Elvaloy 

AM loadings indifferentiable from higher loading results.  A 2% loading on the asphalt 

cement was sufficient to achieve performance enhancement of laboratory HMA samples. 
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CHAPTER 2 

EXPERIMENTAL 

 
2.1 Raw Materials and Lab Aging of Materials 

The asphalt cement used in all composite mixtures was PG 64-22 (Marathon Oil 

Corp).  The Sasobit® wax (Sasol Corp.) was used as delivered in pelletized form.  The 

loadings of Sasobit wax / asphalt cement ranged from 0.2-20 % by weight.  Elvaloy AM® 

(DuPont Chemical Co.) was also used as delivered in pelletized form.  Only one loading 

of 2 % Elvaloy AM / asphalt cement by weight was produced for this study to date.  Short 

term aging of asphalt cement composites was performed with thin film oven aging 

(TFOT) as described in ASTM D1754.32  Longer term aging of asphalt cement 

composites was performed using pressure aging vessel (PAV) as described in ASTM 

D6521.33  ASTM specifications require that asphalt cement material be TFOT aged prior 

to PAV aging.  PAV aging is performed to simulate the oxidation the asphalt cement 

should encounter through 5-10 years in-service 

Physical mixing of the composites was performed in a two-piece glass kettle 

using a ¼ hp stir-motor and banana-blade stirring rod.  A water-cooled condenser was 

attached to the kettle to maintain all composite vapors within the kettle during mix.  A 

blanket of N2 gas was maintained to avoid oxidation of the composite during mixing.  A 

sample temperature of 100 oC was carefully maintained using a thermally monitored 

heating mantle for a 5 hr. sample mix time.  Once mixed, the composite samples were 

transferred from the kettle to tightly capped aluminum “ointment canisters” for room 

temperature storage. 

2.2 Differential Scanning Calorimetry 

DSC experiments were performed on a TA 2920 MDSC instrument.  Instrument 

control was provided through TA Instruments’ Thermal Advantage software and 
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thermogram analysis was enabled through TA Instruments’ Universal Analysis software 

(TA instruments, New Castle, DE).  Samples of the asphalt composites of 3 - 8 mg were 

weighed into covered and crimp-sealed aluminum pans.  The method employed for DSC 

experiments unless otherwise specified: 

1) temperature ramp of 10.00 oC/min to 150 oC 
2) isothermal for 1.00 minute 
3) temperature ramp of 1.00 oC/min to 25 oC 
4) isothermal for 20.00 minutes 
5) temperature ramp of 10.00 oC/min to 150 oC 
6) end of method. 

 

2.3 X-ray Diffraction 

 A Siemens-Bruker D5000 x-ray Diffractometer (Cu kα radiation) was used for all 

X-ray analysis in this study.  The tube voltage and tube current were 40 kV and 30mA, 

detector voltage was 840V.  Experiments were run at ambient temperature (~22 oC) 

utilizing a step size of 0.02o 2θ s-1and a count time of 1 s / step, over a range of 2-70o 2θ.  

The instrument was set-up with a divergence slit of 0.996o prior to the sample and an 

antiscatter slit of 0.501o (mounted between the sample and detector).  A Kevex Psi 

peltier - cooled silicon detector with a 0.1 mm receiving slit was used to collect the raw 

data.  The experiments were controlled through the use of Defract AT® version 3.1 

operating software and the X-ray pattern processing was performed using a Jade® 

version 6.1 software package.  The instrument calibration was performed using a 

Novaculite quartz standard (main diffraction of 2θ = 26.610o).  The collected data was 

normalized to a common baseline to aid in comparison of spectra features. 

 All X-ray diffraction samples were prepared in aluminum sample holders, having 

test specimen dimensions of 25 mm diameter and 2 mm thickness.  Each sample was 

placed in an aluminum sample holder that was securely clamped to a piece of rigid ¼ 

inch Teflon sheet and placed in a 150 oC oven.  After 10 minutes the molten sample was 

removed from the oven and a 1 mm thick, 27 mm diameter glass retaining slide was 
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mounted on the holder followed by a steel retaining clip to maintain the sample in the 

holder during testing (Figure 2.1). 

 

 

 

Figure 2.1 The X-ray diffraction sample holder and fabrication pieces 

 

2.4 Microscopy 

Microscopy slide samples were produced by placing a small amount of Sasobit 

wax / asphalt cement composite on a clean glass side, then gently heating and melting 

the asphalt composite.  The heating of the slide took place on a clean piece of aluminum 

foil covering a laboratory heating plate.  A cover slide was then carefully placed over the 

molten asphalt composite sample.  The cover slide was then steadily pressed with a 

clean wooden dowel rod until the molten sample appeared to be flat.  Care was taken 

not to burn the composite sample while melting. 

Elvaloy AM / asphalt cement Microscopy slides were produced by placing a small 

amount of the composite on a clean glass cover-slide, then gently heating and melting 

the asphalt composite.  The heating of the slide took place as previously described using 

a laboratory heating plate.  A glass slide was then carefully placed over the molten 
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asphalt composite sample.  The slide was then loaded with a 200 g brass weight to 

achieve a more consistently flat sample profile along the interface of the cover-slide and 

asphalt composite sample. 

The epifluorescence images were collected using a Leica DM RXA compound 

microscope equipped with a 20x 0.7 NA objective.  The Cyan GFP filter set from Chroma 

Technology (31044v2) was chosen for all captured slide images.  This filter-set has a 

436/20 excitation filter and a 480/40 emission filter.  A 455 nm dichromatic mirror 

produced the brightest images of the fluorescence from the imaged asphalt composite 

samples.  Images were collected using a Sensicam QE (Cooke Corp) 12-bit, cooled 

CCD camera and a 100 ms exposure time for each image.  Slidebook® (Intellegent 

Imaging Innovations) software was used to process the collected images.  For the 

Sasobit / asphalt cement samples, a “no-neighbors” deconvolution (simple de-blurring) 

algorithm was used to reduce background light and sharpen contrast.  For the Elvaloy/ 

asphalt cement samples, the deconvolution algorithm was not employed in the treatment 

of the images prior to presentation. 

The scanning laser confocal microscopy images were acquired using a Leica 

TCS SP2 scanning laser confocal microscope equipped with a 20x 0.7NA objective. The 

images in this work were obtained by collecting sequential images at different focal 

planes through the upper 5 microns of the sample using a 488 nm laser to illuminate the 

sample and collecting light between 512 and 553 nm to produce each individual image. 

The data from these images were combined using an average projection to form a single 

image. The images were pseudo-colored to make the features of interest more apparent.  

2.5 Gel Permeation Chromatography 

A Polymer Laboratories model PL-210GPC (Shropshire, UK) was used for 

analysis of all GPC samples.  In addition to the standard differential refractive index 

(dRI) detector used for concentration detection, two molecular weight sensitive detectors 
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are installed in the PL-210GPC; a Precision Detectors (Bellingham, MA) model PD-2040 

dual angle laser light scattering (LS) detector and Viscotek (Houston, TX) model 210 

Differential Viscometer (DV).  The detectors are installed in series configuration with the 

LS being first after the chromatographic columns, followed by the dRI and lastly the DV. 

The mobile phase was 1, 2, 4-trichlorobenzene (TCB) stabilized with 

approximately 125 ppm of 3, 5-di-tert-butyl-4-hydroxytoluene (BHT).  The mobile phase 

flow rate was 1.0 mL/minute.  The TCB was recovered from a B/R Instruments 

distillation unit.  The TCB was filtered through a 0.020 μ filter before adding the BHT, 

and once on the instrument was purged continuously with a slow bubbling of nitrogen.  

The mobile phase was further degassed by flowing through a vacuum degasser before 

entering the pump of the PL-210GPC. 

The Polymer Laboratories PLgel® column set consists of three analytical columns 

and a guard column.  Each analytical column measured 300 mm in length with an inside 

diameter of 7.5 mm.  The guard column was 50 mm by 7.5 mm.  The column set was 

mounted in the oven compartment of the PL-210GPC.  All experiments were performed 

at 145 °C. 

The molecular weight sensitive detectors were calibrated by injecting a known mass of 

the PE53494-38-4 linear polyethylene standard (Mw = 115,000 Da, IV = 1.783 dL/g).  

Polystyrene standards manufactured and characterized by Polymer Laboratories were 

used for column calibration. 

2.6 Rheology 

All rheology experiments reported in this work were performed on an AR2000 

controlled - stress dynamic shearing rheometer (TA instruments, New Castle, DE).  This 

instrument was capable of reproducing torque values up to 200 mN*m.  Thermal control 

during experiments was maintained using an environmental test chamber (ETC).  This 

electrically heated, highly insulated ETC could be cooled either though compressed air 
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or with liquid nitrogen flowing through the ceramic manifold within the ETC housing.  The 

AR 2000 instrument was capable of maintaining testing temperatures within the sample 

chamber to ±0.1 oC.  TA Rheology Advantage software controlled instrumental settings.  

The DSR instrument utilized a very low friction air bearing driven by 30 psi compressed 

air.  The geometry selected for frequency sweep experiments performed in this work 

was stainless steel 8 mm diameter parallel plates. 

Prior to test specimen fabrication, asphalt cement samples were heated in a 150 

oC laboratory for approximately 15 minutes. The molten asphalt cement or composite 

was poured into silicone rubber molds to form the test specimen.  Each test specimen 

was allowed to solidify at room temperature undisturbed for 20 -30 minutes prior to 

mounting between the parallel plates.  A precisely maintained sample gap of 2 mm was 

used with the 8 mm plate geometry for each experiment. 

The frequency sweep experiment was a controlled strain and continuous 

oscillation procedure.  Temperature steps of 30, 40, 50, 60 and 80 oC and an oscillation 

frequency range of 0.01 – 25 Hz (3 testing frequencies per decade) per step.  A 30 min 

thermal equilibration at each temperature step was programmed for each experiment.  A 

10 second sample relaxation time between frequency changes was utilized along with a 

1 % shearing strain value for all experiments. 
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CHAPTER 3 

RESEARCH PROGRESS DISCUSSION 

3.1. Gel Permeation Chromatography 

 Normally the Daly and Negulescu research group has performed Gel Permeation 

Chromatography (GPC) experiments at room temperature using tetrahydrofuran (THF) 

as both the sample solvent and elution solvent.  THF is not a solvent that paraffinic 

Sasobit nor the Elvaloy AM terpolymer will dissolve in.  Therefore, all of the GPC 

samples in this experiment were dissolved in and eluted using trichlorobenzene (TCB). 

 All of the samples were eluded through a dual angle laser light scattering (LS)  

detector, refractive index (RI) detector and differential viscometer (DV) detector 

connected in series.  The quality of each data set collected for the set of samples was 

not consistent.  For example, the neat Sasobit and Elvaloy samples were sufficiently 

clear solutions when solvated in TCB to allow for LS data analysis.  On the contrary, the 

asphalt cement and additive composite samples were darkly colored solutions and the 

LS detector could not collect high-quality data from these samples.  The data sets 

collected from the DV detector across the sample set tended to be noisy.  Also, the 

baselines for each DV detector dataset were not the same due to fact that the initial 

concentrations of each sample were not exactly the same.  The data sets collected from 

the RI detector were of acceptable quality and low noise but the value of differential 

concentration (dn/dc) for both Sasobit and Elvaloy AM read negative with respect to the 

asphalt cement dn/dc in TCB.  Taking these facts into consideration, a decision was 

made to analyze the GPC-RI data for all of the samples investigated.  Since the RI 

detector collects data in terms of dn/dc this seemed to be the most appropriate data to 

compare across the entire sample set. 



 18

 Three of the most common methods of evaluating the molecular weight averages 

for a sample are Mn, Mw and Mz.34  Mn represents the number average molecular weight 

or the total weight of all polymer chains within a sample divided by the number of 

molecules within that sample.  The number average molecular weight is considered to 

be more accurate for a low-molecular weight sample.  Mw is referred to as the weight-

average molecular weight.  In higher molecular weight average samples the higher 

molecular weight components contribute more to the total sample molecular mass then 

the low-molecular weight components.  Therefore for higher molecular weight samples 

Mw is considered to be a more accurate way to report the molecular weight average 

information.  Mz is referred to as the z-average molecular weight and it encompasses 

more of the area bound by the GPC molecular weight curve.  These molecular weight 

averages are graphically presented in a typical molecular weight distribution curve 

(Figure 3.1).35 

 

 

 

Figure 3.1 A typical molecular weight distribution GPC curve 35 
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Of the three molecular weight averages, the most often reported are Mn and Mw..  The 

polydispersity index (PDI) or Mw/Mn, represents a standard method to express the 

breadth of the molecular weight distribution within the sample.  The value of Mn, Mw and 

Mz can be calculated as follows: 
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These molecular weight averages and PDI are only reported for the neat Sasobit and 

Elvaloy samples as these respective chromatograms exhibit one continuous GPC curve 

without distinctly separated peaks.  In the asphalt cement and the additive composite 

chromatograms we have more than one distribution of molecular weight components; 

therefore, it is more convenient to comment upon molecular weights at particular points 

along the respective GPC curves in effort to show how the overall system is changing. 

In the GPC-RI curve for the neat Sasobit sample (Figure 3.2) the value of PDI 

was determined as 1.33.  Theoretically, a mono-disperse GPC sample would have a PDI 

of 1.0 with the values of Mn and Mw being equal.  This rarely happens in many synthetic 

polymers with exception of some polymer standard samples.  The value of Mn, Mw and 

Mz for the neat Sasobit GPC-RI sample has been determined as 750, 1000 and 1400 

Daltons respectively (Figure 3.2). The values for the peak molecular mass has been 

indicated in Figure 3.1.2 as 1.65K Daltons. 

The GPC-RI curve for the neat Elvaloy sample (Figure 3.3) shows that this 

sample has a PDI of 4.61.  The neat Elvaloy PDI of this magnitude compared to the neat 

Sasobit PDI indicates the neat Elvaloy sample has a greater range of molecular weight 

components.  Also, the average molecular mass of the high molecular weight 

components is greater in the neat Elvaloy sample than in the neat Sasobit sample.  The 
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Figure 3.2 The GPC-RI chromatogram for neat Sasobit 

 

value of Mn, Mw and Mz for the neat Elvaloy GPC-RI sample has been determined as 

18,080, 83,380 and 288,300 Daltons respectively (Figure 3.3).  The values for the peak 

molecular mass and the high molecular weight shoulder are indicated in Figure 3.3 as 

72K and 805K Daltons respectively. 

In the GPC-RI chromatogram for neat PG64-22 (Figure 3.4) we see that there 

are clearly two peaks and the higher molecular average mass peak exhibits a shoulder.  

The shoulder area is designated by an approximate molecular mass of 6.4K Daltons with 

an arrow pointing out the approximate apex.  The shoulder is believed to be an 

indication of asphaltene aggregation and appears most prominent in the PG 64-22 PAV 

curve.  The shoulder appears in the PG 64-22 Original curve but not as prominent as in 

the PG 64-22 TFOT or PG 64-22 PAV curves.  In general, as the sample ages the 

asphaltene aggregates achieve approximately 6.4K Daltons and increase in 

concentration through laboratory sample aging.  The values for the low molecular mass 

peak (believed to be the maltene fraction) across this particular sample set all exhibit the 
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Figure 3.3. The GPC-RI chromatogram for neat Elvaloy 

 

same molecular mass of approximately 543 Daltons for each peak molecular mass 

value, although the relative maltene concentration decreases on aging.  On the higher 

molecular mass peak (believed to be the non-aggregated asphalt fraction), we see that 

peak value increases only slightly with each laboratory sample aging step.  This sample 

set can be considered the control set in terms of the additive composite sample aging 

studies. 

In the GPC-RI chromatogram for 1% Sasobit / PG64-22 composites (Figure 3.5) 

we again see that there are clearly two peaks and a higher molecular average mass 

peak exhibiting a shoulder.  In general, as the sample ages from original through PAV, 

the asphaltene aggregate shoulders achieve approximately 6.8, 6.7 and 6.1K Daltons 

but don’t clearly show a marked increase in concentration through laboratory aging until 

the PAV aging step.  Realizing that the dn/dc value of the Sasobit reads negative with 

respect to the asphalt cement, the true molecular mass values for this shoulder should 

show higher magnitude.  I believe that as the 1% Sasobit / PG64-22 
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Figure 3.4 The GPC-RI chromatogram overlay for neat PG64-22 sample laboratory 
aging 
 

composites are aged through these laboratory methods with temperatures exceeding the 

melting point of the additive, the Sasobit goes into solution.  Upon cooling of the sample 

and allowing the wax to re-crystallize, it may be that the Sasobit wax could preferentially 

crystallize on the aliphatic side chains of the asphaltene molecules.  This should lead to 

a higher molecular mass value for the shoulder on sample aging and also increase the 

asphaltene aggregate concentration.  The values for the peak believed to be the maltene 

fraction across the Original and TFOT chromatograms exhibit the same molecular mass 

of approximately 554 Daltons for each peak molecular mass value.  The peak molecular 

weight value for the PAV sample decreases to approximately 542 Daltons.  This may 

indicate that some of the Sasobit wax may crystallize with the lower molecular weight 

component of the maltene fraction and that following PAV aging a percentage of the 

Sasobit component crystallizes on the aliphatic side chains of the non-aggregated 

asphaltene and asphaltene aggregate molecules.  On the non-aggregated asphaltene 
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fraction peaks, we see that peak value again increases by approximately 100 Daltons 

with each laboratory sample aging step.  This may indicate that due to the lower 

viscosity in the molten Sasobit composite samples during both aging steps, the 

asphaltene molecules achieve more mobility and are therefore more likely to aggregate 

then in the control samples. In Figure 3.6 we clearly see that most of the neat Sasobit 

samples molecular mass envelops the non aggregating asphaltene peak and asphaltene 

aggregate shoulder along with a portion of the high molecular weight maltene fraction. 
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Figure 3.5 The GPC-RI chromatogram overlay for 1% Sasobit composite sample 
laboratory aging 
 

In the GPC-RI chromatogram for 2% Elvaloy / PG64-22 composites (Figure 3.7) 

we see two separated peaks with the higher molecular average mass peak exhibiting a 

shoulder.  In general, as the sample ages from original through PAV, the asphaltene 

aggregate shoulders achieve approximately 6.7K Daltons but show marked increase in 

concentration through laboratory aging at each step.  Realizing that the dn/dc 
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Figure 3.6 The GPC-RI chromatogram overlay for neat Sasobit and Sasobit 
composite samples laboratory aging (100 % Sasobit chromatogram re-scaled) 
 
 
value of the Elvaloy reads negative with respect to the asphalt cement, the true 

molecular mass values for this shoulder should be greater.  Polacco et al. have reported 

that Elvaloy will bond to the asphaltenes.28  Through this bonding a sharp jump in 

molecular mass and concentration for the non aggregating asphaltene peak and 

asphaltene aggregate shoulder should be exhibited, but the reverse is exhibited.  We 

see roughly that same trend as was exhibited in the control samples with respect to the 

maltene peak molecular mass fraction. The values for the peak believed to be the 

maltene fraction in the Original and TFOT chromatograms exhibit the same molecular 

mass of approximately 554 Daltons for each peak molecular mass value.  As the Elvaloy 

composites are aged through current laboratory methods with temperatures high enough 

to initiate some of the epoxy functional groups to bond (Polacco et al. Reference 28) with 

the asphaltene fraction or itself, we may see the first stage of a covalent network gel 

forming within these composites.  This should lead to a higher molecular mass value at 
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both the shoulder and the non - aggregating asphaltene peak aggregating asphaltene 

shoulder on sample aging if it is occurring.  There is a marked increase in both the non 

aggregating asphaltene peak and the asphaltene aggregate shoulder concentrations.  

Referring to Figure 3.8 we clearly see that the lower molecular mass tail of the neat 

Elvaloy sample covers the non aggregating asphaltene peak and asphaltene aggregate 

shoulder and not much of the maltenes peak. 
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Figure 3.7 The GPC-RI chromatogram overlay for 2% Elvaloy composite sample 
laboratory aging 
 

Upon review of the presented GPC-RI data an interesting anomaly has been 

noticed.  It seems that the asphaltene component appears to make up the larger portion 

of the whole asphalt cement sample across the sample set.  This may be due to the 

more polar make-up of the asphaltene fraction and its interaction with the solvent.  TCB 

is a very polar solvent and therefore may be interacting more with the polar components 

of the samples.  This would effect the true representation of the concentration 

distribution of asphalt cement components.  Even with this consideration in mind, the 
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Figure 3.8 The GPC-RI chromatogram overlay for neat Elvaloy and Elvaloy 
composite samples laboratory aging 
 
 
trends discussed are evident within the particular data sets and have given insight to 

molecular mass and concentration changes within the various components making up 

the samples analyzed. 

3.2. Differential Scanning Calorimetry 

 One of the unique distinguishing features of the pure Sasobit wax is the 

existence of several overlapping endothermic transitions evidenced within the differential 

scanning calorimetric heating curves.36  Alkane chains at low temperature have been 

reported to exist in a number of crystalline forms; triclinic, orthorhombic, monoclinic and 

hexagonal.37, 38  Some alkanes have also been reported to have one or more rotator 

crystalline phase transitions exhibited between the crystalline and isotropic liquid state.39, 

40  In Figure 3.9, two differential scanning calorimetric heating curves are presented for 

comparison.36  The upper curve is that of a soft paraffin wax (Wax S) from Slovnaft 

(Bratislava, Slovakia).  The heating curve for Wax S exhibits two distinct thermal 
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transitions identified by the peak temperatures of 40.7 oC and 56.8 oC.  Luyt and Krupa 

have determined that the 40.7 oC transition is associated with a solid-solid transition and 

suggest that this transition may be an orthorhombic to hexagonal crystalline phase 

transition.  The authors report that the 56.8 oC transition represents a complete melting 

of the crystallites in a solid to liquid phase transition.  The lower curve in figure 3.9 

represents the heating curve for a Sasobit wax (Wax FT).  The Wax FT curve exhibits a 

distinctly different thermal transition profile, with evidence of multiple overlapping 

endothermic transitions at 83.6 oC, 91.2 oC and 104.9 oC.  Luyt and Krupa attribute this 

thermal behavior to the melting of different mass fractions within the neat wax.36 

 

 

 

Figure 3.9 DSC heating curves of Wax S and Wax FT 36 

 

The highly crystalline structure of Sasobit wax allowed for DSC to be used in 

determination of the loading of this additive to the neat asphalt.  As can be seen in the 

DSC cooling curves (figure 3.10), the lowest (magenta colored) curve belongs to the 

neat asphalt cement shows negligible crystallinity compared to the other samples over 

the temperature range presented.  Loadings of Sasobit from 1 % in neat asphalt cement 
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to 100 % Sasobit wax show unique and distinctive crystalline phases within the samples 

with the onset peak temperature of crystallization increasing as the wax loading 

increases. 
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Figure 3.10 DSC cooling curves for a range of Sasobit loadings 

 

From the heating curves (Figure 3.11) the blue colored 1% Sasobit trace 

indicates the additives presence in the mixture with the maxima occurring approximately 

73.8 oC.  With the increase in Sasobit load, we see a very distinctive shape of the curve 

indicating that there are multiple transitions occurring during both crystallization and 

melting. 

Analysis of the DSC heating curve enthalpy (ΔH) data shows that there is less deviation 

from the expected ΔH values on the first heating than on the second heating (Table 3.1).  

The “expected ΔH value” is calculated through multiplying the ΔH value of the 100 % 

Sasobit (orange colored trace) sample by the Sasobit weight % / 100.00 in each 

composite sample.  There appears to be no clear co-crystallization indication in the data 
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presented for the Sasobit / asphalt cement composites, as the difference between 

expected and measured ΔH values are not of significant magnitude. 
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Figure 3.11 DSC heating curves for a range of Sasobit loadings 

 

Table 3.1 DSC heating curves Enthalpy data for Sasobit composites 

 

Mixture Heating (1st,2nd) ΔH (J/g) Expected ΔH (J/g) Difference (J/g)

100 % Sasobit 181.40, 170.10 181.40, 170.10 0.00 

20 % Sasobit 36.82, 34.33 36.28, 34.02 0.54, 0.31 

5 % Sasobit 9.01, 8.06 9.07, 8.51 -0.06,-0.45 

1 % Sasobit 0.58, 0.42 1.81, 1.70 -1.23, -1.28 
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To explain the negative difference in the 1 % Sasobit ΔH values one must zoom 

in on the cooling section of the DSC curve for the neat asphalt used in formulating the 

composite samples (Figure 3.12).  There can be clearly seen an exotherm indicating that 

the asphalt cement does indeed exhibit crystallization. 

 

48.62min

22.93min
3.458J/g

1st Cooling

16.84min
148.81°C 111.25min

53.75°C

40

60

80

100

120

140

Te
m

pe
ra

tu
re

 (°
C

)

-1.0

-0.5

0.0

0.5

1.0

1.5

D
er

iv
. H

ea
t F

lo
w

 (W
/g

/m
in

)

0.0

0.1

H
ea

t F
lo

w
 (W

/g
)

16.5 36.5 56.5 76.5 96.5 116.5 136.5 156.5

Time (min)

Sample: pg 67-22 neat
Size:   9.5000 mg

Comment: pg 67-22

DSC
File: C:...\My Documents\BRENT\pg 67-22.001
Operator: IOAN/BRENT
Run Date: 21-Mar-08 09:46
Instrument: 2920 MDSC V2.6A

Exo Up Universal V3.9A TA Instruments

 

Figure 3.12 The DSC cooling curve for neat asphalt cement 

 

Daly et al. have investigated eight asphalt cement samples ranging in grade from 

AC10 to AC30.41  They have reported that with proper annealing of the asphalt cement 

sample, one can expect to reveal from one to four exothermic transitions over a range 

from approximately 0 oC to approximately 60 oC.  They also have reported that in order 

to enhance the crystallinity of a particular fraction within the asphalt cement sample, one 

must anneal the sample at a temperature approximately 10 oC below the expected onset 

temperature of the expected endothermal transition. 
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Masson and Polomark reported that an endothermic transition centered at 

approximately 70 oC in the MDSC thermogram for an asphalt cement, could be attributed 

to the asphaltene fraction.42  The authors also reported that ordering within the asphalt 

cement sample occurred in three stages and is time dependent.  They reported that the 

first stage of ordering took place in the low molecular mass maltene phase and occurred 

rapidly as the molten asphalt cement cooled and quenched at 22 oC.  A second stage in 

the ordering processes involved the medium molecular mass molecules in the maltene 

phase and completes in approximately 3 hrs.  The third stage in ordering within asphalt 

cement involved the asphaltenes and the highest molecular mass molecules in the 

maltene phase.  This stage was reported to last for 16 – 24 hrs resulting in a thoroughly 

annealed asphalt cement sample. 

Due to the fact that asphalt cement must be properly annealed prior to thermal 

analysis using DSC, a new program was utilized in the present investigation: 

1) ramp 10.00 °C/min to 150.00 °C 
2) isothermal for 1.00 min 
3) ramp 1.00 °C/min to 40.00 °C 
4) isothermal for 720.00 min 
5) ramp 1.00 °C/min to 25.00 °C 
6) isothermal for 20.00 min 
7) ramp 10.00 °C/min to 150.00 °C 

 

As a result of this annealing program, the measured enthalpy on the second heating 

cycle for the 1% Sasobit / asphalt cement sample (figure 3.13) dramatically increased 

from 0.42 J/g to 2.042 J/g with 12 hr annealing at 40 oC.  This suggests that at a loading 

of 1 % Sasobit / asphalt cement there may indeed be co-crystallization between Sasobit 

and the asphaltene fraction of the sample.  It also suggests that the concentration of 

Sasobit in the 1% sample may be slightly greater than 1% in this composite.  It is 

believed that the 5 % and 20 % Sasobit loadings may disrupt the asphaltene stacked 

crystalline structure model (Figure 3.16) to be introduced in the X-ray diffraction chapter 
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(Chapter 3.3) of this thesis leading to no contribution from the asphaltenes to these 

measured enthalpies. 
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Figure 3.13 The DSC cooling curve for 1% Sasobit / asphalt cement 

 

The 0.2 % Sasobit / asphalt cement sample second heating thermogram (Figure 

3.14) explicitly shows two separate endothermal transitions. The lower temperature 

transition located between 53.02 oC and 77.64 oC (ΔH = 0.3209 J/g), can be attributed to 

the asphaltene fraction (Masson and Polomark Reference 42), while the transition 

located between 86.94 oC and 100.51 oC (ΔH = 0.07742 J/g) can be attributed to the 

Sasobit.  This might indicate that a loading of Sasobit of this magnitude in asphalt 
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cement might not be significantly disrupting the stacked crystalline structure (Figure 

3.16) of the asphaltenes and may be co-crystallized with the asphaltene fraction. 
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Figure 3.14 The DSC heating curve for 0.2% Sasobit / asphalt cement 

 

When the PG 64-22 sample was annealed in the same manner as the 0.2 % Sasobit / 

asphalt cement, sample evidence of an endothermic transition located between 56.54 oC 

and 77.64 oC during the second heating was revealed (Figure 3.15) and likely could be 

attributed to the asphaltene component (Masson and Polomark Reference 42).  

Alternatively, the first transition (between 56.54 oC and 77.64 oC) could be Sasobit wax 

crystallized on the asphaltene side chains and the second transition (between 86.94 oC 

and 100.51 oC) could be homogeneous regions of Sasobit wax. 

This possibly indicates that a low percent loading of Sasobit reduced the total 

enthalpy within this endothermic transition.  This also might give an indication of why the 

enhanced performance loading range (0.8 % - 3 % on asphalt cement mass from 

References 16 and 17) of Sasobit in asphalt cement has been experimentally 
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determined.  If Sasobit co-crystallizes with the asphaltene fraction to an extent that the 

asphaltene stacked crystalline structure (Figure 3.16) is somewhat preserved and a 

symbiotic relationship between the two may lead to enhanced system performance. 
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Figure 3.15 The DSC heating curve for PG64-22 asphalt cement  

 

 A second batch of Sasobit (Sasobit H8) was received and formulations of 6, 4 

and 2% were produced in the same way as described in Chapter 2.3 of this work.  The 

DSC method used in their analysis is the same as is presented in the experimental 

section of this paper.  The second heating curve was integrated and is presented Table 

3.2.  The 4% and 6% Sasobit H8 composite sample enthalpies come very close to the 

calculated values but the enthalpy for the 2 % sample has a difference of -0.68 J/g with 

respect to the calculated enthalpy.  This discrepancy may result from the concentration 

of Sasobit being slightly greater than 2% Sasobit in that sample due to an initial weighing 

error during the laboratory mixing stage but also may indicate co-crystallization that 

doesn’t completely disrupt the London force attractions between asphaltene molecules. 
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Table 3.2 Analysis of the second heating curve for Sasobit H8 composites 

 

Composite 2nd Heating ΔH (J/g) Calculated ΔH (J/g) 
(ΔH 100%) * wt% 

Difference 

100% Sasobit H8 188.00 188.00 0.00 

6% Sasobit H8 11.25 11.28 0.03 

4% Sasobit H8 7.53 7.52 0.01 

2% Sasobit H8 3.08 3.76 -0.68 

 

3.3. X-ray Diffraction 

 

A number of X-ray diffraction studies have investigated the powder diffraction 

pattern arising from asphaltenes chemically precipitated from asphalt cement in both 

Original and laboratory aged samples.43-46  These investigators calculated the structural 

(aromaticity and crystallite) parameters found in the asphaltene powder samples to 

produce a cross-sectional model (Figure 3.16) using collected X-ray diffraction data.43  

As can be seen from the asphaltene cross-sectional model, the aromatic portions of the 

molecule tend to form stacks under the influence of London dispersion forces (also 

referred to as pi-stacking).  Aliphatic side chains are represented within the asphaltene 

model extending from the central aromatic portion of the asphaltene molecule.  These 

side chains are likely to be the template sites for wax crystallization. A characteristic 

asphaltene X-ray diffraction pattern and real diffraction data is shown in Figure 3.17 

along with a representation of the reflection planes associated with each diffraction.44, 45 

Lu and Redelius have isolated naturally occurring paraffin waxes from asphalt 

cement and investigated their X-ray diffraction spectra (Figure 3.18).47  From these 
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studies it has been concluded that asphaltenes and waxes isolated from asphalt cement 

can crystallize within the asphalt cement.   

 

 

Figure 3.16 A Model of asphaltene molecules in the stacked crystalline form 45 

 

 

Figure 3.17 Representative precipitated asphaltene X-ray diffraction patterns44, 45 
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Figure 3.18 X-ray diffraction pattern for naturally occurring paraffin waxes isolated 
from asphalt cement 47 

 

The two main diffraction peaks arising from crystalline asphaltenes occurred at 

approximately 20o and 25o values of 2θ.43  The two main diffraction peaks arising from 

crystalline waxes occur at approximately 21.2o and 23.4o values of 2θ with the 

assignment of X-ray reflection planes of (110) and (200) respectively.47 

From the X-ray diffraction pattern overlays (Figure 3.19) the evidence for 

loadings down to 2 % Sasobit in asphalt cement can be easily discerned through the 

diffractions at 2θ = 21.2o and 23.4o.  For the 1 % and 0.2 % Sasobit / asphalt cement 

samples the diffraction at 2θ = 21.2o is the only diffraction that can be clearly discerned.  

Therefore, this may indicate that either there was some interaction in the form of co-

crystallization that doesn’t separate the asphaltene molecules beyond their London force 

attraction range between the Sasobit and asphalt at these loadings or that the Sasobit 

species at these low concentrations crystallized (Chapter 3.2. DSC data) but the noise in 

the X-ray diffraction pattern overwhelmed the 23.4 diffraction signal.  Crystallization of 

the wax on the asphaltene side chains might be occurring at loadings of greater than 1% 

although it is believed that this would disrupt the aggregation of the asphaltenes to some 

extent and may lead to better dispersion of the asphaltenes throughout the asphalt 
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cement but not provide the enhancement reported from (0.8 to 3 % from References 16 

and 17).  From the insert in the upper right corner of Figure 3.19 the diffraction spectra of 

the neat Sasobit wax shows that while the diffractions at 2θ = 21.2oand 23.4o are clearly 

seen, the amorphous band associated with the asphalt cement between ~2θ = 10o and 

30o is not in evidence. 
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Figure 3.19 The X-ray diffraction patterns for a range of Sasobit in AC loadings 

 

3.4. Epifluorescence Microscopy 

Evidence for the room temperature phase-separated structure of Sasobit in 

asphalt cement can be seen in the 20x magnification slides (Figure 3.20).  The upper 

right image of the neat asphalt cement shows a distinct lack of phase separation within 

the image (Figure 3.20).  This may imply a distinct lack of natural wax crystallization 

within the neat asphalt cement.  The 20 % Sasobit / asphalt cement image shows very 
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distinct and well distributed phase separation with light colored areas appearing as 

angular (crystalline) and needle-like in shape(Figure 3.20).  If the concept of the Sasobit 

crystallization occurring on the asphaltene aliphatic side chains is to be believed then the 

needle-like shape of the crystallites in the image moves this concept more towards 

plausible as the asphaltene aliphatic side chains could template the structure of the wax 

crystallizing around it.  This fact would also suggest a highly disperse arrangement of the 

asphaltenes within the sample as it could disrupt the stacked crystalline structure of 

asphaltenes (Figure 3.16) within the sample.  The images of 5 % and 1 % Sasobit / 

asphalt cement show a decrease in the average size of the crystalline areas within each 

image and an even distribution of the crystalline areas seems to be evident throughout 

each image (Figure 3.20).  The 1 % Sasobit / asphalt cement is showing a less needle-

like and more rounded profile in the phase separated areas (Figure 3.20).  This might 

suggest that the 1 % loading exhibits co-crystallization interaction between the wax and 

the surrounding asphalt cement and that the asphaltene molecules are able to arrange 

themselves in a more cross-sectional stacked configuration (Hesp et al. Reference 43). 

 Epifluorescence microscopy of a 2% Elvaloy / asphalt cement composite (Figure 

3.21) compared with neat asphalt cement images clearly show more phase separation 

on the right 2 % Elvaloy / asphalt cement than the neat asphalt cement left image.  

These images differ from those previously presented for Sasobit / asphalt cement 

composites in that there are some very bright point sources of fluorescence as best seen 

in the left image of Figure 3.21.  In the right image these bright point sources of 

fluorescence have what looks to be thin filament like structures between and dispersed 

with them.  

Figure 3.22 shows the effect of laboratory aging of the Elvaloy/ asphalt cement 

composite samples with the original (un-aged) composite material image on the left side 
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and the PAV aged material image on the right.  The right image shows larger bright point 

sources of fluorescence, more clearly separated from each other than the left image but 

still shows filament - like material attached to the brighter fluorescence sources.   

 

PG 67-22 Neat  20X mag.
20% Sasobit / PG 67-22  20X mag.

5% Sasobit / PG 67-22  20X Mag.
1% Sasobit / PG 67-22  20X Mag.

  

 

Figure 3.20 Epifluorescence microscopy images of Sasobit/ asphalt cement 
loadings 
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Figure 3.21 Original Elvaloy / asphalt cement epifluorescence image compared 
with original neat asphalt cement epifluorescence image 
 

 

Figure 3.22 Original Elvaloy/ asphalt cement composite epifluorescence image 
compared with PAV aged epifluorescence image 
 

PG 67-22  2% Elvaloy/ PG 67-22 

Original 
material 

PAV aged 
material 
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3.5. Scanning Laser Confocal Microscopy 

Bearsley et al. have reported that scanning laser confocal microscopy has been 

successfully employed to image the asphaltene micelle structures within paving grade 

asphalt cement samples.48  They claim that the asphaltene molecules (due to the multi 

aromatic ring structure) fluoresce between 515–545 nm when excited by a 488 nm laser.  

They also report that the asphaltene micelles they imaged measured 2–7 µm in size.48 

Scanning laser confocal microscopy images (Figure 3.23) of the 2 % Elvaloy / 

asphalt cement composites and changes with PAV aging of the samples were also 

collected as part of this study.  As these images are a combination of slices of the 

sample area 5 µm into the material surface, scattered fluorescence is greatly eliminated 

through averaging the slices and the structures producing fluorescence are more clearly 

shown.  As with the previous epifluorescence images (Figures 3.21 and 3.22) of the 

Elvaloy / asphalt cement composites, we see the bright point sources of fluorescence 

with filament - like material extending from them in each image. 

 

Figure 3.23 Original Elvaloy/ asphalt cement composite image compared with PAV 
aged image (produced through scanning laser confocal microscopy) 
 

Original 
material 

PAV aged 
material 
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In Figure 3.23 the PAV aged image (right) the bright point sources of fluorescence 

appear closely aggregated with respect to the original material (left). 

3.6. Rheology 

Since asphalt cement is a colloidal system and exhibits viscoelastic behavior, it 

can be effectively evaluated through dynamic mechanical analysis (DMA).2  In DMA, a 

sinusoidal input of stress or strain is applied to a test specimen and output response is 

monitored as a function of frequency (ω).  Instruments referred to as dynamic shear 

rheometers utilize geometries such as parallel circular plates to form a test specimen of 

precise dimension when the test specimen is squeezed between them and excess 

sample is carefully removed. 

Rheology is defined as the science of the deformation and flow of materials.49  

The relationship between shear stress (σ) and strain (γ ) or deformation can be related 

through the shearing modulus (G):49-51 

γ
σ

=G  

In viscoelastic materials there are two components comprising the complex 

shearing (G*) modulus, the in-phase (G’) storage modulus or elastic component and the 

out of phase (G”) loss modulus or viscous component.  Since these two moduli are 

vectors, the angle (δ) between them will define the elastic and viscous contributions as a 

vector sum of G*.49-51 

"'* iGGG +=  and 22 ))("())('()(* ωωω GGG +=   

'
"tan

G
G

=δ
 

There can also be defined a complex viscosity (η*): 

"' ηηη i−=∗   and "''" iGGi +=+ ωηωη   
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Where  ωη"'=G  and ωη '"=G  

Therefore: 

ω
η "' G

=  This is the dynamic viscosity (η’) 

 

To produce a master curve one must first develop a series family of rheological 

data curves such as frequency sweep data evaluated at a set of temperatures.  The 

temperatures chosen must be above a characteristic (Td) defining temperature for the 

material such as the glass transition temperature (Tg).  The Williams – Landel – Ferry 

(WLF) equation allows us to reduce the family of single temperature frequency sweep 

curves to one continuous smooth curve for presentation of data at a chosen temperature 

over a wide breadth of frequencies through the time-temperature superposition 

principle.52  This allows for interpretation of data which cannot readily be collected due to 

sample testing frequency or instrument limitations.53  The WLF equation is as follows: 52 

d

d

TTC
TTCta

−+
−−

=
2

1 )()(log  

Where: 

a (T) = horizontal shift factor 

T = temperature, oC of the particular frequency sweep data 

Td = the defining temperature, oC 

C1, C2 = empirical constants. 

 

Anderson et al. have reported that the values of C1 = -19 and C2 = 92 are the most 

appropriate for aged and un-aged SHRP asphalts.51  Using the TA Instruments – 

AR2000 DSR and the software package installed, there is a specific TTS algorithm 

which adjusts the data using the WLF equation and the universal constants C1 = -17.44 
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and C2 = 51.6.  TA Instruments’ TTS algorithm was used for reducing the data collected 

from frequency sweeps to form the master curves of data collected for the frequency 

sweep data collected. 

In effort to more clearly present the differences existing between the three 

frequency sweep master curves sets, a polynomial fit was applied to the 2% Elvaloy 

Original curve (Figure 3.24) which is represented through the equation of the polynomial 

fit line.  The R2 value of 0.98677 for this fit indicates that the 2nd degree polynomial 

function y = A + B1x2 + B2x posted on the figure was a good choice for smoothing the 

raw data. 
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Figure 3.24 Original 2 % Elvaloy composite DSR G* vs. frequency master curves 
smoothed through polynomial fitting 

 

When such a polynomial fit is applied across the full set of frequency master 

curves on aging (Figures 3.25 – 3.27) the data point scatter of the “chaotic” region is 

removed and a smoothed appearance of G* for each sample is more clearly presented. 

Comparison of the G* vs. frequency master curves in Figures 3.25 and 3.26, we 

see similar behavior in terms of aging response between the PG 64-22 samples and the 
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Sasobit composites.  The 1% Sasobit composite G* curve set is of greater magnitude 

throughout the frequency decades as expected due loading of the additive mainly to the 

high molecular mass molecules shown in the GPC-RI chromatogram (Figure 3.6).  The 

TFOT master curve (Figures 3.25 and 3.26) comparison between 1% Sasobit and neat 

asphalt cement seems to follow the same trend seen in original samples curves.  The 

TFOT aged Sasobit composite curve shows greater overall G* values compared to the 

neat asphalt cement TFOT curve.  The PAV mastercurve comparison (Figures 3.25 and 

3.26) between the Sasobit composite and neat asphalt cement samples may suggest 

that Sasobit provides enhanced long term aging performance with respect to the neat 

asphalt cement sample.  Sasobit inclusion decreases the system viscosity, which allows 

the asphaltenes more motility while at a temperature above the melting point of Sasobit 

(as occurs in both TFOT and PAV aging steps).  This may be a plausible explanation of 

the enhancement of G* values in the Sasobit composite compared to the neat asphalt 

cement sample. 

Comparing the PG 64-22 Original sample with the 2% Elvaloy Original sample 

(Figures 3.25 and 3.27) G* curves, it is apparent that inclusion of the reactive elastic 

terpolymer has increased the value of G* throughout the frequency range shown.  This 

may be due to the additive’s higher molecular mass.  This effect increased with aging of 

the two samples if a comparison is made between the PG 64-22 TFOT with the 2% 

Elvaloy TFOT G* curves (Figures 3.25 and 3.27).  When the PAV curves for these two 

samples are compared (Figures 3.25 and 3.27), there may be some evidence of 

crosslinking in the 2% Elvaloy composite between the polymer and asphaltenes or the 

polymer and itself occurring (Polacco et al. Reference 28).  The effect has greatly 

increased the strength and performance of the Elvaloy composite relative to the PG 64-

22 and Sasobit composite samples (Figures 3.25 and 3.27). 
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To further investigate the difference in rheological behavior across the sample 

set we look at the changes in the dynamic viscosity curves.  Since this experiment was a 

frequency sweep experiment performed at 30, 40, 50, 60 and 80 oC and three 

frequencies per decade, data collection at 1.59 Hz (10 rad/s).  1.59 Hz (10 rad/s) 

represents the frequency of average traffic on a paving have an average speed of 55 

miles per hour. The frequency compared across the sample set is 1 Hz.  In their 2004 

study to replace the current RTFO aged (G*/sinδ = 2.2 kPa) specification in the PG 

grading system with η’ = 220 Pa*s as a new grading criteria for RTFO aged asphalt 

cement material, Dongré et al. investigated the performance characteristics of Elvaloy 

AM modified HMA’s and asphalt cement binders.54 
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Figure 3.25 Overlay of PG 64-22 DSR G* vs. frequency master curves on aging 
after polynomial smoothing 
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Figure 3.26 Overlay of 1% Sasobit composite DSR G* vs. frequency master curves 
on aging after polynomial smoothing 
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Figure 3.27 Overlay of 2 % Elvaloy composite DSR G* vs. frequency master curves 
on aging after polynomial smoothing 
 

In the PG 64-22 original sample (Figure 3.28) we see linear behavior of the 

dynamic viscosity as the sample temperature approaches approximately 54 oC.  Above 
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54 oC, the dynamic viscosity no longer behaves linearly.  This may evidence of system 

rearrangement to a more expanded system.  If the Original PG 64-22 sample (Table 3.3) 

behaved in a linear fashion one would expect a dynamic viscosity of approximately 13 

Pa*s at 80 oC, instead, the measured value is 34 Pa*s.  This represents an increase in 

the system dynamic viscosity of approximately 62 % from a linear response.  The DSR 

values across the sample set are presented in Table 3.6.1.  We see negligible % 

dynamic viscosity difference between the Original PG 64-22 and 1 % Sasobit samples.  

However, the 2% Elvaloy sample dynamic viscosity closer to linearity that any of the 

other original samples.  TFOT aging (Table 3.3) for PG 64-22 and 1 % Sasobit samples 

again exhibit approximately equivalent % deviations from linear dynamic viscosity 

behavior.  Comparing PG 64-22 and 1 % Sasobit TFOT samples (Table 3.3) to the 2% 

Elvaloy sample, the 2% Elvaloy sample shows a relative increase in dynamic viscosity 

linearity with respect to the other samples.  During TFOT aging the samples are strongly 

heated, it is believed that the heat has caused the Elvaloy AM polymer to plasticize the 

asphalt cement resulting in closer to linear dynamic viscosity behavior in this system 

compared to the other samples.  Following PAV aging (Table 3.3), all the systems move 

closer to a linear dynamic viscosity profile with the Sasobit sample exhibiting truly linear 

dynamic viscosity behavior.  The Sasobit composite may have broken up much of 

viscosity building forces in the system at 80 oC, possibly leading to more even 

distribution of the asphaltene fraction within the asphalt cement.  This evidence lends 

support to the concept of early stage wax crystalline structure rearrangements (due to 

the multiple transitions noted in the Chapter 3.2 of this work) on the aliphatic side chains 

of the asphaltene molecules and improving their molecular mobility within the asphalt 

cement through reduction of London force attractions. 
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Figure 3.28 The PG 64-22 Original sample DSR chart of η’ vs. Temperature 

 

Table 3.3 Deviation from linearity at 80 oC for η’ vs. Temperature measured at 1 Hz 
 

Sample 
80 oC linear  
η' value (Pa*s) 

80 oC actual 
 η' value (Pa*s) Δ (%) 

PG 64-22 original 13 34 62 
PG 64-22 TFOT 27 53 49 
PG 64-22 PAV 183 238 23 
1 % Sasobit Original 23 64 64 
1 % Sasobit TFOT 48 93 48 
1 % Sasobit PAV 308 308 0 
2 % Elvaloy Original 30 56 46 
2 % Elvaloy TFOT 51 111 54 
2 % Elvaloy PAV 335 460 27 

Note: Charts for PG 64-22 TFOT – 2% Elvaloy PAV appear in the appendix 

 
DSR determination of the PG grade for PG 64-22 original samples and 

composites was performed and the results appear in (Table 3.4).  The temperature at 

which the value of |G*| / sin (delta) is closest to 1.0 kPa has been defined as the grading 

temperature.  PG 64-22 grades out to PG 70-22 actually, while PG 64-22 / 2% Elvaloy 

and PG 64-22 / 1% Sasobit grade to PG 76-22.  This states that with each of the 
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composite samples we have increased the PG by one grade through incorporation of the 

additives at their respective loadings to the asphalt cement and thereby accomplishing 

significant reinforcement of the composite system.   

 

Table 3.4 DSR PG grading of the PG 64-22 original samples vs. composites 
 

Sample Temperature |G*| / sin(delta) 
  °C kPa 
PG 64-22 / 2%Elvaloy 58 9.608 
  64 4.4 
  70 2.118 
  76 1.079 
  82 0.5798 
PG 64-22  58 5.199 
  64 2.245 
  70 1.035 
  76 0.509 
PG 64-22 / 1%Sasobit 58 13.47 
  64 5.721 
  70 2.487 
  76 1.139 
  82 0.5542 
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 

 From the GPC-RI data we don’t see much difference in the chromatograms of 

PG64-22 and the 1% Sasobit composites.  There is evidence that this additive adds 

molecular mass to the non - aggregated asphaltene and the aggregated asphaltene 

components of the asphalt cement but does not clearly increase the molecular mass in 

these components at a greater rate that the asphalt does without its inclusion. This is 

likely caused by the negative dn/dc Sasobit response with respect to the asphalt cement 

dn/dc.  The Elvaloy does appear to increase the concentration of the non- aggregated 

asphaltene and the aggregated asphaltene components in the asphalt cement and this 

is most evident following PAV aging.  The increase in the concentration of the non- 

aggregated and aggregated asphaltene components is assumed to be due to Elvaloy 

binding with the asphaltenes (Polacco et al. Reference 28).  This effect appears to be 

accelerated with heating of the composite at temperatures above 100 oC as is done in 

the laboratory aging steps. 

 From the DSC heating curves, Sasobit may co-crystallize with what is believed to 

be the asphaltene fraction in the asphalt cement at loadings of 0.2 % Sasobit on the 

mass of the asphalt cement.  Evidence of this was seen following 12 hour sample 

annealing at 40 oC, with the appearance of two clearly separated endotherms.  From 

integrations of the second heating DSC curve for loadings above 4% Sasobit there 

appears good agreement between measured ΔH values and calculated ΔH values.  The 

x-ray diffraction data shows a disappearance of the diffraction peak located at  

2θ = 23.4 o for Sasobit loadings of 2% and greater.  This may also be evidence of a co-

crystallization occurring within the composite sample at the lower loadings.  It could also 
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be due to the experimental noise overpowering the signal for this loading level and 

below. 

 Epifluorescence microscopy images show a marked reduction in crystallite size 

as the loading of the Sasobit is reduced.  The crystalline structures at 1 % loading are 

distinctly smaller and appear more rounded than the larger and needle-like crystallites 

found at 5 and 20 % loadings.  Evidence of both additives can clearly be seen within the 

asphalt matrix through epifluorescence and scanning laser confocal microscopy imaging 

of each of the composite systems investigated.  It is believed that these additives 

capture scattered fluorescence produced in the asphaltenes and act as wave-guides to 

transmit the collected photons.  The bright point sources of fluorescence, most easily 

picked out in the Elvaloy / asphalt cement images are believed to be asphaltene 

micelles.  The apparent size of the individual asphaltene micelles in these images falls 

within the 2-7 µm range reported in literature.48  Evidence of filament -like structures 

found in Elvaloy AM original composite images may be polymer strands of Elvaloy AM 

entangled with and dispersed around the asphaltene micelles within the asphalt cement 

matrix.  With PAV aging it is believed that these polymer strands bind with nearby 

asphaltenes leading to larger networks of covalently bound asphaltenes (Polacco et al. 

Reference 28).  These same asphaltene micelles were not found in the Sasobit / asphalt 

cement epifluorescence images and are believed to be drowned out by the much greater 

brightness exhibited by the angular crystallites of Sasobit. 

 Evidence of improved G* performance in both Sasobit and Elvaloy composite 

mastercurves with respect to the neat asphalt cement mastercurves has been 

presented.  Although, the Sasobit composite master curves seem to follow the same 

curve trends seen in the neat asphalt, the difference between the two is seen in the 

higher Sasobit composite G* values for original, TFOT and PAV data.  The dynamic 

viscosity data at 1 Hz shows that Original and TFOT data doesn’t clearly differentiate 
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Sasobit Composite and neat asphalt cement until the PAV aging.  At that stage the 

Sasobit composite shows truly linear dynamic viscosity response.  This may suggest that 

the Sasobit inclusion to the asphalt has lead to better dispersion of the viscosity building 

asphaltene component.  The Elvaloy composites show better linearity response than the 

other samples in Original and TFOT dynamic viscosity data.  This may be due to a 

higher degree of softening provided by the polymer inclusion to the material.  It is 

believed that the polymer has experienced some degree of crosslinking following the 

PAV aging in all the rheological data.  The PG grade for original 1 % Sasobit and 2 % 

Elvaloy composites were found to improve performance by one grade above the un-

modified original asphalt cement. 
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CHAPTER 5 

FUTURE RESEARCH 

With all of the evidence presented for the concept of Sasobit possibly 

crystallizing on the asphaltene side chains, one of my future research goals is further 

investigate through isolating the asphaltene fraction from Sasobit loaded asphalt cement 

samples.  The first step of the Corbett asphalt cement fractionation method may be a 

way to precipitate the Sasobit / asphaltene fraction.  If this doesn’t work then a solvent 

study to find the most appropriate method for Sasobit / asphaltene fraction precipitation 

should be conducted.  Epifluorescence or scanning laser confocal microscopy should be 

a way to image the precipitated fraction.  X-ray diffraction or GPC in THF might also be 

worth investigating for corroborating evidence of this perceived phenomenon. 

The majority of the future research will be devoted to investigation of Elvaloy 

reinforced asphalt cement composites.  The goal will be to determine the impact of 

Elvaloy AM in PG 64-22 in terms of aging.  Samples of the composites will first be made 

with loadings of 0, 1, 2 and 3 % Elvaloy AM / PG 64-22.  These samples will be 

subjected to GPC, rheology and IR spectroscopy.  The GPC in TCB data using an IV 

detector (with all samples at the same concentration) will give the molecular mass data; 

multiple shear creep recovery (rheology) will indicate long term performance and stress 

to failure data.  Since Elvaloy AM contains a significant loading of epoxy groups, IR 

spectroscopy will be performed on the original samples to determine the initial loading of 

these reactive groups existing in each composite.  Solvent extraction schemes will be 

investigated to determine the best way to separate the Elvaloy polymer from asphalt 

cement.  Various mixtures of solvents will be investigated in pursuit of this goal. 

Each of the composites will be subjected to short term aging through TFOT and 

multiple cycles of PAV for simulation of long term aging.  After each of the aging steps, 
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the material will be subjected to the same battery of analytical techniques as previously 

described for the original samples.  It is hoped that through the monitoring of the 

rheological changes, changes in various chemical compositions percentage and each 

composite’s mass distribution with aging will reveal the impact of Elvaloy AM in PG 64-

22.  These aging characteristics will be compared to the data collected from SBS 

modified asphalt cement samples aged in the same manner. 

Polyphosphoric acid has previously been used as a catalyst in cross-linking 

studies of Elvaloy AM in asphalt cement.48  A study of crosslinker inclusion to the 

composites will be performed to determine the optimal loading within the composite 

samples.  Composite samples containing blends of Elvaloy and polyphosphoric acid (at 

loading greater than catalytic levels) will also be formulated and evaluated as described. 
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APPENDIX: SUPPLEMENTARY DATA 
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Figure A.I PG 64-22 TFOT sample DSR chart of η’ vs. Temperature 
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Figure A.2 PG 64-22 PAV sample DSR chart of η’ vs. Temperature 
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Figure A.3 Original 1 % Sasobit sample DSR chart of η’ vs. Temperature 
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Figure A.4 TFOT 1 % Sasobit sample DSR chart of η’ vs. Temperature 
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Figure A.5 PAV 1 % Sasobit sample DSR chart of η’ vs. Temperature 
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Figure A.6 Original 2 % Elvaloy sample DSR chart of η’ vs. Temperature 
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Figure A.7 TFOT 2 % Elvaloy sample DSR chart of η’ vs. Temperature 
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Figure A.8 PAV 2 % Elvaloy sample DSR chart of η’ vs. Temperature 
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