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Abstract 

 This work demonstrates the ability to manipulate the structure of pyrrole-terminated 

dendrimers by modifying solution conditions which directly affects their encapsulation 

properties.  Investigations were conducted using FTIR and 2D NMR to determine the location of 

end groups.  NMR relaxation studies were conducted at various temperatures and different 

solution pH to gain an understanding of the relative mobility and rigidity of different areas of the 

dendrimer.  It was found that that the release properties were affected by the solution pH and the 

presence of salt.  Further the effectiveness of retaining molecular guests by oligo-pyrrole 

terminated dendrimers with a range of oligomer lengths was investigated. 

 Hydrogen-Bonding studies, conducted on an FTIR, and 2D NMR data suggest the end 

groups of similarly structured PPI dendrimers are not backfolded into the interior of the 

dendrimer.  Results from H-Bonding studies, as well as NMR relaxation studies, demonstrate an 

increase in steric crowding at the periphery of dendrimers as the dendrimer generation is 

increased.  NMR relaxation measurements revealed that the mobility along the periphery of the 

dendrimer was dependant upon the solution pH.  Longer oligomers were formed upon chemical 

oxidation of the pyrrole termini at higher pH, when the dendrimer possessed a more rigid 

structure. 

 Nile Red was encapsulated by the dendrimer host and its release was measured by visible 

spectroscopy.  It was found that increasing the solution pH caused the dendrimer to retain 

encapsulated guests at a higher efficiency than when the pH was decreased.   It is also shown that 

the addition of salt causes the dendrimer to quickly expel any encapsulated guests.  Further, the 

effectiveness of the oligo-pyrroles in retaining encapsulated guests was investigated.  As it turns 

out, longer oligomers about the periphery of the dendrimer were less successful in retaining 



 xxi

incarcerated guests.  Shorter oligomers obtained from oligomerization at pH 2 proved to be more 

efficient in retaining encapsulated guests than longer oligomers formed at pH 7. This work 

demonstrates that the encapsulation and release properties can be controlled by altering simple 

solution parameters. 
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Chapter 1 

Introduction 

1.1  Research Goals 

 The research at hand is directed towards optimizing solution conditions so that the 

encapsulation and release efficiency of small molecular guests can be increased for a stimuli-

responsive host previously reported by this group.1  This dendrimer system has proven to be 

effective as a host and may lead to its use as a drug delivery vehicle. The dendrimer periphery 

was functionalized with pyrrole end groups which can undergo oxidative coupling to form 

oligo(pyrroles).  It is my goal to determine the optimum solution conditions such that the 

dendritic structure will possess more efficient encapsulation and release properties. 

 Conflicting reports are found in the literature regarding the location of the end groups of 

dendrimers, as this topic is still debated throughout the scientific community.  Some believe the 

end groups are located along the periphery of the dendrimer,2 and others believe the majority of 

the end groups are backfolded into the dendrimer core.3  If the end groups are located along the 

periphery, the resulting structure is a macromolecule with a dense outer shell and an interior 

composed of cavities.  The cavities make it possible for the dendrimer to harbor prospective 

 

 
Figure 1.1  A scheme depicting the dynamic trapping of guests in a pyrrole-terminated 
dendrimer in which guests are free to diffuse in and out of the dendrimer core (A), oligo-
pyrrole periphery in which release of guests is restricted but some guests can still diffuse out 
of the core (B), and after optimization of solution conditions static trapping is observed (C). 
 

A. B. C. 
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guests, while the crowded periphery of the dendrimer may help retain those guests by sterically 

trapping them inside the internal cavities.  If the internal cavities are filled with the peripheral 

functional groups, encapsulation may not occur.  If encapsulation does occur, the periphery may 

not be dense enough to prevent leakage of entrapped guests.  It is necessary to determine the 

location of the functional groups to increase the efficiency of the system. 

 This research involves modification of commercially available poly(propylene imine) 

dendrimers with pyrrole end groups.  The pyrrole functional group was chosen because it can be 

chemically oxidized to yield oligomers.4-8  It is believed these oligomers will aid in trapping any 

guest molecules inside the core of the dendrimer and reduce leakage of guests until release is 

desired (triggered), as demonstrated in Figure 1.1  The oligo(pyrrole) moieties along the 

periphery of the dendrimer can be reversibly oxidized and reduced affecting the structure of the 

dendrimer.  Molecular modeling predicts that these dendrimers possess larger cavities when the 

oligo(pyrrole) moieties are in the oxidized state and smaller cavities in the reduced state.1  
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Figure 1.2  The fourth-generation, commercially available poly(propylene imine) dendrimer 
(A) and the redox-active, pyrrole-terminated dendrimer that is the focus of these studies (B). 
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Therefore oxidation of the oligomers may enhance guest retention, while reduction may aid in 

release.  The hypothesis is that by varying the length of the pyrrole oligomers, the impact of 

oxidation and reduction of pyrrole oligomers on the dendrimer structure can be increased. 

1.2 Research Synopsis 

1.2.1 Location of End Groups 

Defining dendrimers as macromolecules with a dense outer shell and hollow interior is 

based on the assumption that the end groups are located along the periphery of the dendrimer 

when the material is dissolved in a given solvent.  It has been shown that in some dendrimer 

systems the majority of the end groups are backfolded into the interior of the dendrimer.3  If the 

pyrrole monomers in our system are located inside the dendrimer, then uptake of guests may not 

be possible if sufficient space for guests does not exist.  Even if guest uptake is possible, it may 

not be posssible to form the oligo(pyrrole) periphery to efficiently retain  any guests that may be 

inside the dendrimer.   

The location of various functional groups attached to poly(propylene imine), PPI, 

dendrimers was studied using indirect and direct methods.  The intra-dendrimer hydrogen 

bonding of ferrocene- and butoxycarbonyl-terminated PPI dendrimers will be monitored with 

infrared spectroscopy (IR) by observing shifts in key absorption bands as a function of dendrimer 

size (generation).  The extent of the hydrogen-bonding is directly related to the distance between 

end groups along the periphery.  If the end groups are located along the periphery, one would 

expect the functional groups to become closer together as generation increases.  Two 

dimensional nuclear magnetic resonance (2D NMR) techniques, such as nuclear Overhauser 

effect spectroscopy (NOESY) and rotational nuclear Overhauser effect spectroscopy (ROESY), 

will be utilized to corroborate the IR studies.  The presence of any cross peaks between pyrrole 
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protons and protons in the interior of the dendrimer would provide direct evidence that back 

folding is occurring. 

1.2.2 Environmental Effects on Dendritic Structure 

 A nuclear magnetic resonance (NMR) spin-lattice relaxation method was used to monitor 

the local molecular mobility of monomeric pyrrole-terminated dendrimers under various solution 

conditions.  The pH and ionic strength of the dendrimer solutions were altered to manipulate the 

dendrimer structure, and the T1 relaxation values were determined.  The relaxation values 

allowed the determination of whether the pyrroles along the dendrimer periphery had high or low 

mobility.  A system in which the pyrrole groups have low mobility (rigid periphery) may not 

allow the pyrrole monomers to approach each other to couple together and form oligomers.  If 

the pyrrole groups are too mobile, possibly indicating that they are located far from each other, 

these monomers may not be close enough for a sufficient time interval for coupling to occur.  

The results of these studies lead us to the solution conditions that resulted in the longest pyrrole 

oligomers (and the shortest) and may also prove useful in determining alternative methods in 

encapsulating and releasing guest molecules.  Perhaps the initial dendrimer structure (before 

oligomerization) can be changed sufficiently so that the structure of the oligomeric dendrimer is 

such that incarceration of guests is preferred at one end of the pH scale and release is preferred at 

the opposite end of the pH scale. 

 It has been shown that the location of end groups is dependent upon solution conditions 

such as pH and ionic strength.9-11  Studies have shown that dendrimer conformations possessing 

a dense shell (end groups located near the periphery) are predominant in solutions with low pH 

and in the absence of salt.  However, adding salt11 or increasing the pH9,10 results in a dense core 

conformation where the endgroups are backfolded into the interior of the dendrimer.  Welch 
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suggested that one may use these results to encapsulate guests at low pH or ionic strength and 

then release the entrapped guests upon addition of salt or increasing the pH.11  It is believed that 

the backfolded branches at higher pH and ionic strength will displace any guests located in the 

internal cavities of the dendrimers. 

1.3 Dendrimer Background 

 The host used for these studies is a dendrimer, which is a highly branched symmetrical 

macromolecule.  There are currently two routes for synthesis of dendrimers:  divergent12 and 

convergent.13  Dendrimers are synthesized in the divergent manner by constructing dendrimer 

branches from a multifunctional core through the addition of individual monomers in a stepwise 

fashion.  Hence, the dendrimer is built from the inside out.12  It is also possible to construct a 

dendrimer by synthesizing the outer branch components first and then attaching them to the 

multifunctional core; this is the convergent method.13  There are several advantages and 

disadvantages for each synthesis route. 

Synthesis of dendrimers using the divergent method12 may result in products containing 

some impurities.  When using this method, one starts with the central core and builds up the 

“layers” of dendritic branches through a series of monomer addition reaction steps.  The result of 

this approach is a product containing the fully functionalized material (monodisperse) but also a 

small percentage of flawed dendrimer possessing molecular weights very close to that of the 

fully functionalized dendrimer; separation of the monodisperse material from the others is often 

difficult.  However, this route allows one to readily produce a series of different generation 

dendrimers.   Fréchet proposed a convergent synthetic approach in which the dendritic arms are 

synthesized first and then attached to a desired core.13  Any dendrimer not completely 

functionalized will have a structure significantly different from the completely functionalized 
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product.  However, these impurities are easier to remove from the product mixture; therefore, 

dendrimers produced from the convergent route will be highly uniform (monodisperse).  

However, this method makes it necessary to conduct multiple reactions if several generations are 

desired. 

The structure of dendrimers can be affected by environmental conditions, such as pH, 

temperature, and concentration.  However, changes in these conditions will not result in 

dismemberment of the dendritic arms, with the exception of specially designed dendrimers in 

which cleavage is desired.14-16  Other hosts currently used to harbor prospective guests such as 

micelles, vesicles, and capsules may completely dissociate upon slight changes in solution 

conditions.  Dendrimers also offer the advantage of being relatively monodisperse. 

1.4 Encapsulation Systems  

Host-guest systems have been the subject of many studies over the last several years due 

to their potential use in drug delivery and catalysis.  Some systems that have been used to 

incarcerate molecular guests include capsules,17-20 micelles,21-25 vesicles,26-28 and 

dendrimers.16,29-34  Also, prodrug and prodrug-like systems have been achieved with 

dendrimers.16  These systems may lead to many different uses such as in catalysis and drug 

delivery.  The goal of many researchers is to create a system in which catalysts, drugs, 

environmentally important compounds, or any other desired guest can be incarcerated by hosts, 

thereby isolating them from the bulk environment.  It is hoped that site isolation is achieved, and 

the functionality of the guests is preserved.  In some cases it may be desired to encapsulate the 

guest permanently, while in other cases release of the guests may be necessary to fulfill its 

purpose. 
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1.4.1 Various Non-Dendrimer Host Systems  

Okahata introduced nylon capsule membranes that could have their permeability 

controlled by the addition of concanavalin A (Con A).  Con A was found to increase the 

permeability of NaCl from capsules corked with bilayers having the α-D-glucopyranosyl head 

group.  Con A was also shown to decrease the permeability of water-soluble dyes for capsules 

grafted with polymers possessing α-D-glucopyranosyl functional groups.  The permeability 

could then be increased to the original rate upon addition of excess monosaccharides.  The 

permeability of polymers grafted with β-D-glucopyranosyl was unaffected by addition of Con A 

and therefore these systems could be used as “smart permeation valves”.17  Okahata has also 

shown that the permeability of capsules grafted with viologen-containing polymers can be 

reversibly changed upon oxidation with cerium(IV) salt and reduction with sodium dithionite.  

The viologen polymeric chains repel one another due to charge repulsion when in the oxidized 

form increasing permeability and become entangled when reduced covering the pores of the 

capsule decreasing permeability.18  One can change the encapsulation/release properties of 

capsules by regulating the permeability. 

The encapsulation of pyrene microcrystals in microcapsules composed of alternating 

charged layers of polyelectrolytes has been demonstrated by Caruso.19   The microcapsules are 

dissolved in water and pyrene is released upon addition of ethanol.  These systems result in long 

release times, which are directly related to the number of polyelectrolyte layers comprising the 

capsule. Sukhorukov produced polyelectrolyte capsules which decompose at low pH by 

assembling dextran sulfate and protamine (both biodegradable polyelectrolytes) on melamine 

formaldehyde microcores.  The capsules swell at high pH, enabling them to encapsulate 
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peroxidase maintaining 57% of its activity.  Upon lowering the pH, the enzyme was released and 

exhibited 90-95% of its activity prior to encapsulation.20   

Vesicles are another option for researchers interested in encapsulation/release chemistry.  

Chattaraj and Das were able to incorporate viral influenza vaccine antigen in neutral vesicles.26  

It was shown that the encapsulation process had very little effect on the structure and activity of 

the antigen which may lead to its use as a possible treatment for influenza by means of nasal 

delivery.  Chung and co-workers encapsulated pyranine inside a vesicle with a polymerized outer 

shell.27  This system was specifically designed such that the vesicles would break apart in basic 

solutions.  These pH responsive hosts may also be used as a drug delivery vehicle.  Qin and co-

workers developed a thermo-responsive vesicle to be used in cancer treatment.28  Polymers were 

used that self-assemble into vesicles at temperatures equal to or above the normal body 

temperature (37°C).  Disassembly occurs at temperatures below 37°C, thereby releasing any 

encapsulated drugs. 

A great deal of research has been conducted on the encapsulation ability of liposomes as 

well, that is vesicles composed of a lipid and cholesterol bilayer.  Liposomes facilitate gene35-37 

and drug38-41 delivery to cells that alone will not penetrate a cell’s membrane under most normal 

conditions.  However, the liposome’s bilayer can fuse with the similar cell membrane and 

deposit its contents into the cell.  The host/delivery properties of liposomes have lead to their use 

in numerous applications ranging from the treatment of acne42-44 to cancer.45-47 

Micelles have also been the focus of many researchers for encapsulation/release systems.  

Rotello demonstrated that ferrocenyl guests can be incarcerated by micelles formed from 

diaminotriazine-functionalized polymers in nonpolar solvents.  Site isolation was achieved, 

thereby preventing aggregation of the oxidized ferrocenyl species in aqueous media.21  Sakurai 
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has synthesized hollow spheres from shell cross-linked micelles. The dye 5,6-carboxyfluorescein 

was encapsulated in these cross-linked micelles in water and then released slowly after dialysis 

against water for several days.22,23  Eisenburg has shown that poly(caprolactone)-block-

poly(ethylene oxide) micelles were able to encapsulate the hydrophobic probes benzo[a]pyrene 

and Cell-Tracker DM-DiI.  These probes were released upon dialysis using the “kitchen sink 

method” and it was shown that the release is diffusion controlled.24  In this process the dialysate 

is constantly added and removed from the system.  Therefore the diffusion of the released guests 

out of the dialysis membrane is not subject to concentration equilibrium effects.  Billingham 

used triblock copolymers that formed micelles at pH 8 to encapsulate pyrene and dipyridamole.  

The release of guests in this system at pH 7.4 is also diffusion controlled; however, lowering the 

pH to 3 results in the dissociation of the micelles yielding a rapid-triggered release.25 

Capsules, vesicles, and micelles offer the advantage that complete release is achieved 

upon dissociation, however this characteristic may also lead to complications.  Specific 

conditions must be present for the systems described above to self-organize into micelles and 

vesicles.  The pH, temperature, and concentration of the starting products are often highly 

important, and a slight change in any of these conditions may prevent the micelles or capsules 

from forming.  If any of the conditions are altered slightly, dissociation of the host may occur, 

resulting in premature release.  For drug delivery purposes and catalytic purposes, it is 

imperative that the guests remain incarcerated until release is desired.  Dendrimers offer an 

alternative route for encapsulation and release of guests, a route that may help prevent premature 

leakage of the internalized guests. 
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1.4.2 Dendrimers as Hosts 

 Although Vögtle first introduced dendrimers in 1978,48 their ability to host molecules 

was not demonstrated until the mid 1980s by Newkome49 and Tomalia.50  Currently the use of 

dendrimers as hosts is the focus of a large number of researchers.51-53  Many dendrimers are 

commercially available which allows researchers more time to focus on the many possible uses 

of dendrimers, rather than their synthesis.  Due to the fact that many of the available dendrimers 

are functionalized with a variety of reactive groups along the periphery, it is possible to add 

almost any desired moiety as an end group to achieve the desired function of the dendrimer.  

Dendrimer hosts can be used for separation techniques,29 catalysis,31 light emitting diodes,54 or 

drug delivery systems,16,34 depending on the peripheral functionality chosen.  

Meijer was able to encapsulate Rose Bengal in his “dendritic box.”55  However, the bulky 

amino acids at the periphery of the dendrimer prevented the guests from being released.  Ideally 

one would like to control the incarceration of guests and be able to release the guests upon 

command.  Vögtle’s azobenzene-terminated dendrimer was the first stimuli-responsive 

dendrimer in which the release of guests could be controlled.56  The photoisomerization 

properties of azobenzene were used to control the release of eosin from the dendrimer core.  

Prior to being irradiated by a light source, the azobenzene end groups exist in the trans form, and 

guests are able to diffuse from the dendrimer.  Retainment of guests was increased when the 

azobenzene end groups were irradiated with 545 nm light causing the azobenzene structure to 

“switch” to the cis form.  Vögtle’s work demonstrated that the encapsulation and release 

properties of dendrimers can be controlled by manipulating the dendrimer structure. 

Crooks showed the versatility of dendrimers by demonstrating the ability to alter the 

permeability of amine-terminated dendrimer thin films supported on gold electrodes.  Cations 
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were able to penetrate the dendrimer at high pH and anions were able to penetrate at low pH.29  

These ion selective materials may prove useful for separation techniques.  The ability of 

dendrimers to remove polycyclic aromatic hydrocarbons from water has also been investigated.30   

Paleos and coworkers have shown that poly(propylene imine) dendrimers equipped with terminal 

aliphatic chains absorb pyrene, phenanthrene, and fluoranthene from water. The guests are 

subsequently released from the dendrimers upon addition of hyrdrochloric acid or sodium 

chloride.  These systems may also be useful for separation techniques such as in water 

purification. 

Kimura developed a temperature-sensitive dendrimer that is capable of encapsulating and 

releasing guests.31 Poly(propylene imine) dendrimers were functionalized with the temperature-

responsive polymer poly(N-isopropylacrylamide), pNIPAAm.  The catalytic activity of 

encapsulated cobalt(II) phthalocyanine complexes toward thiol oxidation was significantly 

decreased when the temperature was below the lower critical solution temperature (LCST) of the 

pNIPAAm.  The catalytic activity (turnover frequency) was then 3 times greater when the 

temperature was increased to or above the LCST.  When the temperature is below the LCST the 

polymer arms are soluble in water and extended creating a sterically crowded periphery 

preventing subtrate access to the incarcerated catalyst.  The polymer arms shrink when the 

temperature is increased above the LCST, allowing the substrate to penetrate the periphery of the 

dendrimer.31  This system has proven to be useful as a temperature-sensitive host for catalysts.  

Paleos and coworkers have attached poly(ethylene glycol) chains to poly(propylene imine) 

dendrimers to serve as a drug delivery system.  Encapsulation of pyrene and the anti-

inflammatory corticosteroid betamethasone valerate was demonstrated, as well as its release 

from the dendrimer upon titration with hydrochloric acid and sodium chloride.34   
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In order to create a system that emits multiple colors for use in color tunable display 

systems, the use of multiple dyes in such systems is required.  However, if site isolation is not 

achieved in these tunable display systems, dye-dye energy transfer will often occur, resulting in 

single color emission (as opposed to multiple color) from the dye with the lowest HOMO-

LUMO band gap.54  Fréchet has shown that site isolation can be achieved when dyes are 

encapuslated in high-generation dendrimers.32,33  In their studies, Coumarin 343 (C343) and 

pentathiophene (T5) dicarboxylic ester were used as the cores of the dendrimer, while the 

periphery of the dendrimer was functionalized with triarylamine.  Thin films of these dendrimers 

were spun onto glass substrates, yielding a film thickness between 110 and 130 nm.  The 

triarylamine functional groups were excited at 350 nm and energy transfer to the core is 

achieved.  Emission was then observed at both 470 nm and 525 nm values which correlate well 

with the emissions of C343 and T5 respectivelly.32,33  Therefore Fréchet has shown the capability 

of dendrimers to achieve site isolation for molecules located in the core of higher generation 

dendrimers.   

Most studies to date involve manipulating the structure of dendrimers to promote 

incarceration or release of guest molecules.  McGrath entertained the idea of disassembling 

dendrimers by means of a depolymerization reaction.14,15  It was shown that dendrimers 

containing benzyl ethers can be fragmented upon mild oxidation.  These systems may allow one 

to encapsulate guest molecules, then “break open” the dendrimer to release all guests 

incarcerated by the dendrimer.  One of the most exciting features of dendrimers is their potential 

to serve as a host in drug delivery systems.  Being able to deliver drugs to the target site may 

result in lower dosages and fewer side effects. Shabat and coworkers have functionalized 

dendrons with doxorubicin (DOX) and camptothecin.  These drugs are attached to the dendrimer 
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by means of a self-immolative linker which is cleaved in the presence of antibody 38C2.  

Therefore the anticancer drugs are released upon exposure to antibody 38C2.16  Several prodrugs 

have also been designed by de Groot and co-workers that specifically target tumor cells.57-61  

They recently began using dendrimers as the backbone of these prodrugs and de Groot’s 

industrial group at Syntarga B.V. introduced a dendrimer that could release its end groups upon a 

single chemical event.62  Considering this success with prodrugs in the past and this latest 

development, it is highly likely that dendrimers may play a crucial role in cancer treatment in the 

future.  

It has been shown that the ability of dendrimers to host guest molecules leads to 

numerous possible uses.  It is clearly evident that dendrimers will play an important role in future 

encapsulation and release chemistry.  Most of the current dendrimer systems involve dynamic 

trapping in which the guests are able to freely diffuse in and out of the dendrimer.  Our group is 

interested in creating a static trapping system in which guests cannot diffuse out of the dendritic 

cavities; true imprisonment of guests is the goal, as is the controlled, triggered release of guests.  

Thus, a major achievement would be to produce a dendrimer that can incarcerate guest 

molecules and release the guests only when stimulated by some well-defined chemical event.  

This desire led our group to produce poly(propylene imine) dendrimers functionalized with 

pyrrole along the periphery. 

1.5 Pyrrole-Terminated Dendrimers 

 Pyrrole was chosen as the functional group for our dendrimers due to its ability to form 

oligomers when chemically4-6,63-65 and electrochemically oxidized.66-70  The presence of these 

oligomers at the periphery should afford a stimuli-responsive dendrimer capable of encapsulating 

guest molecules and releasing them upon command.  Poly(pyrrole) was first synthesized in 
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197969 and has been the subject of numerous studies due to its superior conducting 

properties.71,72

 To date there is still much debate over the initial coupling step in the pyrrole 

polymerization.  It has been reported that the initial coupling step is between two radical 

cations,73-76 two neutral radicals,77,78 and a radical cation and a neutral monomer.79,80  One belief 

that is fairly consistent throughout the literature is that individual monomeric pyrrole is added to 

the oligomers.  Lacroix and co-workers have conducted molecular modeling experiments that 

predict lower dimerization rates for longer oligomer lengths.  Their studies also suggested the 

presence of more defects and quick termination when large oligomers are oxidized, resulting in 

very short oligomers.81 
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Figure 1.3  Scheme depicting the dynamic guest incarceration of the monomeric dendrimer 
(A), static guest trapping by the oxidized oligo(pyrrole)-terminated dendrimer (B), and the 
triggered release upon the reduction of the poly(pyrrole) oligomers (C). 
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 It has also been observed that 

polymerization in aqueous environments is 

strongly affected by the pH.  Kinetics 

studies revealed a slower reaction rate at 

higher pH.4,76  Bjorklund believes the 

pyrrole cation radical is deprotonated at 

higher pH resulting in a neutral radical that 

is not involved in the oligomerization 

process.4  It is also well known that 

unconjugated trimers are formed under 

acidic conditions82 that do not form 

oligomers.83  However, after 

dehydrogenation, these trimers form 

oligomers instantly.84  Therefore it is our 

belief that we can form different length 

oligomers around the periphery of our 

dendrimers by adjusting the pH prior to 

oxidation with chemical oxidants. 

Noble has shown that guests will partition into the core of a pyrrole-terminated 

dendrimer.1  However, if oligo(pyrroles) are not present, the guests are quickly released from the 

core.  Oligomerization of the periphery has proven to be an effective means to aid in retention of 

the guests; however, guests are still able to diffuse from the dendrimer, albeit at a 30% slower 

rate than in the monomeric state.  Molecular modeling studies also revealed a change in the 
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Figure 1.4  The proposed mechanisms for the 
polymerization of pyrrole in which the initial 
coupling step involves 2 cation radicals (A) and 
a cation radical and neutral monomer (B).  The 
resulting dimer would then be oxidized, and 
couple with either a cation radical monomer or a 
neutral monomer.  
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dendrimer structure when the pyrroles are 

reversibly oxidized and reduced.  A larger 

cavity volume is predicted when in the oxidized 

state and a smaller cavity volume is predicted 

when the pyrroles are reduced.  Also, changes in 

porosity of the dendrimer were noted.1  

Therefore we would like to encapsulate guest 

molecules when the dendrimer is in the oxidized 

state and then release the guests upon reduction.  

 The hypothesis is that by increasing the length of the pyrrole oligomers, an increase in 

guest retainment can be achieved.   The effect of solution parameters, such as pH and ionic 

strength, on the mobility of the pyrrole monomers was investigated here.  To date it is unclear 

whether the mobility of the pyrrole monomers in the non-oligomeric dendrimer should be 

increased or decreased to yield longer oligomers in the product.  1H NMR relaxation methods 

were used here to study the mobility of the pyrrole monomers and to determine which solution 

conditions yield longer oligo(pyrroles).  

1.6 T1 Relaxation Studies for Structural Characterization 

 Spin-lattice relaxation measurements have been conducted for determining the mobility 

of many structures such as dendrimers.55,85-88  The T1 data is obtained by measuring the length of 

time needed for the nuclear spins of a system to return to their original state after a 180 degree 

pulse.  This is known as the inversion-recovery method for determining T1.  Large T1 values are 

the result of nuclei needing longer periods of time to relax back to their original spin state.  An 

increase in the T1 value for small molecules means an increase in the mobility at that particular 
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Figure 1.5  Schematic illustrating the 
reversible oxidation/reduction of 
oligopyrrole.
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area for a given molecule.  The opposite is true for larger molecules.  Therefore, it is often 

necessary to determine the effect temperature has on T1 data to properly assess the type of 

molecule behavior (small versus large).  The T1 values are related to the rotational correlation 

time of the molecule.  The correlation times can be decreased by heating the system which 

allows for determination of whether the systems being studied are behaving like small molecules 

or large molecules.89  Once this has been determined, one can use T1 data to estimate the relative 

mobility or rigidity at various locations of the system of interest. 

 Spin-lattice relaxation measurements were conducted on poly(ether ketone) dendrimers 

to determine the mobility of end groups as a function of the degrees of branching.  Temperature 

studies led to the conclusion that the dendrimers were behaving like small molecules, and the 

mobility along the dendrimer periphery increased as the generation was increased, while the 

mobility in the interior was only slightly affected.85  However, the T1 data from Meijer’s 

“dendritic box” suggested that the periphery of these hydrogen-bonded dendrimers behaved 

much like a solid shell at higher generations.55  Ford also showed that his triethylenoxy methyl 

ether-terminated dendrimers demonstrated a decrease in mobility for all protons as the dendrimer 

generation increased.86  They also demonstrated that the mobility of moieties increases when 

moving from the core of the dendrimer to the periphery.   

Upon review of the literature, it is pertinent to conduct T1 measurements on the system at 

hand as the mobility in all dendrimers is not the same.  It is my desire to determine the effect of 

solution parameters, such as ionic strength and pH, on the mobility of the pyrrole monomers of 

our pyrrole-terminated dendrimers in aqueous media.  In addition, I want to establish a 

relationship between pyrrole coupling efficiency and pyrrole mobility in the monomeric 

dendrimers.  Once this relationship is determined, solution conditions can be optimized so that 



 18

longer pyrrole oligomers can be formed.  Finally, the impact of oligomer length on encapsulation 

efficiency will be evaluated. 

 Further conclusions can also be drawn from T1 relaxation data.  Meijer used T1 

measurements to study the encapsulation of guests by thiourea-functionalized dendrimers.  They 

were able to determine that the guests were only partially encapsulated inside the dendrimer as 

the T1 values for some protons of the guests increased when the guest-dendrimer ratio was 

increased.  Due to the fact that the mobility of a number of protons on each guest was unaffected, 

they were able to conclude that the guests were located along the periphery with some portion of 

the guest molecule protruding out of the dendrimer periphery and not encapsulated inside the 

core.87  The T1 values for these protons remained constant and correlated well with molecules in 

the bulk environment.   
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Chapter 2 

Materials and Methods 

2.1 Experimental 

2.1.1 Chemicals 

All solvents utilized were chromatographic grade or better and used without further 

purification unless otherwise stated.  The following poly(propylene imine) dendrimers that were 

the focus of these studies were obtained from Aldrich and used as received: DAB-Am4, 

poly(propylene imine) tetramine dendrimer, generation 1.0; DAB-Am8, poly(propylene imine) 

octaamine dendrimer, generation 2.0; DAB-Am16, poly(propylene imine) hexadecaamine 

dendrimer, generation 3.0; DAB-Am32, poly(propylene imine) dotriacontaamine dendrimer, 

generation 4.0; and DAB-Am64, poly(propylene imine) tetrahexacontaamine dendrimer, 

generation 5.0.  DAB-Am32, poly(propylene imine) dotriacontaamine dendrimer, generation 4.0 

was also purchased from SyMO-Chem of the Netherlands.  6-aminocaproic acid (98%), 2,5-

dimethoxytetrahydrofuran (98%), N-hydroxysuccinimide (99%), 1,3-dicyclohexylcarbodiimide 

(99%), triethylamine (99%), di-tert-butyldicarbonate (99%), iron(III) chloride (98%), iron(III) 

nitrate nonahydrate (99.99%), and ferrocenecarboxylic acid (97%) were also purchased from 

Aldrich and used as received. Phosphorous pentachloride (98%) was purchased from Fluka, 

tetrabutylamonnium fluoroborate was purchased from SACHEM (electric grade), and nile red 

(99.0%), potassium hydroxide (85%), sodium chloride (biological grade), sodium sulfate 

(99.2%), and magnesium sulfate (anhydrous) (98.0%) were purchased from Fisher and utilized 

without further purification.  All water used had a resistivity of 18 MΩcm and was obtained by 

filtering distilled water with a Barnstead reverse osmosis system followed by charcoal filtration 

and ion exchange. 
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2.1.2  Synthetic Methods 

All synthetic methods are described in Chapter 3. 

2.1.3 Preparation of Au Substrates 

Glass microscope slides purchased from Fisher (1” x 3” x 1 mm) were coated with gold 

(Au) and used for all electrochemical and reflection-absorbance infrared spectroscopy (RAIRS) 

analysis.  To enhance adhesion of gold to the slides, one should refrain from touching the flat 

surfaces of the slides with a gloved hand.  The slides were rinsed off thoroughly with acetone 

before being submerged in isopropanol (IPA) and sonicated for 30 minutes.  The glass slides 

were then thoroughly washed with water and immersed in 3:1 98% sulfuric acid:30% hydrogen 

peroxide (piranha solution) for 30 minutes.  Caution!  Piranha solution is highly reactive and 

should be handled with extreme caution.  Exposure of piranha solution to organic material 

(such as IPA from the previous step) will result in a violent exothermic reaction.  This solution 

should be disposed of immediately after use.  After removing the glass slides from the piranha 

solution, they were thoroughly rinsed with water and absolute ethanol before being dried under a 

stream of nitrogen or argon.  

The cleaned slides were then placed in an Edwards 306A (Edwards, UK) cryogenically 

pumped vacuum chamber, in which they were placed under vacuum at pressures around 1 x 10-7 

torr.  Approximately 4.5 nm of chromium (Cr) was first deposited onto the glass slides at a rate 

of ~0.03 nm s-1 to serve as an adhesion layer for the gold layer to be deposited afterwards.  After 

the Cr deposition, 200 nm of Au was evaporated onto the slides at a rate of ~0.15 nm s-1.  The 

gold slides were then allowed to cool to room temperature under vacuum before removal.  All 

slides were stored in absolute ethanol until later use.1  The thickness of the Cr and Au layers and 

the deposition rates were determined by an in vacuo quartz crystal microbalance. 
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2.1.4 Electrochemical Studies 

Electrochemical studies were performed in normal three-electrode mode with a Princeton 

Applied Research Model 273A Potentiostat/Galvanostat and Yokogawa 3025 X-Y Recorder.  

Cyclic voltammograms were obtained from DAB-Fc16 and DAB-Am16 monolayers on gold 

electrodes immersed in 0.1 M tetrabutylammonium fluoroborate in acetonitrile.  The potential 

was scanned versus a silver wire pseudoreference.  The monolayers were prepared by immersing 

the electrodes for 5 hours in dendrimer solutions that were 0.05 M in end groups. 

2.1.5 Dialysis 

Dialysis tubing made of regenerated cellulose, purchased from Spectrum Laboratories, with 

a molecular weight cut off of 1000 daltons was used to purify dendrimers of generation 1–3, and 

a molecular weight cut off of 6,000–8,000 daltons was used for generations 4 and 5.  Typically 

20 mL of the analyte mixture was added to a dialysis membrane and the filled membrane was 

stirred in 800 mL of 50% acetone and 50% water.  The dialysate was changed 6 times over 3 

days.   

2.2 Analysis 

2.2.1 Gas Chromatography-Mass Spectrometry (GC-MS) 

A Hewlett Packard Series II 5890 GC was used for analysis of all small organic 

compounds synthesized.  The column used was a J&W DB-5 stationary phase column with a 

0.25 µm film consisting of 5% phenyl and 95% dimethyl polysiloxane.  The 30 m column had an 

inner diameter of 0.25 mm.  Ultra high purity grade He was used as the carrier gas at 20 pounds 

per square inch.  The instrument was used in electron ionization mode with a Hewlett Packard 

5971A mass-selective quadrupole detector.  The standard DB-5 method was used each time in 
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which the column temperature was held at 40 °C for 2 min, ramped to 280 °C at 20°C min-1, and 

held at 280 °C for 24 min. 

2.2.2 Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) 

A Perseptive Biosystems Voyager linear time of flight mass spectrophotometer equipped 

with a nitrogen laser emitting at 337 nm was used to determine the molecular weight of the 

butoxycarbonyl- and ferrocene-terminated dendrimers.  The matrix, 2,5 dihydroxybenzoic acid 

(DHB) was dissolved in 50/50 methanol/water and the analytes were prepared in methylene 

chloride (DCM) at a concentration of ~1.0 mg/mL.  1 µL of the matrix solution and 0.5 µL of the 

analyte solution were added to the MALDI target plate and allowed to co-crystallize.  Analysis 

was conducted at pressures less than 10-5 Torr.  A two-point calibration was used each time using 

the standards:  Bradykinin (572.7 m/z), Angiotinsin I (1296.5 m/z), human adrenocorticotropic 

hormone fragment 18-39 (2465.7 m/z), insulin (bovine pancreas) (5732.5 m/z), and cytochrome 

C (12361.1 m/z). 

2.2.3 Nuclear Magnetic Resonance 

Three Bruker instruments were used for these studies:  a DPX-250, ARX-300, and a 

DPX-400.  The DPX-250 was typically used for quick analysis for confirmation of the proposed 

structure of small organic molecules synthesized in the lab.  Structural analysis of pyrrole-

terminated dendrimers was conducted on the ARX-300 and DPX-400.  Experiments completed 

on these instruments include nuclear Overhauser effect spectroscopy (NOESY), rotational 

nuclear Overhauser effect spectroscopy (ROESY), T1 studies, and T2 studies.   

NOESY studies were conducted in CD2Cl2 on the ARX-300 instrument.  A 2 second 

delay between scans was used and 32 scans were acquired.  The 90 degree pulse length was 6.35 

µs.  The mixing time was 0.15 seconds and line broadening was 1Hz in F2 and 3 Hz in F1.  
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ROESY studies were conducted in 1:1 Acetone-d6 DCl on the ARX-300 instrument as well.  A 2 

second delay between scans was used and 64 scans were acquired.  The 90 degree pulse length 

was 6.85 µs.  The mixing time was 0.18 s and line broadening was 0 Hz in both dimensions.  

2048 data points were acquired in F2 and 512 slices were collected in F1 for all 2D spectra and 

zero filling was applied to yield a 2048 x 1024 data matrix.   

T1 and T2 studies were both conducted on both the ARX-300 and DPX 400 instruments.  

The experimental parameters were held the same on each experiment with the exception of the 

90 degree pulse length which varied with temperature and solvent and ranged from 6.3 to 7.5 µs 

on the 300 MHz spectrometer and 7.5 to 9 µs on the 400 MHz spectrometer.  A 20 second delay 

between scans was employed and 16 scans were collected.  The 180 degree pulse length for each 

experiment was approximately twice that of the 90 degree pulse length.  The correct length was 

found prior to each experiment by determining the proper pulse length that resulted in peaks with 

null intensity. 

2.2.4 Transmission Fourier-Transform Infrared Spectroscopy (FTIR) 

Hydrogen bonding studies were completed on a Perkin Elmer 1760X FTIR with a 

triglycine sulfate (TGS) pyroelectric detector.  A resolution of 4 cm-1 with normal apodization 

was used.  A capillary film was studied through the use of a Spectra-tech solution cell with 

sodium chloride (NaCl) windows and a 50 µm Teflon spacer.  All other transmission infrared 

studies were performed on a Thermo Nicolet Nexus 670 FTIR.  The mercury-cadmium-telluride 

(MCT) detector was cooled with liquid nitrogen before use each time, and a reference blank was 

taken of a solvent cleaned potassium bromide (KBR) plate. 
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2.2.5 Reflection-Absorption Infrared Spectroscopy (RAIRS) 

A Nicolet 740 FTIR with a liquid nitrogen-cooled MCT detector was used for all RAIRS 

studies of analytes on Au substrates.  A versatile reflection accessory with retro-mirror 

attachment (VRA-RMA) from Harrick Scientific was used such that p-polarized light passing 

through a wire grid polarizer (Harrick Scientific) would strike the substrate at an angle of 86° 

with respect to the surface normal.  The analysis chamber was contained in an Ar-filled 

poly(ethylene) glove bag, and the optical bench was purged with house nitrogen scrubbed with a 

homemade CO2, water, and hydrocarbon scrubbing system.  Background spectra were taken 

from a bare Au slide.  A resolution of 4 cm-1 was used and 1024 scans were collected. 1 

2.2.6 Ultraviolet-Visible Spectroscopy (UV-vis) 

A Varian Cary 50 Bio UV-Vis spectrophotometer containing a xenon flash lamp was 

used.  A scan rate of 600 nm min-1 was employed, and the scan range varied from 200—1000 nm 

depending on the solvent. A background subtraction was conducted each time with the 

appropriate solvent (same solvent as sample) and quartz fluorescence cells with a 1 cm path 

length were utilized in all studies. 

2.3  NMR Theory  

Several NMR techniques were used to study the dendrimer structure as a function of its 

chemical environment.  In order to grasp the meaning of the data acquired, it is necessary to have 

a basic understanding of the processes involved in the simplest NMR experiment.  Protons are 

charged nuclei that rotate about an axis creating a magnetic moment.  With no external magnetic 

field present, the nuclei and the resulting magnetic field are randomly aligned resulting in a net 

magnetic moment of zero intensity.  However, when the sample is placed in the magnetic field of 

an NMR, the nuclei orient themselves either parallel (z axis) or antiparallel (-z axis) with the 
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instrument’s magnetic field.  This magnetic moment then precesses around the z axis at a certain 

frequency known as the Larmor frequency.  Because the magnetic moment of the nuclei is 

extremely small when compared to that of the spectrometer’s magnet, the nuclei’s magnetic field 

must be rotated into the XY plane to facilitate detection.  This can be done by applying a 

radiofrequency (RF) pulse with the same frequency as the Larmor frequency.  Once the nuclei’s 

magnetic moment is in the XY plane it rotates about the z-axis inducing an alternative current 

which can be measured by the instrument.2 

As mentioned above, there are two different orientations in which the nuclei may exist 

prior to irradiation—parallel or antiparallel.  The parallel orientation is the low energy state in 

which the nucleis’ magnetic momentd is aligned with the magnetic field and the antiparallel 

orientation is the high energy state in which the nucleis’ magnetic moment is oriented opposite to 

the magnetic field.  The energy introduced by the RF pulse is absorbed by the nuclei in the low 

energy state and the orientation is inverted.  As soon as irradiation by the RF pulse ceases, the 
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Figure 2.1    In the absence of an external magnetic field (A) the net magnetic field of a group 
of nuclei is zero as the orientations of the individual nuclei are randomly distributed.  In the 
presence of an external field (B) the nuclei arrange themselves such that their magnetic 
moments are either parallel or antiparallel with respect to the external magnetic field resulting 
in a net field in the same orientation as that of the magnet.  Applying a 180° pulse (C) inverts 
the orientation of all nuclei yielding a net magnetic field antiparallel to the external magnetic 
field. 
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nuclei release this absorbed energy and relaxes back to the initial low energy state in the parallel 

orientation.  This restoration of the initial magnetic moment along the z axis is known as 

longitudinal relaxation.  The length of time it takes the longitudinal magnetization to increase by 

a factor of e (2.71828183) is known as the T1 relaxation time constant. 

Longitudinal relaxation is only one type of relaxation that can occur.  When the magnetic 

moment is rotated to the XY plane it precesses about the z axis at its Larmor frequency.  The 

transverse magnetization then dephases until net magnetization in the XY plane is zero.  The T2 

relaxation time constant is defined as the length of time required for the transverse magnetization 

to decrease by a factor of e. 

2.3.1 Proton Relaxation Studies 

T1 studies were conducted on Bruker 

ARX-300 and DPX-400 spectrometers using 

an inversion-recovery method.  The 90° pulse 

length was determined by finding the duration 

of the 360° pulse length and dividing that 

value by 4.  The pulse length for a 360° pulse 

is easily determined by varying the pulse length until no signal is detected in the XY plane.  By 

finding the 360° pulse width, one does not have to wait long periods of time for the magnetic 

moment to relax back to its original orientation.  A set of 16 τ values were used for relaxation 

delay parameters, ranging from 10 ms to 20 s.  The largest τ value, 20 s, was used because this 

value was always at least five times that of the longest T1 value for the molecules studied here.  

The values were carefully chosen such that the majority of the data points occurred when the 

peak intensity values were changing the most (10 ms to 1 sec).   The dendrimer concentration for 

D1
π π/2

τD1
π π/2

τ

 
 
Figure 2.2  The inversion-recovery pulse 
sequence used in the determination of T1 
relaxation time constants. 
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each sample was 0.01 M in end groups.  Dendrimers were dissolved in methylene chloride or in 

1:1 d6-acetone deuterium oxide (D2O), and the T1 values were determined as a function of 

temperature.  In both cases, the initial temperature was near room temperature and then was 

decreased due to the low boiling points of both methylene chloride and acetone so as to prevent 

evaporation of the solvent.  This was done by circulating liquid nitrogen vapor around the sample 

and then slowly heating the sample to the desired temperature.  The T1 relaxation time constant is 

determined by measuring the length of time needed for the nuclear spins of a system to return to 

their original state after a 180° pulse.   

The magnetization is first inverted by a 

180° pulse, the protons are allowed a period of 

time to relax to their original state, then a 90° 

pulse is applied placing the magnetization in 

the XY plane.  By definition, the T1 value is 

the length of time it takes the magnetization 

along the Z axis to increase by a factor of e.  

Large T1 values are the result of nuclei 

needing longer periods of time to return back to their original spin state.  An increase in the T1 

value for small molecules means an increase in the mobility at that particular area for a given 

molecule.  The opposite is true for larger molecules.  Therefore, it is often necessary to 

determine the effect temperature has on the T1 data to properly assess the type of molecule 

behavior (small versus large).  The T1 values are related to the rotational correlation time of the 

molecule, the average time needed for the molecule to rotate by 1 radian, as is demonstrated in 

Figure 2.2.3  The correlation times can be manipulated by heating and cooling the systems which 
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Figure 2.3  This figure is adaptated from 
Levitt3 showing the relationship between 
relaxation time constants and the rotational 
correlation time of a given molecule.  
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allows for determination of whether the dendrimers being studied are behaving like small 

molecules or large molecules. Once this has been determined, one can use T1 data to estimate the 

relative mobility or rigidity at various locations of the system of interest. 

 Often times the spin-spin relaxation time 

constant, T2, is also determined to corroborate 

the calculated T1 values.  The T2 time constant is 

the time it takes the transverse magnetization in 

the XY plane to decrease by a factor of e.  In 

this experiment, the multi-echo spin-echo pulse 

sequence,4 known as the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence, is used.5  A 90° 

pulse is followed by a number of spin-echoes and then the transverse magnetization is measured.  

A single spin-echo is defined as two subsequent 180° pulses.  This is repeated for an incremented 

number of spin-echoes beginning with two 180° pulses and then increasing the number of pulses 

until no transverse magnetization is measured.   After the magnetic moment is oriented along the 

X axis, the spins dephase due to magnetic field inhomogeneities and T2 processes.  The spin 

echoes refocus the dephasing due to the inhomogeneities in the magnetic field, therefore the 

relaxation observed through the decrease in transverse magnetization is the result of T2 processes 

only.   

 The net magnetization along the z axis reaches zero only after the transverse 

magnetization completely dephases.  Therefore, T2 is always less than or equal to T1.  For small 

molecules T2 is equal to T1, and for larger molecules T2 is much smaller than T1.  Therefore we 

can compare the T1 and T2 relaxation time constants at several temperatures to get a better 

understanding of the behavior of the molecule in question. 
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Figure 2.4  The CPMG pulse sequence used 
for the determination of transverse 
relaxation time constants. 
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2.3.2 2-Dimensional NMR Studies 

T1 relaxation is a result of a net energy loss from the system, as energy is transferred from 

the excited nuclei to other nuclei in its environment referred to as the lattice.  This energy 

transfer can involve nuclei on the molecule and solvent molecules, other molecules in solution, 

and between other nuclei on the same molecule.  T2 relaxation occurs through spin-spin 

relaxation: energy is transferred from one nucleus to another nucleus on the same molecule.  

Spin-spin relaxation results in the excitation of one or more nuclei after energy is transferred 

from a single, different nucleus previously excited.  This leads to a phenomenon known as the 

nuclear Overhauser effect (NOE).  Overhauser first described this phenomenon in the early 

1950s and referred to it as dynamic nuclear polarization.6  However, he was met with skepticism 

as numerous scientists believed this phenomenon violated the second law of thermodynamics.  

Several years passed before other researchers experimentally observed the NOE and 

Overhauser’s proposal was finally 

accepted.7,8 

The NOE is the change in 

intensity of a nuclear spin resulting 

from the simultaneous saturation of a 

second different spin.2,9 The first 

experimental demonstration was 

conducted by Solomon in 1955 using 

HF.7  Solomon observed a significant 

increase in the amplitude of the 
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Figure 2.5  Energy level diagram for two spins-½ 
(IS), where αβ denotes spin I is in the α spin state 
and spin S is in the β spin state.9  The W’s are 
possible spin-lattice transitions.  
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fluorine (19F) resonance when a 180° pulse at hydrogen (1H) frequency was applied.  It was 

shown here that energy from an excited spin can be transferred to a nearby second spin.  In 1972, 

data was published showing that NOEs could be negative as well.10,11  The researchers observed 

a negative NOE for aromatic phenylalanine protons of bovine neurophysin.  It was determined 

that the NOEs were negative for molecules with large correlation times and positive for 

molecules with short correlation times. 

In order to better understand this phenomenon, a 2-spin system will be considered.  After 

one of the spins is saturated, the spins will relax to their original states through several transitions 

observed in Figure 2.5:  W1
I, W1

S, W2, and W0.9  The absorption intensity of a given spin is 

defined by the populations in each energy level.  For instance, at any given point in time the 

absorption intensity of the S resonance is proportional to the sum (P2-P1) + (P4-P3) (where Px (x 

= 1, 2, 3, or 4) denotes the population of spins in the x energy level) and the absorption intensity 

of the I resonance is proportional to the sum (P3-P1) + (P4-P2).  If spin S is saturated, the 

population in levels 1 and 2 will be equal, as well as the population in levels 3 and 4.  The W1
I 

and W1
S transitions result in no net change in the populations because saturation has left the 

populations of these energy levels equal.  The absorption intensity of spin I remains unchanged.  

However, the transition W2 will result in an increase in P4 and a decrease in P1 leading to an 

increase in the absorption intensity of spin I.  The W0 transition will lead to an increase in P2 and 

a decrease in P3 resulting in a decrease in the absorption intensity of spin I.9  While all transitions 

will occur simultaneously, the W0 transition is the more dominant relaxation method for small 

molecules resulting in negative NOEs.  The W2 transition is the more dominant relaxation 

pathway for large molecules giving rise to positive NOEs. 



 40

Despite this huge discovery, the 

scientific community did not fully reap the 

benefits of this phenomenon until the 

introduction of the first 2-dimensional NOE 

experiment in 1979.12-14  Swiss researchers 

created the pulse sequence employed by much of the magnetic resonance community today, 

known as NOESY (Nuclear Overhauser Effect Spectroscopy).  As shown in Figure 2.6, the 

sequence consists of three 90° pulses separated by an evolution time (t1) and the mixing time 

(tm).  The relaxation delay (D1) for most NMR experiments is normally at least 5 times greater 

than the largest T1 value to allow sufficient time for all nuclei to relax to their original 

orientation.  The magnetization components are frequency labeled during t1, and cross-relaxation 

occurs during the tm.  The signal is recorded immediately after the 3rd pulse (t2) and the 

experiment is repeated for a given set of incremented t1 values.  The data is then processed in 

both dimensions (t1,t2) yielding a 2D spectrum providing a wealth of knowledge.  If cross-

relaxation does not occur between two nuclei during tm, the frequency will be identical after t1 

and t2 and no cross peaks will be observed.  However, if cross-relaxation does occur, it will be 

evident by the presence of cross-peaks.15  After this contribution it became possible to detect all 

spin-spin interactions in a given molecule by completing a single experiment. 

It is also important to mention the difference between NOE experiments and 2D NOE 

experiments.  For molecules with short correlation times in the 2D experiment, an energy 

transfer occurs, resulting in a negative NOE.  However, an energy exchange occurs in large 

molecules resulting in a positive NOE.  The exact opposite is seen in standard Overhauser 

π/2D1 t1 tm t2
π/2 π/2π/2D1 t1 tm t2
π/2 π/2

 
 
Figure 2.6  The pulse sequence used in 
NOESY experiments. 
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saturation experiments, due to the fact that in saturation experiments negative magnetization is 

being transferred while 2D experiments involve the exchange of positive magnetization.14 

Without overlooking the massive 

contribution of Ernst and his coworkers in the 

development of the NOESY experiment,14 it is 

apparent that NOESY has its limitations.   For 

molecules containing an intermediate 

correlation time, it is possible for energy transfer and energy exchange to simultaneously occur.  

In this scenario the intensities of the cross peaks may be extremely small, or even null.  Bother-

By et al. overcame this impediment by observing NOEs in the presence of a spin-locking field 

with an experiment they referred to as CAMELSPIN (cross-relaxation appropriate for 

minimolecules emulated by locked spins), known today as ROESY (Rotational Overhauser 

Effect Spectroscopy).16 

Just as the 2D NOE experiments were developed, the CAMELSPIN experiments were 

first conducted in one dimension.  A reference spectrum is first acquired after a 90° pulse.  Then 

after the t1 interval, a spin locking field is applied along the x-axis during a relaxation period 

(tmax).  Immediately after the field is removed the spectrum is acquired.  Subtracting these two 

spectra allowed Bother-By to observe interactions not visible with NOESY.  Repeating this 

experiment with incremental values of t1 and a constant value for tmax, they were able to produce 

data extremely similar to that of NOESY experiments.  There was one exception, all cross peaks 

were now positive.16 

Transverse relaxation leading to NOEs in ROESY experiments occurs through the same 

relaxation pathways as the longitudinal relaxation in NOESY experiments.  However, a 
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Figure 2.7  The pulse sequence used in 
ROESY experiments. 
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transverse relaxation in the NOESY experiment does not allow a NOE buildup because the spins 

dephase.  The spin-locking field in ROESY experiments prevents the magnetic moments from 

precessing about the z-axis.  Therefore the spins remain in phase and NOEs are allowed to build 

up.  In the absence of a spin-locking field, the magnetic moments of the two spins are opposed to 

one another for as much time as they are aligned.  Half of the time cross-relaxation increases the 

intensity of the second spin, while half of the time cross-relaxation decreases the intensity of the 

second spin.  Transverse relaxation has a different dependence on molecular tumbling in that all 

molecules behave as though they are in the positive NOE regime.  Therefore all NOE crosspeaks 

in the ROESY experiment are positive for all molecules.  

2.4 Infrared Spectroscopy Studies 

2.4.1 IR for Hydrogen Bonding Studies 

Previously, IR spectroscopy has been used to show that amide-functionalized PPI 

dendrimers exhibit strong hydrogen bonding interactions in dichloromethane.17  In that study, the 

extent of hydrogen bonding was assessed by comparing the intensities18 of IR bands associated 

with N-H stretching for hydrogen-bonded amides and those associated with N-H stretching for 

non-hydrogen-bonded amides in PPI dendrimers.  An alternative route is required for evaluating 

the extent of hydrogen bonding in dendrimers adsorbed on surfaces as the absorbance intensity 

strongly depends on theorientation of the bond with respect to the surface normal.19   

It has been shown that the degree of H-bonding in proteins can be estimated by 

monitoring the band position (energy) of the amide I and amide II transitions.20   A blue shift for 

the amide I transition and a red shift for the amide II transition were observed as hydrogen 

bonding increased.  Because band location, rather than intensity, is used in this method, it is 

applicable for determining the extent of hydrogen bonding for molecules on surfaces.  An 
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increase in hydrogen bonding is interpreted as a decrease in the distance between the amide 

functional groups.  

2.4.2 Oligomer Length Studies 

In 1994, Zerbi and coworkers suggested that the length of pyrrole oligomers could be 

estimated from their IR spectra.21  They reported two characteristic vibrations in which they 

referred to as T bands and B bands that respectively correspond to the end group vibrations (T) 

and vibrations associated with pyrrole groups within the chains (B).  The T band for the out-of-

plane deformation modes was reported to occur in the 720-730 cm-1 region (ω(C-H)oop-ring) while 

in-plane deformation modes occur around 1065 cm-1 (ω(C-H)ip-ring).  The out of plane and in 

plane deformations for the B modes are found at approximately 765 and 1035 cm-1.   

The intensities of these bands were compared to different pyrrole polymer lengths where 

the numbers of pyrroles were 3, 5, 7, and ~20 (Py3, Py5, Py7, and PPy).  The intensities of the 

out-of-plane deformation bands at 764 (B) and 720 cm-1 (T) were similar for Py3.  The B band 

(762 cm-1) is much stronger than the T doublet (732 and 705 cm-1) for Py5 and the T band (726 

cm-1) for Py7 is dominated by the B band (762 cm-1).  A very small T adsorption was observed 

for PPy on the lower frequency side of the B band (759 cm-1).  A similar trend for the in-plane 

deformation bands (Py3, 1060-1028; Py5 1064-1035; Py7, 1064-1037; PPy, 1065-1033 cm-1) 

were also observed with respect to the peak intensity ratios.  There was no significant difference 

in the band positions.  Their work demonstrated that the number of individual pyrroles 

comprising a pyrrole-oligomer can be determined by monitoring the intensity of 4 key absorption 

bands in the IR spectra. 
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Chapter 3 

Functionalization of Amine-Terminated Diaminobutane (DAB) Dendrimers 

3.1  Introduction 

 The dendrimers of choice for these studies are the poly(propylene imine), PPI, 

dendrimers due to their commercial availability and terminal primary amines that can be easily 

modified with almost any desired functional group using simple coupling techniques.1-4  This 

characteristic of dendrimers is quite attractive as the overall properties of the dendrimer such as 

solubility,1 electroactivity,2 and spectroscopic response5 are often determined by the functional 

groups located along the periphery.  To date, PPI and poly(amido amine), PAMAM, dendrimers 

have been modified by a wide range of functional groups such as adamantylurea,6 poly(ethylene 

glycol),7 poly(N-isopropylacrylamide),8 phenothiazines,9 and ferrocene,2,10,11 just to name a few.  

Of particular interest to the work at hand are peptide coupling reactions that have been used for 

addition of BOC and ferrocene to the periphery of dendrimers.2,3,12  These coupling techniques 

lead to the formation of amide bonds that possess characteristic IR absorption bands that can be 

used to confirm functionalization and allow one to determine the relative extent of intra-

dendrimer hydrogen bonding. 

3.2 Synthesis of Ferrocene-Terminated Dendrimers (DAB-Fcx, x=4, 8, 16, 32, and 64) 

 Commercially available amine-terminated poly(propylene imine) diaminobutane core 

dendrimers were functionalized with ferrocene end groups. The overall reaction included two 

steps: the conversion of ferrocene carboxylic acid (FcCOOH) into an acid chloride (FcCOCl)13 

and the reaction of the acid chloride with the amine-terminated dendrimers.  FcCOOH was 

stirred for several minutes in benzene until the entire solid was dissolved.  Approximately 1.2 

equivalents of PCl5 was added to the acid solution and allowed to stir in a glove box for 1 hour.  
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The solvent was removed under vacuum, and the red product was dissolved in dichloromethane 

(DCM).  The organic solution was washed with NaOH until the lower aqueous layer was 

colorless and then washed once with water.  The organic layer was dried with Na2SO4, filtered, 

and the solvent removed under vacuum.  The red crystals were dissolved in pentane, filtered, and 

the solvent removed under vacuum.  GC-MS confirmed the presence of a single product with a 

mass/charge (m/z) of 248, the same as the molecular weight of the ferrocenoyl chloride.  Yields 

of 90% were typical for this reaction. 

 The second step is the functionalization 

of the dendrimer with ferrocene end groups.   

The acid chloride readily reacts with the amine 

functional groups located around the periphery 

of the dendrimer. The amine-terminated 

dendrimer, 1.2 equivalents of triethylamine, 

and FcCOCl for each primary amine were 

separately dissolved in DCM. The dendrimer 

and triethylamine solutions were transferred to 

an addition funnel and added dropwise to the 

FcCOCl solution.  The solution was stirred 

until complete functionalization was confirmed by MALDI-MS (4 - 24 hours depending on the 

generation).  After the dendrimer was completely functionalized, the solvent was removed under 

vacuum yielding a red powder.  The resulting product was dissolved in a small amount of DCM, 

and the dendrimer was precipitated by the addition of hexanes.  The solutions were centrifuged 

and the liquid decanted.  The dendrimer was dissolved in DCM, dried with anhydrous sodium 
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Figure 3.1  Schematic showing the 
synthesis of Ferrocene acid chloride and its 
addition to amine-terminated dendrimers.
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sulfate, and again evaporated to dryness under vacuum.  All of the dendrimers were transferred 

to vials and stored under argon at -20°C until further use.  The MALDI-MS data indicated 100% 

conversion for generations 1-3 and >90% conversion for generations 4 and 5, as judged by the 

presence of molecular ion peaks for generations 1-3 and the presence of peaks at a slightly lower 

m/z than that of completely functionalized dendrimers of generations 4 and 5.  While the 

protonated molecular ion peak was not observed for generations 4 and 5, neither were any peaks 

that would be characteristic of incompletely functionalized dendrimer. 

3.3 Synthesis of Butoxycarbonyl-Terminated Dendrimers (DAB-BOCx, x=4, 8, 16, 
 32, and 64) 
 
 Generations 1 through 5 of the DAB-

dendrimers were also functionalized with 

butoxycarbonyl (BOC) end groups.  A given 

amine-terminated dendrimer and triethylamine 

(Et3N) were dissolved in methanol, while the 

di-tert-butyl dicarbonate [O(BOC)2] was 

dissolved in a separate flask.  For each 

dendrimer, 1.2 equivalents of O(BOC)2 and 

triethylamine were used for each primary 

amine for functionalization.  After all of the 

dendrimer and O(BOC)2 were completely dissolved, the O(BOC)2 solution was added to the 

dendrimer solution.  The reaction was stirred, purged with argon, heated to approximately 75°C, 

and allowed to reflux until complete functionalization occurred, as determined by MALDI-MS.  

This ranged anywhere from 8 to 24 hours depending on the generation of the dendrimer.   
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Figure 3.2  Functionalization of amine-
terminated dendrimers with BOC groups. 
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 Product analysis was conducted on IR and MALDI-MS instrumentation.  When complete 

functionalization of the dendrimer was confirmed, the solvent was evaporated under vacuum.  

The resulting substance was dissolved in DCM and then washed 2 times with NaHCO3, 2 times 

with NaCl, and 1 time with water.  This purified organic solution was then dried with anhydrous 

sodium sulfate.  Upon removal of the organic solvent the dendrimer was stored under argon in a 

freezer.  Observance of only the protonated molecule in the MALDI mass spectra indicated 

complete functionalization for all 5 generations. 

3.4 Synthesis of Pyrrole-Terminated Dendrimers 

 The primary amine of an amino acid was converted to pyrrole14 utlitizing a Clausson-

Kaas ring-closure reaction.15-17  The pyrrole acid was then transformed into an activated ester 

which reacted readily with the terminal primary amines of PPI dendrimers.  The direct 

conversion of the dendritic primary amines to pyrrole was not accomplished because too high 

concentration of primary amines leads to unclosed pyrrole rings.18  Acid chloride derivatives of 

pyrrole were previously found to be unstable.19 

3.4.1 Synthesis of ω-(N-pyrrolyl)-hexanoic Acid 

 A pyrrole-terminated alkanoic acid was formed via a ring-closure mechanism using 6-

amino hexanoic acid and 2,5-dimethoxytetrahydrofuran.16-18  The amino acid was dissolved in a 

degassed 10% acetic acid solution, the solution transferred to a three neck flask, and stirred at 45 

°C.  Once all of the amino acid was dissolved and the temperature was stable, one molar 

equivalent of 2,5-dimethoxytetrahydrofuran was canulated into the flask.  The reaction mixture 

was allowed to stir for 2 hours.  The product was extracted from the aqueous solution with an 

equal volume of methylene chloride 3 times.  All organic extracts were combined and then 

washed with pH 2 HCl four times.  The methylene chloride layer was then dried with anhydrous 
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sodium sulfate and filtered.  The solvent was removed under vacuum leaving a dark brown oil.  

Analysis with GC/MS confirmed the presence of the pyrrole acid only.  Pure product was 

obtained with a 62.5% yield.  1H NMR assignments for ω-(N-pyrrolyl)-hexanoic acid are:  1H 

NMR (CD2Cl2, 250 MHz): δ 11.01 (bs, 1H, COOH), 6.66 (t, 2H, Py-2,5-H), 6.10 (t, 2H, Py-3,4-

H), 3.87 (t, 2 H, -CH2-Py), 2.60 (t, 2H, CO-CH2-(CH2)4-Py), 1.79 (t, 2H, Py-CH2-CH2-(CH2)3-

CO), 1.56 (m, 2H, CO-CH2-CH2-(CH2)3-Py), 1.28 (t, 2H, CO-(CH2)2-CH2-(CH2)2-Py). 

3.4.2 Synthesis of ω-(N-pyrrolyl)-1-hexanoic-succinimide Ester 

 In order to add the pyrrole hexanoic acid to the primary amines along the dendrimer 

periphery, an activated ester was necessary.  The pyrrole acid, N-hydroxysuccinimide, 1,3-

dicyclohexylcarbodiimide, and triethylamine were each separately dissolved in acetone.  Ten 

percent excess of N-hydroxysuccinimide and 1,3-dicyclohexylcarbodiimide were used, while 2 

equivalents of triethylamine was used.  All solutions were purged for 30 minutes with nitrogen 

and then canulated into a large round bottom flask.  The contents of the flask were magnetically 

stirred at room temperature for 12 hours.  The mixture was then centrifuged and filtered to 

remove dicyclohexylurea (DCU).  The solvent was then removed under vacuum, and the 

remaining solid was redissolved in acetonitrile.  The acetonitrile containing the product was then 

allowed to stand in the freezer for 30 minutes.  The solution was once again filtered to remove 

DCU and then washed with hexanes 10 times.  The solvent was removed under vacuum yielding 

a light yellow wax.  GC/MS was used to confirm the presence of a single product, ω-(N-

pyrrolyl)-1-hexanoic-succinimide ester.  Pure product was obtained with 88% yield.  1H NMR 

assignments for ω-(N-pyrrolyl)-1-hexanoic-succinimide ester are:  1H NMR (CD2Cl2, 250 MHz): 

δ 6.66 (t, 2H, Py-2,5-H), 6.10 (t, 2H, Py-3,4-H), 3.89 (t, 2 H, -CH2-Py), 2.81 (s, 4H, NHS-3,4-H), 
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2.61 (t, 2H, CO-CH2-(CH2)4-Py), 1.79 (t, 2H, Py-CH2-CH2-(CH2)3-CO), 1.56 (m, 2H, CO-CH2-

CH2-(CH2)3-Py), 1.28 (t, 2H, CO-(CH2)2-CH2-(CH2)2-Py). 

3.4.3 Synthesis of DAB-Pyx (x=4, 8, 16, 32, and 64)  

 The pyrrole succinimide ester adds readily to the primary amines along the periphery of 

the poly(propylene imine) dendrimers.  In separate flasks, 1 equivalent of DAB-(NH2)x and 1.2 

equivalents of pyrrole ester per primary amine were dissolved in degassed acetone.  After the 

entire dendrimer was dissolved, the pyrrole ester and 1.2 equivalents of triethylamine were added 

and allowed to stir for 24 hours under nitrogen at room temperature.  The reaction mixture was 

filtered and the volume was reduced to 15-20 mL under vacuum.  The pyrrole-functionalized 

dendrimers were isolated from other reactants and products by dialysis.  Dialysis tubing made of 

regenerated cellulose, purchased from Spectrum Laboratories, with a molecular weight cut-off of 

1000 was used to purify generations 1-3, and a molecular weight-cut off of 6,000-8,000 was used 

for generations 4 and 5.  The dialysate used was a degassed solution composed of 50% acetone 

and 50% water and was changed every few hours over a time span of 3 days.  The white milky 

solution in the dialysis bag was transferred to a flask and the solvent removed under vacuum.  

The yellow oil obtained was then redissolved in acetone and the solvent removed under vacuum 

resulting in a thick, yellow oil.   

 The resulting dendrimers were characterized with MALDI-MS and 1H NMR.  While 

well-defined molecular ion peaks for the completely functionalized dendrimer were obtained for 

generations 1-3 with a [M+H]+ of 970 (969.4 calculated), 2078 (2079 calculated), and 4301 

(3298.1 calculated) respectfully.  MALDI data for the 4th generation dendrimer consisted of a 

broad peak centered at m/z 8460 with the most abundant peak at 8743 (8736.5 calculated).  The 

data for generation 5 consisted of a broad peak centered at 17,000 (17612.9 calculated).  1H 
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NMR suggests 100% conversion of the primary amines to pyrrole end groups for generations 1-3 

and 90% conversion for generations 4 and 5 by comparing the peak integration of the internal 

N(CH2)3 protons to the pyrrole protons.   

3.4.4 1H NMR Characterization Data for DAB-Pyx (x = 4, 8, 16, 32, and 64)  

 DAB-Py4:  
1H NMR (CD2Cl2, 250 MHz): δ 6.63 (t, 8H, Py-2,5-H), 6.06 (t, 8H, Py-3,4-H), 

3.84 (t, 8 H, -CH2-Py), 3.23 (q, 8H, CH2-NH-C=O), 2.42 (m, 12H, N(CH2)3), 2.10 (t, 8H, CO-

CH2-(CH2)4-Py), 1.74 (p, 8H, CO-CH2-CH2-(CH2)3-Py), 1.58 (m, 8H, CO-(CH2)3-CH2-CH2-Py, 

8H N-CH2-CH2-CH2-N), 1.26 (m, 8H CO-(CH2)2-CH2-(CH2)2-Py, 4H N-CH2-CH2-CH2-CH2-N). 

 DAB-Py8:  1H NMR (CD2Cl2, 250 MHz): δ 6.61 (s, 16H, Py-2,5-H), 6.06 (s, 16H, Py-

3,4-H), 3.84 (t, 16 H, -CH2-Py), 3.21 (q, 16H, CH2-NH-C=O), 2.39 (m, 36H, N(CH2)3), 2.14 (t, 

16H, CO-CH2-(CH2)4-Py), 1.74 (p, 16H, CO-CH2-CH2-(CH2)3-Py), 1.58 (m, 16H, CO-(CH2)3-

CH2-CH2-Py, 24H N-CH2-CH2-CH2-N), 1.26 (m, 16H CO-(CH2)2-CH2-(CH2)2-Py, 4H N-CH2-

CH2-CH2-CH2-N). 

 DAB-Py16:  1H NMR (CD2Cl2, 250 MHz): δ 6.62 (t, 32H, Py-2,5-H), 6.05 (t, 32H, Py-

3,4-H), 3.84 (t, 32 H, -CH2-Py), 3.20 (q, 32H, CH2-NH-C=O), 2.39 (m, 84H, N(CH2)3), 2.13 (t, 

32H, CO-CH2-(CH2)4-Py), 1.74 (p, 32H, CO-CH2-CH2-(CH2)3-Py), 1.58 (m, 32H, CO-(CH2)3-

CH2-CH2-Py, 56H N-CH2-CH2-CH2-N), 1.30 (m, 32H CO-(CH2)2-CH2-(CH2)2-Py, 4H N-CH2-

CH2-CH2-CH2-N). 

 DAB-Py32:  1H NMR (CD2Cl2, 300 MHz): δ 6.61 (s, 64H, Py-2,5-H), 6.05 (s, 64H, Py-

3,4-H), 3.83 (t, 64 H, -CH2-Py), 3.19 (q, 64H, -CH2-NH-C=O), 2.39 (m, 180H, N(CH2)3), 2.13 (t, 

64H, CO-CH2-(CH2)4-Py), 1.74 (m, 64H, CO-CH2-CH2-(CH2)3-Py), 1.58 (m, 64H, CO-(CH2)3-

CH2-CH2-Py, 120H N-CH2-CH2-CH2-N), 1.30 (m, 64H CO-(CH2)2-CH2-(CH2)2-Py, 4H N-CH2-

CH2-CH2-CH2-N). 
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 DAB-Py64:  1H NMR (CD2Cl2, 250 MHz): δ 6.61 (s, 128H, Py-2,5-H), 6.05 (s, 128H, Py-

3,4-H), 3.82 (t, 128 H, -CH2-Py), 3.20 (m, 128H, CH2-NH-C=O), 2.38 (m, 372H, N(CH2)3), 2.01 

(t, 128H, CO-CH2-(CH2)4-Py), 1.74 (m, 128H, CO-CH2-CH2-(CH2)3-Py), 1.58 (m, 128H, CO-

(CH2)3-CH2-CH2-Py, 248H N-CH2-CH2-CH2-N), 1.26 (m, 128H CO-(CH2)2-CH2-(CH2)2-Py, 4H 

N-CH2-CH2-CH2-CH2-N). 
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Chapter 4 
 

Determining the Location of End Groups on DAB Dendrimers 
 

4.1 Introduction 

The ability of macromolecules to encapsulate smaller molecular guests has been the focus 

of a significant portion of efforts in the scientific community.  Of interest here is the formation of 

gated dendrimer hosts, that is, dendrimers whose ability to trap guests can be manipulated 

through external stimuli.  In this approach, it is propsed that smart dendrimers can be constructed 

by appending at the periphery of the dendrimer, monomers whose oligomers can have their 

backbone conformation changed through electron-transfer reactions.  In order to create a highly 

efficient dendrimer/host system based on such a redox-stimuli-responsive mechanism, some 

basic properties of peripherally functionalized dendrimers must first be defined.   

It has been shown that the majority of end groups are located along the periphery of 

poly(propylene imine) dendrimers.1 Thus, one would postulate that as dendrimers become larger, 

the end groups would be forced together in closer proximity to one another.  However, there is 

evidence that significant backfolding takes place in poly(amido amine), PAMAM, dendrimers,2 

resulting in the end groups being located inside the dendrimer.   

The major goal of the present studies is determination of PPI dendrimer functional group 

location with respect to one another as a function of dendrimer generation in solution and when 

adsorbed on gold surfaces. In this work, the existence of hydrogen bond interactions in 

functionalized PPI dendrimers has been demonstrated by the presence of bands correlating to 

hydrogen bonded C=O and N-H stretches in their IR spectra.3  By measuring the relative extent 

of hydrogen bonding for several generations, a qualitative assessment of the distance between 

end groups as a function of dendrimer generation can be made.   
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4.2 Monitoring Hydrogen Bonding of Dendrimers in Solution with IR 

Previously, an IR spectroscopy study demonstrated that amide-functionalized PPI 

dendrimers exhibit strong hydrogen bonding interactions in dichloromethane.4  In that study, the 

extent of hydrogen bonding was assessed by comparing the intensities of IR bands associated 

with N-H stretching for hydrogen-bonded amides and those associated with N-H stretching for 

non-hydrogen-bonded amides in PPI dendrimers.5  An alternative route is required for evaluating 

the extent of hydrogen bonding in dendrimers adsorbed on surfaces.6   

It has been shown that the degree of H-

bonding in proteins can be evaluated by 

monitoring the band position (frequency)7 of 

the amide I and amide II transitions.7   This 

method is applicable for determining the extent 

of hydrogen bonding for molecules in solution 

and on surfaces.  By monitoring the band 

positions of the amide I and amide II 

transitions of amide-functionalized PPI 

dendrimers, it is shown here that the amide-

linked functionalities at the terminal ends of the PPI chains in PPI dendrimers exhibit increased 

hydrogen bonding with increased generation.  This increase in hydrogen bonding is interpreted 

as resulting from a decrease in the distance between the amide functional groups. 

A distinct trend in the IR spectra with respect to generation was observed for ferrocene-

terminated PPI dendrimers and BOC-terminated PPI dendrimers in solution (Figure 4.2), and 

BOC-terminated PPI dendrimers adsorbed to gold substrates (Figure 4.6).  A red shift was 
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Figure 4.2  Infrared data of BOC and ferrocene-terminated dendrimers in CCl4 with an end 
group concentration of 40 x 10-3 M for all generations and a path length of 50 µm.  S=0.02 
AU for DAB-Fc4 and 0.1 AU for all others. 
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observed for the amide I absorption band (1629 – 1716 cm-1) while a blue shift was observed for 

the amide II band (1503 – 1542 cm-1). As a result, more extensive hydrogen bonding is observed 

for higher generation dendrimers in the IR spectra in Figure 4.2.  This increase in hydrogen 

bonding is interpreted as a decrease in the distance between functional groups.  Therefore, as 

dendrimer generation increases, the functional groups along the periphery are forced closer to 

one another. 

4.3 Adsorption to Gold Substrates 
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Figure 4.3 Schematic depicting the change in structure when a third generation ferrocene-
terminated dendrimer in solution (A) adsorbs to a gold surface through its tertiary amines (B). 
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It has been observed that fully functionalized PPI dendrimers with no primary amines 

present along the periphery adsorb quite well to gold substrates, suggesting binding of such 

molecules to the gold occurs through the core tertiary amines.  However, it has been reported that 

the primary amine end groups of PAMAM dendrimers direct their adsorption to gold surfaces.8 

Due to the flexibility of dendrimers,9,10 it is also possible that binding of PPI dendrimers to gold 

surfaces occurs by means of the tertiary amines, the primary amines, or both in unfunctionalized 

PPI dendrimers.   Previous surface studies include amine-terminated9 and modified  

dendrimers11-13 whose functional groups along the periphery are directly involved in the 

adsorption process.  The dendrimers in our studies possess functional groups which do not 

adsorb to gold, therefore adsorption occurs by means of the tertiary amines.14  In such a scenario, 

binding through the tertiary amines may result in deformation of the dendrimer, thereby forcing 

the end groups closer together.  Reflection-absorption IR spectroscopy (RAIRS) and cyclic 

voltammetry were used to monitor surface reactions to investigate these possibilities.  

4.3.1 Reactivity of Amine-Terminated Dendrimers Adsorbed to Gold Substrates 

 In order to study the binding characteristics of amine-terminated dendrimers to gold 

substrates, surface reactions were monitored via cyclic voltammetry, (Figure 4.4).  Both DAB-

Am16 and fully functionalized DAB-Fc16 were adsorbed to gold electrodes, and the cyclic 

voltammograms were taken of each.  An electrode with DAB-Am16 adsorbed to the surface was 

then immersed into DCM that was 5 x 10-3 M in ferrocenoyl chloride.  The cyclic voltammogram 

of this electrode was obtained and suggested functionalization was achieved.  The anodic and 

cathodic peak currents for the fully functionalized dendrimer and the surface derivatized 

dendrimer were very similar, suggesting each surface contained similar quantities of ferrocene.  

However, the larger double-layer capacitance for DAB-Am16 reacted with ferrocenoyl chloride 
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suggests a difference in surface packing.  The 

cause could be a more close-packed dendrimer 

layer than that of the DAB-Fc16, which must 

distort in order to bind through the tertiary 

amines.  This would result in a higher surface 

coverage for DAB-Am16 than DAB-Fc16.  

Therefore if complete functionalization is 

achieved, the surface reaction should yield 

larger anodic and cathodic peak currents.  The 

similarity of the values indicates that the surface 

reaction is not complete and complete 

functionalization is not achieved under these 

conditions.     

 In order to further investigate the results 

obtained from cyclic voltammetry, reflection-

absorption infrared spectroscopy (RAIRS) data 

were obtained for DAB-Am16 adsorbed to a gold slide (Au/Cr/SiO2).  This slide was then 

immersed in a ferrocene acid chloride solution and the RAIR spectrum was promptly obtained. 

The data in Figure 4.5 shows the presence of amide I (1630 cm-1) and amide II (1540 cm-1) bands 

demonstrating that surface functionalization was achieved.  However, because the absorption 

band corresponding to the C-N stretch of primary amines is still present (1460 cm-1), it is clear 

that the primary amines are not completely converted to ferrocene-amide functional groups.  This 

suggests that the amine-terminated dendrimers are binding to gold surfaces by means of the 
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Figure 4.4  Cyclic Voltammetry of DAB 
dendrimers on Au surfaces: A, 
functionalized before adsorption (from 0.5 x 
10-3 M DCM solution of DAB-Fc16); B, 
unfunctionalized (from 0.5 x 10-3 M DCM 
solution of DAB-Am16); and C, 
functionalized after adsorption by 
immersing electrodes containing adsorbed 
DAB-Am16 layers in a 50 x 10-3 M ferrocene 
acid chloride solution in DCM for 5 hours 
(DAB-Fcy).  The area of the working 
electrode was 0.172 cm2 and the scan rate 
was 0.1 V s-1. 
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primary amines—to some degree—and these bound amines are not available for 

functionalization.  However, incomplete functionalization could also be the result of a periphery 

overcrowded with bulky ferrocene end groups and not a result of binding through the primary 

amines. Thus it is possible that the adsorption process involves both primary and tertiary amines 

for DAB-Amx. 

4.3.2 Hydrogen Bonding Studies of Dendrimers Adsorbed to Gold Substrates 

 In order for the tertiary amines to be available for adsorption to gold substrates, distortion 

of the dendrimer structures must occur.  This distortion may force the dendrimer end groups in 

closer proximity of one another.  Therefore RAIRS data was obtained for ferrocene and BOC-

terminated dendrimers adsorbed to gold surfaces.  The RAIRS data for both dendrimers show an 

increase in hydrogen bonding as the number of functional groups increases.  In particular the 
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Figure 4.5  RAIR spectra of A. DAB-Fc16 dendrimer on gold, B. DAB-Am16 on gold, and C. 
DAB-Am16 functionalized with ferrocene acid chloride after being adsorbed on the Au surface 
(DAB-Fcy). 
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data from the BOC-terminated dendrimers is very similar to that of the IR data from the 

dendrimers in solution.  While it is evident the hydrogen bonding interactions are stronger for the 

larger ferrocene-terminated dendrimers, the trend is not as consistent as that of the solution data 

or the surface data from the BOC-terminated dendrimers.  It is believed this is due to the size of 

the functional group.  The ferrocene along the periphery of the dendrimer is more bulky 

compared to the BOC groups.  This bulkiness may prevent the end branches of the dendrimer 

from approaching one another, reducing hydrogen bonding interactions.  The relatively smaller 

size of the BOC groups allows the amide groups to readily interact with one another resulting in 

a larger degree of hydrogen bonding as dendrimer generation increases.  However, it is still 

apparent that the distance between end groups decreases when dendrimer generation increases 

for both dendrimers.  
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Figure 4.6 RAIR spectra of BOC-terminated dendrimer monolayers adsorbed to gold 
from dendrimer solutions with an end group concentration of 0.5 x 10-3 M in DCM for 5 
hours. 
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4.4 Conclusions 

As is evident by the IR studies as a function of generation, the dendritic end groups are 

forced into closer proximity as generation increases for PPI dendrimers.  This was deduced from 

the fact that an increase in hydrogen bonding was observed for the higher generation dendrimers.  

This also supports the hypothesis that the end groups are located along the periphery of the 

dendrimer.  If the branches are backfolded in the interior of the dendrimer, one would expect to 

see little change in the IR spectra as a function of generation. 

Another aspect of this study was the investigation of surface adsorption properties of both 

functionalized and unfunctionalized dendrimers.  Fully functionalized dendrimers adsorbed 

extremely well to gold surfaces suggesting adsorption occurs through the tertiary amines because 

there are no primary amines available.  We were also able to determine through surface reactions 

that some primary amines were available for functionalization when unsubstituted dendrimers 

were adsorbed.  However, complete functionalization did not occur, and therefore it is possible 

that the primary amines are involved in the adsorption process.  It is also possible that the 

dendrimer structure becomes distorted to allow adsorption through the tertiary amines.  If this 

occurs the distortion may lead to significant crowding of the end groups making it sterically 

difficult for the functional groups to approach the primary amines.  Further studies will be 

necessary to determine which scenario is occurring, or if it is a combination of the two. 
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Chapter 5 

Structural Characterization of DAB-Py32 

5.1 Introduction 

Several different NMR techniques were utilized under different environmental conditions 

in order to gain a better understanding of the structure of pyrrole-terminated dendrimers.  Both 

NOESY (Nuclear Overhauser Effect Spectroscopy) and ROESY (Rotational Overhauser Effect 

Spectroscopy) data were obtained which yielded information as to the location of the pyrrole 

functionalities.  If the pyrrole groups are located in the interior of the dendrimer, encapsulation 

of guests may be difficult.  An ideal phenomenon would be one in which the pyrrole units were 

extended outward along the periphery of the dendrimer, making way for the desired guest to 

occupy any internal cavities. 

Relaxation experiments also provide useful information in deducing the relative mobility 

of the terminal groups.  It is currently unknown as to whether rigid or mobile pyrrole monomers 

are more likely to form oligomers.  We are interested in determining whether the pH of the 

solution has an effect on the rigidity of the pyrrole groups prior to coupling.  An ideal scenario 

would be one in which we are able to control the number of pyrrole monomers involved in the 

pyrrole oligomers by altering the pH.  Noble has already demonstrated that pyrrole-terminated 

dendrimers possessing an oligomeric periphery are more efficient in the retention of entrapped 

guests than dendrimers whose periphery is in the monomeric state.1  He has also shown that 

reducing the oligomers results in the dendrimers quickly expelling the incarcerated molecules.  

We would like to determine whether longer or shorter oligomers will aid in retention of guests 

incarcerated by the dendrimer, and how controlling the length of the oligomers will affect the 

release properties of guests.   
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5.2 2-Dimensional NMR studies 

 The 2D NMR techniques used for structural characterization were NOESY and ROESY.  

Both techniques are extremely useful in determining chemical structure, but in most situations 

one of the experiments is preferred over the other.  The sense of the cross peaks observed in 

NOESY data depends on the rotational correlation time of the molecule being studied.  If the 

diagonal is phased negative, positive cross peaks are obtained for molecules with small 

correlation times while negative cross peaks are obtained for molecules with large correlation 

times.2  Chemical exchange results in negative cross-peaks as well and are indistinguishable 

from negative NOEs arising from large molecules.  Molecules with an intermediate correlation 

time may yield cross peaks with zero intensity.  Because ROESY experiments yield NOE cross 

peaks that are always positive, NOEs that go undetected in NOESY can be observed in ROESY 

data.3  Another advantage of ROESY is the ability to distinguish between cross peaks resulting 

from exchange and NOEs as they are opposite in phase. Therefore, NOESY is preferred for 

small molecules while ROESY is preferred for intermediate to large molecules.  However, the 

main drawback with ROESY is its similarity with TOCSY (total correlated spectroscopy) 

experiments.  Both experiments utilize the same pulse program, with the exception that TOCSY 

utilizes a higher power spin-lock.  If one uses a spin-lock power that is too high, TOCSY peaks 

may be present in ROESY spectra. 

 The 4th-generation pyrrole-terminated dendrimer was the focus of these studies because 

this was the dendrimer used in future encapsulation studies.  NOESY experiments were 

conducted on DAB-Py32 in deuterated methylene chloride (CD2Cl2), although no through-space 

interactions were observed in the form of cross peaks between pyrrole protons and protons 

located in the interior of the dendrimer.  However, as discussed previously, this does not mean 
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that backfolding is not taking place, because the sign of the NOE can be different for small4 and 

large molecules,5,6 or null for intermediate-sized molecules.3  Therefore, ROESY experiments 

were performed to determine if this phenomenon was occurring. 

 Because the pyrrole-terminated dendrimers used in our studies are only slightly soluble in 

water (~20 x 10-6 M), we believed if any backfolding occurs it will be most significant in 

aqueous solutions.  At lower pH, the interior tertiary amines are protonated,7 causing the 

dendrimer branches to spread out as far as possible due to charge repulsions.8  However, at 

higher pH this should be less of a factor in regards to the location of the pyrrole functionalities.  

Several groups have shown that PAMAM dendrimer size increases as the pH is lowered and 

tertiary amines become protonated.9-11  Therefore, ROESY data was obtained for DAB-Py32 in 

both pD 2 DCl and in neutral D2O to determine if the smaller dendrimer diameters are the result 

of backfolding.   

 Surprisingly NOESY data in organic solvents and both ROESY data sets in aqueous 

solvents were extremely similar between the pyrrole protons and other protons on the dendrimer; 

however, there were no crosspeaks between protons located in the interior of the dendrimer and 

the pyrrole functional groups along the periphery.  Crosspeaks were observed between peaks 

associated with the pyrrole protons and peaks located at 1.29, 2.16 and 3.85 ppm, which 

correspond to protons located on the hexyl chain linking the pyrrole to the dendrimer.   

 If significant backfolding were occurring, we would expect to see crosspeaks between the 

pyrrole protons at 6.2 and 6.6 ppm and the peaks found at 2.4 and 1.6 ppm that correlate with 

methylene protons, which are found throughout the interior of the dendritic structure.  Because 

no through-space interactions are observed between pyrrole protons and these methyelene 

protons, it is believed that the majority of the end groups are located along the periphery of the 
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Figure 5.1 ROESY data obtained from a 1:1 d6-Acetone D2O solution in which the 
concentration was 0.01 M in end groups. 
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dendrimer.  However, due to the numerous crosspeaks present in the spectra it is apparent that 

the pyrroles are located in several different environments and are not exclusively extended 

outward.  Through-space interactions were observed between pyrrole protons and protons on the 

hexyl chain linking the pyrrole to the dendrimer and between the methylene adjacent to the 

pyrrole and methylene protons on the hexyl linker. 

5.3  NMR Relaxation Measurements 

5.3.1 T1 Studies in Organic Solvents 

 Spin-lattice relaxation experiments were conducted for generations 1–5 of pyrrole-

terminated dendrimers on 300 and 400 MHz spectrometers in deuterated methylene chloride.  On 

the 300 MHz instrument, the T1 relaxation time constant was calculated for each proton on all 

dendrimer generations at room temperature.  The T1 values were also determined at several 

different temperatures for the 4th-generation dendrimer in order to determine whether the data 
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Figure 5.2  T1 data collected at various temperatures on an ARX-300 MHz instrument for 
DAB-Py32 in CD2Cl2 with an end group concentration of 0.01 M. 
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was consistent with that of a small molecule or a large molecule.  Relaxation values are a 

function of a molecules size, or its rotational correlation time.  Increasing the temperature results 

in faster tumbling and decreases the correlation time.  In general, the T1 value for small 

molecules increases as the correlation time is decreased or as the temperature is increased. For 

large molecules the relaxation time is directly related to its correlation time and increases as the 

temperature is decreased.  By measuring the relaxation values at different temperatures, it is 

possible to deduce whether or not the dendrimers behave like small or large molecules.  This is 

an important step in order to interpret relaxation data.  For small molecules, an increase in T1 is 

characteristic of an increase in mobility, whereas it is the opposite is true for large molecules. 

 The T1 values for protons located along the periphery of the dendrimer increased with 

temperature, while protons in the interior of the dendrimer were relatively unaffected.  This 

suggests the periphery of the dendrimer (pyrrole and the hexyl linker) behaves like a small 

molecule while the interior of the dendrimer (all protons interior to the amide bonds) is more 

characteristic of a large molecule (Figure 5.2).  Therefore, an increase in the T1 values for a 

proton located along the periphery is the result of an increase in mobility for that proton.   After 

completion of the temperature studies, T1 relaxation data was obtained at room temperature for 

all 5 generations of pyrrole-termianted dendrimers (Figure 5.3).  The T1 values for identical 

protons on different generation dendrimers located along the periphery decreased as dendrimer 

generation increased.  Therefore, it was found that the mobility along the periphery of the 

dendrimer decreases with increasing dendrimer generation.  This corroborates the previous 

results obtained from hydrogen-bonding studies of similarly substituted PPI dendrimers (Chapter 

4) utilizing FTIR.  As the generation increases, the external moieties become closer together, 

restricting mobility. 
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 Further T1 determinations were carried out on the 400 MHz spectrometer, because the 

temperature control on this instrument is more accurate than that on the lower field instrument.  

T1 data as a function of temperature were obtained for each generation dendrimer because it was 

not known as to whether the interior of the lower generation dendrimers would demonstrate large 

molecule behavior as the 4th-generation did.  Another interest was to determine whether or not 

the periphery of the dendrimer would behave more like a large molecule for the 5th-generation 

dendrimer as the mobility is further restricted due to the decreasing distance between the end 

groups as generation increases. 

 Generations 2–5 yielded similar results as is seen in Figures 5.4–5.6.  While the T1 values 

were significantly different for most of the protons, the temperature trends were essentially the 

same.  All four generations (2–5) depicted a small-molecule behavior along the periphery of the 

dendrimer and large-molecule behavior within the interior of the dendrimer, as discussed above 

for the 4th-generation dendrimer.  For DAB-Py4, the T1 value for all protons increased with 

temperature, pointing to small-molecule behavior.  Another interesting observation was that the 
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Figure 5.3  T1 data acquired with an ARX-300 MHz spectrometer as a function of generation 
for DAB-Pyx (x = 4, 8, 16, 32, and 64) in CD2Cl2 (A) and 1:1 d6-Acetone pD 2 DCl (B) with 
an end-group concentration of 0.01 M for all solutions. 
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T1 values for the protons located along the periphery of the dendrimer were significantly larger 

than the values for the protons in the dendrimer interior.  Therefore, it was concluded that 

mobility increases from the core outward towards the periphery.   
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Figure 5.4 T1 data acquired on a DPX-400 MHz spectrometer as a function of temperature 
for DAB-Py4 and DAB-Py8 in CD2Cl2 with an end group concentration of 0.01 M. 
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Figure 5.5 T1 data acquired on a DPX-400 MHz spectrometer as a function of temperature 
for DAB-Py16 and DAB-Py32 in CD2Cl2 with an end group concentration of 0.01 M. 
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5.3.2 T1 studies in Aqueous Solutions 

 Of particular interest is the behavior of the pyrrole-terminated dendrimers in aqueous 

solutions, as encapsulation experiments discussed in Chapter 6 are conducted under these 

conditions.  On the 300 MHz spectrometer, T1 values were determined for all protons on 

generations 1–5 pyrrole-terminated dendrimers at 298 K.  Temperature studies were also 

conducted on the 4th-generation dendrimer dissolved in a 1:1 solution of pD 2 DCl and 

deuterated acetone.  Therefore, the pD values reported in these studies are the -log [D+] prior to 

adding acetone.  

 As is seen in Figure 5.7 the trends in the data were similar to those acquired in CD2Cl2.  

The temperature studies suggest the periphery of the dendrimers exhibit small molecule behavior 

while the interior is more characteristic of a large molecule.  Relaxation times along the 

periphery decreased with increasing dendrimer generation, suggesting mobility along the 
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Figure 5.6 T1 data acquired on a DPX-400 MHz spectrometer as a function of temperature 
for DAB-Py64 in CD2Cl2 with an end group concentration of 0.01 M. 



 78

periphery is more restricted for larger dendrimers.  The T1 values for internal protons remained 

relatively unchanged.  Again the relaxation values increased from the core outward towards the 

periphery, allowing one to conclude that protons located along the periphery of the dendrimer are 

more mobile than those located in the interior regions of the dendrimer in aqueous environments. 

 Further temperature studies were conducted on all 5 generations of pyrrole-terminated 

dendrimers on the 400 MHz instrument to determine whether the small- molecule/large-molecule 

behavior was dependent upon the dendrimer generation.  These results were also similar to those 

obtained in CD2Cl2.  All protons depicted small molecule behavior for generation 1 along with 

protons located along the periphery of the dendrimer for generations 2–5, while protons located 

along the interior of the dendrimer of generations 2–5 displayed large molecule behavior.  The 

only difference in the data is that the methylene adjacent to the carbonyl on the hexyl linker 

displayed large molecule characteristics in aqueous solutions for generations 2–5. 
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Figure  5.7  T1 data collected at various temperatures on the ARX-300 MHz spectrometer for 
DAB-Py32 in 1:1 pD 2 DCl d6-Acetone with an end group concentration of 0.01 M. 
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5.3.3 Effect of pD on T1 

 Because one of the major objectives in 

this work is to observe the encapsulation 

properties at various pH and ionic strengths, 

the effect of pD on spin-lattice relaxation was 

also investigated.  Several aqueous solutions 

were prepared with various concentrations of 

DCl.  To these solutions, an equal volume of 

dendrimer solution in deuterated acetone with 

a concentration of 0.02 M in end groups was added resulting in a final concentration of 0.01 M in 

end groups.  The pD of the samples used ranged from 1.2 to 6 and were analyzed on the 300 

MHz instrument.  A distinct trend in the T1 values was observed for the pyrrole protons. The 

relaxation time at lower pD was much longer than those values at high pD suggesting a more 

rigid structure at higher pD.  There was no significant difference in the relaxation rates of the 

other dendritic protons.  These findings are contrary to those in the literature which suggest a 

more rigid structure exists at lower pH upon protonation of the tertiary amines.7,12 

 Analysis of the data acquired from the 400 MHz instrument proved to be more difficult.  

It was imperative to conduct temperature studies at different pD to ensure that the small 

molecule/large molecule behavior remained unchanged, and interpretation of the data was still 

accurate as the pD was adjusted.  The behavior of DAB-Py32 at pD 2 had already been observed, 

so samples were prepared as discussed above with aqueous solutions that were pD 4 and pD 7.  

The spin-lattice relaxation time constants were then determined at different temperatures in each 

solution.  One of the first things noticed was the appearance of small shoulders near two of the 
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Figure 5.9 T1 data acquired on a DPX-400 spectrometer at different temperatures in which 
the samples were dissolved in 1:1 d6-Acetone D2O with a pD of 2, 4, and 7 with an end-group 
concentration of 0.01 M. 



 81

peaks.  Previously, in organic and in pD 2 solutions, the alpha-pyrrole protons and the protons 

on the methylene chain adjacent to the pyrrole were narrow and contained no shoulders located 

downfield or upfield of the larger peak.  Raising the pD results in the growth of a small shoulder 

located just downfield from these peaks.  The T1 values for the alpha-pyrrole protons and the 

methylene protons adjacent to pyrrole increased with temperature.  However, the remaining 

protons, including the two shoulders, demonstrated large molecule behavior.  There was no 

distinct trend for protons at the beta position. 

 We believe the presence of these shoulders can be explained by the previous ROESY 

data obtained on these dendrimers.  Several cross peaks were observed in the ROESY data 

suggesting the pyrrole moieties are located in multiple environments.  As noted above, previous 

T1 studies showed that the relaxation times were greatly dependent on proton location on the 

dendrimer.  The peaks correlating to protons demonstrating small molecule behavior are those 

extended outward along the periphery of the dendrimer, while the smaller shoulders 

demonstrating large molecule behavior result from the end groups backfolded somewhat into the 

dendrimer.  Because the two peaks were resolved for the alpha-protons and the methylene 

protons we are able to see both trends.  I believe the two peaks are simply overlapping for the 

proton in the beta position and this is why no distinct trend is observed in the T1 versus 

temperature graphs.  This scenario is also supported by the T2 data discussed below. 

5.3.4 T2 Determination 

 Often the spin-spin relaxation time is also measured to support T1 results.  As discussed 

previously, it is imperative to determine whether a given proton is demonstrating small or large 

molecule behavior in order to correctly interpret the relaxation data.  One simple method is to 

acquire T1 data at multiple temperatures and determine the effect temperature has on the 
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relaxation time, as we have already done.  When compared with T1 values obtained, T2 values 

also provide insight as to small or large molecule behavior.   

 As is the case with spin-lattice relaxation, spin-spin relaxation is dependent upon 

correlation time.  However, the spin-spin relaxation time constant decreases as the rotational 

correlation time increases for both small and large molecules.  When the net magnetization is 

placed in the XY plane after a 90° pulse, two processes simultaneously occur:  the magnetization 

in the XY plane dephases and goes to zero and longitudinal magnetization grows as it reaches the 

equilibrium value prior to the pulse.  The longitudinal magnetization never reaches its 

equilibrium value prior to complete dephasing of the transverse magnetization.  Therefore T2 is 

always equal to or less than T1. 

 For small molecules T2 is equal to T1.  Therefore one can determine T2 relaxation times 

and compare them with the T1 values to conclude as to whether the molecules were 

demonstrating small or large molecule characteristics.  T2 data was obtained for DAB-Py32 in 

CD2Cl2 to support our T1 data.  After conducting an exponential decay fit on the data, T2 values 

were obtained that were substantially larger than the T1 values determined under the same 

conditions. 

 As an alternative to using the Bruker software to complete the calculations, the individual 

rows in the 2D-data set were extracted and processed individually.  The rows correlating with tau 

= 0.12, 0.4, and 0.8 seconds are shown in Figure 5.10.  After processing the first row, insufficient 

shimming was a concern, as there seemed to be significant asymmetry for some of the peaks.  

However, after processing further rows with longer tau values, it was clear what was occurring.  

What appears to be significant asymmetry in the peaks toward lower ppm values at short tau 

values, is actually the result of identical protons being located in multiple environments.  This 
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was not evident until rows with larger tau values were processed.  As the peak intensity decays 

over time, the peaks associated with the numerous components are resolved.  These individual 

components are only observed in the individual rows in the T2 data set.  Numerous 1D studies 

have been conducted on this dendrimer under the same conditions and the pyrrole protons always 

yielded 2 single narrow peaks.  These additional peaks are not observed in 1D data sets because 

the FID is obtained almost immediately after the magnetization is rotated into the XY plane.  

There is insufficient time for the individual peaks to diphase and become resolved with respect to 

one another. 

 Due to the presence of numerous components, it was impossible to calculate accurate T2 

values.  The individual peaks were not resolved at short tau values and decayed too quickly to 

obtain enough data points for an accurate determination of the spin-spin relaxation.  While we 

were unable to calculate accurate T2 values, we are unaware of any work in the literature 

showing such a phenomenon.  There are several studies available with published T2 values, but 
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Figure 5.10  The 1-D rows extracted from the T2 data file acquired on a DPX-400 of DAB-
Py32 dissolved in CD2Cl2 with an end-group concentration of 0.01 M. 
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none have mentioned any proton being in such different environments.  The importance of these 

studies is the fact that these multiple components go unnoticed when simple 1-D data is acquired, 

or when the Bruker software is used to complete the calculations. 

 As discussed in Section 5.2 several through-space interactions were observed between 

pyrrole protons and methylene protons located on the hexyl chain through which the pyrrole is 

attached to the dendrimer.  Through-space interactions were observed for 3 different methylene 

protons suggesting the pyrrole functionalities are located in several environments.  Further T1 

studies revealed a distinct trend in relaxation times as a function of proton location.  Protons 

towards the interior regions of the dendrimer had shorter relaxation values, while protons near 

the periphery of the dendrimer had longer relaxation values.  In 1D studies, the FID is taken 

almost immediately after the magnetization is transferred to the XY plane and the protons are not 

given sufficient time to dephase.  Therefore, the result is a single broad peak in the NMR spectra.  

 While the chemical shifts remain relatively the same, the relaxation values for each 

proton can be different. In fact it was observed that two chemically identical protons, both 

located on the same position on pyrrole, depicted both small-molecule behavior and large-

molecule behavior. T1 studies revealed that protons in the interior regions of the dendrimer 

depicted large-molecule behavior, while protons located along the periphery depicted small- 

molecule behavior.  Therefore, interpretation of these results allows one to conclude that some of 

the pyrrole functionalities are located along the periphery of the dendrimer, while some are 

located towards the interior regions of the dendrimer.  To what extent the pyrrole groups are 

backfolding into the dendrimer remains unclear.  2D NMR studies suggest the terminal groups 

are predominately located along the periphery with some of the pyrroles interacting with 
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methylene groups on the hexyl linker.  There is no evidence to suggest the pyrroles units are 

backfolded into the interior cavities of the dendrimer. 

 If the dendrimers are in fact backfolded into the interior cavities of the dendrimer, 

encapsulation may prove difficult.  However, if the dendrimers are collapsing about the 

periphery, encapsulation efficiency may be enhanced as guests may be sterically prevented from 

exiting the dendrimer.  These scenarios were investigated and are discussed further in Chapter 6. 

5.4 Oligomerization of Pyrrole End Groups 

 Pyrrole has numerous properties that make it attractive to researchers, but its ability to 

form oligomers in the presence of chemical oxidants is most significant to this work.  

Specifically their ability to form oligomers after being attached to high-generation dendrimers is 

the most attractive asset.  Noble1 and Morara13 have demonstrated the ability of dendrimers 

possessing an oligo-pyrrole periphery to retain guest molecules in the core.  The aim of the work 

in this dissertation is to determine whether different length oligomers can be made by altering the 

pH and whether the encapsulation properties of the dendrimers are related to the length of these 

oligomers. 

 A stock solution of DAB-Py32 in acetone was prepared that was 0.02 M in end groups.  

This solution was added to an equal portion of aqueous solvent (pH = 2, 4, or 7) and the acetone 

was removed under vacuum.  An equal volume of 0.2 M Fe(NO3)3·9H2O was then added and the 

reaction was allowed to progress for 12 hours.  Methanol was then added to reduce the oxidized 

pyrroles, and the solution was stirred for an additional 24 hours.  The oligo-pyrrole-terminated 

dendrimer was then extracted with chloroform.  The volume of the organic solution was then 

decreased to increase the concentration of the dendrimer.  The solution was added to a gold 

coated microscope slide and the solvent was allowed to evaporate under a steady stream of 
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nitrogen.  A blank gold slide prepared in the same batch as the one used above was used as a 

reference on the FTIR.  Finally RAIRS was conducted on the oligo(pyrrole)-terminated 

dendrimer. 

  Zerbi prepared and isolated oligo(pyrrole)s of different repeat unit length and acquired 

IR spectra of each polymer.  They reported a direct correlation between to characteristic bands, 

which they referred to as T bands and B bands, with that of the oligomer length.  T bands 

correspond to end group vibrations and are found in the 720-730 cm-1 region (ω(C-H)oop-ring) and 

around 1065 cm-1 (ω(C-H)ip-ring).  B bands correspond to pyrrole groups within the oligo(pyrrole) 

chains and are found at approximately 765(ω(C-H)oop-ring) and 1035 cm-1(ω(C-H)ip-ring).14  When 

monomeric pyrroles are present the intensities of the B bands are dominated by that of the T 

bands.  When oligomers are formed, the intensities of the B bands increase and the intensities of 

the T bands decrease.  By comparing the relative intensities of these two bands, Zerbi was able to 

estimate the length of the oligo(pyrrole)s formed.14  Using this approach it can be seen in Figure 
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Figure 5.11  RAIR spectra obtained from DAB-Py32 oligomerized at pH 2, 4, and 7.   
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5.11 that longer oligomers were formed at higher pH.  The intensities of the T and B bands were 

similar for the oxidation conducted in pH 2 HCl, while the T band intensity increased as the pH 

was increased to 7.  This suggests that trimers were formed at pH 2 and oligomers containing up 

to 7 pyrroles were formed at pH 7.  While it is difficult to put an exact number on the oligomer 

lengths, it is quite obvious that the B band/T band ratio increased with pH suggesting larger 

oligomers were formed at higher pH.14 

 T1 studies conducted in aqueous solutions revealed a more rigid structure at increasing 

pH.  Therefore, upon initial glance it appears as though reducing mobility results in longer 

oligomers.  While this is the case with this particular system, it remains unclear as to the exact 

reason for the formation of longer oligomers.  This increase in oligomer length could in fact be 

directly related to an increase in mobility.  However, these same relaxation studies also suggest 

the pyrrole functionalities are located in multiple environments with some of them collapsed into 

the inner portions of the periphery.  This collapsing may force the end groups closer to one 

another and may be the true reason longer oligomers were formed at higher pH. 

5.5 Conclusions 

 The results of the NMR studies suggest that the pyrrole functional groups are located in 

multiple environments.  2D NMR experiments were conducted that resulted in no significant 

confirmation that the pyrrole groups are backfolded into the core of the dendrimer.  Evidence 

was observed however, that shows the pyrrole groups are in close proximity to multiple protons 

located on the hexyl linker.  T2 relaxation experiments supported this data as numerous peaks 

were observed as the transverse magnetization decayed. 

 T1 studies conducted at multiple temperatures suggested the periphery of the dendrimers 

possess small molecule characteristics while the protons located throughout the interior of the 
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dendrimer display a large molecule behavior.  The results of these studies led to several 

conclusions as to the mobility at different areas of the dendrimer under different conditions.  It 

was found that mobility increased from the interior of the dendrimer towards the periphery.  

However, mobility along the periphery decreased as generation increased.  Studies conducted on 

the 300 MHz NMR suggest that the periphery becomes more rigid as the pD is increased.  Data 

acquired on the 400 MHz in aqueous solutions was inconclusive at higher pD.  Correct molecule 

behavior, small-molecule or large-molecule, was unable to be determined as there was no 

distinct trend in the relaxation values as a function of temperature.  It is believed that this is due 

to the fact that the protons are located in several environments, some of which display small 

molecule behavior and some of which exhibit large molecule behavior. 

 While specific conclusions were not able to be drawn from some of the T1 data, it was 

apparent that changing the pH had a significant effect on the dendrimer structure.  

Oligomerization of the pyrrole moieties also proved to be significantly dependent upon the 

solution pH.  Using Zerbi’s method it was shown that larger oligomers were formed at higher pH 

for pyrrole-termianted dendrimers.  The current task at hand now is to answer the question as to 

whether these larger oligomers will be more efficient in retaining guests encapsulated by DAB-

Py32.  
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Chapter 6 
 

Encapsulation of Nile Red by Pyrrole-Terminated Dendrimers 
 

6.1 Introduction 

 Soon after dendrimers were introduced to the scientific community,1 researchers 

pondered about their potential to act as a host for smaller molecular guests.  However, seven 

years went by after their introduction before two independent researchers demonstrated their 

ability to act as a host to smaller molecular guests.2,3  Their ability to encapsulate guest 

molecules leads to an infinite number of uses which is limited only by the imagination of the 

scientists working with these molecules.   

 The purpose of these studies is to demonstrate the ability to control the guest-

encapsulation and guest-release properties of dendrimers, which may eventually find 

applications in drug delivery.  The guest used in our approach is the hydrophobic dye Nile Red 

due to its high molar absorptivity and limited solubility in aqueous solutions.4  The ability of 

both PAMAM5 and PPI6,7 dendrimers to host Nile Red, and the ability of PPI dendrimers to host 

phenol blue,8 have previously been demonstrated.  More specifically, pyrrole-terminated PPI 

dendrimers have been proven to be efficient host systems, in which the retention of the guests 

can be controlled by changing the oxidation state of the terminal pyrrole functionalities.6,7 

 Encapsulation of Nile Red by the pyrrole-terminated dendrimers was conducted with the 

pyrrole moieties in the monomeric state.  Solution conditions were then altered in an effort to 

increase the retention of the dynamically entrapped guests.  Previously encapsulation was 

conducted in pH 2 HCl in the absence of salt.6,7,9  The effect of increasing the pH and the 

addition of sodium chloride were investigated to determine if the system could be converted 

from a dynamic trapping scheme to that of a static trapping scheme.  Additionally, the pyrrole 
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functional groups were chemically oxidized, forming oligomers along the periphery of the 

dendrimer in an effort to further reduce guest leakage from the dendrimer core.  The effect of pH 

on these oligomeric dendrimers was studied as well.   

6.2 Nile Red 

 The ability of Nile Red to partition into different regions of dendrimers has already been 

demonstrated.5-7  It has also been shown that Nile Red retains its absorption properties even after 

encapsulation by micelles.4  Nile Red is an excellent guest for these studies because of its rather 

large molar absorptivity4 and its ability to withstand a wide pH range.10,11  The concentration of 

Nile Red encapsulated in these studies is limited by the low solubility of the pyrrole-terminated 

dendrimers in aqueous solutions.  To enhance solvation of these dendrimers, the pH of the 

solution is lowered by adding HCl.  Therefore it is essential that the chosen guest remains 

unaffected in acidic solution.  As it turns out, the molar absorptivity of Nile Red remains 

constant in the presence of acids.11  Furthermore, the limited solubility of Nile Red (< 10-6 M) in 

aqueous solutions4 suggests that any 

absorbance by the guest in solutions containing 

both Nile Red and dendrimer is the result of 

guest incarceration by the dendrimer as the 

guest will be forced to precipitate or partition 

into the dendritic core upon removal of acetone 

from the solution. 

 Another characteristic of Nile Red that makes it a desirable guest is its absorption 

properties.  The absorption maximum of Nile Red is strongly dependent on the polarity of the 

solvent used.11-16  Two different excited states are possible depending on the orientation of the 

N

O ON

 
Figure 6.1  The structure of Nile Red used 
in these encapsulation studies. 
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diethylamine group relative to the ring structure.  These excited states have been classified as 

internal charge transfer (ICT), planar configuration, and twisted-internal charge transfer (TICT), 

perpendicular configuration.12  It has been shown that the planar configuration associated with 

the higher energy ICT is dominant in nonpolar solvents and results in an absorption maximum 

near 505 nm, while the perpendicular configuration of the TICT is more dominant in polar 

solvents and displays an absorption maximum near 690 nm.11  For this reason, Nile Red is an 

attractive probe, as the absorption spectrum will allow one to determine the relative polarity of 

the dye’s environment.  Such information may allow one to conclude the exact location of the 

dye in the interior of larger molecular hosts. 

 Visible spectroscopy was used to measure the amount of Nile Red present in solution.  

Several standards were prepared of known concentration in acetone and the absorption spectra 

taken for each.  The maximum absorption (λmax = 532 nm) was plotted against concentration and 

the molar absorptivity was calculated to be 30,900 M-1 cm-1 which is 19% lower than the value 

reported in the literature.  This value was used to determine the number of Nile Red molecules 

per dendrimer, as the concentration of dendrimer was always known. 

6.3 Nile Red Encapsulation 

 The limited solubility of Nile Red in aqueous environments is exploited in these studies 

to facilitate guest uptake.  Two different methods were used in previous investigations,6,7 and it 

was found that a modified approach combining steps from both studies yielded the best results.  

In both methods, pH 2 HCl was added to solutions containing Nile Red and pyrrole-terminated 

dendrimers dissolved in acetone; however, the means of removing the acetone layer differed.  In 

one study, in which a tri(ethylene oxide) group was attached to the pyrrole to enhance solubility, 

the sample was purged with Argon overnight to remove the organic layer and then stirred for 
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several days to allow the guests to partition inside the dendrimer.7  It was reported that the 

intensity of the absorption band increased over time as the guests were slowly taken up into the 

dendritic cavities.  The data from current studies suggested that purging was ineffective in 

removing all of the acetone.  Even after purging for several days, there was still acetone present.  

A correlation between the stirring time and absorption intensity was never observed.  The 

absorption band associated with Nile Red was quite large after purging the sample, but decreased 

substantially when the sample was placed under vacuum for a short period of time.   

 Another approach considered was stirring the solution for an hour after adding the 

aqueous portion to the Nile Red/dendrimer solution and then removing the organic layer under 

vacuum.6  This approach yielded a very low intensity for the Nile Red absorption band and 

suggested encapsulation was not occurring to a large extent.  It was determined that allowing the 
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Figure 6.2  Visible absorbance data obtained from Nile Red, DAB-Py32, and Nile Red/DAB-
Py32 dissolved in pH 2 HCl.  The solutions were 10 x 10-6 M in dendrimer. 
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solutions to stir for 24 hours prior to removing the organic layers under vacuum provided the 

best results. 

 Solutions were prepared with 500 x 10-6 M Nile Red and 10 x 10-6 MDAB-Py32 in 

acetone.  An equal portion of aqueous solution (pH 2, 4, or 7) in which the pH had been adjusted 

upon addition of HCl or NaOH was then added, and the samples were allowed to stir for 24 

hours.  The acetone was removed under vacuum, forcing the Nile Red to precipitate or to invade 

the internal cavities located in the core of the pyrrole-terminated dendrimers.  The solutions were 

then filtered with #1 Whatman paper and diluted to yield an aqueous solution that was 5 x 10-6 M 

in DAB-Py32.  Experiments were performed in the presence and absence of dendrimer.  As can 

be seen in Figure 6.2, the absorption band consistent with the solvation of Nile Red in aqueous 

environments is 28 times more intense in the presence of DAB-Py32 than in the absence of DAB-

Py32, suggesting that Nile Red is indeed incarcerated by the dendrimer.  While the λmax of Nile 

Red in the presence of DAB-Py32 is indicative of a polar environment comparable to that of 

water, the increase in absorbance when dendrimer is present, suggests encapsulation is occurring. 

 6.4 Salt and pH Effects 

 In previous studies, it was also found that Nile Red was not encapsulated by the 

dendrimers at higher pH.  All of the encapsulation studies with these pyrrole-terminated 

dendrimers have taken place in pH 2 HCl.6,7  Attempts to encapsulate at pH 7 were reported to be 

unsuccessful.  It has been reported in the literature that the conformation of the dendritic 

branches of PPI dendrimers can be changed by altering solution conditions such as pH and ionic 

strength.17-19  

 Small-angle neutron scattering (SANS)17 and diffusion-ordered spectroscopy (DOSY)18 

studies revealed a distinct change in dendritic structure as a function of solution pH.  The results 
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of these investigations depicted dendrimer structures with a dense shell at lower pH and and a 

dense core at higher pH.  Welch’s Monte Carlo simulations predicted dendrimer conformations 

with a dense shell in the absence of salt and a dense core in the presence of salt.19  The dense 

core conformation is the result of end groups backfolding into the interior of the dendrimer.  It is 

believed that this backfolding may be the reason the guests are unable to penetrate the internal 

cavities of the pyrrole-terminated dendrimers.  One would believe that these structural changes 

would alter the encapsulation/release properties of the dendritic hosts.   

 Attempts to encapsulate Nile Red into the core of DAB-Py32 at pH 4 and pH 7 have also 

been fruitless.  While encapsulation does occur, the number of guests incarcerated by the 

dendrimer is only a fraction of the number that is encapsulated at pH 2.  It is clear that increasing 
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Figure 6.3 Encapsulation of Nile Red into DAB-Py32 at pH 2, 4, and 7.  Acetone solutions 
were prepared with a DAB-Py32 concentration of 10 x 10-6 M and a Nile Red concentration of 
500 x 10-6 M.  An equal volume of pH 2, 4, and 7 aqueous solution was added and the acetone 
was removed yielding aqueous solutions with a concentration of 10 x 10-6 M in DAB-Py32. 
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the pH causes a significant change in the structure of the dendrimer, thereby blocking access to 

the interior cavities.  The question then arose as to what effect these structural changes would 

have if the pH was altered after encapsulation is achieved at pH 2.  If the branches are indeed 

backfolding into the interior of the dendrimer as predicted by the literature,17-19 increasing the pH 

may force the guests out of the dendritic cavities.  However, it is also possible that the branches 

are simply collapsing and remain along the outer regions of the dendrimer thereby blocking the 

entrance into the interior regions.  If this is the scenario, increasing the pH may prove to be a 

useful means of trapping the guests inside and preventing premature leakage. 

6.4.1 Encapsulation at pH 4, pH 7 and in the Presence of NaCl 

 Incarceration of Nile Red by DAB-Py32 was achieved in pH 2 HCl as described 

previously.  Alter filtration was complete; four equal portions of the sample were transferred to 

separate flasks labeled pH 2, pH 4, pH 7 and NaCl.  The sample transferred to the pH 2 flask was 

diluted with pH 2 HCl to yield a final concentration of 5 x 10-6 M DAB-Py32.  1M NaOH was 

then added dropwise to flasks 2 and 3 until the pH was 4 and 7 respectively.  The volume was 

increased with pH 4 HCl (flask 2) and pH 7 (flask 3) aqueous solutions to yield the desired 

dendrimer concentration (5 x 10-6 M).  An equal volume of 0.02 M NaCl was added to the fourth 

flask resulting in a solution that was 5 x 10-6 M in dendrimer and 0.01 M in NaCl.  UV/Vis 

spectra were obtained for each sample using an aqueous sample with the same pH or ionic 

strength as the background.  

 As is seen in Figure 6.4, increasing the pH or adding salt did not cause the dendrimer to 

immediately expel the Nile Red guests.  Initially the absorbance was not measured as a function 

of time.  The purpose here was simply to demonstrate if an increase in pH or addition of salt 

would result in an immediate release of guests, as this was a possibility if the end groups are 
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backfolded into the dendrimer cavities.  However, the absorption intensity was as large as and 

sometimes larger than that of the original pH 2 solution suggesting the pyrrole end groups were 

not displacing the trapped guests.  Using the molar absorptivity value previously determined and 

the absorption intensity immediately after removing the acetone, it was found that there were 

0.37, 0.39, and 0.38 Nile Red molecules for every dendrimer when the pH was 2, 4, and 7 

respectfully.  Immediately after the addition of salt there were 0.36 Nile Red molecules for every 

1 dendrimer.  

6.4.2 Release of Nile Red as a Function of pH and Ionic Strength 

  An important aspect of this research project is the ability to control the release of the 

guests from the dendrimer core.  Therefore once encapsulation is achieved, it is necessary to 

monitor the retainment of the guests and quantify the number of guests remaining entrapped by 
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Figure 6.4  Visible absorption spectra before and after the pH was adjusted and upon 
addition of NaCl.  The concentration of DAB-Py32 was 5 x 10-6 M in each case. 



 99

the dendrimer.  In order to accomplish this task, dialysis was used to eliminate any released guest 

molecules from the bulk sample.  The dendrimers and their encapsulated guests were transferred 

to dialysis membranes possessing a molecular weight cut off of 6,000-8,000 daltons.  This 

relatively large pore size should facilitate the quick removal of any free guests in the solution, 

and concurrently prevent the dendrimers from diffusing into the dialysate.  A 5 mL sample of the 

dendrimer solutions was taken prior to dialysis and a 5 mL sample was taken from the retentate 

every 2 hours after dialysis was initiated.  The ratio of dialysate to retentate was held constant at 

30:1 to help reduce any diffusion effects.  Inconsistencies in the retentate/dialysate ratio would 

lead to varying concentration gradients.  A greater concentration gradient would be present for 

samples analyzed after long dialysis periods and would favor a faster release rate of the Nile 

Red.  Sustaining a constant dialysate/retentate ratio should eliminate any diffusion effects.  

Dialysis was also conducted in the absence of light to prevent photodegredation of Nile Red. 

 In Section 6.4 it was observed that Nile Red was unable to penetrate the dendrimer core 

at pH values above 2.  The ability of the dendrimers to retain encapsulated guests after increasing 

the pH was not investigated and seemed promising.  If the branches of the dendrimer would 

backfold inside the dendrimer and displace the Nile Red guests, one would expect to see the 

absorbance intensity decrease quickly.  If the outer branches simply collapsed and remained 

along the periphery of the dendrimer, one may propose that the guests would be prevented from 

escaping.  Due to previous 2D NMR studies discussed in Chapter 5, it was believed that the 

second scenario was more likely to occur. 

 As anticipated, it was observed that the dendrimers possessed greater retainment 

efficiency at higher pH.  As can be seen in Figure 6.6, the percentage of guests remaining 

entrapped inside the dendrimer over time was always larger for higher pH values.  After 8 hours, 
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only 38% of the guests remained encapsulated at pH 2 while 43% and 58% of the guests 

remainined at pH 4 and pH 7 respectively.  Another interesting observation was that only 26% of 

the guests encapsulated in the presence of salt were present after 4 hours.  After 6 hours, there 

was no detectable amount of Nile Red remaining in the dendrimer/salt solution.  It was estimated 

that after 8 hours, there was 1 Nile Red molecule for every 7, 6, and 5 dendrimers at pH 2, 4, and 

7 respectively.  Interestingly after 4 hours, there was only 1 Nile Red molecule for every 12 

dendrimers when salt was present.   
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Figure 6.5 The absorbance spectra of encapsulated Nile Red as a function of dialysis time 
at pH 2, 4, and 7 and in 1 x 10-3 M NaCl with a DAB-Py32 concentration of 10 x 10-6 M for all 
solutions. 
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 So while others have suggested an increase in pH and the addition of salt would have 

similar effects on the overall structure,17-19 it is evident that the encapsulation properties are 

immensely different.  The data shown here suggest the pyrrole moieties do not displace the 

encapsulated Nile Red guests at higher pH.  Instead, the branches simply collapse about the 

periphery preventing guest uptake by the dendrimer and retarding the escape of guests located in 

the internal cavities.  Adding salt to the system results in a much faster release rate of 

incarcerated guests.  The data supports the dense core conformation predicted by Welch’s Monte 

Carlo simulations19 in which the dendrimer end groups backfold into the interior of the 

dendrimer in the presence of salt displacing any trapped guests. 

 

6.4.3 Retention of Guests by Oligo-Pyrrole-Terminated Dendrimers 

 As discussed in Chapter 5, the length of the pyrrole oligomers formed upon chemical 

oxidation of pyrroles attached to the dendrimer periphery is dependent on the pH of the solution.  

It was observed that longer oligomers were formed when the pH was increased.  It has also been 

0.0

20.0

40.0

60.0

80.0

100.0

0 2 4 6 8 10

Dialysis Time (hours)

Pe
rc

en
t G

ue
st

s R
em

ai
ni

ng

pH 2
pH 4
pH 7

 
Figure 6.6  The percentage of guests remaining as a function of dialysis time at different pH. 
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reported that the oligo-pyrrole-terminated dendrimers are better suited for retaining entrapped 

guests than dendrimers whose terminal groups were in the monomeric form.6  Once the oxidized, 

oligomeric periphery was reduced, it was found that the guests were expelled from the core at a 

much higher rate.  These studies were conducted at pH 2 and correlated well with modeling 

studies that predicted a larger internal cavity volume in the oxidized state and a smaller volume 

in the reduced state.6  It was believed that the longer oligomers formed at higher pH would be 

even more efficient in retaining the trapped guests when the oligomers are in the oxidized state.  

At the same time, reducing the longer oligomers may have a much greater effect on the cavity 

volume expelling the guests at a higher rate. 

 Prior to oligomerizing the periphery of DAB-Py32, Nile Red was once again encapsulated 

at pH 2.  DAB-Py32 was dissolved in acetone and added to 100 mL of 500 x 10-6 M Nile Red 

solution in acetone.  To this solution 50 mL of pH 2 HCl was added and allowed to stir on the 

benchtop overnight.  The acetone and ~15 mL of water were removed under vacuum and the 

sample was filtered with #1 Whatman paper.  The volume was increased to 50 mL by dilution 

with pH 2 HCl.  A 20 mL portion was transferred to a flask labeled monomeric and then diluted 

with an equal portion of pH 2 HCl.  Fe(NO3)3·9H2O was then dissolved in 20 mL of pH 2 HCl 

and added to the remaining solution (10:1 Fe:Py).  After 30 minutes the sample was divided into 

two 25 mL portions.  One sample was transferred to a flask labeled oxidized to which 5 mL pH 2 

HCl was added.  The final portion was reduced with 95 mg of ascorbic acid (28:1 AA:Py), which 

was dissolved in 5 mL of pH 2 HCl.  The resulting 3 solutions contained dendrimers with 

monomeric, oxidized, and reduced pyrrole peripheries, each of which had a dendrimer 

concentration of 5 x 10-6 M.  The same procedure was repeated at each pH with the exception of 

a single step.  After removing ~15 mL of water under vacuum the pH was increased by dropwise 
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addition of 1M NaOH until the desired pH was reached.  The remaining steps were kept the same 

with the exceptions that iron nitrate and ascorbic acid were dissolved in solutions with the 

desired pH. 
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Figure 6.7  Monitoring the release of Nile Red in pH 2 (A) and pH 4 (B) HCl from DAB-Py32 
with a monomeric, oxidized, and reduced periphery. 
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 Previous encapsulation studies were repeated multiple times making it possible to 

calculate the average number of encapsulated Nile Red as a function of dialysis time and the 

average percentage of Nile Red remaining trapped by DAB-Py32.  The oligomerization studies 

were also repeated several times.  However, great difficulty in obtaining clean spectra was had.  

In a large portion of the spectra a large increase in the baseline towards lower wavenumbers was 

present.  It is believed that this is due to aggregation of the oligo(pyrrole)-terminated dendrimer 

or inter-dendrimer coupling as a result of the oligomerization.  Because the dendrimer 

concentrations were extremely low, it is unlikely that inter-dendrimer coupling is the culprit.  

Instead, the increase in the baseline intensity is attributed to the scattering of UV light by 

aggregated dendrimers.  Therefore, a single data set whose baseline was least affected by the UV 

scattering effect was chosen to represent the encapsulation properties at each pH.  Therefore the 

uncertainty in the data presented in Figure 6.7 is unknown.   

 Previous encapsulation studies with this dendrimer revealed greater retention efficiency 

when the oligo-pyrroles were in the oxidized state and a faster release rate when the oligo-

pyrroles were reduced.6   However, these studies were only conducted at pH 2.  One of the goals 

of this work was to determine the retainment efficiency for the different redox states at higer pH.  

For these studies, absorbance readings were only able to be acquired when oligomers were in the 

oxidized state at pH 2.  At pH 4 and pH 7 an initial reading was made, but within 2 hours of the 

initial reading the solutions turned bright yellow and the absorbance measurements were too high 

to be measured.  Further analysis of Fe(NO3)3·9H2O solutions at pH 4 and 7 revealed a similar 

absorption after sitting on the bench top for 2 hours.  Therefore this increase in intensity is 

attributed to the presence of Fe(NO3)3 rather than changes in the structure of the dendrimer.  It 

has been observed that Fe3+ results in several absorption bands while Fe2+ possesses no 
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absorption characteristics.20  In acidic solutions Fe2+ is the more dominant species which 

explains the ability to make absorbance measurements for Nile Red at pH 2.  At higher pH 

however, the Fe3+ species is more dominant, often times resulting in absorption bands near 300 

nm which have been assigned to FeOH2+.  This scenario is also supported by the results 

presented here.  Data was obtained at higher pH when reducing agent was present, as any Fe3+ 

present will be reduced to Fe2+.20  Therefore the increase in absorbance observed in these studies 

at lower wavelengths is attributed to the hydrolysis of Fe3+. 

 According to the data collected at pH 2, the presence of both oxidized and reduced 

pyrrole moieties along the periphery of the dendrimer hindered the release of Nile Red.  

However, interestingly there was no vast difference in the data between the oxidized and reduced 

states.  The data for the reduced pyrrole oligomers was extremely similar to that of the pyrroles 

in the oxidized state.  In these studies a rapid expelling of the guests was not observed when the 

pyrroles were reduced.  In fact it was determined that the reduced periphery was more efficient 

in preventing the guests from escaping than the monomeric periphery.  After dialysis was 

conducted for 8 hours the dendrimer was able to retain 65%, 49%, and 38% of the original 

encapsulated guests when the periphery was in the oxidized, reduced, and monomeric state 

respectively.  This discrepancy with previous results may be due to the differences in reduction 

and dialysis.  Previously the oxidized oligomers were reduced by conducting dialysis in 

methanol.6  These results were compared to that of the oligo-pyrrole-terminated dendrimer 

remaining oxidized in which dialysis was conducted in pH 2 HCl.  While the solubility of Nile 

Red in aqueous solutions is reported to be less than 0.12 x 10-6 M, the solubility of Nile Red in 

methanol is greater than 1 x 10-3 M.21  Therefore, what appeared to be a quick release of Nile 
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Red by the reduced-dendrimer could simply be the result of the Nile Red partitioning to a more 

favorable environment rather than a change in the oligo-pyrrole redox state. 

 Oligomerization of the dendrimer periphery at pH 4 proved to be effective in retaining its 

encapsulated guests as well.  While obtaining absorbance data of the oxidized pyrroles was 

unsuccessful, we were able to observe the retainment properties in the reduced state.  Once again 

it was determined that the oligomeric periphery in the reduced state was more effective in 

retaining the guest molecules.  After 8 hours of dialysis the oligomeric periphery retained over 

51% of the original guests encapsulated while less than 28% remained trapped in the dendrimer 

possessing a monomeric periphery.  While these numbers seem to be extremely different, it is 

important to mention that there was only 1 Nile Red molecule remaining for every 8 dendrimer 

molecules in the reduced state, and 1 guest for every 12 dendrimers with a monomeric periphery. 

 Analysis of the pH 7 data suggests oligomerization had very little effect on the retainment 

properties of the dendrimer host.  When the percentages of guests remaining encapsulated are 

considered, it appears as though the reduced periphery is much more efficient in preventing 

leakage of the guests.  When the actual numbers of guests are taken into account, there is very 

little difference between the monomeric and oligomeric periphery.  Initially the monomeric 

dendrimer possessed slightly more guest molecules in its internal cavities than the oligomeric 

dendrimer.  After only 4 hours of dialysis, the numbers of encapsulated guests were very similar.  

While the percentage of guests remaining entrapped by the dendrimer may be significantly 

different, there is little difference in the number of guest molecules remaining incarcerated. 

6.5 Conclusions 

 After completing these studies, it is evident that the encapsulation properties of PPI 

dendrimers can be tuned by altering the solution conditions.  It has been shown that the retention 
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efficiency of the dendrimer hosts can be increased by raising the pH.  It was also observed that 

the guests were quickly expelled from the dendrimer core upon addition of NaCl to the solutions.  

Another route that can be taken to increase the holding efficiency of the dendrimers is to 

oligomerize the pyrrole end groups.  The data suggests that at pH 2 and 4 the oligomeric 

periphery was better suited for trapping the guests and reducing leakage than the monomeric 

periphery.  At pH 7 the encapsulation properties of both oligo(pyrrole)-terminated dendrimers 

and pyrrole-terminated dendrimers were essentially the same.  Unlike previous studies, no 

difference was observed in the incarceration properties of dendrimers whose periphery are in the 

oxidized and reduced states.  However, this is likely due to the differences in dialysis as 

discussed in Section 6.4.3 above.  In the previous studies, dialysis was conducted in methanol in 

which the Nile Red guest is highly soluble in.  It is likely that the guest molecules exited the 

dendrimer due to their preference of being solvated by methanol than the dendrimer host.  

Therefore, differences in the release rates were due to changes in solvent rather than changes in 

redox states.  The results of these studies suggest there is little difference in the trapping 

effectiveness between both redox states at pH 2.  We observed that guest retention was increased 

at each pH by oligomerizing the pyrrole periphery.  Another surprising observation was that the 

shorter pyrrole oligomers formed at pH 2 were able to retain the Nile Red guests for a longer 

period of time than the longer oligomers formed at pH 4 and 7. 

 Interpretation of the data becomes more difficult when trying to compare all scenarios 

investigated.  When completing the oligomerization studies, it was apparent that coupling the 

pyrrole monomers increased guest retention at each pH.  However, when all of the studies are 

taken into consideration, the oligomerized dendrimer at pH 7 expelled the guests more quickly 

than the oligomers at lower pH and the dendrimers with a monomeric pyrrole periphery.  
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Another interesting observation was the monomeric dendrimer at pH 7 was the most efficient at 

retaining the encapsulated guests of all systems studied.  
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Figure 6.8 Graphic illustrating the encapsulation efficiency of DAB-Py32 with a periphery 
consisting of monomeric pyrrole at pH 2, 4, and 7 and oligo-pyrrole at pH 2, 4, and 7.  
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Chapter 7 

Conclusions and Future Studies 

7.1 Introduction 

 Amine-terminated PPI dendrimers were modified with ferrocene, BOC, and pyrrole end- 

groups.  H-bonding interactions were monitored with FTIR for BOC- and ferrocene-terminated 

dendrimers in an effort to gain an understanding as to the proximity of the end groups with 

respect to one another.  The degree of intra-dendrimer H-bonding was strongly dependent upon 

dendrimer generation.  Further, these dendrimers were used to study the binding mechanism to 

gold surfaces by adsorbing both fully functionalized dendrimers and amine-terminated 

dendrimers.  Amine-terminated dendrimers were further modified with ferrocene after 

adsorption.  The surface reaction was monitored using cyclic voltammetry and RAIRS. 

 Several studies suggest the end groups of PPI dendrimers are located along the periphery 

of the dendrimer.  While these studies are not definitive, no data was acquired which suggests 

that backfolding is occurring.  It has also been shown here that the structure of pyrrole-

terminated PPI dendrimers can be altered by changing solution conditions.  Determination of T1 

1H NMR relaxation data lead to the conclusion that the relative rigidity of the dendrimers, more 

specifically their end groups, could be manipulated by changing the pH of the solution in which 

they are dissolved.  The length of the pyrrole oligomers formed through chemical oxidation of 

pyrrole-terminated dendrimers was also dependent upon the solution pH.  This work 

demonstrates that while the chemical makeup of the dendrimers remains the same, the 

encapsulation properties of both pyrrole-terminated dendrimers and oligo-pyrrole-terminated 

dendrimers vary upon changing solution conditions.   
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7.2 Summary of Results 

 PPI dendrimers were modified with ferrocene and BOC terminal groups to study end-

group location and the binding mechanism of dendrimers to gold surfaces.  A common method 

used to measure H-bonding interactions in proteins1 with FTIR spectroscopy was used to 

monitor the degree of H-bonding of dendrimers both in solution and adsorbed to surfaces.  These 

studies revealed stronger H-bonding interactions for higher generation dendrimers.  An increase 

in H-bonding was interpreted as a decrease in the proximity of the peripheral functional groups.  

Therefore, it was shown that the end groups of PPI dendrimers become forced in closer 

proximity as generation increases.   

 Both the ferrocene and BOC functionalities used in these studies do not independently 

adsorb to gold surfaces.  However, completely modified BOC- and ferrocene-terminated 

dendrimers did adsorb quite well to gold substrates.  Because the dendrimers were modified with 

end groups that do not independently adsorb to the surfaces, it was concluded that adsorption of 

these dendrimers occurred through the tertiary amines.  Previous studies have included 

dendrimers possessing primary amines along the periphery2 or functional groups that direct 

adsorption.3-5  While it has been reported that the primary amines of PAMAM dendrimers direct 

adsorption,6 this work demonstrates that a significant portion of the primary amines of PPI 

dendrimers are available for functionalization even after adsorption.  Complete modification of 

DAB-Am16/Au was not achieved which suggests it is possible for the primary amines of amine-

terminated dendrimers to be involved in the adsorption process.  Dendrimers whose periphery 

has been functionalized adsorb via the internal tertiary amines.  Adsorption of dendrimers 

possessing amine functional groups may occur through the primary amines, the tertiary amines, 
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or a combination of both.  However, it has been shown that some primary amines are readily 

available for functionalization. 

 The H-bonding studies also suggest the location of the terminal functional groups are 

along the periphery of the dendrimer.  It is believed that the degree of H-bonding would be much 

less affected by dendrimer generation if these end groups were backfolded into the interior of the 

dendrimer.  2D NMR studies were conducted to further explore this scenario.  After acquiring 

NOESY and ROESY data in both organic and aqueous solvents, there was no definitive evidence 

that the end groups are located in the interior regions of the dendrimer.  If a portion of the 

functional groups are backfolded into the interior of the dendrimer, one would expect to observe 

cross-peaks in the NOESY and ROESY data between pyrrole protons and methylene protons 

located throughout the interior of the dendrimer.  No such evidence was observed.  The only 

crosspeaks observed in which the pyrrole protons were involved, were between the pyrrole 

protons and methylene protons located on the linker through which the pyrrole is attached to the 

dendrimer.  So while there is no definitive evidence that the end groups are located solely along 

the periphery of the dendrimer, as a result of these findings it is believed that it is highly unlikely 

that a significant portion of functional groups are backfolded into the interior of the dendrimer. 

 Proton NMR T1 relaxation experiments were conducted on all 5 generations of pyrrole-

terminated dendrimers under a range of solution conditions.  Data were collected in organic and 

aqueous solvents at several temperatures.  As a result of the temperature studies, it was 

determined that protons located in the interior of the dendrimer (within the amide bond) 

demonstrated large molecule behavior, while protons located along the periphery of the 

dendrimer (beyond the amide linkage) exhibited small molecule behavior.  It was then possible 

to deduce that the periphery of pyrrole-terminated PPI dendrimers becomes more rigid as the 
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generation increases, as shorter T1 values were obtained for higher generations.  Mobility also 

increases from the core of the dendrimer outward towards the periphery as relaxation times were 

much shorter for protons located in the interior regions of the dendrimer when compared to 

protons near the periphery. 

 After initial temperature studies on DAB-Py32 in aqueous solutions with a pD of 2, it was 

believed that the dendrimer periphery was more characteristic of a small molecule.  However, 

after conducting temperature studies at higher pD, it became difficult to determine whether the 

molecules possessed small or large molecule behavior as there were no consistent trends in the 

T1 times as a function of temperature.  It is believed that this is attributed to the fact that the end 

groups are located in multiple environments.  The 2D NMR studies revealed the pyrrole protons 

were in close proximity to several protons on the hexyl linker.  Also at higher pD values, 

shoulders were observed for the peaks associated with pyrrole protons in the NMR spectra.  

Results from T2 data acquired also supported the theory that the end groups were located in 

multiple environments.  Initially with shorter tau values, single peaks were observed for pyrrole 

protons.  However, at longer tau values after the transverse magnetization was allowed to 

dephase, it became apparent that there were multiple, different pyrrole protons.  As the peak 

height decreased, the single broad peak gave rise to several more narrow peaks.  Therefore, it is 

clear the pyrrole functional groups are located in multiple environments.  It is believed that a 

significant number of the end groups are somewhat backfolded into the outer regions of the 

dendrimer.   

 Despite the fact that definitive conclusions were not drawn from some of the T1 data, it 

was apparent that changing the pD had a significant effect on the dendrimer structure.  

Oligomerization of the pyrroles along the dendrimer periphery was then conducted at different 
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pH.  RAIRS results showed that smaller oligomers were formed at lower pH, and longer 

oligomers were formed at higher pH.  By comparing key bands in the spectra,7 it was estimated 

that pyrrole trimers were formed at pH 2 and oligomers containing up to 7 pyrrole units were 

formed at pH 7.  While it was extremely difficult to pinpoint the exact length of the oligomers, it 

was obvious that longer oligomers were formed as the pH was increased. 

 The relaxation time studies and oligomerization studies opened the door for numerous 

encapsulation scenarios.  First, the effect of changing the pH was investigated for encapsulating 

Nile Red while the pyrroles were in the monomeric state.  A higher percentage of guests were 

trapped at lower pH values.  Therefore, encapsulation was always conducted at pH 2.  The 

inability to encapsulate as many guests at pH 4 and pH 7 suggested either the end groups were 

backfolded into the interior of the dendrimer or the end groups are collapsed blocking access to 

the interior cavities.  Therefore the effect of raising the pH after encapsulation was investigated.  

If the end groups backfold into the interior once the pH is increased, one would expect to see a 

quick release of the guests as the pyrrole functionalities displace the trapped guests.  If the 

branches are simply collapsing along the outer regions of the dendrimer, one would expect to see 

an increase in retainment upon increasing the pH. 

 It was observed that a larger percentage of Nile Red remained incarcerated by the 

dendrimer when the pH was increased after encapsulation.  This finding suggests the end groups 

are simply in a collapsed form rather than backfolded into the interior of the dendrimer.  Despite 

the increased holding efficiency, the guests were still able to slowly be released from the 

dendrimer.  A quick release of all guests was not observed at any pH.  However, adding salt 

increased the migration rate of guests out of the dendrimer.  It is believed that in the presence of 

salt the end-groups backfold into the interior of the dendrimer displacing the trapped guests. 
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 After investigating the effect of pH on the encapsulation properties of the monomeric-

pyrrole-terminated dendrimer, the effect of oligomerizing the periphery was investigated.  At 

both pH 2 and pH 4, the retainment efficiency of the guests was somewhat higher for the oligo-

pyrrole terminated dendrimer than that of the dendrimer possessing a monomeric periphery.  In 

order to monitor this efficiency, the number guests encapsulated per dendrimer was calculated as 

well as the percentage of guests remaining as a function of dialysis time.  The dendrimers 

containing the oligo-pyrrole periphery were able to retain a higher percentage of guests at pH 4 

and pH 7.  At first glance of the data, it seems as though these oligomers were significantly more 

efficient in retaining the guests than dendrimers whose periphery consisted of monomeric 

pyrroles.  However, if the actual number of guests encapsulated is taken into consideration, the 

oligomeric periphery is only more efficient in preventing guest leakage at pH 2.  After dialysis 

was conducted for 8 hours, the dendrimers whose periphery consisted of monomeric pyrrole 

possessed more Nile Red molecules than dendrimers whose periphery was made up of oligo-

pyrrole when the solution pH was 4 and 7. 

 Upon completion of all studies it was found that the dendrimer with terminal monomeric 

pyrroles at pH 7 was able to retain more guests than all other scenarios investigated.  The 

dendrimer at pH 7 with the oligo-pyrrole periphery was the least efficient at retaining 

encapsulated guests. Of all the oligo(pyrrole)-terminated dendrimers studied, the dendrimer 

with the shortest oligomers (pH 2) was the most efficient in preventing guest leakage. 

7.3 Conclusions 

 Upon completing these studies it was found that the dendrimer functional groups are 

predominantly located along the periphery of the dendrimer allowing guests to occupy their 

internal cavities.  It is evident however, that increasing the pH causes a significant change in the 
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dendrimer structure which greatly affects the dendrimers’ encapsulation properties.  It is believed 

that the dendrimer branches collapse amongst themselves at higher pH even though they are nott 

necessarily located in the interior regions of the dendrimer. 

 Collapsing of the dendrimer branches prevents the uptake of molecular guests by the 

dendrimer, but retards the release of guests already encapsulated.  Therefore, in order for the 

dendrimer to accommodate more guests, encapsulation should occur at lower pH.  Once the 

guests are located inside the periphery, the pH can be adjusted with no initial loss of guests.  

Once the pH is raised, the collapsed outer branches sterically inhibit the diffusion of guests from 

the interior cavities to the outside environment. 

 The results of these studies reveal several options to enhance encapsulation and release 

such that these dendrimers could be useful in host/guest systems.  In order to encapsulate as 

many guests as possible, it is imperative that encapsulation occurs at pH 2.  Once encapsulation 

is successful one may use a few options to retain and then trigger the release of the guests.  One 

option is to simply raise the pH to 7.  Once this occurs the outer branches will collapse about the 

periphery of the dendrimer and retard leakage of encapsulated guests.  Once the pH is increased 

there are two options to increase the release rate of the guests.  One route to speed up the release 

rate of the guests is to simply lower the pH.  However, because the oligo-pyrrole-terminated 

dendrimers at pH 7 possessed the worst retainment efficiency, the pyrrole monomers could also 

be oxidized to yield oligomers which would increase the release rate of the guests. 

 Even with the interesting findings observed here, it is important to mention the small 

number of guests encapsulated by the dendrimers.  Despite the large size of the dendrimer used 

for the encapsulation studies in this work, 8736.5 daltons, the maximum number of guests that 

may be incarcerated by each dendrimer is one.  In fact, the overall average number of guests 
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encapsulated per dendrimer was always less than 1 in these studies and varied greatly.  Even 

though every possible attempt was made to prevent variation in the experimental procedure, the 

number of guests encapsulated varied each time.  The number of guests encapsulated per 

dendrimer ranged from 0.52 to 0.32 over the course of these studies.  With these findings, it is 

pretty clear that this exact dendrimer would not be the ideal choice to use in 

encapsulation/release systems.  However, perhaps other comparable dendrimers may be better 

suited.8  A similar pyrrole-terminated dendrimer has been synthesized by this group that is more 

water soluble.   A tri(ethylene oxide) group was added to the pyrrole to enhance water solubility.  

This makes it possible to use the 5th-generation dendrimer for encapsulation studies.  Higher 

concentrations and the ability of the larger dendrimer to accommodate more guests would allow 

one to make a better assessment as to the encapsulation and release properties of the dendrimer 

as a function of solution conditions. 

7. 4 Future Studies 

 It has been shown in this work that dendrimers whose periphery has been modified with 

groups that do not adsorb to gold substrates adsorb through their tertiary amines.  Attempts to 

ascertain how amine-terminated dendrimers adsorb to gold surfaces were inconclusive.  One of 

the techniques used was to adsorb amine-terminated dendrimers to a gold surface and then 

complete surface reactions to functionalize the adsorbed dendrimers with ferrocene.  Once the 

surface reactions were complete, it was possible to determine the surface coverage of ferrocene.  

However, it was not possible to determine exactly how much dendrimer was adsorbed to the 

surface prior to modification.  A solution to this problem would be to partially functionalize the 

dendrimers with ferrocene prior to adsorption and surface reactions.  The extent of 

functionalization could be determined using MALDI-MS and NMR.  Once the extent of 
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functionalization is known, the surface area of the dendrimers could be determined from the 

surface area of the partially functionalized dendrimers.  Then after further modification of the 

adsorbed dendrimer, it would be possible to determine exactly how many primary amines, if any, 

remain unmodified. 

 It was also found that longer pyrrole oligomers were formed when the solution pH was 

raised.  T1 data also showed that the dendrimer’s periphery was more rigid at higher solution pH.  

It is still unclear as to whether this decrease in mobility is the reason larger oligomers are able to 

form.  Encapsulation studies reveal that it is highly likely that the end groups are in a collapsed 

form at higher solution pH.  It may be possible that this collapsed state results in pyrrole units in 

closer proximity to one another enabling the coupling of more pyrrole monomers to make longer 

oligomers.  H-bonding studies discussed in Chapter 4 could be completed on these pyrrole-

terminated dendrimers at a range of solution pH in order to investigate the relative proximity of 

the end groups with respect to one another as a function of pH.  

 This work demonstrates that the encapsulation properties of pyrrole-terminated 

dendrimers can be altered by changing solution conditions such as pH.  However, it is difficult to 

make specific conclusions as to the encapsulation efficiency due to the small amount of trapped 

guests (<1 guest per dendrimer).  One way to overcome this problem is to use larger dendrimers.  

However, the 5th-generation pyrrole-terminated dendrimer used in these studies would not be an 

ideal choice because of its low solubility in water.  

 A solution to this dilemma would be to use a pyrrole-terminated dendrimer in which the 

pyrrole has been modified to increase solubility.  Such a dendrimer has been synthesized in our 

labs.8  The pyrrole end-groups were modified with tri(ethylene oxide), TEO, which makes it 

possible to use both higher concentrations of dendrimer and the larger 5th-generation dendrimer 
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in aqueous solutions.  Increasing both the dendrimer concentration and the host’s capacity for 

guests would significantly increase the absorbance for Nile Red.  Completing studies with this 

system at a range of solution pH with overall higher concentrations of Nile Red would allow one 

to make a more accurate assessment as to the encapsulation properties of these dendrimers. 

 It would also be important to conduct relaxation studies on this TEO-Py-terminated 

dendrimer to determine if mobility about the periphery is affected by solution pH as were the 

pyrrole-terminated dendrimers in these studies.  It would also be interesting to determine if 

altering the pH would result in different length oligomers and to further investigate the effect of 

oligomer length on guest retention.  It is still not perfectly clear as to whether longer oligomers 

are more or less effective in trapping guests.  The work presented here demonstrates that a 

smaller percentage of guests were retained by dendrimers with a oligo-pyrrole periphery 

containing longer oligomers.  However, despite the fact that multiple studies were conducted on 

these oligo-pyrrole-terminated dendrimers, only a single data set was acquired that yielded 

acceptable data.  UV scattering with most of the samples made it extremely difficult to assess the 

number of Nile Red guests harbored by each dendrimer.  Using a smaller concentration of 

dendrimer, results in an equally smaller concentration of Nile Red. This lower concentration of 

Nile Red was found to be below the detection limit for visible spectroscopy. 
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Appendix A:  Supplemental NMR Data 
 

 
 

Figure A.1 NOESY data of DAB-Py32 in CD2Cl2 in which the end-group concentration was 
0.01 M. 
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Table A.1 T1 data in seconds for DAB-Py32 in CD2Cl2 obtained on a 300 MHz NMR at a 
variety of temperatures with an end-group concentration of 0.01 M. 
 

Temperature (K) 
Proton 

305 298 285 275 265 245 

 -NH-C=0- 0.288 0.223 0.210 0.201 0.168 0.357 
Py-2,5-H 3.065 2.778 2.533 2.131 1.901 1.375 
Py-3,4-H 4.521 3.731 3.520 3.216 3.077 1.867 
 -CH2-Py 0.935 0.751 0.765 0.651 0.586 0.451 

 -CH2-NH-C=O 0.348 0.336 0.346 0.361 0.372 0.477 
N(CH2)3 0.377 0.298 0.392 0.438 0.458 0.430 

 -CO-CH2-(CH2)4-Py 0.543 0.498 0.517 0.502 0.461 0.443 
 -CO-CH2-CH2-(CH2)3-Py 0.716 0.621 0.603 0.540 0.487 0.424 
 -CO-(CH2)3-CH2-CH2-Py 

 -N-CH2-CH2-CH2-N- 
0.456 0.420 0.424 0.415 0.412 0.419 

 -CO-(CH2)2-CH2-(CH2)2-Py 
 -N-CH2-(CH2)2-CH2-N- 

0.923 0.656 0.819 0.708 0.606 0.458 

 
 
Table A.2 T1 data in seconds for DAB-Pyx (x = 4, 8, 16, 32, and 64) in CD2Cl2 obtained on a 
300 MHz NMR at 298 K with an end-group concentration of 0.01M. 
 

Proton DAB-Py4 DAB-Py8 DAB-Py16 DAB-Py32 DAB-Py64

Py-2,5-H 4.181 3.630 3.120 2.778 2.237 
Py-3,4-H 5.307 4.569 4.120 3.731 2.939 
 -CH2-Py 1.174 0.955 0.853 0.751 0.670 

 -CH2-NH-C=O 0.302 0.257 0.282 0.336 0.367 
N(CH2)3 0.319 0.202 0.232 0.298 0.362 

 -CO-CH2-(CH2)4-Py 0.594 0.718 0.486 0.498 0.491 
 -CO-CH2-CH2-(CH2)3-Py 0.871 0.768 0.681 0.621  - 
 -CO-(CH2)3-CH2-CH2-Py 

 -N-CH2-CH2-CH2-N- 
0.503 0.377 0.328 0.420 0.419 

 -(CH2)2-CH2-(CH2)2-Py 
 -N-CH2-(CH2)2-CH2-N- 

0.836 0.691 0.667 0.656 0.615 
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Table A.3 T1 data in seconds for DAB-Py32 in 1:1 d6-Acetone pD 2 DCl obtained on a 300 
MHz NMR at a variety of temperatures with an end-group concentration of 0.01M. 
 

Temperature (K) 
Proton 

305 298 285 275 

Py-2,5-H 2.273 1.831 1.737 1.403 
Py-3,4-H 2.992 2.458 2.335 1.933 
 -CH2-Py 0.626 0.510 0.483 0.400 

 -CH2-NH-C=O 0.320 0.344 0.346 0.380 
N(CH2)3 0.282 0.327 0.327 0.377 

 -CO-CH2-(CH2)4-Py 0.453 0.322 0.416 0.412 
 -CO-CH2-CH2-(CH2)3-Py 0.531 0.446 0.418 0.362 
 -CO-(CH2)3-CH2-CH2-Py 

 -N-CH2-CH2-CH2-N- 
0.460 0.373 0.376 0.341 

 -CO-(CH2)2-CH2-(CH2)2-Py 
 -N-CH2-(CH2)2-CH2-N- 

0.495 0.409 0.392 0.337 

 
 
Table A.4 T1 data in seconds for DAB-Pyx (x = 4, 8, 16, 32, and 64) in 1:1 d6-Acetone pD 2 
DCl obtained on a 300 MHz NMR at 298 K with an end-group concentration of 0.01M. 
 

Proton DAB-Py4 DAB-Py8 DAB-Py16 DAB-Py32 DAB-Py64 

Py-2,5-H 2.723 2.435 1.974 1.831 1.464 
Py-3,4-H 3.512 3.251 2.705 2.458 1.949 
 -CH2-Py 0.678 0.623 0.533 0.510 0.466 

 -CH2-NH-C=O 0.277 0.271 0.317 0.344 0.384 
N(CH2)3  - 0.252 0.270 0.327 0.380 

 -CO-CH2-(CH2)4-Py 0.229 0.256 0.282 0.322 0.354 
 -CO-CH2-CH2-(CH2)3-Py 0.568 0.508 0.448 0.446 0.421 
 -CO-(CH2)3-CH2-CH2-Py 

 -N-CH2-CH2-CH2-N- 
0.459 0.426 0.393 0.373 0.398 

 -CO-(CH2)2-CH2-(CH2)2-Py 
 -N-CH2-(CH2)2-CH2-N- 

0.515 0.462 0.415 0.409 0.398 
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Table A.5 T1 data in seconds for DAB-Py32 in 1:1 d6-Acetone D2O obtained on a 300 MHz 
NMR at a variety of solution pD with an end-group concentration of 0.01M. 
 

pD 
Proton 

1.24 1.70 2.00 2.60 3.70 6.00 
Py-2,5-H 1.927 1.946 1.831 1.451 1.275 1.050 
Py-3,4-H 2.667 2.709 2.458 1.865 1.569 1.520 
 -CH2-Py 0.529 0.528 0.510 0.452 0.454 0.305 

 -CH2-NH-C=O 0.308 0.343 0.327 0.333 0.345 0.215 
N(CH2)3 0.336  - - 0.335 0.337 0.217 

 -CO-CH2-CH2-(CH2)3-Py 0.466  - 0.446 0.373 0.378 0.284 
 -CO-(CH2)3-CH2-CH2-Py 

 -N-CH2-CH2-CH2-N- 
0.414 0.432 0.373 0.372 0.381 0.236 

 -CO-(CH2)2-CH2-(CH2)2-Py 
 -N-CH2-(CH2)2-CH2-N- 

0.433 0.418 0.409 0.385 0.379 0.242 

  
 
Table A.6 T1 data in seconds for DAB-Py4 in CD2Cl2 obtained on a 400 MHz NMR at a 
variety of temperatures with an end-group concentration of 0.01 M. 
 

Temperature (K) 
Proton 

303 288 273 
Py-2,5-H 5.514 3.047 3.270 
Py-3,4-H 7.649 5.082 4.446 
 -CH2-Py 1.487 1.062 0.827 

 -CH2-NH-C=O 0.420 0.371 0.349 
N(CH2)3 0.321 0.301 0.251 

 -CO-CH2-(CH2)4-Py 0.692 0.592 0.513 
 -CO-CH2-CH2-(CH2)3-Py 1.166 0.848 0.657 
 -CO-(CH2)3-CH2-CH2-Py 

 -N-CH2-CH2-CH2-N- 
0.727 0.613 0.524 

 -CO-(CH2)2-CH2-(CH2)2-Py 
 -N-CH2-(CH2)2-CH2-N- 

0.985 0.769 0.610 
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Table A.7 T1 data in seconds for DAB-Py8 in CD2Cl2 obtained on a 400 MHz NMR at a 
variety of temperatures with an end-group concentration of 0.01 M. 
 

Temperature (K) 
Proton 

303 288 273 
Py-2,5-H 4.266 3.405 2.787 
Py-3,4-H 5.764 4.526 3.747 
 -CH2-Py 1.198 0.915 0.715 

 -CH2-NH-C=O 0.366 0.356 0.362 
N(CH2)3 0.282 0.294 0.323 

 -CO-CH2-(CH2)4-Py 0.692 0.789 0.840 
 -CO-CH2-CH2-(CH2)3-Py 1.033 0.730 0.590 
 -CO-(CH2)3-CH2-CH2-Py 

 -N-CH2-CH2-CH2-N- 
0.401 0.427 0.483 

 -CO-(CH2)2-CH2-(CH2)2-Py 
 -N-CH2-(CH2)2-CH2-N- 

0.558 0.696 0.854 

 
 
Table A.8 T1 data in seconds for DAB-Py16 in CD2Cl2 obtained on a 400 MHz NMR at a 
variety of temperatures with an end-group concentration of 0.01 M. 
 

Temperature (K) 
Proton 

303 288 273 
Py-2,5-H 3.431 2.742 2.383 
Py-3,4-H 4.408 3.607 3.231 
 -CH2-Py 1.004 0.793 0.654 

 -CH2-NH-C=O 0.395 0.415 0.456 
N(CH2)3 0.321 0.371 0.440 

 -CO-CH2-(CH2)4-Py 0.603 0.614 0.705 
 -CO-CH2-CH2-(CH2)3-Py 0.908 0.672 0.550 
 -CO-(CH2)3-CH2-CH2-Py 

 -N-CH2-CH2-CH2-N- 
0.455 0.453 0.487 

 -CO-(CH2)2-CH2-(CH2)2-Py 
 -N-CH2-(CH2)2-CH2-N- 

0.539 0.633 0.785 
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Table A.9 T1 data in seconds for DAB-Py32 in CD2Cl2 obtained on a 400 MHz NMR at a 
variety of temperatures with an end-group concentration of 0.01 M. 
 

Temperature (K) 
Proton 

303 288 273 

Py-2,5-H 3.667 2.606 2.076 
Py-3,4-H 4.482 3.434 2.788 
 -CH2-Py 0.979 0.754 0.601 

 -CH2-NH-C=O 0.461 0.500 0.562 
N(CH2)3 0.404 0.473 0.587 

 -CO-CH2-(CH2)4-Py 0.616 0.594 0.739 
 -CO-CH2-CH2-(CH2)3-Py 1.182 0.704 0.537 
 -CO-(CH2)3-CH2-CH2-Py 

 -N-CH2-CH2-CH2-N- 
0.559 0.515 0.523 

 -CO-(CH2)2-CH2-(CH2)2-Py 
 -N-CH2-(CH2)2-CH2-N- 

0.750 0.616 0.488 

 
 
Table A.10 T1 data in seconds for DAB-Py64 in CD2Cl2 obtained on a 400 MHz NMR at a 
variety of temperatures with an end-group concentration of 0.01 M. 
 

Temperature (K) 
Proton 

303 288 273 
Py-2,5-H 3.108 2.515 2.062 
Py-3,4-H 4.324 3.532 3.009 
 -CH2-Py 0.863 0.708 0.616 

 -CH2-NH-C=O 0.524 0.609 0.725 
N(CH2)3 0.529 0.673 0.869 

 -CO-CH2-(CH2)4-Py 0.765 0.880 0.716 
 -CO-CH2-CH2-(CH2)3-Py 0.718 0.625 0.580 
 -CO-(CH2)3-CH2-CH2-Py 

 -N-CH2-CH2-CH2-N- 
0.629 0.583 0.568 

 -CO-(CH2)2-CH2-(CH2)2-Py 
 -N-CH2-(CH2)2-CH2-N- 

0.567 0.645 0.760 
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Table A.11 T1 data in seconds for DAB-Py32 in 1:1 d6-Acetone pD 2 DCl obtained on a 400 
MHz NMR at a variety of temperatures with an end-group concentration of 0.01M. 
 

Temperature (K) 
Proton 

305 290 275 
Py-2,5-H 2.413 1.815 1.186 
Py-3,4-H 3.120 2.474 1.480 
 -CH2-Py 0.687 0.528 0.471 

 -CH2-NH-C=O 0.462 0.526 0.655 
N(CH2)3 0.462 0.570 0.730 

 -CO-CH2-CH2-(CH2)3-Py 0.528 0.504 0.491 
 -CO-(CH2)3-CH2-CH2-Py 

 -N-CH2-CH2-CH2-N- 
0.531 0.470 0.490 

 -CO-(CH2)2-CH2-(CH2)2-Py 

 -N-CH2-(CH2)2-CH2-N- 
0.553 0.461 0.446 

 
 
Table A.12 T1 data in seconds for DAB-Py32 in 1:1 d6-Acetone pD 4 DCl obtained on a 400 
MHz NMR at a variety of temperatures with an end-group concentration of 0.01M. 
 

Temperature (K) 
Proton 

305 290 275 
Py-2,5-H 1.539 1.102 1.120 
Py-3,4-H 1.053 0.847 1.064 
 -CH2-Py 0.699 0.579 0.434 

 -CH2-NH-C=O 0.543 0.592 0.539 
N(CH2)3 0.587 0.599 0.673 

 -CO-CH2-CH2-(CH2)3-Py 0.535 0.604 0.604 
 -CO-(CH2)3-CH2-CH2-Py 

 -N-CH2-CH2-CH2-N- 
0.549 0.591 0.627 

 -CO-(CH2)2-CH2-(CH2)2-Py 

 -N-CH2-(CH2)2-CH2-N- 
0.541 0.564 0.593 
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Table A.13 T1 data in seconds for DAB-Py64 in 1:1 d6-Acetone pD 7 D2O obtained on a 400 
MHz NMR at a variety of temperatures with an end-group concentration of 0.01M. 
 

Temperature (K) 
Proton 

305 290 275 
Py-2,5-H 1.830 1.166 1.063 
Py-3,4-H 1.127 1.000 1.250 
 -CH2-Py 0.712 0.598 0.548 

 -CH2-NH-C=O 0.532 0.599 0.655 
N(CH2)3 0.500 0.582 0.786 

 -CO-CH2-CH2-(CH2)3-Py 0.528 0.601 0.598 
 -CO-(CH2)3-CH2-CH2-Py 

 -N-CH2-CH2-CH2-N- 
0.554 0.593 0.619 

 -CO-(CH2)2-CH2-(CH2)2-Py 

 -N-CH2-(CH2)2-CH2-N- 
0.541 0.564 0.587 
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