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in ACS Applied Materials & Interfaces 2018, 10(25), pp 21365–21371.  

Paper II: Epitaxial lift-off of electrodeposited single-crystal gold foils for flexible 

electronics, found on pages 53 - 82, is published in Science, 2017, 355 (6330), pp 1203-

1206.  

Paper III: Electrodeposition of nanometer-thick epitaxial films of silver onto single-

crystal silicon wafers, founds on pages 83 - 102, is published in Journal of Material 

Chemistry C, 2019, 7 (24), pp 1720–1725.  
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ABSTRACT 

 

This research focuses on epitaxial electrodeposition of two coinage metals: Au and 

Ag thin films on the silicon surface and their applications in flexible electronics and energy 

conversion and storage. The first paper: Photoelectrochemistry of ultrathin, semi-

transparent, and catalytic gold films electrodeposited epitaxially onto n-silicon (111) 

describes the epitaxial electrodeposition of Au thin films on n-type Si using a simple 

HAuCl4 bath and the photoelectrochemical properties of the Au-Si junction barrier. The 

effect of the Au layer on the interfacial energetics as well as the stability of the 

photoelectrode as a function of the Au coverage/thickness is determined in a regenerative 

cell. The second paper: Epitaxial lift-off of electrodeposited single-crystal gold foils for 

flexible electronics shows a technique for epitaxial lift-off of Au foils as semi-transparent, 

flexible and single crystal-like substrates for flexible electronics. A Au thin film is first 

deposited on Si and then photooxidation is performed followed by a lift-off process. The 

Au foils exhibit a low sheet resistance down to 7 ohms per square and show only a 4% 

increase in resistance after 4000 bending cycles. A flexible organic light-emitting diode 

that was spin-coated on a Au foil exploited the transmittance and flexibility of the foil. The 

third paper: Electrodeposition of nanometer-thick epitaxial films of silver onto single-

crystal silicon wafers introduces the electrodeposition of epitaxial Ag thin films on n-type 

Si of three different low-index orientations from an acetate bath. A comparison of silver 

acetate electrolyte and cyanide electrolyte was also performed, showing advantages of the 

acetate bath over the cyanide bath for growth of epitaxial films of Ag on Si surfaces. 
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1. INTRODUCTION 

 

1.1. ELECTRODEPOSITION   

Electrodeposition (also known as electroplating) has been one of the most 

commonly used methods for material fabrication, thin film synthesis, surface treatment and 

decoration for more than a century.1–4 As a simple, inexpensive and sophisticated soft 

solution-based method, electrodeposition has the capability for tuning many properties of 

the deposited material including chemical composition, surface morphology, porosity, 

hardness, epitaxy, chirality, etc. simply by varying a few parameters such as temperature, 

solution pH, potential and current densities.5–11 This gives electrodeposition a great 

advantage over some traditional thin film synthesis methods such as physical vapor 

deposition (PVD), chemical vapor deposition (CVD), molecular beam epitaxy (MBE) and 

atomic layer deposition (ALD), which usually produce thin films with limited composition 

and features, as well as involve high temperature and high vacuum conditions and need 

expensive equipment.12–19 Moreover, combined with the Lithographie Galvanoformung 

Abformung (lithographic electroforming fabrication, LIGA) technique, electrodeposition 

could go one step beyond its conventional surface nature and provide a path to producing 

cheaper micro-electromechanical systems (MEMS) parts compared with current micro-

fabricating techniques, and provide more precise micro features compared with 3D printing 

fabrication.20–23 

A major application of electrodeposition is to produce a variety of metals and 

alloys, from simple metals such as Au, Cu and Ag to complicated alloys such as the Fe-

Co-Ni ternary alloy.24–30 The mechanism of metal deposition usually includes metal ion 
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reduction from higher oxidation states to zero oxidation state on the electrode surface and 

can be expressed as follows: 

Mn+ + ne- → M                                                       (1) 

However, electrodeposition is not confined to this category only. There are studies focused 

also on the electroforming of catalysts, semiconductors and metal oxides or ceramics.9,31–

33 The mechanism of electrodeposition of metal oxides or ceramics generally involves two 

steps: a charge transfer between the electrode and the electrochemically active species at 

given potential/current followed by a non-redox chemical reaction. Such mechanism is 

called an electrochemical-chemical (EC) mechanism. Two typical applications taking 

advantage of this process are the deposition of amphoteric metal oxides (e.g., ZnO) by 

generating either base or acid electrochemically at the electrode surface in a solution 

containing dissolved metal ion,7 and the deposition of multivalent metal oxides or 

hydroxides by generating unstable metal complex species by oxidizing or reducing a stable 

metal complex followed by a chemical precipitation of the final product (e.g., Fe3O4, Cu2O, 

Co3O4 and Co(OH)2].
33–36 Taking Fe3O4 as an example, this compound can be deposited 

by reducing Fe(III)-TEA (triethanolamine) complex ion in an alkaline solution: 

Fe(TEA)3+ + e- → Fe(TEA)2+                                           (2) 

Fe(TEA)3+ +8OH- + 2Fe(TEA) 2+ → Fe3O4 + 3TEA + 4H2O             (3) 

In this dissertation, discussion will mainly focus on the electrodeposition of two 

noble metals, gold (Au) and silver (Ag) on a special surface – silicon (Si).  

1.1.1. Electrodeposition of Au on Si.  Besides the demands of decoration, Au 

electrodeposition has become more and more devoted to the electronics industry and 

specific surface science and technologies since the 1970’s.37–40 A general electrochemical 



 

 

3 

reaction of Au deposition can be written as: 

Au3+ + 3e- → Au, E0 = 1.498 V vs. NHE                                   (4) 

As an industrial standard process, cyanide and sulfite Au plating baths are most frequently 

used as electrolyte solutions for Au deposition. These solutions usually generate smooth, 

ductile and bright Au deposits with low stress.41 However, most studies and applications 

based on these methods are still performed on metal surfaces, and are not deposited 

epitaxially (the importance of being epitaxial will be discussed later). Allongue and co-

workers pioneered the deposition of epitaxial metals on semiconductors by depositing an 

ultra-thin and smooth layer of Au on miscut Si (111) surface using very negative deposition 

potentials in a solution containing very dilute HAuCl4.
24 Switzer’s group further developed 

this method and had brought it to a new level: An ultra-thin epitaxial Au layer was 

deposited onto Si with three different orientations of (111), (110) and (100) using a solution 

containing the same Au salt. These Au on Si samples can be used as a proxy for single-

crystal Au, and thin Au deposited on n-Si(111) can be further used as photoanodes for 

photoelectrochemical regenerative cells.25,42 Furthermore, a lift-off process was developed 

for the thin Au layer to produce a single-crystal Au foil for flexible electronics.43 

Electrodeposition can be performed on any conductive or semiconductive surfaces. 

However the Si surface is a special semiconductive surface that requires additional 

attention. The active chemical nature of this surface causes Si always to develop a 

passivating thin native oxide layer. Thus, the pretreatment of Si surfaces before 

electrodeposition is crucial to the whole process. A 5% hydrofluoric acid (HF) solution is 

used to etch the Si surface for 30 s to remove the native oxide layer, followed by soaking 

in hot water (85 °C or above) for 15 min and an additional 10s 5% HF etching step to form 
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a hydrogen-terminated layer. This layer is capable to protect the Si surface from O2 

oxidation for a few hours and makes subsequent epitaxial deposition feasible. Besides 

surface treatment, the back contact is also important, especially for those Si with low 

doping densities, or so called non-degenerate Si. A low work function metal must be 

applied to the back of n-Si to form an ohmic contact. This is usually achieved by sputtering 

a thin layer of Al or by brush-painting an indium-gallium eutectic alloy. A Ag wire along 

with Ag paste is used to form the electrical contact and silicone paste sealing is used to 

insulate the backside of the sample. 

A plating solution containing 0.1 mM HAuCl4, 0.1 M K2SO4, 1 mM KCl and 1 mM 

H2SO4 is used in the electrodeposition process of Au on Si, and the pH of the solution is 

adjusted to 3 by HCl. A pre-polarizing process with a constant potential of -1.9 V vs. satd. 

Ag/AgCl is applied while depositing. The pre-polarizing step is carried out to prevent 

oxidation of Si surface when it is submerged into the solution and this negative potential is 

not only to prevent the Si oxidation (it has about a 0.62 V overpotential for the reduction 

reaction of SiO2 to Si) but also to involve the hydrogen evolution reaction (HER) which 

serves as surface agitation and increases the surface smoothness of deposited Au layer. The 

deposition time varies from 10 s to 30 min based on the desired thickness. A Au coil is 

used as the counter electrode and a stirred solution with 200 rpm is used during the 

deposition. The detail of deposited epitaxial Au layer on Si serving as photoelectrodes or 

being lifted-off as substrates for flexible electronics will be discussed later in this 

introduction and can be found in Paper I and Paper III. 

1.1.2. Electrodeposition of Ag on Si.  Ag is one of the most important metals in 

the electronic industry and it has the lowest electrical resistance and outstanding optical 
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properties. Research has shown that Ag thin films/nanostructures are ideal for fabrication 

of plasmonic devices, surface enhanced Raman scattering substrates, surface catalysts and 

highly selective absorbers/emitters.44–49 Conventional Ag electrodeposition requires 

cyanide as a complexing agent to produce smooth, dense and dendrite-free deposits, and 

have been developed over the past hundred years.3 A general electrochemical equation of 

this process can be written as: 

Ag(CN)2
- + e- → Ag + 2CN-                                          (5) 

The cyanide electrolyte bath however, is known to be toxic and harmful to the environment. 

There have been several non-cyanide Ag deposition techniques developed and alternative 

organic additives such as tartaric acid, uracil, HEDTA, hydroxypyridine. can be added to 

the electrolyte to achieve a similar effect to the cyanide salt.50–54 Nevertheless, these extra 

additives increase the cost and sometimes make the plating solution unstable and hard to 

maintain. In Paper III of this dissertation, epitaxial Ag thin films on Si(111), (110) and 

(100) were electrodeposited from a different path in analogy to the Au deposition process 

introduced above, and a simple silver acetate bath was used. 

The same procedure for Si surface treatment and back contact introduced above is 

applied to the Si substrate prior to the electrodeposition of Ag films. A plating solution 

containing 0.1 mM AgOAc, 0.1 M K2SO4, 1 mM KOAc and 1 mM H2SO4 with a pH of 

3.6 is prepared. Before anything is deposited on the Si surfaces, a linear sweep voltammetry 

(LSV) scan is performed on a plain Au electrode from the open circuit potential (OCP) 

towards more negative potentials at a scan rate of 10 mV s-1 in a stirred solution under 200 

rpm rotation rate. The polarization curve (shown in Paper II) suggests that Ag(I) reduction 

reaction starts at about -0.1 V vs. Hg/Hg2SO4. The deposition potential of -2.34 V vs. 
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Hg/Hg2SO4 was adopted to avoid Si oxidation during deposition and to evolve hydrogen. 

The X-ray Laue oscillation analysis shows that a thickness of about 10 nm can be obtained 

for Ag deposited for 10 minutes. As a comparison to the traditional Ag plating procedure 

as well as an attempt of acquiring smoother film on Si, a cyanide bath containing 2.4 mM 

AgCl, 8.5 mM KCN, and 0.1 M K2CO3 was also used for deposition. However, epitaxial 

Ag films were obtained only on Si(111) surfaces from the cyanide bath. 

 

1.2. EPITAXY  

The word “epitaxy” is made up with two Greek roots – epi, “above” and taxy, 

derived from taxis which means “an ordered manner.” We define epitaxy as the growth of 

crystalline deposits on an ordered substrate where the crystalline orientation of the deposits 

is controlled by the substrate orientation. The substrate is usually a piece of single crystal 

or crystals made up with multiple grains but possess out-of-plane and in-plane order. Based 

on the material composition difference between the deposits and the substrate, this concept 

can be further divided into homoepitaxy and heteroepitaxy. Homoepitaxy refers to the 

process in which the same material is grown onto the substrate and heteroepitaxy refers to 

those in which different material is grown. Homoepitaxy has a long history of being 

investigated both theoretically and practically, as one of its applications covers the most 

important process in the semiconductor industry – growth of bulk single crystalline Si or 

other types of semiconductor by the Czochralski method, in which a small seed crystal is 

dipped from top into the free melt surface of the feed material and the seed is slowly 

withdrawn from the melt, leading the melt to crystallize at the interface.55 Heteroepitaxy 

however, provides more diverse approaches and possibilities for single crystalline material 
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synthesis and will be mainly emphasized in this work. Typically, in the case of 

heteroepitaxy, the less mismatch in lattice parameter between deposited material and the 

substrate, the less defects are produced in the interface and less strain the deposits would 

have. Here, the lattice mismatch is defined by the equation below: 

mismatch =
𝑎F − 𝑎S

𝑎S
× 100%                                             (6) 

where, aF is the lattice parameter of the film deposited and aS is the lattice parameter of the 

substrate. In general, epitaxially grown thin films exhibits less grain boundaries, less 

defects and less electron-hole recombination sites and thus can provide better electronic or 

optical properties.25,43 An instance can be found in Paper II where epitaxially deposited 

Cu2O films present a diode quality factor n of 1.6 in a diode produced using a rectifying 

contact with InGa eutectic. This n value is much closer to the ideal n = 1 than the 

polycrystalline Cu2O film deposited on stainless steel which means less electron-hole 

recombination. 

Epitaxial growth can be conducted by a) conventional vapor-phase epitaxy methods 

such as MBE, CVD, PVD and pulsed laser deposition (PLD), b) liquid-phase epitaxy (LPE, 

commonly used in semiconductor industry) and c) soft solution-based methods such as 

electrodeposition, hydrothermal processing,56 chemical bath deposition57,58 or even simple 

dip-coating methods.59,60 The mechanism of vapor-phase epitaxial growth and LPE has 

been extensively studied over time.15,61–65 However, the mechanism of solution-based 

heteroepitaxial growth is less well understood and is under research. In fact, the lattice 

mismatch factor mentioned above is over-simplified and cannot explain some epitaxial 

growth system, such as epitaxial deposition of Au and Ag on Si. The lattice mismatch 

between Au/Ag and Si can be calculated using Equation (5) to be about -24.9%. This is a 
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very large value for 1×1 lattice epitaxial growth. An expanded lattice mismatch model 

needs to be invoked, known as coincident site lattices (CSLs). Figure 1.1 shows the 

interface model of Ag on Si (111) and the diagrammatic illustration of the CSL. As shown 

by the red triangles 4 unit meshes of Ag lattice coincides with 3 unit meshes of Si lattice, 

and the mismatch is reduced from -24.9% to 0.13%. These CSLs make the epitaxial growth 

of Ag on Si plausible and create very limited in-plane compressive stress to the Ag film.27 

 

 

Figure 1.1. The atomic interfacial model of Ag on Si 

 

There are several techniques to characterize epitaxially grown thin films. Cross 

sectional hi-resolution transmission electron microscopy (HRTEM) can visualize the 

lattice structure and give interfacial lattice fringe images. Crystal lattice d-spacing values 

can be measured directly from the HRTEM images thus they can be used to determine the 

crystalline orientation of the materials and to interpret the epitaxial relationship between 

the films and the substrate. A selected area electron diffraction (SAED) pattern can be 

further obtained from TEM sometimes to help analyze the epitaxial relationship as well. 

However, a focused ion beam (FIB) lift-off process is usually required prior to conducting 
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the TEM analysis in order to obtain a cross-section with the right thickness (typically about 

100 nm or less), which could be time consuming, involving damage to the sample and 

requires additional equipment such as an SEM. X-ray diffraction (XRD) azimuthal scans 

or pole figures on the other hand, provide easy and non-destructive information on the 

heteroepitaxy. Different from the symmetric scan used commonly in powder X-ray 

diffraction (PXRD), the incident angle θ is fixed to a Bragg angle where Bragg’s law is 

fulfilled: 

nλ = 2dsin θ                                                          (7) 

where, λ is the X-ray wavelength, d is the lattice spacing and θ is the diffraction angle and 

n is the diffraction order. Then the sample is tilted at an angle χ from 0° to 90° and rotated 

through azimuthal angles φ from 0° to 360°. Diffraction signals collected from the 

azimuthal φ scans at each tilt angle, χ, are used to construct a pole figure. A diagrammatic 

sketch is shown in Figure 1.2 below to display the measurement geometry for the pole 

figures. After a pole figure is acquired, the crystalline stereographic projections of the 

substrate and the film which reveal the expected peak (spot) position can be used to help 

interpret the epitaxial relationship. A textured, or an out-of-plane oriented only growth will 

present a ring pattern at certain χ angles in the pole figure. A detailed example about the 

interpretation to the Au on Si pole figures can be found in Paper I. 

 

1.3. ENERGY CONVERSION THROUGH THE PHOTOELECTRO 

CHEMICAL (PEC) PROCESS 

Ever since the urgent demand for sustainable, inexhaustible energy sources was 

introduced back in 1970’s, the research topic of solar energy acquisition through 
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Figure 1.2. X-ray diffraction geometry showing θ, ω, φ, χ angles (image source: [25]) 

 

photoelectrochemical process has thrived for decades and is still receiving massive 

attention today.66 Generally, the PEC energy conversion includes two basic categories: a 

photosynthetic cell stores energy by converting light to chemical energy – that is, a new 

chemical species (or multiple species) which possesses higher energy density is 

synthesized during this process. The most frequently investigated two examples of this 

category are PEC water splitting, sometimes called water photoelectrolysis, and PEC CO2 

reduction.67 Another path is to convert light to electricity through PEC process without 

overall chemical change. The device that performs this path is usually called a PEC 

regenerative cell. Both approaches require not only a semiconductor that is capable of 

absorbing light of appropriate wavelengths and producing electron−hole pairs, but also a 

catalyst that accelerates the PEC reactions, because typically the semiconductor itself is 

usually passive or non-catalytic to most PEC reactions. 
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1.3.1. PEC Water Splitting and OER Catalysts. A general idea of taking 

advantage of solar energy besides photovoltaics and solar thermal is to have it split water, 

which covers 70% area of the earth, into environmentally friendly fuels – hydrogen and 

oxygen. The first PEC water splitting cell was carried out in 1972 by Honda and Fujishima 

using TiO2 photoelectrodes.68 After decades of investigation, a spectrum of semiconductor 

and catalyst materials for PEC water splitting has been well established.69–71  

The chemical principle of water splitting is rather simple. The water molecules or 

protons get reduced at the cathode/photocathode and evolve hydrogen: 

2H2O + 2e- → H2 + 2OH–                                              (8) 

or, 

2H+ + 2e- → H2  
                                                      (9) 

And the water molecules or hydroxide ions get oxidized at the anode/photoanode and 

evolve oxygen: 

2H2O – 4e- → O2 + 4H+                                              (10) 

or, 

4OH– – 4e- → O2 + 2H2O                                                        (11) 

However, it takes a standard cell voltage of 1.23 V to drive this process to take place, as 

the Gibbs free energy change of the overall reaction per water molecule is 237 kJ/mol. 

Thus, a semiconductor with the appropriate band gap and band edge positions must be 

chosen to meet the basic theoretical energetic requirements.69 Furthermore, due to the large 

overpotential that occurs to the half reaction on the photoelectrodes, especially the anodic 

oxygen evolution reaction (OER), efficient catalysts applied to the electrodes are also 

important to the whole water splitting process.  
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Compared to the cathodic hydrogen evolution reaction (HER), OER is a kinetically 

slower half reaction and is a four-electron electrochemical process. Hence, extensive 

research and huge effort is devoted to improving the kinetics of the OER process, mostly 

finding more efficient catalysts. Conventional precious metal oxides catalysts such as IrO2 

and RuO2 have been found to show the highest OER performances to date, and several 

approaches have been developed to efficiently produce these catalysts.72–76 Nevertheless, 

the scarcity of these precious metal elements elevates the product price and limits the mass 

scale applications of these catalysts. Earth-abundant transition metal based OER catalysts, 

especially Mn, Fe, Co and Ni compounds provide an intriguing solution for this 

predicament. Cobalt oxide and oxyhydroxide for example, are two candidates that shows 

good OER catalytic properties, and can be easily fabricated through electrochemical 

deposition.77 Co thin films can be deposited onto n-Si to form a metal-insulator-

semiconductor (MIS) junction for efficient PEC water oxidation.78 Recent research also 

pointed out that some selenides are capable to show remarkable OER catalytic performance 

such as binary and ternary Co, Fe and Ni selenide.79–81  

1.3.2. PEC Regenerative Cell. Although higher solar energy conversion efficiency 

can be realized by multijunction (sometimes called multi-bandgap) semiconductor cells,82 

a study into single junction PEC regenerative cell can be important and helps provide 

understanding of the fundamentals of the interfacial kinetics and the physics behind the 

regenerative PEC process. Typically in a PEC regenerative cell in which only one kind of 

semiconductor is involved, the interfacial kinetics can be controlled mainly by two sources: 

the junction formed by the semiconductor/liquid contacts or the junction formed by the 

contact between semiconductor and the catalyst or surface coating. Under the former 
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situation, the semiconductor is immerged into a solution that contains a redox couple O/Re 

having a thermodynamic equilibrium potential of E°(O/Re). The redox couple can serve as 

acceptors and donors in this case. Electrons flow freely through the interface until 

equilibrium is reached and a semiconductor/liquid junction is established, as shown in 

Figure 1.3. The barrier height φ, which is generated by the band bending in the 

semiconductor, gives the sum of the theoretical maximum voltage that can be derived under 

illumination (φfb) and the built-in potential (which is constant). This brings a great benefit 

exclusively for PEC regenerative cell that the cell efficiency can be optimized by choosing 

appropriate redox couples which provide as large a difference between redox potential 

E°(O/Re) and the conduction band energy Ec (strictly speaking, the electron affinity) as 

possible.69 

 

 

 

Figure 1.3. Energy diagrams of solution/n-type semiconductor contact (a) before and (b) 

after equilibrium 

 

Limitations also apply to the PEC regenerative cells based on semiconductor/liquid 

contacts. In some occasion, the semiconductor surface is not capable to provide enough 
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catalytic effect for the redox reaction, which limits the overall charge transfer rate. 

Furthermore, some active semiconductor surfaces (e.g., Si) are not stable in the solution 

containing chemical redox couple, especially in aqueous solution. In such situation a 

catalytic layer deposited onto the semiconductor surfaces is used to improve the charge-

transfer process and to prevent the semiconductor from being oxidized or corroded by the 

chemical species in the solution. A Schottky barrier could be introduced and serves as a 

PEC active junction if the catalyst is metallic. The formation process of Schottky contact, 

also known as metal-semiconductor contact, is similar to the semiconductor/solution 

contact mentioned above, as shown in Figure 1.4. When a high work function metal is 

brought in contact with a n-type semiconductor, charge (electrons) will flow from the 

semiconductor to the metal and thermal equilibrium is established to achieve a matched 

Fermi level (strictly speaking, to achieve an equal chemical potential of electrons on both 

sides at equilibrium). A band bending analogous to the solution situation is formed and a 

depletion region is created on the semiconductor side with a depletion width of WD at 

equilibrium: 

𝑊D = √
2𝜀s

𝑒𝑁D
(𝜑fb −

𝑘𝑇

𝑒
)                                            (12) 

where, εs is the permittivity of the semiconductor, e is the elementary charge and equals to 

1.602×10−19 C, ND is the carrier density, φfb is the flat band potential, k is the Boltzmann 

constant and T is the absolute temperature. The barrier height φ in an ideal Schottky contact 

is the difference between the metal work function φM and the electron affinity χ of the 

semiconductor.83 
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Figure 1.4. Energy diagrams of metal-semiconductor contact (a) before and (b) after 

equilibrium 

 

The Schottky junction presents similar rectifying properties as a p-n junction. When 

a reverse bias is applied to the semiconductor, band bending further develops, causing a 

higher barrier height and an inhibited current flow. If a forward bias is applied to the 

semiconductor, the band bending in the semiconductor is reduced. The bias voltage 

required for the semiconductor bands to flatten is called the flat band voltage φfb as 

mentioned in Equation (12), sometimes referred as built-in voltage. Under a forward bias, 

the current flow obeys the diode equation: 

𝐽 = 𝐽s(e𝑒𝑉/𝑛𝑘𝑇 − 1) (13) 

where V is the voltage, n is the diode quality factor, J is the measured current density and 

Js is the dark saturation current density. In this case, the barrier height can be determined 

directly from the dark saturation current: 

𝜑 =
𝑘𝑇

𝑒
ln (

𝐴∗𝑇2

𝐽s
) (14) 

where A* is the effective Richardson’s constant of the semiconductor. 
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When a Schottky junction is under illumination, the electrons in the semiconductor 

are excited from the valence band to the conduction band, generating separated electrons 

and holes. In an open-circuit, the electrons and holes accumulate and a photovoltage is 

formed. When the device is connected to a closed circuit, photo-generated electrons in the 

depletion region will flow into the bulk of the semiconductor while holes flow to the 

junction interface, forming a photogenerated current Iph. The current-voltage relationship 

under illumination can be described by Equation (15):   

                                    (15) 

where V is the voltage, Jph is the photogenerated current density, RS is the series resistance 

of the circuit and J is the current density. It can be derived from the above equation that 

when the current (density) J equals 0, the solar device achieves its maximum voltage, 

usually called open circuit voltage Voc, and when the voltage equals 0, the device reaches 

its maximum output current, called short circuit current (density) Jsc. It can also be derived 

that within the current density range from 0 to Jsc, a point with maximum power output can 

be acquired with a corresponding current density Jmpp and voltage Vmpp, the cell efficiency 

thus can be defined as following: 

efficiency =
𝐽mpp × 𝑉mpp

𝑃in

 (16) 

where Pin is the power input from the illumination. Note that the photogenerated current 

density Jph is a function of the illumination light intensity, so the Voc and Jsc of a certain 

cell will vary based on the illumination situation. By immersing this metal-semiconductor 

junction device into a solution containing redox couple, the photovoltage or 

ph S

S

S

ln
J J JnkT

V R J
e J

 + −
 = −
 
 
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photogenerated current will drive the PEC reaction at the electrode surface. For a n-type 

semiconductor, the junction could serve as a photoanode where oxidation reaction occurs. 

Figure 1.5 shows a simplified PEC regenerative cell based on a Schottky junction 

photoanode. The reduced form of redox species receives holes generated by semiconductor 

under illumination and gets oxidized at the photoanode surface, and is then reduced back 

again at the cathode, receiving electrons. Thus, no net chemical change happens during the 

PEC process and electricity is generated. Sometimes, the PEC regenerative cell is designed 

as a flow cell to improve the mass transfer of the redox species, and the overall efficiency 

can also be enhanced.84 

 

Figure 1.5. A simplified PEC regenerative cell based on a metal/n-type semiconductor 

junction 

 

The above discussion, of course, is for ideal metal-semiconductor interface 

condition where the barrier height is determined only by the metal work function. In fact, 

the semiconductor interfacial behavior is almost always influenced also by the interface 

states. The interface trap density of the semiconductor, which generally comes from grain 

boundaries, defects and different chemical compounds formed at the surface of the 

material, plays an important role in the barrier height. When the trap density is large 
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enough, the barrier height would be determined mainly by the surface properties of the 

semiconductor. Therefore, a metal-insulator-semiconductor (MIS) junction device is 

applied in some situations to improve the interface properties and to enhance the barrier 

height.78 The thin insulator layer, which is usually made of SiOx, is thin enough to let the 

current tunnel through. The insulator layer minimizes the surface states so that the barrier 

height is determined more by the work function of the metal. In Paper I, the PEC 

regenerative cell using Au films deposited on n-Si as the photoanode and Fe2+/3+ ions as 

the redox couple presents a maximum photocurrent of 11.9 mA·cm−2 with AM 1.5 light 

illumination of 100 mW·cm−2 intensity. The barrier height of the Au/Si junction was 

determined from 0.81 to 0.73 eV as the Au film thickness increased from 10% coverage to 

11 nm. An interesting phenomenon also occurred when the photoanode underwent a 

stability test: the barrier height increased during the long-term chronoamperometry at short 

circuit status. Considering that the Si can be oxidized by the solution through the pinholes 

distributed in the Au film, these facts indicate that the photoanode probably experienced a 

transition from a Schottky junction to a MIS junction over time during the PEC process. 

 

1.4. FLEXIBLE ELECTRONIC MATERIALS 

It is usually assumed that “flexible electronics” is a rather recent concept. However, 

the early idea of making electronics, especially solar cells flexible was brought up in the 

1960’s, where flexible solar cell arrays were considered to bring advances to the design of 

satellite solar cells in the U. S. space program.85 The principle of fabricating this kind of 

flexible electronics took advantages of a very simple physical phenomenon: Any material 

that is thin enough can be flexible, even for hard bulk materials (such as Si). Over time, 
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this concept has been developed and has evolved into many categories that are closely 

related to human daily life, such as flexible displays, wearable solar cells, flexible batteries 

and sensors.86–91 Generally, a flexible electronic device is built up with four components: 

a substrate, backplane electronics, a frontplane, and encapsulation. All four components 

need to be flexible to a certain extent.92 Due to different functionalities required for 

different components, all varieties of flexible materials with different physical and 

chemical properties have been developed and studied, including metal oxide films and thin 

glass,93,94 nanowire arrays or meshes,95–98 polymers99–102 and metal thin films/foils.103–107 

In this introduction, the main focus will be on ultrathin metal foils for flexible materials. 

Due to high electrical conductivity, outstanding optical property and high 

flexibility, ultrathin metal foils have been investigated as flexible electronic materials for 

a long time. In some cases, metal foils serve only as substrates for flexible electronic 

devices such as organic light emission displays (OLED). The most preferred metal for this 

application is stainless steel, as it can tolerate high process temperature, is dimensionally 

stable, presents a barrier against moisture and oxygen, can serve as a heat sink, and can 

provide electromagnetic shielding.92,108 Recent research has also considered metal foils 

ideal alternatives of the conductive indium-tin oxide (ITO) film electrode, which can serve 

as a positive contact in an OLED device,109 due to a rising cost of indium, brittleness of 

ITO, insufficient conductance for large-area devices, and the diffusion of indium atoms in 

the ITO electrode into the organic active layer, which causes degradation of the device 

performance.103,104,106 In this case, coinage metals (Cu, Ag, and Au) are more often 

adopted. Typically, these metal foils are fabricated by sputtering, which brings some 

drawbacks such as island-like deposits controlled by Volmer-Weber growth mechanism. 
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The roughness caused by this process can be minimized by introducing heteroatoms and 

conducting co-deposition or by forming a seed layer.106,110 However, these films are 

typically polycrystalline, and the high-angle grain boundaries in polycrystalline structures 

will influence the performance of the electronic devices further deposited onto the metal 

foils (e.g., OLED) as mentioned in the epitaxy section. 

In Paper II, a novel approach is introduced to produce electrodeposited single-

crystal like Au foils through a photooxidation lift-off process. This technique is capable of 

producing highly flexible and transparent wafer-size Au foils. It involves the epitaxial 

electrodeposition of Au on Si which follows the same procedure as introduced in section 

1.1, followed by a PEC oxidation of Si in dilute H2SO4 solution. The Au foils can be peeled 

off from the Si substrate after photooxidation and can maintain the in-plane and out-of-

plane order of the Au epitaxial films. A minimum thickness of 7 nm can be acquired for 

the Au foils with a transmittance up to 85%, and a bending test determines that the sheet 

resistance of the Au foils increases minimally after 4000 bending cycles. A flexed and light 

emitting OLED spin-coated on the Au foil demonstrates the flexibility and the 

transmittance of Au foils. More importantly, a Cu2O deposited onto the Au foil exhibited 

a diode quality factor of 1.6 compared with a value of 3.1 for polycrystalline deposits, 

showing a great advantage of the epitaxy of those Au foils fabricated through this approach. 
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ABSTRACT 

 

Films An ultrathin, epitaxial Au layer was electrochemically deposited on n-

Si(111) to form a Schottky junction that was used as the photoanode in a regenerative 

photoelectrochemical cell. The Au serves as a semitransparent contact that both stabilizes 

the n-Si against photo-passivation and catalyzes the oxidation of Fe2+ to Fe3+. In this cell, 

Fe2+ was oxidized at the n-Si(111)/Au(111) photoanode, and Fe3+ was reduced at the Au 

cathode, leading to conversion of solar energy into electrical energy with no net chemical 

reaction. The photocurrent was limited to 11.9 mA·cm-2 due to absorption of light by the 

Fe2+/3+ redox couple. When a transparent solution of sulfite ion was oxidized at the 

photoanode, photocurrent densities as high as 28.5 mA·cm-2 were observed with AM 1.5 

light of 100 mW·cm-2 intensity. One goal of the work was to determine the effect of the 

Au layer on the interfacial energetics as a function of the Au coverage. There was a 

decrease in the barrier height from 0.81 to 0.73 eV as the gold coverage was increased from 
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island growth with 10% coverage to a dense Au film with a thickness of 11 nm. In all cases, 

the bandbending in the n-Si was induced by the n-Si/Au Schottky junction instead of the 

energetic mismatch between the Fermi level of the n-Si and the redox couple. The dense 

Au film gave the greatest stability. Although the photocurrent of the n-Si/Au photoanode 

with 10.2% island coverage dropped nearly to zero within 2 hours, the photocurrent of the 

photoanode with a dense 11 nm thick Au film only decreased to 92% of its initial value 

after irradiation at open circuit with AM 1.5 light for 16 hrs. A 2.1 nm thick layer of SiOx 

formed between the Au film and the n-Si. With further irradiation the fill factor decreased 

due to the increase of series resistance as the SiOx layer thickness exceeded tunneling 

dimensions. 

 

Keywords:  electrodeposition, epitaxy, thin films, gold, photoelectrochemistry, silicon, 

catalytic. 
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1. INTRODUCTION 

 

The photoelectrochemical conversion of solar energy into fuels or electricity 

requires a semiconductor to absorb light and generate electron-hole pairs, and a catalyst to 

enhance the kinetics of electron transfer between the semiconductor and solution.1,2 The 

catalyst can serve both to improve charge separation by passivating surface states and to 

improve the charge transfer process across the semiconductor-solution interface.3-8 In 

photoelectrochemical cells containing reactive semiconductors such as Si, the catalyst can 

also serve to protect the semiconductor from passivation caused by the formation of a thick 

SiOx interfacial layer. The catalyst can either be directly deposited onto the 

semiconductor,9-11 or onto a thin insulator of tunneling dimensions to produce a metal-

insulator-semiconductor (MIS) photoelectrode.12-14 Here, we explore the use of thin 

epitaxial gold films that are electrodeposited directly on n-Si(111) as a semitransparent 

catalyst to produce a photoanode in a regenerative photoelectrochemical cell using 

Fe2+/Fe3+ as the redox couple. We use the method developed by Allongue and co-workers 

to electrodeposit the epitaxial Au.15 Although the epitaxy will not necessarily enhance the 

performance of the photoanode, the deposition method produces ultrathin, dense layers of 

Au that can be transparent to light. We have previously used this method to produce large 

area Au films which serve as a proxy for Au single crystals16 and we have shown that the 

method can also produce free-standing single-crystal Au foils for flexible electronics.17  

We also determine the effect of the catalyst on the band-bending, and photovoltage, 

of the photoanode. That is, we determine whether the band-bending in the semiconductor 

depletion region is produced by the mismatch between the Fermi level of the 
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semiconductor and the solution potential, or by the formation of a metal/semiconductor 

Schottky barrier. In addition to determining the effect of the Au coverage on the interfacial 

energetics, we determine its effect on the stability of the n-Si in the aqueous solution. The 

Fe3+/Fe2+ potential is positive enough (+0.77 V vs. NHE) that the Si oxidizes easily in such 

an electrochemical environment (the potential for the SiO2/Si couple is -0.909 V vs. 

NHE).18 We further show that the photocurrent can be markedly improved by reducing the 

light absorption using a colorless SO3
2-/SO4

2- redox couple. 

 

2. RESULT AND DISCUSSION 

 

The Au deposits initially as islands on the n-Si(111), which then grow two-

dimensionally to produce a dense film as additional Au is deposited. The morphology of 

the Au deposits as a function of deposition time is shown by scanning electron microscopy 

(SEM) in Figure 1. The SEM image of the Au deposited for 10 s and 1 min on Si shows 

uniform nucleation of Au as nanometer-scale islands. The coverage after 10 s was 10.2% 

(measured by image analysis), and the coverage after 1 min was 39.2%. After 5 min the 

deposit develops a “worm-like” fractal pattern, and after 10 minutes the Au has coalesced 

into a dense film with some pinholes remaining. The thickness of the films deposited for 5 

and 10 minutes can be determined by X-ray diffraction (XRD) from Laue oscillations.16 

The thickness of a 5 min deposit of Au is 7 nm and the thickness of a 10 min deposit is 11 

nm, as shown in our previous work.16 

X-ray diffraction was also conducted to measure the out-of-plane and in-plane 

orientation of the Au films relative to the Si(111) substrate. As shown in Figure S1 
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(Supporting Information), the symmetric XRD 2-Theta scan shows that the Au on Si(111) 

grows with a [111] out-of-plane orientation. Si(220) and Au(220) pole figures were run to 

 

 

Figure 6. SEM plan-view images of Au thin films of different thicknesses on n-Si(111). 

(a) 10 s, (b) 1 min, (c) 5 min and (d) 10 min. The coverage of 10 s Au on Si is 10.2% and 

1 min Au on Si is 39.2% 

 

determine the in-plane orientation of the Au relative to the Si. The Si (220) pole figure in 

Fig. 2(a) shows three spots separated 120º azimuthally at a tilt angle (ψ) of 35.5º, which 

agrees with the calculated stereographic projection for single-crystal Si(111) shown in 

Figure S2 in Supporting Information. The Au(220) pole figures of 10 s and 1 min Au on 

Si do not show spots in the pole figures [Figure 2 (b) and (c)] due to the low Au coverage. 
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The pole figures of 5 min and 10 min Au on Si both show six spots at ψ of 35.5º due to 

parallel and antiparallel domains of Au. Epitaxial relationships consistent with these pole 

figures are Si(111)[101̅]||Au(111)[101̅] and Si(111)[101̅]||Au(111)[ 1̅01]. 

 

 

Figure 7. Determination of the in-plane orientation of the Au(111) relative to the Si(111) 

substrate. XRD pole figures of Si(111) substrate (a) and Au(111) thin films of different 

thicknesses (b-e) showing in-plane orientations. The Au deposition times are (b) 10s, (c) 

1 min, (d) 5 min and (e) 10 min 

 

In order to harvest as much light as possible, the catalyst layer must be thin enough 

to not appreciably attenuate the incident light. The absolute specular reflectance spectra of 

the Si substrate and bulk Au are shown in Fig. 3a, and the spectra of the Au films on Si are 

shown in Fig. 3b. The reflectance of bare Si is 30.7% at 1600 nm and increases to 46% at 

400 nm, as expected based on the n and k values for Si. The reflectance of 10 s, 1 min, 5 

min and 10 min Au on Si increases successively to 31.2%, 31.7%, 36.7% and 44.7% at 

1600 nm. As seen in the spectra, the 10 s and 1 min Au on Si shows similar features as bare 

Si, while more metal-like gold features begin to emerge on the 10 min Au on Si at larger 
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wavelengths. Hence, there is minimal absorption or reflection of light by the thinner Au 

samples, but up to 10-20% of the light is reflected for the thicker Au films. There is also  

 

 

Figure 8. Absolute specular reflectance spectra of the Au films. (a) bare Si (measured) 

and bulk Au (calculated from n and k), (b) gold thin films on n-Si(111) for different gold 

deposition times. 

 

no evidence of light trapping by surface plasmons by the ultrathin Au layers. This agrees 

with earlier work by Maaroof et al. in which nanoporous gold films produced by sputtering 

did not show strong surface plasmon absorption.19 
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Gold is known to be catalytic for a wide range of redox reactions, including the 

Fe2+/3+ couple. The exchange current density for this couple on Au was reported to be 18 

A·cm-2. [20] The catalytic nature of the Au on Si is shown by cyclic voltammetry (CV) in 

Figure 4 by comparing the CVs of the Fe2+/3+ couple on Au on glass, Au on degenerate Si, 

and bare degenerate Si. Degenerate Si was used to avoid the rectifying nature of n-Si/Au 

Schottky junction which is blocking to anodic current. The bare Si electrode exhibits 

negligible current throughout the entire potential range from 0 to 0.8 V vs. Ag/AgCl, which 

indicates that it is catalytically inert for the Fe2+/3+ reaction. The Au on Si shows a quasi-

reversible CV curve with a peak separation of 133 mV at a scan rate of 20 mVs-1. It has 

about the same peak currents as a Au on glass electrode, which gives a peak separation of  

 

Figure 9. Enhancing the catalytic activity of the Si surface. Cyclic voltammetry 

measurements of 10 min deposited Au thin film on degenerate Si (black curve), Au 

coated glass electrode (red curve), and bare degenerate Si electrode (blue curve) in 50 

mM FeSO4 solution. The peak separation of the Au on glass electrode is 83 mV and that 

of the 10 min Au on Si is 133 mV, showing that the Au deposited on Si has similar 

catalytic activity for the Fe2+/3+ redox reaction as a Au electrode. Note that the bare Si is 

catalytically inert for the reaction. The scan rate was 20 mVs-1. 
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83 mV at the same scan rate. Hence, the redox reaction is chemically reversible and 

electrochemically quasi-reversible on the Si/Au electrode. 

The n-Si(111)/Au(111) photoanodes were tested as a function of Au coverage in a 

regenerative photoelectrochemical cell using a solution of 1 M Fe2+ and 0.1 M Fe3+ with a 

Au counter electrode. The photocurrent density vs. photovoltage curves for the 

photoanodes are shown in Figure 5 using an AM 1.5 light source with an irradiance of 100 

mW·cm-2 (1 sun). The highest short-circuit current density of 11.9 mA·cm-2 and open-

circuit photovoltage of 0.34 V are observed for the photoanode produced by depositing Au 

on Si for 10 s. At longer deposition times of 1 min, 5 min and 10 min, the open-circuit 

photovoltage decreases to 0.33, 0.26, and 0.25 V. The 10 min Au on Si photoanode also 

gives the lowest photocurrent density of 8.9 mA·cm-2, and fill factor of 0.40, with an 

efficiency of 0.90%. The photovoltaic parameters for all of the cells are presented in Table 

S1 (Supporting Information). Notice in Figure 5 that there is a decrease in photovoltage for 

the thicker Au films that have coalesced. This is consistent with a decrease in the barrier 

height in the n-Si depletion region for those photoanodes, as shown below. 

The photocurrents and efficiencies for the n-Si(111)/Au(111) photoanode are not 

very competitive compared to other photoelectrochemical cells in the literature that are 

based on Si. 21,22 The main reason for this lower performance is that the Fe2+/3+ solution is 

highly colored, leading to a significant attenuation of the incident light. The path length in 

the cell is 1 cm, so the light intensity has been attenuated by about 53% before it arrives at 

the photoanode (see Supporting Information and Figs. S3 and S4 for details). This problem 

can be circumvented by using a less absorbing redox couple (see results with SO3
2- below), 

or by designing a short pathlength flow cell.   
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Although the photoelectrochemical cell using the Fe2+/3+ redox couple does not give 

high performance due to significant light absorption, it does allow us to probe the 

interfacial energetics in the photoanode. That is, we can determine the effect of the Au 

 

Figure 10. Photoelectrochemical performance of n-Si/Au photoanodes in a regenerative 

cell using the Fe2+/3+ redox couple. Photocurrent density versus photovoltage of Au thin 

films on n-Si of different Au thicknesses in the Fe2+/3+ solution under 1 sun illumination 

 

catalyst on the band bending in the n-Si. The barrier heights (φ) and diode quality factors 

(n) were determined dynamically as a function of Au coverage by measuring the 

photocurrent-photovoltage response curves at a series of different light intensities and 

applying Equations (1) and (2),(21) 
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where k is Boltzmann’s constant (1.38 × 10-23 J·K-1), T is the temperature (294 K), e is the 

charge of an electron (1.60 × 10-19 C), A* is the effective Richardson’s constant (120 A·cm-

2K-2 for n type Si),23 JS is the dark saturation current density(A·cm-2), VOC is the open-

circuit voltage, n is the diode quality factor (n=1 for an ideal diode), and JL is the limiting 

current density (A·cm-2). Figure 6 (a) shows a typical set of photocurrent-photovoltage 

response curves at a series of light intensities for a photoanode produced by depositing Au 

on n-Si for 5 min. The JS and n for each photoanode was determined from plots of ln(JSC) 

vs. VOC, as shown in Figs. 6(b-e). The barrier heights of the photoanodes with 10 s, 1 min, 

5 min and 10 min Au on Si are 0.81, 0.82, 0.75, and 0.73 eV, respectively (see Supporting 

Information, Table S2). The measured barrier heights are similar to the recognized barrier 

height of a n-Si/Au Schottky junction (0.83 eV),23 which suggests that the photovoltage of 

the photoanode is dominated by the n-Si/Au junction rather than the n-Si/solution junction. 

The diode quality factor of the photoanodes with 10 s, 1 min, 5 min and 10 min Au on n-

Si are 1.16, 1.08, 1.11, and 1.24, respectively (see Supporting Information, Table S2). 

These values are close to the ideal value of n=1, showing that electron-hole recombination 

is not dominant in these photoanodes.23   

We also measured the barrier height of a solid-state diode produced by depositing 

Au for 5 min on n-Si. The diode curve is shown in Figure 7. The dark saturation current 

density measured at forward bias for this diode is 2.88 x 10-7 Acm-2, which corresponds to 

a barrier height of 0.79 eV. The diode quality factor is 1.17. The barrier height for the solid-

state diode is close to that measured in solution, again consistent with our assumption that 

the barrier heights in our photoanodes are dominated by the n-Si/Au junction rather than 

the n-Si/solution junction. We were not able to produce solid-state diodes with low 
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coverages of Au to see if the barrier height varies with coverage because of shorting that 

occurs when making front contacts to the incontinuous films.   

 

 

 

Figure 11. Measurement of the barrier height for n-Si photoanodes in a photoelectron-

chemical cell with the Fe2+/3+ as a function of the Au thickness. (a) Photocurrent curves of 

5 min Au on Si in Fe2+/3+ solution at different light intensities. Plots of ln(JSC) vs. VOC of 

(b) 10 s, (c) 1 min, (d) 5 min, (e) 10 min Au on n-Si, with the measured barrier heights of 

0.81, 0.82, 0.75, and 0.73 eV. The diode quality factors are 1.16, 1.08, 1.11, and 1.24, 

respectively 

 

The fact that barrier heights for the junctions with low coverage of Au are higher 

than those with coalesced films in the photoelectrochemical cell is consistent with previous 

work that showed that inhomogeneous Schottky barriers can give a larger barrier height 

than Schottky barriers produced with continuous metal films.21,24-26 It is also possible that 

for the low coverage films a tunnel junction of SiOx rapidly forms under the Au islands to 

produce a metal-insulator-semiconductor (MIS) junction with decreased surface states and 
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increased barrier heights.27 Although we cannot completely rule out the possibility that the 

solution potential has an effect on the barrier height for the low coverage deposits,  earlier 

work by other researchers suggests that the spacing between islands in our low coverage 

 

Figure 12. Determination of the barrier height of a solid state Schottky diode produced by 

electrodepositing epitaxial Au for 5 min on n-Si(111). The black curve is the current 

density versus forward bias and the blue curve is the natural log of the current density 

versus forward bias. The y intercept of the blue curve gives a dark saturation current of 

2.88 x 10-7 Acm-2, which corresponds to a barrier height of 0.79 eV. The slope gives a 

diode quality factor of 1.17 

 

deposits may be small enough that the solution does not have an effect on the bandbending 

in the n-Si.18,19  By contrast, Nakato et al. observed solution-dependent-photovoltages as 

high as 0.685 V for Pt nanoislands on n-Si if the spacing between the Pt islands was large 

enough.18  

One goal of this work was to determine the ability of Au layer to prevent the Si 

surface from being passivated by SiOx in the aqueous environment. The stability test of the 
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cell was measured by setting the potential at E = 0 V vs. E0(Fe2+/3+), where the cell reaches 

short-circuit current, and recording the anodic current density as a function of time at a 

light intensity equivalent to 1 sun. Figure 8 (a) shows the photocurrent of 10 s, 1 min, 5 

min and 10 min Au on n-Si vs. time for irradiations up to 16 hours. The photocurrent for 

10 s Au on n-Si dropped to nearly zero within two hours, which shows that the Au deposited 

for 10 s is not thick enough to protect the silicon from being oxidized. The photocurrents 

of 1 min, 5 min and 10 min Au on n-Si remained relatively stable for 16 hours, and the 

current after 16 hours (compared to the initial current) for each of the above is 86.4%, 

91.4% and 92.2% respectively. Figure 8(b) shows the photocurrent- photovoltage relations 

of a 10 min Au on n-Si photoanode before the stability test and after 18 hours, 40 hours 

and 62 hours of irradiation at short circuit. As shown in the plot, the short-circuit current 

and fill factor keep decreasing while the open-circuit photovoltage increases slightly (see 

the zoom-in details of open-circuit photovoltage in Fig. S5 of Supporting Information). 

This is an indication that the dark saturation current density JS decreased and the barrier 

height increased after time. The decrease in fill factor is due to an increase in the series 

resistance (RS). The series resistance was calculated by the method of Araujo et al. based 

on the single-diode model (see Eq. 3 and Figs. S6 and S7 of Supporting Information for 

more details). The initial series resistance was 11.3 ·cm2, but it increased to 12.7 ·cm2 

after 18 hours, 18.6 ·cm2 after 40 hours, and 35.2 ·cm2 after 62 hours. We attribute the 

increase in series resistance to an increase in thickness of SiOx that forms between the n-

Si(111) and the Au(111). As the SiOx thickness increases beyond tunneling dimensions 

(about 2 nm), the series resistance should increase. 
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The SiOx layer between the n-Si and Au was directly observed by HRTEM. Figure 

9(a) is a TEM cross-sectional image of the as-deposited Au-Si interface. The lattice fringes 

 

 

Figure 13. The stability of Au on n-Si(111) of different thicknesses in the Fe2+/3+ solution. 

(a) chronoamperometry curves of Au on Si of different thickness in the FeSO4/Fe2(SO4)3 

solution at fixed potential E = 0 V vs. Fe2+/3+. (b) The initial photocurrent-photovoltage 

response for 10 min Au on n-Si(111), and the response after the 18, 40, and 62 hour 

stability tests 

 

suggest the epitaxial growth of Au on Si with a [111] orientation, and no SiOx layer is 

found between the Au and Si. Figure 9(b) shows a TEM image of the 10 min Au on Si after 

16 hours of irradiation at short circuit in the Fe2+/3+ solution. An amorphous SiOx layer of 
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about 2.1 nm is observed between the Au and Si, while the Au maintains the [111] 

orientation. The lateral undergrowth of SiOx is assumed to occur because of the pinholes 

in the film.17 The 2.1 nm SiOx layer is thin enough to allow quantum mechanical tunneling. 

As the SiOx thickness exceeds this value, the series resistance of the photoanode should 

increase, as discussed above.23,27  

 

 

 

Figure 14. Evidence for lateral undergrowth of an SiOx layer after irradiation. (a) 

HRTEM cross-section image of as-deposited Si(111)/Au(111) interface. (b) HRTEM 

cross-section image of 10 min Au on n-Si after 16 hours of stability test in Fe2+/3+ 

showing a 2.1 nm thick SiOx layer between the Au(111) and n-Si(111) 

 

It is constructive to discuss at this point how the efficiency could be improved for 

the n-Si(111)/Au(111) photoanode. One possibility would be to deposit the Au onto a 

buried n-Si/p++-Si junction. This would raise the photovoltage from the 0.3-0.4 V range 

observed for the n-Si/Au Schottky junction up to the 0.60-0.65 V range that is observed for 

n/p+ junctions.28 Another possibility would be to increase the photocurrent by addressing 

the absorption of light by the redox couple. As shown above, the absorption of incident 
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light by the solution causes more than half of the light to be lost before it reaches the 

photoanode. One approach would be to improve the cell design to minimize the solution 

path length, such as using a flow cell with an ultrathin pathlength. Another approach would 

be to use a transparent redox couple. We tested this idea by using the SO3
2-/SO4

2- redox 

couple. A phosphate buffered 1 M sodium sulfite solution was used to conduct this 

experiment. Figure 10 (a) shows the LSV scans of the 10 s, 1 min, 5 min and 10 min Au 

deposited on n-Si in the sulfite solution under 1 sun illumination. The 1 min, 5 min and 10 

min Au on n-Si show saturation photocurrents of 28.5, 27.2, and 21.8 mA·cm-2 

respectively. These values are comparable to the 26.6 mA·cm-2 photocurrent density that 

is observed with AM 1.5 radiation for a solid-state p-n junction silicon solar cell without 

an antireflection coating.29 This experiment also sheds additional light on the mechanism 

of band-bending in the photoanode. Figure 10 (b) shows the photocurrent-photovoltage 

relations of Au on Si samples derived by subtracting the LSV curves of a Au on glass 

electrode from that of the Au on n-Si electrodes. The symbols are the measured data and 

the curves are fitted using the diode-equation (see Eq. 3) using the barrier height and diode 

quality factor data measured from the Fe2+/3+ solution. Although the Fe2+/3+ and SO3
2-/SO4

2- 

redox couples have very different standard reduction potentials (0.77 V compared with 

0.17 V vs. NHE) the fitted curves using the barrier heights from the Fe2+/3+ fit the 

experimental data for the SO3
2-/SO4

2- well, again suggesting that the Au layer and not the 

solution potential controls the bandbending in the n-Si.   

                                         (3) 

 

ph S

S

S

ln
J J JnkT

V R J
e J

 + −
 = −
 
 



 

 

38 

 

Figure 15. Photoelectrochemistry of the n-Si(111)/Au(111) photoanodes with different 

thicknesses of Au in the sulfite solution. (a) Linear sweep voltammograms (LSV) of the 

Au on n-Si electrodes in buffered 1 M Na2SO3 solution under 1 sun illumination 

compared with a Au-coated glass electrode in the same solution. Note that the 

photoanode with 10 min. of Au is not stable in the solution. (b) Photocurrent-

photovoltage relationships of Au thin films on Si electrodes in Na2SO3 solution derived 

from LSV curves by subtracting the LSV curves of Au on Si from that of Au-coated glass 

electrode. The smooth curves were fitted with Eq. 3 using the barrier dark saturation 

current and diode quality factors determined in Fig. 6 in the Fe2+/Fe3+ solution. 

 

3. CONCLUSIONS 

 

Epitaxial, ultrathin Au layers were deposited on n-type Si to form a Schottky 

junction. It was used as a photoanode to build a photoelectrochemical regenerative cell 
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with the Fe2+/3+ redox couple. The ultrathin Au layer protects the n-Si from 

photopassivation. After a 16 hr. irradiation at short circuit, a 2.1 nm thick layer of SiOx 

forms between the n-Si and Au. This SiOx layer is thin enough to allow quantum-

mechanical tunneling. Although the Au is semitransparent, the solution is highly absorbing. 

Because of the high absorption of light by the redox couple, the photocurrents were limited 

to 11.9 mA·cm-2. When the transparent SO3
2-/SO4

2- redox couple was used with the same 

photoanode, photocurrents as high as 28.5 mA·cm-2 were observed with AM 1.5 light with 

an irradiance of 100 mW·cm-2. In addition to being a good redox catalyst and 

semitransparent to light, the ultrathin gold layers serve to induce bandbending in the n-Si. 

The barrier height in the n-Si is determined by the n-Si/Au interface rather than the n-

Si/solution interface. The barrier height was a function of Au coverage. It decreased from 

0.81 to 0.73 eV as the gold coverage was increased from island growth with 10% coverage 

to a dense Au film with a thickness of 11 nm. The photoanode was also shown to have 

minimal electron-hole recombination due to its nearly ideal diode quality factor. 

 

4. MATERIALS AND METHODS 

 

4.1.  Si WAFER ETCHING PROCESS AND Au DEPOSITION 

N-type Si(111) with a miscut angle 0.2º towards [11-2] and resistivity of 1.15 ·cm 

was used to produce photoanodes. The wafers were purchased from Virginia 

Semiconductor Inc. and were hydrogen-terminated before using. Wafers were etched in 

5% HF acid for 3 minutes to remove the native oxide layer, and then soaked in 90 ºC DI 

water for 15 min to form a SiOx layer, then etched again with 5% HF acid for 30 s. Indium-
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gallium eutectic was applied to the back of the Si wafers to form an ohmic contact, followed 

by silver wire and silver print II (GC electronics) as a back contact. Silicone paste or melted 

Apiezon Type W wax was used to insulate the back of the Si substrates.  

 The gold layer was directly electrodeposited onto the Si substrate using a 

prepolarized bias applied before the immersion of sample into the solution to prevent the 

oxidation of Si in aqueous environment24. The plating solution was 0.1 mM HAuCl4, 1 mM 

KCl, 1 mM H2SO4 and 0.1 M K2SO4. A potential of -1.9 V vs. Ag/AgCl electrode was used 

for Au deposition and prepolarization. The Au films were deposited for times of 10 s, 1 

min, 5 min and 10 min and used for photoelectrochemistry measurements. An EG&G 

Model 273A or Autolab 30 potentiostat was used for all deposition and measurements 

above. 

 

4.2.  CYCLIC VOLTAMMETRY (CV) AND PHOTOELECTROCHEMISTRY 

MEASUREMENTS 

The CV measurements were measured in a solution containing 0.05 M FeSO4 and 

0.5 M H2SO4. The scan rate was 20 mVs-1. The Fe2+/3+ redox couple and the sulfite SO3
2- 

ion was used as the electrolyte in photoelectrochemical cell. The Fe2+/3+ solution contains 

1 M FeSO4, 0.05 M Fe2(SO4)3 and 0.5 M H2SO4 and the sulfite solution is made of 1 M 

Na2SO3 in 1 M phosphate buffer with the pH  adjusted to 7.0. The photocurrent-

photovoltage curves were collected by linear scan voltammetry at a 10 mVs-1 scan rate with 

200 rpm stirring. The light source was an Oriel LCS-100 lamp, 100W xenon ozone-free 

with an AM 1.5 filter. The Pt wire was used as reference and a gold coil with a large surface 

area was used as counter electrode in the 3-electrode photoelectrochemical cell. The solid 



 

 

41 

state diode measurement of Au on Si sample was conducted by doing an LSV scan at a 10 

mVs-1 scan rate with a silver paste/silver wire top contact to the Au surface. Either an 

Autolab 30 potentiostat or a PARSTAT 2273 potentiostat was used for the measurements 

above. 

 

4.3.  REFLECTANCE AND TRANSMITTANCE SPECTRAL MEASUREMENTS  

The specular reflectance spectra of Au on Si samples and the transmittance spectra 

of the SO3
2- and Fe2+/3+ solutions were measured using a Varian Cary 5 UV-Vis-NIR dual-

beam spectrophotometer, using a 2 nm slit bandwidth and a scan rate of 100 nm/min. 

 

4.4.  X-RAY DIFFRACTION MEASUREMENTS  

The XRD measurements were done using a Philips X’Pert Materials Research 

diffractometer with Cu Kα1 radiation source. A crossed slit collimator with 2 mm 

divergence slit and 2 mm mask with a Ni filter and a 0.27° parallel plate collimator were 

used for X-ray pole figure measurements. 

 

4.5.  SEM AND TEM MEASUREMENTS  

SEM images were obtained using a FEI Helios Nanolab Dualbeam microscope with 

accelerating voltages ranging from 5 to 15 kV. Focused ion beam lift-off of samples for 

TEM cross-sectional analysis was done using an FEI Scios dualbeam microscope. A thin 

carbon layer was sputtered on the sample to protect the Au films from being damaged by 

the ion beam during cross-sectioning. High resolution TEM images and electron diffraction 

patterns were obtained with an FEI Tecnai F30 transmission electron microscope 
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SUPPORTING INFORMATION 

 

PHOTOELECTROCHEMISTRY OF ULTRATHIN, SEMITRANSPARENT, AND 

CATALYTIC GOLD FILMS ELECTRODEPOSITED EPITAXIALLY ONTO N-

SILICON(111)  

   

Qingzhi Chen and Jay A. Switzer* 

 

Missouri University of Science & Technology, Department of Chemistry and Graduate 

Center for Materials Research, Rolla, MO 65409-1170, USA. 

 

correspondence to:  jswitzer@mst.edu 

 

1. Photoelectrochemical efficiency calculations. The fill factor (FF) is calculated 

from Equation 1: 

M M

SC OC

   FF J V

J V

=


                                                     (1) 

where JM is the current density at the maximum power point, VM is the voltage at the 

maximum power point, VOC is the open circuit voltage, and JSC is the short-circuit current 

density. The efficiency is calculated from Equation 2: 

M M

input

   efficiency J V

P

=

                                               (2) 

where Pinput is the power input, which is 100 mWcm-2 in our studies. 
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2. X-ray diffraction. The symmetric XRD 2-Theta scan showing that the Au on 

Si(111) grows with a [111] out-of-plane orientation is shown in Fig. S1, and the calculated 

stereographic projection for single-crystal Si(111) is shown in Fig. S2. 

3. Light absorption of the electrolyte solution. A Varian Cary 5 UV-Vis-NIR dual-

beam spectrophotometer was used for determining the absorption of the light in the Fe2+/3+ 

electrolyte to estimate the light loss through the solution. The wavelength range was from 

200 to 1000 nm and the measured spectrum is shown in Fig. S3. The absorption spectrum 

of the sulfite solution is shown in Fig. S4. 

4. The stability of Au on n-Si(111) of different thicknesses in the Fe2+/3+ solution. 

The zoom-in details of photocurrent-open circuit photovoltage relationship is shown in Fig. 

S5 for a photoanode after various irradiation times. 

5. Series resistance calculation. The series resistance of the 10 min Au on Si 

photoanode after different hours of stability test was determined using the method 

developed by Araujo et al. based on the single-diode model.1,2 The series resistance RS of 

the photoanode can be obtained by measuring the area A under the I-V curve, and can be 

written as: 

OC

S 2

SC SCSC

2
V A kT n

R
J e JJ

 
=  − − 

 
 

                                                (3) 

Figure S6 shows the initial photovoltage-photocurrent curve of the 10 min Au on 

Si photoanode. The area A is marked as the red region and is calculated to be 0.0015 

V·A/cm2. Hence, the RS is 11.3 ·cm2. Likewise, the RS of the photoanode after 18h, 40h 

and 62h of stability test can be also determined to be 12.7 ·cm2, 18.6 ·cm2 and 35.2 

·cm2. 
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6. One-diode model fitting. One-diode model fitting of the photocurrent vs. 

photovoltage curves are shown in Fig. S7 using the measured series resistances from the 

previous section. 

 

SUPPLEMENTARY TABLES 

 

Table S1. Photovoltaic parameters (Jsc, Voc, fill factor and efficiency) as function of Au 

coverage for Fe2+/3+ photoelectrochemical cell 

 

Au deposition 

time 

JSC  

(mA·cm-2) 

VOC (V) Fill factor 

(%) 

Efficiency 

(%) 

10 s 11.9 0.34 55 2.21 

1 min 10.4 0.33 57 1.96 

5 min 11.1 0.26 49 1.39 

10 min 8.9 0.25 40 0.90 

 

 

Table S2. Dark saturation current density, barrier height and diode quality factor as a 

function of Au coverage for Fe2+/3+ photoelectrochemical cell 

 

Au deposition 

time 

JS 

(×10-7 A·cm-2) 

Barrier height  

(eV) 

Diode quality 

factor 

10 s 1.26 0.81 1.16 

1 min 0.75 0.82 1.08 

5 min 13.2 0.75 1.11 

10 min 30.2 0.73 1.24 
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SUPPLEMENTARY FIGURES 

 

Figure S1.  Symmetrical 2theta XRD scan of 5 min Au on n-Si(111), showing a [111] 

out-of-plane orientation for Au. 

 

 

Figure S2.  Calculated stereographic projection the of Si(220) pole figure for a [111]-

oriented Si single crystal. The spots occur at a tilt angle of 35.3o, corresponding to the 

angle between the [111] and [110] directions. 
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Figure S3.  UV-vis absorption spectrum of the Fe2+/3+ electrolyte solution. 

 

Figure S4.  UV-vis absorption spectrum of the sulfite electrolyte solution 
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Figure S5.  Zoom-in details for photocurrent-photovoltage relations showing the open-

circuit photovoltage change of the 10 min Au on n-Si after 0, 18, 40, and 62 hr. of 

irradiation with AM 1.5 light at one sun. 

 

 

Figure S6.  Photocurrent-photovoltage curve of the 10 min Au on Si photoanode. The red 

region is the area A for RS determination. 

Initial 
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Figure. S7.  One-diode model fitting of the photocurrent vs. photovoltage curves for a) 

initial 10 min Au on n-Si and b) after 18 h, c) 40 h and d) 62 h of stability test in Fe2+/3+ 

using the calculated series resistance RS. The initial series resistance was 11.3 ·cm2, but 

it increased to 12.7 ·cm2 after 18 hours, 18.6 ·cm2 after 40 hours, and 35.2 ·cm2 

after 62 hours. The fitted curves are represented as red lines and the original photocurrent 

curves as blue circles. The JS used for fitting was the original measured value of 3.02×10-

6 Acm-2 for a) and b), 2.8×10-6 Acm-2 for c) and 1.37×10-6 Acm-2 for d) to fit the actual 

VOC, which also indicates that the barrier heights increased over time. 
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ABSTRACT 

 

We introduce a simple and inexpensive procedure for epitaxial lift-off of wafer-size 

flexible and transparent foils of single-crystal gold using silicon as a template. Lateral 

electrochemical undergrowth of a sacrificial SiOx layer was achieved by 

photoelectrochemically oxidizing silicon under light irradiation. A 28-nanometer-thick 

gold foil with a sheet resistance of 7 ohms per square showed only a 4% increase in 

resistance after 4000 bending cycles. A flexible organic light-emitting diode based on 

tris(bipyridyl)ruthenium(II) that was spin-coated on a foil exploited the transmittance and 

flexibility of the gold foil. Cuprous oxide as an inorganic semiconductor that was 

epitaxially electrodeposited onto the gold foils exhibited a diode quality factor n of 1.6 

(where n = 1.0 for an ideal diode), compared with a value of 3.1 for a polycrystalline 
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deposit. Zinc oxide nanowires electrodeposited epitaxially on a gold foil also showed 

flexibility, with the nanowires intact up to 500 bending cycles. 

 

1. INTRODUCTION 

 

The Single-crystal silicon (Si) is the bedrock of semiconductor devices; its high 

crystalline perfection minimizes electron-hole recombination, and its dense SiOx native 

oxide minimizes surface states. There is interest in moving beyond the planar structure of 

conventional Si-based chips to produce flexible electronic devices such as wearable solar 

cells, sensors, and flexible displays.1-5 Flexible devices and beautiful architectures have 

been produced using ultrathin foils of Si.6-8 Conductive polymers,9 carbon nanotubes,10 

graphene,11 and metal nanostructures12,13 have been used as transparent and flexible 

substrates for flexible electronics. Ultrathin (5 to 30 nm) metal films14,15 have relatively 

high optical transmittance, flexibility, improved device efficiency, and low sheet 

resistance. However, they usually are grown by vacuum evaporation or sputtering, which 

gives a polycrystalline or textured deposit. Polycrystalline electronic materials suffer from 

electron-hole recombination at grain boundaries.16 To expand the palette of electronic 

materials beyond planar Si, an inexpensive source of highly ordered material is needed that 

can serve as an inert substrate for the epitaxial growth of grain boundary-free 

semiconductors, optical materials, and superconductors. 

We show that wafer-size transparent and flexible single-crystal foils of gold (Au) 

can be produced by a simple and inexpensive lift-off procedure using single-crystal Si as 

the template for electrochemical epitaxial growth. The transparency of these single-crystal 
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Au foils is exploited to fabricate a flexible organic light-emitting diode (OLED) based on 

tris(bipyridyl)ruthenium(II). The single-crystal nature of the Au is used to produce an 

inorganic diode based on epitaxial cuprous oxide (Cu2O) that has more ideal diode 

characteristics than a diode based on polycrystalline Cu2O. 

 

2. RESULTS AND DISCUSSION 

 

Epitaxial lift-off of films on single-crystal substrates by dissolving a sacrificial 

adhesion layer can produce free-standing single-crystal foils.17 The epitaxial lift-off 

procedure for ultrathin single-crystal foils of Au electrodeposited onto Si(111) substrate is 

shown in Figure 1. Electrodeposition of epitaxial Au on a Si(111) substrate was carried out 

using the method developed by Allongue and co-workers.18,19 Previously, we showed that 

epitaxial electrodeposition of Au on Si(111), Si(100), and Si(110) substrates can serve as 

a proxy for bulk single-crystal Au.20 Single-crystal Si(111) with a 0.2 miscut toward [112̅]  

and a resistivity of 1.15 Ω·cm was used as the substrate to grow the Au foils (Figure 1A). 

The deposition was performed at room temperature in a solution containing 0.1 mM 

HAuCl4, 1 mM KCl, 1 mM H2SO4, and 0.1 M K2SO4 with a Si electrode that was 

prepolarized at -1.9 V versus Ag/AgCl before inserting it in the solution (Figure 1B). 

Prepolarizing the electrode inhibited the formation of an amorphous native oxide layer on 

the surface of Si and enabled epitaxial growth of Au. 

After the epitaxial growth of Au, lateral undergrowth of a sacrificial SiOx layer was 

achieved by photoelectrochemically oxidizing Si under irradiation of light at +0.75 V 

versus Ag/AgCl in 0.5M H2SO4 solution (Figure 1C). Au/n-Si forms a Schottky 
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(rectifying) junction, so irradiation of light is required to generate holes at the Au/n-Si 

interface to oxidize the Si. The epitaxy of the Au foil was maintained during the lateral 

undergrowth of SiOx, analogous to the epitaxial lateral overgrowth process in silicon-on-

insulator technology.21 A polymer adhesive (tape or hot glue) was applied to the Au surface 

as a support and facilitator for foil separation (Figure 1D). The SiOx layer was etched using 

dilute (5%) hydrofluoric acid to detach the Au foil from the Si substrate (Figure 1E); this 

enabled an effortless separation of the foil (Figure 1F). Both the tape and hot glue have 

high optical transmittance in the visible range (400 to 800 nm) and are resistant to chemical 

etching procedures. After the foil separation, the Si substrate was etched using a 0.6 M KI  

and 0.1 M I2 solution to dissolve any residual Au and then reused. Because only a 2-to 3-

nm-thick layer of SiOx is removed during each fabrication cycle without extensive 

roughening, the Si should be reusable thousands of times. 

 

Figure 1. Schematic for epitaxial lift-off of single-crystal Au foil. (A) Miscut n-type 

Si(111) wafer without the native oxide layer. (B) Epitaxial electrodeposition of Au on 

Si(111) from a 0.1 mM HAuCl4 solution at -1.9 V versus Ag/AgCl with prepolarized 

electrode. (C) Photoelectrochemical oxidation of Si under irradiation of light in 0.5 M 

H2SO4 solution at 0.75 V versus Ag/AgCl. (D) A polymer adhesive (tape/hot glue) is 

applied to the surface of Au to aid the foil separation. (E) Sacrificial SiOx interlayer is 

etched using dilute (5%) hydrofluoric acid to separate the foil from Si substrate. (F) 

Completely detached single-crystal Au foil from Si surface. 
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High-resolution transmission electron microscopy (HRTEM) was used to study the 

interfacial changes during photoelectrochemical oxidation of Si. The as-deposited 30-min 

film (i.e., 30 min of deposition time) did not show an interfacial SiOx layer between the 

Si(111) and Au(111), as seen by the abrupt transition at the interface in Figure 2A. Electron 

diffraction patterns for the as-deposited layers of Au on Si showed a spot pattern with in-

plane and out-of-plane order (Figure S1). After the photoelectrochemical oxidation of Si, 

an amorphous SiOx interface with a thickness of 2.45 nm was evident in Figure 2B. Native 

oxide formation on the Si surface in ambient air is limited to 0.5 to 1 nm because of the 

dense pinhole-free oxide layer that protects the Si from further oxidation. However, during 

photoelectrochemical oxidation of Si, tunneling of electrons through the insulating oxide 

layer caused the SiOx layer to grow thicker. The tunneling of electrons completely ceased 

when the oxide layer reached a thickness of 2.0 to 2.5 nm and the photocurrent dropped 

nearly to zero (Figure S2). The electron diffraction pattern of Au on Si with an interfacial 

oxide layer showed a similar spot pattern, indicating that the epitaxy was maintained after 

the lateral undergrowth of SiOx (Figure S3). Both micrographs (Figure 2, A and B) are 

viewed along the [112̅] zone axis, and the measured d-spacings for Au and Si are consistent 

with bulk values. 

Scanning electron microscopy (SEM) was performed to study the surface 

morphology and the initial nucleation and growth of Au foils. All of the foils for SEM were 

separated with an adhesive tape as the support layer. Figure 2C shows a Au foil formed 

after 5 min with a fractal morphology that had been reported for evaporated ultrathin films 

of Au.22,23 We attribute these fractal features to the diffusion-limited aggregation of Au on 

the surface of Si during the initial nucleation period. This Au foil has a coverage of 56% 
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and appears to be at the percolation threshold thickness (5 to 6 nm), in agreement with the 

results of Hӧvel et al.24 Beyond the percolation threshold, the fractal features are 

interconnected in a large network mesh with electrical connectivity across the entire foil. 

Fig. 2D shows Au foils deposited for 10 min with 70% coverage and Fig 2F and 2G show 

Au foils deposited for 20 min and 30 min, respectively, are shown in Figure 2, E and F. 

The applicability of Au foils as a substrate was shown by depositing and 

characterizing inorganic semiconductor thin film and nanowires. Cu2O was 

electrodeposited on a 30 min Au foil (Fig. 2G) and is used to study the diode characteristics.  

Zinc oxide (ZnO) nanowires were electrodeposited on a 10-min Au foil (Fig. 2H) and are 

subjected to 500 bending cycles with the radius of curvature of 3 mm. The ZnO remained 

intact after the bending cycles, which can be attributed to its nanowire morphology and the 

 

Figure 2. Electron microscopy of the single-crystal Au, epitaxial Cu2O, and epitaxial 

ZnO. High-resolution TEM cross-section of epitaxial Au on Si (A) without SiOx 

interlayer for the as-deposited film and (B) with the SiOx layer after photoelectrochemical 

oxidation of Si. Surface morphology of the Au foils deposited for (C) 5 min (7 nm), (D) 

10 min (11 nm), (E) 20 min (21 nm), and (F) 30 min (28 nm).  (G) Electrodeposited 

epitaxial Cu2O on a 30 min Au foil and (H) Electrodeposited ZnO nanowires on a 10 min 

Au foil subjected to 500 bending cycles. 
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flexibility of Au foil. Although the 5- and 10- min Au foils appear porous, foils beyond the 

percolation threshold thickness (5 to 6 nm) enable electrical contact over the entire sample 

area and make electrodeposition feasible.  

We probed epitaxial Au on Si and free-standing Au foils using x-rays to study the 

out-of-plane and in-plane orientations. Figure 3A shows the x-ray diffraction (XRD) 

pattern of a 30-min Au deposition on Si, where Au follows the [111] orientation of Si, 

indicating a high out-of-plane order. The Au thickness on Si was measured from the 

interference fringes in the XRD pattern (Figure 3B). Satellite peaks (Laue oscillations) 

around a Bragg peak caused by constructive and destructive interference of x-rays reflected 

from Si-Au and Au-air interfaces were used to precisely measure the Au thickness.19 Figure 

3B shows Laue oscillations around the Au(111) peak for Au films on Si as a function of 

deposition time. The film thickness was determined from the satellite peak positions 

according to 

( )
( )










−

−
=





21

21

sinsin2

LL
t                                                    (1)

 

where t is the film thickness, L is the satellite peak order (numbering of peaks in Fig. 3B), 

λ is the x-ray wavelength (0.15418 nm), and θ is the satellite peak angle. The calculated 

thicknesses from the Laue oscillations for the corresponding deposition times are listed in 

Figure 3B. A linear dependence of thickness with time was observed (Figure S4). Figure 

3C shows the XRD pattern of a segment of Au foil and electrodeposited Cu2O and ZnO on 

Au foil. Both the Au foil and the electrodeposited Cu2O had a strong [111] out-of-plane 

orientation. The thickness of a 10-min deposition of Au on Si agreed closely with that of 

Au foil measured using Laue oscillations (Figure S5). The ZnO also grew epitaxially on 
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Au foil but showed a strong [0001] out-of-plane orientation because of its hexagonal crystal 

structure. 

The in-plane orientation and the epitaxial relation of the Au on Si, Au foil, Cu2O, 

and ZnO was determined with x-ray pole figures. In a pole figure, planes other than those 

parallel to the substrate surface are probed while tilting and rotating the sample through a 

series of tilt and azimuthal angles (Figure S6). Figure 3D shows a (220) pole figure of 

Si(111), with three spots separated azimuthally by 120° at a tilt angle of 35.5°, 

corresponding to the three-fold symmetry of the (111) plane. A (220) pole figure of 

Au(111) on Si(111) is shown in Figure S7 with three spots expected at a tilt angle of 35.5°; 

however, there are also an additional three spots separated azimuthally by 60°. The two 

sets of spots on the (220) pole figure of Au correspond to the 180° in-plane rotation of 

parallel and antiparallel domains. Figure 3E shows a (220) pole figure of Au(111) foil, with 

the six spots at a tilt angle of 35.5° separated azimuthally by 60°. This pattern shows that 

the Au maintained its high in-plane and out-of-plane order after the foil separation. Figure 

3F shows a (220) pole figure of Cu2O(111) electrodeposited on Au(111) foil with the 

expected six spots at a tilt angle of 35.5°. Figure 3G shows a (102) pole figure of ZnO(002) 

with six spots at a tilt angle of 42.77o separated azimuthally by 60o. The six spots for ZnO 

are expected from the six-fold symmetry of the (0002) basal plane of the hexagonal crystal 

structure. 

To understand the epitaxial relation, it is crucial to look at the lattice mismatch of the film 

and the substrate. The lattice mismatch can be defined as ((dfilm-dsubstrate)/dsubstrate), where d 

is the lattice spacing of the plane parallel to the substrate. Au on Si has lattice mismatch of 

-24.9%, which is too high to produce epitaxial deposits. Therefore, the epitaxy in the Au-
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Si system can be explained by the formation of coincidence site lattices (CSLs), in which 

four unit meshes of Au coincide with three unit meshes of Si.20 These CSLs lower the 

mismatch from -24.9% for a single unit cell to +0.13% for the CSL (Fig. S8). Similarly, 

the lattice mismatch for ZnO on Au was minimized from +12.7% to +0.16% for the CSL 

(Fig. S9). The lattice mismatch for Cu2O on Au is +4.7%, which is low enough to produce 

cube-on-cube epitaxial films with reasonable in-plane and out-of-plane strain in the 

material (Fig. S10).   

 

 

Figure 3. X-ray diffraction and pole figures to study the in-plane and out-of-plane 

orientation. (A) Out-of-plane orientation of electrodeposited Au(111) on Si(111). (B) 

Out-of-plane X-ray diffraction showing satellite peaks (Laue oscillations) caused by the 

constructive and destructive interference. (C) Out-of-plane orientation of a Au(111) foil, 

electrodeposited Cu2O on 30 min Au foil and electrodeposited ZnO on a 10 min Au foil. 

In-plane orientation was determined using (D) (220) pole figure of Si(111), (E) (220) 

pole figure of Au(111) foil, (F) (220) pole figure of Cu2O(111) on Au(111) foil and (G) 

(102) pole figure of ZnO(002) on Au(111) foil. The radial lines in the pole figure 

correspond to 30o increments of the tilt angle. 
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High optical transmittance and low sheet resistance are imperative for Au foils to 

be used as flexible and transparent substrates. Fig. 4A shows the photograph of a wafer-

size Au foil with a diameter of 50.8 mm. Fig. 4B shows the optical transmittance of Au 

foils as a function of thickness. All of the foils showed a maximum in transmittance around 

500 nm and the peaks slightly red-shifted with a decrease in thickness. The sheet resistance, 

interms of ohms per square, for all of the foils (measured with a four-point probe) increased 

along with transmittance as the Au foil thickness decreased. A 7-nm-thick Au foil showed 

the highest transmittance of 85%, and the 28-nm-thick foil showed the lowest at 25%. The 

maximum transmittance (~500 nm) as a function of thickness is in close agreement with 

previous studies on evaporated gold thin films.25 The endurance of the Au foils as a 

function of sheet resistance was measured by subjecting the foils to as many as 4000 

bending cycles (Fig 4C). Bending cycles for all of the foils were performed with a steel rod 

as a guide with a radius of curvature of 3 mm. The sheet resistance of 28 nm, 16 nm and 

11 nm thick, Au foil increased by 4%, 6.3%, and 34%, respectively, after 4000 cycles of 

bending. 

To evaluate the flexibility and transmittance of Au foils for light emission, we 

spincoated an OLED based on tris(bipyridyl)ruthenium(II).26,27 The complex showed 

strong photoluminescence with an excitation wavelength of 455 nm and an emission of 

bright red-orange color around 660 nm.26 The complex was dissolved in a 3% (w/v) 

polyvinyl alcohol solution, spin-coated onto a 28-nm-thick Au foil, and dried in air. An 

indium/gallium (InGa) eutectic was used as a back contact as a low-work function metal, 

whereas the Au foil acted as a high-work function contact. Figure 4D shows the current-

voltage response of Au foil/RuII(bpy)3/InGa junction with a diode (rectifying) behavior. 
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The inset in Figure 4D shows a flexible Au foil with electrogenerated chemiluminescence 

from the OLED at an applied forward bias of 6 V. 

To study the single-crystal nature of Au foils, we prepared an inorganic diode by 

using electrodeposited Cu2O on Au foil. InGa eutectic was used to make a rectifying 

contact to the p-Cu2O and the Au foil substrate served as the ohmic contact. Polycrystalline 

Cu2O was electrodeposited on a stainless-steel substrate from the same deposition solution 

at low overpotentials to produce a sample with a random orientation. Cu2O on both the Au 

foil and the stainless steel were deposited for a constant charge density to maintain similar 

thickness. The XRD pattern of Cu2O on stainless steel with a polycrystalline powder 

pattern is shown in Fig. S11. Defects or grain boundaries in a material increase the 

probability of electron-hole recombination and lower the overall efficiency of the diode or 

solar cell. In a single crystal, the diode quality factor (n) of 1 indicates diffusion-controlled 

currents with no electron-hole recombination in the material, but in polycrystalline 

materials, n varies from 2 to 7.28,29 The n value for polycrystalline Si also increases with 

decreasing grain size.29 Fig. 4E shows current-voltage responses for Cu2O diode on a Au 

foil and a stainless steel. The epitaxial Cu2O had an n of 1.6, whereas the polycrystalline 

Cu2O had an n of 3.1 (Fig. 4F). The higher value of n for polycrystalline Cu2O is consistent 

with previous results for films of Cu/Cu2O Schottky diode solar cells.30 
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Figure 4. Transmittance, sheet resistance, and flexibility of Au foils with diode and 

OLED fabrication. (A) Wafer-size Au foil with a diameter of 50.8 mm, (B) 

Transmittance and sheet resistance of Au foils as a function of thickness. (C) Sheet 

resistance of Au foils as a function of bending cycles with bending curvature of 3 mm. 

(D) Current-voltage response of Au foil/RuII(bpy)3/InGa junction showing rectifying 

behavior and inset shows the red-orange electrogenerated chemiluminescence of 

RuII(bpy)3BF4 OLED on a flexible 28 nm thick Au foil. (E) Current-voltage response of a 

Cu2O diode on Au foil (epitaxial) and stainless steel (polycrystalline) substrates. (F) Dark 

saturation current density (Js) and diode quality factor (n) of epitaxial and polycrystalline 

Cu2O diodes measured using log(J) versus V at forward bias. 

 

3. CONCLUSIONS 

 

Single-crystal Au foils offer the order of traditional semiconductors such as Si 

wafers without the constraint of a rigid substrate. The foils are flexible and optically 

transparent, and show promise for producing flexible and wearable displays, solar cells, 

and sensors. The epitaxial growth of Cu2O and ZnO that we have demonstrated can be 

applied to a wide range of inorganic semiconductors such as CdSe, CdTe, and ZnSe for 
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use in flexible solar cells. Because ZnO is both a wide-bandgap semiconductor and a 

piezoelectric material, it should be possible to produce pressure-sensitive electronic skin 

and LEDs based on the ZnO/Au system.31,32 Also, Au is hypoallergenic and could serve as 

a platform for wearable sweat sensors for continuous health monitoring.5 Although this 

work focused on the production of ordered substrates for flexible electronics, the 

processing method can be used to provide an inexpensive source of large metallic single 

crystals. These could serve as ordered substrates for photovoltaics, high-temperature 

superconductors, stress-free microelectromechanical systems (MEMS), catalysts, 

underpotential deposition, self-assembled monolayers, and molecular electronics. 
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1. MATERIALS AND METHODS 

 

1.1. Si WAFER AND ETCHING PROCEDURE  

Phosphorous doped single-side polished n-Si(111) was miscut 0.2 degrees towards 

[11 2̅ ] with resistivity of 1.15 ohm-cm. The wafer was obtained from Virginia 

Semiconductor Inc. Aluminum was sputtered on the back of Si wafer to form an ohmic 

contact and silver wire with silver paste (GC electronics, silver print II) was used to make 

the back contact. Silicone paste and/or nail polish was used as an insulating and inert layer 

on the back of Si to prevent contact in the electrolyte during electrodeposition. Si wafers 

prior to use were etched in 5% hydrofluoric acid (HF) solution for 30 seconds to dissolve 

the native oxide, then soaked in hot DI water (ca. 80-90oC) for 15 minutes to passivate the 

surface with SiOx layer and then etched again with 5% HF for 30 seconds and buffered 

hydrofluoric acid for 30 seconds to make a H-terminated surface. Ethanol was used to clean 

any organic residue and rinsed with DI water prior to deposition. All depositions were 

immediately followed by the etching process to avoid any surface passivation. After 

photoelectrochemical oxidation of Si, SiOx was etched using 5% HF to separate the Au 

foil. 

 

1.2. ELECTRODEPOSITION OF Au AND Au FOIL FABRICATION  

Au was electrodeposited from a plating solution containing 0.1 mM HAuCl4, 1 mM 

KCl, 1 mM H2SO4, and 100 mM K2SO4 in deionized (DI) water (16). The solution was 

prepared by adding 10 mL of a stock solution containing 1 mM HAuCl4, 10 mM KCl, and 

10 mM H2SO4 to 90 mL of DI water. Lastly, 100 mM K2SO4 was added as a supporting 
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electrolyte with a pH of ~3. All depositions used an Ag/AgCl reference electrode and a Pt 

coil as a high surface area counter electrode. A -1.9 V versus Ag/AgCl pre-polarized bias 

was applied before inserting the Si electrode into the solution and the deposition was 

carried out for various deposition times at room temperature with 200 rpm stirring. The 

key step during deposition was the pre-polarized dip of Si in the electrolyte to avoid native 

oxide formation and to prevent electroless deposition of Au on Si. After the deposition, 

films were rinsed with DI water and dried in air. Au on Si films showed no native oxide 

passivation at the Si interface and were stable in lab atmosphere for more than a year. As 

deposited Au on Si deposits were photoelectrochemically oxidized under light irradiation 

at an applied potential of 0.75 V versus Ag/AgCl in 0.5 M H2SO4 solution at room temp-

erature. All the Au on Si samples were photoxidized for 30 minutes. A polymer adhesive 

or tape is applied to the Au film while on Si and then SiOx is etched using 5% HF to detach 

the Au foil. All the foils after etching separated effortlessly enabling a crack-free Au foil.  

 

1.3. ELECTRODEPOSITION OF Cu2O And ZnO  

Cu2O was electrodeposited from a plating solution containing 0.2 M CuSO4.5H2O, 

0.2 M C4H6O6 (L-tartaric acid), and 3 M NaOH (29, 30). A solution of CuSO4 and L-

tartaric acid was prepared separately and was slowly added to the solution of 3 M NaOH. 

A dark blue yet translucent solution is obtained. The solution was stored at 0oC and all the 

deposition were performed at 30oC. Prolonged usage of solution at temperatures more than 

30oC causes formation of copper hydroxide and the solution color turn into opaque dark 

blue and eventually precipitates out. A cathodic current density of 1.0 mA/cm2 was passed 

for a constant charge density of 1.8 C/cm2 at a temperature of 30 °C and a stir rate of 200 
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rpm. All the deposits were rinsed with DI water and dried in air and used as deposited 

without any post-processing. Electrodeposition of ZnO (31, 32) was performed from a 

solution containing 0.1 mM Zn(NO3)2 and 0.1 M KCl at an applied potential of -1.1 V 

versus Ag/AgCl at 70oC and 200 rpm stirring. Electrodeposition of Au, Cu2O and ZnO 

films was done using either an EG&G Model 273A or an Autolab 30 potentiostat/ 

galvanostat. 

 

1.4. X-RAY DIFFRACTION MEASUREMENTS AND INTERFACE MODELS 

All XRD measurements were made with a Philips X-Pert Panalytical (Materials 

Research Diffractometer) with Cu Kα radiation source (λ=1.54056 Å). All 2theta-omega 

(out-of-plane orientation) and Laue oscillation scans were done using a hybrid 2-bounce 

with 2xGe 220 Asym. monochromator and Ni 0.125 mm automatic beam attenuator and a 

0.18o parallel plate collimator diffracted optics. Pole figures were measured using a crossed 

slit collimator with 2 mm divergence slit and 2 mm mask with a Ni filter and a 0.27o parallel 

plate collimator. Lattice constants for interface models and X-Ray measurements of Si 

were referred from JCPDS card no. 027-1402, Au from 004-0784, Cu2O from 005-0667 

and ZnO from 036-1451. All the interface models for Au on Si, Cu2O on Au foil and ZnO 

on Au foil were made using VESTA (visualization for electronic and structural analysis) 

software ver. 3.3.2. 

 

1.5. SEM AND TEM MEASUREMENTS 

 High resolution cross-section TEM images for Au on Si before and after 

photoelectrochemical oxidation were measured using Technai F20.  SEM of Au foil, Cu2O 



 

 

69 

and ZnO were determined using Helios Nanolab Dual beam. Focused ion-beam milling for 

TEM sample preparation was done using Helios Nanolab dual beam. Prior to focused ion-

beam milling, the films were sputtered with a thin carbon layer using a denton sputtering 

system to protect the Au film during milling process and to provide a contrast difference 

to determine the thickness of films accurately. 

 

1.6. TRANSMITTANCE AND SHEET RESISTANCE MEASUREMENTS 

Transmittance for all the Au foils were measured using a Varian Cary 5 UV-Vis-

NIR Dual-beam spectrophotometer. All the Au foils for transmittance measurement were 

separated using scotch tape as the support layer, therefore a bare tape sample was used in 

the reference beam during measurement. A baseline scan was measured without any 

sample in both the beam paths prior to the Au foil. The sheet resistance measurements were 

performed using a C4S 44/5S four-probe measurement system from Cascade Microtech, 

Inc. The current was applied using a Keithley 220 programmable current source and the 

voltage was measured using a HP 3457A multimeter. A minimum of 3 measurements were 

performed on each sample and averaged to obtain the sheet resistance.     

 

1.7. TRIS(BIPYRIDYL)RUTHENIUM (II) TERAFLUOROBORATE 

([Ru(Bpy)3](BF4)) SYNTHESIS AND OLED FABRICATION 

 RuCl3.3H2O was dehydrated by placing the powder in an oven at 100oC over-night 

and slowly cooling it to room temperature. All the reactions were performed in a fume 

hood. 0.083 g of dried RuCl3 was mixed with 8 ml of DI water in a 25 ml Erlenmeyer flask 

and heated to reflux while stirring. To the solution while heating, 0.188 g of 2,2’-bipyridine 
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and 440 µl of 6M NaH2PO2 was added. The solution has a dark blackish color before 

heating and after refluxing at 80oC for about 30 minutes, the solution color changes to 

bright orange. The water level was marked and during refluxing, DI water was added as 

necessary to maintain the same volume. After refluxing, a 1.5 ml solution with 0.333 g of 

NaBF4 was added to the refluxing orange solution and stirred for 5 minutes. The solution 

is cooled to room temperature and then placed in a refrigerator to further cool down to 

enable precipitation of the complex. The solution was filtered using a Buchner funnel 

filtration apparatus and the precipitate was dried at room temperature. The OLED was 

fabricated by spin-coating the solution of [Ru(bpy)3](BF4) dissolved in a 3% (w/v) 

polyvinyl alcohol (PVA) solution. The PVA solution was prepared by slowly dissolving 

0.15 g of PVA in 5 ml of boiling water until everything dissolved. 0.035 g of as prepared 

[Ru(bpy)3](BF4) complex was dissolved in 3 ml of PVA solution and the mixture was spin-

coated on Au foil at 500 rpm. The coating was dried at room temperature for 2-3 hours. 

Indium-gallium eutectic was applied on the OLED coating as a back contact.         

 

1.8. MEASUREMENT OF INTERFACIAL ENERGETICS  

All current voltage response curves were measured using a PARSTAT 2273 

potentiostat/galvanostat with a Au coil in contact with InGa eutectic as a back contact and 

the Au foil or stainless steel as front contact. 

X-ray rocking curves, azimuthal scans and pole figures are texture analysis tools 

for highly ordered crystalline materials. All of these scans require 2θ angle fixed at the 

peak of interest. For example, 2θ = 47.304° for probing the Si(220) plane(s). The sample 

stage is tilted or rotated in different directions and angles in order to determine the in-plane 
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and out-of-plane order of the sample. As shown in Figure S7, rocking the sample along the 

axis perpendicular to the source-sample-detector plane is known as the ω scan or rocking 

curve. Rocking curves determine the mosaic spread of the out-of-plane orientation. 

Rotation of the sample around the sample normal is the φ scan, or the azimuthal scan. 

Tilting the sample along the axis orthogonal to both the ω and the φ axes is the χ scan (or 

sometimes referred to as the ψ scan). Diffraction signals collected from the azimuthal scans 

(φ = 0° to 360°) at each tilt angle (χ = 0° to 90°) can be used to construct a pole figure. 

 

2. SUPPLEMENTARY FIGURES 

 

 

Figure S1. Electron diffraction pattern of as deposited Au on Si showing a spot pattern. 

Convergent beam diffraction on Au films because of lower thickness yields broader 

spots. 
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Figure S2. Photoelectrochemical oxidation of a 30 min Au on Si sample under irradiation 

of light at 0.75V versus Ag/AgCl in 0.5 M H2SO4 solution. The photocurrent gradually 

drops to near zero as the thickness of SiOx increases and eventually flattens out around 

1200-1600s. 
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Figure S3. Electron diffraction pattern of Si and Au after photoelectrochemical oxidation 

at 0.75V in 0.5M H2SO4 solution for 30 min. A spot pattern shows that the Au is still 

epitaxial with Si. The rotation in directions are due to the difference in camera length 

used to capture the patterns. 

 

Figure S4. Thickness of Au on Si as a function of deposition time measured by Laue 

oscillations. 
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Figure S5. X-ray diffraction of a Au foil deposited for 10 min showing Laue oscillations 

around the (111) Brag peak. The calculated thickness using the satellite peaks is 11.8 nm, 

in close agreement with the thickness measured on an as deposited Au on Si sample (11 

nm). 

 

 

 

Figure S6. X-ray measurement geometry for pole figures.  
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Figure S7. (220) pole figure of Au(111) on Si(111). Six spots corresponding to the 

parallel and anti-parallel domains at an expected tilt angle of 35.5o rotated azimuthally by 

60o. 
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Figure S8. Interface model of Au(111) on Si(111) atoms. The coincidence lattice is 

shown in red lines forming two triangles rotated in-plane 180o. The lattice mismatch 

lowers from -24.9% for a 1dAu(hkl) x 1dSi(hkl) to +0.13% for the 4dAu(hkl) x 3dSi(hkl).  
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Figure S9. Interface model of ZnO(0002) on Au(111). The lattice mismatch lowers from 

+12.7% for a 1dAu(hkl) x 1dZn(hkl) to +0.16% for the 9dAu(hkl) x 8dSi(hkl). 
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Figure S10. Interface model of Cu2O(111) on Au(111). The lattice mismatch for a 

1dAu(hkl) x 1dCu(hkl) is +4.7%, which is low enough to form epitaxial deposits with 

moderate compressive in-plane strain and tensile out-of-plane strain. 

 

 

 

 

 

 



 

 

79 

 

Figure S11. X-ray diffraction of pattern of polycrystalline Cu2O electrodeposited on a 

stainless steel substrate for a charge density of 1.8 C/cm2. 
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ABSTRACT 

 

Silver films were deposited epitaxially for the first time onto low-index, single-

crystal silicon wafers through an electrochemical method in an aqueous silver acetate bath. 

A negative potential of -2.34 V vs. Hg/Hg2SO4 was used for both pre-polarization and 

during the deposition to avoid Si oxidation. The epitaxy of Ag films on Si(111), (110) and 

(100) was characterized by X-ray diffraction symmetric scans and pole figures. The Ag 

films showed [111], [110] and [100] out-of-plane orientations, respectively, with in-plane 

order determined by the Si substrates. Interface models consistent with the observed 

orientations invoke coincident site lattices (CSLs), in which four unit meshes of Ag 

coincide with three unit meshes of Si. These CSLs reduce the lattice mismatch from -24.9% 

to +0.13%. A thickness of about 10 nm was obtained for Ag deposited for ten minutes. A 

comparison of silver acetate electrolyte and cyanide electrolyte was also performed, 

showing advantages of the acetate bath over the cyanide bath for growth of epitaxial films 

of Ag on Si surfaces. 
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1. INTRODUCTION 

 

Silver (Ag), a coinage metal possessing the highest electrical conductivity, has been 

one of the most important metals for the electronic industry for decades. Beyond that, its 

ability to from a Schottky barrier with n-type silicon qualifies it as a potential candidate for 

electrical or photovoltaic devices, and its excellent optical properties make it ideal for 

plasmonic devices and surface enhanced Raman spectroscopy (SERS) substrates 1–5. 

However, the use of Ag deposited on other substrates taking advantages of its optical 

properties requires a major characteristic: epitaxy (or single crystallinity), since the grain 

boundaries in a polycrystalline Ag film cause extra scattering and absorption losses 2,5. The 

frequently used techniques for Ag deposition such as vacuum evaporation and chemical 

vapor deposition (CVD) often give polycrystalline Ag 6,7. Although there have been 

examples of epitaxial growth of Ag on Si through magnetron sputtering and molecular 

beam epitaxy (MBE) 8–13, these techniques require high vacuum and the MBE equipment 

is expensive, with limited access to most researchers. Inspired by Allongue’s work in 

epitaxial electrodeposition of Au on Si 14, we herein introduce a method that directly 

electrodeposits Ag epitaxially on three different orientations of Si substrates using a simple 

aqueous electrolyte solution. We have previously shown that Au deposited on Si with 

different orientations can be used as a low-cost proxy for single-crystal Au, and as a 

photoanode for photoelectrochemical regenerative cells 15,16, we have also shown that Cu 

deposited on Si(100) could serve as a proxy for single-crystal Cu(100) as well17. Ag 

epitaxially deposited on Si could have a broader impact due to its lower cost than Au, and 

because Ag exhibits a wider range of applications from plasmonic devices, to surface 



 

 

85 

catalysts, to highly selective absorbers/emitters 18. We also compare the morphology and 

epitaxy of films deposited from standard cyanide baths18 with those deposited from the 

simple acetate bath.  

 

2. EXPERIMENTAL 

 

2.1.  Si WAFER ETCHING PROCESS AND Ag DEPOSITION  

N-type Si wafers with [111], [110] and [100] orientations were used as substrates 

for Ag deposition. The resistivity of the Si wafers was approximately 1 ·cm. The wafers 

were purchased from Virginia Semiconductor Inc. and were hydrogen-terminated before 

use.  Wafers were etched in 5% HF acid for 3 minutes to remove the native oxide layer, 

and then soaked in 90 °C DI water for 15 min to form an SiOx layer, then etched again with 

5% HF acid for 30 s. Gallium-indium eutectic was applied to the back of the Si wafers to 

form an ohmic contact, followed by silver wire and silver print II (GC electronics) as a 

back contact. Silicone sealant or melted Apiezon Type W wax was used to insulate the 

back and edges of the Si substrates. The Ag films were directly electrodeposited onto the 

Si substrate using a “hot-wire” method. That is, a prepolarized potential was applied to the 

electrode before the immersion of the sample into the solution to prevent the oxidation of 

Si in the aqueous environment. The plating solution contained 0.1 mM AgOAc, 1 mM 

KOAc, 1 mM H2SO4 and 0.1 M K2SO4, where 90 ml DI water was added to 10 ml stock 

solution containing 1 mM AgOAc, 10 mM KOAc and 10 mM H2SO4. The pH of the 

solution was 3.6. The polarization curves of a Au electrode in the electroplating solution 

were obtained by performing linear sweep voltammetry (LSV) scans from the open circuit 
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potential (OCP) towards negative potentials at a scan rate of 10 mV·s-1. A potential of -

2.34 V vs. Hg/Hg2SO4 electrode was used for Ag prepolarization and deposition at room 

temperature. The cyanide plating solution was made by dissolving 2.4 mM AgCl in a 

solution containing 8.5 mM KCN, followed by adding 0.1 M K2CO3 as a supporting 

electrolyte. The pH of the solution was 11. A prepolarized potential of -1.9 V vs. Ag/AgCl 

electrode was used for Ag deposition in the cyanide bath at room temperature. Note that 

the AgCl reference electrode was not used in the acetate bath to avoid precipitation of 

AgCl. Both EG&G Model 273A and Autolab 30 potentiostats were used for Ag deposition 

and measurements. 

 

2.2.  X-RAY DIFFRACTION MEASUREMENTS AND SEM MEASUREMENTS  

The XRD measurements were done using a Philips X’Pert Materials Research 

diffractometer with a Cu Kα1 radiation source. A crossed slit collimator with 2 mm 

divergence slit and 2 mm mask with a Ni filter and a 0.27° parallel plate collimator were 

used for X-ray pole figure measurements. The SEM images were obtained using a FEI 

Helios Nanolab Dualbeam microscope with accelerating voltages ranged from 5 to 15 kV. 

 

3. RESULTS AND DISCUSSION 

 

The LSV curve of a Au-coated glass electrode in the stirred AgOAc plating solution 

towards negative potentials shows mainly four regions, as shown in Figure 1. Region I is 

the Ag(I) reduction step, where Ag metal starts depositing at about -0.1 V vs. Hg/Hg2SO4, 

and reaches the limiting current of about 0.04 mA cm-2 due to the forced convection. The 
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second region is attributed to oxygen reduction reaction (ORR), and the regions III and IV 

correspond to proton reduction and water reduction reactions, respectively. The deposition 

of Ag on Si wafers was conducted by applying a static potential of -2.34 V, where a Faradic 

efficiency is estimated to be 0.22% by comparing the limiting current density at region I to 

the current observed at the deposition potential (-2.34 V). The large negative potential was 

used to avoid Si oxidation and to evolve hydrogen, which has been reported to contribute 

to a more uniform nucleation and more smooth growth for electrodeposited metals 14,20-21. 

The applied potential corresponds to a 2.26 V overpotential for the reduction of Ag(I) to 

Ag, a 1.49 V overpotential for H2 evolution, and a 0.62 V overpotential for the reduction 

of SiO2 to Si.  

 

 

Figure 1.  Linear sweep voltammogram of a Au electrode in the stirred acetate-based Ag 

plating solution at a scan rate of 10 mV s-1. 

 

The SEM images of Ag deposited on Si(111) at different deposition times offer a 

snapshot of the Ag growth progress. As shown in Figure 2 (a), Ag deposited for 1 min 
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exhibits 3D island growth. The 3D island growth is followed by 2D growth producing a 

fractal pattern (Figure 2B). After 10 minutes of deposition the Ag film has coalesced into 

a dense film (Figure 2C) covered with larger Ag islands with sizes ranging from 20 nm to 

several hundred nm. As can be seen in Figure 2, the films deposited for short times have a  

 

 

Figure 2. SEM plan-view images of silver thin films deposited from the acetate bath on 

Si(111) for different deposition times. (a) 1 min deposition, (b) 5 min deposition and (c) 

10 min deposition. The higher magnification inset in (b) shows the fractal structure of the 

Ag. 
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larger density of islands than films deposited for longer times. This could be due to loss of 

islands due to poor Ag/Si adhesion, or to the merging of small islands to produce larger 

islands. More work is needed to determine the reason for the lower density of islands on 

the films deposited for longer times. 

To determine the epitaxial relationships between the electrodeposited Ag and the 

Si substrate, XRD symmetric 2-theta scans and pole figure scans were obtained. Figure 3 

(a) shows the 2-theta scan of Ag deposited for 10 min on Si (111). As shown in the plot, 

only Ag (111) and (222) peaks were observed. This indicates a strong out-of-plane 

orientation. A detailed slow-rate scan of the Ag (111) peak shows two satellite peaks 

(interference fringes) from Laue oscillations. A thickness of 10.1 nm was calculated from 

the position of the satellite peaks (see the supplementary information for details). The (222) 

d-spacing was 0.11783 nm, compared with 0.11774 nm for bulk Ag. Hence the Ag d-

spacing is larger than expected out-of-plane, indicative of uniform in-plane compressive 

strain. The in-plane orientation of Ag on Si is revealed by X-ray pole figures. In Figure 3 

(c), the Si (220) pole figure shows three spots separated azimuthally by 120at a tilt angle 

of 35.5, consistent with the (220) crystalline plane projection in a single crystalline 

Si(111). However, in Figure 3(d), the Ag (220) pole figure shows six spots separated 

azimuthally by 60 at a tilt angle of 35.5. The additional three spots can be interpreted as 

coming from 180 rotational twins of Ag. This twinning phenomenon occurs also during 

the deposition of other fcc metals such as Au on Si 15. The full width at half maximum 

(fwhm) in the azimuthal angle in the pole figure was 4.85o. The epitaxial relationships 

consistent with these pole figures are Ag(111)[10-1]||Si(111)[10-1] and Ag(111)[-

101]||Si(111)[10-1]. 
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Silver deposition on Si wafers with other orientations using the same electrolyte 

also produced epitaxial films. Figure 4 (a) shows the 2 theta scan of Ag deposited for 5 min 

on the Si(110) surface. Similar to the Ag film on Si(111), the silver deposited on Si (110) 

 

 

 

Figure 3. X-ray diffraction of Ag deposited on Si(111) from the acetate bath. (a) 2 theta 

gonio scan, showing {111} out-of-plane growth of the silver film, (b) detailed scan of 

silver (111) peak, showing 1 orders of Laue oscillation peaks, (c) the Si (220) pole 

figure, and (d) Ag (220) pole figure showing in-plane orientations. 

 

also shows a (220) peak only, which follows the out-of-plane orientation of the silicon 

substrate. The (220) d-spacing was 0.14445 nm, compared with 0.14420 nm for bulk Ag, 

consistent again with uniform in-plane compression. The Si (111) pole figure in Figure 4 

(b) shows two spots separated azimuthally by 180 at a tilt angle of 35.0 as expected, 

while the silver (111) pole figure in Figure 5 (b) also shows two major spots at the same 
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tilt angle. However, there are four additional spots at a tilt angle of 57.0 and two more 

spots at 75.0. These extra spots come from the (411) twins that were deposited 

simultaneously during the (110) growth of the Ag film. A detailed discussion about the 

twinning phenomenon on Si(110) can be found in the supplementary materials. The fwhm 

in the azimuthal angle in the pole figures was 7.34o. The deposition was also performed for 

5 min on the Si(100) surface. The 2 theta scan in Figure 5 (a) of the Ag deposited on Si(100) 

only shows a minor (200) peak, indicating a slower growth rate under the experimental 

condition compared to that of  the Si(110) surface. The (200) d-spacing was 0.20414 nm, 

compared with 0.20390 nm for bulk Ag, consistent again with uniform in-plane 

compressive strain. Although little material was obtained, the pole figures still show an in-

plane ordered growth of silver on Si(100). Figure 5 (b) shows the Si (111) pole figure, 

presenting four spots separated evenly at a tilt angle of 54.7 consistent with the tilt angle 

between the [111] and [100] directions in the cubic crystal system. In Figure 5 (c), a Ag 

(111) pole figure also shows four spots at the same position as those in the Si (111) pole 

figure. The fwhm in the aximuthal angle in the pole figure is 7.67o. The epitaxial 

relationships with Ag on Si (110) and (100) are Ag(110)[1-10]||Si(110)[1-10] and 

Ag(100)[011]|| Si(100)[011]. 

Interface models can shed light on the Ag epitaxial growth on Si. The original 1dAg 

x 1dSi lattice generates a mismatch of -24.9%, which is typically too high for epitaxial 

growth. However, the formation of coincident site lattices (CSL) reduces the Ag-Si 

mismatch to 0.13%. As shown in the interfacial models in Figure 6, the CSL is made up 

by 4 unit meshes of Ag lattice coinciding with 3 unit meshes of Si lattice, and is represented 
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Figure 4. X-ray diffraction of Ag deposited on Si(110) from the acetate bath. (a) 2 theta 

gonio scan, showing only {110} out-of-plane growth of the Ag film, (b) Si (111) pole 

figure and, (c) the Ag (111) pole figure with in-plane orientations. 

 

 

 

Figure 5. X-ray diffraction of Ag deposited on Si(100) from the acetate bath. (a) 2 theta 

gonio scan, showing a low-intensity (200) peak of the Ag film, (b) the Si (111) pole 

figure and, (c) the Ag (111) pole figure with the in-plane orientations. 
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by the red triangles/rectangles. These CSLs help reduce the strains so that the Ag film 

deposited on Si will not shrink, flake off or be forced to conduct an in-plane rotation to 

avoid the huge mismatch like Cu on Si 17,22-23. Note that the same CSL was invoked to 

explain the epitaxial electrodeposition of Au on Si(111) by Munford et al.24 and the 

electron beam evaporation of epitaxial Ag nanoclusters on Si by Li and Zuo 25 . Das and 

co-workers also developed this CSL using first principle simulations to reduce the effective 

strain 26. Note that our X-ray results also showed that the films had slightly larger out-of-

plane d-spacings than bulk Ag, consistent with the in-plane compressive stress predicted 

by the CSL.  

 

 

 

Figure 6.  Interfacial models of Ag on Si showing the formation of the Ag-Si coincident 

site lattices (CSL) in which 4 unit meshes of Ag coincide with 3 unit meshes of Si. (a) Ag 

on Si(111), (b) Ag on Si(100) and (c) Ag on Si(110). The red triangles/rectangles 

represent to the CSLs and the black ones represent to the large-mismatch 1 x 1 lattices. 

 

To compare the method above to the conventional cyanide bath plating method and 

as an attempt of acquiring smoother Ag deposits, a cyanide plating electrolyte was also 

made and Ag films were deposited on the three different orientations of Si. A LSV study 
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of a Au electrode in the cyanide bath was also conducted and is shown in Figure S1 in the 

supplementary materials. The LSV curve shows that the Ag starts to deposit at a potential 

of -0.4 V vs. Ag/AgCl.  The deposition potential was chosen to be -1.9V, which 1.53 V 

negative of the silver-cyanide complex reduction potential, to avoid potential Si oxidation 

as well. The SEM was also used to characterize the surface morphology of the deposited 

silver films. In Figure 7 (a), the 10 s deposited Ag grows mainly as particles and has not 

achieved coalescence on the Si surface. It grows into a dense film after one minute, as 

shown in Figure 7(b). The increased growth rate compared to the silver films deposited 

from acetate bath could be attributed to the higher concentration (2.4 mM vs. 0.1 mM for 

the acetate bath). Also the grain size of the thicker silver film from the cyanide bath is more 

uniform compared to that from the acetate bath, which indicates that it is more likely to 

obtain compact and uniform films in the cyanide bath for thicker deposits. The X-ray 

diffraction shows that the Ag film deposited on Si(111) in the cyanide bath is epitaxial with 

the Si as well. As shown in Figure 7(c), the 2 theta scan gives only the {111} family of 

peaks for the silver deposit. Furthermore in Figure 7(d) and (e), the pole figures show the 

same patterns as those deposited in the acetate bath, giving an epitaxial relationships of 

Ag(111)[10-1]||Si(111)[10-1] and Ag(111)[-101]|| Si(111)[10-1]. The fwhm in the 

azimuthal angle in the pole figures was 7.70o. However, the epitaxial growth of Ag on 

Si(110) and (100) surface using the cyanide bath was not successful. The 2 theta scans of 

silver deposits on these two silicon surfaces showed diffraction peaks from multiple 

crystalline orientations (see details in Figure S2 and S3 in the supplementary materials). 

This could limit the use of the cyanide bath for the epitaxial growth of Ag on Si (110) and 

(100). 
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Hence, the cyanide plating bath works well for the electrodeposition of epitaxial 

films of Ag on Si(111), but it produces polycrystalline films on Si(100) and Si(110). One 

possible explanation for the polycrystalline growth on Si(100) and Si(110) is the propensity 

of Ag to grow with a [111] orientation from the cyanide bath. The Ag will grow with a 

[111] fiber texture even on amorphous or polycrystalline substrates. This kinetically-

controlled growth in the [111] direction is apparently stronger than the thermodynamically- 

controlled template effect of the substrates to grow epitaxial films. Figure S4 shows XRD 

 

 

Figure 7. SEM images and the X-ray diffraction of Ag deposited Si(111) from the 

cyanide bath. (a) SEM image for 10 seconds silver deposition, (b) SEM image for 1 

minute silver deposition, (c) the 2 theta gonio scan, showing only {111} out-of-plane 

growth of the silver film, (d) the Si (220) pole figure and (e) the Ag (220) pole figure 

with the in-plane orientations. 
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2 theta scans for thicker Ag films grown for 3 minutes on Si(100) and Si(110). In both 

cases, the Ag(111) peak is more intense than with the Ag(200) or Ag(220) peaks, 

suggesting kinetically-controlled fiber growth. 

 

4. CONCLUSIONS 

 

We show in this work that nm-thick Ag films can be electrochemically deposited 

epitaxially onto single-crystal Si. A key feature of the electrodeposition that allows for 

epitaxial growth is the use of a very negative pre-polarization and growth potential to 

prevent the oxidation of Si to amorphous SiOx. Films deposited from the acetate bath 

follow the out-of-plane and in-plane orientation of Si(111), Si(110), and Si(100) wafers, 

whereas films deposited from the cyanide bath grow epitaxially on Si(111), but deposit as 

polycrystalline films on Si(100) and Si(110). This is attributed to the propensity of the Ag 

to grow with a [111] fiber texture from the cyanide bath. The large mismatch of -24.9% of 

the Ag/Si system is reduced to +0.13% by the formation of coincident site lattices (CSLs). 

In these CSLs, four unit meshes of Ag coincide with three unit meshes of Si. The 

compressive residual strain observed in the X-ray diffraction patterns is consistent with the 

CSL. The Ag films could serve as proxies for Ag single crystals for the epitaxial growth of 

other materials. They could also be used as catalysts to study the different activities of 

various crystal planes of Ag. Low coverage deposits have a fractal geometry, which may 

yield large plasmonic responses. 
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1. Laue oscillation calculations for Ag on Si(111). The film thickness can be 

determined by the satellite peak positions from the Laue oscillation using the equation 

below: 

t =
(L2 -L1)l

2(sinq1 - sinq2 )                                                     (1) 

where t is the film thickness, L is the satellite peak order,  is the X-ray wavelength, and  

is the satellite angle [1].  

2. Twinning relationship analysis for Ag on Si(110). The (411) twin observed in 

the (110) silver on silicon could be described either as a 180 rotational twin along the 

[111] direction or a reflection twin. This could be written as the transformation: [1] 

(PQR) = T(111)(pqr)                                                   (2) 

mailto:jswitzer@mst.edu
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where (PQR) is a column matrix for the lattice plane after the twinning, described by the 

twinning matrix T(111) which happens on the (111) slip plane. (pqr) is the original crystalline 

plan. For face-centered cubic (fcc) system such as Ag in this case, the twin matrix can be 

expressed as 

  

111

1 2 2
1

2 1 2
3

2 2 1

( )
T

 −
 

= − 
 −
                                                    (3) 

Thus, by applying this matrix on (110) plane using Equation (2), the twinned plan is  (114).  

 

SUPPLEMENTARY FIGURES 

 

Figure S1.  LSV curve of the Au electrode in the stirred cyanide bath showing the Ag 

deposition range and the hydrogen evolution range. The arrow in the plot indicates the 

scan direction. The scan rate was 10 mV s-1. 
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Figure S2.  The 2 theta scan of the Ag film deposited for 1 min on Si(100) in the cyanide 

bath; showing Ag (111), (200) and (220) crystalline planes. 

 

Figure S3.  The 2 theta scan of the Ag film deposited for 1 min on Si(110) in the cyanide 

bath; showing Ag (111), (200) and (220) crystalline planes. Note that three different 

potentials were applied when depositing and that all three films are disoriented. 
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Figure S4.  The 2 theta scan of the Ag film deposited for 3 min at -1.9 V vs. Ag/AgCl on 

Si(100) and Si(110) in the cyanide bath; showing increased intensity of Ag (111) peaks in 

both cases. 
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SECTION 

 

2. CONCLUSIONS 

 

The electrodeposition of Au and Ag epitaxial metal films and some of their 

applications were studied in this work. Epitaxy refers to the growth of crystals on a 

crystalline substrate that determines their orientation, it can produce highly in-plane and 

out-of-plane oriented thin films and can elevate the overall efficiency of the device using 

epitaxial films. The epitaxy Au foils peeled off from the Si surface serve a great example 

in this case. This work also provides a path to harvest solar energy from the Au films 

deposited on n-Si surfaces which form a Schottky barrier and serve as photoelectrodes in 

a regenerative cell. 

Paper I introduces the epitaxial electrodeposition of Au thin films on n-type Si using 

a HAuCl4 bath. A photoelectrochemical regenerative cell is built using Au-Si junction as 

the photoanode and Fe2+/3+ solution as the electrolyte. A maximum photo current density 

of 11.9 mA cm-2 is acquired under 100 mW cm-2 light intensity and the effect of the Au 

layer on the interfacial energetics as well as the stability of the photoelectrode as a function 

of the Au coverage/thickness is determined. A transparent sulfite solution is also introduced 

to avoid light absorption by the redox couple ions and bring the photo current density up 

to 28.5 mA cm-2.  

Paper II exhibits a technique for epitaxial lift-off of Au foils as semi-transparent, 

flexible and single crystal-like substrates for flexible electronics. A Au thin film is first 

deposited on Si and then photooxidation is performed to create an SiOx layer in between 
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the Au and the Si substrate, followed by the lift-off process of the Au foil. The Au foils 

exhibit as low as 4% increase in resistance after 4000 bending cycles. A flexible OLED 

was spin-coated on a Au foil taking advantages of the transmittance and flexibility of the 

foil. An epitaxial diode made of Au/Cu2O Schottky contact using the Au foils presents a 

diode quality factor n of only 1.6 compared to a polycrystalline diode of n = 3.1. 

Paper III introduces the electrodeposition of epitaxial Ag thin films on three 

different orientations of Si surfaces from an acetate bath. A very negative potential of -2.34 

V vs. Hg/Hg2SO4 is used for pre-polarization and deposition to avoid Si oxidation. A 10 

nm thick Ag film is obtained for ten minutes deposition. An epitaxial Ag deposit is also 

acquired on n-Si(111) using a cyanide bath but the epitaxial deposition of Ag on Si surfaces 

with other orientation was not successful from the cyanide solution. 
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