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ABSTRACT OF DISSERTATION 

 
VISUALIZING BARRIER DUNE TOPOGRAPHIC STATE SPACE AND 

INFERENCE OF RESILIENCE PROPERTIES 
 

The linkage between barrier island morphologies and dune topographies, vegetation, 
and biogeomorphic feedbacks, has been examined. The two-fold stability domain (i.e., 
overwash-resisting and overwash-reinforcing stability domains) model from case studies in 
a couple of islands along the Georgia Bight and Virginia coast has been proposed to examine 
the resilience properties in the barrier dune systems. Thus, there is a need to examine 
geographic variations in the dune topography among and within islands. Meanwhile, 
previous studies just analyzed and compared dune topographies based on transect-based 
point elevations or dune crest elevations; therefore, it is necessary to further examine dune 
topography in terms of multiple patterns and processes across scales. 

In this dissertation, I develop and deploy a cross-scale data model developed from 
resilience theory to represent and compare dune topographies across twelve islands over 
approximately 2,050 kilometers of the US southeastern Atlantic coast. Three sets of 
topographic variables were employed to summarize the cross-scale structure of topography 
(elevational statistics, patch indices, and the continuous surface properties). These metrics 
differed in their degree of spatial explicitness, their level of measurement, and association 
with patch or gradient paradigms. Topographic metrics were derived from digital elevation 
models (DEMs) of dune topographies constructed from airborne Light Detection and 
Ranging (LiDAR). These topographic metrics were used to construct dune topographic 
state space to investigate and visualize the cross-scale structure of dune topography.  

This study investigated (1) dune topography and landscape similarity among barrier 
islands in different barrier island morphologic contexts, (2) the differences in barrier island 
dune topographies and their resilience properties across large geographic extents, and (3) 
how geomorphic and biogeomorphic processes are related to resilience prosperities. 

The findings are summarized below. First, dune topography varies according to 
island morphologies of the Virginia coast; however, local controls (such as human 
modification of the shore or shoreline accretion and erosion) also play an important role in 
shaping dune topographies. Compared with tide-dominated islands, wave-dominated 
islands exhibited more convergence in dune topographies. Second, the dune landscapes of 
the Virginia Barrier Islands have a poorly consistent spatial structure, along with strong 
collinearity among elevational variables and landscape indices, which reflects the rapid 
retreat and erosion along the coast. The dune landscapes of the Georgia Bight have a more 
consistent spatial structure and a greater dimensionality in state space. Thus, the weaker 
multicollinearity and higher dimensionality in the dataset reflect their potential for 



     
 

resilience. Last, islands of different elevations may have similar dune topography 
characteristics due to the difference in resistance and resilience.  Notwithstanding the 
geographic variability in geomorphic and biogeomorphic processes, convergence in dune 
topography exists, which is evidenced by the response curves of the topographic metrics 
that are correlated with both axes.  

This work demonstrates the usefulness of different representations of dune 
topography by cross-scale data modeling. Also, the two existing models of barrier island 
dune states were integrated to form a conceptual model that illuminates different, but 
complementary, resilience properties in the barrier dune system. The differences in dune 
topographies and resilience properties were detected in state space, and this information 
offers guidance for future study’s field site selections.  
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space, Resilience 
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Chapter 1. Introduction 

1.1 Introduction 

Barrier islands are coastal landforms that can protect the mainland from the full 

impacts of tropical and extratropical storms (Temmerman et al. 2013; Spalding et al. 2014). 

The processes shaping the morphology of the barrier islands are closely associated with the 

evolution of smaller and superimposed features, including sand dunes (Plant et al. 2014). 

Dune landscapes on barrier islands are environmentally complex and reflect an interaction 

among topography, dune vegetation, steep abiotic gradients of salt spray and sand burial, 

and disturbances from overwash events and blowing sand (Godfrey 1977; Everard et al. 

2010; Feagin et al. 2010; Miller et al. 2010). 

Two basic morphological categories of barrier islands are recognized, each 

originating from relative differences in tidal range and wave height (Hayes 1979; Davis 

and Hayes 1984; Hayes 1994). The low tidal range and high wave energy settings of 

microtidal, wave-dominated coasts result in narrow, elongated barrier island morphologies; 

the high tidal range and low wave energy settings of mesotidal, mixed-energy coasts lead 

to wide, drumstick-shaped barrier island morphologies. Within the boundary conditions set 

up by larger oceanic, climatic, and geologic controls on islands, feedbacks between 

prevailing patterns of sediment mobility, dune vegetation, and topography can potentially 

canalize local process-response behaviors to high water events, giving rise to distinctive 

landscape dynamics and topography on each island morphology (Stallins 2005).  

Specifically, the dune topographies and vegetation of these two morphologies each 

exhibit positive feedbacks that modify movements of sediment and water during high water 
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events. On microtidal barrier islands, a low flat topography is maintained through the 

interaction of dune grasses with prevailing patterns of sediment mobility. More infrequent 

storm-forced overwash on mesotidal barrier islands can lead to greater topographic 

roughness and more extensive ridge-and-swale landforms. These barrier dune topographies 

can either reinforce or resist overwash events, respectively, promoting the vegetation that 

in turn facilitates the maintenance of topography. A number of studies have proposed to 

further validate these two biogeomorphic models (i.e., overwash-resisting and overwash-

reinforcing feedbacks) (Godfrey and Godfrey 1976; Godfrey 1977; Stallins 2005; Wolner 

et al. 2013; Brantley et al. 2014). They each demonstrated the linkage between the two 

morphological types of barrier islands and their relative frequency of exposure to 

meteorological or tidal events capable of forcing overwash, the type of topography, and 

vegetation type. However, like the initial research to develop these models, most of 

subsequent work has focused on topographic and vegetation patterns on one or two islands. 

Moreover, these two biogeomorphic models, as alternative stable states or stability 

domains, were associated with entire islands. Considerable topographic and biogeographic 

variability can develop within even a single island. 

The goal of this dissertation is to investigate the generalizability of linking barrier 

island morphologies to specific type of dune topographies. To what extent are there 

potential geographic variations in biogeomorphic feedbacks within and among barrier 

islands, as expressed through dune topography? Several researchers have suggested how 

dune topographies may not neatly correspond to one or the other of these two stability 

domain models (Monge and Stallins 2016; Zinnert et al. 2017). A broader geographic 

sampling is needed. This would allow for a more nuanced comparison of the spatial 
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patterns of topography among many different nearshore island contexts that influence 

island morphology and the relief expressed in the dune landscape.  

However, making comparisons of topography among and within many different 

barrier islands is not a straightforward process. Dune topography reflects landscape-extent 

processes. Topography is polygenic, a range of factors operating at different spatial and 

temporal extents contribute to its expression. In this dissertation, I develop and deploy a 

cross-scale data model developed from scholars in resilience theory to represent and 

compare the pattern-process facets of dune topography. This methodology accounts for the 

nested, or hierarchical geomorphic and ecological processes that manifest across scales. It 

also accounts for the different paradigms to account for patterns and process. In addition, 

a method is needed to analyze the spatial patterns embedded in this data modeling of 

topography. This dissertation employs the concept of state space (Prager and Reiners 2009) 

to compare patterns and the processes they reflect through their cross-scalar structure. 

Specifically, this study will visualize dune topographic state space across multiple islands 

along a stretch of coast from south Florida to Virginia, by means of three sets of 

topographic variables. They metrics are derived from digital elevation models (DEMs) 

constructed from airborne Light Detection and Ranging (LiDAR) data. The following three 

research questions are proposed. (1) To what extent does island morphology track dune 

topography? (2) How do barrier islands of two distinctive coastal regions, Virginia and the 

Georgia Bight, differ in topography and in their resilience properties? (3) Under what 

conditions can biogeomorphic domain dynamics be expected to develop? Although 

vegetation is not sampled in this study, topography at the resolutions examined is strongly 

influenced by vegetation. On barrier islands topography and vegetation are highly 
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correlated. Maximum elevations are often a function of vegetative processes (Duran and 

Moore 2013), implying that the size of dunes and sediment storages in a coastal dune 

system are controlled by dune-building species. 

1.2 Background 

1.2.1 Barrier island morphology 

Barrier islands form and develop along the coastlines of the trailing edges of 

continental plates with abundant sediment and generally low gradients. Along with wind, 

wave and tidal energy are major controls on barrier island formation and later morphologic 

development (Davis 1994). Historically, the first classifications of barrier island process-

form morphologies were based on wave and tidal energy (Hayes 1979; Davis and Hayes 

1984; Hayes 1994). The low tidal range and high wave energy settings of microtidal, wave-

dominated coasts lead to narrow, elongated barrier islands as island widths are primarily 

limited by overwash processes. The high tidal range and low wave energy of mesotidal, 

mixed-energy coasts generate wide, drumstick-shaped barrier islands as tidal energy limits 

island length by inlet formation and increases island width through the welding of 

sediments at tidal inlets. Generally, mesotidal barrier islands are viewed as high, overwash-

resisting islands; microtidal barrier island morphologies are viewed as low, overwash-

reinforcing islands.  

However, barrier islands are complicated, heterogeneous landforms, rather than the 

distinctive categories that Davis and Hayes (1984) theorized. Along mesotidal, mixed-

energy coasts, there can be a broad spectrum of island morphologies with very little 

difference in tide and wave parameters (Anthony and Orford 2002). In this way, strict 
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cutoff values for wave and tidal energy have some limits in how they are correlated with 

island morphology. In the past few decades, more barrier morphologies were examined, 

and there is no universal validity to distinguish the different barrier types merely based on 

wave and tidal energy (Stutz and Pilkey 2011). Later studies have also found a wide variety 

of morphological variability within the broad classificatory scheme used to categorize 

island morphology (Mulhern et al. 2017). Thus, the question arises as to the extent to which 

dune topography and domain dynamics correspond to island morphology. Biogeomorphic 

models of how dunes respond to high water events were initially based on generalizations 

of island morphology to its underlying dune topography. 

1.2.2 Biogeomorphic stability domains in barrier dune systems 

The two-fold stability domain model (Stallins 2005; Wolner et al. 2013; Brantley 

et al. 2014; Durán and Moore 2015; Goldstein and Moore 2016) also originates out of the 

idea that distinctive dune topographies, vegetation, and biogeomorphic feedbacks generate 

resilience properties. Although this resilience was initially generalized to the two main 

categories of barrier island morphology, what was central was that the feedbacks conferred 

a stability and persistence of topography and vegetation that reflects the local overwash 

disturbance regime (Stallins and Corenblit 2018). However, biogeomorphic feedbacks are 

likely to vary within an individual island and among adjacent islands given the topographic 

variability present within an individual island (Stallins 2005; Zinnert et al. 2017). Durán 

and Moore (2015) even suggest that at intermediate elevations, bistability may develop. In 

this case, either the overwash-resisting or overwash-reinforcing stability domain can 

develop. In these perspectives on the original domain models, domain states and the 

resilience that they confer can potentially manifest along the coastline of a single barrier 
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island. Not only are studies needed that question how valid it is to generalize island 

morphology to dune topography, insights into how resilience properties vary between and 

within islands are also needed. By examining topography over a wide range of islands, in 

different nearshore conditions having similar island morphologies, it may be possible to 

infer more of the geographically-variable relationships between island morphology, dune 

topography, and resilience properties.  

Most of the evidence for the overwash disturbance-resisting and overwash 

disturbance-reinforcing domains has come from geographically-limited field work and 

from modeling. These geographically-restricted studies as well as the simulation-based 

approaches have relied on transect-based point elevation, dune crest elevations, and highly 

generalized parameterizations of topography. A different approach is needed to compare 

the spatial patterns of topography, particularly when working at the landscape extents that 

the two-domain model has been postulated to operate across.  Different data representations 

may be necessary to capture the complexity of earth surface patterns (McGarigal and 

Cushman 2002; Lausch et al. 2015). Thus, this study will compare spatial patterns of dune 

topography in more detail than prior studies, in addition to sampling dune topographies 

from a much larger geographic area. Monge and Stallins (2016) employed a similar 

approach, although the older barrier island dune studies had a much larger geographic 

extent at which they deployed their ideas (Godfrey et al. 1979; Zaremba and Leatherman 

1986.). However, these earlier studies did not have the theoretical and methodological basis 

to perform detailed comparisons of topography in a robust quantitative fashion.  
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1.2.3 Visualizing cross-scale structure in state space 

The concept of cross-scale structure is used in this dissertation to make comparisons 

of topographic patterns and to link them to process, Cross-scale structure is the theoretical 

base for resilience properties in geomorphic and ecological systems (Sundstrom et al. 2014, 

2016; Nash et al. 2014). These ideas developed in ecology with Holling (1996). Although 

formally defined with adaptive cycles and panarchies, the working units of resilience 

theory, cross-scale structure provides a way to parse variables into different hierarchical 

levels and to relate this structure to resilience properties. It has long been recognized in 

ecology that ecological and geomorphic processes which operate at one scale can propagate 

across multiple scales on barrier islands (Odum et al. 1987; Zinnert et al. 2017). However, 

formal cross-scale structure from resilience theory provides a methodological basis for 

characterizing and comparing this hierarchical structure (Stallins and Corenblit 2018). The 

scalar extents and resolutions bound to a cross scale data model for dunes vary from cycles 

of sediment accumulation and individual plant growth to the feedbacks with overwash and 

sediment transport at the extent of a landscape.  

Unique to a cross-scale data structure approach is that it allows for multiple 

explanatory paradigms to be integrated, each with their own particular methods of 

representing patterns. Geomorphologists and ecologists often delineate and segregate 

patterns and processes operating at different spatial and temporal scales. As a compromise, 

comparing patterns across scales has been approached through more scale-condensing 

techniques such as spatial autocorrelation, hierarchical modeling, fractals, and wavelets. 

Modeling dunes using the cross-scale structuring of resilience theory has several 

advantages to these methods. It allows for multiple types of pattern and different 
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conceptual paradigms, like patch and gradient perspectives, to be integrated. It allows for 

a multivariate comparison of pattern that integrates across scalar extents and also 

incorporates a mechanism to account for resilience properties.  

Cross-scale data requires a method of visualization that can retain the data’s 

underlying structure yet simplify its interpretation. State space visualization of cross-scaled 

topographic data is employed in this dissertation. State space specifically refers to 

Poincairean ecological topologies, in which phenomena are mapped in an abstracted field 

space (Prager and Reiners 2009). There are typically axes, in a Cartesian coordinate 

system, that give shape to state space. The state space of a dynamical system defines the 

set of all possible states that the system can take. Uses of state space similar to those 

employed in this study can be found in ecology and geomorphology (e.g., Baas and Nield 

2010; Donohue et al. 2013; Chartier et al. 2014; Barros et al. 2016; Inkpen and Hall 2016; 

Stevens and Tello 2018). In the approach used in this dissertation, state space is constructed 

via dimensionality reduction using ordination. Cross-scale data is designed to be nested 

and exhibit multicollinearity. Using ordination, the variance structure of cross-scales data 

can be visualized. In this reduction of the dimensions of the data, the axes of state space 

represent resistance and resilience. These state space approaches to resilience properties 

are frequently employed in ecology (Donohue et al. 2013, 2016; Laughlin 2014). 

1.2.4 Defining resilience and resistance 

Resilience theory was developed through theoretical discussions about the 

relationship between diversity and stability (MacArthur 1955). From case studies in 

population ecology, Holling (1973) proposed concepts of stability and resilience that were 

later used to develop the terminology of engineering resilience and ecological resilience. 
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Although there are many definitions that vary slightly, engineering resilience (i.e., 

resistance) is the structural and functional attributes that resist disturbance; ecological 

resilience is the magnitude of disturbance that a system can absorb before the system 

changes its structure. 

Resilience concepts have long been recognized by geomorphologists (Brunsden 

and Thornes 1979; Schumm 1979; Thomas 2001; Brunsden 2001; Phillips 2006, 2009a). 

For example, landscape sensitivity discusses how landforms respond to perturbations and 

includes the probability or propensity for change as well as the ability of the system to 

recover from disturbance (Downs and Gregory 1995; Fryirs 2017). Several aspects in 

landscape sensitivity were proposed by Phillips (2009a) and Philips and Van Dyke (2016) 

to assess resilience properties in geomorphic systems. Within geomorphic systems, 

resistance is the intrinsic property that resists geomorphic perturbations from floods, wind 

or gravity, while resilience is the ability of a geomorphic system to recover from 

disturbances and the degrees of freedom to absorb or adjust to disturbances.  

An important distinction about resilience properties is that there is an underlying 

structure that can be visualized and interpreted through dimensionality in state space. 

Resilience is not a matter of absence or presence, but a multidimensional concept 

(Gunderson 2000). It includes the underlying dimension of resistance, as well as how 

resistance and resilience interact with each other. Dimensionality and position in state 

space is as an approach to compare topographic patterns but it can also be used to gauge 

the resistance and resilience of observations (Donohue et al. 2013, 2016; Stevens and Tello 

2014, 2018). Donohue et al. (2013) elaborates on how resilience properties can be 

explicitly represented as dimensionality in state space. Following Donohue et al. (2013, 
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2016), as well as Stallins and Coreblit (2018), the first axis in a multidimensional volume 

can represent resistance, and the second axis and higher dimensionalities represent the 

resilience that emerges out of the underlying property of resistance. In the context of barrier 

island dune systems, resistance is the stabilization of topography such a foundation that 

exists for biogeomorphic interactions to emerge and promote resilience through more 

spatial, landscape-extent interactions between topography and vegetation.  

However, in order to compare topographic patterns and to examine how they reflect 

different relative levels of resistance and resilience within and between barrier islands, 

metrics have to be designed to reflect a cross-scalar structure.  Three basic types of 

topographic metrics were used. Implicitly spatial descriptive statistics for elevation 

comprise the resistance variables. The landscape patterns of elevational patches, as based 

on FRAGSTATS measures of patch structure derived from interval groupings of elevation, 

comprised the middle dimension variables. These reflect more spatial attributes of dune 

topography, but do not capture the continuous, gradient structure of topography. The 

highest dimensional variables were chosen to be the spatial autocorrelation structure of 

topography, along with the extent or size of a particular DEM study site. Skewness and 

kurtosis of the point elevations that comprise the DEMs were also designated as high 

dimensional properties, as they are reflect the boundary constraints upon which landscape-

extent topographic patterns could be expressed. Low dimensional resistance metrics set the 

boundary conditions for the emergence and expression of higher dimension resilience 

metrics. 
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1.3 Structure of the dissertation 

The dissertation is composed of five subsequent chapters. Chapter 1 has 

summarized the basic theoretical background necessary for an understanding of barrier 

dune systems and cross-scale resilience. In Chapter 2, the dune topography of barrier 

islands of Virginia will be assessed in terms of how variable their topographies are in 

relation to their island morphology. Like the Georgia Bight, island morphology has been 

well-studied along the Virginia coast. This chapter will assess how well dune topographies 

correspond to the older morphological classifications of the Virginia Barrier Islands. It also 

relies on the recent observations of Virginia Barrier Island shoreline trends in erosion and 

accretion to assess this linkage between island nearshore context and dune topography. 

More precisely, given that topography was assessed at multiple locations along each island, 

to what extent do all of the sites on an island retain an affinity for its particular nearshore 

morphological context? To what extent are topographies within an individual island more 

similar to those in different island morphological contexts? Understanding the degree to 

which topography varies across different morphological contexts provides insight into the 

potential limits of the existing biogeomorphic stability domain model with its 

generalization that island morphology determines topography and biogeomorphic 

interactions. 

In Chapter 3, the focus will be on expanding the geographic extent of dune 

topographic comparisons. Dune topographies of the Virginia Barrier Islands are compared 

to those of several islands in the Georgia Bight, which spans from Florida to North 

Carolina. Specifically, how do dune topographies of these two stretches of the U.S. 

southeastern Atlantic coast compare given that some of the same island morphologies are 
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expressed in each? Are the interpretations of their individual state spaces logical based on 

the known characteristics of these two stretches of coast? The Virginia Barrier Islands are 

undergoing rapid retreat and erosion when compared with much of the US Atlantic coast. 

Do island morphologies shared by both regions exhibit similar topography given these 

differences in erosion and island retreat? By examining where sites from barrier islands 

from both regions plot in a combined state space, comparisons will be made not only of 

the topographic affinities, but also in relation to the relative levels of resistance and 

resilience.  

In Chapter 4, the last analytical chapter, the topographic state space formed by the 

analysis of sites from Virginia and the Georgia Bight will be assessed in more detail. The 

goal was to describe how aspects of state space axis dimensionality and the loading of 

topographic metrics on these axes suggests domain dynamics and possibly other types of 

dynamical behaviors. This chapter will provide a summary as to which islands may be 

more likely to be overwash-resisting and overwash-reinforcing domains, and where in state 

space bistability could be expected to develop.  

Chapter 5 will synthesize results and discuss the implications of the above analytic 

chapters. 



13 
 

Chapter 2. Dune topographic variability along the U.S. Virginia coast: how 
landscape mosaics complicate existing biogeomorphic models of barrier island 

responses to storm disturbance 

Abstract 

Context How dune topography varies within and among barrier island morphologies 

has not been examined. Existing models of how barrier dune coasts respond to high water 

events assume homogeneity in dune topography. 

Objectives Through thirty plots across seven barrier islands of Virginia (U.S.A), this 

study quantitatively assessed how dune topographies correspond to barrier island 

morphologies. 

Methods For LiDAR-derived DEMs of each plot, topographic attributes were derived 

from elevational descriptive statistics, landscape indices of elevation patch structure, and 

the directional autocorrelation structure of elevation. Non-metric multidimensional scaling 

and hierarchical cluster analysis were used to gauge topographic similarity. Multiple 

response permutation procedures compared the similarity in dune topography based on 

island morphology to the similarity identified from clustering of all island plots.  

Results  Topography on mixed energy wave-dominated island morphologies was 

distinctive from tide-dominated morphologies. However, differences in topography on the 

much smaller tide-dominated barrier island morphologies were as great as those between 

wave and tide-dominated island morphologies. Topographic differences were more robust 

when based on clustering of all plots rather than island identity (i.e., morphology). 

Conclusions Local controls such as shoreline accretion and erosion fostered larger 

differences in topography among tide-dominated islands. Wave-dominated islands 

exhibited more convergence in dune topographic form. Island morphology is an incomplete 
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guide for anticipating potential dynamic dune biogeomorphic responses to high water 

events.  

2.1 Introduction 

Dunes and beach landscapes are major features of barrier islands, a globally 

widespread landform that can buffer storm inputs on the mainland. Barrier islands have 

been classified according to how wave and tidal energy shapes their macro-scale 

morphology (Hayes 1979; Davis and Hayes 1984). Island morphology has in turn been 

used to make generalizations about the underlying dune topography and how barrier islands 

potentially respond to storms and high water events. Wave-dominated mixed energy barrier 

island morphologies are often associated with reduced topographic roughness and a lower 

resistance to incursions of overwash. On mixed-energy barrier island morphologies where 

tidal energy is greater, topographic roughness increases, and overall resistance to overwash 

disturbance is often assumed to be higher (Godfrey and Godfrey 1976; Stallins and Parker 

2003).  

However, barrier island morphology can exhibit a considerable amount of 

variability (Stutz and Pilkey 2011; Mulhern et al. 2017). Dune topography within an 

individual barrier island is not uniform. Consequently, how barrier island shorelines 

respond to high water events may be more open-ended than what is assumed by these island 

morphological models. They oversimplify how sandy barrier coasts respond to high water 

events by assuming homogeneity in dune topography within tide-dominated versus wave-

dominated mixed energy barrier island morphologic types. 
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In this paper, we documented the relationship between dune topography and barrier 

island morphology for barrier islands of Virginia (U.S.A), a mixed wave and tidal energy 

stretch of the U.S. southeastern Atlantic coast. As how to demarcate a dune is a complex 

question (Wernette et al. 2018b), we utilized a cross-scale data set comprised of a suite of 

topographic metrics. These metrics spanned different extents and resolutions, and 

encompassed different geometric attributes of dunes. The intent of these metrics was to 

capture more of the correlated, nested causal structure of biogeomorphic systems 

(Corenblit et al. 2015; Stallins and Corenblit 2018). Their usage facilitated the delineation 

and interpretation of topographic similarity within a multidimensional dune state space. As 

the stretch of Virginia coast in this study ranges from wave to tide-dominated conditions, 

we were able to ascertain how variable dune topography was among the different process-

form nearshore contexts shaping island morphology. As Phillips (2018) observed, 

responses to sea level rise may be much more local, with less coherence with models of 

change in which large sections of contiguous coastline respond uniformly. Coastal 

responses to sea level should also be assessed based on multiscalar, nested environmental 

gradients and the data that represent them. The topographic metrics employed in this study 

to make comparisons of topography between and within barrier islands incorporate these 

recommendations. 

2.2 Background 

Early classifications of barrier island process-form morphologies were based on 

wave and tidal energy (Hayes 1979; Davis and Hayes 1984; Hayes 1994). Tidal energy 

limits island length by inlet formation, and increases island width through the welding of 

sediments at tidal inlets. This creates the more rounded, drumstick-shaped islands found 
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on tide-dominated coasts. Conversely, barrier islands on wave-dominated coasts are 

primarily width-limited by overwash processes. This results in elongate island 

morphologies, some approaching tens of kilometers in length. 

Geographic variability in barrier island dune topography was initially based upon 

these distinctions in island morphology (Godfrey and Godfrey 1976; Hosier and Cleary 

1977). This generalization from island morphology to dune topography arose out of 

observed geographic generalizations about island sediment budgets, exposures to 

extratropical and tropical storm tracks, and biogeomorphic feedbacks. Wave-dominated 

morphologies have low flat overwash topographies that peak in elevation along the fronting 

dunes. Tide-dominated barrier islands have multiple shore-parallel ridge and swale 

topography. Each of these two topographies were hypothesized to entrain distinctive storm-

driven cycles of sediment erosion and deposition that constrain dune plant functional 

abundances and topography on each island morphologic type. This perspective has been 

formalized into a view of dune topography and island morphology as a self-organizing 

complex system exhibiting process-form feedbacks that propagate across scales (Stallins 

2005; Wolner et al. 2013; Brantley et al. 2014; Durán and Moore 2015; Goldstein and 

Moore 2016). Local, largely geomorphic constraints, like elevation above water level, 

initiate the potential for interaction of sediment transport processes with vegetation. These 

culminate in landscape-scale feedbacks among geomorphic and ecological components 

that can confer ecosystem properties like resistance and resilience (Stallins and Corenblit 

2018, Schwarz et al. 2018). 

While a wide range of techniques, from field description to mathematical modeling, 

have been employed to document these complex dynamics, these studies do agree on the 
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potential for reinforcing biogeomorphic feedbacks to emerge out of nearshore context, 

storm history, dune vegetation, and topography. These feedbacks shape the expression of 

overwash-resisting, overwash-reinforcing and bistable dynamical states. Bistability 

suggests that either the overwash-resisting or the overwash-reinforcing stability domain 

can develop within intermediate dune elevations. The two end points of these dynamical 

behaviors still retain an affiliation with island morphology (Stallins and Parker 2003; 

Wolner et al. 2013; Brantley et al. 2014). Tide-dominated barrier islands are taken to be 

high, overwash-resisting islands. Wave-dominated barrier island morphologies are taken 

to be low overwash-reinforcing islands. However, it is to a degree simplistic to link dune 

characteristics and dynamical states to entire barrier island morphologies. Erosion and 

accretion can vary considerably along any barrier island. While evidence for overwash-

resisting, overwash-reinforcing, and bistable dune landscape dynamics grows, what merits 

clarification is a basic description of how dune topography varies not only within individual 

islands, but also among different and geographically continuous barrier island 

morphologies.  

Analogous characterizations of topography in riparian landscapes (e.g., Phillips 

1999) have observed that geomorphic processes can lead to increasingly divergent 

topography over short distances. Conversely, the same topography can be expressed over 

large geographic extents and be considered invariant or convergent. Comprehending the 

degree of divergence and convergence in topography within an individual island, and 

among islands of the same and different barrier island morphologies can inform us of the 

limits to employing the resisting, reinforcing and bistable models of dune landscape 
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dynamics. It provides detail about the generalizability of models predicting how sandy 

barrier island landscapes respond to high water events (Carter 1991).  

Along these lines, a recent study by Mulhern et al. (2017) observed that variability 

in island morphology is more complex than the earlier barrier island classifications (e.g., 

Hayes 1979; Davis and Hayes 1984). Mulhern et al. (2017) found that mixed-energy tide-

dominated barriers and mixed-energy wave-dominated barrier islands have more variable 

morphologies than previously assumed. This can be in part attributed to the greater 

contextual dependence upon where and when tidal energy dominates over more 

unpredictable inputs of wave energy. The way waves and the tides interact on tide-

dominated barriers (via mutual muting, modulation, or amplification) can enhance the 

expression of distinctly local processes of sediment transport and morphological 

development. Whether this augmented heterogeneity in island morphology extends to the 

underlying dune topography has not been explicitly examined. 

Biogeomorphic processes, rather than island morphology per se, may constrain 

topographic variability in some contexts, but diversity it in others. For example, Durán and 

Moore (2015) used mathematical modeling and primary foredune elevations along the 

Virginia coast to reassert that when the biophysical processes driving dune recovery 

dominate, islands tend to be high in elevation, and their vulnerability to storms is 

minimized. In this overwash-resisting state, topography is constrained to have more 

roughness. Alternatively, when the effects of storm erosion dominate, islands may become 

trapped in a perpetual state of low elevation and maximum vulnerability to storms, even 

under mild storm conditions. In this overwash-reinforcing state, topography is constrained 

to be low and flat. However, for intermediate elevations, either dune topography can be 
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potentially expressed. This complicates any straightforward linkage of dune topography to 

barrier island morphological context. At intermediate elevations, different topographies 

and dynamical properties may develop under the same nearshore conditions and island 

morphologies. While a low or high island may constrain topography to certain dynamically 

favorable topographic states, islands with intermediate elevations could exhibit greater 

turnover in topography over time or across space. As this study by Durán and Moore (2015) 

also shows, what constitutes a high island may not necessarily be a tide-dominated 

morphologies, nor are low islands going to be those that are wave-dominated. 

Given the relatively unexamined generalizations made between island morphology, 

dune topography, and the biogeomorphic dynamical states arising out of responses to high 

water events, greater field-based details as well as additional conceptualizations are 

warranted. As a form of null model, all possible dune topographies may develop on a single 

barrier island no matter what its morphological type is. This is because barrier islands are 

bounded entities that transit from terrestrial to marine habitats. Consequently, a wide range 

of topography should occur on any one island. For instance, where a barrier island beach 

reaches its inevitable terminus near a tidal inlet, low flat topography and overwash will 

inevitably develop, albeit locally. Overwash topography may be limited to this small 

extent, perhaps only a few tens of meters or less, and driven by minor forcing events. While 

this implies that the overwash-reinforcing dynamical state can develop on all islands, such 

a position is of little value to coastal planners who need to work across larger coastal 

extents. Their work must consider the more dominant types of dune topography across a 

barrier island landscape. Within these two extremes is the relevant middle ground for 

documenting dune topographic variability. It is specious to assume a uniform topography 
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within a category of barrier island morphology. Yet assuming that each island contains all 

possible dune topographies and the biogeomorphic feedbacks that contribute to them is 

likewise unproductive if the goal is to better anticipate barrier island coastal responses to 

high water events.  As an investigation of landscape similarity (Niesterowicz and Stepinski 

2016), this study documents this middle-range variability in dune topography. 

To characterize dune topography, we developed a suite of cross-scaled topographic 

metrics. Their intent was to account for the variety of topographic features expressed at 

different scalar extents and to lessen dependence upon any generalized measure of 

topography such as average point elevation, dune crest height, or two-dimensional cross-

sectional elevation profiles. Studies that rely only on point elevations or dune crest height 

are capturing important aspects of topography. However, how barrier island dune 

landscapes respond to forcings of high water events is a spatial landscape process (Houser 

2013). To compare dune topography between and within island morphologies, we 

constructed dune topographic state space. State space is a demarcation of the range of 

conditions under which a dynamic phenomenon is expressed, from those that are favored, 

and more likely, to those that are less persistent and unlikely to occur (Baas and Nield 

2010; Inkpen and Hall 2016). The dimensionality and data structure of topographic state 

space provided the explanatory framework for how individual topographic metrics 

contributed to topographic differences. We hypothesized that within the dune topographic 

state space for the sampled barrier islands, dune topographies for any specific island would 

not be in perfect accordance with its morphology. While the position of some within-island 

topographies were expected to have a propensity to track with island morphology, we 
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expected to encounter exceptions reflective of the limits to assuming a tit-for-tat 

relationship between island morphology and underlying topography. 

Island morphology was based on qualitative and quantitative classifications of the 

nearshore process-form contexts of the Virginia coast. These earlier descriptive 

classifications are in general agreement with the later quantitative classifications, which 

incorporated measures of wave and tidal energy, historical hurricane strikes, as well as 

island length and width (Williams and Leatherman 1993; Monge 2014). Geological 

framework and sediment exchange with nearshore components contribute to the 

morphology of islands, beaches and dunes. These factors are also critical to how barrier 

coasts respond to high water events. However, we consider that these processes are folded 

into the geographic location of each island and as such are subsumed into their current 

nearshore process-form island morphology. 

2.3 Methods 

2.3.1 Study area 

Dune topography was characterized on seven largely undeveloped mixed-energy 

barrier islands of Virginia (Figure 2. 1). All of these islands are experiencing rapid rates of 

relative sea level rise. These rates are among some of the highest on the US Atlantic coast 

(Sallenger et al. 2012). Landward retreat rates for barrier islands along this coast vary 

depending upon the time frame examined (Leatherman 1982; Haluska 2017; Deaton et al. 

2017). Long-term trends (1851 to 2010) are approximately 1-6 m/year. Short-term retreat 

rates (1980-2010) for the entire coast are approximately 7 m/year. This is leading to 

erosion, reduction in the backbarrier area, and narrowing of the islands. Abundant 
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washover fans and marsh clumps on the islands attest to the importance of retreat processes 

along this stretch of the mid-Atlantic coast. Net longshore transport of sediment is to the 

south. Virginia Barrier Islands differ in their shape, size, and sediment processes, but they 

are all responding to sea level rise through a few mechanisms including parallel retreat, 

rotational instability, rollover, and drowning (e.g., Lorenzo-Trueba and Ashton 2014; 

Deaton et al. 2017). Rotational instability is non-parallel retreat that gives the appearance 

of island rotation caused by one part of the island retreating faster than another. 

Following Leatherman (1982), Rice and Leatherman (1983), and Oertel and Kraft 

(1994), islands of this stretch of coast have been classified into coastal compartments based 

on the geomorphic influences shaping island morphology (Figure 2. 1). Although this 

entire stretch of coast experiences wave and tidal energy inputs, wave energy dominates in 

the most northern compartment. Tidal energy increases in importance to the south. These 

more southerly tidally-influenced island morphologies have been segmented into three 

contiguous geomorphic groups based on whether island morphologies reflect parallel or 

non-parallel retreat. Retreat for some of these islands have shifted from parallel to non-

parallel and vice versa over time (Kochel et al. 1983; Nebel et al. 2012; Deaton et al. 2017; 

Haluska 2017). 

The northernmost island, Assateague (Table 2. 1), exhibits the long, linear barrier 

island morphology characteristic of mixed-energy, wave-dominated coasts. Assateague is 

undergoing parallel retreat (Haluska 2017). It is prone to breaching with numerous 

ephemeral and long-lived tidal inlets that have formed during extratropical and tropical 

storms (Seminack and McBride 2015). Anthropogenic modifications of the inlet above 

Assateague and on Wallops island just below it include sediment dredging. Consequently, 
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downdrift locations on Assateague and islands immediately south experience greater 

erosion and higher retreat rates (Roman and Nordstrom 1988; Psuty and Silviera 2011). 

South of Assateague are the increasingly tide-dominated barriers of Metompkin 

Island and Cedar Island. These islands have simple topographies and low elevations that 

result in frequent overwash even during mild extratropical and tropical storms (Brantley et 

al. 2014). Their coastlines experience significant sediment starvation and erosion due to 

altered sediment dynamics on Wallops and Assateague islands. Metompkin is undergoing 

pervasive rapid retreat. The northern half of Metompkin is retreating faster than the 

southern half, causing a counter-clockwise rotation (Haluska 2017). Because of shoreline 

retreat, Cedar Island is decreasing in overall area and losing vegetation cover at the expense 

of bare sand (Zinnert et al. 2016b). It is retreating at high rates for the entire mid-Atlantic 

shoreline (Nebel et al. 2012). Cedar Island has more parallel beach retreat for the period 

1990-2014, although there is evidence it has alternated between parallel and rotational 

motion in the past. 

Parramore Island and Hog Island comprise the next morphological compartment to 

the south. These islands have relatively high relief (>6m) and exhibit the distinctive 

drumstick shape where morphology is strongly influenced by tidal energy. On Parramore 

extensive erosion is associated with scarping as the island migrates rapidly landward. The 

north-central stretch of Parramore is characterized by the truncation of high-profile, tree-

lined beach ridges as the island retreats and rolls over into upland forest. Parramore Island’s 

previous clockwise rotational pattern documented by Leatherman (1982) has evolved into 

a sustained rapid parallel retreat (Haluska 2017). Parramore has been described as a low 

island that tends to reinforce overwash exposure and remain in a low elevation state 
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through biogeomorphic feedbacks. Like Parramore, Hog Island exhibits mostly parallel 

retreat. However, it has lower shoreline retreat rates. Accretion and dune ridge-swale 

landforms dominate on the northern half of the island, while erosion dominates on the 

southern half. Hog and Parramore exhibit ‘pimple’ topography in which erosion during 

high water events leaves behind circular topographic highs (Hayden et al. 1995). Hog 

Island differs from the other islands in that it has increased in woody vegetation over the 

last 40 years (Zinnert et al. 2016b). It is designated as one of the high, overwash-resisting 

islands along the Virginia coast (Wolner et al. 2013; Brantley et al. 2014). 

The most southern compartment of the mixed-energy tide-dominated barrier 

islands of Virginia consists of Ship Shoal Island and Wreck Island. Their diminishment of 

wave energy is evident in sands that are finer than those to the north (Fenster et al. 2016). 

Both islands are exhibiting non-parallel shore retreat. Ship Shoal and Wreck also have 

greater longshore variability in shoreline changes than the larger islands to the north 

(Fenster et al. 2016; Haluka 2017). Wreck is retreating faster on its northern part, with the 

southern end exhibiting shoreline advance seaward. Both islands have had the greatest 

maximum shoreline retreat of all the Virginia Barrier Islands (Haluska 2017). 

The quantitative classifications of barrier island morphology partition this gradient 

of wave and tidal energy into a northern wave-dominated compartment (Assateague) and 

three southerly tide-dominated compartments. Williams and Leatherman’s (1993) 

classification assigned Assateague Island to class of wave-dominated islands with long, 

linear morphologies. Parramore Island was assigned to the widest-island class. Metompkin, 

Cedar, and Hog islands were assigned to the outlier class, which Kochel et al. (1983) 

described as islands lacking “geomorphic organization.” Wreck and Ship Shoal islands 
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were classified into the shortest-island class, typifying tide-dominated island morphologies 

strongly influenced by antecedent topography. Monge (2014) classified barrier island 

morphologies using variables similar to those in Williams and Leatherman (1993) and 

found a similar compartmentalization. Assateague Island was classified into its own group. 

The remaining six barrier islands formed three morphological groupings that were more 

geographically contiguous, and comprise Metompkin and Cedar, Hog and Parramore, and 

Wreck and Ship Shoal. 

2.3.2 Plot selection 

Within each of the seven islands, locations to characterize dune topography were 

determined by visually identifying from air photos the distinctive, predominant stretches 

of dune and beach topography. Criteria to identify these locations included beach width, 

the width of the dune field, linearity of the dunes, and type of habitat behind dunes. Areas 

of pervasive human impact and locations directly on tidal inlets were avoided. Four to five 

distinctive stretches of topography were required for each island (Figure 2. 2 and Figure 2. 

3). To sample dune topography within these stretches of predominant alongshore relief, we 

employed a natural sampling technique (Bissonette 2017). In this technique, the 

phenomena under study defines the observational windows and the site dimensions. Square 

plots were randomly located within each distinctive stretch of barrier island dune shoreline 

so that they initiated at the mean high water mark datum (MHW) and extended inland to 

where salt marsh or significant stabilized woody vegetation developed. So instead of 

standardizing plot size, size became a spatial characteristic of the sampled topographies 

and was retained as an explanatory variable. 
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2.3.3 LiDAR methods 

To capture small extent and fine grain patterns of dune topography, as well as those 

that are larger in extent and coarser in grain, we utilized Light Detection and Ranging 

(LiDAR) data derived from airborne surveys of the Virginia coast. Digital elevation models 

were constructed for each plot from LiDAR ground elevation data available online from 

the NOAA’s Coastal Services Center. A post-Hurricane 2014 data-set collected by the 

NOAA National Geodetic Survey was used for all seven islands. Vertical (horizontal) 

accuracy was 6.2 cm (100 cm) and nominal point space was 0.3 m. In each of the plots, 

LiDAR point elevations were resampled to a resolution of 1 m and then interpolated using 

inverse distance weighing to fill any gaps. LiDAR processing was performed in ArcGIS 

using LAStools. The MHW shoreline was defined as the 0.7m contour line relative to the 

NAVD 88 datum (Rogers et al. 2015). The plots were then clipped along the edge 

coinciding with the MHW mark elevation of zero, clipped again to be square, and rotated 

to a common orientation. 

2.3.4 Characterization of topography 

Cross-scale topographic metrics 

To avoid reliance on a few synthetic metrics to capture topography, we derived a 

suite of cross-scale metrics from the high resolution, broad extent coverage of the airborne 

LiDAR data. These metrics captured longitudinal (along-island; Houser 2013; Sherman et 

al. 2013), transverse (cross-island) and vertical (elevational) aspects of topography. 

Because controls on topography interact across scales, these metrics are intended to be 

nested and collinear. Such cross-scale data structure is intrinsic to dynamical systems (Nash 



27 
 

et al.  2014; Sundstrom et al. 2014). Cross-scale approaches have been deployed in dune 

studies using wavelet analysis (Houser et al. 2018; Wernette et al. 2018a). These studies 

also aimed to capture how dune topography reflects interactions across scales and how this 

in turn shapes barrier island responses to high water events. 

These plot-level topographic metrics ranged from spatially-implicit to more 

spatially-explicit measures. For example, elevation is very informative property of dune 

topography, particularly when measured at the dune crest or along the high water mark 

datum (Long et al. 2014; Yousefi Lalimi et al. 2017). However, the actual elevation value 

at a point or along a line, or as calculated as a mean for an area and then assigned to a 

centroid, can be similar to average values derived from dune landscapes with very different 

arrangements of dune landforms. Thus, more spatially explicit measurement of alongshore 

and cross-island topographic variability, and not just elevation per se, are important 

properties of dune topography to include. To capture the geometry of elevations, we 

employed landscape patch metrics expressed as FRAGSTATS indices as well as gradient 

representations of landscape structure summarized through spatial correlograms. Both 

patch and gradient representations were employed because neither paradigm can fully 

capture landscape structure and process on its own (McGarigal et al. 2009; Lausch et al. 

2015; Kedron et al. 2018). No single method for representing observations is entirely free 

of scale dependency (Wu et al. 2000). Thus, our approach is to model topography by taking 

an intensive set of observations (LiDAR) and reassembling it through metrics having 

different measurement levels (absolute versus relative), different degrees of spatial 

explicitness, and association with different conceptual paradigms and their data 

representations. 
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Through this strategy, we avoided dichotomizing variables as strictly local or 

landscape (Heisler et al. 2017). It also lessened the propensity to associate observations 

with a few arbitrarily defined levels (Jackson and Fahrig 2015). High resolution broad 

extent datasets like LiDAR facilitate the development and integration of multiple metrics, 

thereby accounting for different ontological representations (i.e., patch versus gradient) to 

account for pattern and process. Through these metrics, we examined similarity in dune 

topography with more accounting for its cross-scale, polygenetic (i.e., derived from a large 

number of attributes) nature and for the different conceptual paradigms that inform their 

detection and interpretation. 

Low and middle dimensional metrics 

The intrinsic dimensionality of these topographic metrics and their position along 

these dimensions, or axes, was used to infer the similarity in dune topography among the 

different island plots. Lower dimensional metrics were those expected to form the greatest 

source of variance in the data set. Spatially-implicit values of absolute elevation, as 

expressed in descriptive statistics (mean, 25th, 50th, and 75th percentiles) comprised these 

low dimensional variables. They were obtained from the 1-m interpolated plot surface 

using GS+ software (Robertson 2000). 

Landscape metrics defined our midrange dimensional variables. These metrics 

(patch metrics) quantified the patch pattern of elevations. Because FRAGSTATS is 

designed to work with categorical observations, raster DEMs were converted into areal 

representations by reclassifying pixels into elevation intervals. This decreased the number 

of elevation classes from all the possible centimeter intervals to decimeter intervals (a 

categorically oriented representation). Wu et al. (2017, p. 56) as well as Ryu and Sherman 
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(2014) illustrate the logic of how the patch structure of topography can be represented with 

landscape indices. To avoid derivation of FRAGSTATS descriptors without a process 

interpretation, we chose landscape patch indices with consistent ecologically meaningful 

value (Cushman et al. 2008). This set of indices was then constrained to those better-suited 

for characterizing continuous gradient surfaces like elevation (McGarigal et al. 2009) and 

for discerning pattern-process relationships associated with foredune building and 

overwash. These indices were selection: the aggregation index (AI), the landscape shape 

index (LSI), the area-weighted mean shape index (SHAPE_AM), the interspersion and 

juxtaposition index (IJI), the contagion index (CONTAG); the largest patch index (LPI); 

the Simpson's diversity index (SIDI), and the perimeter-area fractal dimension (PAFRAC). 

AI increases with greater aggregation of patches into a single type. SHAPE_AM 

increases as patches become more curvilinear. A higher IJI indicates that patch types are 

equally adjacent to all other patch types and are thus fully interdispersed. This index is 

based on patch rather than pixel adjacencies. Higher LPI implies higher dominance of a 

single patch within the plot. Higher SIDI implies higher patch richness and more equitable 

patch distribution within the plot. Higher PAFRAC implies all patch shapes within a plot 

tend to be convoluted. CONTAG increases as patches become larger and dominated by a 

similar elevation. This index is based on pixel rather than patch adjacencies. LSI increases 

as patch types become larger and more aggregated. It measures patch rather than pixel 

adjacencies and is similar to AI. 

Higher dimensional metrics 

Barrier island dune topography can be spatially variable, ranging from the linear 

patterns of alongshore ridges to broad, flat uniform overwash sheets. Given their capacity 
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to summarize elevational distributions for a continuous surface, skewness and kurtosis of 

point elevation values were defined as higher dimensional variables (continuum metrics). 

The size of the plots was also selected as a higher dimensional property of elevation. 

Autocorrelation of elevation values was also a higher dimension topographic metric. 

Continuous, spatially-explicit summaries of gradient structure in elevation were 

summarized by directional correlograms assembled in GS+ software (Robertson 2000). 

Autocorrelation were calculated for each plot-level 1-m DEM and constrained to the cross-

shore direction (i.e., perpendicular to the water line). 

State space assembly  

A standard approach in landscape similarity is to make comparisons of locations 

using similarity distances (Niesterowicz and Stepinski 2016). Because our topographic 

metrics were measured in different units, each of them was first standardized as Z-scores. 

Similarities among plots was then calculated using Euclidean distances. Characterization 

of the dimensionality of these data and visualization of the similarity among plots was 

derived from ordination of topographic metrics with non-metric multidimensional scaling 

(NMDS) in PC-Ord Version 7 (McCune and Mefford 2016). 

The NMDS solution was assessed for significance by comparing the reduction in 

stress in the actual data with reduction observed with Monte Carlo randomizations of the 

data. The final solution was also subjected to an orthogonal rotation to maximize variance 

in the data set al.ong the first and succeeding axes. To infer how the plots from different 

barrier islands compared to each other, Spearman’s nonparametric correlation coefficients 

were calculated for the NMDS scatterplot coordinates and their original topographic 

metrics. Six Moran’s I values from the major breaks along each plot’s directional 



31 
 

correlogram were ordinated with principal coordinates analysis (PCoA) in order to distill 

correlogram structure into coordinates that could then ordinated with the other dune 

topographic metrics in NMDS. Like NMDS, PCoA is a distance-based, non-parametric 

ordination method. PCoA reduces the dimensionality of a dataset based on extractions of 

variance similar to principal components analysis. 

To complement interpretation of the similarities in topography in NMDS state 

space, topographic metrics were clustered using a hierarchical agglomerative algorithm 

and a flexible beta linkage method with Euclidean distances. Multiresponse permutation 

procedures (MRPP) were used to test for significant differences among the cluster groups 

and among groupings of the plots based on their island identity. MRPP compares the 

average within-group or within-cluster similarity distance to between-cluster similarity 

distances. The statistical significance of cluster groupings can then be calculated by 

comparing the observed average within- and between-cluster similarity distances with the 

distribution of similarity distances obtained from random permutations of cluster 

membership. When all items are identical within groups, the A value, a measure of effect 

size, equals 1. If contrasts within groups equal expectation by chance, then the A value 

approaches 0. The A values between 0.1 and 0.3 are common for environmental data (Peck 

2010). PCoA, clustering and MRPP was performed in PC-Ord Version 7 (McCune and 

Mefford 2016). 

2.4 Results 

The distribution of pixel-level elevations for island plots was wider and more 

variable to the north toward Assateague (Figure 2. 4). Lower and less variable point 
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elevations tended to develop on the southernmost barrier islands of Ship Shoal and Wreck. 

The lowest spot elevations were observed on Cedar and Metompkin. While the overall 

variability in the central tendency of elevation among island sites was small, there were 

notable differences in how these elevational observations were arranged to form landscape-

extent dune topography (Figure 2. 5). The geometry of topography varied from uniform to 

patchy (Cedar E versus Assateague A). Some plots had topographic highs close to the high 

water mark while others peaked in elevation toward the rear of the plots (Parramore B 

versus Metompkin C). Topography also differed in the predominance of alongshore versus 

cross-shore orientations of dune topography (Wreck D versus Assateague B). Some plots 

exhibited complex combinations of these along-shore and across-shore orientations (Hog 

C and Ship Shoal C). As captured in FRAGSTATS indices, AI differentiated large, 

continuous patches of elevation (Cedar A, AI = 91.8) from smaller, less aggregated patches 

(Assateague C, AI = 53.3). SHAPE_AM distinguished between curvilinear patch structure 

(Cedar D, SHAPE_AM = 5.5) and rectangular patch structure (Hog B, SHAPE_AM = 2.9). 

CONTAG varied from more interspersed (Parramore B, CONTAG = 38.4) to less 

interspersed (Cedar E, CONTAG = 58.0) pixel values for elevation within elevation 

patches. IJI identified differences in how the elevations defining a patch type were clumped 

together. Elevation patches varied from clumpy (Ship Shoal C, IJI = 47.8) to uniformly 

dispersed (Hog B, IJI =  61.5). 

The first axis of the PCoA ordination of directional correlograms (Figure 2. 6) 

captured 54% of the variance in the data set and was statistically significant based on Monte 

Carlo randomizations (n = 999, p = 0.001). The second axis did not extract a statistically 

significant amount of variance. Island plots with low flat overwashed topography 
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characterized the left (more negative) positions along first PCoA axis. These correlograms 

exhibited a peak in elevation close to the high water mark and then Moran’s I values 

became increasingly negative with greater distance lags as elevation became increasingly 

lower. Plots that maintained more positive to zero correlations among elevation 

observations at high distance lags loaded to the right (more positive) on the first PCoA 

axis. These correlations tended to hover around zero as a reflection of their minimal relief 

and tendency to have peaks in elevation further inland from the MHW. 

Two NMDS dimensions (i.e., axes) were optimal for the visualization of 

topographic state space. Stress reduction for this solution was significantly greater than 

solutions derived from ordinations of Monte Carlo randomizations of the data (p = 0.004 

for both axes, n = 249). Final mean stress was 11.5. When island plots were color coded in 

the scatterplot of topographic state space, Assateague’s topography was distinctive from 

the other islands. More tide-dominated islands had a region of overlapping topographies 

but also spanned a large area of the total state space (Figure 2. 7). 

Elevational descriptive statistics (mean, maximum, 25th, 50th, 75th percentiles) had 

significantly stronger correlations with the first NMDS axis (p < 0.01). Mean elevation (rs 

= -0.87) decreased from left to right along the first axis. Several FRAGSTATS landscape 

indices had similarly strong statistically significant correlations with the first axis (p < 

0.01). Elevations became more aggregated (AI) into large uniform patches moving toward 

the lower elevations to the right of the first axis (rs = 0.80). Conversely, elevations became 

more disaggregated into small uniform patches of similar elevation moving toward the 

higher elevations to the left on the first axis. Patch shapes for elevation intervals became 

more curvilinear (rectangular) as elevation decreased (increased) along the first axis 
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(SHAPE_AM; rs = 0.68). Elevations for 1-m grid cells within patch types were more 

dispersed (less dispersed) at lower (higher) island plots (CONTAG; rs = 0.62). Individual 

patch types were more clumped (less clumped) at lower (higher) island plots (IJI; rs = 0.71). 

Spatial autocorrelation structure had little discriminatory power as reflected in its 

low correlations with the first as well as the second NMDS axes (Axis 1 rs = -0.09; Axis 2 

rs = -0.24). Correlations for the second NMDS axis were strong and significant for plot size 

(rs = -0.76) and for skewness of pixel-level elevation values (rs = -0.55). In moving from 

top to bottom along the second axis of the NMDS scatterplot, plots become larger and had 

elevational distributions with only a few extreme topographic highs as outliers. Elevation 

again had a significant but weaker correlation with the second NMDS axis (e.g., mean 

elevation rs = -0.44). However, this was in part due to high outlier elevations for Assateague 

plots B and C. Other outlier plots (Ship Shoal D, Assateague C, Hog A) also contributed 

disproportionately to the weak significance of some FRAGSTATs correlations with the 

first axis position, notably LPI (rs = 0.67), LSI (r s= -0.56), SIDI (rs = -0.84), and PAFRAC 

(rs = -0.59). Kurtosis has a weak correlation (rs = 0.65) with the second axis only as a result 

of outlier plots Cedar E and Hog A and their strongly peaked narrow range of low 

elevations. 

When island plots were symbolized according to hierarchical clustering results, the 

relevance of island identity was evident in the composition of some clusters, but it was not 

the overriding control (Figure 2. 8 and Figure 2. 9). Clusters were not homogenous in terms 

of island plot membership. At the level of two clusters, Assateague formed a heterogeneous 

group with plots chiefly from Hog and Parramore instead of the islands just south of it, 

Metompkin and Cedar. The second cluster comprised the plots of the rapidly retreating, 
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rotating islands of Metompkin and Cedar as well as the low relief plots on Wreck and Ship 

Shoal. At the three cluster level, two low-elevation outliers (Hog A and Cedar E) formed 

their own group. With four clusters, topography was organized into a northern wave-

dominated cluster dominated by chiefly the plots on Assateague, a less erosional middle 

cluster in plots from Hog and Parramore were abundant, and a third cluster of very low 

elevation plots chiefly from Wreck and Cedar. Higher cluster group levels only identified 

individual island plots as outliers. MRPP detected significant differences in topography for 

island identity and for cluster groupings (Table 2. 2). However, the robustness of this 

significance varied. The A values were highest for the three- and four-cluster groupings, 

indicating the robustness of these groupings of topographic similarity over those based 

solely on island identity. 

2.5 Discussion 

Island morphology contributed to how dune topographies were clustered in their 

state space. Three major topographic clusters emerged (Figure 2. 8). These clusters had a 

propensity to track with their morphological context: (1) a cluster of higher, positive dune 

relief on wave-dominated Assateague Island; (2) a cluster of more erosional remnant dune 

relief dominated by Hog and Parramore islands, and (3) a cluster of very low, flat, 

topography on Cedar, Metompkin, Ship Shoal, and Wreck (plus two outliers). This 

clustering of topography reflected island-level morphological coastal compartments 

identified in prior classifications by Williams and Leatherman (1993) and Monge (2014). 

While topography had a degree of affiliation with island morphology, these cluster 

groups were not homogeneous with respect to their island morphological compartment. 
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None of the clusters were comprised exclusively of all the individual plots of any one 

island. Instead, variability of topography in state space was more heterogeneously 

distributed along the gradient of wave to tide-dominated island morphologies captured by 

the first axis. Although geographically closer to Assateague Island, some of the plots on 

Metompkin and Cedar were positioned in state space near those of Wreck and Ship Shoal, 

the lowest and southernmost islands of the study area. Coastline engineering on Assateague 

and Wallops Island to the south of it are likely responsible for downdrift sediment 

starvation and the enhanced erosion and retreat on Metompkin and Cedar. Thus, human 

shoreline modification generated topographies on Metompkin and Cedar more like those 

of Wreck and Ship Shoal in the southernmost coastal morphological compartment. 

The dune topography of some plots was more similar to topographies found on 

geographically distant island morphologies. Use of Haluska’s (2017) data for shoreline 

erosion and accretion over time gives further support to the limits of using island 

morphology and nearshore setting to anticipate dune topography. We paired the geographic 

position of plots in this investigation with Haluska’s (2017) reconstruction of trends in 

alongshore erosion and accretion for the Virginia Barrier Islands (Table 2. 3). In that study, 

the locations where our A and B plots on Metompkin occurred were highly erosional while 

the location where our C and D plots were much less so. In our topographic state space, 

dune topographies for Metompkin C and D plots were grouped into the cluster group 

consisting of the less erosional topographies on Hog and Parramore islands.  Metompkin 

A and B plots were clustered with the low relief erosional plots on Ship Shoal and Wreck, 

as would be expected based on Haluska’s measurements. 
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Based on plot locations in topographic state space, topographic divergence is 

greater on morphologies where tidal energy dominates over wave energy. Even with their 

much smaller island dimensions, plots from tide-dominated islands were more widely 

distributed across clusters. Therefore, assuming island morphology reflects dune 

topography may be more valid for wave-dominated versus tide-dominated mixed energy 

barrier island morphologies. The mixed-energy wave-dominated island in this study, 

Assateague Island, was distinct in state space from more tide-dominated mixed energy 

barrier coasts. Dune topography of these tide-dominated barrier islands were distributed 

across a larger region of state space. Hayes (1979) noted that mixed-energy, tide-dominated 

barriers exhibit rotational retreat behavior more frequently than wave-dominated barrier 

islands. The switching between rotational- and parallel-shoreline retreat observed on the 

Virginia Barrier Islands may explain the pronounced variability in topography observed 

over relatively short geographic distances on the tide-dominated islands. 

The greater variability in dune topography on tide-dominated islands of the Virginia 

coast may also be due to the lack of strong landscape-level biogeomorphic feedbacks. The 

Virginia Barrier Islands are retreating rapidly and in some cases drowning in place. 

Consequently, topography may be coupled to the high frequency and intensity of storm 

surge and overwash events rather than vegetation feedbacks. As noted earlier, negative 

relief (i.e., pimples) formed by erosion are common on Hog and Parramore islands (Hayden 

et al. 1995). By examining the Google Earth imagery, these topographic features are to be 

expected where overwash, inundation, and retreat are frequent and pervasive. Because the 

generation of positive relief through biogeomorphic feedbacks is less developed, 

topography on many on the Virginia lots may be less biotically constrained. Consequently, 
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topography simply takes the form dictated by the storm regime. Biogeomorphic feedbacks 

may be more operative across the landscape of wave-dominated island morphologies like 

those of Assateague. This island’s relatively higher elevations may facilitate more adaptive 

responses arising from the interaction of dune vegetation growth, disturbance, and 

recovery. As a result, island morphology becomes more tightly coupled to dune 

topography, even over the large dimensions that these wave-dominated barriers take. 

The structure of topographic state space also supported this interpretation. 

Biogeomorphic feedbacks may be weakly developed on the Virginia Barrier Islands 

because of how topographic metrics loaded on the two axes of state space. The lower 

dimensional variables (elevation, FRAGSTATS indices) loaded strongly on the first axis. 

The second axis lacked any higher dimension spatial structuring. Directional 

autocorrelation in elevation, a variable reflective of more spatially-integrated landscape 

dynamics, did not have any significant correlations with island plot positions in the state 

space. In other words, the dune topographies may be controlled by frequent storm and 

overwash events. The topographies were characterized by low elevation, as evidenced by 

higher colinearity among the lower dimensional variables on the first axis and poor spatial 

structuring on the second axis. Storms and overwash may return too frequently on the 

lowest Virginia Barrier Islands to allow biogeomorphic feedbacks to constrain topography 

at landscape extents. Small hummocky dunes require storm-free intervals so that they 

might coalesce into larger continuous landform features that could modulate overwash 

exposures (Goldstein et al. 2017). 

Wave-dominated barrier islands have been assumed to be low, overwash-

reinforcing islands. Tide-dominated islands have been assumed to be high, overwash-
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resisting islands. However, in this study, the opposite situation existed. The lowest and 

more frequently overwashed conditions were expressed on tide-dominated barrier island 

morphologies. These rapidly retreating islands are strongly shaped by adjacent inlet 

dynamics, shifts between parallel and rotational retreat, and frequent exposure to storm 

surge and overwash. This may override biogeomorphic feedbacks that could entrain 

landscape spatial structure and lead to an overwash-reinforcing topography. 

2.6 Conclusion 

For the stretch of coast examined in this study, the nearshore context shaping island 

morphology contributed to dune topographic position in state space, but only in the terms 

of the division between wave- and tide-dominated barrier islands. Local shoreline trends 

in accretion and erosion were responsible for much of the variability in dune topography 

among tide-dominated islands. This study suggests that the way in which dune topography 

varies within and among barrier islands is more complex than existing dynamical models 

of barrier islands propose. Plotting the Virginia Barrier Islands in a state space spanning 

barrier islands from a larger geographic range of nearshore conditions and barrier island 

morphologies is one way to test this interpretation. 

Some general rules of thumb can be recommended based on the findings in this 

study. Wave-dominated barrier islands may exhibit more convergence of dune topographic 

form. Greater divergence of topography is a characteristic of more tide-dominated mixed 

energy barrier islands. However, this may be applicable tide-dominated barriers when they 

are low and highly erosional like on the Virginia coast versus other locations (for example, 

Georgia and South Carolina). In these locations tide-dominated morphologies are higher 
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in elevation and may exhibit biogeomorphic feedbacks that constrain topographic 

variability. Whether tide-dominated barrier islands are high and resisting and wave-

dominated barrier islands are low and reinforcing depends upon the local rates of sea level 

rise and erosion. Tide-dominated island morphologies may lack the landscape scale 

topographic spatial structure associated with biogeomorphic feedbacks when they are 

extremely low and erosional, such as is the case for many of the Virginia Barrier Islands. 

Through the identification of the topographic similarities between island 

morphologies as well as within individual islands, the findings in this study echo those 

from other biogeomorphically dynamic systems that argue for a mosaic approach to the 

classification of landforms (Lane et al. 2017). Spatially explicit mosaics may create 

threshold and transitions dynamics that are more complex and unpredictable (Génin et al. 

2018) than those currently articulated for overwash-resisting, overwash-reinforcing, and 

bistable models of barrier island dune dynamics. Field investigations to identify the 

ecological mechanisms underlying these dynamics should consider within-island location 

as much as general island morphological setting. Selecting study sites based on their 

position in state space in order to maximize topographic dissimilarity may be a useful a 

priori strategy when setting up controlled plots to detect and delineate the specific 

biogeomorphic and ecological mechanisms underlying how barrier dune coasts respond to 

high water events (Brown and Zinnert 2018). 
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Table 2. 1 Island morphologies. 
 

  

Island Length (km)a Width (km)b  Area (km2)c Retreat rate (m/yr)d 

Assateague 60.0  0.8  49.2 1.9 ± 0.6 

Metompkin  10.4 0.3  2.7 10.9 ±1.0 

Cedar 9.6 0.4  4.2 10.8 ± 0.5 

Parramore 12.8 0.8  9.6 12.4 ± 0.3 

Hog 11.2 0.9  9.7 -1.3 ± 0.3 

Wreck 4.8 0.4  2.1 4.2 ±1.0 

Ship Shoal 2.4 0.4  0.9 6.0 ± 4.8 

a Fenster et al. (2016) 

b Width is summarized as area/length. 

c Reported by Zinnert et al. (2016b) except for Assateague, Metompkin and Ship Shoal, which 
were estimated from digitization of aerial photos in Google Earth. 

d The retreat rate of Assateague island (2005-2010) is from Psuty and Silveira (2011), other 
islands are from Deaton et al. (2017) for 1980-2010. Positive values indicate retreat (westward 
shoreline movement). Negative values indicate advance (eastward shoreline movement). 
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Table 2. 2 MRPP tests of group difference for cluster groups 
 

Grouping T A P 

2 Clusters -10.88 0.12 <0.001 

3 Clusters -10.09 0.19 <0.001 

4 Clusters -10.08 0.23 <0.001 

Island identity -4.58 0.14 <0.001 
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Table 2. 3 Annual shoreline movement rate for each island (1990-2014) from graphical 
results Haluska (2017). Distance is the location alongshore in km starting from the southern 
terminus of each island. 
 

Island Plot Distance(km) Shoreline movement rate(m/year) 

Metompkin A 8.70 -10.00 

B 7.26 -13.00 

C 2.86 -1.00 

D 1.43 2.00 

Cedar A 10.64 -22.00 

 B 8.65 -15.00 

 C 6.43 -10.00 

 D 3.86 -15.00 

 E 2.34 -18.00 

Parramore A 11.11 -10.00 

 B 9.46 -12.00 

 C 7.04 -10.00 

 D 3.74 -15.00 

 E 0.99 -20.00 

Hog A 11.15 7.00 

 B 6.79 -1.00 

 C 2.71 2.00 
 

D 0.68 5.00 

Wreck A 3.94 -10.00 

 B 3.36 -5.00 
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Table 2. 3 (Continued) 
 

Island Plot Distance(km) Shoreline movement rate(m/year) 

Wreck C 0.87 28.00 

 D 0.29 45.00 

Ship Shoal A 2.03 8.00 

 B 1.45 -2.50 

 C 0.58 -6.00 

 D 0.08 -8.00 
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Figure 2. 1 Study area with its four island morphological compartments. Northernmost 
compartment 1 is wave-dominated, the southernmost compartment 4 is more tide-
dominated. 
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Figure 2. 2 Study plots on Assateague Island. Letters indicate position along island, from 
A (northernmost) to E (southernmost). 
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Figure 2. 3 Study plots. Wave energy decreases as tide energy increases from Metompkin 
to Ship Shoal. The yellow line is the approximate shoreline in 1994 based on the location 
of the high water mark for each island derived from Google Earth Imagery. Aerial photos 
taken in 2011 are from the National Agriculture Imagery Program. 
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Figure 2. 4 Boxplots of elevation in 1-m cells for each plot. The central mark indicates the 
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively. The whiskers extend to the maximum and minimum values. 
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Figure 2. 5 Plot DEMs scaled to local minimum and maximum elevation. Letters indicate 
position along island, from A (northernmost) to E (southernmost). Island plots differed in 
size although scaled to be the same here. Conversion factors below each raster can be used 
to derive their plot size relative to the largest island plot, Cedar D (295 x 295 m). For 
example, the actual dimensions of Assateague plot A are 262 x 262 m (0.89 × 295 = 262 
m). 
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Figure 2. 6 PCoA scatterplot showing variability in the directional correlograms of island 
plots. Moran’s I is represented on the vertical axis of each correlogram. The horizontal line 
represents a Moran’s I value of zero. 
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Figure 2. 7 NMDS scatterplot of plot topographies grouped by island identity (i.e., specific 
to their local nearshore context and island morphology). 
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Figure 2. 8 NMDS scatterplots of dune topography for 2, 3 and 4 cluster group solutions. 
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Figure 2. 9 NMDS scatterplots of dune topography for 5, 6 and 7 cluster group solutions. 
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Chapter 3. Barrier island dune resistance and resilience inferred from 
topographic state space: a cross-scale data modeling approach 

Abstract 

Dune topography contributes to differences in how barrier coasts respond to and 

recover from high water events. To test ideas about barrier dune resilience, we deployed a 

cross-scale data modeling approach to compare dune topographic patterns among sites on 

selected barrier islands of the U.S. Virginia coast and the Georgia Bight. Hierarchically-

nested dune topographic metrics constructed from airborne LiDAR were combined into a 

data model of cross-scale resilience that was subsequently visualized as a multidimensional 

state space. Similarity in topographic pattern in this state space was gauged through a site’s 

position along low-dimension axes representing geomorphic resistance and high-

dimension axes representing the spatial landscape properties of biogeomorphic resilience. 

Dimensionality and the loading of topographic metrics on these axes in state space were 

utilized to assess resilience prosperities. Topographic state space for Virginia islands had 

lower dimensionality, reflective of their erosional, rapidly retreating status. Elevation 

properties were collinear with weakly expressed landscape metrics, suggesting that dune 

landscape structure here equates more to the direct geomorphic impacts of frequent storms 

and process like overwash that homogenize topography. Georgia Bight topographies had 

greater dimensionality, and stronger separation of geomorphic and biogeomorphic 

landscape metrics among axes. Based on a visualization of both data sets simultaneously, 

resilience developed in only a small region of state space occupied chiefly by locations 

from the Georgia Bight. Because of reduced geomorphic resistance for the Virginia barrier 

island sites, resilience that emerges out of feedbacks between vegetation and topography 
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may be more weakly expressed. Stabilizing biogeomorphic feedbacks that promote 

resilience in barrier dunes may be more contingently expressed than previously 

hypothesized and linked secondarily to island morphology. 

3.1 Introduction 

Comparing spatial patterns is a fundamental mode of geographic inquiry, one that 

has taken on new urgency in light of ongoing anthropogenic environmental change. For 

physical geographers, spatial pattern comparison has been augmented by availability of 

data collected at high resolution and large spatial extents. These data have increased 

interest in how to compare the spatial attributes of landforms in new and more subtle ways 

(Jasiewicz et al. 2014; Long and Robertson 2018; Praskievicz 2018). This is particularly 

true for coastal regions (Zinnert et al. 2017). With rising sea levels, sandy barrier islands 

are where pronounced environmental changes are anticipated, if not well underway. 

Although questions about the stability and persistence of barrier islands motivated scholars 

in the 1970s and 1980s (Leatherman 1982), how these landforms respond to sea level rise 

and storm surges during hurricane landfall has reemerged with a new urgency as a 

consequence of human-caused climate change. 

To add to our understanding of how barrier coasts respond to and recover from high 

water events, we compared dune topographies expressed at sites across six barrier islands 

of the Georgia Bight, from Florida to North Carolina (Figure 3. 1), to sites expressed across 

seven islands of the Virginia barrier coast (Figure 3. 2). Topography reflects the dynamical 

properties of barrier island beaches and dunes, whether applied in simple mathematical 

models (Bruun 1988), conceptual descriptions (Godfrey 1977), or complex simulations 
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(Gutierrez et al. 2015). The stability and persistence of barrier islands has been attributed 

in part to feedbacks among dune topography, dune vegetation, and overwash disturbance 

(Godfrey et al. 1979; Stallins 2005; Durán and Moore 2015; Zinnert et al. 2016a; Goldstein 

and Moore 2016). In the earlier versions of this biogeomorphic perspective, mixed-energy 

wave-dominated barrier island morphologies were hypothesized to maintain components 

of dune landscape structure through the reinforcement of overwash exposure and plant-

sediment feedbacks that maintain a low relief topography. Mixed-energy tide-dominated 

barrier island morphologies were postulated to maintain aspects of their structure through 

biogeomorphic feedbacks that enhance topographic roughness and limit overwash 

exposure. 

The topographies of these two island-level ‘stability domains’ (Gunderson 2000) 

were defined as indicators of their resilience (Stallins 2005). This resilience arises through 

the way in which biogeomorphic feedbacks resist or reinforce overwash disturbances and 

promote the persistence of landforms and vegetation in a positive feedback. In short, high 

resilience is related to the two stability domains because their resilience is generated 

through biogeomorphic feedbacks. In each domain, stability is linked to specific dune 

topographies and vegetation types that are maintained by biogeomorphic feedbacks to 

resist or reinforce overwash disturbance. However, while these two island morphological 

types manifest in the two coastal strands compared in this study, they occur in different 

nearshore contexts, with variable local sediment budgets, wave and tidal energy regimes, 

and rates of sea level rise. Stability domain properties have been assigned to barrier islands 

in both regions, but with limited empirical basis using designations of topography. One of 

the mains reasons for this is the fundamental challenge of making spatial pattern 
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comparisons. Patterns have a variety of components and can be represented in various ways 

(Lastochkin et al. 2018). For example, dune responses to storm events and recovery 

afterwards can be predicated upon single summary measures of topography like maximum 

or mean elevation. However, maximum or mean elevation in and of itself says very little 

about the spatial patterns the contributing elevations might take. Elevation, as a 

topographic pattern, can be represented as a point, or a line or area. Taking it further, areal 

patterns are amenable to representation as discontinuous patches or more continuously as 

a gradient (Kedron et al. 2018). The outcome of any comparison of spatial patterns also 

depends upon the level of spatial explicitness employed and at what scalar grain or 

resolution it was measured. Measurement levels can also shape pattern comparisons. 

Absolute measures like mean elevation may be similar for two sites, but relativized values, 

such as the spatial autocorrelation of elevation observations, may differ. As these examples 

illustrate, independent or singular facets of elevation may be useful, but they are also 

incomplete descriptions of pattern. 

Complicating this issue of comparing spatial pattern is that contrasting ways of 

representing pattern are often linked to different conceptual paradigms, each preferring 

certain representational forms. Raster and vector paradigms and their representative 

ontologies are well known examples. Yet as long recognized in GIScience, taking both 

paradigms into account can more fully describe the underlying spatial pattern. To make 

robust comparisons of barrier island dune topography across the geographic regions in this 

study, we developed methods to characterize dunes in terms of patch and gradient 

explanatory paradigms. It was designed to integrate and analyze different dune topographic 

metrics, each capturing a different ontology of pattern. Yet even with this recognition of 
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the value of integrating multiple representations of spatial patterns in order to compare 

them, what still remains a constraint is the old problem of insuring that pattern reflects 

process. Given the mandate of insuring that pattern and process are linked, a larger 

explanatory framework was needed in this study to guide what data are selected and how 

they were combined to compare spatial patterns (Praskievicz 2018). 

We relied upon the ecological concept of cross-scale resilience as the overarching 

framework to guide the integration of our representations of dune spatial patterns and to 

insure that they link to process. As deployed in resilience theory (Nash et al. 2014), cross-

scale structure postulates how variability in pattern and process within and across scalar 

extents links together to shape dynamic properties. Although it borrows from hierarchy 

theory, cross-scale structure accounts for more of the adaptive and evolving nature of scalar 

interactions. Through feedback processes, cross-scale structure accounts for the emergence 

of resistance and resilience. By judiciously selecting geomorphic and biogeomorphic 

topographic metrics to reflect cross-scale structure, topographic patterns as well as the 

resilience properties arising from them can be compared (Sundstrom et al. 2014, 2018). 

Resistance and resilience have varying definitions in the ecological and 

geomorphological literatures (Grimm and Wissel 1997; Phillips and Van Dyke 2016). We 

employ the following definitions. Resistance refers to intrinsic properties that directly 

counter expressions of power from disturbance. Resilience is the ability of a system to 

recover from disturbance and the degrees of freedom to absorb or adjust to disturbance. 

Resilience, then, is a measure of how feedbacks coupled to extrinsic disturbance maintain 

an organizational structure and function until some threshold is reached and the system can 

exhibit a change in state. Resistance is more of a static property, a measure of the magnitude 
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of change related to a response to disturbance. Resilience invokes adaptation and the 

emergence of stabilizing feedbacks, while resistance does not. While tempting to conceive 

of these two types of resilience as independent, ecological systems have both resilience 

properties simultaneously (Gunderson 2000; Donohue et al. 2013). Resilience exhibits a 

dependency on resilience. In our cross-scale model of dune topography, too much 

resistance to disturbance or too little will inhibit the development of the adaptive sorting 

and landform-vegetation feedbacks that can lead to the emergence of ecological resilience. 

Two questions guided our comparisons of topography. First, is the cross-scale data 

structure for these two coastal stretches logically distinct? We expect that their structure 

should reflect known geomorphic and nearshore contrasts between the Georgia Bight and 

the Virginia coast. Second, to what extent does the Virginia topographic data fit within the 

bounds of the Georgia Bight data? Overlap over some range of elevation could be expected, 

but how do landscape topographic properties vary? These two questions intend to shed 

light on the degree of general applicability of the two-domain model of biogeomorphic 

dynamical states. The concept of barrier island stability domains originated from studies in 

the Georgia Bight. The stability domain concept was then extrapolated to the much smaller 

stretch of barrier island coast of Virginia. But how similar are these topographies when a 

more nuanced comparison of spatial pattern is made? The cross-scale data modeling 

approach developed in this study provides a basis to compare topographies, but it also fits 

topographies along dimensions or axes representing resistance and resilience so that linked 

processes can be compared as well. Given the propensity for biogeomorphic feedbacks to 

constrain topography, one could expect some convergence in relief and therefore in 

dynamical properties among sites in the Georgia Bight and the Virginia data set. On the 
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other hand, there may be limits to this convergence of topographic form and in resistance 

and resilience. The island morphologies of the Georgia Bight and the Virginia coast differ 

strongly in their rates of relative sea level rise and geologic context. Variability in 

topography along individual islands may also weaken the association of island morphology 

with its topography and resilience properties (Zinnert et al. 2016a). More detailed 

comparisons of the dune topographies of barrier islands in the Georgia Bight and the 

Virginia coast would permit an assessment of the degree of generalizability of this two-

domain model and the properties of resilience associated with it. 

3.2 Background 

3.2.1 Cross-scale structure 

 Topography, like any spatial pattern, is the outcome of multiple and interacting 

processes. Hierarchy theory summarizes how nested processes operate at different scalar 

extents to shape pattern and process. However, study of the integration of these hierarchical 

levels is challenging because different conceptual frameworks are often invoked at 

different spatial and temporal scales (Bauer et al.1999; Harrison 2001; Fonstad and Marcus 

2010). For example, process geomorphology has historically focused on small scalar 

extents and fine grains. Form-based geomorphology has had a propensity to be applied at 

large extents and coarser grains. Ecologists work with a similar dichotomy, between the 

local extents in which mechanism can be investigated via controlled experiment and the 

extents of macroecology. Consequently, approaches to compare landforms and coupled 

abiotic-biotic processes have often been deployed in a segregated fashion. Process-oriented 

scalar extents and grains are not readily comparable to the scalar extents and grains of 
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form-based geomorphology. Comparing measurements from different scales has come to 

be perceived as reflective of an inherent and unwavering incommensurability. 

While conceptual frameworks do have specific scalar extents and data resolutions in 

which they work better, picking one over the other as more important does not imply that 

other conceptual frameworks are not relevant and their representational entities of little 

use. By underfitting our comparisons, that is, relying only on a single paradigm and its 

ontological standard of representation to derive the data for assessing similarity, important 

information may be left out (Fonstad and Marcus 2010). Overfitting, as an implicit strategy 

of model of cross-scale resilience, works around some of the incommensurabilities of 

pattern comparison imposed by having to choose one best conceptual framework and its 

particular scalar domain. Given a high resolution dataset collected simultaneously over a 

broad area, observations can be partitioned into different, but not necessarily uncorrelated 

representational entities, each with their own particular scalar extents and resolutions 

affiliated with their conceptual underpinnings. In this overfitting approach that we develop 

here, multiple data representations and their conceptual paradigms can then be integrated 

and compared. 

If the goal is to make spatial pattern comparisons using this this bottom-up assembly 

of data, a framework is needed to guide what data are selected and combined to insure that 

pattern and process are meaningfully integrated (Praskievicz 2018). In ecology, resilience 

theory, and a lineage of it, discontinuity theory, postulate a hierarchical, cross-scale 

structure of patterns and processes. Although not necessary to describe here, cross-scale 

structure incorporates the linkage of adaptive cycles into panarchies, the working units of 

resilience theory. What is useful for this study is that this cross-scale structure not only 
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provides a mechanism to integrate different ontologies of pattern across scales, but that it 

also provides a mechanism to account for the emergence of resilience properties. Cross 

scale ecological structure has been used to conceptualize the resilience properties of 

terrestrial and marine landscapes (Nash et al. 2014) as well as dunes (Stallins and Corenblit 

2018, p. 85). 

Cross-scale structure is formalized as an integration of specifically chosen variables, 

or metrics, of pattern. It reflects a parsimonious integration of local, individualistic 

variables with community and landscape processes over time and space (Feagin et al. 2005; 

Feagin and Wu 2007). Often, the term cross-scale is employed sloppily, as an unspecified 

quality that does nothing more than reflect the truism that pattern and process are linked 

across scales. In resilience theory, however, it is more formally mechanistic, and organized 

around compartmentalized but linked cycles of patterns and processes across scalar grains 

and extents. For coastal dunes, cross-scale structure initiates with cycles of deposition and 

erosion of sediment. Its expression as elevation at any particular point is a function of wind 

and wave energy as well as sediment availability. Geomorphic processes and instantaneous 

variables are applicable at this scale. With stabilization of sediments by plants, geomorphic 

processes and forms begin to change over larger extents. Biogeomorphic feedbacks 

between sediment accumulation and dune plant growth can lead to topographic 

modification and alteration of sediment transport over increasingly extensive areas. Cycles 

of plant population expansion and disturbance operate at this extent. The potential then 

exists for the development of a landscape in which geomorphic processes and ecological 

interactions are spatially integrated and reinforce one another in a positive feedback 



63 
 

indicative of domain dynamics. At this extent, landscape paradigms invoking spatially 

explicit patches, gradients, and geometry or configuration have more relevance. 

Broad extent-high resolution data are well-suited for the derivation of cross-scaled 

data sets. LiDAR observations of ground elevation, for example, can cover kilometers at 

very high vertical and horizontal resolutions. These point data can then be aggregated, 

zoned, and summarized into various representational entities at the scalar extents 

associated with their particular conceptual paradigm. In this form of data modeling, 

multiple representations of topography, at different scalar extents, becomes a desired 

strategy rather than a practice to avoid. Formally, the lowest level in this cross-scale data 

structure for dunes is the relatively aspatial compositional measure of topography, 

elevation. For barrier islands, elevation captures the resistance to exposure to storm surge. 

Whether dunes are overtopped and storm surge penetrates inland is related to some 

threshold value of elevation. But mean elevation, as noted earlier, cannot fully represent 

landscape properties shaping the potential diffusion of overwash in back barrier habitats or 

the alteration of topographic roughness due to biogeomorphic feedbacks. Thus, it becomes 

necessary to represent spatial pattern as the size and shape of patches of specific ranges of 

elevation or the way in which elevation changes along a continuous gradient surface. These 

geometries of elevation expressed at larger extents, and the extent they form shore parallel 

features or more discontinuous features, are an aspect of barrier island dune topography 

that would be overlooked when only elevational statistics are used. Embedded in these 

landscape dune geometries is the potential development of biogeomorphic feedbacks 

linked to resilience properties. Through this scalar nestedness, domain-model dynamics 
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may develop that modulate resistance to overwash and promote the persistence of 

landforms and vegetation in a positive feedback. 

Still, to compare cross-scale data from one location to another requires a technique 

that can distill the information embedded in cross-scale structure and simplify its 

interpretation. Given that the multiple metrics derived from LiDAR for a cross-scale data 

set are designed to be nested, they will have a degree of multicollinearity. We propose that 

through dimensionality reduction, the variance within this multicollinearity can be 

partitioned across different dimensions, or axes, in order to visualize how these metrics 

vary from location to location. We employed dimensionality reduction by ordination to 

compare topographies. Given that cross-scale structure also reflects the dynamic properties 

of topography, the visual results of ordination are a snapshot of state space (Inkpen and 

Petley 2001; Phillips 2009b; Baas and Nield 2010; Inkpen and Hall 2016). State space 

refers to Poincairean ecological topologies, in which phenomena are mapped in an 

abstracted field space (Prager and Reiners 2009). These are typically plotted axes of a 

Cartesian coordinate system in order to give shape to state space. Conceptually, any single 

landscape should be capable of being located within a larger state space derived from 

multiple landscapes, or else expand the boundaries of this state space if it has not been 

encountered before. Our construction of topographic state space reflect the possible 

configurations of dune geomorphic and biogeomorphic phenomena. Of particular utility, 

however, is that the dimensionality of cross-scale data in state space is a means of 

comprehending resilience properties (Donohue et al. 2013, 2016; Stevens and Tello 2014, 

2018; Stallins and Corenblit 2018). Lower dimensional axes represents geomorphic 

resistance. Higher dimensional axes represent formal resilience. Resilience, as a higher 
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dimensional property, emerges out of the resistance imparted at lower dimensions. Thus, 

where locations plot in topographic state space provides specific information not only 

about their topographic differences, but also about how their resistance and resilience 

prosperities differ. 

3.3 Methods 

3.3.1 Study area and sampling design 

The barrier island morphologies of the Georgia Bight are comprised of mixed-

energy tide-dominated barrier islands toward its center and wave-dominated barrier islands 

along its outlying limbs in Florida and North Carolina. For these outlying coastlines, where 

tidal range is at a minimum and wave heights are high, most barrier islands are long and 

narrow. Toward the center of the Bight, where tidal range increases and wave heights 

diminish, barrier islands tend to be shorter and drumstick-shaped. Hayes (1994) 

compartmentalized the Georgia Bight islands into the wave-dominated barrier islands of 

the Outer Banks of North Carolina, the mixed tidal and wave energy barrier islands of 

South Carolina, the tide-dominated estuarine ‘sea islands’ of Georgia, and the more mixed-

energy to wave-dominated barrier islands along the east coast of Florida. Many of the 

Georgia and South Carolina sea islands consist of fringing Holocene sediments that have 

welded to the Pleistocene core of the island under long-term conditions of sea-level rise. 

Dune topography was characterized on five islands: Cape Canaveral (Florida), Sapelo 

Island (Georgia), Bull Island (South Carolina), Kiawah Island (South Carolina), and South 

Core Banks (North Carolina). An additional island, Parramore Island (Virginia) was 
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sampled twice, as part of the Georgia Bight data and for the Virginia data set. Having two 

independent characterizations of topography provided a replicate to assess our methods. 

The barrier island morphologies of Virginia and southern Maryland comprise the 

southern limb of the Atlantic Bight. The Atlantic Bight extends from the northern islands 

of North Carolina to Massachusetts. The Virginia Barrier Islands are a part of the Delmarva 

Peninsula. Sediments for Assateague Island in the north, a mixed-energy, wave-dominated 

barrier island, and for the mixed-energy, tide-dominated barrier islands to the south are 

derived from headland erosion at the northern extent of the peninsula (Oertel and Kraft 

1994). Rates of relative sea level rise from New Jersey to North Carolina include some the 

highest along the US Atlantic coast (Gutierrez et al. 2007; Sallenger et al. 2012; Piecuch 

et al. 2018). Many of the Virginia islands have experienced pronounced reductions in 

barrier island upland area as a consequence of ongoing sea level rise (Zinnert et al. 2016b). 

The tide-dominated islands of Virginia are also smaller than their counterparts on the 

Georgia and South Carolina sea island coast. They are susceptible to back barrier areal loss 

and shoreline retreat (Deaton et al. 2017). Dune topography was characterized for seven 

islands and include, from north to south: Assateauge Island, Metompkin Island, Cedar 

Island, Hog Island, Parramore Island, Wreck Island, and Ship Shoal Island. 

Within each of these twelve islands, locations to characterize dune topography were 

determined by visually identifying from air photos in Google Earth the distinctive, 

predominant stretches of dune and beach topography. These stretches of coast are 

analogous to the fluvial unit of the river reach (Wohl 2018). Criteria to delineate locations 

included beach width, the width of the dune field, linearity of the dunes, and type of habitat 

behind dunes. Areas of pervasive human impact and locations directly on tidal inlets were 
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avoided. Three to five distinctive stretches of topography were required for each island. To 

sample dune topography within these stretches of predominant alongshore relief, we 

employed a natural sampling technique (Bissonette 2017). In this technique, the 

phenomena under study defined sampling extent. A square plot were randomly located 

within each distinctive reach of barrier island dune shoreline so that it initiated at the mean 

high water mark datum (MHW) and extended inland to where salt marsh or significant 

stabilized woody vegetation developed. Plot size was retained as an explanatory variable. 

3.3.2 LiDAR data 

Digital elevation models (DEMs) were constructed for sites along each island using 

LiDAR ground elevations available online from the NOAA’s Coastal Services Center. 

Dune topographic metrics for islands in the Georgia Bight regional dataset were derived in 

an earlier study, Monge and Stallins (2016). These metrics utilized a 2010 LiDAR dataset 

collected by the United States Army Corps of Engineers for four of the islands. Vertical 

(horizontal) accuracy was 15 cm (75 cm) and nominal point space was 2 m. Due to small 

gaps in this 2010 dataset, topographic metrics for South Core Banks and Parramore Island 

were constructed from post-Hurricane Sandy LiDAR datasets collected by the U.S. 

Geological Survey in 2012. For these data, vertical (horizontal) accuracy was 7.5 cm (19.4 

cm) and nominal point space was 1 m. A post-Hurricane Sandy 2014 data-set collected by 

the NOAA National Geodetic Survey was used to construct digital elevation model (DEM) 

plots for sites on the Virginia islands. Vertical (horizontal) accuracy was 6.2 cm (100 cm) 

and nominal point space was 0.3 m. LiDAR point elevations were resampled to a resolution 

of 1 m and then interpolated using inverse distance weighing to fill any gaps. LiDAR 

processing was performed in ArcGIS using LAStools (Isenburg 2014). The Virginia MHW 
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shoreline was defined as the 0.7 m contour line relative to the NAVD 88 datum following 

Rogers et al. (2015). The islands in the Georgia Bight and the replicate plots on Parramore 

were referenced to the MHW mark using VDatum (National Oceanic and Atmospheric 

Administration and National Ocean Service 2012). All of these DEM plots were then 

clipped along the edge coinciding with the MHW mark elevation of zero and rotated to a 

common orientation. 

3.3.3 Topographic metrics 

Three sets of topographic metrics were deployed to capture the cross-scale 

attributes of topography: elevational descriptive statistics, landscape patch indices, and 

spatially explicit metrics. These sets of metrics differed systematically in their degree of 

spatial explicitness, level of measurement, and association with patch or gradient 

paradigms. The first set of metrics, elevational descriptive statistics, were recorded as 

absolute values for vertical measurements summarized across the DEM for each island plot 

(mean, maximum, median, 25th percentile and 75th percentile elevations). Elevational 

statistics were defined as low dimensional metrics in our cross-scale data model. Elevation 

reflects the baseline geomorphic resistance of any point alongshore. It has a large influence 

on the extent of exposure or protection from high water events. 

The second set of metrics, patch metrics, consisted of landscape indices produced 

from FRAGSTATS software (McGarigal et al. 2012). These higher dimensional metrics 

capture the initiation of spatially-organized structure arising from cyclical interactions 

between sediment mobility and vegetation. Because FRAGSTATS are designed to work 

with categorical observations, raster DEMs were converted into areal representation by 

reclassifying pixels into elevation intervals. Wu et al. (2017, p. 56) as well as Ryu and 
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Sherman (2014) illustrate the logic of how the patch structure of topography can be 

generated and measured with landscape indices. In these approaches, a patch is defined as 

an interval of elevations. To avoid derivation of FRAGSTATS descriptors without a 

process interpretation (Kupfer 2012), landscape indices with consistent ecologically 

meaningful value were prioritized, as identified by Cushman et al. (2008). This set of 

indices was then constrained to those well suited for discerning pattern- process 

relationships associated with foredune building and overwash. These indices were selected: 

the perimeter-area fractal dimension (PAFRAC), the area-weighted mean shape index 

(SHAPE_AM), the aggregation index (AI), the landscape shape index (LSI), the largest 

patch index (LPI), the contagion index (CONTAG), the interspersion and juxtaposition 

index (IJI), and the Simpson's diversity index (SIDI). 

AI increases with greater aggregation of patches. SHAPE_AM increases as patches 

become more curvilinear. A higher IJI indicates that patch types are equally adjacent to all 

other patch types and are thus fully interdispersed. Higher LPI implies higher dominance 

of a single patch type within a dune plot. Higher SIDI implies higher patch richness and 

more equitable patch distribution within the plot. Higher PAFRAC implies all patch shapes 

within a plot tend to be convoluted. CONTAG increases as patches become larger and 

dominated by a similar elevation. 

The third set of metrics, continuum metrics, summarized aspects of continuous 

spatial structure. As the highest dimensional metrics, these shape and are shaped by the 

geomorphic and biogeomorphic patterns represented in lower dimensional metrics. They 

included the skewness and kurtosis of point elevation values, the spatial autocorrelation 

structure of elevation, and plot size. Skewness and kurtosis of point elevation values 
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summarize trends in elevation across an entire DEM surface. Spatial autocorrelation was 

summarized in directional correlograms derived from the 1-m interpolated surface in GS+ 

software (Robertson 2000). These were constrained to the cross-shore direction (i.e., 

perpendicular to the water line). Autocorrelation was assessed up to the distance lag 

representing the width of the plot. Six Moran’s I values from the major breaks along the 

plot of Moran’s I were taken from each correlogram and ordinated with principal 

coordinates analysis (PCoA) in order to reduce correlogram structure into scatterplot 

coordinates that could be combined with the other dune topographic metrics. As a 

component of spatial pattern, autocorrelation captures the clustering or dispersion of 

observations rather than summarizing their boundary geometry as with FRAGSTAT 

indices. Lastly, the size of the plots, expressed as the length of an edge in meters, was 

included as a metric because this parameter is the constraint within which any topographic 

pattern would be confined. 

3.3.4 Statistical analysis 

To construct state space, the cross-scale topographic metrics for the Georgia Bight 

region and the Virginia coast datasets were ordinated using non-metric multidimensional 

scaling (NMDS) separately and then as a combined data set. All topographic metrics were 

relativized as Z-scores. Similarity distances were Euclidean. The final solution was 

subjected to an orthogonal rotation to maximize variance in the data set al.ong the first and 

succeeding axes. Monte Carlo randomizations of the observed data were used to gauge the 

significance of the reduction in stress and final dimensionality of the state space solution. 

Pearson’s correlation coefficients were derived from plot coordinates of island sites along 

each NMDS axis and the values for the original topographic metrics. Hierarchical cluster 
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analysis of the final combined dataset was performed using a flexible beta group linkage 

method (β = -0.25). Multiresponse permutation procedures (MRPP) quantified the 

similarities in topography across clustering levels. To complement NMDS, PCoA was also 

employed to derive a measure of the variance extracted for each state space axis. 

Ordinations, clustering and MRPP were performed in PC-Ord Version 7 (McCune and 

Mefford 2016). 

3.3.5 Hypotheses 

We posed the question as to whether the state space for the Virginia coast and for the 

Georgia Bight islands would exhibit differences in structure logically consistent with their 

known contrasts in nearshore settings. A comparison of these two well-studied coastal 

strands through their separately derived topographic state spaces would help gauge how 

well our cross-scale data modeling and state space methodology performed. However, by 

combining these two data sets and visualizing this larger topographic state space, more 

direct inferences could be made as to how topographies differ between these two regions. 

As a second question, then, we ask how the resilience properties (resistance and resilience) 

of the Georgia Bight and the Virginia coast might diverge. Given that there are the same 

types of barrier island morphologies in each of these coastlines, this second question asks 

how valid it is to assume that resistance and resilience correspond to island morphology. 

Two aspects of the cross-scale structure were used to make comparisons of 

topography: the dimensionality of the ordinated data, and the way in which cross-scaled 

variables load on ordination axes (i.e., dimensions). The Georgia Bight has more varied 

nearshore conditions, barrier island morphologies, and dune topographies. Conditions here 

are not as consistently low and erosional as in Virginia. Consequently, we expected the 
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state space solution for the Georgia Bight would have a higher dimensionality because the 

topographic metrics would exhibit less multicollinearity. Higher-dimensional landscape 

metrics should be less correlated with elevation because of the potentially stronger 

influence of dune vegetation on the secondary modification of topography (e.g., Durán and 

Moore 2013). Because the Virginia Barrier Islands are experiencing some of the most rapid 

rates of retreat and sea level rise on the eastern US coast, there should be less resistance 

and resilience. Less resilience should translate to a lower state space dimensionality. 

Without some resistance to storm surge and overwash, biogeomorphic interactions that can 

promote the secondary modification of topography and confer resilience may not be as well 

developed. The exposed, low-lying topography of many of the Virginia Barrier Islands 

would be expected to foster a landscape structure more collinear with elevation derived 

directly from storm effects and overwash. 

The seminal work on dune biogeomorphic feedbacks occurred well before the 

ascendance of resilience theory. It had a much broader comparative geographic focus 

(Godfrey 1977; Godfrey et al. 1979) than the more formal translations of resilience theory 

to barrier island dunes that came later. These were limited to a small set of observations on 

Sapelo Island, Georgia and South Core Banks, North Carolina (Stallins 2005). Resilience 

concepts have now been extrapolated to portions of Virginia coast (Brantley et al. 2014; 

Wolner et al. 2013; Zinnert et al. 2017). In dune topographic state space, the distribution 

of sampled dune plots from different island morphologies from a much larger geographic 

area will provide insight into the generalizability of the two-domain model to island 

morphology. It will also provide information on where we might expect geomorphic and 

ecological processes to maximize resilience. 
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3.4 Results 

3.4.1 Georgia Bight topographic state space 

DEMs indicated three dominant topographies (Figure 3. 3): large areas of 

aggregated, low relief (Parramore Island); shore-parallel dune ridges and intervening 

swales (Kiawah B, Sapelo A, Canaveral D); and patchy, fragmented topographies (Kiawah 

A, South Core Banks C; Bull A). Directional correlograms for elevation reduced down to 

one significant axis through PCoA (Figure 3. 4). Autocorrelation varied from sites that 

tended to have no correlation at increasing distance lags (Kiawah D, Canaveral C) to sites 

that developed progressively more negative correlations at large distance lags (Parramore 

A, Sapelo C, Bull B). 

The optimal NMDS solution required three dimensions, as derived from multiple 

NMDS runs that optimized starting configuration, stress reduction, and dimensionality 

(Figure 3. 5). Stress on all three axes was lower than that obtained from Monte Carlo 

randomization of the data (Table 3. 1). Dune topography differed on individual islands to 

the extent that some within-island topographies were more similar to those on more distant 

islands (i.e., Sapelo C and Parramore B or Bull A and South Core A). Stronger, robust 

Pearson’s correlations for plot position relative to the first NMDS axis developed for 

elevational properties, the aggregation index, patch shape, and patch diversity (Table 3. 2). 

These correlations indicated that to the left of the state space scatterplot, islands become 

higher, and elevations become less aggregated and tend to vary over relatively shorter 

distances. Dunes were more rectilinear in shape. Toward the right on the first axis in the 

scatterplot, plot elevation decreases and becomes less variable over larger areas. Elevation 

patches become more aggregated and curvilinear in shape. Robust correlations for the 
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second axis were observed for the interspersion and juxtaposition index, the landscape 

shape index, spatial autocorrelation, and plot size. This indicated that island plots toward 

the top of state space are areally small and have smaller patches. No one single, large 

elevational patch interval dominates over the others. Spatial autocorrelation of elevation 

for these plots remains near zero at increasing distance lags because of the more variable 

topography. Plots toward the bottom of state space are bigger and patches are also larger 

and dominated by a single elevational range. Spatial autocorrelation of elevations becomes 

increasingly negative at greater distance lags, an indication of low, flat overwash 

topographies. The third axis exhibited a robust correlation only with skewness, a high 

dimensional metric. 

3.4.2 Virginia dune topographic state space 

Virginia DEMs exhibited patchy, fragmented topographies (Assateague B, Wreck 

A and B; Cedar D. Ship Shoal C) as well as large, aggregated areas of low, flat topographies 

(Cedar A,  Metompkin B, and Wreck D). Shore-parallel rectilinear ridges were weakly 

expressed and tended to occur as a single feature in the middle or rear of the site 

(Metompkin C, Hog A and C; Figure 3. 6). Directional autocorrelation of elevation reduced 

down to one significant axis in PCoA (Figure 3. 7). This axis represented a change from 

sites that exhibited increasingly negative correlations at higher distance lags (Wreck D, 

Cedar D) to those in which elevations became slightly positive and near zero with higher 

distance lags (Ship B, Hog B). 

The optimal final NMDS solution required two dimensions (Figure 3. 8; Table 3. 1). 

The strength of axis correlations were weaker but more uniform across patch and 

continuous surface metrics than observed in the Georgia Bight dataset. The influence of 
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outliers in state space (Hog A) was also more pronounced. Robust correlations for the first 

axis included elevational properties and the aggregation index (Table 3. 3). The second 

axis tracked changes in plot size and the skewness and kurtosis of elevation. In general, to 

the left (right) of state space along the first axis islands become higher (lower) and 

elevations are less (more) aggregated. To the top (bottom) of the scatterplot, plots become 

smaller (larger), more negatively (positively) skewed, and more negatively (positively) 

kurtotic. This implies that Wreck D and Parramore B, for example, have a long tail of 

elevations skewed toward a few low elevations. For island sites like Hog A and Cedar E, 

the distribution of elevations is strongly peaked or narrow. Low elevations are most 

numerous and a long tail is in the direction of a few high elevations. 

3.4.3 Combined dataset 

Directional autocorrelation structure of elevation reduced down to one significant 

axis in PCoA (Figure 3. 9). Sites to the left along this single axis had Moran’s I values that 

became strongly negative with larger distance lags (Kiawah C, Sapelo B, Wreck D).These 

topographies were broad and flat but had their peak in elevation near the middle of the plot. 

To the right of the first PCoA axis, Moran’s I values became more positive or fluctuated 

around zero at larger distance lags (Bull A, Ship Shoal A, Hog A). These topographies 

were very poorly structured and had minimal topographic variability. 

A two-dimensional NMDS solution was optimal (Figure 3. 10; Table 3. 1). When 

sites were hierarchically clustered into two groups, only two sites from the Georgia Bight, 

Kiawah A and Bull B from South Carolina, fell within the group dominated by the Virginia 

Barrier Islands. Several sites from Virginia were clustered within the Georgia Bight data, 

including those from Metompkin, Hog, Assateague, and Wreck. The topographies for 
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Parramore Island that were sampled separately plotted close to one another, a validation of 

the methods employed. 

The first axis was structured by trends in elevation and FRAGSTATS indices (Table 

3. 4). To the right of the scatterplot, elevations are lower and topographic homogeneity 

increases. To the left, elevations are higher and topography becomes more rectilinear and 

variable over small distances on the surface. The second axis correlations were more 

strongly robust for kurtosis, the landscape shape index, and plot size. Toward the top 

(bottom) of state space, the extent of the dune landscape become smaller (larger), patches 

of elevation are less (more) dominated by a single elevation interval, and elevation values 

have a less (more) less peaked distribution of elevations. 

 Clustering at the level seven groups (Figure 3. 10) separated dune topographies 

along the second axis. The variability in topography expressed along the second axis is 

largely contained within islands of the Georgia Bight. MRPP indicated increasing 

robustness of statistical significance for topographic clusters from two up to seven groups 

(Table 3. 5). With higher groups, individual plots comprised clusters and statistical 

significance could not be assessed. 

3.5 Discussion 

3.5.1 Individual state spaces 

The topographic state space for the Georgia Bight and for the Virginia Barrier Islands 

had data structures that reflected their nearshore contexts. Fewer dimensions were 

sufficient to define the state space of the Virginia Barrier Islands. Correlations of the 

topographic metrics with axis positions were weaker and more uniform, a reflection of the 
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greater multicollinearity contained within Virginia’s two-dimensional solution. Spatial 

structuring was poorly developed. The aggregation index, the kurtosis or peakedness of 

elevation observations, and plot size were the only higher dimensional landscape metrics 

with explanatory relevance for the Virginia Barrier Islands. In contrast, the Georgia Bight 

dataset had a higher dimensionality. Axis correlations were not as uniformly weak, and 

they tended to differentiate across the three-dimensional solution. In both data sets, 

elevational properties comprised the dominant first axis of variability. However, metrics 

representing spatial structuring at landscape extents were less collinear with elevation for 

the Georgia Bight topographies. Here, patch and gradient metrics more strongly separated 

out along higher dimensional axes. On the Virginia Barrier Islands, elevation was mostly 

collinear with topographic metrics for spatial structure along the first axis. 

3.5.2 Combined state space 

The Virginia dataset occupied a mostly separate area in the combined state space. 

Tide-dominated island morphologies in Georgia and South Carolina plotted in a region of 

state space distinct from those in Virginia, indicating that this island morphology has 

different dune topographies based on location. The rapid rates of sea level rise along the 

mid-Atlantic barrier islands of Virginia and differences in island size can account for this 

separation of tide-dominated island morphologies in state space. Tide-dominated barrier 

islands are more strongly influenced by their adjacent tidal inlets than wave-dominated 

islands. These inlets are sources and sinks for sediments that shape adjacent shorelines. 

Compared to the larger sea islands of Georgia and South Carolina, the smaller, rapidly 

eroding barrier islands of Virginia like Cedar and Ship Shoal may have greater variability 

in alongshore depositional and erosional conditions as a consequence of the relatively 
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closer proximity of tidal inlets. The difference in dune topographies among wave-

dominated island morphologies was less pronounced. Assateague Island, a wave-

dominated barrier island on the Virginia-Maryland shore, had more similarities to the 

wave-dominated morphologies of the Georgia Bight and plotted closer to South Core 

Banks in state space. 

Because of the variability in topography within islands, centroids derived from the 

average of an island’s plot positions in state space may be a better way to infer resilience 

properties (Figure 3. 11). Sankaran et al. (2018) argue that this coarsening is necessary to 

detect resilience properties when spatial properties are assessed. The greater dispersion of 

island centroids along the first axis suggests that resistance is a more dominant property 

than resilience. Centroid positions relative to the second axis suggest that domain dynamics 

may develop at intermediate elevations along the middle of the first axis. Assateague and 

South Core may exemplify where overwash- reinforcing, biogeomorphic feedbacks and 

topography can contribute to a high resilience state. Conversely, Sapelo, Kiawah, and Bull 

Islands may represent state space positions with higher resilience expressed through 

overwash-resisting topographies. The centroids for the Virginia Barrier Islands were lower 

in elevation and did not separate out as strongly along the second axis. These Virginia 

Barrier Islands likely represent locations where resistance is lower and strong 

biogeomorphic feedbacks over landscape scales would be less likely to develop and persist. 

Figure 3. 12 summarizes regions of resistance and resilience in topographic state 

space relative to island centroids. Under the assumption that resistance and resilience are 

correlated with each other and covary geographically (Donohue et al. 2013, 2016; Stallins 

and Corenblit 2018), the first axis spans the high elevations of the Cape Canaveral sites 
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next to the Florida mainland, to the low elevation Ship Shoal sites in Virginia. Little 

biogeomorphic resilience may develop at either of these extremes, as overwash and 

geomorphic disturbance are too frequent (Ship Shoal) or too infrequent (Canaveral) to 

allow the self-organizing biogeomorphic feedbacks to develop. Only at intermediate 

elevations along the middle of this first axis do the higher-dimensional properties of 

resilience emerge along the second axis. Higher resilience is expressed at more negative 

(overwash-reinforcing) and more positive (overwash-resisting) axis positions. 

Speculatively the middle region may be dynamically unfavored or a bistable state space 

region where one or the other high resilience state can develop (Stallins, 2005; Goldstein 

and Moore 2016). While aspects of this state space model have been postulated (Monge 

and Stallins 2016; Stallins and Corenblit 2018), here they have been validated from 

observations of topography over a wide geographic area. 

3.5.3 Island morphology and resilience properties 

The dominant axis of variability in topographic state space was elevational. It did not 

reflect island morphology. Instead, the two main barrier island morphological types were 

distributed at varied positions along this first axis based on the specific elevational 

properties of the within-island sites. Tide-dominated island morphologies were found all 

along the length of this axis, at different elevations. Insofar as it determines resistance, 

island morphology may be less important than these measures of elevation along the first 

axis, as they more directly shape exposure to maritime inputs (e.g., Durán and Moore 

2015). The second axis, however, brought out distinctions in island morphology. 

Topographies distributed along the second axis spanned mixed-energy, tide-dominated 

barrier islands to wave-dominated barrier dune landscapes. Higher axes and increasing 
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dimensionality represent increasing resilience. Consequently, island morphology may be 

important for the potential development of resilience, but it is secondary to elevation. 

However, state space structure suggested that this resilience was dependent upon 

resistance. Only at intermediate elevations did the spatial topographic patterns affiliated 

with each of these two barrier island morphologies become distinct. These two regions of 

state space, at either end of the second axis at intermediate elevations, may correspond to 

the high resilience that has been categorically associated with island morphology. Most of 

these high resilience islands were from the Georgia Bight. Islands in Florida and Virginia 

may be too high and too low relative to overwash-forcing events, respectively, for island 

morphology to have any relationship to the emergence of landscape-scale biogeomorphic 

resilience. 

The actual values of the metrics correlated with the second axis at intermediate 

elevations may be prerequisites for the development of biogeomorphic resilience 

properties. Overwash-resisting domain dynamics may have a greater propensity to develop 

on dunes of tide-dominated morphologies that are neither extremely high nor low, and in 

which the dune landscapes have relatively small areal dimensions and a less peaked 

distribution of elevations that form small, disaggregate rectilinear patches. This 

combination of metrics reflects a greater topographic roughness compacted into a small 

area. Overwash-reinforcing domain dynamics may have a greater propensity to develop on 

wave-dominated barrier island morphologies with intermediate elevations, particularly 

when a more peaked distribution of elevations is dispersed over a larger area and elevation 

patches are also large and aggregated. 
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Still, these parameters are only a propensity for the development of resilience. 

Intermediate mean elevations in this study are approximately 1.2 ± 0.5 meters. Such a value 

should not be taken as an automatic predictor as to whether resilience is high or low at any 

one particular site. Any conception of an intermediate elevation and exposure to maritime 

inputs has to be assessed relative to the life history traits of the dune vegetation present at 

a site. With a shift in the abundance of dominant dune grasses (Harris et al. 2017; Goldstein 

et al. 2018) resilience properties may change without the external forcings that are often 

associated with such transitions. Dune ridges, and hence elevation properties, can also form 

in the absence of changes in external forcings (Moore et al. 2016). Sediment budget and 

the timing of coastal storms also have a strong influence on stability and persistence of 

dunes (Psuty and Silviera 2010; Houser et al. 2015). These factors also suggest that 

resilience properties for barrier dunes may be more dynamic and changing in space than 

presently theorized (e.g., Génin et al. 2018; Phillips 2018) 

3.6 Conclusion 

Aeolian and marine, nearshore and terrestrial, geologic and meteorological, historical 

or present-day – the controls on barrier island dunes are diverse and expressed at multiple 

interacting scales (Hapke et al. 2016; Moore et al. 2016; Walker et al. 2017; Wernette et 

al. 2018a). Process-based (e.g., Hesp et al. 2005; Davidson-Arnott et al. 2018) and form-

based approaches (e.g., Short and Hesp 1982; Mitasova et al. 2012) for describing and 

comparing dunes involve different selections of variables, contrasting representations, and 

preferences for certain measurement levels and degrees of spatial explicitness. Along with 

numerical modeling, this range of approaches suggests that no stand-alone route to 

knowledge generation exists. The approach taken in this paper was to assemble the cross-



82 
 

scale data structure of dune landscape using high resolution broad extent observations of 

elevation. This data modeling technique fused different pattern-process paradigms and 

their representational entities. Topographic forms were then compared in state space in 

order to infer their resilience properties. 

Topographic state space for the Virginia and Georgia Bight barrier islands exhibited 

differences in data structure logically in agreement with their known contrasts in nearshore 

context. Most of the island sites from Virginia did not fit within the topographic state space 

of the Georgia Bight islands. Their resilience properties also differed, largely because of 

the lower elevations and lowered resistance in Virginia. At very low (high) barrier island 

elevations, resilience may not be not as well developed because storm exposures and 

overwash may be too frequent (infrequent) to facilitate the persistence of biogeomorphic 

feedbacks shaping resilience. Resilience may even be relatively uncommon and limited to 

certain dune locations. It developed only at intermediate elevations in topographic state 

space. The relatively large size of state space in comparison to where potentially high 

resilience developed also suggests that these stabilizing biogeomorphic feedbacks may be 

more contingently expressed. Although earlier studies affiliated resilience with barrier 

island morphological types, this study has shown that the process-form context of island 

morphology may be only a secondary factor to the development of resilience. 

The findings of this study are limited in that only topography was sampled, and 

vegetation was not, even though they are highly interactive on coastal dunes. Construction 

of a state space in terms of the plant functional types and examination of how it correlates 

with topographic state space would be the next step in affirming these inferences about the 

geographic distribution of resistance and resilience. To elucidate more about the 
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mechanisms that shape resilience via plant influences on topography, selecting sites and/or 

islands based on their intervening distances along the second axis in state space and 

position relative to intermediate elevations may be an efficient strategy for selecting where 

to sample in the field and to conduct field-based experiments. 
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Table 3. 1 Dimensionality, stress, and variance extracted for each state space visualization. 
All values significant (p < 0.01) based on Monte Carlo permutations of the observed data. 
 

  Axis 1 Axis 2 Axis 3 Final stress or 
variance extracted 

Virginia state space (n = 30 plots)         

Stress 42.0 13.7   11.5 

Variance 43.7 22.2   65.8 

Georgia Bight state space (n =22 plots)         

Stress 45.6 15.5 5.1 4.5 

Variance 40.6 27.9 15.0 83.5 

Combined state space (n = 52 plots)         

Stress 41.8 12.8   11.1 

Variance 48.6 20.7   69.3 
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Table 3. 2 Pearson's correlation coefficients for plot NMDS axis coordinates and 
topographic metrics for the Georgia Bight. Correlations deemed important were  > 0.70 
and not influenced by outliers (shown in bold). 
 

 Topographic metric Axis 1 Axis 2 Axis 3 

Mean elevation -0.89 -0.26 -0.29 

Max elevation -0.56 -0.22 0.19 

25th percentile elevation -0.71 -0.62 -0.23 

50th percentile elevation -0.80 -0.33 -0.45 

75 percentile elevation -0.88 -0.02 -0.37 

Aggregation index  0.89 -0.17 -0.35 

Contagion  0.59 -0.66 0.05 

Interjuxtaposition -0.56 0.74 0.11 

Large patch index 0.57 0.52 0.05 

Landscape shape index -0.33 -0.87 0.15 

Perimeter-area fractal dimension  -0.60 -0.14 0.31 

Mean shape index 0.78 -0.39 -0.34 

Patch diversity  -0.80 0.27 -0.30 

Skewness of point elevations -0.12 0.16 0.87 

Kurtosis of point elevations -0.03 -0.66 0.68 
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Table 3. 2 (Continued) 

 Topographic metric Axis 1 Axis 2 Axis 3 

Directional spatial autocorrelation 
of elevation -0.17 -0.75 0.59 

Plot size 0.17 -0.93 -0.13 
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Table 3. 3 Pearson's correlation coefficients for plot NMDS axis coordinates and 
topographic metrics for Virginia Barrier Islands 
 

Topographic metric Axis 1 Axis 2 

Mean elevation -0.91 -0.24 

Max elevation -0.64 -0.65 

25th percentile elevation -0.70 -0.17 

50th percentile elevation -0.85 -0.08 

75 percentile elevation -0.95 -0.14 

Aggregation index 0.80 0.15 

Contagion 0.64 -0.65 

Interjuxtaposition -0.66 0.33 

Large patch index 0.63 -0.02 

Landscape shape index -0.60 -0.59 

Perimeter-area fractal dimension -0.62 -0.15 

Mean shape index 0.65 -0.44 

Patch diversity -0.81 -0.04 

Skewness of point elevations 0.04 -0.77 

Kurtosis of point elevations 0.39 -0.74 
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Table 3. 3 (Continued) 

Topographic metric Axis 1 Axis 2 

Directional spatial autocorrelation 
of elevation 0.14 -0.38 

Plot size 0.06 -0.78 
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Table 3. 4 Pearson's correlation coefficients for plot NMDS axis coordinates and 
topographic metrics for the combined data set 

 

Topographic metric  Axis 1 Axis 2 

Mean elevation -0.89 -0.27 

Max elevation -0.67 -0.58 

25th percentile elevation -0.70 -0.40 

50th percentile elevation -0.86 -0.19 

75 percentile elevation -0.92 -0.14 

Aggregation index 0.87 0.07 

Contagion 0.80 -0.50 

Interjuxtaposition -0.71 0.37 

Large patch index 0.73 0.10 

Landscape shape index -0.49 -0.70 

Perimeter-area fractal dimension  -0.68 -0.16 

Mean shape index 0.78 -0.25 

Simpson's index for patch diversity -0.85 -0.01 

Skewness of point elevations 0.15 -0.54 

Kurtosis of point elevations 0.40 -0.72 
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Table 3. 4 (Continued) 

Topographic metric  Axis 1 Axis 2 

Directional spatial autocorrelation of 
elevation 0.12 -0.61 

Plot size 0.32 -0.74 
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Table 3. 5 MRPP tests of group difference for each cluster solution. All tests significant p 
< 0.01 
 

Grouping T A 

2 Clusters -22.97 0.17 

3 Clusters -17.70 0.22 

4 Clusters -15.44 0.25 

5 Clusters -15.40 0.28 

6 Clusters -16.52 0.32 

7 Clusters -16.98 0.36 

Note: T describes the separation between clusters. Higher A values are indicative of 
greater confidence in the significance. Values of A closer to zero indicate differences no 
greater than expected by chance. 
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Figure 3. 1 Regional map of coastline of the southeastern USA. The region covered in this 
study is located between Cape Hatteras, North Carolina, and Cape Canaveral, Florida (the 
Georgia Bight). Dune topographies on six islands in this region were selected for 
examination. These islands are, in order from north to south: South Core Banks, Bull 
Island, Kiawah Island, Sapelo Island, and Canaveral Island. 
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Figure 3. 2 Map of coastline, spanning from Maryland to the Delaware Peninsula. Dune 
topographies on seven islands in this area were selected for examination. These islands are, 
in order from north to south: Assateague Island, Metompkin Island, Cedar Island, 
Parramore Island, Hog Island, Wreck Island, and Ship Shoal Island. 
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Figure 3. 3 DEMs for study plots along the Georgia Bight, scaled to local minimum and 
maximum elevations. Letters indicate position along the island from A (northernmost) to D 
(southernmost). Island plots differed in size, although they are scaled to be the same here. 
The conversion factors below each raster can be used to derive an island’s plot size relative 
to the largest island plot, South Core Banks C (215 m by 215 m). For example, the actual 
dimensions of plot C on Sapelo Island are 112 m by 112 m (0.52 × 215 m = 111.8 m). 
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Figure 3. 4 PCoA scatterplot of directional spatial autocorrelation structure for the Georgia 
Bight plots. 
 

 

Figure 3. 5 NMDS topographic state space for Georgia Bight DEM plots. 
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Figure 3. 6 DEMs of Virginia study plots, scaled to local minimum and maximum 
elevations. See Figure 3. 5 for explanation. The largest island plot is Cedar D (295 m by 
295 m). 
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Figure 3. 7 PCoA scatterplot of directional spatial autocorrelation structure for Virginia 
plots. 

 

 

Figure 3. 8 NMDS topographic state space for Virginia DEM plots. 
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Figure 3. 9 PCoA scatterplot of directional spatial autocorrelation structure for the 
combined dataset. 
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Figure 3. 10 NMDS topographic state space for the combined dataset. A) two-cluster 
solution, B) seven-cluster solution. 
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Figure 3. 11 NMDS topographic state space for the combined data set based on island 
centroids. 

 

 

Figure 3. 12 Summary of resilience properties in barrier island dune topographic state 
space. 
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Chapter 4. Delineation of geomorphic and biogeomorphic resistance and 
resilience in barrier island dunes using cross-scale modeling and state space 

visualization 

Abstract 

Resilience properties have been ascribed to coastal dunes by invoking the idea of 

stability domains. However, the relative levels of resistance and resilience, and how they 

vary geographically in light of geomorphic and biogeomorphic controls, has not been not 

fully documented. This study uses cross-scale modeling and state space visualization to 

delineate the geomorphic and biogeomorphic contributions to resilience properties for dune 

topographies on twelve barrier islands of the U.S. southeast Atlantic coast. Three sets of 

dune topographic metrics (elevational statistics, patch indices, and the continuous surface 

properties) were integrated for fifty-two plots distributed evenly across all of these study 

islands. Data were selected so that dimensionality reduction through nonmetric 

multidimensional scaling would produce a solution in which position in this state space 

reflected topographic similarity among sites as well as the relative importance of resistance, 

resilience, and the contribution of geomorphic versus biogeomorphic processes. The above 

resilience properties in this study are measured through variability in topographic metrics 

that present corresponding adaptive cycles and panarchies in the barrier dune system. The 

dimensionality of the ordination and loading for each variable on significant axes was used 

to quantitatively delineate the resilience property distribution in state space. Low-

dimensional geomorphic metrics for topography were associated with a gradual transition 

from high, positive to low, negative relief island sites. At higher dimensions in state space, 

potentially larger threshold transitions developed between islands that differ in the 

continuous surface properties of the landscape. Topographic metrics correlated with both 
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dimensions conveyed how a higher islands can enhance the level of contagion reflected in 

its landscape topography to that of a low island via biogeomorphic processes. Conversely, 

metrics spanning both dimensions conveyed how low islands may reduce contagion to that 

of a higher island by creating greater topographic roughness via vegetation-enhanced dune 

and swale topography. Greater attention to topographic complexity and adoption of a cross-

scaling approach may provide more evidence of multiple kinds of transitions in dunes and 

how geomorphic and biogeomorphic properties contribute to them. 

4.1 Introduction 

 Dune plants play a large role in how sandy coastal strands respond to and recover 

from high water events (Durán and Moore 2013, 2015). While the frequency and intensity 

of forcing phenomena such as tropical and extratropical storms shape dune responses and 

recovery (Houser et al.  2015), biogeomorphic processes also play a role. Through their 

growth forms and adaptations to burial, dune vegetation can modify topography and in turn 

shape how sediments and water flow across the surface (Feagin and Wu 2007; Feagin et 

al. 2015, 2019; Zinnert et al. 2017). These biogeomorphic feedbacks can promote 

topographic conditions and plant functional abundances that may resist or reinforce 

exposure to overwash disturbance and canalize post-storm development (Stallins 2005; 

Wolner et al. 2013; Brantley et al. 2014). However, the study of these biogeomorphic 

feedbacks has been constrained to small stretches of coast or a couple of islands. Moreover, 

the formal resilience properties that these biogeomorphic interactions promote have not 

been quantified with variables that represent their spatially-interactive, scalar complexity. 

Nor has the relative importance of geomorphic and biogeomorphic properties in shaping 

transitions in dune states been examined in an explicitly geographical manner. 
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 In this study, we delineated geomorphic and biogeomorphic contributions to dune 

topography on barrier islands from across the U.S. southeast Atlantic coast, a passive 

continental margin that spans a wide range of nearshore conditions and barrier island types. 

This was accomplished by modeling topography through a suite of dune topographic 

metrics designed to reflect the relative importance of geomorphic and biogeomorphic 

processes, resilience properties, and how changes in structure reflect gradual versus 

threshold dynamics. A challenge to this task is that geomorphic and biogeomorphic 

influences are not divorced from one another (Schwarz et al. 2018). Biogeomorphic 

interactions require a geomorphic template, and biogeomorphic interactions can modify 

the geomorphic template once they emerge. Then, the relative importance of geomorphic 

or biogeomorphic processes that shape landforms can also vary in time and space (Parker 

and Bendix 1996), and consequently in how they contribute to the resistance or resilience 

of barrier dunes alongshore (Stallins and Corenblit 2018). 

 To distinguish these properties, we utilized a cross-scale data modeling approach 

derived from resilience theory (Nash et al. 2014; Sundstrom et al. 2014). Data modeling in 

the sense employed here is a means of making the phenomena under study and its 

representation more accessible for analysis. The topographic metrics employed to model 

topography were selected so that they had a cross-scale structure and a degree of nestedness 

that captured how geomorphic and biogeomorphic phenomena are integrated. By using 

ordination as a dimensionality reduction technique, the variance structure of these data 

could be visualized as topographic state space. State space captures the range of expressed 

patterns or phenomena. It is a form of statistical mapping employed in many disciplines 

(Figure 4. 1). Its usefulness in this study is that the modeling is structured so that the axes, 
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or dimensions of state space, can be associated with not only with geomorphic and 

biogeomorphic properties, but also with resistance and resilience, the two dominant 

properties of resilience. 

4.2 Background 

4.2.1 Cross-scale structure in resilience theory 

 Typically, inquiries about the relationship between pattern and process confine 

observations to specific scales in time and space (Schumm and Lichty 1965; Turner and 

Gardner 2015), perhaps more so for fast systems such as dunes given the dynamism of its 

highly mobile elements. Scalar extent and resolution are often decomposed as part of the 

description of problems and the framing of questions and methodologies. Such discreteness 

in scalar extents and resolutions is often necessary to work within a particular conceptual 

paradigm or to falsify a specific hypothesis (Fonstad and Marcus 2010). Observations made 

at the scales affiliated with a particular conceptual paradigm are then statistically examined 

to determine the relative importance of factors that contribute to a scale-specific pattern. It 

is inescapable that any observation must inherently begin with the selection of an extent 

and a resolution that is constrained by human perception and technology. However, the 

weakness of this mode of sensitivity to scale is that it is an analytical artifact that does not 

take into account the plurality of conceptual frameworks, with their own particular scalar 

extents and resolutions as well as unique representational entities. It ignores how 

information exists continuously across scales out of a need to work within a particular 

paradigm. It restricts the information to a few levels from which to pose questions and 

conduct analyses. 
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 Over the past decades, many techniques have been developed to examine pattern 

and process across scales. Spatial autocorrelation and variograms identify what scale 

lengths define a pattern-process relationship. They show how pattern and process can vary 

from place to place in terms of the dominance of a particular distance within which 

variables are highly correlated. These techniques lead to the identification of key scales 

that describe a specific property of a habitat or landscape. However, their weakness is that 

they do not specify how the identified dominant scale of variability propagates from and 

across scales. Key scales of variability are sublimations of many different scales into a 

single measure and so are limited in how they can tease apart multivariate relationships 

existing in different locations. Fractals, wavelets, and power laws also excel in pattern 

description across scale but they too collapse information and do not provide the variables 

needed for finer-grain inference of processes across scales and how it vary from place to 

place. 

 A common response to these anchorings and collapsings of scale is to forego field 

measurements and utilize more intensive modeling and simulation as a way to isolate 

mechanisms that span multiple scales. Modeling, including network approaches, can link 

mechanisms across scales to derive a tractable, yet simplified set of interactions. While 

modeling and simulation isolate details about mechanism, they remain approximations of 

real-world pattern and process. Their results are very often useful and can be compared to 

field observations to gauge the suitability of the model (Durán and Moore 2015). But such 

modeling often simplifies geographic variability. Modeling is required to strike a balance 

between mean-field aggregate and more spatially explicit models (Morozov and Poggiale 

2012). Geographic variability and contextual details are often sacrificed in order to gain a 
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better mechanistic picture through mean-field aggregations of phenomena. These 

generalizations obscure the causal role of space and the details of spatial patterns.  

 In this study, a cross-scale data modeling approach is employed as a complement 

to these strategies. Cross-scale approaches work more simultaneously across scalar extents, 

resolutions, and the conceptual paradigms that define them. Like hierarchy theory, cross-

scale approaches recognize the hierarchical nestedness and stacking of different processes 

across scales. But in formal cross-scale approaches, the variables account for more of 

adaptive and contextually variability in their integration. Cross-scaling can better explain 

differences in the successional development from place to place, and what kind of 

transitions in state can occur. As a foundation of resilience theory, cross-scale approaches 

have a long history and an extensive literature beginning more formally with Holling 

(1992). But of particular relevance is that cross-scale structure is the mechanism postulated 

to confer resilience properties (Peterson et al. 1998; Allen and Holling 2010). Resilience 

properties include the underlying dimensions of (1) resistance (engineering resilience), (2) 

resilience (ecological resilience), as well as (3) the interaction between the above two 

properties (Gunderson 2000; Donohue et al. 2013; Barros et al. 2016). Resilience, in the 

context of this study, represents the capacity to maintain a particular organizational 

configuration of topography before transitioning to a new state. Resistance is what allows 

resilience to develop. In biogeomorphic systems, resistance is manifested as the 

stabilization of substrate that facilitates biogeomorphic interactions to emerge and promote 

resilience. 

 Although cross-scale approaches have been conceptualized largely around the 

variable of body mass in animals, they are amendable to multivariate techniques and other 
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variables so long as they encapsulate key structuring processes (Allen et al. 2005). 

Variables in a cross-scale model need to be judiciously selected to reflect these key 

structuring processes and how they link across scales. The variables or metrics chosen 

should also correlate with each other given that they are nested across different scalar 

extents. In this study, elevational properties were the foundational topographic metric. 

Elevation in turn can comprise patches, the areal shapes and geometries taken by 

elevational observations when categorized into intervals of elevation. These patches in turn 

nest within continuous surface properties that reflect the connectivity of the entire 

landscape. When these different data representations and measurement levels are integrated 

in a cross-scale model, they augment the amount of information available to describe 

topography. This overcomes some of the loss of information that results from the selection 

of only a single scalar extent in order to work within a particular pattern-process paradigm. 

Similar to how raster and vector representations are used in geographic information 

science, the simultaneous application of different conceptual paradigms such as patch 

versus gradient and their representations complement the description of pattern (Collins et 

al. 2018). While it is impossible to escape the necessity to making scale-dependent 

decisions and observations, the cross-scale approach relies less on restricting scales of 

analysis and interpretation, and it does not reify any particular scale as more important. It 

overfits data, rather than relying on a greedy strategy of selecting only variables that 

correspond to a particular conceptual paradigm or method. Other statistical procedures, 

like simulated annealing, rely on similar overfitting approaches. 

The advent of broad-extent, high-resolution data sets are instrumental for the 

development of these overfitting strategies that cross-scale data modeling exemplifies 
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(Fonstad and Marcus 2010). Remote sensors can provide the high resolution data coverage 

over broad spatial extents. These data can then be partitioned, aggregated, and summarized 

to reflect different explanatory paradigms and scalar representations of the phenomena of 

interest. By employing LiDAR data that measures point elevations at sub-meter accuracy 

over kilometer extents, observations can be simultaneously represented with elevational 

statistics, patch metrics, and continuous surface properties. 

4.2.2 Dune biogeomorphic resistance and resilience 

Topographic metrics identified as higher dimension are expected to have stronger 

correlations with second or higher axes. These variables demarcate biogeomorphic 

influence and potentially the greater degree of differentiation of dune topographies due to 

biogeomorphic feedbacks. When dune topography is influenced at a landscape scale by 

vegetation, it may either reinforce or resist overwash exposure, but not both 

simultaneously. Too much or too little topographic resistance prohibits the diversity of 

dune plant types and feedbacks with sediment mobility to biogeomorphically modulate 

inputs from high water events in a recursive, self-organizing manner. Thus, intermediate 

elevations (i.e., toward the middle of the elevational boundary conditions) may not be a 

dynamically favored state. Based on Durán and Moore (2015), we also expect that there 

will be regions in this state space within intermediate elevations that are bistable. At these 

bistable regions, neither resisting nor reinforcing biogeomorphic feedbacks dominate. This 

implies that they can have different biogeomorphic properties and dune landform patterns 

at the same elevation. 
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Dune topographic patterns have been linked to resilience properties (Stallins 2005; 

Durán and Moore 2015; Zinnert et al. 2017). However, topography in these studies is 

simplified to transect profiles and alongshore point elevations. Fine-resolution spatial 

structure in three dimensions has not been fully considered. Moreover, these studies link 

resilience properties to topography but do not adequately consider the multidimensionality 

of resilience, a phenomena composed of the correlated dimensions of resistance and 

resilience that can also vary geographically (Donohue et al. 2013; Radchuk et al. 2019). 

When the idea of cross-scalar structure is invoked, it is in description only and lacks any 

quantitative or mechanistic basis. However, cross-scale structure has an explicit 

mechanistic linkage to resilience properties. Adaptive cycles and how they link, break 

apart, and adapt to new circumstances to form a panarchy that shapes resilience properties 

and the kinds of transitions in state that can occur. More recently, Sundstrom et al. (2014) 

and Nash et al. (2014) specified a cross-scale data structure to summarize resilience 

properties. However, these ecological studies downweight abiotic-biotic interactions like 

those in biogeomorphology. They favor ecological interactions focusing on body mass over 

how these ecological interactions shape the habitat template, a perhaps more fundamental 

key structuring process. 

Stallins and Corenblit (2018) conceptualize how cross-scale structure shapes the 

formation of dune habitat and its resistance and resilience. They proposed a data structure 

for relating dune topography to the potential expression of biogeomorphic resistance and 

resilience within and between islands. In this work, the biogeomorphic successional model 

of Corenblit et al. (2007, 2009) was translated into a geographically-explicit 

conceptualization of adaptive cycles and panarchies, the fundamental working units of 
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resilience theory. Stallins and Corenblit (2018) then formalized how multiple 

representations of dune topographic pattern—each reflecting different scalar extents, 

resolutions, levels of aggregation and degrees of spatial explicitness—can be integrated 

and visualized in a multidimensional state space so as to reveal aspects of their resistance 

and resilience. Their model also postulates as to where overwash-reinforcing and 

overwash-resisting biogeomorphic stability domain emerge in this state space. In a stability 

domain, dune plant compositional abundances and landscape topography interact to 

reinforce one another in a positive feedback that either lowers or increases resistance to 

overwash exposure. These landscape feedbacks were hypothesized to emerge only at 

higher dimensions of dune topographic state space and to exhibit threshold dynamics in 

transitions between them. 

In other regions of state space where biogeomorphic interactions are not as 

integrated into the landscape, gradual transitions may be more common. There is a growing 

recognition that critical transitions inferred from spatial patterns may be more complex 

than those detected through time (Bel et al. 2012; Génin et al. 2018). Much of the literature 

on critical transitions has shifted from simplicity to more complex dynamics as the spatial 

properties of resilience are acknowledged (Cumming 2011; Allen et al. 2016; Cumming et 

al. 2017). 

4.3 Methods 

4.3.1 Selection of cross-scalar variables 

Quantification of the conceptual cross-scale model proposed by Stallins and 

Corenblit (2018) requires topographic data representations that captures the key structuring 
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processes and linkages in the developmental sequence from bare mobile substrate to 

vegetated, biogeomorphically interactive dune landscapes. Most of the underlying 

variability in topography should be related to geomorphic variables, like elevation, that 

determine relative position of the terrestrial surface above the high water mark and the 

presence-absence of a barrier island. In this sense, elevation is the lowest dimensional 

variable to describe dune topography. Through absolute measures of elevation, resistance 

to storm inputs and high water events for a location can vary from high to low, from 

infrequently overwashed to frequently inundated.  

Elevation alone does not determine the resistance to high water events. As small 

vegetated dunes develop, they augment resistance by binding sediment in place. But as 

these dunes begin to shape the movement of sediment and storm surge, the emergence of 

resilience at larger landscape extents may become possible. Higher dimensional metrics 

that reflect the growing spatial organization of the landscape can capture this change. 

Measures of dune landform configuration and abundance inferred from the boundaries and 

area of elevational patches can be used to identify the growing importance of 

biogeomorphic processes and the resilience they contribute. The highest dimension metrics 

reflect the formation of the continuous spatial structure arising from biogeomorphic 

feedbacks that operate across a landscape. They emerge out of lower dimensional 

properties summarized by elevation and measures of patch structure. These summarize 

dune landscape connectivity through metrics like habitat extent, the distributional 

properties of elevation (skewness and kurtosis), and spatial autocorrelation of elevation. 

Habitat extent in this study is considered to be a spatially-structured continuous 

surface processes, rather than simply a value to standardize observations. A biome, for 
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example, has an extent that reflects the spatial processes that shape it. While not as 

explicitly spatial, skewness and kurtosis summarize a distributional property of the entire 

continuous elevational surface. Moreover, changes in skewness and kurtosis of a key 

structuring variable are often associated with transitions in state, along with measures of 

autocorrelation (Guttal and Jayakaprakash 2008, 2009; Scheffer et al. 2015) From a process 

perspective, spatial autocorrelation is important because it summarizes variations across-

scales that can point to local processes of importance. 

Through these metrics and their correlations with each other in state space, 

resilience properties can be identified and compared. However, a variance partitioning 

technique is needed to reduce the dimensionality of the data and distill its parsimonious 

structure (e.g., Kim and Zheng 2011; Kim et al. 2012). The working assumption for this 

cross-scale data modeling is that lower dimension axes represent resistance and higher 

dimension axes represent resilience. Two to three dimensional solutions are expected, 

based on ordination of cross-scaled data in other studies (Monge and Stallins 2016). 

However, an issue with dimensionality reduction is that the derived axes do not always 

correspond directly to the properties attributed to them. Some topographic metrics can be 

expected to correlate well with a single axis, others may be correlated with more than one 

axis. The exploratory hypotheses below formalize these aspects of dimensionality 

reduction and their relationships to resistance and resilience. While correlation is not 

causation, it is an indication of a causal relationship that merits explanation (Laland et al. 

2011). 
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4.3.2 Exploratory hypotheses 

Lowest-dimension topographic metrics 

Island sites distributed along the lowest dimensions, or axes, of state space 

represent the variability in resistance as expressed through metrics with a strong 

geomorphic component. In other words, the lowest dimension of the state space is 

hypothesized to capture the variance associated with the resistance properties through 

several topographic metrics that characterize lower adaptive cycles (Stallins and Corenblit 

2018). These sites represent the boundary conditions under which a barrier island is 

possible, from highest to lowest elevations. 

Highest-dimension topographic metrics 

Topographic metrics correlated with the highest dimension are expected to reflect 

landscape-extent biogeomorphic properties. Islands distributed along the highest 

dimensions may express stability domain dynamics, a high resilience overwash-resisting 

topography or a high resilience overwash-reinforcing topography. The correlation of 

topographic metrics with the highest dimension axis is expected to occur at an intermediate 

level of resistance. Too much or too little topographic resistance may prohibit the 

development of the abundances of dune plant types and feedbacks with sediment mobility 

and landforms to biogeomorphically modulate inputs from high water events in the 

recursive, self-organizing manner attributed to stability domains. Thus, intermediate 

elevations (i.e., toward the middle of the elevational range spanned along the first axis) are 

expected to be where stability domains and high resilience are positioned in state space. In 

their modeling and field-based study, Durán and Moore (2015) observed that transitions 
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along the coast between high and low domain states similar to stability domains occurred 

near intermediate elevations. They designated these transitions as bistability, in which 

either a high or low-island dynamical state can develop at an intermediate elevation. 

Dual correlation topographic metrics 

Metrics correlated with a low and a high axis reflect the conjoint influence of 

geomorphic and biogeomorphic feedbacks on topographic structure. These metrics should 

provide insight into how islands differ in the relative importance of geomorphic and 

biogeomorphic processes. 

4.3.3 Sampling and data 

To examine these hypotheses, a cross-scale data set characterizing dune topography 

on 52 sites across 12 barrier islands was assembled. This data set spanned barrier islands 

from Virginia to South Florida. These islands represent a range of island morphologies, 

from long-linear, wave-dominated to drumstick-shaped, tide-dominated barrier islands. 

LiDAR data was used to generate a 1-m resolution digital elevation model (DEM) for each 

dune plot from which elevational statistics, landscape patch indices, and continuous or 

gradient surface properties were derived (Table 4. 1). 

Dune topographic metrics for islands in the Georgia Bight regional dataset were 

derived in an earlier study, Monge and Stallins (2016). These metrics utilized a 2010 

LiDAR dataset collected by the United States Army Corps of Engineers for four of the 

islands. Vertical (horizontal) accuracy was 15 cm (75 cm) and nominal point space was 2 

m. Due to small gaps in this 2010 dataset, topographic metrics for South Core Banks and 

Parramore Island were constructed from post-Sandy LiDAR datasets collected by the U.S. 
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Geological Survey in 2012. For these data, vertical (horizontal) accuracy was 7.5 cm (19.4 

cm) and nominal point space was 1 m. A post-Hurricane Sandy 2014 data-set collected by 

the NOAA National Geodetic Survey was used to construct digital elevation model (DEM) 

plots for sites on the Virginia islands. Vertical (horizontal) accuracy was 6.2 cm (100 cm) 

and nominal point space was 0.3 m. LiDAR point elevations were resampled to a resolution 

of 1 m and then interpolated using inverse distance weighing to fill any gaps. LiDAR 

processing was performed in ArcGIS using LAStools (Isenburg 2014). 

Mean, maximum, and percentile elevation observations (25th, 50th, and 75th) were 

absolute measures relative to the mean high-water mark (MHW) datum. The Virginia 

MHW shoreline was defined as the 0.7 m contour line relative to the NAVD 88 datum 

following Rogers et al. (2015). The islands in the Georgia Bight and the replicate plots on 

Parramore were referenced to the MHW mark using VDatum (National Oceanic and 

Atmospheric Administration and National Ocean Service 2012). These elevational 

variables were converted to Z-score standardized elevations before analysis. 

Landscape index values were calculated in FRAGSTATS software Version 4.2 

(McGarigal 2015). Elevation is represented as patches, where a patch is an interval of 

elevation. Each patch is composed of pixels that can vary within the defined interval for a 

patch. FRAGSTATS indices quantify the patch pattern of elevations within a predefined 

interval. Because FRAGSTATS is designed to work with categorical observations, raster 

DEMs were converted into areal representation by reclassifying pixels into elevation 

intervals. This decreased the number of elevation classes from all the possible centimeter 

intervals (essentially a continuous surface representation), to one based approximately on 

decimeter intervals (a categorically oriented representation). Figure 4. 2 illustrates the logic 
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of this conversion, as explained in Wu et al. (2017, p. 56). To minimize derivation of 

FRAGSTATS descriptors without a process interpretation (Kupfer 2012), this study chose 

landscape indices with consistent, ecologically meaningful values, identified by Cushman 

et al. (2008). This set of indices was then constrained to those well-suited for characterizing 

continuous surfaces like elevation (McGarigal et al. 2009) and for discerning pattern-

process relationships associated with foredune building and overwash. This study selected 

these indices (Table 4. 2): the perimeter-area fractal dimension (PAFRAC), the area-

weighted mean shape index (SHAPE_AM), the aggregation index (AI), the landscape 

shape index (LSI), the largest patch index (LPI), the contagion index (CONTAG), the 

interspersion and juxtaposition index (IJI), and the Simpson's diversity index (SIDI). 

DEMs of representative plots were used to demonstrate the contrasts among the landscape 

indices (Figure 4. 3). 

Continuous surface properties were described by the skewness and kurtosis of 

elevations derived from the point observations of each pixel in a plot. Habitat extent, 

expressed as plot size, was defined as the distance in meters of one side of the square study 

site. The last continuous variable, spatial autocorrelation, was summarized in directional 

correlograms. These correlograms captured the way in which elevations varied in the cross-

shore direction at different distance lags from zero to their plot size. To make the directional 

correlograms comparable to the other topographic metrics, six Moran’s I values along 

correlograms were selected and then reduced to a pair of coordinates using principal 

coordinates analysis PCoA (Figure 4. 4). 

Non-metric multidimensional scaling (NMDS) in PC-Ord Version 7 (McCune and 

Mefford 2016) was used to construct state space. All topographic metrics were 
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standardized to Z-scores and analyzed in NMDS as Euclidean distances. Site-level (n = 52) 

data were too noisy to interpret when plotted in the final NMDS scatterplot. Coordinates 

for these site positions were averaged to obtain each island’s centroid in dune topographic 

state space. Pearson’s correlation coefficients were used to infer how these variables 

correlated with each axis or dimension. These correlations represented the trends of site 

position along each axis with the original topographic metrics. 

Response surfaces were calculated for each topographic metric to enhance 

interpretation of how they vary across state space. They provide a more quantitative and 

visual method for the interpretation of state space. To fit the contours of this response 

surface, nonparametric multiplicative regression (NMPR) was performed against the two 

ordination axes for each individual topographic metric. The NMPR model was 

implemented with a local mean estimator and Gaussian kernel (McCune 2006). A leave-

one-out cross-validated R² (xR²) was calculated based on the differences between the 

estimated and the observed y values, where the estimate for a point is calculated without 

including that point in the model fitting. The response surface was then interpolated by 

calculating estimates for a finely divided grid for x² and xR². The smoothing parameter was 

optimized such that xR² was maximal. The response surface was then drawn through the 

local mean of the points. Standard deviation was set at zero so that the surface represents 

the local mean of the overlay variable. Response surfaces were constructed in PC-Ord 

Version 7 (McCune and Mefford 2016). 
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4.4 Results 

A two dimensional NMDS solution was optimal based on statistically significant 

reductions in stress compared to Monte Carlo randomizations of the data (n = 249; p < 

0.01). Final stress was 11.1. Stress values less than twelve are considered useful, although 

stress less than twenty may also be an informative solution (McCune and Grace 2002). 

Centroids provided a more interpretable state space to gauge response surfaces trends 

(Figure 4. 5). Topographic metrics were assigned to three groups based on the strength of 

their Pearson correlation with the first and second axes (Table 4. 3). The first or low 

dimension axis was correlated more strongly with mean and percentile elevation properties, 

AI, LPI, SHAPE_AM, SIDI, IJI, and PAFRAC. The second and highest dimension axis 

was more strongly correlated with kurtosis, size, skewness, and spatial autocorrelation. 

CONTAG, LSI, and maximum elevation had more evenly balanced correlations with both 

axes. 

As hypothesized, elevation was the dominant source of variability along the lowest 

dimension or axis of state space. The boundary conditions of barrier island dunes in this 

state space ranged from a high elevation site on Cape Canaveral in Florida to a low 

elevation site on Ship Shoal in Virginia.  The FRAGSTATS indices that contributed to the 

separation of sites along the first axis were dominantly patch configuration metrics (AI, 

LPI, SHAPE_AM) and to a lesser extent, compositional metrics (SIDI). Along this axis, 

the aggregation and size of patches increased toward more positive axis values. Elevation 

patches were also lower, more convoluted, and less diverse in this axis direction. Toward 

negative axis values, there were more elevational patch types and more evenness in their 

number across the dune landscape. Patch types were more uniformly represented and no 
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single patch type dominated. Response surface xR2 values were generally strong for all of 

these variables (Figure 4. 6). 

The distribution of sites along the second axis was associated with changes in 

kurtosis, skewness, spatial autocorrelation structure, and size. Response surface xR2 values 

were weaker for these higher dimensional variables (Figure 4. 7). Variability in these 

topographic metrics along the second axis was greatest around intermediate elevations on 

the first axis. These intermediate elevations are approximately 0.45 to 0.55 in Z-score value 

or between 1.39 and 1.44 meters in absolute value. Dune topographies falling within these 

intermediate elevations differed strongly in these continuous surface metrics. For example, 

the wave-dominated islands of Assateague (Virginia and Maryland) and South Core Banks 

(North Carolina) tended to have mean elevations close to those of the tide-dominated sea 

islands of Sapelo (Georgia) and Kiawah (South Carolina). However, these two sets of 

islands differed in the kurtosis, skewness, size, and spatial autocorrelation structure of 

topography and elevation. Similarly, topographies on Hog and Parramore islands occupy a 

similar elevational range along the first axis, but they too differ in these higher dimension 

spatial properties along the second axis. 

For Sapelo, Kiawah, and Parramore islands, dune topographies tended to have a 

platykurtic (less peaked) distribution of elevations that are skewed toward larger positive 

elevation values (the long tail is in the direction of a few low elevations). Their dune 

topographies were also expressed across a relatively small plot size or habitat extent. On 

Assateague Island, South Core Banks, and Hog Island, dune elevations are more leptokurtic 

(peaked) and skewed toward small elevations (the long tail is in the direction of a few high 

elevations). Topography was also expressed across larger habitat extents. PCoA extracted 
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a single dominant axis of variability in the directional correlograms (Figure 4. 8). In the 

PCoA scatterplot, elevation correlations changed from strongly positive to negative with 

increasing distance lags at smaller, more negative axis values. Elevation correlations 

remained zero or slightly negative with increasing distance lags toward more positive 

values. In the final state space, this trend in autocorrelation along the second NMDS axis 

corresponded to islands with zero to slightly negative autocorrelations at increasing 

distance lag toward the bottom of state space and islands with more strongly negative 

correlations at the top of the state space (Figure 4. 9). 

CONTAG, LSI, and maximum elevation were correlated with both NMDS axes of 

topographic state space. This implies that they were collinear with elevational properties 

along the first axis and with the higher dimensional spatial metrics along the second axis. 

Response curves (Figure 4. 10) indicated that the equivalent values for these topographic 

metrics could develop at different elevations. For example, the contour lines for CONTAG 

indicate that topographic contagion decreases from bottom right to the upper left of state 

space. Based on island centroid position, the higher wave-dominated islands of South Core 

Banks and Assateague have CONTAG values like lower-lying Parramore Island. 

Contagion on a higher island may be equivalent to contagion on a low-lying island that is 

more frequently overwashed and erosional because of greater biogeomorphic modulation 

and reinforcement of overwash exposure on the higher island. Conversely, higher elevation 

islands Sapelo and Kiawah have lower contagion values, but these are similar to those of a 

higher island, Cape Canaveral in Florida. In this case, the lower island has a contagion 

value like a higher island. This may also be due to the increased resistance to overwash 
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promoted by biogeomorphic properties on Sapelo and Kiawah despite an overall lower 

mean elevation. 

Contours for LSI ran from the upper left to the lower right. In this direction, 

topography becomes more regular. Landscape regularity was also similar at different 

elevations. For example, Sapelo was higher in elevation than Metompkin, but they have 

the same LSI values for topographic regularity. Convergence in this property developed 

even though Metompkin is much more erosional and storm-exposed than Sapelo. 

Similarly, Kiawah was higher than Hog Island, but these two islands also had the 

propensity for regularity in topography. The differences in elevation given similar values 

for regularity can also be explained through changes in the relative importance of 

geomorphic and biogeomorphic interactions. Regularity in landscape shape is a 

consequence of homogenizing geomorphic processes associated with storm exposure and 

erosion on Metompkin and Hog Island. On Sapelo and Kiawah, regularity in topography 

may be more related to biogeomorphic interactions that also create regularity. Higher 

elevations and less frequent overwash disturbance may promote more regular shore-

parallel dune features on these two islands. 

Maximum elevation was also collinear with both axes. Similar maximum 

elevations can occur in different mean elevational conditions. Lower-lying islands may 

have equivalent maximum elevations due to erosional remnants. On higher islands these 

maximums may occur through biogeomorphic processes of dune-building.  
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4.5 Discussion 

The first axis defined the geomorphic boundary conditions of state space, from high 

islands (Cape Canaveral, Florida) to low erosional islands (Ship Shoal, Virginia). However, 

the correspondence of mean island elevation and position along this resistance axis in 

topographic state space masked the considerable variability within each individual island. 

The variability in site position in state space for each island suggests that resistance and 

consequently resilience may vary significantly within an individual island. That island 

centroids versus site positions were more reflective of resilience properties follows 

Sankaran et al. (2018). They argue that this coarsening is necessary to detect resilience 

properties when spatial properties of resilience are assessed. 

Elevation, as a resistance variable, was strongly correlated with the first axis. The 

dominance of configuration or shape-oriented FRAGSTATS indices as correlates of the 

first axis also suggests a greater importance of geomorphic processes for the first axis, 

which was essentially an elevational continuum in state space. However, this low 

dimension also marks a transition in process-form states, from aggradation and positive 

relief at high elevations to erosion and inverted (or negative) relief that can develop at low 

elevations. Switching between aggradational and erosional conditions may not necessarily 

be threshold-driven but more gradual in nature given that aggradational and erosional 

conditions can change over relatively small geographic distances along an island. This first 

axis may represent the resistance-associated states postulated by Durán and Moore (2015) 

for the generally low barrier islands of Virginia. Using only basic elevational measures, 

they presented model and observational evidence for transitions between a high dune state 

to a low dune state along barrier islands of the Virginia coast. Once elevations go below a 
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certain minimum threshold of elevation, a site may become locked into a low resistance 

state. Once above this elevation, deposition and constructive dune-building processes can 

augment coastal resistance. Vegetation plays a role in this transition, but may be mainly as 

an anchoring mechanism rather than any landscape integration of biogeomorphic 

feedbacks. 

As expected, the second axis of state space was correlated with higher dimensional 

topographic metrics reflective of landscape-scale biogeomorphic structure and higher 

resilience. These metrics (plot size, spatial autocorrelation, skewness and kurtosis) were 

weaker and contributed less to the overall variability of topography in state space. As also 

postulated, islands with the same mean elevations along the middle of the first axis (i.e., 

intermediate elevations) differed the most in these spatial landscape-extent topographic 

properties and were more representative of stability domain models of barrier dune 

resilience. Within the Georgia Bight region of state space, South Core Banks and Sapelo, 

islands that have been affiliated with stability domain dynamics (Stallins 2005) were 

positioned at opposite ends of the second axis. Even though they have the same mean 

elevations, they have very different measures of spatial autocorrelation structure, 

skewness, and kurtosis. Changes in these properties may be associated with more abrupt 

threshold transitions given that these properties develop across the entire landscape. 

Based on their position in state space, Hog and Parramore islands can be validated 

as approximations of the stability domain dynamics associated with Sapelo and South Core 

Banks.  Parramore has been described as a low island with frequent overwash. Hog is often 

defined as having more properties that resist disturbance (Wolner et al. 2013; Brantley et 

al. 2014). These two Virginia Barrier Islands had a similar mean elevational position along 
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the first axis. Island centroids also separated along the second axis as a function of their 

more spatially-explicit, landscape-scale properties. However, given that the distance 

separating them along the second axis is small compared to the distance between Sapelo 

and South Core Banks, transitions states represented by Hog and Parramore may not be 

threshold-driven.  

Based on these interpretations of the state space structure, two types of transitions 

may develop on barrier islands. Gradual transitions may manifest where elevation 

determines resistance and the propensity for the persistence of a high, aggradational state 

or a low, erosional state. When resilience is more spatially structured at intermediate 

elevations, threshold changes between biogeomorphic stability domains may develop. This 

suggests that depending upon what types of spatial patterns are assessed and how they are 

measured, different kinds of transitions will be evident. It also suggests that it may be more 

difficult to anticipate the nature of transitions along barrier coasts. Greater attention to 

landscape attributes of topography and adoption of a cross-scaling approach may provide 

more evidence for what kinds of transitions to anticipate. However, the state space 

approach employed in this study showed how to distinguish the relative importance of 

geomorphic and biogeomorphic contribution to resilience properties. Where different 

elevations expressed similar values for elevational patch shape and size in state space, it 

was possible to infer the extent they were derived from geomorphic or biogeomorphic 

processes. Equivalent levels of topographic contagion or regularity can be produced as a 

consequence of geomorphic processes at high and low elevations and through 

biogeomorphic interactions at more intermediate elevations.  
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A region of bistability or dynamical instability may develop in the center of 

topographic state space, based on two-dimensional solution derived in this study. Here, 

elevation is not sufficient to be either a high or low state in the sense of Duran and Moore 

(2015). Nor are the landscape spatial properties reinforced through biogeomorphic 

feedbacks characteristic of the stability domain model of barrier dune resilience (Stallins 

2005). More formal probabilistic measures of occupancy in region of state space could 

provide more evidence for regions that are dynamically resilient or unfavorable (Figure 4. 

11). Field observations could verify if these sites have more variability in vegetation and 

topography over time.  

4.6 Conclusion  

 The cross-scale data modeling approach used to construct topographic state space 

distinguished geomorphic and biogeomorphic properties of barrier island dunes. 

Geomorphic boundary conditions were expressed along the first axis. These conditions 

mark the extremes of elevation and the contrasts in resistance of sandy barrier shores. As 

conditions along this elevational continuum switch from aggradational to erosional, 

elevation may be associated with gradual transitions in state. Spatial variables are less 

important for this expression of resistance. At intermediate elevations, where resistance 

was neither at its highest or lowest, island topographies were the most differentiated in 

landscape-scale metrics. Regions of state space were identified along this second axis that 

potentially correspond to high resilience disturbance-resisting and disturbance-reinforcing 

stability domains. These domains are more organized around biogeomorphic interactions 

of dune landforms and vegetation across the continuous surface of the landscape. The 

methodology from this study offers a theoretical base to discuss the similar transition from 
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reflective to dissipative beach states (Short and Hesp 1982; Sherman and Bauer 1993). 

Changes in state along the second axis may be more threshold-driven. However, the state 

space constructed in this study reflected the central tendency of island topographies. Thus, 

these resilience properties and the relative dominance of geomorphic and biogeomorphic 

processes associated with transitions in resistance and resilience should not be considered 

applicable to an entire island. For a given island, propensities exist for certain kinds of 

transitions and resilience properties to predominate over others.  

 In sum, the major contribution of this study is that it highlights the importance of 

using different representations of topography if the goal is to compare their dynamical 

properties or resistance and resilience. What variables are used to define topography will 

shape what resilience properties are detectable and what kinds of transitions may occur.  

Using a cross-scale state space approach created regions of state space in which the 

distinction between the geomorphic and biogeomorphic contributions to resistance and 

resilience could be made. Future studies may find it useful to apply these kinds of state 

space approaches, as they could promote more judicious field site selections for conducting 

experiments to elucidate ecological mechanisms (Dilts et al. 2010). For example, it would 

be expected that the biogeomorphic mechanisms leading to domain states would be more 

visible by comparing the topographies among certain pairs of islands, like Assateauge and 

Kiawah or Sapelo and South Core Banks, than others such as Hog and Metompkin. These 

two Virginia Barrier Islands likely exhibit geomorphic transitions with more passive roles 

for vegetation and less landscape-scale integration of biogeomorphic feedbacks.  

 The approach in this study has been exploratory in that it raises questions as much 

as it tests and comments upon older ones. Exploratory, data-driven abductive approaches 
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like this study are increasingly used in tandem with the traditional inductive and deductive 

frameworks of ecology (Kell and Oliver 2004; Sagarin and Pauchard 2010).  
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Table 4. 1 Cross-scale data ontologies and levels of measurement. 
 

Topographic 
variable 

Geomorphic 
relevance 

Geometry Variables (Software) 

    

Descriptive 
statistics 

Position of land 
relative to marine 
inputs 

Global summary; 
aggregate mean 
field measures  

Absolute values for mean, 
maximum elevation, 25th, 50th, 75th 
percentiles (GS+) 

Patch metrics Formation of dune 
landforms  

Polygons of 
elevation intervals 

Relativized indices of patch shape, 
area, diversity (FRAGSTATS) 

Continuum 
metrics 

Spatial landscape 
structure 

Gradients Moran’s I in directional 
correlograms; plot size; skewness 
and kurtosis of elevation (GS+) 
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Table 4. 2 Summary of FRAGSTATS landscape indices utilized in the study. 
 

Index Description Interpretation 

AI Aggregation of patches Higher AI implies more aggregated 
patch distribution within the plot 

CONTAG Aggregation based on pixel 
adjacencies 

Higher CONTAG implies more 
aggregated patch distribution within the 
plot 

IJI Aggregation of patches Higher IJI implies more equal adjacency 
of all other patch types within the plot 
(i.e., maximum interspersion and 
juxtaposition) 

LPI Area percentage of the largest 
patch within the plot 

Higher LPI implies higher dominance of 
a single patch within the plot 

LSI Shape regularity of patches 
based on perimeter 

Higher LSI implies increasing landscape 
shape irregularity 

PAFRAC Shape regularity based on 
fractal perimeter-area 
relationships 

Higher PAFRAC implies that all patch 
shapes within a plot tend to be 
convoluted 

SHAPE_AM Shape regularity of patches 
based on perimeter 

Higher SHAPE_AM implies more 
irregular patch shape 

SIDI Landscape patch diversity Higher SIDI implied higher patch 
richness and more equitable patch 
distribution with the plot 
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Table 4. 3 Pearson’s correlation coefficients for NMDS axis position and original 
variables. 
 

Variable  Axis 1 Axis 2 

Low dimension 
 

 

Mean -0.89  -0.27  

25th percentile -0.70  -0.40  

50th percentile -0.86  -0.19  

75th percentile -0.92  -0.14  

AI 0.87  0.07  

LPI 0.73  0.10  

SHAPE_AM 0.78  -0.25  

SIDI -0.85  -0.01  

IJI -0.71  0.37  

PAFRAC -0.68  -0.16  
   

High dimension 
  

Skewness 0.15  -0.54  

Kurtosis 0.40  -0.72  

Autocorrelation  0.12  -0.61  

Plot size 0.32  -0.74  
   

Both dimensions 
  

CONTAG 0.80  -0.50  

LSI -0.49  -0.70  

Maximum -0.67  -0.58  
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Figure 4. 1 Examples of state space in other studies. (A) Morphospace of tafoni occurrence 
(Inkpen and Hall 2016); (B) 3D phase-space of dune landscapes (Baas and Nield 2010); 
(C) Dimensionality of biodiversity measure (Stevens and Tello 2018); (D) Avian sensory 
color space (Chartier et al. 2014); (E) Dimensionality of ecological stability (Donohue et 
al. 2013); (F) Three dimensional phase of stability (Barros et al. 2016); (G) Anatomically 
modern humans and archaic forms of Homo in shape space (Gunz 2009). 
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Figure 4. 2 How patch structure is derived from a more continuous elevational surface 
from Wu et al. (2017).  Elevation intervals in this study were reclassified from centimeter 
interval to decimeter intervals. 
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Figure 4. 3 DEMs illustrating the contrasts in landscape indices of patch elevational 
structure among island sites. The first value is the original FRAGSTATS index value and 
the second is its equivalent Z-score value. 
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Figure 4. 4 Six Moran’s I values were sampled from the directional correlograms and 
ordinated using PCoA to distill spatial autocorrelation structure into individual metrics. 
Sampling to obtain these six observations follows these instructions:  (a) Find first non-
zero Moran’s I value (Point 2), (b) Find halfway point between Point 2 and Start (Point 1). 
(c) Find last value (Point 6), (d) Find midpoint between Point 2 and Point 6 (Point 4), (e) 
Find midpoint between Point 2 and Point 4 (Point 3), (f) Find halfway point between Point 
4 and Point 6 (Point 5). 
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Figure 4. 5 Topographic state space. Cross symbols represent centroids for all the plots of 
an individual island. Lines are convex hulls connecting the plots of the island. Abbreviation 
list: Assa: Assateague Island, Cedar: Cedar Island; Hog: Hog Island; Meto: Metompkin 
Island; Par: Parramore Island, Ship: Ship Shoal Island; Wreck: Wreck Island; Bull: Bull 
Island; Canav: Canaveral Island; Kiawah: Kiawah Island; Sapelo: Sapelo Island; Score: 
South Core Banks. 
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Figure 4. 6 Island centroids and response surfaces for mean elevation, AI, LPI, 
SHAPE_AM, and SIDI. AI is often correlated with IJI. SHAPE_AM and PAFRAC also 
measure similar properties. These two variables are not shown.  Mean site mean elevations: 
Assateague Island, 1.64 m; Metompkin Island, 0.99 m; Cedar Island, 0.75 m; Parramore 
Island, 0.90 m; Hog Island, 1.03 m; Wreck Island, 0.74 m; and Ship Shoal Island, 0.74 m; 
South Core Banks, 1.65 m; Bull Island, 1.03 m; Kiawah Island, 1.45 m; Sapelo Island, 1.44 
m, and Canaveral Island, 2.22 m. 
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Figure 4. 7 Island centroids and response surfaces for kurtosis, skewness, spatial 
autocorrelation structure, and size. 
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Figure 4. 8 PCoA scatterplot for the combined dataset, showing variability in the directional 
spatial autocorrelation structure among island plots. 

 

Figure 4. 9 Directional correlograms for each site plotted in NMDS state space. 
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Figure 4. 10 Island centroids and response surfaces for CONTAG, LSI, and maximum 
elevation. 
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Figure 4. 11 Gray scale convex hulls. Darker shades indicate more frequently observed 
topographies. Light areas indicate infrequently observed topographies. 
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Chapter 5. Conclusion 

The studies of barrier island dune biogeomorphic recovery and response dynamical 

states (Stallins, 2005; Wolner et al. 2013; Brantley et al. 2014; Durán and Moore 2015; 

Goldstein and Moore 2016) have relied on numerical simulations and field observations. 

These studies were also developed in two different regions, the Georgia Bight and the 

Virginia coast. A relatively small number of islands were used to advance the concept of 

dune stability domains of Stallins (2005) in the Georgia Bight and high and low island dune 

states (Durán and Moore 2015) in Virginia. These models of biogeomorphic processes 

describe organizational states of barrier dunes that exhibit resistance and resilience. Even 

though dune topography plays a large role in these models of dune response and recovery, 

topographic characterization has been based on a few elevational variables. Levels of 

resistance and resilience are assigned to topographies, but the basis for ascribing these two 

properties to stretches of coast lacks a form theoretical and methodological basis. In 

addition, stability domain dynamics were associated with island morphologies. High and 

low island states, by contrast, rely only on elevational properties. More rigorous 

comparisons of the topography across these regions and among the islands that comprise 

them would provide information about the validity of generalizations that have been made 

about resilience properties, especially if resilience properties could be quantified and linked 

to topography in a robust manner. I have anchored my approach in resilience theory to 

compare topographies and resilience properties. Through the modeling of cross-scale 

resilience, multiple representations of dune topography were systematically compared, and 

these topographies were linked to their resilience properties. State space, and the structure 

of this cross-scaled data, provided a means to articulate and tests hypotheses regarding 
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differences in topography and their resilience properties among selected barrier islands of 

the Georgia Bight and Virginia.  

Three sets of questions were posed in three analytical chapters. In my first 

analytical chapter, I examined how dune topography varies according to island 

morphologies of the Virginia coast and found that local controls also important in shaping 

the dune topography. In my second analytical chapter, I documented how two different 

barrier coast regions, the Georgia Bight and the Virginia coast, differ in topography and in 

their resilience properties. Dimensionality and the loading of topographic metrics on these 

axes in state space were utilized to assess resilience prosperities. Dimensionality and the 

loading of topographic metrics on these axes in state space were utilized to assess resilience 

prosperities. Compared with the Virginia barrier dune system, the Georgia Bight one is 

more resilient and has well-developed spatial structuring in dune topography. In my third 

analytical chapter, I discussed the structure of the topographic state space to provide more 

evidence that these axes represent biogeomorphic processes affiliated with resistance and 

resilience. Similar dune topographic features of contagion or regularity were not 

necessarily shaped by the same processes; it is matter in the difference in resistance and 

resilience. 

5.1 Dune topography and island morphologies along the Virginia coast 

Along the Virginia coast, dune topography was shown to be associated with island 

morphology. Classification of morphological compartments of the Virginia Barrier Islands 

by Leatherman (1982), Rice and Leatherman (1983), Deaton et al. (2017) and Haluska 

(2017) paralleled the way in which dune topography varied, as inferred from the position 
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of island topographies in state space. However, local within-island variability of erosion 

and deposition does play a role in where topographies for an island plotted in state space. 

Human engineering of the coast on two islands, Assateague Island and Wallops Island, 

altered the topography of study sites on Metompkin and Cedar islands. Sites from 

Metompkin and Cedar plotted among sites from the lowest elevational islands in state space 

(Wreck and Ship Shoal) and farther from the morphological compartment adjacent to them 

along the coast (Assateague). Data from Haluska (2017) validated that the variability in 

topography along an individual island could be attributed to shifts in shoreline accretion 

and erosion alongshore. Although dune topography has a propensity to track with island 

morphology, within-island variability in erosion and accretion can override some of the 

affinities of topography with island morphological context. In general, the tide-dominated 

barrier islands, even with their smaller size, had a greater divergence of topography than 

the only wave-dominated island morphology in the study (Assateague Island). This finding 

is in agreement with Mulhern et al. (2017). They observed that the morphology of tide-

dominated islands tends to be more variable than that of wave-dominated islands. In part, 

the smaller size of the tide-dominated barrier islands of the Virginia coast may make them 

more sensitive to changes in erosion and accretion along their length. The closer proximity 

to tidal inlets, which serve as sinks and sources of sediment, may create more frequent 

changes in adjacent topographies. 

5.2 Comparing topography and resilience across two barrier coast regions 

This chapter aimed to compare topographies of the Virginia coast with those from 

the Georgia Bight, and to examine the two existing biogeomorphic models of barrier island 

resilience properties. These models do not quantify resilience properties nor link them to 
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topographic variability along a large geographic stretch of coast. Cross-scale data modeling 

of resilience and topography in state space provided the means to compare topographies 

and associate them with resilience properties in a systematic, quantitative manner. A 

common critique of exploratory, descriptive studies in geography is the lack of controls. 

However, a replicate sampling, one in each regional data set, confirmed that the sampling 

strategy employed was not overly sensitive to sample bias or to the point in time in which 

the LiDAR data was collected. Parramore Island was sampled twice, each time by different 

investigators independently, each using a different LiDAR data set (2012 and 2014). The 

topographies produced in these separate samplings fell near each other in state space. In 

general, the cross-scale modeling of dune topographic state space and its visualization as 

topographic state space was in agreement with the known contrasts in nearshore conditions 

that define the Georgia Bight and the Virginia coast. The dimensionality of data and the 

trends in how low-dimensional resistance metrics and high dimensional resilience metrics 

loaded on the axes of the state space provided the quantitative evidence for my findings. 

5.2.1 Topographic differences between Virginia and the Georgia Bight 

Only two dimensions were needed to define the state space of the predominantly 

erosional, low-relief Virginia islands. Elevation was a major influence on topography, but 

the correlations of all the topographic metrics with state space axis positions were weaker 

and exhibited greater multicollinearity. This suggested that topography across all scales 

appears to be more directly coupled to exogenous events such as overwash. In contrast, the 

Georgia Bight state space had three dimensions and less multicollinearity. Axis 

correlations were stronger and tended to distributed across all three axes. Spatial structuring 

was more strongly developed. Patch and gradient metrics loaded more strongly on higher 
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dimensional axes and were less collinear with elevation. This suggested a greater role for 

endogenous biogeomorphic development. Topography is certainly subject to storm inputs 

in the Georgia Bight, but because these islands are not as low and erosional as the Virginia 

coast, dune vegetation may contribute more to landscape-extent topography. In Virginia, 

dune vegetation may be limited to more of an anchoring function, with less propensity for 

biogeomorphic feedbacks to be integrated into landscape-extent topographic structure. 

The Virginia island sites occupied a mostly separate area from the Georgia Bight in 

the combined state space. Dunes on the Virginia Barrier Islands are lower and vary less in 

elevation over large horizontal distances. Landforms are more curvilinear in shape. The 

Georgia Bight topographies exhibited more rectilinear shore-parallel landforms. 

Topography was higher and more variable over shorter horizontal distances. The two 

regions are largely defined by elevational differences expressed along the first axis of the 

combined state space. Islands from the Georgia Bight were more strongly differentiated 

along the second axis of combined state space. Topographic differences along the second 

axis tracked contrasts in the kurtosis or peakedness of elevation observations across their 

surface, the size of each site, and in the variability of elevation within sites. Because the 

Georgia Bight islands occurred along a broader length of the second axis, they can be 

considered more strongly structured by these spatially explicit higher-dimension properties 

than the Virginia Barrier Islands.  

The distinctiveness of the Virginia Barrier Islands in state space was attributed to 

the rapid rates of relative sea level rise along the Virginia coast (Leatherman 1982; 

Sallenger et al. 2012; Haluska 2017; Deaton et al. 2017), which may in part also reflect the 

differences between regions in sediment availability. Their distinctiveness may also be a 
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consequence of the impacts of Hurricane Sandy in 2012. However, Hapke et al. (2016) 

found that the response to Sandy at Fire Island, New York was not notable or 

distinguishable from several other large storms of the prior decade. Island morphology, as 

shaped by complex nearshore patterns of wave and tidal energy. Island morphology, as 

shaped by complex nearshore patterns of wave and tidal energy (Hayes 1979; Davis and 

Hayes 1984; Hayes 1994; Mulhern et al. 2017), was not the dominant influence on dune 

topography in the combined state space, was not the dominant influence on dune 

topography in the combined state space. Tide-dominated island morphologies from 

Virginia and the Georgia Bight had topographies that fell all along the first axis. By 

contrast, well-structured topographic trends based on island morphology developed for the 

second axis and mostly for the islands in the Georgia Bight.  

5.2.2 Resilience properties and the compatibility of existing dune dynamical models 

The greater length of the first axis and its affinity with elevation suggests that 

resistance is a dominant influence on the structure of the combined state space. Resistance 

along the first and major axis of topographic state space may be more a consequence of the 

direct anchoring effects of vegetation, and less from the biogeomorphic feedbacks that can 

develop and integrate spatially across landscape extents described in Stallins (2005). These 

anchoring effects likely confer some resilience along the first axis of state space. We 

posited that the first axis of the state space derived in this study captures aspects of Durán 

and Moore’s (2015) model of low and high island states developed for the low relief 

Virginia Barrier Islands. 
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Metrics indicative of landscape-extent biogeomorphic resilience were correlated 

with the second axis, which explained less variance in the data set than the first axis. Thus, 

resilience can be considered a less dominant dimension of topographic state space than 

resistance. Topographies distributed along the second axis spanned mixed-energy, tide-

dominated barrier island morphologies to those that were more wave-dominated. Thus, the 

second axis may better represent the potentially resilience-maximizing stability domains 

affiliated with island morphology described by Stallins (2005). Resilience is higher at 

either end of the second axis, and can be attributed to the landscape-extent biogeomorphic 

feedbacks postulated for the stability domain dynamics. The resilience associated with 

island morphology along the second axis developed only at intermediate elevations along 

the middle of this first axis. 

In short, based on the elevation variable only, Duran and Moore's (2015) model 

presented the resistance variation from high islands to low islands in Virginia. Within the 

intermediate elevations, bistability occurred; however, landscape-extent biogeomorphic 

resilience proposed by Stallins (2005) based on field observations in the Georgia Bight was 

not considered. My findings from state space integrate these two models to fully consider 

resilience properties across a large geographic area from Virginia to Florida and link the 

biogeomorphic resilience to dune topographic features by the cross-scale data modeling of 

dune topography. Through this dissertation, I have identified common ground between the 

two existing models of barrier island dune states. They illuminate different, but 

complementary, properties of resilience. 
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5.3 Using response curves to delineate resistance and resilience 

The goal in this chapter was to use differences in how dune topographic metrics 

correlated with the axes of state space to convey that these axes capture geomorphic and 

biogeomorphic processes related to resilience. Dune topographic metrics correlated with 

the first axis demarcated the geomorphic boundary conditions for barrier dunes. These 

conditions define the extremes of elevation and the range of resistance for the barrier island 

sites included in this study. Conditions along this elevational continuum switch, likely 

gradually, from aggradational to erosional. Dune topographic metrics correlated the second 

axis demarcated resilience organized around biogeomorphic interactions of dune 

landforms and vegetation across the continuous surface of the landscape.  

The dune topographic metrics that were correlated with both axes that were more 

useful to validate the interpretation of the first axis as geomorphic and the second axis as 

biogeomorphic. The generally higher elevation islands of South Core Banks and 

Assateague had topographic contagion indices like lower-lying Parramore Island in 

Virginia. Contagion on these higher islands equivalent to contagion on a low-lying, more 

frequently overwashed erosional island may be due to greater biogeomorphic modification 

and reinforcement of overwash exposure on the higher islands. In other words, dune plants 

on South Core and Assateague augment exposure to overwash to the extent the topography 

has a contagion value like a lower island. Conversely, the islands of Sapelo and Kiawah 

had contagion values like those on a higher island, Cape Canaveral in Florida. In this case, 

the lower islands of Sapelo and Kiawah may have a contagion value like a higher island 

due to the increased resistance to overwash promoted by biogeomorphic processes on 

Sapelo and Kiawah. Vegetation-mediated dune and swale topographies may confer 
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resistance such that a lower, potentially more exposed island has reduced contagion values 

as on a higher island. 

Topographic regularity was another variable that permits inference of the 

geomorphic and biogeomorphic components of state space. Sapelo had the same level of 

topographic regularity as a lower, frequently overwash island, Metompkin Island in 

Virginia. Similarly, Kiawah Island in South Carolina was higher than Hog Island, but these 

two islands also had the same levels of topographic regularity. Regularity in topography is 

a consequence of homogenizing geomorphic processes associated with storm exposure and 

erosion on Metompkin and Hog Island. On Sapelo and Kiawah, regularity in topography 

may be more related to biogeomorphic interactions that create regularity. Higher elevations 

and less frequent overwash disturbance on Sapelo and Kiawah may promote more regular 

shore-parallel landforms.   

Like contagion and topographic regularity, maximum elevation was also correlated 

with both axes and could also be used to confirm the geomorphic and biogeomorphic 

components of state space. Similar maximum elevations developed on islands with 

different mean elevations. Lower-lying islands may have had equivalent maximum 

elevations to high islands because of erosional dune remnants. Due to pervasive erosion 

and frequent overwash on low islands, an erosional highs may remain in the landscape. A 

negative or inverted topography may develop, in which vegetation plays mostly an 

anchoring role, particularly at high elevations. On higher islands these maximums may 

occur through more aggradational biogeomorphic feedbacks that result in high positive 

relief. 
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5.4 Broader implications 

Several findings of this dissertation have broader implications. First, resistance, 

rather than resilience, is the more dominant property structuring the dynamic responses of 

barrier dunes to high water events. Yet quantifying resilience properties for coastal dunes 

may be best inferred through comparison and contrast rather than by attempting to attach 

a level or resistance or resilience to a local site. Considerable topographic variability, and 

thus variability in resilience properties, were expressed alongshore of all the islands. 

Resistance and resilience is an emergent property, a propensity rather than an at a point 

property.  

Another broader implication is that it is important to use different representations 

of topography if the goal is to compare topographies and infer resistance and resilience 

from them. What variables are used to define topography will shape what resilience 

properties are observed.  By making comparisons of topography from metrics derived from 

these representations that associate with resistance and resilience, I posited that the two 

models of barrier island dune dynamical states (Stallins 2005; Durán and Moore 2015) 

capture different but complementary resilience properties. Both incorporate resistance, but 

they differ in how they ascribe resilience. Stability domains represent more of the 

landscape spatial processes, which are difficult to model in detail. In high and low state 

models, resilience is more correlated with resistance. The anchoring effects of vegetation 

and dune height is the primary topographic criteria.   

The findings of this study are limited in that only topography was sampled, and 

vegetation was not, even though topography and vegetation are tightly coupled on coastal 

dunes. More experimentation is necessary to distill the topographic metrics that would 
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optimize the modeling of topographic state space to infer its resilience properties.  Space 

was emphasized over time, an important dimension for understanding the combined effects 

of sea-level rise and storm exposures. Stutz and Pilkey (2011) identified approximately 

2100 barrier islands in their global inventory. The addition of more dune topographies from 

other islands, particularly those from Texas and the northern Gulf of Mexico, or those of 

the German Bight, would be the next step in the development of topographic state space. 

Using LiDAR data from different years for the same location would also contribute detail 

to state space. Nonetheless, the Virginia coast and especially the Georgia Bight exhibit a 

wide range of island morphologies. This study has provided some initial boundaries for 

barrier dune topographic state space. However, as a result of rising sea levels, coastal 

barrier dune topographies may already be converging upon a smaller region of state space, 

as has been recently observed for the Virginia islands (Zinnert et al. 2019). Tracking a large 

number of islands over time would provide a unified record of dune pattern and process 

and the responses that occur in response to rising sea levels and more frequent incursions 

of storm surge.  
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