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ABSTRACT 

Frontal polymerization (FP) is when the monomer is polymerized by a zone of reaction 

propagating through the monomer.  The reaction zone is fueled by the heat given off by the 

polymerization of the monomer.  FP is a promisig method for curing adhesives because it allows 

for cure-on-demand and fast cure times.  The monomers selected for the adhesive is the main 

factor in determining the adhesive’s properties.  Trimethylolpropane triacrylate (TMPTA), 

pentaerythritol tetraacrylate (PETA), and other multifunctional monomers make the polymer 

formed more brittle.  The brittleness can be reduced by using trimethylolpropane ethoxylate 

triacrylates (TMPEOTA) in the place of the other multifunctional acrylates.  The ethoxylation 

makes for a more elastic polymer, but it also reduces the reactivity.  Acrylic acid (AA) is highly 

reactive and can be coupled with less reactive monomers, like the TMPEOTAs, to make them 

polymerize.  Fillers can also impact the mechanical properties of the polymers.  Kaolin clay and 

alumina trihydrate make the polymer stronger, whereas styrene-ethylene/butylene-styrene 

(SEBS) and styrene-butadiene-styrene (SBS) can make the polymer more elastic.  The strength 

of the adhesive was tested by using it to bind two piece of wood and then using ASTMD 143 

Hardness and Compression Method testing with an Instron. 
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INTRODUCTION 

The purpose of this research was to make an acrylate-based wood adhesive with high 

shear strength using free-radical frontal polymerization.  A secondary purpose was to give the 

adhesive a degree of water resistance and flexibility.  In order to do this, the polymer needed a 

high elastic modulus.  As we will see, all of the goals were met by changing the types and ratios 

of the monomers used, changing the types and ratios of the fillers used, and by changing the 

concentration of the initiator. 

 

Frontal Polymerization Overview 

Frontal polymerization (FP) is a localized reaction zone that propagates through the 

reactants.  As the front moves through the mixture, everything that is behind the front is polymer 

and filler while everything ahead of it is unreacted monomer (Pojman, 1991).  The three types of 

FP are frontal photopolymerization, isothermal frontal polymerization and thermal frontal 

polymerization.  Frontal photopolymerization (FPP) requires a photoinitiator.  Ideally FPP 

requires a sample that has a high absorbance, an initiator that photobleaches, and no convection.  

When the photo-initiator is exposed to UV light, it decomposes and forms free radicals that 

initiate the reaction.  The decomposed initiator undergoes photoinduced bleaching that allows 

UV light to penetrate deeper into the sample (Decker 1998).  This enables more of the sample to 

be polymerized.   

In isothermal frontal polymerization (IFP), a polymer seed is introduced to a solution 

containing the monomer and initiator.  The polymer seed is a small amount of the resulting 

polymer that will be formed and must be soluble in the monomer (Lewis 2005).  The temperature 

is held constant throughout the polymerization.  The polymer seed being able to be dissolved in 
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the monomer leads to parts of the solution being more viscous than others.  When the 

polymerization starts, the Norrish-Trommsdorff effect (gel effect) causes the more viscous 

regions to have a higher rate of polymerization (Lewis 2005).  The gel effect is a reduction in the 

rate of termination caused by high viscosity, which hinders the reactive end groups’ ability to 

undergo termination by keeping them away from one another (Odian 2005).  As the 

polymerization continues the monomer dissolves the polymer that is formed, which keeps a 

viscous region in the solution.  The last type is thermal frontal polymerization (TFP).  In TFP the 

heat generated by the polymerization is the energy required to continue polymerization (Caria 

2009).   

Thermal Frontal Polymerization 

Thermal frontal polymerization was first observed in Russia by Chechilo and 

Enikolopyan (Chechilo 1972).  Many different types of polymerization can make use of FP such 

as free-radical polymerization (Chechilo 1972, Pojman 1991and Pojman 2004), anionic 

polymerization (Begishev 1985), ring-opening metathesis polymerization (Mariani 2001), and 

atom transfer radical polymerization (Bidoli 2003).  Free-radical FP is the one most commonly 

studied (Pojman, et al, 2010).   

Free-radical polymerization is polymerization that uses radicals to grow polymer chains.  

This is a type of chain growth polymerization.  There are three steps involved in a chain growth 

polymerization: initiation, propagation, and termination.  Initiation involves using an initiator to 

generate a radical that attaches to the monomer and creates a monomer radical.  Propagation is 

the process of continuing to grow the polymer chain by having the radical on the chain react with 

more monomers.  Termination occurs when two radicals meet and form a stable bond.   
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In TFP the initiator used is a thermal initiator.  An external energy source or heat from 

other reaction for example, is used to decompose the initiator to form radicals.  If UV light is 

used as the energy source then a photoinitiator is required as well.  The decomposition of the 

initiator is a significant step in determining the rate of polymerization, and its high activation 

energy allows for a front (Pojman 1996)(Pojman, Ilyashenko et al. 1996).  The initiator’s radical 

then reacts with the monomer, and the chain grows as more monomer units are incorporated.  

The reactivity of the initiator is determined by how fast the initiator decomposes (Pojman 1996, 

Odian 2004 and Hiemenz 2007).  More unstable initiators decompose faster.  By increasing the 

initiator concentration, the reaction’s front temperature also increases (Hu 2006).   Peroxides are 

a good choice of initiators for TFP because their decomposition is exothermic.  However, a 

problem with the use of peroxides is that they give off gaseous side products.  These gases can 

give the polymers formed by TFP a porous morphology.  The gaseous side products can be 

reduced by using persulfates (Masere 2000) or ionic liquids like tricaprylmethylammonium 

(Aliquat) persulfate (APSO) (Mariani 2008) in the place of the peroxide.  The APSO is the 

product of a reaction between tricaprylmethylammonium chloride and ammonium persulfate.  

The ammonium persulfate does not produce any volatile gases when it decomposes (Masere 

2000 and Mariani 2008).  It does produce inorganic salts that are insoluble with organic materials 

(Mariani 2008).  The salts can be made soluble my modifying the ammonium group like in the 

case of APSO (Mariani 2008). 

The front velocity is how fast the front propagates through the monomer and can be 

affected in many ways.  The stability of the initiator affects the front velocity.  The more stable 

the initiator the lower the front velocity, and the more unstable the initiator the higher is the front 
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velocity (Pojman 1995).  An increase in initiator concentration also leads to an increase in the 

front velocity (Pojman 1995 and Hu 2006).   

Front temperature is the temperature the front has while it propagates through the 

monomer.  The front temperature must stay above the temperature require for the monomers to 

reacts or a front will not be supported (Pojman 1996).  The conversion of monomer to polymer is 

proportional to change in the temperature (Pojman 1996).  The higher the front temperature the 

faster the initiator will decompose.  If the front temperature is too high, the initiator will be fully 

decomposed before the reaction has finished in a process called initiator burn out (Pojman 1996).  

The initiator burn out can lead to decreases in monomer-to-polymer conversion and front 

velocity.  The use of fillers and more stable initiator are used to prevent the problem (Viner 

2010). 

The more reactive the monomer the higher the front velocity will be.  The reactivity of 

the monomer is determined by steric factors, how easily the initiator radical can add to the 

monomer, and by the stability of the monomer radical.  Inductive effect from functional groups 

can also stabilize monomers such as the methyl group on methyacrylates.  The less sterically 

hindered the ene group is on a monomer the more reactive the monomer, so methacrylates are 

less reactive than acrylates because the methacrylates will form a more stable tertiary radicals.  

These are the reason why acrylates are more reactive than methacrylates.  The more ene groups 

present in the monomer the faster the front velocity.  This increase in the front velocity comes 

from the cross-linking that multifunctional monomers achieve.  The cross-linked networks allow 

the gel effect to take place (Pojman 1995).  The gel effect, or Trommsdorff effect, is decrease in 

the rate of termination of a polymerization due to an increase in the viscosity (Hiemenz 2007 and 

Odian 2004)  
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Figure 1 (Hiemenz 2007) 

 

Monomer Properties 

The purpose of this investigation is to create an adhesive that allows for cure-on demand 

that has a high strength.  Trimethylolpropane triacrylate (TMPTA) was the monomer chosen as 

the basis of the adhesive for its low toxicity and ability to form a strong bond when polymerized.  

TMPTA highly crosslinks when it polymerizes, which gives the polymer a high glass transition 

Tg.  When a material is below its Tg it is a glassy solid.  The high Tg corresponds to a more rigid 

polymer.  The cross-linking contributes to the high strength of the polymer.  Trimethylolpropane 

ethoxylate triacrylates (TMPEOTA) were also used because they add flexibility to the polymer.  

The more ethoxylated the TMPEOTA the more flexible the resulting polymer becomes.  The 

disadvantage of the TMPEOTAs is that the more ethoxylated the monomer becomes, it also 

becomes less reactive because the more flexible chains lead to an increased rate of termination.  

This is caused by the longer more flexible chains are able to move around more in the mixture 

and find other free-radicals to terminate.  The higher the Mw per ene also means that the heat 

release density is lower.  This problem can be addressed by coupling the monomer with one that 

is more reactive, like acrylic acid (AA) (Pojman 2004). 
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TMPTA and TMPEOTA form what are known as thermosets. Thermosets are polymers 

that remain in their solid form after being polymerized.  Thermosets are cross-linked polymers 

that are stable at high temperatures (Odian 2004).  The cross-linking in the thermosets is referred 

to as chemical crosslinking because the cross-linking is made through chemical bonds (Odian 

2004).  The cross-linking gives them a rigid network that gives the polymer its mechanical 

properties.  Polymers whose viscosity deceases when heated are known as thermoplastics.  All 

thermoplastics are not cross-linked except for thermoplastic elastomers.  The cross-linking that 

takes place in the thermoplastic elastomers is physical cross-linking (Odian 2004).  Block 

copolymers are thermoplastic elastomers.  Physical cross-linking involves the aggregation of 

copolymers (Odian 2004).  The process does not involve the formation of chemical bonds so at 

higher temperatures the copolymers can soften (Odian 2004).  An example of a thermoplastic 

polymer would be poly(styrene ethylene-butylene styrene) elastomer(SEBS).  Using SEBS as an 

additive for a polymer would make it tougher.  Toughness refers to how strong of an impact a 

material can take without fracturing. 

Thiols were also chosen for this study because of the ability to make use of thiol-ene 

chemistry.  Acrylates contain ene groups, and the thiol chosen was trimethylolpropane tris(3-

mercaptopropionate) (TT1) because is structurally similar to TMPTA.  Thiol-ene chemistry 

involves making polymers by free-radical step-growth polymerization (Cramer 2003, Cramer 

2003, and Pojman 2004).  This chemistry is advantageous for TFP because it follows a different 

mechanism and does not need heat to start the reaction (Rissing 2008).  This allows the thiol-

acrylate reaction to act as a fail-safe reaction because it is not always possible to tell visually if 

the front went through the entire mixture.  The disadvantage to this approach is that the pot life is 

short since the thiol is believed to react with the peroxide initiator (Antonucci 1983, Giovando 
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1994, and Viner paper to be published).  Multifunctional thiols at as accelerators in the 

decomposition of organic initiators like peroxide (Antonucci 1983 and Giovando 1994) 

Acrylic acid (AA) was chosen to copolymerize with the less reactive ethoxylated 

triacrylates.  Tredici et al. showed that AA increase the front velocity when used with 

methacrylic acid (Tredici 1998 and Pojman 2004).  AA has a high rate of polymerization for 

photopolymerization with a rate of 28±1 % conversion/s for a light intensity of 18.7 mW/cm
2
 

and using 2.0 wt % of the photoinitiator Darocur 1173 (Jiménez 2007).  That was more the more 

than seven times higher than the next closest monomer, (2-acrylate) ethyl dimethylammonium 

isobutyrate at 3.6 ± 0.1 % conversion/s, and butyl acrylate had a rate of 2.4 ± 0.1 % conversion/s  

This would enable the polymer to take more of the elastic properties from the ethoxylated 

acrylates because AA is monofunctional it does not cross link so the resulting polymer with not 

be as brittle as a polymer using TMPTA as the copolymer.  The problem that may arise with 

using AA as a copolymer is that since it is a monoacrylate the structure may not be as strong as 

using a triacrylate such as TMPTA. 

Fillers 

Fillers can also be added to the polymers to enhance their mechanical properties.  A filler 

is anything other than the monomer or initiator that is added to the mixture.  They can be added 

to enhance the mechanical properties or to lower the cost of the polymer (Rothon 2001).  They 

can also be used to increase the viscosity of the monomer mixture (Nowak 2010).  The viscosity 

is important for the acrylate adhesives. If the mixture is not viscous enough, it flows too readily 

and will be hard to apply to a material’s surface.  When the monomer polymerizes, it expands 

through thermal expansion as the polymer forms  and pushes the monomer ahead of the front.  
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This causes the less viscous mixtures to spread and increase the surface area and rate of heat loss 

to the surroundings, which can extinguish the front.   

Another way the front can lose heat is through buoyancy-driven convection (Bowden 

1997).  Heat loss due to buoyancy-driven convection occurs when the convection formed during 

the polymerization of monomers draws the colder monomer into the reaction zone (Bowden 

1997).  Fumed silica can be used to reduce convection (Pojman 2010). 

Fumed silica is used to thicken the mixture.  It takes a small percentage, around 5-6 %, to 

increase the viscosity of the mixture from “soupy” to a gel.  This takes place because of the 

silica’s ability to form a network via hydrogen bonding when it is exposed to a liquid (Nowak 

2010).  The network can be broken, and the mixture will lose its viscosity if agitated.  The 

property is known as thixotropy.  Thixotropy is the ability of a substance to be viscous when it is 

left static, but while it is sheared the viscosity decreases (Nowak 2010, Blair 2004).  Thixotropy 

differs slightly from shear thinning because with shear thinning the viscosity decreases with 

increasing shear rate while a thixotropic system decreases in viscosity with a constant shear rate 

(Blair 2004). 

Adhesive Characteristics and Mechanical Properties 

An interesting feature of FP is the speed of the reaction.  Frontally polymerizing a 4 x 4 

cm area can be done in a few seconds depending on the composition.  This feature has led to FP 

being used as alternative method of producing some polymers.  FP is being used to make some 

hydrogels instead of free-radical batch polymerization because it is faster and require less energy 

(Feng 2010).  Hydrogels are used in drug delivery which gives FP a medical application (Gavini 

2009 and Feng 2010).  FP can be used to make thermochromic composites.  FP is a better choice 
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than the previous batch polymerization because batch polymerization is slow and the mixture 

may separate before the composite is formed (Nagy 1995).  

 Another area where FP’s speed gives an advantage is in adhesives.  Adhesives are 

substances that are applied to join two or more objects together (Petrie, 2007).  The idea of using 

adhesives to join materials in the place of nuts and bolts has gained popularity because adhesives 

reduce the weight, improve the stress distribution, and are more visually pleasing due to no 

visible sign of bonding (Pizzi, 2003).  Curing is the process of the adhesives “drying.”  This 

occurs by having the adhesive’s solvent evaporate and bind whatever is connected to the 

adhesive or by having the adhesive react chemically with the object that it contacts, with the 

adhesive itself, or both.  By using FP as the method of curing an adhesive, it allows for quick 

curing once the heat source is applied.  This gives adhesives using FP as the method of curing an 

advantage over most of the other types.  The advantages are that it does not take overnight to 

cure, and it only cures when heat is applied.  Because curing only happens after heat is applied, 

time can be taken to position objects carefully.  Having this cure-on demand property would be 

advantageous for an adhesive. 

For an adhesive to be useful, it must strongly adhere to surface of the adherents, the 

objects that are being bound.  There are many different parameters that determine the strength of 

the material.  Toughness refers to the amount of energy an object can absorb before it fails.  

Stress is the amount of force applied over the area of the material.  This is expressed by the 

equation where σ is stress, F is the force, and A is the area on which the force is acting. 

 

 

 (Equation 1) 
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Another parameter used determines the strength of a material is its shear strength.  Shear strength 

refers to the amount of force required to shear two objects apart.  This is done by applying force 

parallel to the object.  The strain is another quantity that is used to determine the strength of a 

material.  Strain is the measure of how the material is deforming.  The equation for strain ε is 

shown below with change in length ΔL over length L. 

 

 

 

 

         (Equation 2) 

By combining equation 1 and 2, it gives the equation for the shear modulus G. 

 

         (Equation 3) 

The shear modulus gives the elasticity of the polymer.  

 

 

The Instron machine tests the mechanical properties of material.  The ASTM D143 

hardness and compression method was the program used to test the samples.  The test starts with 

placing the sample material in a metal apparatus that allows force to be applied on one side of the 

adhesive bond, and then applies a shearing force to break the material.  The shear stress is given 

as the total load along with the extension (or change in length).  The strain and modulus can be 

solved by using the equations above.  The Instron used is pictured below. 
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Figure 2 The Instron with the ASTM D143 attachment with a sample loaded. 

 

 
 

Figure 3 A sample that has undergone Instron testing. 

 

Many different factors play a role in determining how strongly the adhesive adheres to 

the adherent.  In the case of the acrylate adhesive and wood, the wood’s surface is a factor.  The 

denser the wood the harder it is for an adhesive to bind.  The growth period of the wood 

determines its density.  The earlywood, which grows during the spring months, has a lighter 

color and is low density (Keating 1982).  Latewood grows during the summer months and has a 

darker color and a higher density (Keating 1982).  Adhesives bind easier to earlywood because it 
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can be absorbed into the pores of the wood.  Increasing the binding to the wood would be 

beneficial because that would lead to a cohesive failure.  A cohesive failure occurs when the 

structure fails at the adhesive where the adhesive is coming apart (Petrie 2007).  The opposite of 

that would be an adhesive failure.  That type of failure occurs when the adhesive separates from 

the adherent.  If the adhesive is stronger than the adherend, a different type of failure will occur 

(Petrie 2007).  This type of failure happens when the adherend fails while leaving the adherent 

intact.  It is referred to as a cohesive failure of the adherend (Petrie 2007).  The last type would 

be the most beneficial for permanent repair because the material would fail before the adhesive. 

Another factor that impacts how effectively the adhesive binds to the wood using FP is 

the thermal conductivity.  Thermal conductivity is the ability of material to conduct heat.  This is 

important when binding wood because the thermal conductivity can vary greatly over a small 

distance on the wood.  This happens because the lighter less dense parts of the wood have a 

lower thermal conductivity than the darker more dense regions (Forest Products Laboratory 1999 

and Keating 1982).  TFP relies on the transfer of heat for propagation.  The darker regions of the 

wood remove heat faster, and as a result, it is harder to achieve adequate curing in those regions.   
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MATERIALS AND METHODS 

Materials and Their Structures 

 
Chemical name Name used Structure 
Trimethylolpropane 

triacylate 
TMPTA 

 
Trimethylolpropane 

ethoxylate (1/1 

EO/OH) triacylate 

1/1 

TMPEOT

A 

 
The 1/1 means there is 1 ethoxylate group each at x, y, and z. 
Mn = 428 

Trimethylolpropane 

ethoxylate (7/3 

EO/OH) triacylate 

7/3 

TMPEOT

A 

Refer to trimethylolpropane ethoxylate (1/1 EO/OH) triacylate 
The 7/3 means there are 7 ethoxylate groups between the x, y, and z 

positions. 
Mn = 604 

Trimethylolpropane 

ethoxylate (14/3 

EO/OH) triacylate 

14/3 

TMPEOT

A 

Refer to trimethylolpropane ethoxylate (1/1 EO/OH) triacylate 
The 14/3 means there are 14 ethoxylate groups between the x, y, 

and z positions. 
Mn = 912 
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Pentaerythritol 

tetraacrylate  
PETA 

 
Pentaerythritol 

triacrylate  
PETriA 

 
pentaerythritol 

alkoxylated 

tetraacylate 

PEAOTA 

 
Pentaerythritol 

diacrylate 

monostearate 

PEDAS 
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1,1-Bis(tert-

butylperoxy)-3,3,5-

trimethylcyclohexan

e 

Luperox® 

231 

 
Ethyl cellulose EC 

 
Trimethylolpropane 

tris(3-

mercaptopropionate) 

TT1 

 
Urethane acrylate 

oligomer 
UA The structure information was propriety. 

Urethane acrylate; 

acrylic ester 
UA-AE The structure information was propriety. 

ethylenediamine EDA 

 
poly(ethylene 

glycol) diacrylate  
PEGDA 
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poly(ethylene 

glycol) 

dimethacrylate 

PEGDMA 

 
Acrylic acid AA 

 
Bispheonl A 

ethoxylate (1.5 

EO/phenol) 

dimethacrylate 

BPAEOD

A 

 

 

The TMPTA, 14/3 TMPEOTA, 7/3 TMPEOTA, PEGDA, PEGDMA, EDA, TT1, EC, 

Luperox 23, PETriA, PETA, and 1 mm borosilicate solid-glass beads were obtained through 

Sigma-Aldrich.  The 1/1 TMPEOTA was provided by both Sigma-Aldrich and Sartomer.  The 

Toluene, ethanol, hexane, and AA were supplied by Fisher-Scientific.  The UA and UA-AE was 

provided by Sartomer.  The styrene-butadiene-styrene (SBS) and styrene-ethylene/butylene-

styrene (SEBS) were provided by Kraton.  The BYK-070 organic deformer was acquired from 

BYK USA Incorporated.  Expancel 461was provided by Expancel Incorporated.  Polygloss® 90 

was obtained from KaMin and Huber.  The Aerosil 200 (fumed silica) was supplied by 

Fiberglass & Composite Materials.  The talc, alumina trihydrate (ATH), and milled fibers were 

provided by US Composites.  The three coathylenes (TB 3580, HX 1681, and HA 1681) were 

supplied by Clariant. 

Methods 

 The samples consisted of monomer, filler and initiator.  The total mass of the monomer 

was always 10 g per sample.  The concentrations of the other components were calculated in 
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parts per hundred resin (phr).  The adhesive was applied on the face of two wooden (pine) blocks 

that were marked off so each block had an area that is 3.8 cm X 3.8 cm.  One gram of the 

monomer mixture was applied to each block.  A few glass beads were placed on one side.  The 

two blocks were then pressed together so that the adhesive sample overlapped.  A soldering iron 

or heat gun was used to initiate the front.  Once the reaction finished, the sample was taken to the 

Instron to test the mechanical properties.  The ASTM D143 hardness and compression method 

was used to measure the shear strength and elongation.  The rate of compression was set at 0.60 

cm/min. 

Fillers like SEBS, SBS, and ethyl cellulose needed to have their particle size reduced.  

This was initially accomplished by grinding them through the use of a mortar and pestal or by 

using a blender or food processor.  Those methods still left filler sizes that were too large to be 

dispersed in the monomer mixture.  Solvent dispersion was used to make the filler small enough 

to be dispersed in the monomer mixture.  The first step was to dissolve the filler in a solvent.  

Toluene was the solvent used to dissolve SEBS and SBS, and ethanol was the solvent used to 

dissolve ethyl cellulose.  The solution remained covered to prevent evaporation of the solvent.  

Next, the monomers were added to the solution except AA because it would evaporate.  A stir 

bar was placed in the mixture.  The mixture was left uncovered as it was stirred to allow the 

solvent to evaporate.  This step would take at least 6 hours.  If AA was used it would be added 

along with the other fillers and the initiator after the solvent evaporated. 

Surface modification was attempted to increase the binding of the polymer to the wood 

surface.  An attempt at esterification was used to change the change the wood’s surface.  A 5:1 

volume mixture of 18 M sulfuric acid to acrylic acid was applied to the area of the wood where 

the adhesive is applied.  The sulfuric acid/AA mixture gave the wood a green color.  A Chicago 
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Electric® Power Tools heat gun was used to start the esterification.  The heat source was passed 

back and forth in a sweeping motion.  An Omega® OS423-LS non-contact infrared thermometer 

was used to determine the temperature of the heat gun.  The low setting produce a temperature of 

~150 - 160°C, and the high setting produced temperatures greater than 200°C.  The color would 

change from green to black after heated.  The adhesive was applied after the heating was 

complete.  

 

Figure 4 An illustration showing how the bonding the acrylic acid to the wood surface was 

attempted. 
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RESULTS AND DISCUSSION 

 

TMPTA and TMPTA Combinations Results 

Trimethylolpropane triacrylate /poly(ethylene glycol) dimethacrylate 

(TMPTA/PEGDMA) was the first combination tried.  The TMPTA, which was more reactive 

than PEGDMA, was coupled with the PEGDMA to increase the reactivity while keeping some 

of the flexibility from the PEGDMA.  The first TMPTA/PEGDMA combination was 5 g/5 g 

ratio with 40 phr of kaolin using 12 phr Luperox.  The mixture did not sustain a front.  It would 

only react where the soldering iron was in contact.  The ratio was then changed to 7.5 g 

TMPTA/2.5g PEGDMA.  The 7.5 g/2.5 g mixture had 40 phr of kaolin for the filler, and the 

concentration of Luperox for each sample was 7, 8, 9, 10 phr.  The 10 phr Luperox mixture had 

shear strength of 0.69 ± 0.6 MPa (100 psi).  The 9 phr Luperox mixture had shear strength of 

1.1±0.2 MPa (159 psi).  The 7 and 8 phr Luperox concentrations samples did not always 

completely react.  The reason for this is that heat lost to the 40 phr of kaolin was occurring faster 

than the heat generated by the reaction with 7 or 8 phr of Luperox.  A ratio of 6.0 g TMPTA/4.0 

g PEGDMA was tried using 40 phr of kaolin as the filler and 9 phr Luperox as the initiator.  

Three samples were tried using 40 phr of kaolin and 15 phr of Luperox with the monomer ratios 

for each run of 6.0 g/ 4.0 g, 7.0 g/3.0 g, and 5.0 g/5.0 g TMPTA/PEGDMA.  All of these samples 

did not completely polymerize. 

Poly(ethylene glycol) diacrylate (PEGDA) was tried next using 10 g PEDGA, 40 phr 

kaolin, and 10 phr Luperox.  The sample did not react.  The reason was that PEDGA was less 

reactive than TMPTA because it was a diacrylate.  After that the PEDGA was combined with 

TMPTA to increase the sample’s reactivity.   
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Table 1 Composition and Shear Strenght of Samples Using TMPTA and PEDGA as 

monomers 

 

  
TMPTA 

(g) PEGDA (g) 
Kaolin 

(phr) 

fumed 

silica 

(phr) 
Luperox 

(phr) 
SS (MPa) 

((psi)) 
STDEV 

(MPa) 

TH 1.9.8 7.5 2.5 40 0 10 0.94 (136) 49 

TH 1.9.9 7.5 2.5 0 6 10 0.77 (112) 31 
TH 

1.9.10 7.5 2.5 0 6 7 0.70 (102) 52 

 

Since it was a diacrylate it should have been more reactive than the dimethacrylate 

PEGDMA because secondary radicals are more reactive than tertiary radicals.  When the 

samples polymerized they had a plastic-like appearance.  The first sample that was tried was a 

50/50 TMPTA/PEGDA mixture with 30 phr kaolin and 10 phr Luperox.  The adhesive, once 

reacted, did not bind well to the wood.  The next sample consisted of 6 g TMPTA, 4 g PEDGA, 

6 phr fumed silica, and 5 phr Luperox.  It also did not sustain a front.  The next sample was the 

50/50 mixture of TMPTA and PEDGA with 6 phr fumed silica, and 5 phr Luperox.  The front 

did not propagate completely through this mixture between two wood blocks.  The last sample 

used 7 g TMPTA, 3 g PEDGA, 6 phr fumed silica, and 5 phr Luperox.  The results did not 

different much from those of PEGDMA.  The effect that the PEGDA or PEGDMA had on the 

adhesive was negligible when in the presence of that much TMPTA. 

The next runs were done using trimethylolpropane triacrylate/pentaerythritol diacrylate 

monostearate (TMPTA/PEDAS) blends.  The ratios used were 5.0 g/5.0 g and 7.5 g/ 2.5 g.  Both 

of the combinations had 40 phr kaolin and 10 phr Luperox 231 added as the filler and initiator, 

respectively.  Another 7.5 g TMPTA/2.5 g PEDAS mixture was made using 40 phr kaolin and 15 

phr of Luperox 231.  All of the mixtures that used PEDAS did not completely react.  The 

PEDAS is very viscous, so it had to be heated to make it mix readily with the TMPTA.  PEDAS 
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has a long carbon chain.  That carbon chain acted like a diluent that absorbed heat and reduced 

the front temperature. 

Lauryl acrylate (dodecyl acrylate) was the next monomer to be mixed with the TMPTA.  

All of the combinations used 40 phr of kaolin.  The 50/50 ratio used l0 phr of Luperox, and there 

was no reaction.  Three 7.5g TMPTA/2.5 lauryl acrylate mixtures tested, and they used 10 phr, 8 

phr, and 6 phr Luperox 231.  The results are shown in Figure 5.  Two mixtures of 6.0 g 

TMPTA/4.0 g lauryl acrylate were made using 10 phr and 8 phr of Luperox 231, and both of 

them produced no reaction.  Lauryl acrylate, like PEDAS, has a large carbon chain.  This could 

act like filler in removing the heat from the reaction zone causing early termination of the FP.  

The lauryl acrylate is monofunctional, which would also make the adhesive less reactive.  

 

Figure 5 Shear Strength vs. Luperox 231concentration using 7.5 g TMPTA, 2.5 g LA, and 40 

phr kaolin. 

 

Four mixtures of 7.5 g TMPTA/2.5 g PEGDMA were used to test the properties of 

Expancel on the bond.  All the mixtures were 7.5 g TMPTA/ 2.5 g PEGDMA blends and 

contained 40 phr of kaolin and 15 phr of Luperox 231.  The Expancel concentrations used were 
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6.8 phr, 3.4 phr, 1.7 phr and 9 phr.  None of them reacted all the way through, and the 

polymerized material was powder-like and weak.   

Adding ethoxylated triacrylates to the mixtures was the next experiment performed.  The 

first objective was to determine which type of ethoxylated triacrylate to TMPEOTA to use.  This 

was conducted by using 10 g of both 14/3 TMPEOTA and 7/3 TMPEOTA.  It consisted of 

mixtures by using both 4 phr fumed silica and 10 phr Luperox 231 for each.  These reactions 

were tested in open air and not between two blocks of wood.  The 14/3 TMPEOTA mixture 

would not support a front.  The 7/3 TMPEOTA mixture showed reactivity, but it did not 

propagate.  The 7/3 TMPEOTA was selected to be coupled with the TMPTA.  The first sample 

was a 50/50 mixture of TMPTA and the 7/3 TMPEOTA along with 40 phr of kaolin and 10 phr 

Luperox 231.  That mixture did not react.  The mixture composed of 40 phr kaolin had more 

filler to absorb the heat which slowed down the polymerization, causing early termination of the 

front.  Fumed silica was used to replace kaolin since it can achieve the same viscosity as kaolin 

but at lower concentrations, reducing the heat loss.  The next sample was 50/50 

TMPTA/TMPEOTA mixture with 6 phr fumed silica and 10 phr of Luperox.  It had a shear 

strength of 1.13 MPa (164 psi).   The next 50/50 mixture was 6 phr fumed silica and 8 phr 

Luperox, and its shear strength was 0.67 MPa (97 psi).   

The ratio was changed to 7.5 g of TMPTA/2.5 g of 7/3 TMPEOTA.  The 75/25 ratio was 

first used in a sample that consisted of 4 phr fumed silica with 10 phr Luperox.  The results are 

shown in Figure 6.  The mixture had a very low viscosity.  During the reaction, the mixture 

would run down the sides of the wood, and after the reaction was complete, the adhesive bond 

was very brittle and easily broken by hand.  The polymer was easily removed by simply rubbing 

a finger across it, which caused the polymer to crumble.  Because of the runniness of the 4 phr 
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fumed silica mixture, the next set of samples contains 6 phr fumed silica so the adhesive would 

be a gel when it was applied.  Although the adhesive no longer ran down the sides of the wood, 

the polymer formed was still brittle, soft and crumbled easily.   

 

Figure 6 Shear Strength vs. Luperox 231 concentration for 7.5g TMPTA, 2.5 g TMPEOTA, 6 

phr fumed silica monomer mixture with 6 phr fumed silica as the filler. 

 

The TMPEOTA mixtures were visited again.  The 7.5 g TMPTA and 2.5 g 7/3 

TMPEOTA combinations was used with 6 phr fumed silica and 5 phr Luperox.  It produced 

shear strength of 0.99 MPa (144 psi).  Next a 2.5 g TMPTA and a 7.5g 7/3 TMPEOTA 

combination was used with 6 phr fumed silica and 10 phr Luperox.  That mixture did not react 

because the 7/3 TMPEOTA is too unreactive for that monomer ratio to support a front.  The 

75/25 TMPTA/TMPEOTA mixture with 6 phr fumed silica and 4 phr Luperox was used to 

measure the effect of time delay on the strength of the adhesive.  There were no conclusive 

results that showed a time delay had an effect on the shear strength.  Different adhesive samples 

were tried with varying time delays.  The results for the time delayed curing were not consistent, 

and no trend could be obtained. 
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Trimethylolpropane triacrylate/trimethylolpropane tris(3-mercaptopropionate) 

(TMPTA/TT1) mixtures were also tested.  The first sample was made from a 50/50 TMPTA/TT1 

combination with 4 phr fumed silica and 10 phr Luperox, but the mixture did not react.  The 

formula was change to 7.5 g TMPTA, 2.5 g TT1 and 6 phr fumed silica.   

 The next adhesive was the TMPTA/TT1 combination with kaolin used instead of fumed 

silica.  The results are shown in Figure 7.  The mixture consisted of 75/25 TMPTA/TT1 

monomer combination with 40 phr of kaolin and 10 phr Luperox.  The adhesive did not react.  

(The TT1 could undergo a redox reaction with the Luperox as well as copolymerizing with the 

acrylate. (Viner paper to be published)  It took mixtures that contained 10 phr Luperox 231 about 

40 min to gel, or begin to harden.  If the Luperox 231 concentration was reduced to 2 phr, 

gelation did not occurred overnight. .  Instead of forming a rigid polymer, it formed a polymer 

that was like wax. 

 

Figure 7  Shear strength vs. Luperox 231 concentration for 7.5 g TMPTA, 2.5 g TT1, and 6 phr 

fumed silica. 
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The combination of kaolin and fumed silica was then used as the filler of the TMPTA/ 

Trimethylolpropane ethoxylate triacrylate (TMPEOTA) mixtures.  The monomers used were 7.5 

g TMPTA and 2.5 g Trimethylolpropane ethoxylate (7/3 EO/OH) triacrylate (7/3 TMPEOTA).  

The filler composition was 20 phr kaolin and 3 phr fumed silica.  The fumed silica/kaolin 

combination is beneficial because it adds the strength of the kaolin with only using 20 phr.  It 

would take 40 phr of kaolin alone to make the adhesive viscous enough to be applied to the 

wood.  The shear strength results are shown in Figure 8. 

  

 

Figure 8 Shear Strength vs. Luperox 231 for a mixture containing 7.5 g TMPTA, 2.5 g 7/3 

TMPEOTA, 20 phr kaolin and 3 phr fumed silica. 

 

Different types of urethane acrylates were tried to make a more flexible adhesive.  The 

first urethane acrylate to be tested was the acrylic ester that was difunctional.  It was used in 

combination with the TMPTA.  A 50/50 monomer mixture of TMPTA and urethane acrylate, 

acrylic ester (UAAE), was tried using 3 phr fumed silica and 20 phr kaolin as filler and 7 phr 

Luperox for the initiator.  Because of the UAAE, the adhesive was hard to spread.  The reason 

for this was the UAAE was not miscible with the TMPTA.  The mixture reacted on top of a 
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tongue depressor and produced a tough polymer.  It was not hard, but it did not crumble under 

pressure like the TMPTA adhesive..  The 50/50 monomer mixture was then tried with 2 phr 

fumed silica, 10 phr kaolin, and 6 phr Luperox.  The UAAE was heated first to decrease its 

viscosity and then the other reagents were added to it.   The UAAE separated from the TMPTA. 

 

 

Another urethane acrylate (UA) used was a 9 functional acrylate.  This UA was miscible 

with the TMPTA, and it was also very reactive.  A 50/50 TMPTA and UA mixture with 5 phr 

Luperox was tried first.  The initial filler amounts were 4 phr fumed silica and 20 phr kaolin.  

Adding filler to the adhesive made it thicker, but it took much more filler than was normally used 

to achieve the necessary viscosity to prevent it from flowing.  This problem was still present 

when using 6 g TMPTA 4 g UA mixtures but at 7 g TMPTA to 3 g UA ratio the problem was 

solved.  The closer to 50/50 that the TMPTA/UA ratio got the more filler was required to make 

the solution sufficiently viscous.  At a concentration of 12 phr fumed silica, the mixture stilled 

flowed easily when thoroughly mixed.  No more fumed silica was used because it was too 

difficult to stir.  This characteristic was not observed in the TMPTA/ UAAE samples. 

 

 

The next monomer tried was bisphenol A ethoxylate (1.5 EO/phenol) dimethacrylate 

(BPAEODA).  BPAEODA, as with the other diacrylates, was added to TMPTA in order to make 

the resulting polymer elastic.  There were no significant results to show that the BPAEODA was 

having an effect.  The effects that BPAEODA concentration has on the shear strength is shown 

in Figure 9. 
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Figure 9  The Shear strength for various concentrations of the monomers TMPTA and 

BPAEODA.  The filler was 6 phr fumed silica, and the initiator was 5 phr Luperox 231. 

 

 

The 1/1 TMPEOTA (or the TMPEOTA with the lowest MW) was used next.  Only one 

sample was tried.  That sample was made from 7.5 g TMPTA, 2.5 g 1/1 TMPEOTA, 6 phr 

fumed silica, and 5 phr Luperox.  After that 7/3 TMPEOTA was used again along with PVS.  

The combination of reagents were 7.5 g TMPTA, 2.5 g 7/3 TMPEOTA, 6 phr fumed silica, 5 phr 

PVS, and 7 phr Luperox.  There was a noticeable decrease in the brittleness from the addition of 

the PVS, but it also had a noticeable decrease in shear strength, with an average of 0.47 MPa (68 

psi).   

The Effects of Fillers Results 

Ground rubber tires were used as filler.  All samples used 30 phr of rubber.  The first four 

samples all used 10 phr of Luperox and used fumed silica in the amounts of 4, 3.5, 3, and 2 phr. 

Only the mixture that had the 4 phr fumed silica reacted all the way through, and it had an 

average shear strength of 1.49 ± 0.13 MPa (216 psi).  The next sample used 10 phr Luperox and 
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fumed silica with 8 phr Luperox.  The sample appeared to react all the way, but after it was 

tested there were still some unreacted areas between the two wood blocks.  The average shear 

strength for that sample was 0.95 ± 0.37 MPa (138 psi).  The results are summarized in Table 2.  

The reaction left the rubber particles trapped in the polymer and prevented the rubber particles 

from contributing to improving the strength of the adhesive.  The rubber also did not improve the 

toughness.  This was observed by submerging the cured sample in water.  As the wood swelled, 

the adhesive bond failed. 

 

Table 2 Rubber's effects on the Shear Strength 

  TMPTA 

(g) 

fumed 

silica(phr) 

Rubber 

(phr) 

Luperox(phr) SS (MPa) 

((psi)) 

STDEV 

(MPa) 

TH 1.5.1 10 4 30 10 1.49 (216) 0.13 

TH 1.5.2 10 2 30 10 N/R  

TH 1.5.3 10 3 30 10 N/R  

TH 1.5.5 10 3.5 30 10 N/R  

TH 1.5.6 10 4 30 8 0.95 (138) 0.37 

 TMPTA 

(g) 

Kaolin 

(phr) 

Rubber 

(phr) 

Luperox 

(phr) 

SS STDEV 

TH 1.5.4 10 25 30 10 N/R  

 

The next compound that was tried was BYK-070, an organic defoamer.  The first mixture 

was made of 10 g TMPTA, 4 phr fumed silica, 1 phr BYK-070 and 10 phr of Luperox.  The 

shear strength was 0.47 MPa (68 psi).  The second mixture was comprised of 10 g TMPTA, 6 

phr fumed silica, 1 phr BYK-070, and 10 phr Luperox.  It had shear strength of 1.00 MPa (145 

psi).  The third sample contained 10 g TMPTA, 6 phr fumed silica, 0.5 phr BYK-070, and 10 phr 

Luperox with its shear strength being 0.57 MPa (82 psi).  Only one sample from each 

formulation was tested because the properties shown were undesirable.  The 4 phr fumed silica 

was soupy and did not form a gel.  All of these samples had the adhesive spill out from the side 

while reacting. The polymer adhesive was flaky and powder like. 
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The next additive tried was styrene-ethylene/butylene-styrene (SEBS) as a filler.  The 

SEBS is very elastic, so it was used in hopes of increasing the adhesive’s ability to absorb 

shocks.  The results for the shear strength are shown in Table 3.  The first sample contained 10 g 

TMPTA, and the amount of fumed silica added was 6 phr.  Only one trial was run, and the shear 

strength was 1.37 MPa (198 psi).  The sample consisting of 10 g TMPTA, 35 phr kaolin, 10 phr 

SEBS, and 10 phr Luperox did not react between the wood blocks.  The high kaolin 

concentration and the used on SEBS made covering the top of the two wood blocks with 2 g of 

adhesive difficult.  The SEBS was not well dispersed in the mixture, and gaps formed when the 

adhesive was applied in the 2 g amounts.  The sample made of 10 g TMPTA, 4 phr fumed silica, 

13.5 phr kaolin, 23.8 phr SEBS and 5 phr Luperox 231 did not fail when submerged in water.  

The higher SEBS concentration enabled the adhesive to expand with the swelling wood.  The 

next sample had its kaolin and SEBS concentrations reduced to 6.7 phr and 1.12 phr, 

respectively.  Its shear strength was 1.10±0.4 MPa (159 psi), and it failed when submerged in 

water.  The sample had its SEBS concentration reduced to 5.6 phr and kept the kaolin 

concentration at 6.7 phr.  The shear strength was 0.81 ± .2 MPa (117 psi).  It also failed in water.  

The 23.8 phr SEBS mixture was the only sample to withstand the swelling on the wood. 

Table 3 Effects of SEBS on the Shear Strength of TMPTA based adhesives 

  TMPTA 

(g) 

kaolin (phr) SEBS (phr) Luperox 

(phr) 

SS (MPa) 

((psi)) 

STDEV 

(MPa) 

TH 1.11.1 10 35 7 10 1.25 (181) 0.33 

  TMPTA 

(g) 

fumed silica 

(phr) 

SEBS (phr) Luperox 

(phr) 

SS (MPa) 

((psi)) 

STDEV 

(MPa) 
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(Table 3 con’d.) 
TH 1.11.2 10 4 10 10 1.08 (157) 0.36 

TH 1.13.2 10 6 10 10 1.37 (198)  

  TMTPA 

(g) 

fumed silica 

(phr) 

Kaolin (phr) SEBS 

(phr) 

SS (MPa) 

((psi)) 

STDEV 

(MPa) 

TH 1.13.4 10 4 13.5 23.8 1.62 (235) 0.81 

TH 1.13.5 10 4 6.7 11.2 1.10 (159) 0.38 

TH 1.13.6 10 4 6.7 5.6 0.81 (118) 0.15 

 

The SEBS was dissolved in toluene to reduce the size of the particles.  The SEBS was 

then dispersed in the TMPTA.  The first sample contained 10 g TMPTA, 2 phr fumed silica, 20 

phr, kaolin, 7.1 phr SEBS, and 6 phr Luperox.  The sample’s shear strength was 2.05 MPa (298. 

psi).  The following samples used 5.8 phr SEBS.  This is close to 5 % weight and was the 

amount suggested by Lei et al. in another paper (Lei 2008).  The results are shown in Table 4. 

 

Table 4 Effects of Dispersed SEBS on the Shear Strength of TMPTA-based adhesives 

  TMPTA 

(g) 

fumed silica 

(phr) 

kaolin 

(phr) 

SEBS 

(phr) 

Luperox 

231(phr) 

SS (MPa) 

(psi) 

STDEV 

(MPa) 

TH 1.53.1 10 2 20 7.1 6 2.05 (298) 1.12 

TH 1.53.2 10 0 20 5.8 5 2.99 (434) 0.44 

TH 1.53.3 10 0 20 5.8 8 2.53 (367) 0.68 

TH 1.53.5 10 2 20 5.8 8 2.70 (392) 0.40 

  

The dispersion technique only worked for a certain amount of SEBS.  The higher the 

concentration of SEBS used the more toluene is required to dissolve it.  This lead to using a 

larger beaker for larger concentrations of SEBS in order to accommodate the amount of toluene 

that was needed, and it also took more time for the toluene to evaporate off once the TMPTA 

was added.  In higher concentrations, the SEBS made the mixture very viscous and made it more 

difficult to stir.  The stirring being hindered also prevented dispersion and lead to agglomeration.  

An overhead stirrer could be used to make it easier to stir mixtures containing a higher 
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concentration of SEBS, but they were not practical for the small sample sizes used for these 

experiments. 

Various low density polyethylenes (LDPE) and an ethylene/acrylic ester/maleic 

anhydride terpolymers (EEAMA) were tried as additives.  The first LDPE to be tried was high 

gloss polyethylene, which is used in paints.  The first sample tested contained 10g TMPTA, 5 

phr fumed silica, 12 phr kaolin, 24.6 phr LDPE, and 5 phr Luperox.  The sample did not react.  

The next formulation tested was 10 g TMPTA, 6 phr fumed silica, 8 phr kaolin, 12 phr LDPE, 

and 5 phr Luperox .  That solution’s sample had a shear strength of 0.73 MPa (106 psi).  The 

following sample was made from 10 g TMPTA, 6 phr fumed silica, 10 phr kaolin, 18 phr LDPE, 

and 5 phr Luperox.  The solution’s sample had a shear strength was 1.48 MPa (215 psi), but the 

insides were still wet.  The next sample contained an LDPE loading to 22 phr and increased the 

Luperox concentration to 6 phr, but not all of those runs went through completely.  The next two 

solutions used only the LDPE as the filler.  The first one contained 6 g TMPTA, 66.7 phr LDPE, 

and 5 phr Luperox.  The second one contained 6 g TMPTA, 41.7 phr LDPE, and 5 phr Luperox.  

Both of the samples did not react.   The two samples were left out overnight, and the next day 

they had dried out.  The 66.7 phr LDPE sample was completely solid while the 41.7 phr LDPE 

sample was only solid on top.  The LDPE absorbed the TMPTA and Luperox 231.  Neither one 

had a propagated front, but did react when heat was applied.  The 66.7 phr LDPE formulation 

reacted only after the solid had melted.  When a heat source was applied to the solidified 

mixture, it melted the area it is applied to.  If the heat source was left in the same area after the 

mixture melted it started to react.  If front velocity of melted area was high enough, the front 

would be sustained long enough to polymerize the solid region.  
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The next LDPEs and EEAMA tested were pure and did not have any unknown additives.  

All of the following samples were not run between two wood blocks because they reacted 

slowly.  The samples were run on the top of one block of wood.  There were no strength tests 

conducted because the sample was not used to bind two blocks of wood.  However, he visible 

characteristics of the polymer created were noted.  The first one tested was the EEAMA labeled 

as TB3580.  The sample was made of 6 g TMPTA, 33.3 phr TB3580, 6.7 phr fumed silica, and 3 

phr Luperox.  The next sample had 6 g TMPTA, 33.3 phr TB3580, 5 phr fumed silica, 4.2 phr 

SEBS, and 5 phr of Luperox.  After those two samples, a sample was made from 6 g TMPTA, 

33.3 phr HX1681, 5.8 phr fumed silica, and 5 phr Luperox.  The next sample had 6 g TMPTA, 

37.5 phr TB3580, 6.7 phr fumed silica, 10 phr kaolin, and 7 phr Luperox.  The following sample 

contained 6 g TMPTA, 33.3 phr TB3580, 3.3 phr fumed silica, 20 phr kaolin, and 10 phr 

Luperox.  Two samples were made for HX1681 and HA1681 varying only in which LDPE was 

used as filler.  The first one consisted of 6 g TMPTA, 33.3 phr HX1681 or HA1681, 5 phr of 

fumed silica, 10 phr kaolin, and 5 phr Luperox.  The second sample was made of 6 g TMPTA, 

33.3 phr HX1681 or HA1681, 3.3 phr of fumed silica, 20 phr kaolin, and 5 phr Luperox.  

Another two samples were made with TB3580 as the LDPE filler.  One of the adhesives 

prepared used 4.2 phr SEBS, and the other contained none.  The one that had SEBS also 

contained 6 g TMPTA, 2.5 phr fumed silica, 20 phr kaolin, and 5 phr Luperox.  The other 

contained 6 g TMPTA, 2.5 phr fumed silica, 23.3 phr kaolin, and 5 phr Luperox.  All of these 

adhesives that contained, TB3580, HX1681, or HA1681 did not bind well to wood.  These fillers 

are of no use in making wood adhesives because of that trait.  All the polymeric materials formed 

were tough, rigid polymers that were white in color. 
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Next the hot melt adhesive (HMA)200F was used as one of the components.  Three 

samples were run using three different amounts of the HMA200F. It was hypothesized that when 

the front propagated, the increase in temperature would allow the HMA 200F to flow.  After the 

adhesive returned to ambient temperature, the HMA 200F would solidify making the adhesive 

tougher by giving it some mechanical characteristics of the HMA 200F.  The other components 

were 7.5 g TMPTA, 2.5 7/3 TMPEOTA, 6 phr fumed silica, and 7 phr Luperox.  The three 

concentrations of HMA200F were 6 phr, 20 phr, and 10 phr.  The 20 phr concentration sample 

did not support complete frontal polymerization.  The 6 phr HMA200F had a shear strength of 

0.52 MPa (75 psi), and the 10 phr HMA200F adhesive had a shear strength of 0.54 MPa (78 psi).  

The addition of the HMA200F made the adhesive release more smoke, and it foamed more when 

it reacted.   

The effect that kaolin had on the adhesive was studied.  All of the samples used 7.5 g 

TMPTA, 2.5 g 7/3 TMPEOTA, 6 phr fumed silica, and 9 phr Luperox.  The effect that the kaolin 

concentration had on shear strength is shown in Figure 10.  The general trend was that as the 

kaolin loading was increased the adhesive expanded less.  Kaolin also made the adhesive harder 

than fumed silica.  The higher the kaolin loading the more heat was absorbed by the filler.  That 

would slow down the polymerization or prevent the mixture from supporting a front.  A mixture 

containing the 20 phr kaolin was applied to the surface on a block of wood in a thin layer.  After 

the reaction was initiated, the front only propagated in the regions of the less dense wood.  The 

front moved through the parts of the mixture that were above the lighter portions of the wood 

and avoided the denser regions.  If the front did cross into the denser regions, it would only 

continue to propagate if it can quickly extend into another lighter region.  The 
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thermoconductivity being higher in the denser parts of the wood causes this (Forest Products 

Laboratory 1999 and Keating 1982). 

 

Figure 10 Shear Strength vs. kaolin concentration. The mixture was made of 7.5 g TMPTA, 2.5 

g 7/3 TMPEOTA, 6 phr fumed silica, and 9 phr Luperox 231. 

 

The next substance that was tried was ethyl cellulose (EC).  The idea behind using this 

was that the ethyl cellulose might be able to hydrogen bind to the wood and increase the shear 

strength.  Figures 11-14 show the shear strength with respect to Luperox 231 concentrations with 

increasing EC concentrations.  The set that contained 30 phr kaolin did not have data for less 

than 6 phr of Luperox because the reaction would stop before it had propagated through the 

whole adhesive.  This happened because the amount of filler was too high for that amount of 

initiator to sustain the reaction.  The EC came in powder with particles about the same size as a 

grain of sand, so they would not disperse in TMPTA because the particle size was too large.  The 

undispersed EC lead to an adhesive that wa more difficult to spread.  The next experiment was to 

disperse the EC in the mixture.  The results are shown in Table 5. 
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Figure 11 Shear strength vs. Luperox 231 concentration for mixtures containing 10 g TMPTA, 5 

phr EC, 25 phr kaolin, and 3 phr fumed silica. 

 

Figure 12 Shear strength vs. Luperox 231 concentration for mixtures containing 10 g TMPTA, 

10 phr EC, 25 phr kaolin, 3 phr fumed silica. 
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Figure 13 Shear strength vs. Luperox 231 concentration for mixtures containing 10 g TMPTA, 

15 phr EC, 25 phr kaolin, 3 phr fumed silica. 

 

 

 

 

 

 
 

Figure 14 Shear strength vs. Luperox 231 concentration from mixtures with 10 g TMPTA, 15 

phr EC, 30 kaolin, and 3 phr fumed silica. 
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Table 5 Effects of Dispersed EC on the Shear Strength of TMPTA-based adhesives 

  TMPTA 

(g) 

fumed silica 

(phr) 

kaolin 

(phr) 

Ethyl 

Cellulose 

Luperox 

(phr) 

SS (MPa) ((psi)) STDEV 

(MPa) 

TH 

1.53.6 

10 4 15 7.5 10 1.90 (275) 0.28 

TH 

1.53.7 

10 4 15 7.5 6 No front  

TH 

1.53.9 

10 4 15 4.5 8 1.68 (243) 0.62 

TH 

1.53.10 

10 4 15 4.5 5 1.04 (151) 0.17 

TH 

1.53.11 

10 4 15 7.5 7 1.65 (239) 0.24 

 

Pine sawdust was used as the next filler.  It was chosen because sawdust is made from 

wood, and it contains cellulose.  It was also cheaper to obtain sawdust with a small particle size 

than ethyl cellulose.  The first experiment done with sawdust used 10 g TMPTA, 6 phr fumed 

silica, 5 phr Luperox and 10 phr sawdust. The shear strength from this experiment was found to 

be 1.39 MPa (201 psi).  Kaolin was added to the adhesive to increase its strength.  The first 

experiment used 10. g TMPTA, 3 phr fumed silica, 20 phr kaolin, 10 phr sawdust, and 5 phr 

Luperox 231.  This sample did not support complete propagation. This was because the 3 phr 

fumed silica did not make the adhesive viscous enough to undergo frontal polymerization.  The 

rest of the samples had 5 phr of fumed silica added to the mixture to ensure it formed a gel.  The 

results of the shear strength with respect to Luperox 231 concentration for 10 phr sawdust and 15 

phr kaolin is shown in Figure 15, and the results for 5 phr sawdust and 20 phr kaolin is shown in 

Figure 16.  Figures 17-19 show the results for samples using 7.5 phr sawdust with increasing 

kaolin concentrations. 
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Figure 15 Shear Strength vs. Luperox 231 concentration for 10 g TMPTA, 10 phr sawdust and 

15 phr kaolin. 

 

 

Figure 16. Shear Strength vs. Luperox 231 concentration for 10 g TMPTA, 5 phr sawdust and 

20 phr kaolin. 
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Figure 17. Shear strength vs. Luperox 231 concentration for 10 g TMPTA, 7.5 phr sawdust, and 

15 phr kaolin. 

 

 

Figure 18. Shear strength vs. Luperox 231 concentration for 10 g TMPTA, 7.5 phr sawdust, and 

20 phr kaolin. 
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Figure 19. Shear strength vs. Luperox 231 concentration for 10 g TMPTA, 7.5 phr sawdust, and 

25 phr kaolin. 
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effects that 5 phr sawdust and varying kaolin concentrations had on the shear strength at two 

Luperox 231 concentrations.  Figure 21 shows the shear strength with 7.5 phr sawdust and 

various kaolin concentrations at three Luperox 231 concentrations. 
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Figure 20. A comparison of shear strength vs. Luperox 231 concentration for two samples with 

two kaolin loadings. 

 

 

 

Figure 21. A comparison of shear strength vs. Luperox 231 concentration for two samples with 

two different kaolin loadings. 
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samples used the same formulation as the previous one but contained different amounts of 

sawdust.  One sample had 7.5 phr of sawdust and second one had 5 phr of sawdust.  The 7.5 phr 

sawdust adhesive would not react, and the 5 phr sawdust-containing sample did not also react 

completely.  The last sample used the 7.5 g TMPTA, 2.5 g BPAEODA, and 20 phr kaolin like in 

the previous sample, but used 3 phr fumed silica and 5 phr of sawdust.  This sample also did not 

sustain a front. 

The next experiment involved using a 75/25 TMPTA to 14/3 TMPEOTA mixture as the 

monomer.  The first mixture included the 75/25 monomer mixture, 6 phr fumed silica, and 8 phr 

Luperox.  The results are shown in Table 6. 

Table 6 Shear Strength of Adhesives made from TMPTA and 14/3 TMPEOTA 

  TMPT

A (g) 

14/3 

TMPEOTA 

(g) 

kaolin 

(phr) 

fumed 

silica (phr) 

sawdust 

(phr) 

Luperox 

(phr) 

SS (MPa) 

((psi)) 

STDE

V 

(MPa) 

TH 

1.35.1 

7.5 2.5 0 6 0 8 1.34 (195) 0.41 

TH 

1.35.2 

7.5 2.5 0 6 5 8.5 0.70 (102) 0.39 

TH 

1.35.3 

7.5 2.5 20 5 5 8 1.19 (172) 0.46 

 

The next formulations contained chitosan as a filler.  The initial sample consisted of 10 g 

TMPTA, 6 phr fumed silica, 10 phr chitosan, and 8 phr Luperox.  The results are shown in 

Figure 22.  After the sample was tested, it was noted that the chitosan separated from the silica 

during the polymerization.  The chitosan congregated in the center of the block while the silica 

was around the chitosan. 
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Figure 22 Shear Strength vs, Luperox 231 concentration using 10 g TMPTA as the monomer 

with 10 phr Chitosan, 4 phr fumed silica, and 20 phr kaolin as the filler. 
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fourth reacted, but did not completely go through.  The reason why most of the formulations did 

not react is because the Elmer’s glue is made of a polyvinyl acetate (PVA) emulsion, which is an 

emulsion with water.  The water quenched the front. 
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5 mm diameter spheres, it had to be broken down to a smaller size in order for it to be dispersed 

in the monomer.  First, the Friendly Plastic was heated.  The idea was that the Friendly Plastic 

would become a liquid when heated.  The Friendly Plastic was placed in a beaker containing 

water.  The water and Friendly Plastic mixture was stirred and heated.  A surfactant, Triton X, 

was added to disperse the particles.  When the heat source was removed the Friendly Plastic 

should have solidified and formed small particles.  This did not work because the Friendly 

Plastic never became a liquid.   

The next filler tested was styrene-butadiene-styrene (SBS).  The reason behind using SBS 

is the same one for using SEBS.  The goal was to use the SBS to increase the toughness of the 

adhesive.  The increase in toughness was observed by submerging the samples in water and 

seeing if the polymer could handle the swelling wood.  The results are given in Figure 23. 

  

 

Figure 23 Shear strength vs SBS concentration, for 10 g TMPTA, 10 phr kaolin, 5 phr fumed 

silica, and 5 phr Luperox 231. 
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Figure 24. Shear strength vs, SBS concentration for 10 g TMPTA, 7.5 phr sawdust, 10 phr 

kaolin, 5 phr fumed silica, and 5 phr Luperox 231. 

 

The two mixtures from Figure 24 did not support a front.  After testing using the Instron, 

the 10 phr SBS mixture had two samples that were unreacted in the center.  The 7.5 phr SBS 

mixture had one sample where the front stopped.  These two mixtures contained a high filler 

loading.  This caused more heat loss to filler, which hindered the mixture’s ability to sustain a 

front.  Table 7 has more samples that had this problem.  Mixtures TH 1.47.13, TH1.47.14 and 

TH 1.51.2 exhibited the same problem with some samples being unreacted due to the high filler 

concentration.   

Table 7 Effect SBS has on the Shear Strength of TMPTA adhesives 

  TMPTA 

(g) 

fumed 

silica (phr) 

kaolin 

(phr) 

sawdust 

(phr) 

SBS 

(phr) 

Luperox 

(phr) 

SS (MPa) 

((psi)) 

STDEV 

(MPa) 

TH 

1.47.13 

10 6 0 0 25 10 0.94 (137) 0.57 

TH 

1.47.14 

10 6 0 7.5 15 10 1.24 (180) 0.23 

TH 

1.51.1 

10 5 10 5 10 8 1.01 (146) 0.18 
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(Table 7 con’d.) 
TH 

1.51.2 

10 5.5 0 5 20 8 1.92 (279) 0.69 

TH 

1.51.3 

10 0 15 0 7.5 5 1.39 (201) 0.21 

 

The next experiment was to disperse the SEBS, SBS, and EC in the monomer.  This was 

first tried with 1 g of SBS following the steps described in the Materials and Methods section.  

The SBS was added to 10 g of TMPTA and 1 g of Luperox.  The mixture was stirred to allow the 

toluene to evaporate off.  The contents of the beaker were transferred to a weigh boat.  The 

amount transferred was close to 8.30 g.  The mixture was not viscous enough so 0.5 g of fumed 

silica was added.  This experiment was tried two times.  The first time the shear strength came to 

be 0.72 MPa (105 psi), and the second time it was 1.56 MPa (226 psi).  After the samples were 

tested in the Instron, it was observed that the parts of the adhesive were still unreacted, and some 

formed a film of rubber.  The film may have come from allowing the SBS/TMPTA mixture to 

remain static too long before using it.  If the mixture was left static while the toluene was 

evaporating off the SBS film would form instead dispersed small particles.  Instead of having 

fully dispersed SBS in the monomer, some of the SBS will be dispersed and some will have 

formed a film.  The SBS film prevented the adhesive from being applied evenly.  This occurred 

with SEBS or EC.  Other reason is that there was not enough toluene to completely dissolve the 

SBS.  This procedure was also tried for dispersing rubber cement.  The problem with rubber 

cement was that the rubber latex particle agglomerated as the solvent evaporated. 

AA/TMPEOTA Combinations Results 

The next part of the research deals with adding acrylic acid (AA) to TMPEOTA to make 

a tougher adhesive.  AA was used with the TMPEOTAs because AA was more reactive than 

TMPTA.  Another reason was that AA is a monofunctional acrylate so the polymer it forms 
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would not be as brittle as one formed using the trifunctional TMPTA.  The first experiment used 

7.5 g of 7/3 TMPEOTA and 2.5 g of AA as the monomers.  The fillers were made of 5 phr 

fumed silica, 20 phr kaolin, and 5 phr sawdust.  The Luperox concentration was 6 phr.  This 

mixture did not finish reacting when used between two wood blocks.  It did completely react 

when it was applied on one side of the block, but the front velocity was slower than when using 

higher AA ratio.   When the monomer mixture was 5 g 7/3 TMPEOTA and 5 g AA, the reaction 

took less time to complete than the 7.5.g 7/3 TMPEOTA and 5 g AA. 

 

 

 

The next experiment used 5 g of AA with the other 5 g being one of the three types of 

TMPEOTA.  The first of the ethoxylated acrylates used was the 7/3 TMPEOTA.  The results are 

shown in Figure 20 below.  The 10 phr sawdust mixtures did not react because the concentration 

of sawdust was too high and removed heat from the front.  The mixtures that just used silica 

were more elastic.  The samples with the others fillers were more rigid.  This trend is shown in 

the graph for the relative modulus of the samples (Figure 26).  The higher the modulus the stiffer 

the adhesive bond.  Stiffness is the resistance to deformation.  Generally the higher the shear 

strength the higher the shear modulus except in the case of SBS and SEBS.  Since both SEBS 

and SBS are elastomers, they increase the shear strength along with increasing the elongation, 

which decreases the modulus.  The initiator does not appear to have an effect on the modulus as 

the samples using the same filler concentration but initiator concentrations of 5 phr and 8 phr 

Luperox 231 had the same modulus.  More tests would be required to confirm this. 
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Figure 25.The shear strengths of adhesives made from 5 g AA/5 g 7/3 TMPEOTA, 8 phr 

Luperox, and various filler concentrations.  
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Figure 26 The relative shear modulus of adhesives made from 5 g AA/5 g 7/3 TMPEOTA and 

various filler and Luperox 231 concentrations. 
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Table 8 Shear Strengths of Adhesives Using 14/3 TMPEOTA and AA as the Monomers 

  14/3 

TMPEOTA 

(g) 

Acrylic 

Acid (g) 

fumed 

silica 

(phr) 

kaolin 

(phr) 

sawdust 

(phr) 

Luperox 

(phr) 

SS (MPa) 

((psi)) 

STDEV 

(MPa) 

TH 

1.57.5 

5 5 7 0 0 8 1.78 (258) 0.33 

TH 

1.57.6 

5 5 5 20 0 8 3.01 (436) 0.79 

TH 

1.61.1 

5 5 5 20 0 10 3.18 (461) 0.21 

 

 The next experiment was pairing AA with 1/1 TMPEOTA.  The monomer ratio used for 

these experiments was 50/50 1/1 TMPEOTA/AA.  The Luperox concentration for these 

experiments was 8 phr.  The first sample had 7 phr fumed silica as the filler.  The 1/1 

TMPEOTA/AA mixture produced adhesives with strongest shear strength.  The higher the 

ethoxylation the yellower the resulting polymer is.  The 1/1 TMPEOTA has less ethoxylation 

than the 7/3 TMPEOTA so it makes more rigid polymer.  Because of this, these samples had the 

highest shear strength and relative shear modulus as shown in Figures 27 and 28 respectively. 

 

Figure 27. Shear strength vs. different combinations of fillers using 5 g 1/1 TMPEOTA and 5 g 

AA as the monomers. 
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Figure 28 Relative shear modulus vs. different combinations of fillers using 5 g 1/1 TMPEOTA 

and 5 g AA as the monomers and 8 phr Luperox 231 as the initiator. 
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before and after they were pretreated with acid.  The sample was tested again with a different 

pretreat process.  The wood blocks treated with the acid were heated at a lower temperature of 

around 150-160°C.  The results are shown in Figure 30.  The esterification process did not 

increase the mechanical properties of the adhesive.  This is shown by comparing Figures 29 and 

30 to Figures 25 and 27.  The overall shear strength decreases as a result of the esterification 

process.   

 

 

 

 

 

 

 

 

Figure 29. The shear strength results for 7/3 TMPEOTA based on various methods of using 

sulfuric acid and AA to esterify the surface of the wood. 
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Figure 30 The shear strength results for 1/1 TMPEOTA based on various methods of using 

sulfuric acid and AA to esterify the surface of the wood. 
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was run of each.  The TBPPS was a solid and reacted slower than the others, but it also reduced 

the number of visible pores.  The TBPPS results are shown in Figure 31. 

 

Figure 31. The graph depicts the shear strength of mixtures containing different filler 

concentrations using TBPPS as the initiator. 
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sample would not react. The next also used 3 g zinc acrylate and 7 g of water, but this sample 

used 0.2 phr of fumed silica and 4 phr of ammonium persulfate.  It also produced no reaction.  

The sample used 10 g of the zinc acrylate and 4.7 g of water with 2.04 phr fumed silica and 

11.16 phr ammonium persulfate.  The adhesive reacted very slowly.  The next sample also used 

10 g zinc acrylate, 4.7 g of water, and 11.16 ammonium persulfate, but used 3.06 phr fumed 

silica.  It also reacted but only in a thick layer.  All of the zinc acrylate-based adhesives had a 

very short pot life.  They would self-initiate in 20 minutes. 

The two monomers PETA and BPAEODA were tried in conjunction with one another.  

PETA was used with the BPAEODA because it is a tetraacrylate so it should be more reactive 

than the triacrylate.  After that 7/3 TMPEOTA was coupled with the PETA to reduce the 

brittleness of the resulting polymer.  PETA was then combined with TMPTA to make an 

adhesive stronger than TMPTA but not as brittle as PETA. 

Table 9 Shear Strengths of Adhesives Using PETA and BPAEODA as the Monomers 

  PETA BPAEODA 

(g) 

Kaolin 

(phr) 

fumed 

silica 

(phr) 

sawdust 

(phr) 

Luperox 

(phr) 

SS (MPa) 

((psi)) 

STDEV 

(MPa) 

TH 

1.31.5 

7.5 2.5 20 4 5 8.3 1.65 (239) 0.23 

TH 

1.31.6 

7.5 2.5 20 4 5 5 1.25 (181) 1.16 

Some samples were unreacted on the inside 

TH 

1.31.7 

7.5 2.5 20 4 5 6 1.43 (207) 0.28 

Some samples were unreacted on the inside 

TH 

1.31.8 

10 0 20 4 5 5 0.77 (112) 0.27 

 

  Table 10 Shear Strengths of Adhesives Using PETA and 7/3 TMPEOTA as the Monomers 

  PETA 

(g) 

7/3 

TMPEOTA 

(g) 

kaolin 

(phr) 

Cabosil 

(phr) 

sawdust 

(phr) 

Luperox 

(phr) 

SS  (MPa) 

(psi) 

STDEV 

(MPa) 
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(Table 10 con’d.) 
TH 

1.31.9 

7.5 2.5 20 4 5 5 1.26 (183) 0.30 

TH 

1.31.11 

7.5 2.5 20 4 7.5 5 1.12 (162) 0.19 

  PETA 

(g) 

14/3 

TMPEOTA 

(g) 

kaolin 

(phr) 

Cabosil 

(phr) 

sawdust 

(phr) 

Luperox 

(phr) 

SS (psi) STDEV 

(MPa) 

TH 

1.31.10 

7.5 2.5 20 4 5 5 1.58 (229) 0.72 

 

  Table 11 Shear Strengths of Adhesives Using TMPTA and PETA as the Monomers 

  TMPTA 

(g) 

PETA 

(g) 

Cabosil 

(phr) 

kaolin 

(phr) 

sawdust 

(phr) 

Luperox 

(phr) 

SS 

(psi) 

STDEV 

(MPa) 

TH 

1.39.11* 

7.5 2.5 5 15 5 5 105.41 26.16 

TH 

1.39.12 

7.5 2.5 5 15 7.5 5 134.85 43.51 

TH 

1.39.13 

7.5 2.5 5 20 5 5 95.53 9.73 

TH 

1.39.14 

7.5 2.5 0 45 0 7 246.31 149.04 

 

PEAOTA was then used as the monomer.  The first sample used 10 g PEAOTA, 20 phr 

kaolin, 5 phr fumed silica, 7.5 phr sawdust, and 5 phr Luperox.  The next sample used 10 g 

PEAOTA, 6 phr fumed silica, and 5 phr Luperox.  The first sample did not react between wood 

and was slow to react in the open air.  The second sample did not always completely react 

between wood.  PEAOTA was then used in conjunction with TMPTA.  Three samples were tried 

using PEAOTA.  All samples contained 7.5 g TMPTA, 2.5 g PEAOTA, 5 phr fumed silica, 15 

phr kaolin, and 7.5 phr of sawdust.  The Luperox was varied between the samples with one 

having a Luperox concentration of 5 phr, another one having a concentration 6 phr, and another 

one having a concentration of 10 phr.  The results for the PEAOTA and TMPTA samples are 

shown in Figure 31.  PEAOTA made the polymer crack as it was formed.  The product was a 

translucent polymer that was smooth and rigid. 
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Figure 32. Shear strength vs. Luperox 231 concentration using 7.5 g TMPTA, 2.5 g PEAOTA, 

7.5 phr sawdust, 15 phr kaolin, and 5 phr fumed silica. 
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Luperox.  The results are shown in Figure 33.  The 1 phr Luperox mixture did not completely 

react. 

  

Figure 33 Shear Strength vs. Luperox concentration using PETA as the monomer and sawdust 

and fumed silica as the filler. 
 

Ethylenediamine (EDA) was added to the monomer mixture as an accelerator.  The 

objective was to speed up the reaction and enable a secondary polymerization to occur if FP did 

not complete cure the adhesive.  In the initial trial 5 phr EDA was added to a 10 g TMPTA, 5 phr 

fumed silica, 15 phr kaolin, 7.5 phr sawdust, and 5 phr Luperox mixture.  The mixture’s 

polymerization started as soon as the EDA was added.  Next the sample’s Luperox 231 

concentration was changed to 8.1 phr and the EDA concentration to 0.5 phr.  The shear strength 

was measured at 1.66 MPa (241 psi).  The Luperox 231 concentration was held constant at 5 phr 

for the next three samples.  The amount of EDA used decreased for each sample.  The sample 

with a concentration of 1 phr EDA had a shear strength of 2.16 MPa (313 psi).  The sample with 

an EDA concentration of 0.7 phr had a shear strength of 1.03 MPa (150 psi).  The 0.6 phr EDA 

concentration sample’s shear strength was 2.36 MPa (343 psi). 
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A sample made from 10 g TMPTA, 6 phr fumed silica, 10 phr kaolin, and 5 phr Luperox  

was applied in a thin layer on the top of a piece of wood.  The reaction was initiated by a 

soldering iron like other experiments.  The front would only propagate through the light regions 

of the wood.  It would not propagate in the darker regions, but if the dark region was narrow, it 

would polymerize over to the lighter region of the other side.  Figure 34 shows this problem.  

This comes from the differences in the thermal conductivity between the lighter (earlywood) 

regions and the darker (latewood) regions of the wood.  The denser wood had a higher thermal 

conductivity.  This is a binding problem for the adhesive.  

 

Figure 34 The wood that was used in a thin layer test.  The lighter areas were able to support a 

front while the darker areas were not.  The layer of adhesive applied was thin enough to make 

out the different regions in the wood. 
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SUMMARY AND CONCLUSIONS 

 The frontally-cured adhesives created strong bonds with wood.  The adhesive composed 

of a 50/50 blend of 1/1 TMPEOTA and AA yielded the greatest shear strength.  Both samples, 

one containing only fumed silica and one containing fumed silica and sawdust, produced shear 

strengths of over 10.3 MPa (1500 psi).  This was about 3.5 times stronger than the best TMPTA 

formulation.  By changing the 1/1 TMPEOTA with either the 7/3 TMPEOTA or the 14/3 

TMPEOTA, the toughness of the polymer increased but the shear strength decreased.  These 

adhesives also contained samples that broke the adherend.  TMPEOTA/AA can be used as a 

cure-on demand adhesive with high shear strength and a high toughness.  The TMPTA 

combinations were too brittle.  Even with the addition of diacrylates added to the TMPTA, the 

resulting polymer had no significant change in its toughness. 

 Fillers affect the properties of the cured adhesive.  Fumed silica was used to thicken the 

monomer mixture because of its ability to form a network via hydrogen bonding with the 

monomer.  The kaolin, sawdust and alumina trihydrate (ATH) made the resulting polymer 

stronger.  SEBS and SBS made the resulting polymer tougher.  14/3 TMPEOTA and the high 

concentrations of SEBS enabled the polymer to be tough enough to withstand the deformation 

that occurs when the wood swells in water.  However, if too much filler was added to the 

monomer mixture, it would not sustain a front.   

 The darker regions of the pine wood would not support a front.  The trend was also 

observed in other dense woods like oak.  In a thin layer, it is easy to observe this trend.  The 

reason is that the denser wood has a higher thermal conductivity.  This is one of the problems 

that are inhibiting better adhesive binding.  In future works it may be able to overcome this by 

adding an exothermic reaction in conjunction with the FP.  This could possibly heat up the 
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darker regions of the wood, and allow the FP to take place in that region.  The reaction could 

also be used to improve the adhesive bonding to the wood. 

 The thermal conductivity problems lead to adhesion problem.  Surface modifications was 

tried to correct this problem.  Esterification, using and combination of sulfuric acid and acrylic 

acid, was used to pretreat the wood.  The esterification did not increase the wood binding to the 

adhesive.  Instead, the process used cause the adhesive to be weaker and to bind weakly to the 

wood.  The process also discolored the wood.  The use of a different surface modification 

technique or a better esterification technique may yield better results. 
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