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ABSTRACT 

 Currently, natural polysaccharides are being utilized increasingly in the markets 

because they exhibit biodegradability, biocompatibility, versatility, and are found 

abundant in nature.  The diversity of natural polysaccharides provides the chemist with a 

broad spectrum of raw materials that can be used in many biological applications.  

Chitosan is a natural polysaccharide that possesses excellent biological properties.  It has 

been recognized for its antibacterial activity, in that it is destructive towards the 

bacterium Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus).   

 The antibacterial property of chitosan can be enhanced by changing the 

hydrophobic/hydrophilic nature of the polysaccharide backbone.  This research entails 

the chemical modification of chitosan with distinct linear aliphatic, cyclic, and novel 

hydrophilic anhydrides, followed by quaternization using 3-chloro-2-hydroxyl propyl 

trimethylammonium chloride (Quat-188) to enhance its antibacterial properties.  It is 

believed that these types of hydrophobic/hydrophilic derivatives inhibit the growth of 

bacteria by initial electrostatic interactions with negatively charged groups of the 

bacterial cell surface.   

 The antibacterial activities of the N-acyl chitosan Quat-188 derivatives were 

investigated using the minimum inhibitory concentration (MIC) method.  In most cases, it 

was found that an increase in the percent extent of N-acyl substitution (% ES) led to a 

decrease in the percent extent of quaternization (% EQ), which resulted in an increase in 

the MIC of the derivative.  For example, 2-glycerol glutamide chitosan Quat-188 with 

5% ES and 61% EQ exhibited a MIC of 64 µg/mL against E. coli and 32 µg/mL against 

S. aureus.  At 25% ES and 31% EQ, the derivative exhibited a MIC of 128 µg/mL 

against both E. coli and S. aureus.  These results suggest that an increase in the extent of 



 xiv

N-acylation results in a decrease in the amount of cationic charge that can placed on the 

polysaccharide backbone, which leads to a decline in the antibacterial activity. 
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CHAPTER 1.   INTRODUCTION 

1.1 Utility of Natural Polysaccharides  

Billions of dollars are spent annually to ensure the success and longevity of 

biotechnical products.  For many years, the vast majority of these products include those 

made from petroleum synthetic polymers.  However, the potential market for products 

made from natural polysaccharides (polymers) is growing rapidly.  Carbohydrate based 

polymers provide the chemist with a broad spectrum of raw materials that exhibit 

biodegradability, biocompatibility, and versatility.  The properties of natural 

polysaccharides can be exploited in the derivation of many bio-synthetic polymer 

conjugates, that will biodegrade and pose no threat to the environment after their use.  

One very interesting inherent property of natural polysaccharides is their 

biological functionality.  These materials have been utilized in medical therapy, which 

includes cardiology, dentistry, hematology1, and they have important roles as vaccines.2  

Polysaccharides used in these biomedical applications are largely found in sea animals, 

plants, and bacterial sources,3 as shown in Table 1.1.  

A very important area where natural polysaccharides have been receiving 

attention is their uses as biocides.  These polysaccharides are classified as biocidal 

polymers.  Some characteristics for an ideal biocidal polymer include:  it should be easily 

and inexpensively synthesized; it should be stable in long-term usage and storage at the 

temperature of its intended application; it should not be soluble in water for water-

disinfection applications; it should not decompose to and emit toxic products; it should 

not be toxic or irritating to those handling it; it should be regenerable upon loss of 

activity; and it should be biocidal to a broad spectrum of pathogenic microorganisms in 

brief times of contact.4  Biocidal polymers are incorporated into textile fibers, paints, 
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waxes, oils, disinfectants, and antimicrobial products,4 and they also have great utility in 

the areas of healthcare, hygiene, and biomedicine.  

 Table 1.1 Main sources of polysaccharides for biomedical applications 
 
 

Sources of polysaccharides 
 
 

 
 

Polysaccharides produced 
 

 
Plants: 
       Algae 
       Tubers 
       Seeds 
       Primary cell walls 
 

 
 
Alginates, carrageenans, agarose 
Konjac gum 
Galactomannans (tara, carob, locust bean, guar) 
Pectins 

 
Animal: 
       Crustaceous 
       Umbilical rod, vitreous humor and   
       roster combs 
Bacteria 
 

  
 
Chitin and derivative chitosan 
Hyaluronan 
 
Xanthan, hyaluronan, gellan, succinoglycan 

  

1.2. The Scope of Polysaccharide Chemistry  

Polysaccharides are poly-acetals formed by condensation reactions of sugar 

molecules.  Polysaccharides are also known as glycans, because they consist of 

monosaccharides joined together by glycosidic linkages.  Polysaccharides that comprise 

one monosaccharide are termed homopolysaccharides (homopolymers).  Cellulose, a 

naturally occurring polysaccharides, is a classic example of a homopolymer.  It is found 

in plants such as microfibrils (2-20 nm diameter and 100 - 40 000 nm long).5  These form 

the structurally strong framework in the cell walls. Cellulose consists of monomeric 

glucose units, linked by β-glycosidic linkages (Figure 1.1).  The linear arrangement of the  

β-linked glucose units in the polymer is a result of the configuration of the anomeric  

carbon atoms. 
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Figure 1.1 The structure of cellulose 

 Polysaccharides comprising two distinct monosaccharides that are of the same 

sugar (e.g. a hexose sugar) are termed copolymers.  A very well known naturally 

occurring copolymer composed of monosaccharides that have amino groups in the 

nonanomeric position is chitosan.  Chitosan is a widely investigated copolymer whose 

monomeric units are made of 2-amino-2-deoxy-D-glucopyranose and residual 2-

acetamido-2-deoxy-D-glucopyranose units.  The structure of chitosan is shown in Figure 

1.2.  Like cellulose, the monomeric units are linked by β-glycosidic linkages, and the 

configuration of the anomeric carbon atoms in chitosan makes the polymer chains 

essentially linear.  Unlike cellulose, chitosan is not common in nature.  Some reports of 

its existence has been associated with the cell walls of fungi6 but it is primarily a 

principle derivative of chitin.  Therefore, prior to discussing the science that will 

elucidate the importance of chitosan, it is essential to explore its derivation.  This begins 

with a comprehensive study of chitin.     
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Figure 1.2 The polymeric structures of chitin and chitosan 
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1.3 Introduction of Chitin 

Chitin, a naturally abundant homopolymer, consists of β-(1→4) linked 2-

acetamido-2-deoxy-D-glucopyranose units (Figure 1.2).  Chitin has been found in a wide 

range of natural sources such as squid, fungi, insects, and some algae.7,8  A large quantity 

of chitin is manufactured from the exoskeleton of crustacean sources (shrimp, crab, 

lobster, crayfish), and from the shells of mollusks.9  In the shells of mollusks, chitin is 

closely associated with proteins, where it provides adhesion between fiber beds of 

stacked laminas.  Chitin exists as part of a chitinoproteic complex in the shells of 

mollusks, where the shell matrix is composed of 2 structural units9 (Figure 1.3).  The first 

unit is called the mineralization matrix (MM), which consists of an acidic polypeptide 

fraction with a strong affinity for Ca2+ ions.  The arrangement of this fraction is 

speculated as a spiraled peptide chain.10  The second unit contains a high molecular 

weight chitinoproteic complex that has no affinity for Ca.2+  This unit is called the carrier 

protein (CP), and it is arranged in the form of sheets and layers.  The attachment of the 

mineralization matrix to the carrier protein complex will activate the mineralizing 

substrate, leading to epitaxial CaCO3 deposition. 

 

 
 

 
Figure 1.39 Schematic of the structure of the organic matrix in mollusk shells   
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1.4 Isolation of Chitin 

Chitin can be isolated from the shells of mollusks via chemical procedures.  The 

shells are initially treated with 5% NaOH, which denatures proteins, resulting in chitin + 

CaCO3 + lipids.  Treatment with 30% HCl hydrolyzes the lipids, dissolves calcium salts 

(demineralization), and other minor inorganic constituents.  This process isolates chitin  

(Scheme 1.1).   

Scheme  1.1 Isolation of chitin from mollusk shells 
 

 
 
 

                                          

5% NaOH

Chitin + CaCO3 + lipids

30% HCl

(removes proteins)

(removes CaCO3 + lipids)

 
 
 

O

HO

HO O

HO

HO
O

NH

O

NH

O

O

HO

HO O

HO

HO
O

NH

O

NH

O

O O

HO

HO O

HO

HO
OO

NH

O

NH

O

O

n  
                                                                             

(isolated chitin) 



 6

1.5 Economical Aspects of Chitin 

The production of chitin is currently based on crustacean shells discarded by the 

canning industries in Oregon, Washington, and Virginia7 and the availability of 

crustaceans shells from fisheries and tinned food industries.  In India, the Central Institute 

of Fisheries Technology, Kelara conducted research on chitin.  From their findings, they 

discovered that dry pawn waste contained 23% chitin and dry squid contained 15% 

chitin.11  Chitin is now produced commercially in India, Japan, Poland, Norway, and 

Australia.  Some factors that control the cost of the production of chitin include 

availability of seafood wastes, chemical costs, nitrogen gas, transportation, energy costs, 

and labor. 

1.6 Properties and Characterization 

Chitin is regarded as a suitable functional material because it exhibits excellent 

properties such as biocompatibility, biodegradability, non-toxicity, and adsorption 

properties.12,13  However, this bio-functional polymer exhibits a limitation in 

processibility due to problems related to its solubility.  The highly ordered crystalline 

structure of chitin (Figure 1.4) originates from extensive hydrogen bonding that occurs 

between the hydroxyl groups and the N-acetamido groups in the repeating units.  

Intramolecular C3-OH hydroxyl to C5-O ring oxygen hydrogen bonds across each 

β(1→4)-glycosidic linkage restrict chitin units to the low-energy chair conformation, 

resulting in a rigid and linear polymer backbone.14  This rigidity prevents the polymer’s 

complete dissolution in common organic solvents (DMSO, DMF, DCM, NMP) and 

aqueous solvents.   

Chitin has been reported to show solubility in concentrated acidic solvents such as 

H3PO4, HCl, and H2SO4, and amide/LiCl systems15 (e.g. N,N-dimethylacetamide/LiCl 
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and N-methyl-2-pyrrolidone/LiCl).  However, these solvents can lead to de-

polymerization of the polymer chain16 and difficulty in removing residual solvent 

molecules.  Because of the problems related to its solubility in aqueous and organic 

solvents, chemical modification of chitin to generate new bio-functional materials is of 

primary interest, where such modification would not change the fundamental skeleton of 

the polymer.  A very elaborate procedure includes alkaline N-deacetylation of the          

N-acetamido functional groups of chitin (Scheme 1.2). Modification of the N-acetamido 

groups by N-deacetylation results in functional amines that can undergo nucleophilic 

substitution reactions. 
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Figure 1.4 Crystalline structure of chitin  
 
1.7 N-deacetylation of Chitin 

Chitosan, the principle derivative of chitin, exists naturally in the cell walls of 

fungi, but its occurrences is much less widespread in biomass than that of chitin.6, 17  Due 

to chitin’s abundance in nature, chitosan is usually derived from this source, mainly 

through alkaline N-deacetylation of the N-acetamido functional groups.  An alternative 

procedure to modify the N-acetamido groups is enzymatic N-deacetylation of chitin, 

using the enzyme chitin deacetylase.18  This enzyme is produced primarily by fungi such 
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as Absidia coerulea, Colletotrichum lindemuthianu, and Mucor rouxiss.19-22  However, it 

was postulated that the enzyme cannot penetrate into the interior of chitin’s crystalline 

structure, and only the peripheral N-acetamido groups are amenable for enzymatic N-

deacetylation.23  Hence, chemical modification is commonly employed for the 

preparation of chitosan.  Chemical modification gives the scientist a handle on governing 

the 3 factors that influence the N-deacetylation process; they are NaOH concentration, 

reaction temperature, and reaction time.8, 14, 24  Methacanon et al. examined the N-

deacetylation process to determine the optimal conditions for the conversion of the N-

acetamido groups into N-amino groups.8  The data obtained from this investigation 

implied that at lower NaOH concentrations, there was no significant change in the degree 

of deacetylation (DDA), despite elevated temperature and time of the reaction.  On the 

other hand, DDA rapidly increased and leveled off, as a function of increased alkaline 

concentration, temperature and time (Table 1.2).   

 
Scheme  1.2 N-deacetylation of chitin 
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    Table 1.2 Degree of N-deacetylation of chitin obtained from various    
    conditions 

Chitin/solution 
ratio 

NaOH 
concentration (%) 

Temperature 
(0C) 

Time 
(min) 

%DDA 
(DDA x 100) 

1:20 20 100 15 21.6 
   120 22.8 

1:10 40 40 15 21.6 
   120 43.3 
  60 15 34.8 
   60 52.4 
   120 68.0 
  80 15 56.7 
   60 70.9 
   120 84.0 
  100 60 73.6 
   120 88.7 
 60 40 120 27.5 
  60 120 70.7 
  80 45 84.2 
   60 90.2 
   120 94.7 
  100 30 94.0 
   60 97.3 

 

1.7.1 Effects of N-deacetylation Experimental Conditions 

In addition to investigating the influence of alkaline concentration, temperature, 

and time on the % DDA, Methacanon et al. have shown that these factors can affect the 

molecular weight of resulting chitosan.  It is well known that the experimental conditions 

for N-deacetylation can lead to degradation of the polymer main chain.16  The results 

shown in Table 1.3 reveal the inverse relationship between NaOH concentration, 

temperature, time, and molecular weight; that is, as the basicity, temperature, and time of 

the reaction was increased, the molecular weight of the polymer decreased.  In attempts 

to address the problem involving the degradation of chitin during the N-deacetylation 

process, it has been reported that the addition of thiophenol reduces chain scission by 

trapping molecular oxygen and exerting a catalytic effect.25  Bough et al. minimized 

chain degradation during N-deacetylation by purging the reaction with N2 to flush out 
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air.26  Also, treating chitin with concentrated NaOH in the presence of NaBH4 can 

minimize degradation of the polymer.27  

Table 1.3 Molecular weight of chitosan obtained from various 
N-deacetylation conditions  

Condition MW x 105 
              40% NaOH, 80 0C, 120 min 8.74 
              40% NaOH, 100 0C, 60 min 4.58 
              60% NaOH, 80 0C, 60 min 10.9 
              60% NaOH, 80 0C, 120 min 8.87 
              60% NaOH, 100 0C, 60 min 4.53 

  60% NaOH, 100 0C, 120 min 3.22 
 

1.7.1.1 Homogenous and Heterogeneous N-deacetylation 

N-deacetylated chitosan can be prepared under homogenous or heterogeneous 

experimental conditions, thus affecting the sequencing arrangements of the 2-acetamido-

2-deoxy-D-glucopyranose (N-acetamido) units and 2-amino-2-deoxy-D-glucopyranose 

(N-amino) units, and the solubility of the polymer. Two types of sequencing 

arrangements of the monosaccharide units of chitosan include blocks (termed block 

copolymers) and/or random (termed random copolymers).  In theory, block copolymers 

contain a block of one monomeric unit connected to a block of another monomeric unit.28  

The sequence is illustrated below: 

-A-A-A-A-A-A-A-A-A-B-B-B-B-B-B-B-B- 

Random copolymers have no specific sequence of the monomers.28  As the name implies, 

the monomers appear in a random fashion: 

- A-B-A-A-B-A-B-A-B-B-A-B-A-B-A-B-A- 

The parameters that influence homogenous experimental conditions include 

alkaline media, low temperature, and prolonged reaction time.14, 29, 30  Under these 

conditions, there is a random scission of the N-acetyl groups along the polymer chain, 
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which results in a random sequencing of the 2-acetamido-2-deoxy-D-glucopyranose and 

2-amino-2-deoxy-D-glucopyranose units.  In investigating the experimental conditions 

that affect the solubility of N-deacetylated chitosan, Sannan et al. prepared chitosans 

under homogenous conditions, and reported that the materials were water soluble.16  

Kurita also prepared water soluble chitosans under homogenous conditions, where he 

reported that the water solubility is attributed to the random deacetylation along the 

chains of chitin.31  

The parameters that influence heterogeneous experimental conditions include an 

alkaline solvent system, elevated temperatures, and short reaction times,8, 24, 31 (when 

compared to the reaction times for homogenous experimental conditions).  Under these 

conditions, there is an ordered scission of the N-acetamido groups.  This results in blocks 

of water soluble fractions (N-amino units) connected to water insoluble fractions (N-

acetamido units).  In their study of the chemical composition and sequencing of the N-

acetamido and N-amino units of chitosan, Vaarum et al. prepared materials under 

heterogeneous conditions, and obtained acid-soluble and acid insoluble fractions.32  It has 

been reported that chitosans prepared under heterogeneous conditions during 

deacetylation have a block-wise distribution of acetamido units,30 resulting in aqueous 

soluble and insoluble fractions. 
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CHAPTER 2.   CHITOSAN CHEMISTRY 

2.1 Solubility of Chitosan 

 Chitosan, a biomaterial obtained via alkaline N-deacetylation of chitin, has 

recently attracted much attention from scientists across the globe.  It is a copolymer that 

is primarily composed of β(1→4) linked 2-amino-2-deoxy-D-glucopyranose units, and 

residual 2-acetamido-2-deoxy-D-glucopyranose units.  Although the polymer backbone 

consists of hydrophilic functional groups and is hydrophobic in nature, chitosan is 

normally insoluble in water and most common organic solvents (e.g. DMSO, DMF, 

NMP, organic alcohols, pyridine).  The insolubility of chitosan in aqueous and organic 

solvents is a result of its crystalline structure, which is attributed to extensive 

intramolecular and intermolecular hydrogen bonding between the chains and sheets, 

respectively1 (Figure 2.1). 
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Figure 2.1 Crystalline structure of chitosan  

 A few attempts have been made to enhance chitosan’s solubility in organic 

solvents.2-4  Organic soluble chitosan derivatives previously synthesized mainly served as 

precursors or standard intermediates for the preparation of finely designed chitosan 
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biomaterials.3, 5-7  Some representative precursors that are amenable to further chemical 

modification are shown in Figure 2.1.  Their syntheses are given in Schemes 2.9 
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Figure 2.2 Standard chitosan precursors for further modification 
 

 Many attempts have been made to enhance chitosan’s solubility in water however.  

One major reason is because most biological applications for chemical substances require 

the material to be processible and functional at neutral pH.  Thus, obtaining a water 

soluble derivative of chitosan is an important step towards the further application of the 

polymer as a biofunctional material.   

2.2 Enhancing the Solubility Property 

 The pKa of the N-amino groups of chitosan is reported as 6.5.8  Therefore, 

chitosan is soluble in dilute organic acidic solutions where the pH is < 6.5 (e.g. formic, 

acetic, pyruvic, 10% citric, and lactic acid).9, 10  Although chitosan dissolves in aqueous 

medium at pHs less than or equal to 6.5, acidic solutions may not be desirable in many of 

chitosan’s applications (e.g. cosmetics, food, and biomedicines).  Hence, the goal is to 

enhance chitosan’s solubility at neutral pH.  The procedures to enhance the polymer’s 

solubility include chemical modification of the N-amino functional groups, resulting in 

N-substituted derivatives with improved solubilities in aqueous medium.  Some N-

substituted reactions include N-alkylation, N-acylation, and N-hydroxyacylation.   
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2.3 Effect of N-substitution  

 Prior to discussing the details of N-alkylation, N-acylation, and N- 

hydroxyacylation, it is necessary to mention that the type of organic compound used in 

each of these N-substitution reactions is chosen to ultimately enhance the bioactivity of 

chitosan (as will be discussed in chapters 4 and 5).  Then, it is important to understand 

how the organic substituent remarkably changes the solubility of chitosan in water.  As 

mentioned, excessive intramolecular and intermolecular hydrogen bonding between the 

chains and sheets of chitosan plays a major role for the polymer’s insolubility in water.  

Through substitution of the N-amino groups, the normal regularity of intermolecular 

hydrogen bonding is reduced, which creates space for water molecules to fill in and 

solvate the hydrophilic groups of the polymer backbone (and the substituent if it 

comprises hydrophilic components).  Substitution with bulky substituents further 

enhances chitosan’s solubility in water.11, 12  This is because the large size of the 

substituent creates more space between the polymer’s sheets, thus weakening 

intermolecular hydrogen bonding to a greater extent.  This allows more water molecules 

to fill in these spaces, leading to an increase in the polymer’s solubility in the medium.  

2.4 N-substitution via N-alkylation 

The conversion of chitosan to a variety of N-alkylated derivatives can be effected 

by treatment of the polymer with aldehydes or ketones.  Condensation of chitosan with 

these functional groups affords the Schiff base intermediates aldimines (from reactions 

with aldehydes) or ketimines (from reactions with ketones).  Most of these types of 

reactions proceed smoothly in a binary solvent mixture of aqueous acetic acid and 

methanol.  Initially the reaction is carried out under homogenous experimental 

conditions, but over time, gelation occurs due to the Schiff bases’ poor solubility in the 
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medium.13  The Schiff base formation is followed by reduction of the imine linkage with 

sodium cyanoborohydride or sodium borohydride, resulting in N-alkylated chitosan.   

In a chemical modification reaction of chitosan, Kurita synthesized an N-alkylated 

derivative from the addition of phthalaldehydic acid to an aqueous suspension of 

chitosan, followed by reduction of the Schiff base to afford N-o-carboxybenzyl chitosan14 

(Scheme 2.1).  This derivative displayed solubility in neutral media. 

Scheme  2.1 Reductive alkylation of chitosan with phthalaldehydic acid 
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N-alkylated derivatives can also be prepared by the introduction of sugar branches 

at the N-amino groups.  These reactions involve reductive alkylation of chitosan using 

sodium cyanoborohydride and diverse reducing sugars such as D-galactose, D-glucose, 

cellobiose, and lactose.15, 16  Yalpani et al. prepared chitosan derivatives by reductive 

alkylation with lactose17 (Scheme 2.2).  This hydrophilic derivative was reported to be 

soluble in water.   

Scheme  2.2 Reductive alkylation of chitosan with lactose 
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2.5 N-substitution via N-acylation 

N-acylation of chitosan is the most typical and extensively studied modification 

reaction.  The process involves a reaction between chitosan and an acid anhydride or acyl 

halide.  The reaction proceeds through an addition/elimination type mechanism, where 

amide functionality of the N-amino groups is restored.  These reactions are driven toward 

amide formation because amides are more stable molecules (compared to acyl carbonyls) 

as explicable in terms of resonance localization of the lone pair electrons on nitrogen into 

the carbonyl pi system (Figure 2.3). 

N

O

N

O

 

Figure 2.3 Resonance stabilization of amides 

N-acylation of chitosan has been achieved with various kinds of acid anhydrides.  

Because most acid anhydrides exhibit very little solubility in aqueous media, the 

reactions between chitosan and acid anhydrides are conducted under heterogeneous 

experimental conditions.  These conditions could lead to fractions of water soluble and 

water insoluble products, and/or regioselectivity issues such as O-acylation.  For this 

reason, methanol is usually added to help solvate the anhydride in the medium12, 14, 18 and 

the reaction is carried out under homogenous experimental conditions.  The N-acylation 

of chitosan with anhydrides in a mixture of aqueous acetic acid and methanol at room 

temperature proceeds selectively at the N-amino functional groups.11,12   

Several N-acyl derivatives comprising aliphatic side chains have been prepared.2, 

19, 20  For example, Hirano et al. synthesized novel water soluble N-saturated fatty acyl 

derivatives of chitosan through reactions with propionic, butyric, pentanoic, hexanoic, 
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and octanoic anhydride, and the longer chain acid anhydrides decanoic, lauric, myristic, 

palmitic, and stearic anhydride21 (Scheme 2.3).  The authors reported that the chain 

length of the substituent and the degree of substitution (DS) have a considerable 

influence on the solubility of chitosan.  The shorter chain derivatives (N-acetyl to N-

octanoyl chitosan) with low to moderate DSs all exhibited solubility in water.  However, 

at higher DSs, the derivatives displayed very little to no solubility in water.  The longer 

fatty acyl derivatives (N-decanoyl to N-stearoyl) were all insoluble in water regardless of 

the DS, due to an overwhelming increase in hydrophobicity. 

 N-acylation with bulky and cyclic anhydrides exploit the ease in which the 

substituents greatly reduce the normal regularity of intermolecular hydrogen bonding of 

chitosan, resulting in derivatives with very good solubility in water.  Zhang and Hirano 

prepared N-trimethylacetyl chitosan derivatives from a homogenous reaction between 

chitosan and trimethylacetic anhydride11 (Scheme 2.4).  The derivatives (DS = 0.30-0.54) 

were reported as water soluble materials. 

 Hirano and Moriyasu studied ring opening reactions of chitosan with various 

cyclic anhydrides.22  The structure of the attachment is shown in Scheme 2.5.  The 

authors reported that all of the derivatives (DS = 0.45-0.80) displayed solubility in water 

at various pHs.  All of the products exhibited solubility in the pH region below 4.0 and 

above pH 7.0.  The solubility in the acidic region would be caused by the protonation of 

the N-amino groups (–NH2 to –NH3
+), and the solubility in the basic region would be 

caused by the change of the carboxy groups to carboxylate ions (–COOH to –COO–).  

The derivatives did not exhibit complete solubility in the pH range of 4.0 – 7.0, which 

corresponded to the isoelectric point of the products.   In this pH range, an equimolar of –

NH3
+ and –COO– groups existed in the macromolecule. 
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Scheme  2.3 The synthesis of N-saturated fatty-acyl chitosan derivatives 
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Scheme  2.4 The synthesis of N-trimethylacetyl chitosan 
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Scheme  2.5 N-acylation of chitosan with cyclic acid anhydrides 
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2.6 N-substitution via N-hydroxyacylation  

 N-hydroxyacylation introduces hydroxyacyl substituents to the backbone of 

chitosan, which can effectively increase the hydrophilicity owing to the hydrophilic 

hydroxyacyl group.  However, only a few reports on the N-hydroxyacylation of chitosan 
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with lactones have been documented due to the low reactivity and stability of most 

lactone compounds.  Kurita et al. attempted the preparation of N-hydroxyacylated 

derivatives from reactions of chitosan with β-butyrolactone and γ-butyrolactone23 

(Scheme 2.6), but reported that only β-butyrolactone was reactive towards nucleophilic 

attack, on the account of the high reactivity of β-lactones. 

 
Scheme  2.6 N-hydroxyacylation of chitosan with β-butyrolactone 
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2.7 O verses N Substitution  

Chitosan is a multi-nucleophilic polymer due to the presence of the N-amino and 

hydroxyl functional groups.  The initial sites where substitution occurs are the more 

nucleophilic N-amino groups.  However, the experimental conditions and protection of 

the N-amino groups can influence O-substitution.  Sashiwa et al. have prepared O-

acetylated chitosan from a reaction of acetyl chloride in methanesulfonic acid at low 

temperature24 (Scheme 2.7).  A series of O-acyl derivatives were synthesized from 

reactions of alkanoic acid compounds with chitosan in the presence of H2SO4 as a 

catalyst,25 without an additional protection step of the NH2 groups (Scheme 2.8).   

 Protection of the N-amino groups via complete N-phthaloylation of chitosan 

permits rapid O-substitution of the C6 hydroxyl groups.  Selective tritylation 

(triphenylmethylation) at the C-6 position followed by removal of the phthalamide group 

by hydrazinolysis affords 2-amino-3-hydroxy 6-O-trityl chitosan, which serves as an 

intermediate for further preparation of chitosan derivatives3, 7 (Scheme 2.9).   
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Scheme  2.7 The synthesis of water-soluble chitosan derivatives by O-acetylation 
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Scheme  2.8 Synthetic route to O-acyl chitosan   
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Scheme  2.9 The synthesis of 2-amino-3-hydroxy 6-O-trityl chitosan 
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2.8 The Preparation of Water Soluble Ionic Chitosan Derivatives 

Chitosan has many biological applications, but the polymer’s uses are 

underutilized because of the problems associated with its solubility.  The goal in the 
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modification of chitosan is to enhance its solubility over an entire range of pHs.  A 

common approach in achieving this is to introduce an ionic moiety onto the polymer 

backbone.  Previously synthesized chitosan derivatives with improved solubilities include 

those that contain carboxyalkyl and sulfate anionic substituents, and quaternary 

ammonium substituents.  

2.8.1 N-carboxyalkylation 

N-carboxyalkylation of chitosan involves the introduction of acidic (anionic) 

groups onto the polymer backbone.  Kurita prepared N-carboxymethyl chitosan from the 

addition of glyoxylic acid to an aqueous suspension of chitosan, followed by reduction  

of the Schiff base intermediate with sodium cyanoborohydride14 (Scheme 2.10).  This 

method, based on reductive alkylation, results in regioselective N-carboxymethylation of 

the N-amino groups. 

Scheme  2.10 The synthesis of N-carboxymethyl chitosan 
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2.8.2 N-sulfation  

 N-sulfation of chitosan is another example of introducing anionic charge to the 

polymer backbone.  N-sulfonation of chitosan can be achieved via a reaction of chitosan 

with 2-sulfobenzoic acid anhydride26 (Scheme 2.11).  Sulfated chitosans owe to the 

possibility of preparing polymers that are analogues to the natural blood anticoagulant 

herapin.27  Heparin is a highly sulfated polysaccharide used medicinally as an 

anticoagulant in the treatment of various cardiovascular diseases.  
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Scheme 2.11 N-sulfonation of chitosan with 2-sulfobenzoic acid anhydride 
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2.8.3 Quaternization  

Quaternary ammonium derivatives of chitosan are interesting in view of their 

industrial and pharmaceutical applications.28-30  These types of derivatives have major 

advantages over the parent chitosan in that they have a permanent positive charge on their 

polymer backbone.  The simplest synthetic approach to give chitosan quaternary 

ammonium functionality is via conversion of the N-amino groups into N-

trimethylammonium halide salts.  N-trimethylammonium groups are the products of 

nucleophilic substitution reactions from alkyl halides with tertiary amines.  The general 

structure for an N-alkylammonium functional group is shown in Figure 2.4.  The counter-

ion attached to the nitrogen by an electrovalent bond could be any anion, but is usually 

chloride or bromide to form the salt. 

Quaternary ammonium functionality could be introduced to chitosan either by 

direct alkylation of the N-amino functional groups, or via covalent attachment of 

quaternary ammonium substituents to the N-amino groups.  These processes are referred 

to as quaternization.  With excess methyl iodide and sodium hydroxide, the N-amino 

groups of chitosan can be directly trimethylated (Scheme 2.12).  Using this approach, 

Domard et al. reported that the cationic derivative was soluble in water over a wide pH 

range.31  Quaternary ammonium groups can also be introduced to the backbone as side 

chains.  For example, Lang et al. prepared quaternary ammonium derivatives from 
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reactions of chitosan with glycidyl trimethylammonium chloride.28  In an alternative 

approach, Daly and Guerrini have prepared cationic chitosan derivatives using a solution 

of N-3-chloro-2-hydroxyl propyl trimethylammonium chloride salt (Quat-188)32 (Scheme 

2.13).  These type of derivatives have very important roles in biological systems due to 

their aliphatic hydroxy side chains and their cationic moieties.  
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Figure 2.4 Quaternary ammonium functional group. 
 

Scheme 2.12 Quaternization of chitosan with methyl iodide 
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Scheme 2.13 Quaternization of chitosan with Quat-188 
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CHAPTER 3.  BIOLOGICAL APPLICATIONS OF CHITOSAN 

3.1 Introduction 

The major driving force in the development of new applications for chitosan lies 

in the fact that the polymer is biodegradable, biocompatible, and possesses selective 

adsorption properties.  Its biological nature has spurred an interest in various scientific 

fields, some of which include agriculture, food-preservation, and bio-medicine.  Its 

adsorption ability has been examined for applications in water treatment, cosmetics, and 

biotechnical areas. The investigation of the biological properties of chitosan has led to the 

creation of finely designed bio-polymeric materials that have contributed towards 

improving the quality of life.  This chapter seeks to explore the aforementioned 

applications of chitosan, with the intent of understanding its role in biological systems. 

3.2. Biodegradable and Biocompatible Properties 

3.2.1 Agriculture 

 Chitosan has many potential applications in agriculture because the polymer is 

essentially biodegradable.  One application that has been widely employed is plant 

protection.  Hadwiger and Beckman have applied chitosan to plants infected with the 

fungus Fusarium solani, and discovered that chitosan was effective in inhibiting fungal 

growth.1  The results of chitosan’s antifungal activity against Fusarium solani sp. pisi (a 

fungal pathogen of peas) and Fusarium solani f. sp. phaseoli (a fungal pathogen of beans) 

are shown in Table 3.1.  The concentrations shown in Table 3.1 are the minimal 

concentrations which gave complete inhibition.  The samples were prepared by 

dissolving shrimp chitosan in 1% acetic acid, followed by slow dissolution of 1% sodium 

nitrite with chitosan, and neutralizing the solution with 1N NaOH.  The nitrous acid 

treatment depolymerizes polymers containing hexosamines with a primary amino group 
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and discriminates between chitin and chitosan because the acid only affects deamination 

and depolymerization if the polymer carries free amino groups.  

  Other effects of chitosan treatments on plants have been observed.  For example, 

Pospieszny and Atabekov sprayed bean leaves infected with afalfa mosaic virus (AIMV) 

with 0.1% chitosan solutions.2  This led to a significant reduction of lesions produced by 

AIMV.  The data in Table 3.2 show that chitosan is an effective inhibitor of AIMV 

infections when applied days before and days after AIMV inoculation.  The chitosan 

solutions used for the investigation were prepared by dissolving chitosan in 0.05% acetic 

acid and adjusting the pH to 6 with 1N NaOH. 

Table 3.1 Chitosan as an inhibitor of F. solani 
Minimum Growth-inhibiting Concentration 

 
                                                 

       F. solani f. sp.                                   F. solani f. sp. 
           phaseoli                                                pisi 

 
 

Additive to medium 

Within  
24 h 

(µg/mL) 

Within  
66 h 

(µg/mL) 

 
 

Within 
24 h 

(µg/mL) 

Within 
66 h 

(µg/mL) 
      
Chitosan 31 62  62 125 

 

 
Table 3.2 Effects of pre- and post-treatment of Phaseolus vulgaris with 0.1 
chitosan on the local lesions induced by AIMV; the control is 0.05% acetic acid 
adjusted to pH 6. 

No. of local lesions 
per half-leaf 

% Decrease in the 
no. of  lesions 

Chitosan Control  

 
Interval between 

treatment and 
inoculation 

   
Pretreatment    

5 days 0.2 24.5 99.2 
4 days 0.3 34.7 99.2 
3 days 0.1 51.0 99.8 
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(Table 3.2 continued)     
2 days 0.2 58.6 99.6 
1 day 0.2 40.3 99.5 
3 h 0.4 19.8 98.0 

Post-treatment    
1 h 3.0 36.0 91.7 
2 h 18.5 62.9 70.6 
3 h 30.6 78.2 60.9 
4 h 40.2 93.2 56.9 

                                                                  

3.2.2 Food Science 

Chitosan and chitosan glutamate are worthy of further study as natural 

preservatives for foods prone to fungal spoilage.  Roller and Covill investigated the 

antimicrobial properties of chitosan glutamate in laboratory media and apple juice against 

yeasts and molds associated with food spoilage.3  In this study, chitosan glutamate was 

tested at pH 3.4 against yeast and pHs 5.2 and 4.5 against mold.  The growth rate of 

Mucor racemosus, a filamentous fungi, was reduced by nearly 75% in the presence of 

chitosan glutamate at concentrations of 1 and 2 g/L.  The presence of chitosan in apple 

juice (pH 3.4) at levels ranging from 0.1 to 5 g/L inhibited the growth of spoilage yeasts 

(e.g. Zygosaccharomyces bailii and Saccharomycodes ludwigii). 

The effect of chitosan in meat preservation has been examined.  Darmadji and 

Izumimoto have studied the inhibitory effect of different concentrations of chitosan on 

the growth of some meat spoilage bacteria and some meat starter cultures.4  It was 

reported that 0.01% chitosan at pH 6.8 inhibited the growth of Pseudomonas fragi, 

Bacillus subtilis, Escherichia coli, and Staphylococcus aureus.  The growth of the meat 

starter cultures Lactobacillus plantarium, Pediococcus pentosaceus, and Micrococcus 

varians were inhibited by 0.1% and 1.0% chitosan.  Also, the addition of chitosan to meat 

had a good effect on the development of the red color. 
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3.2.3 Biomedicine 

Assorted biomedical applications have been reported for chitosan and chitosan 

derivatives.  There are extensive data in the literature related to biomedical applications 

in mammalian cells.  For example, chitosan derivatives can be used for tissue engineering 

such as skin or hard tissue replacement.  Muzzarelli reported on the preparation of N-

carboxybutyl chitosan5 and Biagini et al. discovered that this derivative was capable of 

reconstructing dermal tissue architecture.6  The derivative also organized repair tissue 

with ordered architecture and deprived the tissue of scar features.  Muzzarelli applied N-

carboxybutyl chitosan to the skin of humans and animals to order tissue reconstruction 

associated with surgical wounds, ulcers, burns, and infections,7 and to assist the 

spontaneous tissue repair of the meniscus.8 

 Chitosan is a hemostatic agent (stops bleeding).  The hemostatic property of 

chitosan has rendered its usefulness as dressings (e.g. sponges and bandages) for the 

treatment of wounds from infections.  Motoski et al. have prepared chitosan sponges by 

dispersing chitosan in aqueous acetic acid and treating the solution with a solution of 

dodecyl sulfate and methanol/NaOH.9  The sponge was applied to wounds on the backs 

of rabbits and covered; the sponge kept porosity after 7 days of its application.  HemCon 

bandage is a compressed chitosan acetate dressing that was developed as a hemostatic 

agent.10  Burkatovsky et al. tested its ability to kill bacteria in the infected wounds of 

mice11 and discovered that chitosan acetate rapidly killed the bacteria in the wounds 

before systematic invasion took place.   

 Due to the high N-amino content, chitosan acts as a powerful natural magnetic 

attraction for lipids, fats, and bile in the digestive tract, and actually binds with them to 

prevent their absorption into the bloodstream.12  The attracting ability of chitosan can 
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possibly reduce cholesterol and triglycerides blood plasma levels, which contribute to 

obesity and cardiovascular disease.  Various hypolipemic formulations including 

particles, powders, solutions, and injections containing chitosan, were prepared for oral 

administration.13  Suzuki et al. reported that oral administration of chitosan to mice 

effectively decreased blood cholesterol levels by 66.2%.13  The lipid lowering ability of 

chitosan and its protective effect against cholesterol gallstone formation was investigated 

by Trautwein et al.14  In this study, male Golden Syrian hamsters were fed gallstone-

inducing diets containing cholesterol, where after administration of 79% deacetylated 

chitosan, cholesterol accumulated in the liver was reduced by 35-38%.  

3.3 Adsorption Properties and Application 

 The adsorption property of chitosan is one of its most attractive functions.  It is a 

natural poly-ligand rich in N-amino content and is used in affinity interactions because of 

its specificity.  The concept of using affinity interactions is very attractive because the 

use of these techniques, for example, can be applied for isolation and purification 

applications. 

3.3.1 Chelation 

One of the earliest applications of chitosan was for chelating harmful metal ions 

such as copper, lead, mercury, and uranium from waste water.  Studies on the chelation 

property has been documented by many scientists.15, 16  Muzzarelli investigated the 

chelation ability of alginic acid, chitin, and chitosan, and reported that chitosan exhibited 

the best chelation of transition metal ions.17, 18  This is explicable in terms of the 

polymer’s high N-amino group content, which acts as electron rich donors.  Muzzarelli et 

al. assessed the chelating ability of chitosan-glucan, which is derived via alkaline 

treatment of waste mycelia of Aspergillus niger.16  Chitosan-glucan exhibited selective 
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collection of Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ from solution.  Nair and 

Madhavan utilized chitosan for the removal of Hg2+ from solution19 and the adsorption 

kinetics of mercuric ions by chitosan were reported by Peniche-Covas et al.20  

 Kurita et al. have studied chitosan’s adsorption of Cu2+ and Hg,2+ and reported 

that the chitosan’s adsorption capacity depends on its crystallinity, degree of 

deacetylation (DDA), and affinity for water.15  In this study, chitosan materials were 

derived under homogenous experimental conditions, where some of the materials 

contained 50% N-amino content.  These samples displayed the highest adsorption ability 

for the ions when compared to other chitosan derivatives that contained higher DDAs.  

The samples also displayed the highest solubilities in water.  The authors indicated that 

chitosan’s affinity for water is closely associated with its adsorption ability; that is, it is 

probable that the polymer’s increase in the affinity for water resulted in a larger surface 

area for chelation, which resulted in an increased uptake of the metal ions. 

3.3.1.1 Adsorption Enhancement:  Cross-linking 

 The work of Kurita et al. suggested that chitosan’s high crystallinity adversely 

effects its adsorption ability.15 Problems associated with its crystallinity could be 

addressed by cross-linking the polymer under homogenous experimental conditions.  

Performance of the reactions under homogenous conditions would enable a random 

substitution of the N-amino group functional groups along the polymer backbone, 

resulting in effective destruction of the tight arrangement of the rigid polymer molecules, 

leading to increased hydrophilicity and easy accessibility of the chelating N-amino 

functional groups.15  Koyama and Taniguchi improved chitosan’s adsorption capacity by 

cross-linking with glutaraldehyde under homogenous conditions21(Scheme 3.1).  Here, 

the cross-linked chitosan collected 96% Cu2+ ions, where chitosan collected 74% Cu2+.  



 34

Scheme 3.1 Cross-linking chitosan with glutaraldehyde 
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3.3.1.2 Adsorption Enhancement:  N-acylation 

Kurita et al. have shown that selective introduction of nonanoyl groups at the  

N-amino groups of chitosan via N-acylation, enhances the adsorption capacity.22  N-

acylation was achieved by reacting chitosan with nonanoyl chloride under homogenous 

conditions (Scheme 3.2).  From this reaction, the adsorption capacity of chitosan (with a 

DDA of 88%) was improved from 75% to 98% with samples that comprised 5 to 29% N-

nonanoyl substitution.  It was noted that the maximum adsorption capacity was reached at 

low degrees of N-acyl substitution because higher substitution led to an increase in the 

hydrophobicity (lower water solubility), leading to lower adsorption.  This indicates that 

a balance between the destruction of chitosan’s high crystallinity and the hydrophobicity 

brought about by chemical modification is important in adjusting the adsorption capacity. 

3.3.2 Coagulation  

 Chitosan can effectively function as a polycationic coagulant in waste-water 

treatment.23  Several reports have demonstrated the effectiveness of chitosan for the 

coagulation of anionic substances (e.g. proteins, solids, and dyes),24 and/or organic 

compounds in food-processing wastes.24-27  It has been reported that coagulated 
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byproducts from food processing wastes generally contain significant amounts of protein 

(30-75%) that can have potential applications in animal feeds.28 

No and Meyers utilized chitosan for the coagulation of amino acids (arginine, 

alanine, glutamic acid, serine, and glycine) from seafood-processing waste-water.29  

Concentrations of suspended solids and turbidity in crawfish waste-water were reduced to 

97% and 83%, respectively, by treatment with 150 mg/L chitosan at pH 6.  Bough and 

Landes investigated the coagulating ability of chitosan and reported that the polymer 

effectively removed suspended solids in cheese whey, a non-living processing waste from 

cheese making operations.30  Concentrations of suspended solids were reduced >90% at 

pH 6.  The approximate composition of the solids was 73% protein, 6% lactose, 10% ash, 

and 7% moisture.  In a similar investigation, Wu et al. measured chitosan’s effectiveness 

in coagulating proteins and removing turbidity from cheese whey.24  The optimal 

concentrations for the chitosans tested ranged from 7 to 150 mg/mL with a resultant 

reduction of more than 90% in turbidity. 

Scheme  3.2 N-acylation of chitosan with nonanoyl chloride 
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3.3.3 Cosmetics  

A cosmetic is defined as any substance to be placed in contact with various 

surface parts of the human body (e.g. epidermis, hair systems, nails, lips, and external 
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genital organs), or with teeth and the mucous membranes of the oral cavity with a view 

exclusively or principally to perfume them, protect them, and keep them in good 

condition, to change their appearance, or to correct body odors.31  Chitosan is a natural 

cationic gum that has been used for various cosmetic applications, particularly for hair 

and skin treatment32, 33 and many other personal care cosmetic applications.  Muzzarelli 

reviewed chitosan’s applications in cosmetics, and indicated that its uses in shampoos can 

help remove left-over starch.12  A line of products including three types of shampoos 

containing 0.5-6.0% chitosan salt, have the effect of conferring shine and strength to hair 

due to the ionic interactions between chitosan and hair proteins.34  When applied to the 

surface of the skin, chitosan forms a protective and moisturizing elastic film.  This makes 

chitosan useful in the formulation of moisturizing agents (e.g. lotions, sunscreens).35  

Bandai et al. prepared a bath lotion containing chitosan lactate, chitosan succinate, and 

chitosan alkyl phosphate (Figure 3.1, I–III respectively).36  This cosmetic increased skin 

softness. 

3.4 Antibacterial Properties 

 One of the most unique biological properties of chitosan is its antibacterial 

activity.  Chitosan inhibits the growth of a wide variety of bacteria,37 as shown in Table 

3.3.  However, chitosan exhibits its antibacterial effect at pHs < 6.5 (acidic range) due to 

its poor solubility above pH 6.5.   

 To analyze chitosan’s antibacterial activity at pHs above 6.5, chitosan derivatives 

are usually prepared.  There are a plethora of literature and books that explore the 

antibacterial property of several chitosan derivatives.  The most popular derivatives 

include those that comprise acidic (anionic) or quaternary ammonium (cationic) moieties 

on the polymer backbone.   



 37

 The preparation of water-soluble N-carboxybutyl chitosan has been reported by 

Muzzarelli et al.5(Scheme 3.3), and its antibacterial activity was investigated in view of 

its uses in wound management.38  The antibacterial activity against a variety of gram (+) 

and gram (-) bacteria was assessed by a quantitative assay based on conventional agar 

dilution tests, as described in detail in the literature.38  The results of the antibacterial 

activity are shown in Table 3.4 and Table 3.5, where the concentration of N-carboxybutyl 

chitosan ranged from 9 to 2 mg/mL and 9 to 4 mg/mL for gram (+) and gram (-) bacteria, 

respectively.  The majority of the gram (+) strains tested were inhibited at a concentration 

of 8 mg/mL.  One-half to three-quarters of the gram (-) strains were inhibited by 6 

mg/mL and 90 - 100% were inhibited by 9 mg/mL.  

N,N,N-trimethyl chitosan was prepared from a reaction of chitosan with excess 

methyl iodide and sodium hydroxide under controlled conditions39 (Scheme 3.4).  The 

antibacterial activity of this derivative was tested against E. coli and compared to the 

antibacterial activity of N-propyl-N,N-dimethyl chitosan (Scheme 3.5) to investigate the 

effect of the alkyl chain length of the substituent.40  Table 3.6 shows the antibacterial 

activity of the derivatives against E. coli in water.    

 The results in Table 3.6 show that the quaternized derivatives at the highest 

molecular weight displayed the highest antibacterial activity, meaning these derivatives 

gave the lowest minimum inhibitory concentrations overall.  When comparing the 

antibacterial activities of both derivatives at high molecular weight, N-propyl-N,N-

dimethyl chitosan was more effective, demonstrating that the length of the alkyl chain 

strongly affected the antibacterial property.41  This is probably explicable in terms of 

increased hydrophobic-hydrophobic interactions between the alkyl chain and the 

hydrophobic interior of the bacterial cell wall.  
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3.4.1 Mode of Action of Antibacterial Activity 

 The mode in which the chitosan derivatives that bear ionic moieties inhibit the 

growth of bacterial cells has been proposed, but not fully understood.  It is believed that 

charged groups in the bacterial cell wall interact electrostatically with, for example, the 

positively charged quaternary ammonium nitrogens of chitosan.  The lipophilic chain or 

the hydrophobic substituent diffuses through the bacterial cell wall causing disruption of 

the cytoplasmic membrane, and eventually, cell death.42 
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Figure  3.1 Structures of chitosan lactate (I), chitosan succinate (II), and chitosan 
alkyl phosphate (III) 
 
 
Table 3.3 Antibacterial activity of chitosan 

Bacteria                                             MIC 
                                                           (µg/mL) 

100 Agrobacterium tumefaciens 
Bacillus cereus 1000 
Corinebacterium michiganence 10 

500 
200 

Erwinia sp. 
Erwinia carotovora subsp. 
Escherichia coli 20 
Klebsiella pneumoniae 700 
Micrococcus luteus 20 
Pseudomonas fluorescens 500 
Staphylococcus aureus 20 
Xanthomonas campestris 500 
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Scheme  3.3 Preparation of N-carboxybutyl chitosan 
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Table 3.4 Activity of N-carboxybutyl chitosan against gram (+) bacteria as 
determined by the agar dilution technique 
  
  

% Inhibition at the following 
polymer concentration (mg/mL) 

       
Concentrations  2 4 6 8 9 
      
Staphylococcus aureus 11 87 92 94 

 71 92 100  Coagulase-negative  
Staphylococci       
Streptococcus spp.   20 100  
Enterococcus faecalis  9 100  

 
 
 
Table 3.5         Activity of N-carboxybutyl chitosan against gram (-) bacteria as  
determined by the agar dilution technique 
  
  

% Inhibition at the following 
polymer concentration (mg/mL) 

       
Concentrations   4 6 8 9 
      
Escherichia coli 19 52 81 90 
Klebsiella spp.  39  82 96 
Enterobacter spp.   40 60 80 100 
Serratia spp.  15 31  53 
Citrobacter freundii  50  100 
Proteus spp. 25 46 96 100 
Morganella morganii  33 66  
Salmonella spp.     
Pseudomonas aeruginosa 40 76 88 96 
Acinetobacter anitratus   40 60 
Haemophilus influenzae 6 47 72 75 



 40

Scheme  3.4 Preparation of N,N,N-trimethyl chitosan 
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Scheme  3.5 Preparation of N-propyl-N,N-dimethyl chitosan 
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Table 3.6 MIC of quaternized chitosan against E. coli in water medium 
    
Quaternized chitosan   

MIC (µg/mL) 
 

   I II III
N,N,N-Trimethyl chitosan   1 1 2 
N-Propyl-N,N-dimethyl chitosan   0.5 1 1 
 
 
Quaternized chitosan prepared by chitosan with MW 2.13 x 105  (I) 
Quaternized chitosan prepared by chitosan with MW 1.90 x 104 (II) 
Quaternized chitosan prepared by chitosan with MW 7.80 x 103 (III) 
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CHAPTER 4.   SYNTHESIS OF N-ACYL QUAT-188 CHITOSAN DERIVATIVES 

4.1. A Review 

To the synthetic polymer chemist, the most important aspect of their work is in 

the organic synthesis of materials.  The chemist manipulates the molecular structure of 

the polymer to develop functional characteristics in the end product by chemical 

modification or through other modification conditions.  The resulting polymeric material 

can be used to make ingredients for products with unique physical, chemical, and/or 

biological properties. 

Polymeric materials are created for specific applications and the synthetic route 

leading to their creation is chosen based on the desirable properties to be imparted.  In the 

preparation of chitosan derivatives, the synthetic route involves the chemical 

modification of chitosan with organic compounds.  The reactions leading to the end 

products are relatively simple, exploiting the nucleophilicity of the electron rich N-amino 

functional groups.  The reactions can occur under homogenous or heterogeneous 

conditions, which thus affect the distribution of substitution and ultimately the solubility 

of the polymer.  To obtain water soluble chitosan over a wide range of pHs, the process 

involves the introduction of polar ionic groups onto the polymer backbone.   

4.2 Objective of Study 

This research entails the synthesis and characterization of hydrophobic water 

soluble N-acyl chitosan derivates and the investigation of their antibacterial activity.  

From a chemical point of view, the main objective in the modification of chitosan with                              

organic compounds is to increase the polymer’s hydrophobic character, while enhancing 

its solubility in water.  Aliphatic-hydroxy quaternary ammonium substituents are 

covalently attached to the N-acyl derivatives to render the hydrophobic derivatives 
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completely soluble at physiological pH.  The biological significance behind increasing 

the hydrophobic character of the polymer is to enhance its antibacterial properties; that is 

through hydrophobic-hydrophobic interactions believed to occur between the 

hydrophobic substituent and the hydrophobic interior of the bacterial cell wall.1  The 

quaternary ammonium substituent exhibits an antibacterial effect through electrostatic 

interaction with the negatively charged groups of the bacterial cell surface.2  The 

biological mode of antibacterial activity is described more in detail in Chapter 5. 

4.3 Overall Syntheses Performed in the Present Project  

The N-acyl derivatives are prepared from reactions of chitosan with aliphatic and 

cyclic anhydrides, the novel anhydrides 2-(cis-1,3-O-benzylidene glycerol) succinic and 

glutaric acid mono ester anhydride, and lactones.  The reactions of chitosan with the 

lactones were performed at room temperature and under mildly acidic conditions (1% 

AcOH), where the lactones exhibited solubility in the aqueous medium.  The reactions of 

chitosan with the commercial and novel anhydrides were carried out at room temperature 

in a 1:1 v/v solvent mixture of 1% AcOH and DMF or DMSO.  The addition of DMF or 

DMSO was to completely dissolve the anhydride in the medium.  An equal amount of 

DMF or DMSO was added to keep chitosan in solution.  The homogenous experimental 

conditions used for chitosan’s reaction with the anhydrides and lactones were to produce 

a statistically controlled random distribution of the substituents along the polymer chain. 

Subsequent to their derivation, the N-acyl derivatives were subjected to quaternization 

using 3-chloro-2-hydroxyl propyl trimethylammonium chloride (Quat-188) (Scheme 4.1).  

The quaternization reactions were performed at pH 8 for 48 h and initially at room 

temperature.  After a 48 h stir in the basic medium, the temperature of the reactions was 

then increased to 50 0C and stirred for an additional 24 h. 
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Scheme  4.1 Preparation of N-acyl chitosan Quat-188 
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4.4 Isolation and Purification of Products 

 The N-acyl products formed as precipitates upon neutralization of the reactions 

with 15 % NaOH.  The precipitates were filtered, washed with water and carried forward 

for quaternization, or they were washed with acetone and dried overnight under a stream 

of nitrogen gas.  

 Quaternization of the N-acyl derivatives resulted in products that exhibited 

solubility in the aqueous environment used for their syntheses.  These solutions were 

purified by dialysis.  The process of dialysis involves the separation of low molecular 

weight inorganic and un-reacted organic materials by diffusion through a semi-permeable 
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membrane, while retarding the diffusion of the N-acyl derivative (due to its larger 

molecular weight). 

4.5 Instrumental Analysis and Characterization 

4.5.1 FT-IR Spectroscopy 

 FT-IR spectroscopy provides information through band properties, frequencies 

and intensities, and can therefore be used to identify species and predict chemical 

processes.  For this research, formation of the N-acyl bond was determined by FT-IR 

spectroscopy.  The N-H absorption of the N-acetamido (N-amide) group of chitosan 

corresponds to a frequency of 1586 cm-1, as shown in Figure 4.7.  Upon the modification 

of chitosan with one of the organic compounds, the N-H absorption of the new N-acyl 

bond overlaps the N-H absorption of the N-acetamido group, and the absorptions shift to 

a lower frequency.  

4.5.2 1H NMR Spectroscopy 

 1H-NMR spectroscopy has been recognized as the method of choice for the 

quantitative determination of the degree of deacetylation (DDA) and extent of N-

substitution (ES) of the chitosan derivatives.  This method is also particularity useful for 

studying the macromolecular structure of chitosan and its derivatives and for quick 

identification of impurities sometimes present in commercial chitosan and chitosan 

derivatives.  For this research, 1H NMR was used to determine the % ES of the N-acyl 

substituent and to confirm the macromolecular structures of the derivatives.   

4.5.3 Gel Permeation Chromatography/Light Scattering 

 Gel Permeation Chromatography (GPC) is essentially a process for separating 

macromolecules according to their size.  Its general applications to synthetic polymer 

chemistry have revolutionized the procedures for polymer molecular weight 
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determination.  Quaternization of the N-acyl derivatives was performed under alkaline 

conditions and the reactions were carried out for several days at different temperatures.  

Sannan et al. have reported that chitosan reactions performed under alkaline conditions 

for long reaction times can possibly degrade the polymer main chain and result in a 

reduction in the molecular weight.3  Therefore, GPC data were obtained for some of the 

quaternized N-acyl derivatives to determine their extents of molecular weight reduction. 

4.6 Experimental 

4.6.1 Materials   

Chitosan was purchased from the Sigma Aldrich Chemical Company, with a 

molecular weight of ~130,800 g/mole.  The solvents were of HPLC grade and used 

without further purification.  The lactones, acid anhydrides, cis-1,3-O-benzylidene 

glycerol, and dicyclohexylcarbodiimide (DCC) were purchased from Sigma Aldrich.  A 

65% solution of 3-chloro-2-hydroxyl propyl trimethylammonium chloride (Quat-188) 

was obtained from the Dow Chemical Company.  Semi-permeable membranes used for 

dialysis of the chitosan derivatives were Spectra Por, manufactured by Spectrum 

Laboratories In., with a molecular weight cut-off (MWCO) of 6,000-8,000.    

4.6.2 Instrumentation  

 The NMR spectra were recorded with a Bruker AC300 in D2O/d4-CD3COOD or 

D2O, depending on the solubility of the product.  FT-IR spectra were recorded using a 

Bruker Tensor 27 instrument with an Attenuate Total Reflectance cell.  The molecular 

weights of the quaternized N-acyl derivatives were determined by a gel permeation 

chromatography/light scattering (GPC/MALS) system consisting of a Agilent 1100 

Series generic pump and injector, three Viscotek Columns (Viscogel) at 20 0C, a Wyatt 

Optilab rEX refractive index detector, and a Wyatt Dawn Heleos light scattering detector.  
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The mobile phase used was 5% acetic acid (pH 4) at a flow rate of 1 mL/min.  The 

chromatograms were collected by Astra V software, and analyzed with the Astra 5.3.1.5 

program.  The differential refractive indices (dn/dc) of commercial chitosan were 

estimated to be 0.180 assuming complete recovery of the sample injected. 

4.6.3 Syntheses  

 Preparation of the N-acyl chitosan derivatives was attempted by either N-acylation 

or N-hydroxyacylation.  In most cases, chitosan was reacted with a anhydride or lactone 3 

times in 3 separate trials, to obtain 3 products per N-acyl derivative.  All 3 products 

comprised a different extent of hydrophobicity. 

4.6.3.1 Representative Procedure for N-acylation of Chitosan with Acyclic 
Anhydrides 
  
 Chitosan (0.500 g, 3.106 mmol) was dissolved in 50 mL 1% AcOH.  To this was 

added 50 mL of DMF and then the acyclic anhydride (e.g. butyric anhydride 0.221 g, 

1.397 mmol).  The solution was stirred 24 h before the pH was increased from 4.5 to 9 

using 15% NaOH and the product precipitated. The product was washed with water, until 

the pH of the filtrate was adjusted to 7.  The product was later carried forward while still 

moist for quaternization.  The macromolecular structures and % ESs of the N-aliphatic 

and benzoyl acyl derivatives are shown in Figure 4.4 and Table 4.1, respectively.   

4.6.3.2 Representative Procedure for N-acylation of Chitosan with Cyclic 
Anhydrides 
  
 Chitosan (0.500 g, 3.106 mmol) was dissolved in 50 mL 1% AcOH.  To this was 

added 50 mL of DMF and then the cyclic anhydride (e.g. cis-1,2,3,6-tetrahydrophthalic 

anhydride 0.142 g, 0.933 mmol).  The solution was stirred 24 h before increasing the pH 

from 4.5 to 7 with 15% NaOH and the product precipitated. The product was washed 

with copious amounts of acetone, filtered, and dried overnight under a steady stream of 
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N2.  The structures and % ESs of the N-ionic acyl derivatives are shown in Figure 4.2 and   

Table 4.2, respectively.  

4.6.3.3 The Synthesis of 2-(cis-1,3-O-benzylidene glycerol) Succinic (or Glutaric) 
Acid Mono Ester Anhydride  
 
 The 2-(cis-1,3-O-benzylidene glycerol) acid mono ester anhydrides were prepared 

using the cyclic anhydrides succinic4,5 and glutaric anhydride.  Scheme 4.4 shows the 

synthetic route towards the preparation of 2-(cis-1,3-O-benzylidene glycerol) succinic 

acid mono ester anhydride.  Cis-1,3-O-benzylidene glycerol (3.000 g, 16.648 mmol) and 

succinic anhydride (2.658 g, 26.372 mmol) were dissolved in 15 mL of anhydrous 

pyridine and the reaction was heated to 50 0C for 16 h under a stream of N2.  After a 16 h 

stir, the pH of the solution was adjusted to 4 using a 1N HCl solution and extracted three 

times with DCM.  The combined organic extracts were dried over Na2SO4, gravity 

filtered and evaporated.  The white solid was stirred in 108 mL of ethyl ether for 1 h and 

cooled to -52 0C for 3 h before collecting 2.932 g of the monoacid succinate (white 

powder, 63% yield).  1H NMR data (CDCl3) (Figure 4.26):  δ (ppm) 2.75 (s, 4, -CH2- 

CH2), 4.16 (m, 4, -CH2-CH-CH2-), 4.29 (m, 4, -CH2-CH- CH2), 4.73 (m, 2, -CH2- CH-

CH2-), 5.53 (s, 2, CH), 7.34 (m, 6, arom. CH), 7.47 (m, 4, arom. CH).  13C NMR (CDCl3) 

(Figure 4.22):  δ 178.39 (COOH), 172.52 (-COOR-), 139.20 (CH), 129.52 (CH), 128.72 

(CH), 126.44 (CH), 101.65 (CH), 69.38 (CH), 66.76 (CH2), 29.43 (CH2), 29.25 (CH2).   

 The succinate monoacid (2.000 g, 7.136 mmol) and DCC (0.884 g, 4.280 mmol) 

were dissolved in 13 mL of DCM and stirred for 18 h at room temperature (Scheme 4.4).  

The DCU precipitate was collected by gravity filtration and washed with 25 mL DCM.  

The organic phase was added to 95 mL of hexane for precipitation of the product.  The 

precipitate and hexane were cooled to -50 0C, stirred for 6 h, and filtered.  The product 
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was dried under a stream of N2 and 1.604 g of the anhydride was isolated.  The product 

appeared as a white powder.  The % yield was computed as 83%. 

4.6.3.4 Representative Procedure for N-acylation of Chitosan with 2-(cis-1,3-O-
benzylidene glycerol) Succinic (or Glutaric) Acid Mono Ester Anhydride 
  
 Chitosan (0.500 g, 3.106 mmol) was dissolved in 50 mL 1% AcOH.  To this was 

added 50 mL of DMSO and then a solution of 2-(cis-1,3-O-benzylidene glycerol) 

succinic (or glutaric) acid mono ester anhydride in DMSO (0.206 g, 0.380 mmol in 10 

mL DMSO) (Scheme 4.5).  The solution was stirred 24 h before the reaction was 

neutralized with 15% NaOH (pH 7) and the product precipitated.  The product was 

washed with excess acetone, filtered, and dried overnight under a steady stream of N2.  

The % ESs and structures are shown in Table 4.3 and Figure 4.3, respectively. 

4.6.3.5 Representative Procedure for N-hydroxyacylation of Chitosan with Lactones 

 Chitosan (0.500 g, 3.106 mmol) was dissolved in 50 mL 1% AcOH.  To this was 

added 1.5 mL of glacial acetic acid and then the lactone (e.g. ε-caprolactone, 0.142 g, 

1.242 mmol).  The solution was stirred 24 h before the reaction was neutralized with 15% 

NaOH (pH 7) and the material precipitated.  The material was washed several times with 

copious amounts of acetone, filtered, and dried overnight under a steady stream of N2.   

4.6.3.6 Representative Procedure for Quaternization of the N-acyl Chitosan 
Derivatives   
 

A 10 mL (11.600 g, 61.669 mmol) solution of 65% Quat-188 was added to a 

beaker and the pH of the solution was adjusted to 8 using 15% NaOH.  A catalytic 

amount of I2 (0.250 grams, 0.985 mmol) was added followed by the addition of the N-

acyl chitosan derivative (Scheme 4.1).  After a 48 h stir, 50 mL of deionized water was 

added to the solution, and the reaction was heated at 50 0C and stirred for 24 h.  The 

reaction was then cooled to room temperature and the clear light tan brown solution was 
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dialyzed in 4 liters of deionized water for 4 days.  After dialysis, the solution was added 

dropwise to acetone and the product precipitated.  The product was dried under N2.  The 

appearance of the product was either a white flaky solid or a tan powder.  The structures 

of the N-acyl Quat-188 products are shown in Figures 4.4 through 4.6.  The % ES and 

grams of the products recovered are summarized in Tables 4.4 through 4.6. 

         Table 4.1 % ES of N-aliphatic and benzoyl acyl chitosan 
 
 
 

Name of Derivative 
 
 
 

grams of 
anhydride used 

% ES   
targeted 

% ES 
 obtained 

 
 
N-propionoyl chitosan 
 
 
 

 
 

0.121  
0.202 
0.323 

 

 
 

30 
50 
80 

 

 
 

21 
47 
45 

 
 
N-butyroyl chitosan 
 
 
 

 
 

0.098 
0.221 
0.418 

 

 
 

20 
45 
85 

 

 
 

34 
41 
30 

 
 
N-valeroyl chitosan 
 
 
 

 
 

0.127 
0.266 
0.521 

 

 
 

22 
46 
90 

 

 
 
8 
0 

11 

 
 
N-hexanoyl chitosan 
 
 
 

 
 

0.093 
0.153 
0.299 

 

 
 

14 
23 
45 

 

 
 

13 
18 
21 

 
 
N-heptanoyl chitosan 
 
 
 

 
 

0.113 
0.226 
0.339 

 
 

15 
30 
45 

 

 
 

23 
31 
50 

 
 
N-benzoyl chitosan 
 
 
 

 
 

0.316 
0.527 
0.703 

 
 

45 
75 
100 

 

 
 

14 
30 
50 
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Table 4.2 % ES and recovery of the N-ionic acyl chitosan derivatives 
 

Name of derivative 
(entry) 

 
grams of 
anhydride 

Used 

 
% ES 

targeted

 
% ES 

obtained

crude 
N-acyl 
product 

recovered 
(g) 

 
FW of 
MR 

(g/mol) 
 

 
crude 

% recovery 
(wt% (mol/mol)) 

 

 
N-succinoyl chitosan 

(1)  
 

 
 

0.093 

 
 

30 
 
 

 
 

14 
 
 

 
 

0.510 

 
 

261.0 

 
 

94 
 
 

 
N-maleoyl chitosan  
(2) 
 

 
 

0.198 
 

65 
 
 

 
 

2 
 
 

 
 

0.580 

 
 

259.0 115 
 
 

 
N-glutaroyl chitosan  
(3) 
 

 
0.089 
0.213 
0.361 

25 
60 

102 
 

 
5 

 10 
14 

 

 
0.598 
0.541 
1.064 

 
 

275.1 
116 
95 

194 
 

 
N-3,3-dimethyl glutaroyl 
chitosan  
(4) 
 

 
0.231 
0.250 
0.441 

 
52 
57 

100 
 

 
10 
3 
6 
 

 
0.512 
0.540 
0.522 

 
 

303.2 
94 

105 
99 

 
 
N-cis-1,2 
cyclohexanedicarboxoyl 
chitosan (5) 
 

 
 

0.144 
0.287 

30 
60 

 

 
 

6 
0 
 

 
 

0.450 
0.575 

 
 

315.1 85 
115 

 
 
N-cis 1,2,3,6- 
tetrahydrophthaloyl 
chitosan (6) 
 

 
0.095 
0.142 
0.354 

20 
30 
75 

 

 
7 
11 
 20 

 

 
0.542 
0.525 
0.719 

 
 

313.1 
95 

102 
106 

 
 
N-3-NO2 phthaloyl 
chitosan 
(7) 
 

 
0.120 
0.390 
0.540 

20 
65 
90 

 

 
5 
9 

n/a 
 

 
0.519 
0.526 
0.526 

 

 
 

354.1 
98 
95 
n/a 

 

 
N-trimellitoyl chitosan  
(8) 
 

 
 

0.179 30 
 
 

 
 

19 
 
 

 
 

0.523 
 

 
 

353.1 
 

86 
 
 

    FW of MR = formula weight of the monosaccharide residue 
    Yield (%) = {recovered grams of product/ [(FW of monosaccharide residue of chitin  x           
    ES of acetylation) + (FW of monosaccharide residue of chitosan x extent of N-      
    glucosamine remaining after N-acylation) + FW of monosaccharide residue of product    
    x ES of N-acylation)]} ⁄  moles of sample  
    moles of sample = 0.5 g of commercial chitosan / (FW of monosaccharide residue of   
    chitin  x  ES of acetylation) + (FW of monosaccharide residue of chitosan  x  extent of    
    N-glucosamine remaining after N-acylation) 
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Table 4.3 % ES and recovery of 2-glycerol succinamide chitosan and 2-glycerol 
glutamide chitosan 

Name of derivative  

 
grams of 
anhydride 

used 

% ES 
targeted

% ES 
obtained 

crude  
N-acyl 
product 

recovered 
(g) 

 
FW of 
MR 

(g/mol) 
 

 
crude 

% recovery 
(wt% (mol/mol)) 

 
 
2-glycerol  
succinamide chitosan 
(1) 
 

 
0.206 
0.350 
0.500 

 
12 
21 
30 

 

11 
20 
28 

 

 
0.614 
0.636 
0.703 

 
 

335.2 
110 
105 
109 

 

 
2-glycerol  
glutamide chitosan  
(2) 

 
0.177 
0.248 
0.461 

 
10 
14 
26 

 

5 
5 

25 
 

 
0.711 
0.800 
0.719 

 
 

345.2 
134 
151 
112 

 
 
 

      Table 4.4 % ES and recovery of N-aliphatic and benzoyl acyl chitosan Quat-188  
 

Name of N-acyl Quat 
derivative 

 

 
% ES of 

N-acyl substituent 

 
grams of quaternized 

N-acyl derivative 
recovered 

 
 
 
N-propionoyl  
chitosan Quat-188 

 
21 
47 
45 

 
0.179 
0.310 
0.256 

 
 
 
N-butyroyl  
chitosan Quat-188 

 
34 
41 
30 

 
0.449 
0.314 
0.374 

 
 
 
N-valeroyl  
chitosan Quat-188 
 

 
8 
0 
11 

 
0.760 
0.666 
0.578 

 
 
 
N-hexanoyl  
Chitosan Quat-188 

 
13 
18 
21 

 
0.439 
0.427 
0.307 

 
 
 
N-heptanoyl  
chitosan Quat-188 

 
23 
31 
50 

 
0.350 
0.203 
0.198 

 
 
N-benzoyl  
chitosan Quat-188 

 
14 
30 
50 

 
0.198 
0.184 
0.371 
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          Table 4.5 % ES and recovery of N-ionic acyl chitosan Quat-188  
 

Name of N-acyl Quat 
derivative 

 
% ES of 

N-acyl substituent 

 
grams of quaternized 

N-acyl derivative 
recovered 

 
 
 
N-succinoyl chitosan Quat-188 
(1) 
 

14 
 
 

 
 

0.244 
 

 
N-maleoyl chitosan Quat-188 
(2) 
 

 
 

2 
 
 

 
 

0.120 

 
N-glutaroyl chitosan Quat-188 
(3) 
 

 
5 

 10 
14 

 

 
0.105 
0.163 
0.137 

 

 
N-3,3-dimethyl 
glutaroyl chitosan Quat-188 (4) 
 

 
10 
3 
6 
 

 
0.250 
0.462 
0.617 

 

 
N-cis-1,2 cyclohexanedicar-
boxoyl chitosan 
Quat-188  (5) 

 
 

6 
0 
 

 
 

0.270 
0.257 

 

 
N-cis1,2,3,6- 
tetrahydrophthaloyl chitosan 
Quat-188 (6) 

 
7 
11 
 20 

 

 
0.406 
0.340 
0.099 

 

 
N-3-NO2 phthaloyl 
chitosan Quat-188  (7) 
 

 
5 
9 

n/a 
 

 
0.534 
0.251 
0.599 

 
 
 
N-trimellitoyl chitosan Quat-
188 (8) 
 

 
 

19 
 
 

 
 

0.203 
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    Table 4.6 % ES and recovery of 2-glycerol succinamide and glutamide chitosan    
    Quat-188 

 
Name of N-acyl Quat 

derivative 

 
% ES of 

N-acyl substituent 
 
 

 
grams of quaternized  

N-acyl derivative 
recovered 

 
 
2-glycerol succinamide 
chitosan Quat-188 (1) 
 
 

11 
20 
28 

 

 
0.304 
0.188 
0.031 

 
2-glycerol glutamide  
chitosan Quat-188 
(2) 
 

5 
6 
25 

 

 
0.093 

n/a 
0.035 
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Figure 4.1 Macromolecular structures of the N-aliphatic and benzoyl acyl 
chitosan derivatives 
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Figure 4.2 Macromolecular structures of the N-ionic acyl chitosan derivatives 
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Figure 4.3 Macromolecular structure of 2-glycerol succinamide chitosan (1) and 
2-glycerol glutamide chitosan (2)  
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Figure 4.4 Macromolecular structures of the N-aliphatic and benzoyl acyl 
chitosan Quat-188 derivatives 
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Figure 4.5 Macromolecular structures of the N-ionic acyl chitosan Quat-188 
derivatives 
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Figure 4.6 Macromolecular structure of 2-glycerol succinamide (1) and 
glutamide chitosan (2) Quat-188 
 
 
4.7 Results/Discussion 

4.7.1 FT-IR Analysis of Chitosan  

Figure 4.7 shows the FT-IR of commercial chitosan.  The double peak of 

frequencies 1647.14-1586.81 cm-1 corresponds to the N-acetamido (N-amide) absorption, 

where the C=O absorption occurs at 1647.14 cm-1, and the N-H bend of the amide occurs 

at 1586.81 cm-1.  The N-H stretch of the amide occurs to the left of 3100 cm-1, 

overlapping the amino N-H absorption (or the –NH2 functional groups) at 3291.76 cm-1.  

Normally, carbonyl absorptions occur at higher frequencies, roughly greater than or equal 

to 1700 cm-1.  However, the frequency of the C=O absorption is explicable in terms of the 

“back donating” effect of the unpaired electrons on the nitrogen, which conjugates with 

the carbonyl group, resulting in increased single bond character between the carbon and 

the oxygen and a lowering of the C=O absorption frequency.   The aliphatic C-H stretch 

occurs at 2867.37 cm-1.  The absorption appearing at the frequency of 1024.71 cm-1 

corresponds to the C-O group.  
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Figure 4.7 FT-IR of commercial chitosan 
 
4.7.2 1H NMR Characterization of Chitosan  

 The 1H NMR spectrum of commercial chitosan is shown in Figure 4.8.  The 

internal standard used for assigning the chemical shifts of the protons was D2O/d4-

CD3COOD.  The chemical shift of the internal standard appears at 4.67 ppm.  The 

chemical shift of the acetal proton (-CH) of the glucosamine overlaps the chemical shift 

of the internal standard and appears at 4.58 ppm.  The -CH-NH2 proton appears at 3.01 

ppm.  The -CH-OH, HOHC-CH-CHCH2-, and -CH2-OH protons overlap and are 

assigned to the chemical shift at 3.75 ppm.  The chemical shifts of -CH-CH2 and -

CH2*OH appear at 3.59 ppm.  The acetamido protons (-NHCO-CH3) appear furthest 

upfield at 1.94 ppm.  The % DDA of commercial chitosan was computed as 88% by 

applying the following Equation 4.1:                    

 

(1/# of acetyl protons) x integral of acetyl protons
(1/# of glucosamine protons) x  integral of glucosamine protons1- X 100

= % DDA  
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Figure 4.8 1H NMR of commercial chitosan (88% DDA) in D2O/d4-CD3COOD.  
 

4.7.3 Formation of N-aliphatic and Benzoyl Acyl Chitosan 

 Acyclic acid anhydrides are reactive acylating reagents because of a combination 

of the polar effect of the oxygen substituent which enhances reactivity of the carbonyl 

group.  The nucleophilic N-amino groups of chitosan undergo addition at the carbonyl 

groups of the anhydrides, followed by elimination of the carboxylate (-O-COR) leaving 

group.  The mechanistic route towards formation of the end product via this reaction is 

summarized in Scheme 4.2.  The identity of the rate-determining step (slow step) appears 

to be the expulsion of the carboxylate group from the tetrahedral intermediate (B).6-8  The 

expulsion step leading to N-acyl formation is the driving force of the reaction.  

4.7.3.1 Experimental Preparation of the N-aliphatic and Benzoyl Acyl Chitosan 
Derivatives 
 
 The N-acylation of chitosan with the acyclic anhydrides was carried out in a 

binary solvent mixture of 1% AcOH/DMF (1:1 v/v).  The addition of DMF helped 

O

O

OH

NH
OH

NH2

HO
HO

O
O

CH3

O

H
*H
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dissolve the anhydride in the aqueous medium.  An equal amount of the co-solvent (to 

that of AcOH) was added to maintain chitosan’s solubility in the medium, thus 

influencing homogenous experimental conditions.  To minimize the possibility of 

depolymerization and the occurrence of side reactions, the reactions were carried out at 

room temperature.  The experiments were conducted for 24 h.   

 Prior to precipitation, the N-acyl products appeared as white or tan viscous 

solutions.  Using 15 % NaOH for precipitation, the pH of the solutions were increased to 

pH 9.  To remove excess base, the precipitates formed were first filtered and then washed 

with water until the pH of the filtrate was adjusted to 7.  They were later carried over 

while still moist for quaternization. 

4.7.3.2 FT-IR Analysis of N-aliphatic and Benzoyl Acyl Chitosan 

 FT-IR data was obtained for the N-aliphatic and benzoyl acyl derivatives for 

qualitative analysis of their macromolecular structures.  Upon modification of chitosan 

with one of the acyclic anhydrides, the band assigned to the NH bend shifts to a lower 

frequency.  For example, the FT-IR of N-heptanoyl chitosan is shown in Figure 4.9.  

When compared to commercial chitosan, the NH bend shifts from 1586 cm-1 (chitosan) to 

1542 cm-1 (N-heptanoyl chitosan).  This is probably attributed to intermolecular hydrogen 

bonding between the carbonyl of the N-acyl functional group and the hydrophilic groups 

of the polymer backbone.  The C=O absorption of N-heptanoyl is more defined and 

overlaps less with the NH bend, when compared to the commercial chitosan.  The 

appearance of the peak at 2923 cm-1 corresponds to the aliphatic C-H stretch of the 

methyl group (-CH3 functional group) of the substituent.  The methylene absorption of 

the substituent (-CH2 functional group) overlaps with the methylene absorption of 

chitosan at 2863 cm.-1 
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Figure 4.9 FT-IR of N-heptanoyl chitosan 
 
 

  
Figure 4.10 FT-IR of N-benzoyl chitosan 
  

 The FT-IR for benzoyl chitosan is shown in Figure 4.10.  The NH bend has a 

frequency of 1543 cm-1.  The C=C ring stretch absorption occurs at 1417 cm-1.  The 

 =C-H stretch appears to the left of 3000 cm-1, and the =C-H out-of-plane (oop) bending 

has a frequency range of 900-690 cm-1. 



 65

Scheme  4.2 Mechanistic route towards the synthesis of N-aliphatic and benzoyl    
acyl chitosan 
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4.7.3.3 1H NMR Characterization of the N-aliphatic and Benzoyl Acyl Chitosan 
Derivatives 
 

 1H NMR data were obtained for qualitative analysis of the macromolecular 

structure and for quantitative determination of the % ESs of the derivatives.  A 

representative proton NMR spectrum of one of the N-aliphatic acyl derivatives (N-

propionoyl chitosan) in D2O/d4-CD3COOD is shown in Figure 4.11.  Before assigning the 

chemical shifts of the substituent protons, it is first important to note the change in the 

appearance of the glucosamine backbone protons of N-propionoyl chitosan when 

compared to chitosan.  This observable difference may be due to intermolecular hydrogen 

bonding between the carbonyl groups of the N-acyl substituents and the backbone 

hydroxyl groups of chitosan.  The chemical shift at 2.21 ppm corresponds to -CO-CH2-

CH3.  Slightly upfield is the chemical shift assigned to the methyl protons (-CO-CH2-

CH3), at 0.99 ppm.  The % ES was found to be 47%, by applying Equation 4.2. 
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Equation 4.2: 

X 100

0.2821 X 100=

= 47 % ES

integral of substituent protons
(1/(# of glucosamine protons))    x    # of protons of substituent

(1/5)   x  3 (-CH3)

 
 
 
 

  
Figure 4.11 1H NMR of N-propionoyl (47% ES) chitosan in D2O/d4-CD3COOD.   
 
 The proton NMR spectrum of benzoyl chitosan in D2O/d4-CD3COOD is shown in 

Figure 4.12.  The aromatic substituents were advantageous in determining the ES because 

their proton resonances appeared downfield (with respect to the backbone protons), 

which allowed better integration of the peaks with minimum interference.  The chemical 

shifts at 7.42, 7.52, and 7.66 are assigned to the aromatic protons of the substituent.  By 

applying Equation 4.2, the % ES was found to be 14%. 
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Figure 4.12 1H NMR of N-benzoyl (14% ES) chitosan in D2O/d4-CD3COOD 

 

4.7.3.4 % ES of the N-aliphatic and Benzoyl Acyl Chitosan Derivatives 

 The % ES targeted and the % ES obtained for the N-aliphatic and benzoyl acyl 

derivatives are shown in Table 4.1.  Most of the reactions between chitosan and the 

aliphatic anhydrides resulted in derivatives with % ES values nearly equal to or greater 

than half their targeted % ESs.  The % ES values obtained exploit the high reactivity of 

the acyclic anhydrides towards nucleophilic attack by the N-amino functional groups of 

chitosan.9  In some cases, the % ES computed using the 1H NMR data was higher than 

the targeted % ES.  This may be due to an integration of the protons of starting material 

(un-reacted anhydride) or the aliphatic acid protons (Scheme 4.2, (E)) along with the 

protons of the N-acyl substituent.   

 The % ES values obtained for N-valeroyl chitosan were all much lower than the 

targeted % ESs.  These results suggest that valeric anhydride is not very reactive towards 

chitosan, despite the anhydride’s structural similarity to the other linear aliphatic 

R =
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anhydrides.  The reaction of chitosan with benzoic anhydride resulted in derivatives with 

% ES values close to their targeted % ESs.  Despite the large size of benzoic anhydride 

(compared to the linear aliphatic anhydrides), the compound did not present sterics to the 

approaching N-amino groups of chitosan because like the linear aliphatic anhydrides, it 

can rotate itself about its carbon-oxygen single bond in a way to accommodate the 

nucleophile (Figure 4.13). 

             

O O

O

O

O

O

Nu

Nu

Nu
Nu

 

 
Figure 4.13 Free rotation of benzoic anhydride 
 

4.7.3.5 Effects of ES and Structure on the Solubility of the N-aliphatic and Benzoyl 
Acyl Chitosan Derivatives 
 
 Homogenous experimental conditions were employed in the reactions to promote 

a random distribution of the substituents along the chains of chitosan, which is known to 

increase the solubility of the polymer in water.10,11  The solubility of the N-aliphatic and 
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benzoyl acyl derivatives in water is shown in Table 4.7.  For qualitative analysis of their 

solubilization in water and 1 % acetic acid, 10 mg of each derivative was dissolved in  

1 mL of water or 1 mL of 1% acetic acid.  The results in Table 4.7 show that the 

derivatives displayed different solubilities in the aqueous mediums.  The solubility was 

designated +++ for the derivatives that exhibited complete aqueous solubility, ++ for 

derivatives that were nearly completely aqueous soluble, + for derivatives that showed 

partial solubility and insolubility in the aqueous medium, - for derivatives that exhibited 

very little to almost no solubility in the medium, and -- for derivatives that were 

completely aqueous insoluble. 

 The results in Table 4.7 imply that the solubility is affected by the % ES and/or 

structure (chain-length) of the aliphatic substituent.9  For example, with respect to the % 

ES on the solubility, N-propionoyl chitosan substituted at 21% exhibited swelling in 

water (enhanced solubility), but was completely insoluble when substituted at 47% ES.  

With respect to the structure on the solubility, N-propionoyl chitosan at 21% ES swells in 

water, whereas N-hexanoyl chitosan substituted at 21% ES exhibits low swelling in 

water.   

 The solubility of N-benzoyl chitosan in water was mainly affected by the % ES.  

N-benzoyl chitosan substituted at 14% ES exhibited swelling in water.   A 16% increase 

in the ES (from 14-30% ES) resulted in a product with low water solubility.  Beyond this  

% ES, benzoyl chitosan was insoluble in water.  

 The solubility of the N-aliphatic and benzoyl acyl derivatives in 1% acetic acid is 

shown in Table 4.7.  Most of the derivatives were completely soluble in the acidic 

medium.  The derivatives that were insoluble in water (due to their high extent of 

hydrophobicity) showed partial solubility in acetic acid.  The solubility in the acidic 
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environment would be caused by ionization of the –NH2 groups to –NH3
+ ions.  The 

partial solubility of the derivatives with high ESs was attributed to a decrease in the 

availability of the N-amino groups that can be converted into –NH3
+ groups and also due 

to a high increase in the hydrophobic character of the polymer.  

Table 4.7        Solubility of N-aliphatic and benzoyl acyl chitosan in water and 1% 
acetic acid (AcOH) 

 
 
 

Name of Derivative 
 
 
 

%ES 

 
solubility in 

 water before 
Quaternization 

(10 mg/mL) 
 

 
 

solubility in  
1% AcOH before 
Quaternization 

(10 mg/mL) 
 
 

 
 

N-propionoyl chitosan 
 
 

 
21 
47 
45 

 
++ 
+ 
- 
 

 
+++ 
+++ 
+++  

 
 
 

N-butyroyl chitosan 
 

 
34 
41 
30 

 
+ 
- 
- 
 

 
+++ 
+++ 
+++ 

 
 
 

N-valeroyl chitosan 
 

 
8 
0 
11 

 
+ 
- 
- 
 

 
+++ 
+++ 
+++ 

 
 

N-hexanoyl chitosan 

 
13 
18 
21 

 
+ 
+ 
- 
 

 
+++ 
+++ 
+++ 

 
 
 

N-heptanoyl chitosan 
 
 

 
23 
31 
50 

 
- 
- 
-- 

 
+++ 
+++ 
++ 

 
 

N-benzoyl chitosan 
 
 

 
14 
30 
50 

 
++ 
- 
- 
 

 
+++ 
++ 
++ 

 
+++ = completely soluble  
  ++  = high aqueous enhanced, but not completely soluble  
   +   = moderate aqueous enhanced 
    -   = low aqueous enhanced 
   --   = insoluble               
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4.7.4 Mechanistic Route Towards the Synthesis of the N-ionic Acyl Chitosan 
Derivatives 
 
 The mechanism of the reaction between chitosan and the cyclic anhydrides is 

shown in Scheme 4.3.  For the 5-member ring cyclic anhydrides, the rate-determining 

step for the forward reaction may involve the breakdown of the tetrahedral intermediate 

(B) formed by the intramolecular attack of the hydroxyl oxygen on the anhydride.6-8  This 

ring-opening step relieves the anhydride of ring strain.  In the case with 3,3-dimethyl 

glutaric anhydride, nucleophilic attack of the anhydride by chitosan may have been 

hindered due to the arrangement of the axial geminal substituent (Figure 4.24).   

4.7.4.1 Experimental Preparation of the N-ionic Acyl Derivatives 

  Prior to precipitation, the products from the reactions of chitosan with the cyclic 

anhydrides appeared as white viscous solutions.  Following precipitation, the products 

appeared as white gels.  The products were filtered and washed with copious amounts of 

acetone to remove organic reagents and by-products.  In addition to removing undesirable 

material, the use of excess acetone changed the texture and appearance of the product, 

when compared to using smaller amounts of acetone.  When less acetone was used, the 

products appeared as hard, rough intractable solids that were difficult to grind into fine 

powders.  When more acetone was used, the products appeared as fibrous solids that were 

easy to grind into powders.  It is believed that the excess acetone possibly removed water 

molecules trapped between the chains of the derivatives, thus affecting inter-chain 

aggregation. 

4.7.4.2 FT-IR Spectroscopy of the N-ionic Acyl Derivatives 

 FT-IR data were obtained for the N-ionic acyl derivatives to rule out the 

possibility of imide formation and thus confirm the arrangement of the substituent.  

Imides give absorption bands in the range of 1775 and 1720 cm-1, due to the 
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asymmetrical and symmetrical stretch of the C=O functional group, respectively.  The 

absence of the imide absorption in each FT-IR spectrum confirmed N-acyl bond 

formation (-HN-CO-R), versus imide bond formation (O=C-NR-C=O).  As observed in 

the FT-IR spectra of the N-aliphatic and benzoyl acyl derivatives, the NH bend of the N-

ionic derivatives shifted to a lower frequency, indicating N-acyl bond or product 

formation.  Two representative FT-IR spectra are shown in Figures 4.14 and 4.15.  The 

absorptions corresponding to the functional groups of each derivative are summarized 

immediately following the FT-IR spectrum of the appropriate derivative.   

Scheme  4.3 Mechanistic route towards the synthesis of N-ionic acyl chitosan 
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Figure 4.14 FT-IR of N-succinoyl chitosan 
 
 
FT-IR data:  NH bend 1554 cm-1;  C=O absorption of N-acyl 1642 cm-1 (overlaps with 
C=O of acid);  aliphatic methylene CH stretch 2880 cm-1. 
 
 
 
 

 

Figure 4.15 FT-IR of N-3NO2-phthaloyl chitosan 
 
 
FT-IR data:  NH bend 1532 cm-1;  C=O absorption of N-acyl 1655 cm-1 (overlaps with 
C=O of acid);  N=O stretch (of nitro group) 1595 cm-1;  C=C ring stretch 1422 cm-1;     
=CH stretch to the left of 3000 cm-1;  =CH out-of-plane (oop) bending 900-690 



 74

4.7.4.3 1H NMR Characterization of the N-ionic Acyl Chitosan Derivatives 

  
Figure 4.16 1H NMR of N-glutaroyl (14% ES) chitosan in D2O/d4-CD3COOD 
 
1H NMR data (D2O/d4-CD3COOD):  δ (ppm)  1.71 (2H, -CH2-CH2-CH2),  2.07 (2H, -
CO-CH2-CH2-)  2.18 (2H, -CH2-COOH), % ES = 14%.   
 

 
Figure 4.17 1H NMR of N-succinoyl (14% ES) chitosan in D2O/d4-CD3COOD 
 

1H NMR data (D2O/d4-CD3COOD):  δ (ppm)  2.46 (4H, -CH2-CH2-), % ES = 14%.   
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Figure 4.18 1H NMR of N-maleoyl (2% ES) chitosan in D2O/d4-CD3COOD. 
  
1H NMR data (D2O/d4-CD3COOD):  δ (ppm)  6.14 (2H, -CH=CH-), % ES = 2%. 
 
 
 
 

 

R = HC COOH
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Figure 4.19 1H NMR of N-cis-1,2,3,6 tetra hydrophthaloyl (11% ES) chitosan in 
D2O/d4-CD3COOD 
 
1H NMR data (D2O/d4-CD3COOD):  δ (ppm)  2.25 (2H, -CH-CH2-),  2.25( 4H, CH2-
CH=),  5.60 (2H, vinyl -CH=CH), % ES = 11%. 
 

 

 

 

R =
COOH

H

H
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Figure 4.20 1H NMR of N-3NO2 phthaloyl (5% ES) chitosan in D2O/d4-CD3COOD 
 
1H NMR data (D2O/d4-CD3COOD):  δ (ppm)  7.45 (1H, arom -CH ),  7.84 (1H, arom  
-CH),  7.86 (1H, arom -CH), % ES = 5%. 
 

 

 

 

 

 

 

 

 

 

 

R =
COOHO2N
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Figure 4.21 1H NMR of N-3,3 dimethyl glutaroyl (3% ES) chitosan in D2O/d4-
CD3COOD 
 
1H NMR data (D2O/d4-CD3COOD):  δ (ppm)  1.73 (6H, geminal -CH3),  2.07 (2H, –CH2-
COOH)  2.08 (2H, –CH2-CONH-), % ES =  3%.   
 

 

 

 

 

 

 

 

 

 

R = H2C
COOH
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Figure 4.22 1H NMR of N-trimellitoyl (19% ES) chitosan in D2O/d4-CD3COOD 
 

1H NMR data (D2O/d4-CD3COOD):  δ (ppm)  7.84 (2H, arom -CH ),  8.18 (1H, arom   
-CH), % ES = 19%. 
 
 A representative 1H NMR spectrum of each type of N-ionic acyl derivative in 

D2O/d4-CD3COOD is shown in Figures 4.16 through 4.22.  Their % ES values were 

obtained by applying Equation 4.2.  The chemical shifts corresponding to the substituent 

protons are summarized immediately following the 1H NMR spectrum of the appropriate 

N-acyl derivative. 

4.7.4.4 % ES of the N-ionic Acyl Chitosan Derivatives 

 The % ESs obtained from the reactions of chitosan with the cyclic anhydrides 

were much lower than their targeted % ESs, as shown in Table 4.2.  This can be 

attributed to the molecular structure and/or size of the anhydrides, which reflected their 

reactivity towards nucleophilic attack by chitosan.  In interpreting the % ES obtained for 

N-3,3-dimethyl glutaroyl chitosan, the low % ES can be explained in terms of the 

conformation of the anhydride, which closely resembles the chair conformation of 

R =

HOOC

COOH
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cyclohexane (Figure 4.23).  In this conformation, the arrangement of the axial geminal 

substituent presents some sterics to the approaching N-amino groups of chitosan (Figure 

4.24).  

O

O

O

 
3,3-dimethyl glutaric anhydride 

 
Figure 4.23 Conformation of 3,3-dimethyl glutaric anhydride 
 
 

NH2
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CH H
H

O

O

O

 

Figure 4.24 Nucleophilic attack of 3,3-dimethyl glutaric anhydride by the  
N-amino groups of chitosan 
 

 Chitosan was then allowed to react with glutaric anhydride to determine if 

absence of the geminal substituents would lead to derivatives with higher extents of 

glutaroyl   substitution.  The resulting glutaroyl chitosan derivatives however, had % ESs 

that were less than half their targeted % ESs as shown in Table 4.2 (although higher than 

the % ES values for 3,3-dimethyl glutaroyl chitosan).  These results imply that the low %  

ES obtained is mainly attributed to the low reactivity of the anhydride. 
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 Chitosan’s reaction with succinic anhydride (Figure 4.25) resulted in a derivative 

with half its targeted % ES.  The % ES obtained is a reflection of the high reactivity of 

succinic  anhydride.  When compared to the reactivity of 6-member ring anhydrides, the 

higher reactivity of 5-member ring anhydrides is due to the degree of ring strain in the 

molecule.  

O

O

O  

 succinic anhydride 

 

 

O

O

O  

maleic anhydrie 

Figure 4.25 Conformations of succinic and maleic anhydride 

 Chitosan’s reactivity with maleic anhydride (Figure 4.25) resulted in derivative 

with 2% ES out of 65% targeted ES.  Although the anhydride has some degree of ring 

strain, the vinyl functional group decreases electrophilicity at the carbonyl centers, thus 

decreasing its reactivity.  Also, nucleophilic attack of maleic anhydride would disrupt the 

delocalization of the π-system of the molecule, which is disfavorable. 
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 The % ESs obtained from the reactions of chitosan with cis-1,2 

cyclohexanedicarboxylic, cis-1,2,3,6-tetrahydrophthalic, 3-nitro phthalic, and 1,2,4-

benzenetricarboxylic (trimellitic) anhydride are shown in Table 4.2.  The reactions 

yielded products with % ESs much lower than their targeted % ESs.  The bulky sizes of 

the anhydrides were believed to have affected the % ESs obtained.  Although the 

anhydrides comprise 5-member rings which make them reactive, their large sizes 

presented steric hindrance to the approaching N-amino groups of chitosan.12  

 
4.7.4.5 Effects of the ES and Structure on the Solubility of the N-ionic Acyl 
Derivatives 
 
 While N-succinoyl chitosan exhibited swelling in water, N-maleoyl chitosan and 

the N-glutaroyl chitosan derivatives exhibited very little swelling.  The % ESs obtained 

with N-maleoyl and N-glutaroyl chitosan may have led to insufficient disruption or 

minimal reduction in the normal regularity of intermolecular H-bonding between the 

polymer chains,13 resulting in products with low water solubility.  Despite the low % ESs 

obtained for N-3,3-dimethyl glutaroyl, N-cis-1,2 cyclohexanedicarboxoyl, N-cis 1,2,3,6-

tetrahydrophthaloyl, N-3-NO2 phthaloyl and N-trimellitoyl chitosan, the derivatives 

showed swelling in water.  A possible explanation for the enhanced solubility of these 

derivatives could be attributed to the size and/or bulkiness of the N-acyl substituent.  As 

mentioned in chapter 2, the modification of chitosan with bulky groups enhances the 

polymer’s solubility in water due to the substituents’ ability to create a large distance 

between the polymer chains, thus allowing water molecules to fill in the spaces created.  

This causes the polymer to exhibit greater enhancement in water.  All of the N-ionic acyl 

derivatives displayed good solubility in 1% acetic acid (Table 4.8).  The solubility in the 

acidic environment would be caused by ionization of the –NH2 groups to –NH3
+.   
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  Table 4.8 Solubility of N-ionic acyl chitosan in water and 1% AcOH 
 
 

Name of derivative 
 
 

 
 

% ES 
 

 
solubility in water 

before Quaternization 
(10 mg/mL) 

 

 
solubility in 1% AcOH 
before Quaternization 

(10 mg/mL) 
 

 
N-succinoyl chitosan  
(1) 

 
 

14 
 
 

 
 

+ 
 

 
 

+++ 

 
N-maleoyl chitosan  
(2) 
 

 
 
2 
 
 

 
 
- 

 
 

+++ 

 
N-glutaroyl chitosan  
(3) 
 

 
5 

 10 
14 

 

 
- 
- 
- 
 

 
+++ 
+++ 
+++ 

 
 
N-3,3-dimethyl glutaroyl 
chitosan  
(4) 
 

 
10 
3 
6 
 

 
+ 
+ 
+ 
 

 
+++ 
+++ 
+++ 

 
 
N-cis-1,2 
cyclohexanedicarboxoyl 
chitosan (5) 
 

 
 
6 
0 
 

 
 

+ 
-- 

 
 

+++ 
+++ 

 
 
N-cis 1,2,3,6- 
tetrahydrophthaloyl 
chitosan (6) 
 

 
7 

11 
 20 

 

 
++ 
++ 
- 
 

 
+++ 
+++ 
+++ 

 
N-3-NO2 phthaloyl 
chitosan 
(7) 
 

 
5 
9 

n/a 
 

 
++ 
++ 
++ 

 
+++ 
+++ 
+++ 

 
 
N-trimellitoyl chitosan  
(8) 
 

 
 

19 
 
 

+ +++ 

   +++  = completely soluble 
    ++   = high aqueous enhanced, but not completely soluble 
    +     = moderate aqueous enhanced 
    -      = low aqueous enhanced  
    --     = insoluble  
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4.7.5 The Preparation of 2-Glycerol Succinamide and Glutamide Chitosan 

 The reaction between cis-1,3-O-benzylidene glycerol and succinic or glutaric 

anhydride yielded the novel anhydrides 2-(cis -1,3-O-benzylidene glycerol) succinic acid 

mono ester anhydride (2-BzGSA) or 2-(cis -1,3-O-benzylidene glycerol) glutaric acid 

mono ester anhydride (2-BzGGA), respectively.  A representative reaction is shown in 

Scheme 4.4.  The reaction of cis-1,3-O-benzylidene glycerol with succinic anhydride 

yielded the pyridinium salt intermediate.  Following the acidic workup, the activated 

monoacid succinate was isolated.  This product was fully characterized by 1H and 13C 

NMR as shown in Figures 4.26 and 4.27, respectively, using CDCl3 as the internal 

standard.  The activated monoacid succinate was then converted to the anhydride using 

the procedure reported by Carnahan et al.5  Spectral data for the anhydride were 

consistent with those reported. 

Scheme  4.4 Synthesis of 2-(cis-1,3-O-benzylidene glycerol) succinic acid mono 
ester anhydride (2-BzGSA). 
 
 

OO O

O

O
OH

pyridine, 500C
      16hr

O

O
O

O HN
O

O
cis -1,3-O-Benzylidene 

glycerol

HCl (aq)
DCM

O

O
O

OH
O

O
Ph

O

O

O

O

O

Ph

O

O

O

O

O

O

2-(cis -1,3-O-Benzylidene glycerol) succinic acid 
mono ester anhydride (2-BzGSA)

activated monoacid succinate

DCC

18hr, 200C
DCM

 



 85

2.52.53.03.03.53.54.04.04.54.55.05.05.55.56.06.06.56.57.07.07.57.58.08.0

Internal Standard

 
 

Figure 4.26 1H NMR of the monoacid succinate in CDCl3 
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Internal Standard

 
 

Figure 4.27 13C NMR of the monoacid succinate in CDCl3 
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Figure 4.28 1H NMR of 2-glycerol succinamide (20% ES) chitosan in D2O/d4-
CD3COOD 
 

1H NMR data (D2O/d4-CD3COOD):  δ (ppm)  2.45 (2H, -HNCO-CH2-CH2-),  2.45 (2H,  
-CH2-CH2-COO-),  3.63 (4H,-CH2-CH-CH2-), 4.52 (1H, -CH2-CH-CH2-),  % ES = 25%. 
 
 
 

 
Figure 4.29 1H NMR of 2-glycerol glutamide (25% ES) chitosan in D2O/d4-
CD3COOD 
 
1H NMR data (D2O/d4-CD3COOD):  δ (ppm)  1.72 (2H, -CH2-CH2-CH2),  2.20 (2H,  
-HNCO-CH2-CH2-),  2.20 (2H, -CH2-CH2-COO-),  3.61 (4H,-CH2-CH-CH2-),  4.53 (1H,  
-CH2-CH-CH2-),  % ES = 25%.   
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4.7.5.1 Mechanistic Route Towards the Synthesis of 2-Glycerol Succinamide and 
Glutamide Chitosan 
  
 Scheme 4.5 shows the synthetic route towards the N-acylation of chitosan with 2- 
 
BzGSA.  The reaction was conducted in a solvent mixture of acetic acid and DMSO due 

to the limited solubility of 2-BzGSA in the medium.  Reaction with the anhydride is 

accompanied by removal of the benzylidene blocking group, which ultimately places 

aliphatic hydroxy substituents pendant to the polymer backbone, i.e., 2-glycerol 

succinamide chitosan. 

Scheme  4.5 Synthesis of 2-glycerol succinamide chitosan  
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4.7.5.2 1H NMR Analysis of 2-Glycerol Succinamide and Glutamide Chitosan 

 A representative proton NMR of 2-glycerol succinamide chitosan in D2O/d4-

CD3COOD is shown in Figure 4.28.  The appearance of the peak at 2.45 ppm 

corresponds to the two glyceryl α-protons of the substituent.  The chemical shift of the α-

hydroxy protons (3.63 ppm, CH2-CH-CH2) overlaps the backbone protons of chitosan.  

The CH2-CH-CH2 proton appears slightly downfield at 4.52 ppm, overlapping the acetal 

backbone protons and the chemical shift of the internal standard.  The absence of the 
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aromatic protons of the anhydride confirms concomitant hydrolysis of the benzyl acetal 

under the acidic experimental conditions used for the N-acylation.  The % ES was found 

to be 20%, by applying Equation 4.2. 

 The % ESs of 2-glycerol succinamide and glutamide chitosan are summarized in 

Table 4.3.  The reaction between chitosan and the novel anhydrides resulted in 

derivatives with nearly half or close to their exact targeted % ESs.  

4.7.5.3 Effects of the ES and Structure on the Solubility of 2-Glycerol Succinamide 
and Glutamide Chitosan  
 
  Table 4.9 Solubility of 2-glycerol succinamide and glutamide chitosan in water    
  and 1% AcOH 

Name of derivative  % ES 

 
solubility in 

 water before 
Quaternization 

(10 mg/mL) 
 

solubility in  
1% AcOH before 
Quaternization 

(10 mg/mL) 

 
2-glycerol  
succinamide chitosan  
 

 
11 
20 
28 

 

 
++ 
+ 
+ 
 

 
+++ 
+++ 
+++ 

 
2-glycerol  
glutamide chitosan  
 

 
5 
5 

25 
 

 
+ 
+ 
+ 
 

 
+++ 
+++ 
+++ 

  +++ = completely soluble 
   ++  = high aqueous enhanced, but not completely soluble 
    +   = moderate aqueous enhanced 
 
 The solubility of chitosan can be enhanced by incorporating OH-groups pendant 

to the polymer backbone.14  The reaction of chitosan with 2-(cis -1,3-O-benzylidene 

glycerol) succinic acid mono ester anhydride and 2-(cis -1,3-O-benzylidene glycerol) 

glutaric acid mono ester anhydride resulted in chitosan derivatives with enhanced 

solubility at neutral pH (Table 4.9).  Upon increasing the % ES, the solubility of 2-

glycerol succinamide and glutamide chitosan was decreased when tested in water, despite 

the increase in the number of hydrophilic groups on the polymer backbone.  The decrease 
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in the solubility was probably a result of an increase in the hydrophobicity of polymer, 

which dominated the hydroxyl groups (of the substituent) affinity for water. 

4.7.6 Quaternization of the N-aliphatic, -Benzoyl, -Ionic, 2-Glycerol Succinamide, 
and Glutamide Acyl Chitosan Derivatives 
 
 Quaternization of the N-acyl derivatives was conducted under heterogeneous 

conditions using a commercially available solution of 65% (w/w) Quat-188 (Scheme 

4.1).  The chlorohydrin was probably converted to the corresponding epoxide in situ 

under the alkaline conditions employed.  A catalytic amount of I2 was added to enhance 

the electrophilicity of the epoxide15 towards nucleophilic attack by the amines of 

chitosan, which allows a greater extent of cationic substitution to occur. 

  A representative 1H NMR spectrum of N-acyl quaternized chitosan is shown in 

Figure 4.30 (N-propionoyl chitosan Quat-188).  The appearance of the peak at 4.16 ppm 

corresponds to the CH2-CH-CH2 proton of the 3-(N,N,N-trimethylammonium chloride)-

2-hydroxyl substituent.  The methylene protons (CH2) of this substituent expected at  

3.51 ppm and 2.80 ppm overlap the backbone protons of chitosan.  The strong intense 

chemical shift at 3.09 ppm corresponds to the methyl protons (N+-CH3) adjacent to the 

quaternary nitrogen.  

Quaternization of the N-acyl derivatives resulted in derivatives with partial or 

complete solubility in water (Tables 4.10 through 4.12).  The N-aliphatic and benzoyl 

derivatives that displayed low swelling and insolubility in water before quaternization 

were partially soluble in the medium after they were quaternized.  The N-aliphatic and 

benzoyl acyl derivatives that exhibited high and moderate swelling in water prior to 

quaternization exhibited complete solubility in water following quaternization.  The N-

ionic acyl derivatives that were water insoluble prior to quaternization displayed partial 
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solubility in water following quaternization.  The N-ionic acyl derivatives that displayed 

high, moderate, and low swelling in water prior to quaternization were rendered 

completely water soluble after the Quat reaction, with the exception of N-succinoyl (14% 

ES) and N-cis 1,2,3,6-tetrahydrophthaloyl (20% ES) chitosan Quat-188. The 2-glycerol 

succinamide and glutamide chitosan derivatives that showed high and moderate swelling 

in water prior to quaternization were rendered completely water soluble after their 

quaternization. 

N-succinoyl (14% ES) chitosan Quat-188, N-cis 1,2,3,6-tetrahydrophthaloyl (20% 

ES) chitosan Quat-188, and the partial soluble N-aliphatic, benzoyl and N-ionic 

quaternized derivatives exhibited partial solubility in water after quaternization.  This was 

probably attributed to an excessive increase in the hydrophobicity of the polymers via 

quaternization.  Although quaternization of the N-acyl derivatives was to increase the 

hydrophilic nature of the polymers, in these cases, the aliphatic portion of the Quat 

substituents may have additionally increased the hydrophobic character of the polymer 

and dominated its potential hydrophilicity.   

 
Figure 4.30 1H NMR of N-propionoyl chitosan Quat-188 in D2O 
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4.8 Molecular Weight Determination 

 To determine if the molecular weight of the N-acyl Quat derivatives changed as a 

result of the quaternization step, GPC/MALS data was obtained.  The results are 

summarized in Table 4.13.  When compared to chitosan, the weight-average molecular 

weights (Mw) of the derivatives were much lower.  The significant decrease in molecular 

weight is mainly attributed to the basic environment used to prepare the N-acyl chitosan 

Quat-188 derivatives (Scheme 4.1).  Sannan et al. have reported that treating chitosan 

under alkali conditions could result in a decrease in the molecular weight.3,10  In this case, 

the protocol required the reactants to be stirred for a total of 72 h, where after 48 h, the 

reaction was heated to 50 0C for an additional 24 h.  The basic media, slightly elevated 

temperature, and the prolonged reaction time influenced degradation of the polymer main 

chain.  Kurita has reported that chitosan reactions performed under basic conditions can 

result in reduction in molecular weight, which increases with increasing reaction time.16   

4.9 Attempted N-hydroxyacylation of Chitosan 

 The reactions between chitosan and ε-caprolactone, δ-gluconolactone, γ-octanoyl 

lactone, and α,α-diphenyl γ-lactone were performed at room temperature under acidic 

homogenous conditions (pH 2).  Following the reactions, the materials obtained were 

analyzed by 1H NMR.  Absence of the substituent protons in each of the NMR spectra 

indicated that chitosan was not N-hydroxyacylated with the lactones.  The reactions were 

then performed at pH 6 to ensure that the N-amino groups were mostly in their 

deprotonated form.  Analysis of the resulting materials showed that the modification of 

chitosan with the lactones was still not achieved.  The reactions were attempted at pH 7 

and at 70 0C, but there was no product formation.  This was probably due to the high 

stability or low reactivity of the lactones17 towards nucleophilic attack by chitosan.   



 92

     Table 4.10 The solubility of the N-aliphatic and benzoyl acyl derivatives in water    
     before and after quaternization  

 
 
 

Name of derivative 

 
 
 

% ES 

 
 

solubility in water 
before  

quaternization 
 

 
 

solubility in water 
after  

quaternization 

N-propionoyl chitosan 
Quat-188 
 

 
21 
47 
45 

 
 

 
++ 
+ 
- 
 

 
+++ 
+++ 

* 
 

N-butyroyl chitosan 
Quat-188 

 
34 
41 
30 

 
 

 
+ 
- 
- 
 

 
+++ 

* 
* 
 

N-valeroyl chitosan 
Quat-188 

 
8 
0 

11 
 
 

 
+ 
- 
- 
 

 
+++ 

* 
* 
 

N-hexoyl chitosan 
Quat-188 
 

 
13 
18 
21 

 

 
 

+ 
+ 
- 
 

 
 

+++ 
+++ 

* 

N-heptanoyl chitosan 
Quat-188 

 
23 
31 
50 

 
 

 
- 
- 
-- 
 

 
* 
* 
* 
 

N-benzoyl chitosan 
Quat-188 

 
14 
30 
50 

 
 

 
++ 
- 
- 
 

 
+++ 

* 
* 
 

     +++ = completely soluble 
      ++  = high aqueous enhanced, but not completely soluble 
       +   = moderate aqueous enhanced 
        -   = low aqueous enhanced 
       --   = insoluble 
        *   = partial solubility      
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     Table 4.11 The solubility of the N-ionic acyl derivatives in water before and    
     after quaternization 

Name of derivative % ES 

 
 

solubility in water 
before 

quaternization 
 

 
 

solubility in water 
after  

quaternization 

 
N-succinoyl chitosan  
Quat-188  

 
 

14 
 
 

 
 

+ 
 

 
 
* 
 
 

 
N-maleoyl chitosan  
Quat-188 

 
 
2 
 
 

 
 
- 

 
 

+++ 
 

 
N-glutaroyl chitosan  
Quat-188 
 

 
5 

 10 
14 

 

 
- 
- 
- 
 

 
+++ 
+++ 
+++ 

 

 
3,3-dimethyl N-glutaroyl 
chitosan Quat-188 
 

 
10 
4 
6 
 

 
+ 
+ 
+ 
 

 
+++ 
+++ 
+++ 

 
 
N-cis 1,2,3,6- 
tetrahydrophthaloyl 
chitosan Quat-188 
 

 
7 

11 
 20 

 

 
++ 
++ 
- 
 

 
+++ 
+++ 

* 

 
N-3-NO2 phthaloyl 
chitosan Quat-188   
 

 
5 
9 

n/a 
 

 
++ 
++ 
++ 

 

 
+++ 
+++ 
+++ 

 

N-cis-1,2 
cyclohexanedicarboxoyl 
chitosan Quat-188   

 
 
6 
0 
 

 
 

+ 
-- 
 

 
 

+++ 
+++ 

 

 
N-trimellitoyl chitosan 
Quat-188  
 

 
 

19 
 
 

+ 

 
 

+++ 
 

     +++ = completely soluble 
      ++  = high aqueous enhanced, but not completely soluble 
       +   = moderate aqueous enhanced 
        -   = low aqueous enhanced 
       --   = insoluble 
        *   = partial solubility         



 94

Table 4.12 The solubility of the 2-glycerol succinamide and glutamide chitosan in 
water before and after quaternization 

Name of derivative % ES 

 
 

solubility in water 
after  

quaternization 
 

 
 

solubility in water 
after  

quaternization 

 
2-glycerol succinamide 
chitosan Quat-188  
 

 
11 
20 
28 

 

 
++ 
+ 
+ 
 

 
+++ 
+++ 
+++ 

 

 
2-glycerol glutamide  
chitosan Quat-188 
 

 
5 
5 

25 
 

 
+ 
+ 
+ 
 

 
+++ 
+++ 
+++ 

 
+++ = completely soluble 
 ++  = high aqueous enhanced, but not completely soluble 
  +   = moderate aqueous enhanced 
 

Table 4.13 Molecular Weight of chitosan and the chitosan Quat-188 derivatives      
via GPC/MALS 

 
 

Name of Compound 
 
 

Mn Mw Mw/Mn 
 

dn/dc 
 

 
chitosan 

(commercial) 
 
 

106,100 130,800 1.233 0.180 

 
chitosan 
Quat-188 

 
 

 
 

20,090 
 

 
 

26,703 

 
 

1.329 

 
 

0.147 

 
N-3NO2 phthaloyl chitosan 

Quat-188 (9% ES) 
 
 

 
 

37,883 

 
 

77,010 

 
 

2.033 

 
 

0.142 

 
2-glycerol succinamide chitosan 

Quat-188 (20% ES) 
 
 

27,270 36,420 1.336 0.144 
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CHAPTER 5.  THE ANTIBACTERIAL ACTIVITY OF N-ACYL CHITOSAN 
QUAT-188 

 
5.1 Introduction 

 Studies on the antibacterial activity of chitosan derivatives have revealed that the 

polymer is effective in inhibiting the growth of bacterial cells.1-3  The antibacterial 

activities have been described mostly with chitosan derivatives that contain quaternary 

ammonium functional groups.  Chapter 5 investigates the antibacterial activity of the N-

acyl chitosan Quat-188 derivatives against Escherichia coli (E. coli) and Staphylococcus 

aureus (S. aureus) and describes the possible mode of action in which the derivatives 

inhibit the growth of these bacterial cells.  Prior to discussing the antibacterial data 

obtained for the derivatives, it is first important to understand how the bacteria’s 

framework influences the antibacterial activity.  This begins by contrasting gram-

negative bacterial cells with gram-positive bacterial cells, which differ primarily in their 

bacterial surfaces. 

5.1.1 The Cell Wall of Gram-Negative and Gram-Positive Bacteria  

 Many gram-negative bacterial cells have complex cell walls.  Wide-ranging 

studies on the structure of gram-negative cells have been concentrated on E. coli in 

particular.  The structure of a typical gram-negative cell is shown in Figure 5.1.4  The 

outermost regions of the cell wall consist of various components that form a structure 

called the outer-membrane.  This membrane is a lipid bilayer which contains 

phospholipids (phosphatidylethanolamine and phosphatidyl-glycerol) on its inner surface 

and lipopolysaccharide (3-deoxy-D-manno-octulosonic acid, hexoses, heptoses, 

ethanolamine, and phosphoric acid) exclusively on its outer surface.  The core 

lipopolysaccharide is linked to an antigenic side chain.  The side chain comprises sugar 

units, which form the outmost layer of the cell and is the main source of its antigenic 
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characteristics. The arrangement of the lipoprotein (made of amino and fatty acids) 

anchors the outer-membrane to the peptidoglycan layer.  Peptidoglycan is the component 

of the cell which contributes to wall strength and constitutes about 10% of the wall mass 

of gram-negative cells.  Parallel to the peptidoglycan is the cytoplasmic membrane, 

which like the outer-membrane, is a lipid bilayer.  It consists of a double layer of 

phospholipids and has proteins embedded in it.  The membrane surrounds the cytoplasm 

of the cell, separating it from the environment.  

 

Figure 5.14 The arrangement of a gram-negative bacterial cell 
  

 Many gram-positive bacteria have relatively simple cell walls (Figure 5.2).4  

These cells have much thicker peptidoglycan in their cell walls and no outer-membrane 

external to this structure.  The peptidoglycan provides a physical barrier for protection 

from the environment and gives strength and shape to the cell.  Attached to the 

peptidoglycan are acidic polymers, which account for 30-40 % of the wall mass.5  These 

polymers are teichoic acid (a substituted poly-D-ribitol 5-phosphate) and lipoteichoic 

acid (a substituted glycerol 3-phosphate).  The acidic character of the polymers is to 

ensure that the cell surface is strongly polar and carriers a negative charge.  The 

polarizability can influence the entry of ionized molecules into the cell.  Proteins 
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covalently linked to the peptidoglycan provide the main source of the antigenic properties 

of the bacteria.  Gram-positive bacteria also have proteins that expand the cytoplasmic 

membrane. 

 

Figure 5.24 The arrangement of a gram-positive bacterial cell 
  

5.2 Antibacterial Activity:  Mode of Action  

 Nurdin et al. have proposed a possible mechanism in how polymeric quaternary 

ammonium materials exhibit an antibacterial effect against bacteria.6  It is believed that 

the negatively charged cell surface interacts electrostatically with the positively charged 

quaternary nitrogen on the polymer.  The lipophilic or hydrophobic chain then diffuses 

through the bacterial cell wall causing disruption of the cytoplasmic membrane, loss of 

cytoplasmic constituents, and eventually, cell death.  Nakae and Nikaido have reported 

however, that as a polymeric macromolecule, chitosan is unable to pass the outer-

membrane of gram-negative bacteria because the membrane functions as an outer 

permeability barrier against macromolecules.7  Therefore, the possibility of chitosan’s 

direct access to the intracellular parts of the cell (e.g. cytoplasmic membrane) is unlikely.  

Helander et al. believe that the mode of antibacterial activity against gram-negative 

bacteria involves the binding of cationic chitosan to the anionic cell surface.  This 
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disrupts the integrity of the outer-membrane which functionally weakens it and sensitizes 

the bacteria to other inhibitory substances (e.g. detergent-induced lysis, hydrophobic 

antibiotics, or probes).5 

5.3 Minimum Inhibitory Concentration Tests 

 The antibacterial activity of the N-acyl chitosan Quat-188 derivatives was studied 

by employing the Minimum Inhibitory Concentration (MIC) method.  A MIC is defined 

as the lowest concentration of an antimicrobial that will inhibit the visible growth of a 

microorganism after overnight incubation.8  The test organisms used in the assessments 

were E.coli (ATCC 25922) and S. aureus (ATCC 29213).  The inhibitory effect of the 

derivatives against the bacterium was determined on nutrient broth containing a specific 

concentration of the agent (e.g. 256, 128, 64, 32, 16, 8, 4, and 2 µg/mL).   

5.4 Targeted MICs  

 The MICs of chitosan Quat-188 against E. coli and S. aureus were used as 

standard MICs to judge the quality of the MIC data obtained for the N-acyl chitosan 

Quat-188 derivatives.  The MIC of chitosan Quat-188 was 64 µg/mL against E. coli and 

 32 µg/mL against S. aureus.  Therefore, the N-acyl Quat derivatives were to target MIC 

values lower than 64 µg/mL and 32 µg/mL against E. coli and S. aureus, respectively. 

5.5 Experimental 

5.5.1 Materials  

 The test organisms E. coli and S. aureus were obtained from Louisiana State 

University’s Protein Facility lab.  Potassium monobasic phosphate (KH2PO4, ACS 

crystal) and potassium dibasic phosphate (K2HPO4, ACS powder) were purchased from 

Fluka in the highest level of purity.  Sterile translucent Costar® 96-well cell culture 

cluster plates were manufactured by Coring Inc.  Polystyrene sterile Falcon tubes and 
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disposable polystyrene cuvettes were manufactured by Becton Dickinson and Company.  

Difco nutrient broth (NB) was provided by Dickinson and Company.  Ethanol was 

purchased from Sigma Aldrich.  Silver nitrate (AgNO3) and potassium chromate 

(K2CrO4) were purchased from Lancaster.  

5.5.2 Instrumentation 

 Ultrospec 4050, manufactured by LKB Biochrom, was the spectrometer used for 

the antibacterial assessments.   

5.5.3 Preparation for Performing the MIC Tests 

 The test organisms E. coli and S. aureus were stored in a freezer at –80 0C.  A  

50 mM phosphate buffer solution was used to maintain the pH of the solutions.  The 

buffer solution was made by combining 78 mL of 0.1M potassium monobasic phosphate 

(KH2PO4,) with 122 mL of 0.1M potassium dibasic phosphate (K2HPO4), and 400 mL of 

water.  The bacterial testing was performed in sterile translucent Costar® 96-well cell 

culture cluster plates.  Polystyrene sterile Falcon tubes were used to prepare the bacterial 

solutions and also a series of different concentrations of the antibacterial agent.  Difco 

nutrient broth was used for the bacterial inoculations.  The optical density (OD) 

measurements were performed in disposable polystyrene cuvettes.  Prior experiments 

conducted by Dr. Martha Juban (of Louisiana State University’s Protein Facility) 

determined the level of OD required for the bacterial solutions in order to attain specific 

cell density and the time it took to attain mid-log phase growth for the specific organisms 

used in this study.  All of the solutions prepared (except those containing microorganisms 

and the antibacterial agent), equipment, and glassware used were autoclaved at 121 0C for 

20 min prior to their use.  In order to help maintain the sterility during the assessments, a 

clean hood was sprayed with sufficient ethanol to cover the surface and flame-dried.  
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Additionally, the assessments were carried out in the proximity of heat convection 

generated with the help of a Bunsen burner.  

5.5.4 Antibacterial Assessments 

 The N-acyl chitosan Quat-188 derivative (2.1 mg) was dissolved in 4 mL of 

sterile water to make a stock solution of the concentration 512 µg/mL.  This solution was 

diluted with water by a factor of 2 (256 µg/mL).  The most concentrated solution (256 

µg/mL) was diluted in the multiples of 2 until the least concentrated solution was 2 

µg/mL.  8% (w/v) nutrient broth was made using phosphate buffer as the solvent.  The 

bacteria of choice was thawed from -80 0C to room temperature.  The bacteria was then 

inoculated into 5 mL of nutrient broth and this solution was incubated at 37 0C for 12 h.  

After incubation, 1 mL of this solution was transferred into a culture flask containing  

25 mL sterile nutrient broth and the flask was incubated at 37 0C on a shaker for 3.5 h.  

Approximately 2 mL of this solution was diluted with sterile nutrient broth, such that the 

optical density of the diluted solution was 0.200 for E. coli and 0.400 for S. aureus.  Once 

the desirable optical density was obtained, it was further diluted with four times its 

volume with sterile nutrient broth.  This resulting solution appeared clear and was 

immediately stored at 00C prior to use.  The bacterial cell density in the clear solution 

was determined to be 4 x 107 cells/mL.  This solution was further diluted to 2 x 106 cells 

once placed in the wells used for the bacterial assessment (as determined by the work of 

Dr. Martha Juban).  The cell control well contained 50 µL phosphate buffer + 50 µL cell 

solution (containing 2x 106 cells) + 100 µL of deionized water.  The agent control well 

contained 50 µL phosphate buffer + 50 µL nutrient broth + 100 µL of the N-acyl chitosan 

Quat-188 derivative.  The test well contained 50 µL phosphate buffer + 50 µL cell 

solution + 100 µL of the N-acyl chitosan Quat-188 derivative.  The cell and agent 
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controls were run simultaneously with the test wells to ensure proper growth of the 

bacteria within the diluted bacterial culture in the absence of the chitosan derivative and 

to be sure that there was no bacterial growth in the solutions of the derivative in the 

absence of bacterium, respectively.  Following preparation of the 96-well plate by the 

procedure above, it was incubated at 37 0C for 14 h.  A schematic of a 96-well plate used 

in the antibacterial assessment plate is shown in Figure 5.3.9    

 
Figure 5.39 Schematics of a 96-well plate used in the antibacterial assessment 
 

5.5.5 Mohr’s Method:  Determination of Chloride Ion Concentration 

 The extent of cationic substitution of the N-acyl chitosan Quat-188 derivatives 

was determined by the Mohr Method Titration, using AgNO3 as the titrant.  Only those 

derivatives that gave MICs less than or equal to the MICs of chitosan Quat-188 (64 

µg/mL against E. coli and 32 µg/mL against S. aureus) were studied.  The N-acyl 

derivative (0.035 g) was dissolved in 25 mL of deionized H2O and then 0.5 mL of 0.064 

mM K2CrO4 was added as an indicator.  After stirring for 5 min, the solution was titrated 

with 0.017M AgNO3 until the endpoint of the reaction was reached, as evidenced by the 

formation of the red-brown precipitate silver chromate.       
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     Table 5.1 Minimum Inhibitory Concentration of N-aliphatic acyl and benzoyl   
     chitosan Quat-188   

 
Name of chitosan agent 

        

 
 

N-acyl  
% ES 

 

 
 

MIC  against  
E. coli (µg/mL) 

 
 

MIC against 
S. aureus (µg/mL) 

 
 
 
N-propionoyl chitosan Quat-188 

 
21 
47 
45 

 

 
128 
128 
256 

 
128 
256 

> 256 
 

 
 
N-butyroyl chitosan Quat-188 

 
34 
41 
30 

 

 
128 
256 
64 

32  
> 256 
128 

 
 
 
N-valeroyl chitosan Quat-188 
 

 
8 
0 
11 

 

 
64 
n/a 
256 

 
64 
n/a 

> 256 
 

 
 
N-hexanoyl chitosan Quat-188 

 
13 
18 
21 

 

 
64 
64 
128 

 
64 
128 

> 256 
 

 
 
N-heptanoyl chitosan Quat-188 

 
23 
31 
50 

 

 
64 
64 

> 256 

256 
64 

> 256  
 

 
 
N-benzoyl chitosan Quat-188 

 
14 
30 
50 

 

 
64 
256 

> 256 

64 
> 256 
> 256 
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     Table 5.2 Minimum Inhibitory Concentration of N-ionic acyl chitosan  
     Quat-188 

 
Name of chitosan agent 

        

 
 

N-acyl  
% ES 

  

 
 

MIC  Against  
E. coli (µg/mL) 

 
 

MIC Against 
S. aureus (µg/mL) 

 
 
 
N-succinoyl chitosan Quat-188  
 
 

14 
 
 

 
 

n/a n/a 
 
 

 
N-maleoyl chitosan Quat-188  
 

 
 

2 
 
 

 
 

64 16 
 
 

 
N-glutaroyl chitosan Quat-188  
 

 
5 

 10 
14 

 

 
32 
64 
64 

32 
32 
32 

 

 
N-3,3-dimethyl 
glutaroyl chitosan Quat-188  

 
10 
3 
6 
 

 
64 
64 

> 256 

 
32 
64 

> 256 
 

 
N-cis-1,2 cyclohexanedicar-
boxoyl chitosan Quat-188   

 
 

6 
0 
 

 
 

128 
32 

32 
16 

 

 
N-cis1,2,3,6- tetrahydrophthaloyl 
chitosan Quat-188  
 

 
7 
11 
 20 

 

 
64 
64 
n/a 

 
32 
32 
n/a 

 

N-3-NO2 phthaloyl chitosan 
Quat-188   

 
5 
9 

n/a 
 

 
32 
128 
64 

 
32 
128 
64 

 

 
N-trimellitoyl chitosan Quat-188  
 

 
 

19 
 
 

 
 

128 32 
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     Table 5.3 Minimum Inhibitory Concentration of 2-glycerol succinamide and    
     glutamide chitosan Quat-188   

 
 
 

Name of chitosan agent 
 

 
 

N-acyl 
% ES 

 

 
 

MIC  Against 
E. coli (µg/mL) 

 
 

MIC Against 
S. aureus (µg/mL) 

 
 
 
2-glycerol succinamide 
chitosan Quat-188  
 
 

11 
20 
28 

 

 
 

64 
64 
256 

 
32 
64 
256 

 
 
 
2-glycerol glutamide chitosan 
Quat-188 
 
 

 
5 
5 

25 
 

 
 

64 
128 
128 

32 
32 
128 

 
 
 
Table 5.4 Antibacterial activity of the N-acyl chitosan Quat-188 derivatives with 
targeted MICs 

Name of chitosan 
agent 

 
 

 
 

% ES 
N-acyl 

 

 
 

% EQ 
 

 
 

MIC  
against  
E. coli 

(µg/mL)

 
 

contributing 
Quat 

concentration 
E. coli 

(µg/mL) 

 
 

MIC  
against  

S. aureus 
(µg/mL) 

 
 

contributing 
Quat 

concentration
S. aureus 
(µg/mL) 

 
 
 
Chitosan Quat-188 
 

 
 

n/a 
 

 
 

97 

 
 

64 

 
 

62 
32 

 
 

 
 

31 

 
 
N-butyroyl chitosan 
Quat-188 
 

 
 

34 
30 

 
 

35 
34 

 
 

128 
64 

 
 

45 
22 

 
  

32 
128 

 

 
 

11 
82 

N-valeroyl chitosan 
Quat-188 

 
 

8 
 
 

 
 

83 
 
 

 
 

64 
 
 

 
 

53 

 
 

64 
 
 

 
 

53 

N-hexoyl chitosan 
Quat-188 

 
 

13 
18 

 
 

46 
33 

 
 

64 
64 

 

 
 

29 
21 

 
 

64 
128 

 

 
 

29 
42 

N-heptanoyl chitosan 
Quat-188 

 
 

23 
31 

 

 
 

35 
48 

 
 

64 
64 

 

 
 

22 
31 

 
 

256 
64  

 

 
 

90 
31 
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(Table 5.4 continued) 
N-benzoyl chitosan 
Quat-188 

 
 

14 
 
 

 
 

33 
 

 
  

64 
 
 

 
 

21 

 
 

64 
 
 

 
 

21 

 
N-maleoyl chitosan 
Quat-188  
 

2 
 
 
 

 
 

57 
 
 
 

 
 

64 

 
 

36 
 

16 
 
 
 

 
 

10 

 
N-glutaroyl chitosan 
Quat-188  
 

 
5 

 10 
14 

 

70 
49 
47 

 

 
32 
64 
64 

 
22 
31 
30 

32 
32 
32 

 

 
22 
16 
15 

 
N-3,3-dimethyl 
glutaroyl chitosan 
Quat-188  
 

 
 

10 
3 
 

 
74 
70 

 

 
 

64 
64 

 

 
 

47 
45 

 
32 
64 

 

 
 

24 
45 

 

N-cis-1,2 
cyclohexanedicar-
boxoyl chitosan Quat-
188   

 
 

6 
0 
 

74 
72 

 

 
 

128 
32 

 
 

95 
23 

32 
16 

 

 
 

24 
12 

 
N-cis1,2,3,6- 
tetrahydrophthaloyl 
chitosan Quat-188  
 

 
7 
11 

 

 
59 
58 

 

 
 

64 
64 

 

 
 

38 
37 

 

 
32 
32 

 

 
 

19 
19 

 

N-3-NO2 phthaloyl 
chitosan Quat-188   

 
5 

n/a 
 

78 
51 

 

 
 

32 
64 

 
 

25 
33 

 
 

32 
64 

 

 
 

25 
33 

 
N-trimellitoyl chitosan 
Quat-188  
 

 
 

19 
 
 

34 
 
 

 
 

128 

 
 

44 32 
 
 

     
 

11 

 
2-glycerol succinamide 
chitosan Quat-188  
 

 
11 
20 

 

 
55 
51 

 

 
 

64 
64 

 
 

35 
33 

 
 

32 
64 

 

 
 

18 
33 

 
 
2-glycerol glutamide  
chitosan Quat-188 
 
 

 
5 
5 
 
 

61 
49 

 
 

 
 

64 
128 

 

 
 

39 
63 

 
 

32 
32 

 
 

 
 

20 
16 
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5.5.6 Analysis of the 96-Well Plate   

 Following the incubation of the 96-well plate for 14 h, individual results were 

examined visually for qualitative analysis of the antibacterial activity of the agents.  Clear 

and translucent wells indicated antibacterial activity and the lowest concentration of the 

agent was recorded as the MIC.  Cloudy wells indicated continual bacterial growth in the 

presence of the agent, indicating that the agent at that particular concentration was not 

effective in exhibiting antibacterial activity.  A representative developed 96-well plate 

used for the antibacterial assessment is shown in Figure 5.4.9   

 

Figure 5.49 Developed 96-well plate for the antibacterial assessment 
 

5.5.7 Titrations 

 The Mohr titration method involves the titration of the chloride counter ion of the 

Quat substituent.  The percent extent of quaternization (% EQ) was calculated by 

applying Equation 5, proposed by Wu et al.10 

Equation 5: 

% EQ   =                                                 (Vc/1000)                  

                       (Vc/1000)  +   (W1(1- DD))/M1 +  (W1DD- W2)/M2   
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V and c are the volume and concentration of the titrant used in the Mohr titration, 

respectively.  DD is the degree of deacetylation of chitosan.  M1 and M2 are the molecular 

weights of one N-acetylglucosamine and one N-deacetylglucosamine unit, respectively.  

W1 is the weight of the test sample.  W2 = (VcM3)/1000, where M3 is the molecular 

weight of one monomeric unit of 3-(N,N,N-trimethylammonium chloride)-2-hydroxyl 

chitosan (312.18 g/mol).    

 Table 5.4 gives the % EQ of the N-acyl Quat-188 derivatives and their 

corresponding contributing Quat MICs.  These MICs represent the antibacterial activity 

that the Quat substituents contributed to the total MIC of the sample.  

5.6 Results and Discussion 

5.6.1 Antibacterial Activity 

 The MICs of the N-acyl chitosan Quat-188 derivatives are shown in Tables 5.1 

through 5.3.  The MIC data shows that the % ES of the N-acyl attachment has a 

considerable influence on the antibacterial activity against E. coli and S. aureus.  In most 

cases, the antibacterial activity of the derivative declined with greater levels of N-acyl 

substitution.  For example, N-propionoyl chitosan Quat-188 substituted at 21% ES 

inhibited the growth of E. coli at 128 µg/mL.  At 47% ES, the MIC of N-propionoyl 

chitosan Quat-188 increased to 256 µg/mL.  2-glycerol glutamide chitosan Quat-188 

substituted at 5% ES inhibited the growth of S. aureus at a concentration of 32 µg/mL 

and the MIC was increased to 128 µg/mL when substituted at 25% ES.  It was found that 

the % EQ corresponding to the derivative with 5% ES, was 61% EQ (shown in Table 5.4) 

and the derivative with 25% ES had a % EQ of 31% (not shown in Table 5.4).  The data 

may be explicable in terms of an ‘antagonist’ effect of N-acyl substitution to that of 

cationic substitution.  When the levels of N-acyl substitution were increased, the number 
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of available amines for quaternization was decreased, which meant that less cationic 

charge density could be placed on the polymer’s backbone.  This phenomenon suggests 

that the major determining factor for the variation in the antibacterial activity is the 

change in the hydrophobic-hydrophilic balance of the derivative.  A permeability barrier 

anticipated for activity against E. coli was not apparent; the derivatives exhibited activity 

comparable to that observed with S. aureus. 
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CHAPTER 6.  CONCLUSION 

 Novel water soluble N-acyl chitosan Quat-188 materials were prepared from 

reactions of chitosan with linear aliphatic, acyclic, cyclic, and hydrophilic anhydrides, 

followed by quaternization with a solution of 3-chloro-2-hydroxyl propyl 

trimethylammonium chloride (Quat-188).  Following their derivation, the antibacterial 

activities were investigated.  Using the MIC method, the highest antibacterial activity was 

found for derivatives with low extents of N-acyl substitution (e.g. 5 – 10% ES), while 

derivatives with higher % ESs exhibited a decline in the activity.  For example, the MICs 

of 2-glycerol succinamide chitosan Quat-188 at 11% ES was 64 µg/mL and 32 µg/mL 

against E. coli and S. aureus, respectively; at 28 % ES, the derivative gave MICs of  

256 µg/mL against both bacteria.  The results have shown that increases in the 

hydrophobic character of the polymer led to a decrease in the antibacterial activity, which 

was indicated as an increased MIC.   

 The parent compound chitosan Quat-188 exhibited MICs of 64 µg/mL and  

32 µg/mL against E. coli and S. aureus, respectively.  When the antibacterial activity of 

the N-acyl chitosan Quat-188 derivatives was corrected with the contributing Quat 

concentrations, derivatives exhibited MICs as low as 25 µg/mL against E. coli (i.e. N-

benzoyl (14% ES) chitosan Quat-188) and 16 µg/mL against S. aureus (i.e. N-trimellitoyl 

(19% ES) chitosan Quat-188).  The contributing Quat MICs of 2-glycerol succinamide 

and glutamide chitosan Quat-188 MICs were comparable to the contributing Quat MICs  

of the N-aliphatic, benzoyl, and ionic acyl chitosan Quat-188 derivatives. 
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