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ABSTRACT 

As the rapid growing of nanotechnology, the release of engineered nanoparticles 

(ENPs) into the environment is inevitable. After entering the real environment, ENPs 

tend to react with different components of the ecosystem (e.g. water, soil, air, plants) and 

make their characterization difficult. Analyzing ENPs in these complex matrices still 

remains as a grand challenge. ENPs characterization is normally the first step of risk 

assessment. Current analytical techniques have shown some limitations in revealing the 

unique characteristics of ENPs in complex matrices and reliable analytical techniques are 

in urgent need. Single particle inductively coupled plasma mass spectrometry (SP-ICP-

MS) is an emerging technique capable of determining the ENPs particle size, particle 

concentration and dissolved analyte concentration and has the potential to fill the 

analytical gap. In the presented dissertation, several SP-ICP-MS methods were developed 

and validated to determine the ENPs particle size, size distribution, particle 

concentration, and dissolved analyte concentration in complex matrices, such as 

sunscreens and plant tissues. An enzymatic digestion method was also developed to 

extract ENPs within plant tissues without causing particle dissolution for subsequent SP-

ICP-MS quantification. Utilizing enzymatic digestion-SP-ICP-MS, the presence of 

dissolved cerium in plant shoots exposed to CeO2 NPs hydroponically was confirmed for 

the first time. Our results also suggest that CeO2 NPs might be taken up by plant roots as 

ionic cerium. Collectively, SP-ICP-MS has shown great advantages over other 

techniques, such as high sensitivity, tolerance of complex matrices, high throughput, and 

informative results (particle size, size distribution, particle concentration, and dissolved 

analyte concentration). 
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SECTION 

1. INTRODUCTION 

1.1. ENGINEERED NANOPARTICLES 

Engineered nanoparticles (ENPs) are broadly defined as man-made nano-object 

with all there external dimensions in the nanoscale (1 nm -100 nm).1 As particle size 

decreases into the nanometer range, the specific surface area increases exponentially and 

a higher portion of atoms are exposed on the particle surface, resulting in more reactive 

groups on the surface and subsequently making nanoparticles totally different from their 

bulk counterparts.2 Due to their unique properties, ENPs have been widely incorporated 

into many commercial products. TiO2 NPs and ZnO NPs have been widely used as 

effective inorganic UV filter in many sunscreens and other cosmetics.3-6 CeO2 NPs are 

popular fuel additives.7 SiO2, CeO2 and Al2O3 NPs are widely used as catalysts.8 Due to 

the increasing use of engineered nanomaterials in consumer products and toxicity studies 

of engineered nanomaterials, regulatory agencies and other research organizations have 

determined that the development of robust, reliable, and accurate methodologies to 

characterize ENPs in complex matrices is a top priority and are in urgent need.9 

 

1.2. IMPORTANT PROPERRIES OF ENGINEERED NANOPARTICLES AND 

THEIR SIZE/COMPOSITION CHARACTERIZATION 

The main properties of ENPs include particle size, size distribution, chemical 

composition, particle concentration, aggregation state, shape, crystallinity, surface 

charge, specific area, surface speciation and functionality, and so on.1  Different 

techniques and instrumentations are required to characterize different properties of ENPs. 
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There is no single technique can fully characterize all of the main properties of ENPs 

aforementioned. For ENPs, the size, size distribution, chemical composition are of 

primary interest for many purposes. Electron microscopy, field flow fractionation (FFF) 

and light scattering are the most widely used methodologies for ENP size 

characterization, even though some other techniques are also available. Characterizing 

ENPs in complex matrices (e.g. in real water, soil, biological matrices) is far more 

complicated than characterizing pure synthesized ENPs.  

Electron microscopy is a powerful technique for ENPs size characterization and 

chemical composition analysis coupled with energy dispersive spectroscopy detector. 

However, its application is usually limited by its sensitivity for environmental and 

biological samples. Characterizing ENPs in biological matrices also requires extensive 

sample preparation which usually involves fixation, dehydration, sectioning, and staining. 

Electron microscopy only examines a tiny fraction of the whole specimen and therefore 

sometimes it is not representative. 

FFF is a particle separation technique. The particle size can be calculated either 

by FFF theory or by establishing a particle size-retention time calibration curve.10, 11 In 

FFF, a physical field is perpendicularly applied to a solution pumped through a long and 

narrow channel, to separate the particles/macromolecules in the solution, depending on 

their differing "mobility" under the force exerted by the field.12 Based on the different 

fields applied, FFF can be classified into symmetrical flow FFF, asymmetrical flow FFF, 

centrifugal/sedimentation FFF, thermal FFF, electrical FFF etc. After FFF separation, 

UV/Vis detector, light scattering detector and elemental based detectors (ICP-OES/ICP-

MS) are usually used to detect the analyte, either alone or online coupled together. FFF-
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UV/MALS-ICP-MS has shown great potential for particle characterization, especially to 

study the interactions between particles/colloids and other chemicals. For example, FFF-

ICP-MS recently has been successfully used to study the interactions between toxic 

elements and environmental colloids/NPs or humic acid, such as U(VI) sorption to nano-

hematite,13  interaction of bentonite colloids with Cs, Eu, Th and U in presence of humic 

acid,14 NOM-metal complexes in water.15 Even though FFF coupling with multi detectors 

holds quite some analytical merits, some challenges still remains. For example, each 

analysis usually takes 1 hour or even longer if the size range of particles are wide, which 

makes FFF not a high throughput technique. Another challenge in FFF is the non-specific 

interactions between analyte particles and FFF membranes, which can cause the retention 

time shift and sample loss.9, 16, 17 

 

1.3. SINGLE PARTICLE−INDUCTIVELY COUPLED PLASMA−MASS 

SPECTROMETRY 

Single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) is an 

emerging technique for NP characterization and quantification, especially at low NP 

concentrations and in complex matrices. Degueldre and his colleagues pioneered in this 

field in the early 21th Century and laid the foundation for SP-ICP-MS.18-22 Briefly, in SP-

ICP-MS analysis, NPs suspensions enter the plasma and get ionized individually, and 

then are detected as pulse (non-continuous) signals by the mass spectrometer, making SP-

ICP-MS a powerful technique to detect the masses of metal elements in each NP.23-27 

Meanwhile, the corresponding dissolved analyte is detected as a continuous signal, 

meaning that SP-ICP-MS is capable of simultaneously detecting both the particle analyte 

and the dissolved analyte.26 In SP-ICP-MS analysis, the signal intensity of a NP depends 
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on the particle size, and the signal frequency is proportional to the particle concentration 

in samples.22-27 At the early stage, SP-ICP-MS was a more qualitative technique due to 

the absence of well-characterized NP standards, and highly sensitive and rapid mass 

scanning ICP-MS instrument. Recently, quantitative results have been achieved by SP-

ICP-MS after some well-defined NP standards, such as AuNPs and silver NPs (AgNPs), 

and fast scanning ICP-MS, such as NexION 350 ICP-MS, become commercially 

available.23, 24, 28-31 

There have been some successful applications of SP-ICP-MS for analysis of the 

size and concentration of NPs in environmental and biological matrices. For instance, 

Tuoriniemi et al. analyzed titanium (Ti), cerium (Ce) and Ag associated particles in 

wastewater effluent samples and the measured particle  concentration was in the order of 

magnitude of the predicted concentrations.32 Mitrano et al. used SP-ICP-MS to 

quantitatively track the dissolution of 60 and 100 nm silver NPs in laboratory, natural and 

processed water matrices, and found that the water chemistry significantly affected the 

NP dissolution.33 For NP analysis in biological tissues, the major challenge is the 

extraction of NPs from these tissues without compromising their properties. Concentrated 

acids are commonly used for metal extraction from tissues. However, they are not 

applicable for NP analysis because the concentrated acids can dissolve the NPs. Gary et 

al. extracted Ag and Au NPs from ground beef, Daphnia magna, and Lumbriculus 

variegatus using tetramethylammonium hydroxide (TMAH) and quantified the NP sizes 

and NP particle concentrations using SP-ICP-MS method.34 Loeschner et al. and Peters et 

al. digested chicken meat with Proteinase K to extract Ag NPs.35, 36 Loeschner et al. also 

used alkaline and enzymatic treatment on rat spleens for AuNP extraction prior to SP-
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ICP-MS quantification, and obtained similar size distributions of AuNPs with both 

treatments.37 Marshall et al. used enzymatic digestion (1-β-endogluconase) to extract 

AuNPs in Brassic Juncea followed by X-ray absorption near edge spectroscopy 

(XANES) quantification.38 These progresses on SP-ICP-MS and tissue digestion provide 

an excellent opportunity to simultaneously obtain particle size, particle concentration, and 

dissolved analyte concentration information in biological and environmental samples.  

 

1.4. FUTURE PERSPECTIVES OF SP-ICP-MS 

So far, SP-ICP-MS is still limited to one isotope due to the scanning nature of 

most commercial ICP-MS systems as well as the extremely short signal duration of one 

single nanoparticle (typically 0.3-0.5 ms), even  though there is one publication on two-

isotope SP-ICP-MS.29 One feasible approach is to use extremely fast scanning 

quadrupole ICP-MS with dwell time much shorter than the signal duration of one single 

nanoparticle (e.g. 10 μs), such as PerkinElmer’s NexION 350 ICP-MS. Another 

promising approach is to use dispersive mass analyzer (e.g. sector field) instead of 

scanning mass analyzer (e.g. quadrupole). All of the isotopes/elements from one single 

particle will be dispersed onto a focal plane for simultaneous detection. Unfortunately, 

sector field ICP-MS systems with dwell time/integration time close to or shorter than 0.3-

0.5 ms are not commercially available. The multi-element capability of SP-ICP-MS will 

significantly broaden its applications and provide researchers with more information of 

the samples.  

Another issue in SP-ICP-MS is its size detection limit. To date, it is difficult to 

accurately size particles less than 10 nm. Most ions do not get into the mass spectrometer 

after being ionized in the plasma. The ion transmission from the plasma to the detector 



 

 

6 

needs to be improved. The improvement of detector efficiency can also significantly 

decrease the size detection limit. 

 

1.5. INTERACTIONS BETWEEN NANOMATERIALS AND PLANTS 

The rapid development and mass production of ENPs will result in potential 

release of ENPs into the environment. After being released into the environment, ENPs 

tend to react with different components in the ecosystem. Plant is a critical component of 

the ecosystem and its interaction with ENPs has attracted researchers’ attention in the last 

decade. Plant uptake and accumulation of ENPs represent an important pathway for 

potential human exposure to ENPs. Different kinds of ENPs have been studied 

extensively in recently years. Uptake of ENPs was found, however, the uptake 

mechanism is still not clear and is under debate.  

Among ENPs, CeO2 NPs have attracted significant attention on their fate and 

transport. Due to the low solubility of CeO2 NPs, the detection of Ce in plant tissues is 

usually interpreted as evidence of Ce uptake as intact CeO2 NPs.39 The interpretation is 

also supported by the detection of Ce4+ oxidation state by near edge X-ray absorption fine 

structure (XANES).40 However, the detection of biotransformed products (e.g. CePO4, 

cerium carboxylate) in plant tissues and elevated Ce3+ around root surface spurred a new 

theory that CeO2 NPs may release Ce3+ on root surface, which are then taken up by plant 

roots and immediately oxidized to CeO2 NPs.39 No definitive evidence is available to 

confirm the existence or significance of this pathway. Another unsettled issue associated 

with the plant and CeO2 NPs interaction is that even though biotransformed product was 

detected in plant tissues, it is unclear whether the Ce3+ in plant tissues are dissolved from 

CeO2 NPs following their uptake or are directly taken up from the growth media. 
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ABSTRACT 

 

Titanium dioxide (TiO2) particles in the nanometer (nm) size range are widely 

used in commercial sunscreens. Single particle inductively coupled plasma-mass 

spectrometry (SP-ICP-MS) is an emerging methodology for nanoparticle (NP) 

characterization and quantification. In this study, a rapid SP-ICP-MS method was 

developed to simultaneously determine the primary particle size, size distribution, 

particle concentration (particles/mL), and mass content (weight percent) of TiO2 NPs in 

commercial sunscreens. Quality control data indicated that the developed method was 

capable of accurately measuring TiO2 particle size in sunscreen matrix. Four types of 

commercial sunscreens containing different amounts of TiO2 were analyzed, and the 

primary particle sizes detected varied from 32 nm to 40 nm in the different sunscreens 

tested. TiO2 existed as TiO2 particles in the tested sunscreens. The TiO2 mass contents in 

these sunscreens were also determined by a novel standard addition-SP-ICP-MS method, 

using a 40 nm TiO2 NP as the NP standard. Although the measured TiO2 mass content 

was close to that determined by acid digestion and the manufacturer-claimed content, 

improvement in accuracy is needed and can be achieved if better-matched NP standards 

available. The standard addition-SP-ICP-MS method offers a promising alternative for 

determining the TiO2 NP mass content in sunscreen, in lieu of using the laborious, time-

consuming, and costly acid digestion-ICP-MS method. The major advantages of SP-ICP-

MS analysis are easy sample preparation, high throughput, and informative results 

(particle size information and total TiO2 mass content). 

Key words: single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS), 

TiO2 nanoparticle, sunscreen, standard addition method  
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1. Introduction 

TiO2 nanoparticles (NPs) have been widely used as an effective inorganic UV 

filter in many sunscreens and other cosmetics. However, their safety has been questioned 

due to potential skin penetration and bio-accumulation.[1] The smaller the particle, the 

greater the potential adverse health effects, since smaller particles more easily enter the 

human body and cross biological membranes where larger particles normally cannot.[2] 

Research has shown that most of the TiO2-containing sunscreens catalyze the photo-

oxidation of phenol and sunlight-illuminated TiO2  even caused DNA damage in human 

cells.[3] TiO2 NPs can react with natural entities such as natural organic matter, colloids 

and microorganisms after entering the ecosystem.[4] It has also been demonstrated that 

various plants can uptake NPs and thereby penetrate the food chain.[5] Recent research 

shows that TiO2 NP is toxic to many organisms, such as marine abalone,[6] Japanese 

medata,[7] Mytilus galloprovincialis,[8] fish,[9] Daphnia magna and Oryzias latipes,[10] 

rats,[11] zebrafish embryos.[12, 13] Sunscreens are usually applied to human skin to 

block ultraviolet rays from sun light. However, visible light or ultraviolet light play a 

critical role in enhancing TiO2 toxicity.[8-10, 12] Therefore, there is a need to 

characterize TiO2 in sunscreens so as to assess its impact on human health and the 

environment. 

However, to date, there is no official method for TiO2 characterization that 

includes particle size, size distribution, existing form (solid TiO2 or dissolved Ti), and 

mass content (weight percent) in commercial sunscreens.[2] The primary particle size of 

TiO2 NP used for sunscreen formulation is usually less than 50 nm.[14] Since small 

particles can cross biological membranes, but larger particles normally cannot,[2] it is 

necessary and important to have a method that has the ability to detect the 
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primary/smallest (non-aggregated) TiO2 NP in commercial sunscreens.  For TiO2 particle 

size determination in cosmetic products, the technique used is mainly field flow 

fractionation (FFF) orientated, such as FFF-UV,[2] and FFF-ICP-MS.[15-17] The major 

disadvantages of the FFF method are more complicated sample preparation and the long 

analysis time, usually 1 hour for each run. For TiO2 mass content determination, the 

dominant method is time consuming acid digestion followed by inductively coupled 

plasma-atomic emission spectroscopy (ICP-AES) or ICP-MS quantification.[18-20] X-

ray fluorescence has also been used to measure TiO2 mass content.[21, 22] However, 

none of the above-mentioned techniques is able to simultaneously measure particle size 

distribution, particle concentration (particles/mL), and mass content of TiO2 rapidly in a 

single method.  

Single particle-ICP-MS (SP-ICP-MS) is an emerging technique for NP 

characterization, especially in environmental matrices where NP concentrations are 

relatively low. The principles of SP-ICP-MS were well explained by Degueldre and his 

colleagues.[23-27] In SP-ICP-MS analysis, NPs enter the plasma and get ionized 

individually and then are detected as pulse (non-continuous) signals, which means SP-

ICP-MS is capable of detecting the masses of metal elements in each NP.[28-30] 

Meanwhile, the signal of corresponding dissolved analyte is detected as a continuous 

signal. Therefore, SP-ICP-MS is capable of simultaneously detecting particle analyte and 

dissolved analyte.[28] The signal intensity of a NP is proportional to the particle size, and 

the signal frequency is proportional to the particle concentration.[26, 27] SP-ICP-MS has 

been used for NP size and NP concentration analysis in environmental and biological 

matrices, such as detecting NPs in wastewater[31, 32] and in chicken meat,[33, 34] 
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studying the uptake of silver and gold NPs (AuNPs) by Daphnia magna and Lumbriculus 

variegatus,[35] detecting AuNPs in rat spleen,[36] characterizing AuNPs uptake by 

tomato,[37] and tracking the dissolution of silver NPs in several water matrices.[38] 

These research mainly focused on the determination of NP size and NP concentration in 

different matrices using the SP-ICP-MS method. To the best of our knowledge, 

quantitative determination of the NP mass content in complex matrices by the SP-ICP-

MS method has not been reported. In this study, a novel and rapid standard addition-SP-

ICP-MS method was also developed to determine the TiO2 mass content in commercial 

sunscreens, in addition to rapid analysis of TiO2 NP size, size distribution, and particle 

concentration. 

 

2. Experiments 

2.1 Chemicals and Instrumentation  

Four commercial sunscreens containing different amounts of TiO2 were 

purchased from local stores. Triton X-100 used to disperse sunscreens, was purchased 

from Alfa Aesar (Ward Hill, MA). Ultrapure water, with a resistivity of 18.2 MΩ·cm, 

was produced by a Simplicity185 water system from Millipore. Concentrated trace metal 

grade sulfuric acid, nitric acid, and hydrochloric acid for hot block acid digestion of 

sunscreens were purchased from Fisher Scientific (Pittsburgh, PA). A hand-held tissue 

homogenizer was used to homogenize sunscreens. A dissolved Ti calibration stock 

solution was obtained from PerkinElmer (Shelton, CT). Three AuNP standards, with 

particle sizes of 50, 80, and 100 nm, purchased from NanoComposix (San Diego, CA) 

were used to measure the transport efficiency of the sample introduction system of ICP-

MS. These AuNP standards, with a narrow size distribution (TEM data from the vendor), 
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were citrate-stabilized to prevent aggregation/agglomeration and to achieve an accurate 

particle concentration. A 40 nm TiO2 NP, purchased from US-NANO (Houston, TX), 

was used for the standard addition-SP-ICP-MS method to measure the TiO2 mass content 

in these commercial sunscreens. NexION 300/350D ICP-MS (PerkinElmer, Shelton, CT) 

with Syngistix Nano Application module was used for SP-ICP-MS analysis. Acid 

digestion was performed using a MOD hot block digester (CPI International-USA, Santa 

Rosa, CA) to verify the TiO2 NPs mass content in sunscreen. Hexane purchased from 

Fisher Scientific (Pittsburgh, PA) was used for TiO2 particle extraction from sunscreen 

for scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) analysis 

(FEI, Hillsboro, Oregon) according to “Method A” in published methods with slight 

modifications (repeat the extraction three times and centrifuge the aqueous phase).[16] 

 

2.2 SP-ICP-MS Method   

The ICP-MS operating conditions and SP-ICP-MS method parameters are listed 

in Table 1. 48Ti, with a natural abundance of 73.8%, was measured with SP-ICP-MS. The 

Syngistix Nano Application module was used for data collection and processing. In SP-

ICP-MS analysis, the Ti mass was measured first, and then a mass fraction of 60% was 

used to convert the Ti mass to TiO2 mass since the ratio of Ti/TiO2 is 60% by weight. 

The TiO2 mass (m) was then converted into TiO2 particle size (d) with the knowledge of 

TiO2 density (𝞺) and by assuming the spherical TiO2 particle according to Equation (1).  

 

m = ρ ×V = ρ × (4/3) ×π × (d/2)3-----------------------------------(1) 

m-mass of a spherical TiO2 particle; ρ -density of TiO2; V-volume of a spherical TiO2 

particle with a diameter of d; d -diameter of a spherical TiO2 particle. 
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Solid TiO2 has several different forms which have different densities, the most 

common being rutile and anatase TiO2. According to Lewicka’s study,[39] TiO2 

pigments are usually rutile nanocrystals with a near spherical shape. Therefore, the 

density of rutile TiO2, 4.23 g/cm3, was used in the SP-ICP-MS method.  

 

 

Table 1. ICP-MS operation conditions and SP-ICP-MS method parameters 

 

 

 

The dwell time was set to 100 μs for 48Ti measurement and the sampling time was 

100 seconds. Therefore, one million data points were generated for each sample. Dwell 

time is a critical parameter and significantly affects the data quality of SP-ICP-MS.[40] A 

100 μs dwell time is much shorter than the typical signal duration of a single NP in ICP-

MS, which is 300-500 μs [40, 41] and, thus, makes peak profiling of a single NP 

possible. With such short dwell time, particle signal overlapping was minimized as long 
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as the particle concentration was not too high and, thus, the accuracy of the size 

measurement was satisfactory. After each run, the software automatically integrated the 

peak area of each single particle and generated information about particle size 

distribution, particle concentration, and dissolved concentration.  

 

2.3 Sample Preparation for SP-ICP-MS Analysis   

Our preliminary experimental results showed that commercial sunscreens are 

usually not homogenous (data not shown), which will deteriorate the reproducibility of 

the developed method. Therefore, the first step was homogenization of these commercial 

sunscreens using a hand-held homogenizer. After homogenization, 0.2 g or more of the 

sunscreen sample was dispersed in 1% Triton X-100 aqueous solution to make a 0.1% 

(w/v) suspension. The mixture was sonicated and vortexed until no aggregates could be 

seen visually and a milky well-dispersed sample was formed. The mixture was 

appropriately diluted using ultrapure water for SP-ICP-MS analysis. To measure 

transport efficiency, stock solutions of  50, 80, and 100 nm AuNP standards were diluted 

using a diluted sunscreen sample (to match the matrix) to a particle concentration of 

approximately 105 particles/mL, with the exact NP concentration recorded. After dilution, 

the sunscreen samples contained 0.00005% and 0.00001% Triton X-100 for 2×104 and 

105 times dilution, respectively. Therefore, dissolved Ti calibration standards were 

prepared in 0.00005% Triton X-100, 0.00001% Triton X-100,  and ultrapure water to 

calculate the TiO2 particle size and to measure the dissolved Ti concentrations in the 

samples if present, according to established SP-ICP-MS theory.[30]  
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2.4 Standard Addition-SP-ICP-MS Method to Measure TiO2 Mass Content in 

Sunscreens  

From SP-ICP-MS analysis, the TiO2 particle size and the number of particles at 

each size were available. With the knowledge of particle density, the mass of each 

particle could be calculated, assuming a spherical particle. Therefore, by summing the 

mass of each particle size, the TiO2 mass content could be calculated theoretically. 

However, due to partial aggregation of TiO2 and the complex matrix of sunscreen, the 

TiO2 mass content calculated using this method was much lower (data not shown here) 

than hot block digestion and the manufacturer-claimed value. The standard addition 

method could correct the matrix effect/aggregation effect by the addition of different 

known amounts of the analyte standard (provided the size is well-matched) into the 

samples to measure the mass concentration. Therefore, the standard addition method was 

developed to measure the TiO2 mass content in sunscreens. 

First, a 0.1% (w/v) sunscreen suspension in 1% Triton X-100 was prepared, as 

described above,  then further  diluted 100 times using 1% Triton X-100 first, followed 

by another 100 times dilution, using ultrapure water. A 40 nm TiO2 (purity of 99.5%) NP 

standard stock suspension was prepared by dispersing the TiO2 NP in a 1% Triton X-100 

aqueous solution. Four spike concentrations, 0, 1.33, 3.33, and 6.65 µg/L of 40 nm TiO2 

NP, were achieved by adding different volumes of the NP stock suspension into the 

diluted sunscreen samples. These spike concentrations were chosen because they were at 

the same order of magnitude of the endogenous TiO2 NP mass concentration in the 

sunscreen, according to the manufacturer-claimed TiO2 mass content. The samples were 

analyzed using the SP-ICP-MS method. 
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After SP-ICP-MS analysis, a plot of total ion counts versus spiked concentration 

was established. The absolute value of the intersection of the extrapolated curve and X-

axis was the endogenous TiO2 mass concentration in sunscreen samples diluted 10,000 

times. The TiO2 mass content in the original sunscreen cream was then calculated based 

on the dilution factor. All sunscreen samples were analyzed in triplicate. 

 

2.5 Hot Block Acid Digestion and ICP-MS Determination of TiO2 Mass Content in 

Sunscreens   

Hot block acid digestion, followed by conventional ICP-MS detection, was 

performed to verify the TiO2 mass content in chosen sunscreens. The same 40 nm TiO2 

NP used in the standard addition method was used as an indicator to evaluate hot block 

digestion performance.  The 40 nm TiO2 NP was digested both alone and by spiking into 

the commercial sunscreen samples. The spike recovery was calculated to evaluate the 

digestion performance. An aliquot of 0.2 g homogenized sunscreen sample was weighed 

into a 70-mL digestion vessel. After weighing, it was heated at 95 °C for approximately 5 

minutes to evaporate any possible volatile organics in the sunscreens.  After organics 

being evaporated, 4 mL each of trace metal grade concentrated sulfuric acid, nitric acid, 

and hydrochloric acid were added sequentially for sample digestion. (Caution: A lot of 

heat was generated when adding concentrated nitric acid and hydrochloric acid into 

concentrated sulfuric acid. Drop by drop addition and personal protective equipment were 

required.) The digestion temperature was set at 95 °C and the digestion was continued 

until the 40 nm TiO2 particles were completely dissolved and a clear solution was 

obtained. After digestion, the solution was brought to 50 mL with ultrapure water. The 

sample was filtered by a 0.45 micron Nylon membrane filter, and then was further diluted 
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with 1% trace metal grade nitric acid for conventional ICP-MS analysis. Due to the 

potential interference of S-O from the sulfuric acid used in digestion, 47Ti isotope with a 

natural abundance of 7.3% was monitored instead of 48Ti with a natural abundance of 

73.8%. 

 

3. Results and Discussions 

3.1 Particle Size Detection Limit of the Developed SP-ICP-MS Method.  

In SP-ICP-MS analysis, a particle can only be detected if the pulse signal 

generated by the particle can be distinguished from the background signal.[42, 43] Most 

reported size detection limit was determined by finding the value of three times of the 

standard deviations above the average background intensity (usually ultrapure water) and 

calculating the corresponding particle size.[42, 43]  The size detection limit calculated 

using this method is largely affected by dwell time, and a shorter dwell time can enhance 

the signal-to-noise ratio.[44] In this study, a dwell time of 0.1 ms was used, which is 

significantly shorter than that in most publications (usually several milliseconds). 

Therefore, the calculated size detection limit was unpractically small (~20 nm for TiO2, 

Supplementary Information, Sheet “Ti48 for ultrapure water” and “Ti48 for 0.00005% 

Triton”). However, there was a peak with an intensity of 3 counts for the blanks 

(ultrapure water and diluted Triton X-100). The Nano Application module converted the 

instrument response (counts) into TiO2 particle size (nm) using the dissolved Ti 

calibration curve, according to the SP-ICP-MS theory.[30] Based on the dissolved Ti 

calibration curve, 3 counts were equal to 27-29 nm TiO2 (due to day-to-day instrument 

sensitivity variation, the value fluctuated slightly). In the blanks, there was no TiO2 NP 
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present theoretically. However, a 27-29 nm TiO2 peak was always obtained for them, 

which indicated that the practical particle size detection limit for the developed method 

was approximately 27-29 nm for TiO2 NP, if 48Ti was measured. 48Ca is a major 

interference for 48Ti measurement in quadrupole ICP-MS, especially for environmental 

sample matrices.[45] However, ICP-MS results showed that the calcium content was 

extremely low (Supplementary Information, Sheet “Calcium content in sunscreens”) in 

sunscreens compared to TiO2 mass content, which enables us to measure 48Ti (natural 

abundance, 73.8%) instead of 47Ti (7.3%) or 49Ti (5.5%). 

 

3.2 Sunscreen Containing no TiO2 NPs as Quality Control  

One sunscreen (sunscreen 3) that did not contain any TiO2 NP (manufacturer 

claimed) served as a negative control in this study. Figure 1(a) shows the raw data of SP-

ICP-MS detection for the 105 times-diluted sunscreen 3 sample. Figure 1(b) shows the 

raw data for diluted sunscreen 3 with spiking at 6.65 µg/L of 40 nm TiO2 NPs. From 

these two plots, it is evident that no TiO2 NPs were detected in the unspiked sunscreen, 

while many TiO2 NPs were detected in the spiked sample. The processed data for diluted 

sunscreen 3, with spiking at 6.65 µg/L of 40 nm TiO2, depicted in Figure 1(c), shows 

that the measured size was approximately 40 nm, which matched the spiked TiO2 NPs 

size. A tailing peak in the size distribution plot was observed, due to either particle 

aggregation (40 nm TiO2 NPs do not contain any surface stabilizing agent to prevent 

aggregation) or the nature of the TiO2 NPs standard used. These data were quality control 

for this method and indicated that the developed method was able to accurately determine 

the size of TiO2 NPs in the sunscreen matrix.  



 

 

19 

 

Figure 1. (a) Raw data for diluted sunscreen 3; (b) Raw data of spiking 6.65 µg/L 40 nm 

TiO2 into diluted sunscreen 3; (c) Processed data of spiking 6.65 µg/L 40 nm TiO2 into 

sunscreen 3 based on Figure 1(b). 

 

 

3.3 Size distribution for different sunscreens  

For determination of particle size by SP-ICP-MS, two methods are currently 

reported in the literature. The first method, which is also the most straightforward one, is 

to use well-characterized NPs of different sizes with accurate particle size and narrow 

size distribution as calibration standards.[28, 29, 31, 38] The instrument response is 

proportional to the third power of the particle diameter. However, due to the absence of 

commercially available well characterized, surface-stabilized TiO2 NP standards with 

narrow size distributions, the above described correlation could not be routinely used. 

Alternatively, we used the corresponding dissolved metal standard intensity to determine 

particle size, the method described by Pace et al.[30] In this method, the dissolved Ti 
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mass concentration (µg/L) was converted to Ti mass (µg) per event/dwell time using 

sample flow rate, dwell time, and transport efficiency. In this way, the relationship 

between the instrument response (counts) and Ti mass could be established. The Ti mass 

was then converted to TiO2 particle size. The assumption for this method was that NP 

suspension and the dissolved analyte solution had similar transport efficiency and 

sensitivity in the sample introduction system. Both methods have been incorporated in 

the software of the Syngistix Nano Application module. In this study, well-defined AuNP 

standards were used to measure the transport efficiency, and dissolved Ti standards were 

used to calculate the TiO2 particle size and dissolved Ti concentration if present.  

Figure 2(a) shows typical raw data for a diluted TiO2 NP-containing sunscreen 

sample. The large pulses with intensities of several hundred or several thousand counts 

represent aggregates of primary TiO2 NPs or the nature of the TiO2 NPs used in the 

sunscreen manufacturing.  For a better view of the raw data, the inset of Figure 2(a) is 

the first 5,000 data points and shows a lot of small pulses with intensities of several 

counts, which represent the primary TiO2 NPs in the sunscreen. Nano-sized TiO2 can 

form TiO2 aggregates of a much larger size during sunscreen formulation.[14] Only pulse 

signals were observed (Figure 2(a)), which indicated TiO2 existed as TiO2 particles 

instead of dissolved Ti in the sunscreens because, if dissolved Ti is present, a continuous 

Ti signal would be observed. The result agrees with the fact that TiO2 is very difficult to 

dissolve under common conditions. Figure 2(b) shows the size distribution for 2×104 

times-diluted sunscreen 1. Considering that the size detection limit was 27-29 nm, the 

major peak of 2×104 times-diluted sunscreen 1 appeared at approximately 32-35 nm. 

Three replicates also indicated very good reproducibility. This indicated that the 32-35 
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nm peak represented the primary TiO2 NP size in the sunscreen. To further verify this, a 

sample with a higher dilution factor was analyzed. Figure 2(c) shows the size distribution 

for 105 times-diluted sunscreen 1 sample. With further dilution, the major peak was still 

at 32-35 nm with a decreased frequency/particle concentration, which was caused by 

further dilution. This confirmed that the major peak at 32-35 nm represented the 

smallest/primary TiO2 NPs in sunscreen 1. These primary NPs represent the smallest 

TiO2 particles that the human body can potentially be exposed to when sunscreen is 

applied to human skin. Figure 2(d) shows the size distribution of diluted sunscreen 1 

measured on different days, which demonstrated good day-to-day reproducibility of the 

method.  

 

 

Figure 2. (a) The overview of raw data (1,000,000 data points in total) for 2×104 times-

diluted sunscreen 1. Inset: the first 5000 data points out of 1,000,000 data points; (b) Size 

distribution for 2×104 times-diluted sunscreen 1. (c) Size distribution for 105 times-

diluted sunscreen 1. (d) Size distribution for diluted sunscreen 1 measured at Day 1, Day 

5 and Day 12. 
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Figures 3(a) and 3(b) show the size distributions for 2×104 times-diluted and 105 

times-diluted sunscreen 2, respectively. With different dilution factors, the size 

distribution remained the same. The measured primary particle size for this sunscreen 

was 35-40 nm, slightly larger than that for sunscreen 1. Three replicates also showed 

good reproducibility, especially for 2×104 times-diluted samples. The TiO2 particle size 

in sunscreen 2 was confirmed by SEM shown in Figure 4. The chemical identity of 

particles shown in Figure 4 was confirmed by SEM-EDS to be Ti-containing particles 

and it should be TiO2 in this case. The particle size measured by SP-ICP-MS and SEM 

agreed well with each other. Figure 3(c) shows the size distribution for 2×104 times-

diluted sunscreen 4 and Figure 3(d) shows the size distribution for 105 times-diluted 

sunscreen 4. The measured particle size was approximately 32-35 nm, which is similar to 

that in sunscreen 1. 

 

 

Figure 3. (a) Size distribution for 2×104 times-diluted Sunscreen 2; (b) Size distribution 

for 105 times-diluted Sunscreen 2; (c) Size distribution for 2×104 times-diluted Sunscreen 

4; (d) Size distribution for 105 times-diluted Sunscreen 4. 
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Figure 4. SEM image for TiO2 NPs extracted from Sunscreen 2. 

 

 

3.4 Particle Concentration  

For particle concentration determination in SP-ICP-MS, the transport efficiency 

of the sample introduction system is a critical parameter. Transport efficiency is the 

efficiency of the sample introduction system transporting NPs into plasma. The transport 

efficiency measured with gold reference nanoparticles can be extended to the 

characterization of other metallic nanoparticles.[30] Transport efficiency (η) was 

measured using 50, 80, and 100 nm AuNPs, according to Method 3 in Pace’s paper.[30] 

The TiO2 NP concentration (Cp) was calculated using the knowledge of transport 
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efficiency (η), aspiration rate (f), sampling time (t), and number of TiO2 particle signals 

(Ni), based on Equation (2).  

 

𝑪𝒑 =
𝑵𝒊

𝒇∗𝒕∗𝛈
 ----------------------------------------------------(2) 

Ni-number of particle signals; f-aspiration rate, mL/min; t-sampling time, min; Cp-

particle concentration, particles/mL. 

 

 

Table 2 shows the particle concentration for the 2×104 times-diluted sunscreen 

samples. The sampling time (t) was 100 seconds for the developed method and the 

flow/aspiration rate (f) was 0.268 mL/min. The transport efficiency (η) was measured 

using 50, 80, and 100 nm (similar η for 50, 80, and 100 nm AuNPs) AuNPs and was 

averaged to be 6.87% (a small variation every time) The number of particle signals seen 

by the instrument (Ni) was given by the software as shown in the No. of Peaks column of 

Table 2. With all of this information, the particle concentration (Cp) was calculated using 

Equation (2). The relative standard deviations (RSDs) of the triplicated detection were 

less than 12% for 29-100 nm range, which indicates good reproducibility, especially for 

NP analysis. It should be noted that the particle concentration of particles larger than 100 

nm was also calculated using the same transport efficiency as the particles 29-100 nm, 

which was measured using 50, 80, 100 nm AuNPs. The actual transport efficiency of 

these larger particles is expected to be lower than that of particles less than 100 nm. Since 

this research was mainly focused on NPs (< 100 nm) analysis, the particle concentrations 

of larger than 100 nm particles were not further studied and only semi-qualitative data 

were provided. 
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Table 2. Particle concentration information for 2×104 times-diluted sunscreen samples 

 

 

 

3.5 Standard Addition method for TiO2 mass content determination.  

Sunscreens usually contain high level of inorganic and organic ingredients, which 

makes the matrix complex. Microwave-assisted or hot block acid digestion can be used 

for TiO2 mass content determination. However, acid digestion is time-consuming, labor 

intensive, and costly. The standard addition method can correct the matrix 

effect/aggregation effect by adding different known amounts of analyte standard 

(provided the size is well-matched) in the samples for concentration measurement. In SP-

ICP-MS analysis, the total ion count is available by simply summing all ion counts. The 

total ion count is proportional to the TiO2 mass content in a sunscreen sample. The 

correlation of total ion counts and TiO2 mass content was obtained by adding known 

amounts of the TiO2 NP standard into the sunscreen sample.  

In this study, since the measured TiO2 size in these sunscreens was 32-40 nm, a 

40 nm TiO2 NP was chosen as the standard for the standard addition method to quantify 

the TiO2 mass content, considering the fact that similar sizes of NPs are supposed to have 
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similar behaviors in the same matrix. For each sunscreen, one aliquot of a sample, 

without adding any 40 nm TiO2 NPs, and three more aliquots were spiked with different 

amounts of 40 nm TiO2 NPs standard to make spiked concentrations of 1.33, 3.33, and 

6.65 µg/L.  All samples were prepared and analyzed in triplicate by the SP-ICP-MS 

method to determine reproducibility of the method. A plot of total ion counts versus 

spiked concentration (0, 1.33, 3.33, 6.65 µg/L) was established from the SP-ICP-MS 

data. The curve was extrapolated to X-axis and the absolute value of the intersection of 

the extrapolated curve and the X-axis was the endogenous TiO2 mass concentration in the 

diluted sunscreen sample.  

Figures 5(a)-5(d) show the results of the standard addition-SP-ICP-MS method 

for sunscreen 1, sunscreen 2, sunscreen 3, and sunscreen 4, respectively. The 

concentration calculated from Figure 5 was TiO2 mass concentration in sunscreen 

samples diluted 10,000 times. The TiO2 mass content in the original sunscreen was 

calculated back into a percentage based on the sample preparation procedures. Figure 6 

shows the comparison of TiO2 mass content determined by the standard addition-SP-ICP-

MS method, with the hot block digestion-ICP-MS method, and with the manufacturer-

claimed mass content. The TiO2 mass contents, measured by the standard addition-SP-

ICP-MS method for sunscreen 2 and sunscreen 3, were very close to those determined by 

the acid digestion-ICP-MS method and what the manufacturer-claimed. However, for 

sunscreen 1 and sunscreen 4, the TiO2 mass content determined by the standard addition-

SP-ICP-MS method was lower than that determined by the conventional acid digestion-

ICP-MS method. Three possible reasons may have caused this. (1) The size of the TiO2 

in sunscreen 2 had a primary particle size of 35-40 nm, as shown in Figure 3(a). This 
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was closer to the size of the 40 nm TiO2 NP standard than those of sunscreen 1 and 

sunscreen 4, which were approximately 32-35 nm. (2) The 40 nm TiO2 NP used for the 

standard addition was anatase TiO2. It is possible that the TiO2 used in these commercial 

sunscreens was rutile TiO2 or the mixture of rutile and anatase TiO2.[39] (3) The shape of 

the 40 nm TiO2 NP standard was spherical, while, the shape of the TiO2 in sunscreen 1 

and sunscreen 4 may not be perfectly spherical. In the standard addition method, 

choosing the right standard was important to achieve good accuracy. Nevertheless, the 

standard addition-SP-ICP-MS method still offered a promising rapid and simple 

alternative for determining the TiO2 NP mass content in sunscreen. The 40 nm TiO2 NP 

standard used in this study was the best match we have been able to find so far. The 

accuracy could be improved if better matched NP standards were available.  

 

 

 

Figure 5. Standard addition method for four sunscreens to detect TiO2 mass content. (a), 

(b), (c), (d) stands for 10000 times-diluted sunscreen 1, sunscreen 2, sunscreen 3 and 

sunscreen 4, respectively. 
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Figure 6. Comparison of TiO2 mass content determined by standard addition-SP-ICP-MS 

method, acid digestion-ICP-MS method and manufacturer-claimed.  

 

 

 

 

4. Conclusions 

A novel SP-ICP-MS method was developed to determine the TiO2 NP size, size 

distribution, and particle concentration in commercial sunscreens. The developed method 

is high throughput, reproducible, and sensitive.  The primary particle size determined by 

the SP-ICP-MS in commercial sunscreens was in the range of 32-40 nm.  TiO2 NP mass 

content was also determined by a standard addition-SP-ICP-MS method which takes 

much less time than the conventional acid digestion-ICP-MS method. The TiO2 mass 

content in sunscreens that was determined by the standard addition-SP-ICP-MS method 

was close to that determined by the conventional acid digestion-ICP-MS method, and the 

TiO2 content claimed by the manufacturer. Further improvement in accuracy can be 

achieved if better-matched NP standards are available. This SP-ICP-MS method provides 
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unique advantages over other currently available methods, such as high throughput, 

informative (simultaneous detection of particle size, size distribution, aggregation, 

dissolved concentration), and economical. The developed method should also be 

applicable for other samples containing TiO2 NPs and other metallic NPs with 

appropriate modifications. 
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ABSTRACT 

Plant uptake and accumulation of nanoparticles (NPs) represent an important 

pathway for potential human expose to NPs. Consequently, it is imperative to understand 

the uptake of accumulation of NPs in plant tissues and their unique physical and chemical 

properties within plant tissue.   Current technologies are limited in revealing the unique 

characteristics of NPs after they enter plant tissues. An enzymatic digestion method, 

followed by single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) 

analysis, was developed for simultaneous determination of gold NP (AuNP) size, size 

distribution, particle concentration, and dissolved Au concentration in tomato plant 

tissues. The experimental results showed that Macerozyme R-10 enzyme was capable of 

extracting AuNPs from tomato plants without causing dissolution or aggregation of 

AuNPs. The detection limit for quantification of AuNP size was 20 nm and the AuNPs 

particle concentration detection limit was 1000 NPs/mL. The particle concentration 

recoveries of spiked AuNPs were high (79%-96%) in quality control samples. The 

developed SP-ICP-MS method was able to accurately measure AuNP size, size 

distribution, and particle concentration in plant matrix. The dosing study indicated that 

tomato can uptake AuNPs as intact particles without alternating the AuNPs properties.  

 

Key words: single particle-ICP-MS, engineered nanoparticles, plant uptake, gold 

nanoparticle in tomato, Macerozyme R-10 enzyme  
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INTRODUCTION 

Rapid development of nanotechnology has reshaped the landscape of technologies 

in water and wastewater treatment, agriculture, medicine and manufacturing. In the 

agricultural industry, engineered nanoparticles (NPs), broadly defined as man-made 

materials with their size smaller than 100 nm in at least two dimensions,1  have been 

incorporated into fertilizers, nanosensors, pathogen combating formulas,2 and many other 

products. There are also unintentional releases of engineered NPs from the products to 

the environment, which may end up in agricultural land through water irrigation or 

biosolid disposal.3, 4 Consequently, interactions of engineered NPs with agricultural crops 

are possible and their impact on crop health and food safety needs to be investigated. It is 

now well recognized that some engineered NPs affect crop development and yield, and 

many of them are accumulated in plant tissues, including the edible tissues.5-9  Plant 

uptake and accumulation of engineered NPs are of great concern because they provide a 

potential pathway for human exposure to engineered NPs. The determination of 

engineered NP characteristics, such as particle size, concentration, aggregation, chemical 

stability in plant tissues is, therefore, of critical importance to the understanding of the 

health and safety impacts of engineered NPs. Unfortunately, current technologies have 

many limitations in characterizing and quantifying engineered NPs in plant tissues. For 

example, most microscopic imaging techniques only allow qualitative investigation of a 

tiny fraction of plant tissues, which are often not representative of the whole plant tissues. 

While tissue digestion techniques, such as acid digestion followed by inductively coupled 

plasma-mass spectroscopy (ICP-MS) or inductively coupled plasma-optical emission 

spectrometry (ICP-OES) quantification, allow quantitative determination of metallic 
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engineered NPs, detailed information on the state and localization of engineered NPs in 

plant tissues is lost after acid digestion.  

Single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) is an 

emerging technique for NP characterization and quantification, especially at low NP 

concentrations and in complex matrices. Degueldre and his colleagues did a lot of 

pioneering work in the early 21th Century and laid the foundation for SP-ICP-MS.10-14 

Briefly, in SP-ICP-MS analysis, NPs in samples enter the plasma and get ionized 

individually, and then are detected as pulse (non-continuous) signals by mass 

spectrometer, making SP-ICP-MS a powerful technique to detect the masses of metal 

elements in each NP.15-17 Meanwhile, the corresponding dissolved analyte is detected as a 

continuous signal, meaning that SP-ICP-MS is capable of simultaneously detecting both 

the particle analyte and the dissolved analyte.15 In SP-ICP-MS analysis, the signal 

intensity of a NP depends on the particle size, and the signal frequency is proportional to 

the particle concentration in samples.10-14 In the early stage, SP-ICP-MS was more 

qualitative due to the absence of well-characterized NP standards, and highly sensitive 

and rapid mass scanning ICP-MS instrument. Recently, quantitative results have been 

achieved by SP-ICP-MS after some well-defined NP standards, such as AuNPs and silver 

NPs (AgNPs), and fast scanning ICP-MS, such as NexION 350 ICP-MS, have become 

commercially available. 

There have been some successful applications of SP-ICP-MS for analysis of the 

size and concentration of NPs in environmental and biological matrices. For instance, 

Tuoriniemi et al.18 analyzed titanium (Ti), cerium (Ce) and Ag associated particles in 

wastewater effluent samples and the measured particle  concentration was in the order of 
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magnitude of the predicted concentrations. Mitrano et al.19 used SP-ICP-MS to 

quantitatively track the dissolution of 60 and 100 nm silver NPs in laboratory, natural and 

processed water matrices, and found that the water chemistry significantly affected the 

NP dissolution. For NP analysis in biological tissues, the major challenge is the 

extraction of NPs from these tissues without compromising their properties. Concentrated 

acids are commonly used for metal extraction from tissues. However, they are not 

applicable for NP analysis because the concentrated acids can dissolve the NPs. Gary et 

al.20 extracted Ag and Au NPs from ground beef, Daphnia magna, and Lumbriculus 

variegatus using tetramethylammonium hydroxide (TMAH) and quantified the NP sizes 

and NP particle concentrations using SP-ICP-MS method. Loeschner et al.21 and Peters et 

al.22 digested chicken meat with Proteinase K to extract Ag NPs. Loeschner et al.23 also 

used alkaline and enzymatic treatment on rat spleens for AuNP extraction prior to SP-

ICP-MS quantification, and obtained similar size distributions of AuNPs with both 

treatments. Marshall et al.24 used enzymatic digestion (1-β-endogluconase) to extract 

AuNPs in Brassic Juncea followed by X-ray absorption near edge spectroscopy 

(XANES) quantification. These progresses on SP-ICP-MS and tissue digestion provide 

an excellent opportunity to simultaneously obtain particle size, particle concentration, and 

dissolved analyte concentration information in biological and environmental samples. To 

the best of our knowledge, however, SP-ICP-MS has not been used to detect NPs in 

plants and to investigate NPs uptake by plants.  

The objectives of this study were: (1) to develop a plant tissue digestion method 

for AuNPs extraction without causing dissolution or aggregation of AuNPs; (2) to 

develop a SP-ICP-MS method for the measurement of AuNP size, particle concentration, 
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and dissolved Au concentration in digested plant tissue samples; (3) to understand the 

uptake behavior of AuNPs by tomato plants. In this study, we chose AuNP as a 

representative metallic nanoparticle both because of its broad applications in the field and 

its relative stability in the environment. Tomato was chosen due to its popularity as a 

vegetable plant around the world. 

 

EXPERIMENTS 

 

Materials and Instrumentation.  

Ultrapure water (18.2 MΩ•cm) was produced by a Simplicity185 water system 

from MILLIPORE. A PowerGen 125 hand-held tissue homogenizer was used to 

homogenize the plant tissues before enzymatic digestion. The Macerozyme R-10 enzyme 

(source: Rhizopus sp.) purchased from bioWORLD (Dublin, OH, USA) was used to 

digest the plant tissues for AuNPs extraction. A NexION 300/350D ICP-MS with 

Syngistix Nano Application module from PerkinElmer (Shelton, CT, USA) was used for 

SP-ICP-MS analysis. Citrate-stabilized AuNP standards with particle sizes of 10, 12, 15, 

20, 30, 40, 50, 80, 100 nm were purchased from Nanocomposix (San Diego, CA, USA). 

These AuNP standards were citrate-stabilized to prevent aggregation/agglomeration and 

the size distribution of these particle standards was also relatively narrow according to 

the TEM results provided by Nanocomposix. Therefore, they were suitable to serve as 

NP calibration standards in SP-ICP-MS analysis. The polyvinylpyrrolidone (PVP)-coated 

40 nm AuNPs for plant dosing were purchased from NanoComposix. Dissolved Au 

standard was purchased from High-Purity Standards (Charleston, SC, USA). Tomato 
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(Solanum lycopersicum L.) seeds were purchased from Johnny’s Selected Seeds 

(Winslow, ME).         

 

SP-ICP-MS Method Parameters.  

197Au with a natural abundance of 100% was measured by the developed SP-ICP-

MS method. Syngistix software, with a Nano Application module from PerkinElmer, was 

used for data collection and processing. The dwell time was set to 0.1 millisecond (ms) 

and the sampling time was 100 seconds. In the Nano Application module, the settling 

time was totally eliminated and, therefore, one million data points were generated for 

each sample in 100 seconds. Dwell time is a critical parameter in SP-ICP-MS analysis 

and significantly affects the data quality.25 With 0.1 ms of dwell time, the peak profiling 

of a single NP becomes possible because the typical signal duration of a single NP in 

ICP-MS is normally 0.3-0.5 ms.25, 26 With such a short dwell time, overlapping of particle 

signals was minimized and,  thus, the particle sizing and counting accuracy were 

improved as compared with the dwell time of several milliseconds used by most of early 

published SP-ICP-MS methods. AuNP standards with sizes of 30, 50, 80 and 100 nm 

served as particle calibration standards to measure the particle size and particle 

concentration of AuNPs in the digested plant tissue samples. Dissolved Au calibration 

standards were also incorporated in the method to measure the dissolved Au 

concentration in the digested plant tissue samples, if present. After each sample analysis, 

the software automatically processed the raw data and generated the particle size, size 

distribution, particle concentration, and dissolved Au concentration information.  
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The Detection Limit of Particle Size and Particle Concentration.  

The detection limit of particle size was determined by analyzing a series of 

AuNPs with different sizes. The instrument sensitivity was optimized for 197Au because 

only 197Au was analyzed in this study. The ICP-MS detector voltage is an important 

factor affecting the instrument sensitivity. Thus, the detector voltage was optimized to 

achieve the best sensitivity for 197Au. Citrate-stabilized 10, 12, 15, 20, 30, 40, and 50 nm 

AuNP standards were analyzed under optimal conditions. The detection limit of particle 

concentration was determined by analyzing a series of different particle concentrations of 

the 40 nm AuNP standard. Particle concentrations  of 10000, 5000, 2000, 1000, and 500 

NPs/mL, were prepared in  plant matrix (100 times diluted digested sample from the 

control plant, same dilution with the plant sample analysis)  through series dilution from 

a 40 nm AuNP standard stock solution with a particle concentration of 8×1010 NPs/mL. 

The 30, 40, and 50 nm AuNP standards served as calibration standards, and transport 

efficiency was measured using 40 nm AuNP. In ICP-MS, transport efficiency is defined 

as the ratio of the amount of analyte entering the plasma to the total amount of analyte 

aspirated.17, 27  In this study, the transport efficiency was measured using “method 3” 

described by Pace et al.17 All samples were prepared in triplicate and the accuracy 

(recovery) and precision (relative standard deviation, RSD) were calculated.   

 

Plant Growth and Treatment.  

Tomato seeds were surface sterilized with 1.25% sodium hypochlorite solution 

(m/v) for 10 minutes and then rinsed with deionized water three times. The sterilized 

seeds were germinated on DI water moistened filter paper in a Petri dish for 7 days. 
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Healthy young seedlings of similar size were transferred to 50 mL polypropylene 

centrifuge tubes containing 50 mL quarter strength Hoagland solution, purchased from 

PhytoTechnology Laboratories (Lenexa, KS). They were then incubated in a growth cart 

with a 16 hrs-light/8 hrs-dark cycle to allow the seedlings to develop further. The growth 

cart equipped with four T5 fluorescent tubes provided a light intensity of approximately 

133 μmol m-2 s-1 at the height of plant leaves. The temperature was controlled at 27±1°C. 

The Hoagland solution in the tubes was replenished every other day. After about 20 days 

of incubation in Hoagland solution, the plants were moved to new 50 mL centrifuge tubes 

with only DI water for 2 days to remove the Hoagland solution from root surfaces. After 

that, the DI water was replaced with solutions containing different concentrations of 

PVP-coated 40 nm AuNPs. The treatment scenarios included: (1) control (DI water only), 

(2) 0.2 mg/L 40 nm AuNPs, and (3) 5 mg/L 40 nm AuNPs. Each treatment had two 

replicates. The plants were exposed to the solution for 4 days before they were sacrificed 

for enzyme extraction and SP-ICP-MS analysis.  

 

Effect of Macerozyme R-10 Enzyme on AuNPs.   

Macerozyme R-10 is a multi-component enzyme mixture containing cellulose 

(0.1 U/mg), hemicellulose (0.25 U/mg), and pectinase (0.5 U/mg). Considered the major 

component of plant tissues, Macerozyme R-10 enzyme has the capability of digesting 

plant tissues to release the NPs. To evaluate whether the enzyme will cause AuNPs 

dissolution or aggregation, a 50 nm AuNPs standard was diluted to 2.05×105 NPs/mL 

using the enzyme solution followed by an approximately 3 min homogenization with a 

hand-held tissue homogenizer (the same procedure used for processing plant tissue 
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samples). The sample was shaken in a water bath at 37 °C for 24 hours. These samples 

were analyzed with respect to AuNP size and particle concentration using the developed 

SP-ICP-MS method. 

 

Enzymatic Digestion Method.  

Since previous research28, 29 showed that NPs could deposit on the root surface 

and were difficult to wash off, only plant shoots without direct contact with the dosing 

solution were analyzed in this study. After cultivation, the shoots were separated from the 

roots. The cut point was about 1 cm above the medium and the length of the shoot was 

about 5-8 cm. The shoot tissues were washed three times with DI water, then cut into 

small pieces using scissors and homogenized by a hand-held tissue homogenizer in 8 mL 

of 2 mM citrate buffer. The pH was adjusted with nitric acid, to within the pH-optimum 

range of 3.5-7.0 for this enzyme according to the manufacturer’s information. After 

homogenization, 2 mL of the enzyme solution (prepared by adding 1 gram of enzyme 

powder in 20 ml of ultrapure water) was added in. The samples were shaken at 37 °C for 

24 hours. After digestion, the samples were settled down for approximately 1 hour and 

0.1 mL of the supernatant was diluted 100 times using ultrapure water for SP-ICP-MS 

analysis. A NP concentration of 4.7×104 NPs/mL of 100 nm AuNPs was also spiked into 

an aliquot of the plant extract as quality control when running SP-ICP-MS. 

 

Reproducibility Study of the Enzymatic Digestion Method.  

The tomato plants dosed with 5 mg/L of 40 nm AuNPs were used for the 

reproducibility study of enzymatic digestion. The plant shoots were cut into small pieces, 



 

 

45 

combined, and then homogenized in 25 mL of 2 mM citrate buffer. After the tissue 

homogenization, the slurry was vortexed to ensure homogeneity. An 8 mL aliquot of the 

slurry was then transferred to a 50-mL centrifuge tube for enzymatic digestion and three 

replicates were processed in parallel. Two mL of enzyme solution (1 gram of enzyme 

powder in 20 ml of ultrapure water) were added to each 8 mL of slurry and the samples 

were incubated by shaking at 37 °C for 24 hours in a water bath shaker. After the 

incubation, the samples were settled down for approximately 1 hour and 0.1 mL of the 

supernatant was diluted 100 times using ultrapure water for SP-ICP-MS analysis. 

 

RESULTS AND DISSCUSSION 

 

The Detection Limit of Particle Size and Particle Concentration of the Developed 

SP-ICP-MS Method.  

Table 1 shows the optimized ICP-MS operating conditions for 197Au. The size 

detection limit was determined by analyzing 10, 12, 15, 20, 30, 40, and 50 nm AuNPs. 

The intensities of 20, 30, 40, and 50 nm AuNPs were linear to the third power of AuNP 

diameter. However, when the AuNP size decreased to 15 nm, the calibration curve was 

not able to maintain good linearity and the intensities of 15, 12, and 10 nm AuNPs were 

similar, indicating that the quantitative particle size detection limit was 20 nm for AuNPs 

under optimal conditions. The upper size detection limit is limited by the upper linear 

limit of the ICP-MS detector. From our test, 100 nm AuNP still showed good linearity. 

No larger than 100 nm AuNPs were tested in this study. Table 2 shows the accuracy and 

precision of five low particle concentrations of 40 nm AuNP. For 10000, 5000, 2000, 

and1000 NPs/mL of 40 nm AuNP, both the accuracy (recovery, 98.00-102.67%) and 

precision (RSD, 4.34-6.87%) were satisfactory. However, when the particle concentration 
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decreased to 500 NPs/mL, both the accuracy (recovery, 132.07%) and the precision 

(RSD, 16.12%) dropped significantly.  The results suggested that the particle 

concentration quantitative detection limit of the developed SP-ICP-MS method was 1000 

NPs/mL for AuNPs. The detection limit of particle concentration was in agreement with 

published result.30 If converting 1000 NPs/mL of 40 nm AuNP to mass concentration, 

this was equal to 0.65 ng/L, with known density of Au (19.3 g/cm3) and spherical shape 

of the 40 nm AuNP.  The results indicated that the developed SP-ICP-MS method is 

extremely sensitive for AuNP and, to date, it is the only known rapid method that is 

capable of directly and quantitatively analyzing NPs in environmental samples with so 

low NP concentration.31  

 

 

Table 1. ICP-MS conditions after optimization for 197Au 
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Table 2. Comparison of the measured and prepared particle concentration of 40 nm AuNP. 

 

 

 

 

Effect of the Enzyme on AuNPs.  

Figure 1 shows the measured size distribution histogram and particle 

concentration of enzyme-treated 50 nm AuNP. The measured particle size distribution 

agreed well with the spiked NP size. The measured particle concentration, 1.81×105 

NPs/mL, was also close (recovery, 88.3%) to the prepared particle concentration 

(2.05×105 NPs/mL), and no significant dissolution or aggregation of AuNPs was found. 

The results demonstrated that the Macerozyme R-10 enzyme is feasible for use in 

extracting AuNPs from plant tissues without causing dissolution or aggregation of 

AuNPs in plant tissues.  



 

 

48 

 

Figure 1. Particle size distribution histogram of enzyme-treated 50 nm AuNP (without 

plant tissue). 

 

 

Reproducibility of Enzymatic Digestion Method.  

Reproducibility is an important consideration for an analytical method. Figure 2 

shows good reproducibility for both particle size and particle concentration of three 

replicates, which indicated that the enzymatic digestion followed by SP-ICP-MS 

quantification method is reproducible. 

 

 

Figure 2. AuNPs size distribution for three replicates of tomato plant dosed with 5 mg/L 

of 40 nm AuNPs for enzymatic extraction reproducibility study. 
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Enzymatic Digestion of AuNPs in Plants and SP-ICP-MS Analysis.  

Figure 3(b) shows the raw SP-ICP-MS data for a control plant sample without 

AuNPs exposure. Only a few pulse signals were observed, which was similar to the raw 

data for the reagent blank shown in Figure 3(a). The result indicated that the control 

plant without exposure to AuNPs was free from AuNPs contamination. Figure 3(c) 

shows the raw data for the enzymatic digestate of control sample spiked with 4.7×104 

NPs/mL of 100 nm AuNPs. A large number of typical NP pulse signals was observed. 

Figure 3(d) shows the size distribution histogram processed from Figure 3(c). The 

measured particle size distribution matched well with the spiked NP size and the NP 

particle concentration recovery was 96% (4.5×104 NPs/mL detected for 4.7×104 NPs/mL 

spiked). The results suggested that the developed SP-ICP-MS method could accurately 

detect the particle size and particle concentration of AuNPs in plant matrix. 

 

 

Figure 3. (a) Raw data for reagent blank (reagent blank: enzyme in 2 mM citrate solution, 

without plant tissues and AuNPs); (b) Raw data for control plant without exposure to 

AuNPs; (c) Raw data for spiking 4.7×104 NPs/mL of 100 nm AuNPs into control plant 

sample; (d) Size distribution histogram for spiking 4.7×104/mL of 100 nm AuNPs into 

control plant sample. 
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Figures 4(a) and 4(b) show the raw data for two replicates of tomato plants which 

were dosed with 5 mg/L of 40 nm AuNPs for 4 days. A lot of typical NP pulse signals 

were observed and there was no continuous Au signal, suggesting that the Au in the 

tomato shoots existed as AuNPs rather than dissolved Au. Figure 4(c) shows the size 

distribution histograms processed from Figures 4(a) and 4(b). The major peak appeared 

at 40 nm, which agreed with the particle size dosed in the study. The results suggested 

that tomato plants could uptake the 40 nm AuNPs directly as NPs, and the AuNPs within 

tomato tissues existed as intact particles and were not oxidized to Au ions. This finding 

was in agreement with Zhai’s research showing that AuNPs were not dissolved into Au 

ions within poplar plants.32 Two replicates yielded highly similar results. Figure 4(d) 

shows the result after spiking 4.7×104 NPs/mL of 100 nm AuNPs into the enzymatic 

digestate of tomato plant dosed with 5 mg/L of 40 nm AuNPs for 4 days. The measured 

size distribution agreed well with the dosed 40 nm and spiked 100 nm AuNPs. The size 

of 40 nm AuNPs was also resolved with spiked 100 nm AuNPs, indicating no significant 

interaction between the different size and surface coated AuNPs. The particle 

concentration spike recovery was calculated as follows: the number of particles with 

diameters from 70 nm to 130 nm in Figure 4(d) minus the background number of 

particles in the same diameter range in Figure 4(c) (Replicate 1). The calculated particle 

concentration was 3.7×104 NPs/mL, 79% of the spiked particle concentration of 4.7×104 

NPs/mL. The results further indicated that the developed SP-ICP-MS method can 

accurately measure the particle size and particle concentration in plant tissue samples. 

Following the successful detection of AuNPs in 5 mg/L dosed tomato shoots, a lower 

dosing concentration (0.2 mg/L AuNPs) in tomato plants was examined using the same 
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extraction and SP-ICP-MS procedures. Figure 5 (a) shows the raw data of tomato shoot 

tissues treated with 0.2 mg/L of 40 nm AuNPs for 4 days. Compared to Figures 4(a) and 

4(b), fewer pulse signals were observed for the 0.2 mg/L dosed samples. Figure 5(b) 

shows the size distribution histogram with the major peak still at approximately 40 nm 

and the particle concentration (frequency on the Figure) was much lower than that of 5 

mg/L of 40 nm AuNPs dosed plants due to lower dosage. A particle concentration of 

4.7×104 NPs/mL of 100 nm AuNPs was also spiked into the enzymatic digestate of 

tomato plant dosed with 0.2 mg/L of 40 nm AuNPs for 4 days, and the result is shown in 

Figure 5 (c). The measured particle size well agreed with the spiked size. The particle 

concentration spike recovery was calculated in the same way as the 5 mg/L dosed 

samples were, as described previously. The recovery was 89% (4.2×104 NPs/mL detected 

for 4.7×104 NPs/mL spiked). Even at a 0.2 mg/L dosing concentration, the AuNPs in the 

tomato extracts were still significantly higher than the particle concentration detection 

limit, indicating that the developed SP-ICP-MS method was capable of detecting the 

uptake of NPs by plants at more environmentally relevant concentrations.31 The 

sensitivity of the SP-ICP-MS method provides a rare opportunity to investigate plant 

uptake and accumulation of Au and other NPs at environmentally relevant 

concentrations, and is a real advantage over other currently available methods. The 

sensitive SP-ICP-MS method offers a great opportunity to investigate the plant uptake 

kinetics of engineered NPs, their accumulation, localization, and possible transformation 

in plant tissues at environmentally relevant concentrations. Due to the varying responses 

of ICP-MS to different materials and elements, more detailed studies on the extraction 

efficiency of the enzymatic method for different NPs are under investigation to expand 
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the application of the enzymatic extraction-SP-ICP-MS method. It is also important to 

point out that the developed enzymatic digestion-SP-ICP-MS method was based on 

young tomato seedling. With plant matures, the cell wall becomes more rigid and there 

will be depositions of lignin between cells to strength plants. A study is underway to 

assess the method on more mature plant and on tomato fruits to broaden the application 

of the developed method. 

 

 

Figure 4. (a)&(b) Raw data of duplicated tomato plants exposed to 5 mg/L of 40 nm 

AuNPs for 4 days;  (c) Size distributions histograms of duplicated tomato plants exposed 

to 5 mg/L of 40 nm AuNPs from Figure 4(a) and 4(b); (d) Size distribution histogram of 

spiking 4.7×104 particles/mL of 100 nm AuNPs into tomato plants exposed to 5 mg/L of 

40 nm AuNPs.  

 

 

The  results of this study demonstrate that tomato plants can uptake intact 40 nm 

AuNPs and transport them up to shoots; the Macerozyme R-10 enzyme can be used to 

extract the AuNPs from the plant tissues as intact NPs; and the SP-ICP-MS is a sensitive 

and reliable method for the detection of AuNPs in plant sample matrix. The developed 
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SP-ICP-MS method can accurately measure particle size, particle concentration of 

AuNPs, and dissolved Au concentration in tomato plants. The major advantages of the 

developed method are: (1) the enzymatic digestion is able to extract the AuNPs from 

tomato plant tissues without causing dissolution or aggregation of the AuNPs; (2) AuNPs 

can be analyzed in a complex matrix, a major challenge for nanometrology; (3) the 

method is highly sensitive and applicable to environmentally relevant trace concentration 

as well as complex biological matrix; and (4) the developed method examines the whole 

or subsections of plant tissues instead of a mere fraction of plant shoots (often used in 

microscopic methods), and therefore, generates more accurate results. The developed 

method provides a promising way to systematically study the interactions between NPs 

and plants, including uptake kinetics, accumulation, transformation, and mechanisms of 

advanced impacts on plants by engineered NPs. The method overcomes the current 

technique challenges by revealing the concentration and unique characteristics of NPs 

and will contribute significantly to the risk assessment of engineered NPs in food plants.  

 

 

Figure 5. (a) Raw data of tomato plant dosed with 0.2 mg/L of 40 nm AuNPs for 4 days; 

(b) Size distribution histogram from Figure 5(a); (c) Size distribution histogram of 

spiking 4.7×104 NPs/mL of 100 nm AuNPs into tomato plants dosed with 0.2 mg/L of 40 

nm AuNPs.  
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Abstract  

As one of the most commonly encountered engineered nanoparticles (ENPs) in 

industrial applications, cerium oxide nanoparticles (CeO2NPs) have attracted significant 

attention on their environmental fate and transport. Plant uptake and accumulation of 

CeO2NPs have been investigated as a potential pathway for human exposure to these 

ENPs. However, the investigation is frequently hampered by the insufficiency of current 

analytical technologies to determine the quantity and characteristics of cerium (e.g. 

dissolved Ce vs. particulate Ce) in plant tissues. We herein report an innovative single 

particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) technology to 

simultaneously detect particulate Ce size and size distribution, particle concentration, and 

dissolved cerium in the shoot of four different plant species, including tomato, cucumber, 

pumpkin, and soybean. This study demonstrated unequivocally the presence of dissolved 

cerium in plant seedling shoots exposed to CeO2NPs hydroponically for the first time. 

Our results also suggest that CeO2NPs might be taken up by plant roots both as intact 

CeO2NPs and as ionic cerium. Differences on CeO2NPs uptake and accumulation have 

been noticed between different plant species, requiring further investigation on the 

mechanisms.  

 

Key words: single particle-ICP-MS, enzymatic digestion, plant uptake of CeO2 

nanoparticles, nanoparticle biotransformation, food safety, nanoparticle characterization,  
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1. Introduction 

Cerium is the most abundant rare earth element in the earth’s crust and it is 

naturally stabilized in both trivalent (Ce3+) and tetravalent (Ce4+) states [1]. While cerium 

is primarily in the tetravalent state (Ce4+) in the lattice structure of bulk cerium oxide 

particles,  the concentration of Ce3+ increases with the increase of the specific surface 

area or the reduction of particle size [2]. A recent study indicated that the percentage of 

Ce3+ on the surface of bare cerium oxide nanoparticles (CeO2NPs) increased from 9.7% 

to 22.9% when the nanoparticle size was reduced from 64 nm to 9 nm [3]. An increase in 

Ce3+ results in the lattice expansion of CeO2NPs due to the relatively larger size of Ce3+ 

compared with Ce4+ and therefore enhance the reactivity of CeO2NPs. This unique redox 

chemistry between Ce3+/Ce4+ makes CeO2NPs a popular component in many commercial 

products such as sun screens, coating materials, fuel additives and nanomedicine [4,5]. 

The washing off of sun screens, aging of coating materials, and emission of automotive 

exhaust provide possible routes for them to build up in the environment. Therefore, the 

broad applications of CeO2NPs have caused serious concerns about their fate and impact 

in the ecosystem.  Plants are one of the most essential components in the ecosystem and 

agricultural crops represent a potentially important pathway for human expose to 

environmental chemicals. Consequently, there have been a number of investigations on 

the uptake and accumulation of CeO2NPs by agricultural crops in the literature. For 

instance, Zhang et al. [6] reported that cucumber (Cucumis sativus L.) root could take up 

CeO2NPs and transport them to the shoots even though the root-to-shoot translocation 

was limited and the majority of CeO2NPs appeared to adsorb on the root surface. The 

authors also found that plant uptake of CeO2NPs depends upon the particle size, with 
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smaller particles more readily taken up by plants. Zhao et al. [7] also reported low 

translocation of CeO2NPs from root to shoot in corn plants (Zea mays L.) after they were 

exposed to 400 and 800 mg/kg of CeO2NPs throughout the life cycle of the corn plants. 

Wang et al. [8] exposed tomato (Solanum lycopersicum L.) to low concentrations of 

CeO2NPs (0.1- 10 mg/L) throughout the life cycle of the plants and found that cerium 

was detected in all plant tissues, including the edible tissues.  

Clearly, the literature suggests that plants are capable of taking up and accumulate 

Ce when they are exposed to CeO2NPs. However, it is much less clear about the root 

uptake mechanisms of CeO2NPs. Due to the low water solubility of CeO2NPs, the 

detection of Ce in plant shoot tissues had been interpreted as evidence that CeO2NPs are 

taken up by plants as intact NPs [9]. The interpretation appeared to be supported by the 

detection of primarily tetravalent oxidation state of cerium in plant shoots.  However, a 

separate study using soft X-ray scanning transmission microscopy (STXM) and near edge 

X-ray absorption fine structure (XANES) analysis found measurable accumulation of 

CePO4 in cucumber roots and cerium carboxylates in the shoots [10]. The detection of 

biotransformed products in plant tissues and elevated Ce3+ around root surface spurred a 

new theory that CeO2NPs may release Ce3+ on root surface, which are then taken up by 

plant roots and  oxidized to CeO2NPs [11]. Another unsettled issue associated with the 

plant and CeO2NPs interaction is that even though biotransformed products were detected 

in plant tissues, it is unclear how significant the biotransformation was in plant tissues 

and whether the biotransformed Ce existed as dissolved Ce3+ or combined with other 

anions to form new particles (e.g. CePO4). Technologies commonly used for metal  
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quantification including the inductively coupled plasma-mass spectrometry (ICP-MS) are 

not sufficient to unravel the above-mentioned convolutions.  

Excitingly, a new capability to operate the ICP-MS in single particle mode (SP-

ICP-MS) has emerged recently. In the single particle mode, nanoparticle size, size 

distribution, particle concentration and particle dissolution can be obtained after 

appropriate sample preparation [12-25]. SP-ICP-MS has been successfully applied for the 

characterization and quantification of several engineered nanoparticles (ENPs) in 

complex biological matrices such as chicken meat, animal tissues and earthworms, and 

plant tissues [18,26,19,21,23]. In SP-ICP-MS, after a dilute suspension of ENPs is 

introduced into the plasma, the single ENP is ionized individually and generates a packet 

of ions which will enter into the mass spectrometer and be detected as a pulse signal. The 

intensity of these pulse signals is proportional to the mass content of the element in a 

particle and consequently the particle size, and the signal frequency is proportional to the 

particle concentration [12,27,28,22,23]. By collecting time-resolved data, both the 

particle concentration and size distribution of the samples can be obtained by appropriate 

standardization and calibration. If corresponding dissolved metal elements are also 

present in the sample, they are detected as continuous signal. In this approach, dissolved 

metal concentration, ENP particle concentration, and particle size distribution can be 

obtained simultaneously. This unique capability of SP-ICP-MS makes it a potentially 

powerful tool to study the biotransformation of CeO2NPs in plant tissues.  

For ENPs analysis in plant tissues, the major challenge is the extraction of ENPs 

from these tissues without compromising their properties. Some research have shown that 

cellulosic enzymes can effectively digest plant tissues to release ENPs in plant tissues 
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without dissolving them. For instance, Marshall et al. [29] used enzymatic digestion (1-β-

endogluconase) to extract gold NPs (AuNPs) in Brassic juncea. Dan et al. [23] used 

Macerozyme R-10 enzyme to extract AuNPs in tomato plant tissues followed by SP-ICP-

MS quantification. These advances on SP-ICP-MS and plant tissue digestion provide an 

excellent opportunity to study the biotransformation of CeO2NPs in plant tissue. To the 

best of our knowledge, SP-ICP-MS has not been used to characterize CeO2NPs in plant 

tissues and to investigate CeO2NPs uptake by plants. The objectives of this study were: 

(1) to develop and optimize the SP-ICP-MS method for the detection of CeO2NPs and 

dissolved Ce in plant tissues, and (2) to determine the uptake and accumulation of 

CeO2NPs by four agricultural crops using the developed SP-ICP-MS method.  

 

2. Materials and Methods 

2.1 Chemicals and Instrumentation 

Ultrapure water (18.2 MΩ•cm) was produced by a Simplicity185 Millipore water 

system. Trace metal grade concentrated nitric acid and 30% hydrogen peroxide were 

purchased from Fisher Scientific (Pittsburgh, PA). A PowerGen 125 hand-held tissue 

homogenizer was used to homogenize the plant tissues before enzymatic digestion. The 

Macerozyme R-10 enzyme (source: Rhizopus sp.) purchased from bioWORLD (Dublin, 

OH, USA) was used to digest the plant tissues for particles extraction. A NexION 

300/350D ICP-MS with Syngistix nano application module from PerkinElmer (Shelton, 

CT, USA) was used for SP-ICP-MS analysis and data processing. Citrate-stabilized 50 

nm AuNP standard purchased from Nanocomposix (San Diego, CA, USA) was used for 

the transport efficiency measurement in plant tissue matrices. The citrate coating prevents 
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AuNP aggregation/agglomeration to achieve an accurate particle concentration. 2-(N-

morpholino) ethanesulfonic acid (MES) was purchased from Sigma-Aldrich (St. Louis, 

MO, USA). Dissolved Ce standard with a concentration of 1000 mg/L in 2% HNO3 was 

purchased from High-Purity Standards (Charleston, SC, USA). Tomato (Solanum 

lycopersicum L.), cucumber (Cucumis sativus), pumpkin (Cucurbita pepo), and soybean 

(Glycine max) seeds were purchased from Johnny’s Selected Seeds (Winslow, ME, 

USA). CeO2NPs dispersion (40 wt. %) of 30-50 nm was purchased from US Research 

Nanomaterials (Houston, TX, USA). Powder CeO2NPs of 50-100 nm was purchased 

from Nanosctructured&Amorphous Material (Houston, TX, USA). 

 

2.2 CeO2NPs SP-ICP-MS method development and validation       

2.2.1 SP-ICP-MS method description 

The ICP-MS operating conditions and the SP-ICP-MS method parameters are 

shown in Table 1. 140Ce is the most abundant (88.45%) isotope for cerium and is 

interference-free in ICP-MS analysis, which makes this isotope the best choice for Ce-

bearing NPs analysis. The dwell time is a critical parameter in SP-ICP-MS analysis. 

Previous research has shown that dwell time shorter than the signal duration of NPs event 

(typically 0.3-0.5 millisecond) can improve the sizing accuracy and particle concentration 

dynamic range [30,22,23]. The dwell time was set at 0.1 millisecond and the sampling 

time was 100 seconds, same with those used in our previous study [23]. Due to the low 

water solubility of CeO2NPs, the detection of Ce in plant shoot tissues had been 

interpreted as evidence that CeO2NPs are taken up by plants as intact NPs [9]. At the 

same time some research has also shown plants can biotransform CeO2NPs to cerium 
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phosphate and cerium carboxylate, but CeO2 content still dominates [10]. Therefore, in 

this study, Ce-bearing particles were assumed as CeO2NPs. In the developed SP-ICP-MS 

method, the Ce mass was measured first, and then a mass fraction of 81.39% was used to 

convert the Ce mass to CeO2 mass. The CeO2 mass was then converted into CeO2 particle 

size based on the CeO2 density, with the assumption that the CeO2 particle within the 

plant tissues are spherical. Syngistix software, with a Nano application module from 

PerkinElmer, was used for data collection and processing.   

 

Table 1. ICP-MS conditions for the developed SP-ICP-MS method 

 

 

2.2.2 Size measurement accuracy of the SP-ICP-MS method for CeO2NPs 

Dissolved Ce standard was used to convert raw SP-ICP-MS signal to CeO2NP 

size according to published method [31,22]. Two commercial CeO2NPs as described 

above were characterized by transmission electron microscope (TEM) to validate the 

accuracy of the size measurement of the developed SP-ICP-MS method. The CeO2NPs 
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with a concentration of 1 μg/L was prepared in both 20 mM MES buffer (pH adjusted to 

pH5 using 1 M NaOH) and in 100-fold diluted plant tissue digestate for SP-ICP-MS 

analysis. The details on plant tissue enzymatic digestion is described in our previous 

study[23] with slight modifications  (see section 2.4.). The plant tissue digestate was 

diluted by 100 times with the 20 mM MES buffer.    

 

2.2.3 Effect of enzyme solution on CeO2NPs  

One hundred μg/L of 50-100 nm CeO2NPs was prepared in the enzyme solution 

used for plant tissue digestion and was shaken for 24 hours at 37 °C. After shaking, the 

samples were diluted 100-fold with 20 mM MES buffer for SP-ICP-MS analysis. Freshly 

prepared 50-100 nm CeO2NPs of 1 μg/L in 20 mM MES buffer were also analyzed at the 

same time to compare with enzyme-treated CeO2NPs for CeO2 size distribution. 

 

2.3 Plant growth and CeO2NPs exposure 

A published plant growth protocol was followed with slight modifications [23]. 

Briefly, plant seeds were surface disinfected with 1.25% sodium hypochlorite solution 

(m/v) for 10 minutes and then rinsed with deionized water three times. The sterilized 

seeds were germinated on DI water moistened filter paper in a Petri dish for 5-7 days 

(depends on different seeds). Healthy young seedlings of similar size were transferred to 

50-mL polypropylene centrifuge tubes containing 50 mL quarter strength Hoagland 

solution, purchased from PhytoTechnology Laboratories (Lenexa, KS). They were then 

incubated in a growth cart with a 16 hrs-light/8 hrs-dark cycle to allow the seedlings to 

develop further. The growth cart equipped with four T5 fluorescent tubes provided a light 
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intensity of approximately 133 μmol photons m-2 s-1 at the height of plant leaves except 

for soybean at later stage of growth that was higher because soybean was taller than the 

other plants. The plants were grown under room temperature (~25 °C) and humidity. The 

Hoagland solution in the tubes was replenished as needed to keep the roots submerged 

under the water surface. The incubation time for tomato, pumpkin, soybean, and 

cucumber were 13, 10, 17 and 17 days, respectively. After the incubation in Hoagland 

solution, the plants were dosed with 7 mg/L 30-50 nm CeO2NPs for 19 days in quarter 

strength Hoagland solution before harvested for SP-ICP-MS analysis. Controls without 

CeO2NPs dosing were included for each plant species during the treatment. Three 

replicates of dosed plants and two replicates of controls were analyzed for each type of 

plants. 

 

2.4 Enzymatic digestion and SP-ICP-MS analysis 

After cultivation, the shoots were separated from the roots with caution to avoid 

contamination. The shoot tissues were weighed and thoroughly washed three times using 

MilliQ water. The excess water on the shoot surface was removed using Kimwipes, then 

cut into small pieces using scissors and homogenized by a hand-held tissue homogenizer 

in 9 mL of 20 mM MES buffer (pH5). After homogenization, 1 mL of 30 mg/ml enzyme 

solution was added. The buffer and enzyme amount were doubled for soybean and 

pumpkin due to their larger biomass (about doubled). The samples were digested at 37 °C 

for 24 hours in a water bath shaker with continuous shaking. After digestion, the samples 

were settled down for approximately 30 min (1 hour for soybean) and 0.1 mL of the 

supernatant was diluted 100-fold using 20 mM MES buffer for SP-ICP-MS analysis. 
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Selected sample were also filtered by Millipore 5 kDa Ultrafree®-MC centrifugal filter 

after enzymatic digestion. The filtered samples were analyzed by SP-ICP-MS to confirm 

the presence of dissolved Ce. The calibration standards (0-5 μg/L dissolved Ce) were 

prepared in 100-fold diluted control plant digestate to match the sample matrix for each 

plant. 50 nm AuNPs prepared in each 100-fold diluted control plant digestate was used to 

measure the transport efficiency. 

 

2.5 Acid digestion of the enzymatic digestate 

The supernatant of the enzymatic digestate and the whole enzymatic digestate 

were acid digested using concentrated nitric acid and hydrogen peroxide [8,10], and 

analyzed by conventional ICP-MS method, to verify the cerium mass content in plant 

tissues. Two mL of whole enzymatic digesate or the supernatant of the enzymatic 

digestate was transferred to a 70-mL digestion vessel. The samples were digested using 

an electrothermal hotblock digester by heated at 100 °C (open vessel) to evaporate water, 

then 10 mL of trace metal grade concentrated nitric acid was added for each sample and 

the samples were digested at 105 °C for three hours. The samples were then cooled down 

to approximately 50 °C and 3 mL of hydrogen peroxide was added to each vessel and the 

samples were further digested at 100 °C for another three hours. Eventually the samples 

were evaporated (open vessel) to ~0.5 mL and 9.5 mL of MilliQ water was added to each 

vessel to bring the total sample volume to 10 mL. The cerium in acid digested samples 

was then quantified using conventional ICP-MS method. Reagent blank and known 

amount of pure CeO2NPs powder were also digested to make sure the digestion process 

was complete with satisfied recovery. 
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2.6 TEM imaging of cucumber shoot 

Four shoot specimens (2 mm × 2 mm) were randomly collected from the midrib 

to the margin of a cucumber leaf kept in the Trump’s fixative[32] at 4 ⁰C before 

embedding. The specimens were then washed with the Trump’s buffer and dehydrated 

with a series of ethanol solution successively. The ethanol concentration was increased 

from 10% to 100% by 10%. Following dehydration, the specimens were placed in an 

acetone solution (100%) for 5 min and then submerged into the lower viscosity Quetol 

651 modified embedding medium overnight. The medium consists of 61.9 wt. % of 

nonenyl succinic anhydride (NSA), 17.4 wt. % of Quetol 651, 20.7 wt. % of ERL4221, 1 

g DER726/10 g of embedding medium, and 0.25 mL of benzyl dimethylamine (BDMA) 

/10 g of embedding medium. Afterwards, the specimens were placed in an embedding 

mold filled with the embedding medium and polymerized overnight at 55 – 60 ⁰C. The 

polymerized specimens were then sectioned with a diamond knife and stained by uranyl 

acetate and lead citrate. The processed specimens were observed under a JEOL JEM-

2010 transmission electron microscopy (JEOL USA, Inc. Peabody, MA) equipped with 

an Oxford Instruments ATW type energy dispersive spectroscopy (EDS) detector 

(Oxford Instruments plc, Abingdon, Oxfordshire, UK). 

 

3. Results and Discussion 

3.1 SP-ICP-MS Method Performance 

3.1.1 Particle size detection limit 

When the particle size detection limit of developed SP-ICP-MS methods was 

reported, the majority of the publications calculated the average signal intensity of the 
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blank (usually ultrapure water) and the standard deviation (STD) of the blank deviations. 

The intensity of (average + 3 * STD) was then converted to particle diameters based on 

the calibration curve [16,33], and this value was reported as particle size detection limit. 

The particle size detection limit calculated using this method was suitable for the blank 

with a continuous background. At 0.1 millisecond dwell time, the background of pH5 20 

mM MES buffer blank is not continuous. If calculated this way (average + 3*STD), an 

unpractical particle size detection limit (~16 nm as CeO2NP) can be achieved. However, 

significant amount of signals with an intensity of three counts were always identified in 

pH5 20 mM MES buffer blank. The enzymatic digestion and SP-ICP-MS analysis were 

carried out in this buffer, therefore, signal intensity of CeO2NPs equal to or less than 

three counts cannot be distinguished. Three counts are equivalent to 23-25 nm particle 

size of CeO2NPs based on the dissolved Ce calibration curve in the developed SP-ICP-

MS method. Therefore, the particle size detection limit in this study was determined to be 

23-25 nm as CeO2NPs. 

  

3.1.2 Sizing accuracy of the developed SP-ICP-MS method 

Figure 1 (a) and (c) shows the measured size distributions of 30-50 nm CeO2NPs 

and 50-100 nm CeO2NPs in pH5 20 mM MES buffer, respectively. The measured size 

distribution matches the manufacturer-reported size distribution.  TEM images were also 

taken for the purchased CeO2NPs (Figure 1 (b) and (d)). The size measured by the 

developed SP-ICP-MS method is comparable to the size shown in TEM images. The long 

tailing of Figure 1 (a) and (c) is likely due to the aggregation of CeO2NPs in dispersion. 

TEM images also show that the purchased CeO2NPs is not perfectly spherical. However, 
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in SP-ICP-MS, the raw data was processed based on the assumption that particles are 

spherical CeO2NPs. Figure 2 shows the measured size distribution of spiked 50-100 nm 

CeO2 NPs (spiked after tissue enzymatic digestion) in 100-fold diluted different plant 

digestate matrices. Comparing with Figure 1(c) to Figure 2, the size distributions of 

measured CeO2NPs are not affected by any of the diluted plant shoot digestate when 

analyzed by the developed SP-ICP-MS method. 

 

 

Figure 1. (a) Histogram of 30-50 nm CeO2NPs measured by developed SP-ICP-MS 

method (b) TEM images of purchased 30-50 nm CeO2NPs, (c) Histogram of 50-100 nm 

CeO2NPs measured by developed SP-ICP-MS method (d) TEM images of purchased 50-

100 nm CeO2NPs. (scale bar on both TEM images is 50 nm) 
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Figure 2. Size distribution of spiked 50-100 nm CeO2NPs in different plant digestate 

matrix measured by developed SP-ICP-MS method after 100-fold dilution in 20 mM 

MES buffer (pH 5): (a) tomato, (b) soybean, (c) cucumber, (d) pumpkin. 

 

 

 

 

 

3.1.3 Effect of enzymatic digestion on CeO2NPs 

Figure 3 shows the size distributions of 24-h enzyme solution-treated CeO2NPs 

(no plan tissue, treated with the same condition of the plant tissue enzymatic digestion) 

and freshly prepared CeO2NPs, respectively. Two distributions are comparable to each 

other and three replicates also demonstrate good reproducibility. The results 

demonstrated that the Macerozyme R-10 enzyme is feasible for CeO2NPs extraction from 

plant tissues without causing dissolution of CeO2NPs. 
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Figure 3. Comparison of the size distribution of 50-100 nm CeO2NPs after 24 hours 

digestion in enzyme solution at 37 °C to the size distribution of freshly prepared 50-100 

nm CeO2NPs in enzyme solution.  

 

 

3.2 CeO2 NPs Uptake and Biotransformation 

Figure 4 shows the raw data of SP-ICP-MS for four types of plants. Figure 4 (a), 

(c), (e) and (h) show the raw data of control plants for tomato, cucumber, pumpkin and 

soybean, respectively. Figure 4 (b), (d), (f) and (i) display the raw data for tomato, 

cucumber, pumpkin and soybean dosed with 7 mg/L of 30-50 nm CeO2NPs for 19 days, 

respectively. The quantification data of particle concentrations and dissolved Ce are 

shown in Table 2. It is clear from the SP-ICP-MS outputs and Table 2 that there was 

uptake of Ce from the dosing solutions. As discussed above, dissolved analyte is detected 

as a continuous signal and particles are detected as pulse signals in SP-ICP-MS mode. 

The samples were also tested by 20-fold dilution with 20 mM MES buffer. The intensity 

of the continuous signals in 20-fold diluted sample was 5 times of the intensity of the 

continuous signals in 100-fold diluted samples, which means the intensity of the 

continuous signal decreases proportionally as the dilution factor increases and 

subsequently suggests that the continuous signals in Figure 4 came from dissolved Ce.  
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Figure 4. SP-ICP-MS raw data of plant shoots digestates: (a) tomato control without 

dosing CeO2NPs, (b) tomato dosed with 7 mg/L 30-50 nm CeO2NPs for 19 days, (c) 

cucumber control without dosing CeO2NPs, (d) cucumber dosed with 7 mg/L 30-50 nm 

CeO2NPs for 19 days, (e) pumpkin control without dosing CeO2NPs, (f) pumpkin dosed 

with 7 mg/L 30-50 nm CeO2NPs for 19 days, (h) soybean control without dosing 

CeO2NPs, (i) soybean dosed with 7 mg/L 30-50 nm CeO2NPs for 19 days. The inset 

shows the data points in the first one second 
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More convincing data about the presence of dissolved Ce is shown in Figure 5, 

which was the dosed tomato sample filtered by Millipore 5 kDa Ultrafree®-MC 

centrifugal filter (particles cannot pass through this filter) after enzymatic digestion and 

then analyzed by SP-ICP-MS. Continuous signal was still observed in SP-ICP-MS, which 

confirmed the presence of dissolved Ce. Cerium is naturally stabilized in both trivalent 

(Ce3+) and tetravalent (Ce4+) states [1].  However, the further speciation analysis of 

dissolved Ce detected here is beyond the capability of SP-ICP-MS. Regarding the 

detailed uptake mechanism study, another technique ion chromatograph-ICP-MS may be 

evaluated for this purpose. Although a few pulse signals were observed in the control 

samples, it is not significant comparing with the CeO2NPs dosed samples.  

 

 

 

Figure 5. SP-ICP-MS raw data of enzymatic digestate filtered by Millipore 5 kDa 

Ultrafree®-MC centrifugal filter. The inset shows the data points in the first one second. 

 

 

 

 

The presence of both types of signals indicated that both dissolved Ce and 

particulate Ce were present in plant tissues. However, the exact chemical composition of 

these particulate Ce was not determined in this study. An interesting finding worth 
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mentioning is that some pulse signals were also identified in the control digestate spiked 

with dissolved Ce, and these pulse signals are possibly caused by the adsorption of Ce 

ions onto the surface of undigested plant tissue colloids. These colloids can act as 

particulate Ce. So far SP-ICP-MS is not able to differentiate true CeO2NPs from these 

colloids with cerium ions adsorbed onto them. Since the presence of dissolved Ce was 

confirmed in the plants dosed with 7 mg/L CeO2NPs, the observed pulse signals in SP-

ICP-MS shown in Figure 4 may come from true CeO2NPs or undigested plant tissue 

colloids with cerium ions adsorbed onto them or both. The size distribution of particulate 

Ce in plant tissues shown in Figure 6 seems to suggest that some of the particulate Ce 

was from CeO2NPs dosed since it agreed well with the primary nanoparticle sizes 

introduced to the system. However, the interference from the dissolved Ce cannot be 

ruled out. A previous study also reported that part of the Ce detected in cucumber shoots 

remained as CeO2NPs even though cerium carboxylate was also reported in the shoots in 

that study [34]. Cucumber leaves were selected to perform TEM-EDS examinations. No 

particulate Ce was detected using EDS. These results might indicate the absence of 

CeO2NPs in the selected sample, or CeO2NPs present but the concentration was too low 

to be detected by TEM. Other studies have also encountered similar sensitivity problem 

to find CeO2NPs in plant shoots using TEM[10]. TEM is a powerful technique to 

characterize pure synthesized ENPs, however, its applications to the environmental and 

biological samples are limited by its sensitivity because this technology is difficult to 

detect the environmentally relevant concentrations of NPs. The discrepancy results of the 

SP-ICP-MS and TEM was not resolved in this paper and further study by using other 
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techniques, such as field-flow fractionation (FFF) coupled with ICP-MS, may be useful 

to confirm the presence or absence of CeO2NPs in the dosed plant shoots.  

 

 

Figure 6. Size distribution of CeO2NPs in plant shoots dosed with 7 mg/L 30-50 nm 

CeO2NPs for 19 days, (a) histogram of tomato shoot, (b) histogram of cucumber shoot, 

(c) histogram of pumpkin shoot, (d) histogram of soybean shoot  

 

 

 

 

How did plants take up dissolved Ce and/or CeO2NPs from the growth media? 

Were they taken up by plant roots as intact CeO2NPs as suggested by some previous 

research [6,34,35] or were they taken up as Ce3+ and then  oxidized to CeO2NPs as some 

recent research proposed [11]? Based on the size and size distribution comparison 

between the CeO2NPs in plant shoots and in the dosing media, the results appeared to 

indicate that part of the CeO2NPs were taken up by plant roots as intact CeO2NPs. 

However, based on some of our preliminary results with cerium ion only, particulate 
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cerium was also detected in plants exposed solely to ionic cerium (data not published). 

Therefore, it appears that both mechanisms contribute to the uptake and accumulation of 

CeO2NPs in plant shoots. However, the relative significance of the mechanisms is still 

unclear and deserves further investigation. 

CeO2NP is well recognized for its low solubility in water. Where did the ionic 

cerium in plant shoots come from? The low solubility and dissolution of CeO2NPs in 

water suggested that ionic cerium was not directly taken up from the solution. Figure 7(a) 

shows there was no dissolved Ce in freshly prepared dosing solution compared to the 

diluent 20 mM MES shown in Figure 7(b). These results suggest the dissolved Ce 

observed in plant shoot was due to the biotransformation of CeO2NPs, not because there 

was dissolved Ce impurities in the CeO2NPs dosed.  Previous research has shown that Ce 

in cucumber shoot (leaves and stems) after hydroponically exposed to 2000 mg/L 

CeO2NPs contains ~80% CeO2 and ~20% cerium carboxylate. Figure 3 indicates that 

CeO2NPs did not dissolve during enzymatic digestion. The dissolved Ce observed by SP-

ICP-MS here is therefore not due to the dissolution of CeO2NPs during sample 

preparation. The fact that we dosed the plants with CeO2NPs and yet dissolved Ce was 

observed in plant shoots provides strong evidence that CeO2 biotransformation has 

occurred. The same dosing, enzymatic digestion, and SP-ICP-MS analysis of tomato 

plants were repeated for three times and similar results were observed. Both Ce3+ and 

Ce4+ can form soluble salts (e.g. Ce(SO4)2, Ce2(SO4)3). Therefore, the speciation of 

dissolved Ce observed here needs to be further verified, may be by ion chromatograph-

ICP-MS. According to some previous studies [35], the transformation of CeO2NPs 

happened at the root surface, and the physicochemical interaction between CeO2NPs and 
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root exudates is the necessary condition for the transformation of CeO2NPs in hydroponic 

cucumber. The dissolved Ce on plant root surface might be another source of ionic 

cerium in plant shoots. Regardless of the mechanisms of ionic cerium, this study is the 

first to report the widespread presence of dissolved cerium in four different plant species 

treated with CeO2NPs hydroponically.  

 

 

   

Figure 7. (a) freshly prepared 7 mg/L of CeO2NPs dosing solution filtered by Millipore 

5kDa Ultrafree®-MC centrifugal filter, (b) 20 mM MES buffer  (Dilution factor:10 for a) 

 

 

Table 2. Results of fresh shoots obtained by SP-ICP-MS analysis and acid digestion 

followed by conventional ICP-MS analysis. 
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In addition to the general observation of plant uptake and accumulation of 

CeO2NPs and dissolved cerium, some differences among the four different plant species 

have been noticed as shown in Table 2. Cucumber exhibited the highest possibility of 

accumulation of CeO2NPs, followed by pumpkin and then soybean and tomato. Another 

observation which appeared to stand out is the slightly smaller average CeO2NP size in 

pumpkin and soybean shoots than in tomato and cucumber shoots. The significance of 

this difference could not be justified statistically in this study due to the small number of 

replicates. The underlying mechanisms causing the observed possible differences among 

different plant species are still elusive, but might be due to the different structures of 

plant roots or different properties of plant exudates. Further investigation is needed to 

elucidate the precise mechanisms.  

 

4. Conclusions 

In summary, we have successfully developed a SP-ICP-MS protocol to 

simultaneously detect particle size, size distribution, particle concentration and dissolved 

analyte of CeO2NPs in plant tissues.  The enzyme extraction method did not alter the 

properties of CeO2NPs in plant tissues. Applying this innovative technology, we first 

reported that CeO2NPs might be simultaneously taken up by plants both as intact 

CeO2NPs and as cerium ions. Once CeO2NPs are taken up in plant roots, they might be 

translocated to plant shoots, where CeO2NPs dissolution could occur. SP-ICP-MS shows 

great potential to serve as a sensitivity tool to study the uptake mechanism of ENPs by 

plants, however, more improvements on SP-ICP-MS technique itself are needed, such as 

the improvement on particle size detection limit. Some other techniques are also needed 
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to fully characterize the properties of Ce after uptake. For instance, the speciation 

analysis of dissolved Ce observed in the current study may be further studied using ion 

chromatograph coupled to ICP-MS to elucidate the dissolution mechanism of CeO2NPs 

(e.g. simple dissolution or dissolution involving redox reaction). Even though the sources 

of dissolved Ce in plant shoots are not clear at this point, it appears that dissolved Ce is 

commonly present in plant tissues exposed to CeO2NPs. The extent of plant uptake and 

accumulation also appear dependent on the plant species, however, future systematic 

study is needed to confirm it statistically and to probe the underlying mechanism. With 

these new advancements, several questions remain and future efforts will concentrate on 

determining the extent of CeO2NPs dissolution on plant root surface and in plant tissues 

and understanding why the uptake and accumulation differ among different plant species.  
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ABSTRACT 

 

Background: Urinary metallomics is presented here as a new “omics” approach that 

aims to facilitate personalized cancer screening and prevention by improving our 

understanding of urinary metals in disease. 

Methods: Twenty-two urinary metals were examined with inductively-coupled plasma – 

mass spectrometry in 138 women newly diagnosed with breast cancer and benign 

conditions. Urinary metals from spot urine samples were adjusted to renal dilution using 

urine specific gravity. 

Results: Two urinary metals, copper (P-value = 0.036) and lead (P-value = 0.003), were 

significantly elevated in the urine of breast cancer patients. A multivariate model that 

comprised copper, lead, and patient age afforded encouraging discriminatory power 

(AUC: 0.728, P-value < 0.0005), while univariate models of copper (61.7% sensitivity, 

50.0% specificity) and lead (76.6% sensitivity, 51.2% specificity) at optimized cutoff 

thresholds compared favorably with other breast cancer diagnostic modalities such as 

mammography. Correlations found among various metals suggested potential geographic 

and dietary influences on the urine metallome that warrant further investigation.  

Conclusions: In summary, this proof-of-concept work introduces urinary metallomics as 

a noninvasive, potentially transformative “omics” approach to early cancer detection. 

Urinary copper and lead have also been preliminarily identified as potential breast cancer 

biomarkers.  

 

Keywords: Breast cancer metallomics, urinary metallomics, ICP-MS, urinary lead, 

urinary copper, noninvasive breast cancer screening 
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1. Introduction 

Metallomics is an emerging field concerned with the comprehensive analysis of 

metal and metalloid species within a biological system [1, 2]. The extensive and essential 

roles of metal and metalloids in pathophysiology lend suitability to metallomics as a 

novel approach to disease detection and monitoring. For example, metalloproteins 

represent approximately one third of the known proteome and have wide-ranging roles in 

biologically important processes such as oxygen and electron transport, biosynthesis and 

biodegradation, and hydrolysis of amides and esters, and others [3]. Metalloprotein 

dysregulation is frequently associated with pathological status, such as metallothionein 

overexpression in certain invasive ductal breast cancers [4-6]. Moreover, metal ions are 

presumed to be highly regulated [7, 8] owing to their critical roles in maintaining cellular 

redox status and regulating protein expression [9-11]. A comprehensive understanding of 

metal content, speciation, localization and function under various pathophysiological 

conditions is therefore becoming increasingly important in understanding disease 

mechanisms and discovering novel diagnostic, prognostic, and therapeutic targets. 

The role of metallomics in understanding breast cancer has led to novel insights 

into metal functionality in breast cancer carcinogenesis and metastasis. For example, 

copper hyperaccumulation in cancer cells is required for angiogenesis and tumor growth 

[12]. Similarly, dysregulated copper transport leads to oxidative stress and perturbed cell 

signaling pathways via the copper transport protein CTR1 while copper transport protein 

CTR2 expression has been linked to breast cancer prognosis and cisplatin drug resistance 

[13]. Intracellular copper additionally stimulates breast cancer metastasis via redox 

regulation such as inducing reactive oxygen species generation in cellular structures 

associated with cell motility [14]. Consequently, novel chemotherapy sensitizers that 
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function as redox modulators via copper(II) chelation have emerged [15]. Similarly, 

intracellular zinc is physiologically highly regulated in order to maintain cellular redox 

status [16], but becomes deregulated in breast tumors. Metallothioneins, antioxidant 

proteins with high binding affinities for essential metals like copper and zinc, are also 

poorly regulated in invasive ductal carcinomas [17], resulting in increased free cytosolic 

zinc and copper ions [18]. Zinc importer protein overexpression and zinc 

hyperaccumulation have similarly been well documented in heterogeneous breast cancers 

[18-22]. For these reasons, researchers have explored the utility of copper and zinc as 

diagnostic biomarkers for breast cancer, such as low serum zinc [23] and high serum 

Zn/Cu serum ratios [24]. Furthermore, divalent transition metals including copper, cobalt, 

lead, mercury, tin, and chromium have been shown to activate estrogen receptor-α and 

consequently cell proliferation [25]. Other metals, like lead, have been associated with 

selenium antagonism, which minimizes the anti-carcinogenic effect of selenium, leading 

to higher risk for developing breast cancer [26]. Together, these pathophysiological 

metallomic changes provide a new molecular modality for earlier detection of aggressive 

breast cancer. 

Comprehensive metallomic screening techniques essential to discovering new 

clinically useful metallomic biomarkers have become popular following advances in 

advanced analytical techniques that have enabled researchers to study otherwise trace 

metals in biologically relevant matrices. Inductively-coupled plasma – mass spectrometry 

(ICP-MS) in particular has emerged as a powerful platform based on its unparalleled 

sensitivity and throughput. Recent efforts have already used this approach to implicate 

high lead, uranium [27] in addition to antimony and cadmium [28] in hair samples of 
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breast cancer patients. Urinary cadmium, another selenium antagonist, has recently been 

proposed as a noninvasive indicator of breast cancer through multiplicative interactions 

with selenium [29]. However, application of metallomics to urinalysis remains 

underdeveloped, despite its distinct advantages that include reduced sample preparation 

and noninvasive detection modality. While concentration ranges of many urinary metals 

in healthy populations have been widely reported, other trace elements and concentration 

ranges in clinically relevant populations, such as women with newly diagnosed breast 

cancer or with suspected breast cancer, have yet to be described or critically reviewed. 

This study therefore examined 22 urinary metals using ICP-MS in a proof-of-concept 

study involving 138 women with newly diagnosed breast cancer and benign conditions in 

order to quantify the clinical applicability of urinary metals in breast cancer detection and 

prognosis. 

 

2. Materials and Methods 

2.1 Patients and specimens 

A total of 138 women 33-84 years of age were recruited to provide urine 

specimens for this proof-of-concept study and other studies at the Mercy Breast Center - 

Springfield (Springfield, Missouri) between July 2013 and December 2014. Study 

protocol was approved by the Mercy Medical Research Institute Institutional Review 

Board (IRB) and participants were required to provide informed consent. Inclusion 

criteria for participants included new referrals to the Mercy Breast Center - Springfield 

following possible indication for breast cancer that required further biopsy and 

immunohistochemical characterization. Exclusion criteria included individuals with a 

previous history of cancer and/or any known comorbidities. All women resided in the 
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Southwest Missouri region which is a predominate lead and zinc mining area. Additional 

demographic, metal exposure, and patient health information were not collected owing 

tothe retrospective nature of this study. Spot urine specimens comprising first morning 

and second morning voids were collected for the study and immediately stored at -20°C 

for 1-6 days at Mercy Breast Center – Springfield followed by shipment to Missouri 

University of Science and Technology via next-day frozen ground freight for analysis. 

Urine aliquots were stored at -80°C and underwent 2-4 freeze/thaw cycles prior to 

analysis which occurred 1-6 months after specimen collection. Urinary metals were 

shown to be freeze/thaw resistant with minimal metal adsorption on container walls after 

five freeze/thaw cycles across six months storage at -80°C. Patient diagnoses were 

independently determined by qualified Mercy Breast Center – Springfield staff using a 

combination of ultrasound-guided core biopsies and pathological stains. The study was 

conducted in a double-blind manner. Data and resources including patient urine 

specimens, pathological reports, and metallomic results were anonymized with numerical 

identifiers. 

 

2.2 ICP-MS Urinary Metal Assay 

Twenty-two urinary metals including vanadium (V), chromium (Cr), manganese 

(Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), arsenic (As), 

selenium (Se), rubidium (Rb), strontium (Sr), molybdenum (Mo), silver (Ag), cadmium 

(Cd), tin (Sn), antimony (Sb), cesium (Cs), barium (Ba), tellurium (Tl), lead (Pb), and 

uranium (U) were quantified using a previously described ICP-MS technique with several 

significant modifications [30]. Briefly, 2 mL urine specimen aliquots were equilibrated to 
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room temperature and diluted fivefold with 1% Optima grade nitric acid (Fisher 

Scientific Inc, #A467-1) and internal metal standards 45Sc, 89Y, and 159Tb (PerkinElmer 

Inc, N9303834) in nitric acid pretreated sample tubes. Two calibration standard mixtures 

(PerkinElmer Inc, N9300233 and N9301721) comprising the 22 metals were used for 

instrument calibration. Samples were injected into a NexION 350D ICP-MS 

(PerkinElmer Inc) using an autosampler and peristaltic pumps. The ICP-MS was operated 

in kinetic energy discrimination (KED) mode using ultra-high purity helium with a flow 

rate of 3.9 mL/min for As and Se, and 4.7 mL/min for other metals to minimize 

polyatomic interferences that may arise in complex urine matrices. Quantitation isotopes 

included 51V, 52Cr, 55Mn, 59Co, 60Ni, 63Cu, 66Zn, 69Ga, 75As, 77Se, 85Rb, 88Sr, 97Mo, 107Ag, 

111Cd, 118Sn, 121Sb, 133Cs, 137Ba, 205Tl, 208Pb, and 238U, while confirmation isotopes 

included 53Cr, 62Ni, 65Cu, 68Zn, 82Se, 86Sr, 95Mo, 110Cd, 117Sn, 123Sb, 135Ba, 203Tl, 206Pb, 

and 235U. ICP-MS operational parameters included: RF power, 1600 W; plasma gas flow, 

18 L/min; auxiliary gas flow, 1.20 L/min; and nebulizer gas flow: 1.06-1.08 L/min. 

Urinary metal concentrations were adjusted by internal standard responses and dilution. 

Urinary metals were quantified over an element dependent linear range from 0.01 

µg/L to 100 µg/L using matrix-matched calibration standards. Matrix-matched calibration 

standards were prepared using fivefold synthetic urine (CST Technologies Inc, UriSub®) 

to mimic the high salt content and formation of polyatomic interferences in real urine 

specimens. A freeze-dried reference urine standard (UTAK Laboratories Inc, Product 

#12110) with certified metal concentrations was also used as an indicator of trueness. 

Duplicated samples and spiked recoveries of urine specimens were additionally used to 

measure reproducibility and accuracy of the technique. Method accuracy ranged from 
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87% to 127% at biologically relevant concentrations (Table 1) while intra- and inter-run 

reproducibility were calculated as 1-7% and 2-12% relative standard deviation, 

respectively. Metal concentrations measured below the limit of quantitation (LOQ) were 

taken as one half the quantitation limit (LOQ/2) for statistical analysis. 

 

 

Table 1. Method performance parameters for the detection of 22 urinary metals using ICP-

MS operating in KED mode. 

 

 

 

 

2.3 Urine specific gravity assay 

Urinary metals were adjusted for patient hydration-dilution status using urine 

specific gravity (USG). Conventional creatinine normalizations were excluded since 

urinary creatinine varies with age [31], diet [32], physical activity [33], and presence of 

breast cancer [34]. USG was measured using a temperature-corrected Reichert TS 400 
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clinical refractometer. Bulk urine specimens were allowed to equilibrate to room 

temperature followed by analysis of a 200 µL aliquot. Ultra-pure water (USG = 1.000) 

and synthetic urine (USG = 1.022) of known specific gravity were used as reference 

standards. USG was measured with inter- and intra-assay RSDs of 0.12% and 0.04%, 

respectively. Biomarker concentrations were adjusted to USG using the Levine-Fahy 

equation and a reference USG of 1.020: 

 

 

𝐶𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝐶𝑟𝑎𝑤  ×  
𝑈𝑆𝐺𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 1

𝑈𝑆𝐺𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 1
 

where Ccorrected is the adjusted analyte concentration, Craw is the uncorrected analyte 

concentration, USGreference is a reference USG for a given population, and USGexperimental is 

the measured USG. 

 

 

2.4 Statistical analyses 

Anderson-Darling normality tests indicated non-normal distributions for all 22 

urinary metals (Anderson-Darling > 3.5, P < 0.005), while log10 transformation failed to 

approximate the normal curve (Anderson-Darling > 3.0, P < 0.005). For this reason, 

nonparametric analyses were performed on untransformed USG-adjusted metal 

concentrations and the covariates USG and patient age. Mann-Whitney U analyses were 

used to compare women newly diagnosed with breast cancer and benign conditions. 

Kruskal-Wallis and Dunn’s multiple comparisons tests were used to compare urinary 

metal concentrations across individual carcinoma types and grades. Correlations among 

different urinary metals and clinicopathological factors were measured with Pearson 
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correlations. Logistic regression analyses were used to generate classification models, 

compute odds-ratios, and construct receiver-operating characteristic (ROC) curves for 

metals that were found to be associated with breast cancer. Odds-ratios were computed 

using interquartile range (IQR) increments for each covariate. The ROC curves evaluated 

the potential of each classification model to distinguish invasive breast cancer across all 

thresholds and were constructed by plotting sensitivity vs. 1-specificity. Statistical 

uncertainty was quantified with 95% confidence intervals where appropriate. A P-value 

below 0.05 was considered statistically significant. 

 

3. Results 

3.1 Patient Population 

One hundred thirty-eight urine specimens were collected among which seven 

were excluded for being overly dilute or concentrated, defined as having a USG value 

below 1.003 or above 1.030, respectively. These cutoff thresholds were selected based on 

the diminished ability of USG to accurately model patient hydration-dilution status 

beyond these points [35]. The remaining 131 eligible patients were classified as 79 (60%) 

women diagnosed with benign fibroadenomas, fibrocystic changes, benign papillomas, 

and stromal fibrosis, and 52 (40%) women with newly diagnosed breast carcinomas. 

Carcinomas were further characterized as comprising 12 ductal carcinomas in situ 

(DCIS), 38 invasive ductal carcinomas (IDC), and 2 invasive lobular carcinomas (ILC) 

(Fig. 1). Low-grade DCIS cases (n = 5) were considered pre-invasive, indolent disease 

[36], which resulted in their classification as a benign condition. The retrospective nature 

of this study, whereby samples were originally collected for a different purpose, 

precluded the inclusion of healthy, age-matched controls. As a proof-of-concept study, 



 

 

96 

the benign cases, which lacked known comorbidities, previous history of cancer, and had 

pathologically confirmed absence of breast cancer were used as approximate controls. 

However, future studies should include healthy control populations since urinary metals 

may associate with benign conditions of the breast. 

 

 

Figure 1. Patient enrollment flowchart including excluded specimens. 

 

 

3.2 Association of Urinary Metals with Breast Cancer 

Urinary metal concentrations encountered in the two patient groups were 

summarized in Table 2. All 22 urinary metals were reliably detected by the ICP-MS 

analysis with the exceptions of V, Mn, Ag, and U. Trace levels of Cr and Ga were also 

unquantifiable (signal-to-noise < 10) in a majority of samples. Notably, the heavy metals 

Cu (P-value = 0.036) and Pb (P-value = 0.003) were significantly elevated in the women 
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with newly diagnosed breast cancer. Weak associations from Cd (P-value = 0.163) in 

addition to non-significant increases in Zn, Ba, and Rb were also observed. Patient age 

was additionally considered a disease correlate (P < 0.0005) with means (SD) of 64.7 

(10.9) years in the breast cancer group and 56.7 (11.8) years in the benign group. Patient 

age was not found to correlate with any of the urinary metals, which indicated that patient 

age was not a confounding factor for the observed relationships between metals and 

breast cancer. USG was not associated with presence of breast cancer and had a pooled 

mean (SD) of 1.013 (0.001). 

 

Table 2 Comparison of USG-adjusted urinary metal levels in women with benign 

conditions (n=84) and breast cancer (n=47). All data are expressed as median (IQR). 

 

 

a Quantification limits and urinary concentrations have been adjusted by a dilution factor 

of five. 
b P-values represent group comparisons between women newly diagnosed with breast 

cancer and benign conditions using nonparametric Mann-Whitney U analyses. 
c Unquantifiable levels of Cr, Ga, Sb, and Ba in some samples were taken as LOQ/2 and 

semi-quantitatively measured. 
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Logistic regression models were used to evaluate the clinical performance of 

various classification models in distinguishing invasive breast cancer. Univariate models 

were independently developed for Cu (odds-ratio increment = 4.48 µg/L) and Pb (odds-

ratio increment = 0.368 µg/L) owing to their significant elevation in breast cancer 

patients. Both Cu (odds-ratio: 1.77, 95% CI: 1.15-2.72, P-value = 0.008) and Pb (odds-

ratio: 1.65, 95% CI: 1.14-2.40, P-value = 0.005) were found to be significant factors for 

having breast cancer. A multivariate model that comprised Cu, Pb, and patient age (odds-

ratio increment = 19 years) was additionally constructed where Cu (odds-ratio: 1.52, 95% 

CI: 0.95-2.43, P-value = 0.079) and Pb (odds-ratio: 1.46, 95% CI: 0.97 – 2.18, P-value = 

0.064) did not significantly contribute to the regression line which was dominated by 

patient age (odds-ratio: 2.77, 95% CI: 1.44-5.32, P-value < 0.0005). ROC analysis 

suggested clinical performance of individual models was ordered as follows: Cu < Pb < 

Patient Age < Multivariate Model (Fig. 2). Specifically, Cu poorly distinguished invasive 

breast carcinomas across all thresholds (AUC: 0.611, 95% CI: 0.510-0.712, P-value = 

0.035) while Pb demonstrated slightly improved discriminatory power (AUC: 0.659, 95% 

CI: 0.562-0.756, P-value = 0.003). Although patient age possessed marginally better 

discriminatory power (AUC: 0.685, 95% CI: 0.593 – 0.778, P-value < 0.0005), the 

combined multivariate model provided optimal results (AUC: 0.728, 95% CI: 0.641-

0.816, P-value < 0.0005). The univariate Cu and Pb models both had 19.2% sensitivity 

(95% CI: 9.2%-33.3%) and 91.2% specificity (95% CI: 83.6%-96.6%) while the 

multivariate model afforded 36.2% sensitivity (95% CI: 22.7%-51.5%) and 88.1% 

specificity (95% CI: 79.2%-94.1%). While characteristic performance permits objective 

classification model ranking, clinical applicability is better assessed at optimal cutoff 
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thresholds. To this end, Cu had 61.7% sensitivity (95% CI: 46.4%-75.5%) and 50.0% 

specificity (95% CI: 38.9%-61.1%) using a cutoff of 8.50 µg/L, while Pb had 76.6% 

sensitivity (95% CI: 62.0%-87.7%) and 51.2% specificity (95% CI: 40.0%-62.3%) using 

an optimal threshold of 0.400 µg/L. 

 

 

 

Figure 2 ROC data comparing incremental increases in diagnostic performance for the 

univariate models of Cu and Pb and the multivariate model comprising Cu, Pb, and 

patient age in women newly diagnosed with breast cancer (n=47) and benign conditions 

(n=84). 

 

 

 

 

3.3 Correlations among urinary metals and clinicopathological factors 

It was also of interest to identify potential correlations among different urinary 

metals to better understand exposure routes and possible pathophysiological mechanisms. 
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Significant correlations (|Pearson r| > 0.3, P-value < 0.05) among different urinary metals 

were summarized in Table 3. Notably, twice as many correlations were noted in breast 

cancer patients compared with women with benign conditions, although this finding may 

result from the limited sample size of the breast cancer group. Among the benign 

condition group, interactions among Ba, Sr, and Ga were the strongest. Moderate 

correlations included those between Cu with Ni, Zn, and Cs in addition to those among 

trace essential metal Se with Zn and Cu, and heavy metal Sn with Co and Zn. The 

correlations from the breast cancer subgroup were markedly different from those 

observed in the benign condition group, although strong interactions among Ba, Sr, and 

Ga were similarly observed. Urinary Cd was correlated with several heavy metals 

including As, Zn, Sb, Tl, Rb, and Cu. The heavy metal Cr was also found to be correlated 

with Sn, Ni, Se, and Sb. Urinary Pb was correlated with Se, Ni, and Zn. Correlations 

among USG, patient age, Cu, and Pb also suggested Pb was weakly correlated with both 

USG (r = 0.201, P-value = 0.021) and age (r = 0.178, P-value = 0.042). 

Prognostic immunohistochemical factors including progesterone receptor status, 

estrogen receptor status, Her-2/neu, and Ki67 cell proliferation marker for the 45 invasive 

breast cancers were compared with the 22 urinary metals to identify possible prognostic 

capabilities. Urinary As was found to have a weak inverse relationship with progesterone 

receptor status (r = -0.294, P-value = 0.023) and Her-2/neu (r = 0.362, P-value = 0.028). 

Other correlations included Sr and estrogen receptor status (r = 0.340, P-value = 0.037), 

Mo and Her-2/neu (r = -0.350, P-value = 0.034), and Cd and estrogen receptor status (r = 

-0.334, P-value = 0.04). Urinary Pb correlated moderately with estrogen receptor status (r 
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= -0.441, P-value = 0.006), progesterone receptor status (r = -0.315, P-value = 0.044), 

and Ki67 (r = 0.385, P-value = 0.017). 

 

 

Table 3 Significant correlations among USG-adjusted urinary metals. 
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Finally, the correlation between Pb and Cu with cancer progression was explored 

using Kruskal-Wallis analyses and Dunn’s multiple comparisons tests. The highly limited 

sample size of the DCIS subgroups warrant cautious interpretation of their results. 

Urinary Pb levels were arranged in the following order: Benign Condition < Grade 3 

DCIS < Grade 1 DCIS < Grade 2 DCIS < Grade 1 IDC ≤ Grade 2 IDC < Grade 3 IDC. 

The difference between Grade 3 IDC and benign conditions was most significant (Dunn’s 

multiple comparisons P-value = 0.0006). Similarly, urinary Pb was weakly correlated 

with cancer grade using cancer grade as a continuous variable (r = 0.265, P-value = 

0.002). No significant differences among cancer grades were noted for urinary Cu, which 

was ranked in the following order: Benign conditions < Grade 2 DCIS < Grade 1 DCIS < 

Grade 1 IDC < Grade 3 DCIS < Grade 2 IDC < Grade 3 IDC. Weak correlations between 

urinary Cu and continuous variable cancer grade (r = 0.254, P-value = 0.003) were 

similarly noted. 

 

4. Discussion 

We investigated 22 urinary metals in women newly diagnosed with breast cancer 

and benign conditions in a proof-of-concept study to determine whether urinary 

metallomics may serve as a useful platform for biomarker discovery. In this study, two 

metals, copper and lead, were encountered at significantly elevated levels in the urine of 

breast cancer patients. This finding is consistent with a growing body of literature 

concerned with in vivo metallomics of breast cancer tissue. For example, copper 

hyperaccumulation occurs in breast carcinomas [12] through dysregulated copper 

transport proteins [13]. Importantly, the association of urinary copper with high-grade 

breast cancers in particular appeared to reflect copper-based mechanisms related to 
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cancer motility in metastatic breast carcinomas [15]. Elevated urinary lead concentrations 

were similarly more pronounced in high-grade breast carcinomas. Environmental lead 

exposure, a salient consideration for our study population, is associated with risk for 

developing breast cancer while recent work has suggested that lead functions as a 

selenium antagonist that competitively binds selenium [26]. The significant indirect 

correlation between lead and selenium in breast cancer patients observed in this study 

appears to support this proposed mechanism. While urinary cadmium weakly associated 

with breast cancer, no multiplicative interactions with selenium were observed (r = -0.02, 

P-value = 0.82) as previously cited, presumably due to substantial differences in 

environmental cadmium exposure between our study population and that of Wei [29]. 

Although univariate classification models for copper and lead demonstrated limitations in 

breast cancer diagnostics, the multivariate model that included patient age performed 

remarkably well. The clinical performance of copper and particularly lead at optimized 

cutoff thresholds compared favorably with other breast cancer diagnostic modalities such 

as clinical breast examinations and mammography [37]. This diagnostic performance 

appears promising given the inexpensive and noninvasive character of urinary metal 

screening. However, the authors acknowledge the limited sample size of this study and 

point out that larger clinical studies are required to validate these preliminary findings. 

Moreover, our results suggest that diagnostic performance may be further 

improved through enhanced understanding of metal and metalloid exposure routes. For 

example, numerous correlations among various metals in this study provided pertinent 

information regarding common exposure routes that include dietary intake, residential 

exposure, occupational exposure, and more broadly, environmental exposure. For 
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instance, barium, strontium, and gallium, which together represented the strongest metal-

metal correlations, are typically co-present in ore-bearing rock. The interaction between 

nickel and copper among other interactions may be similarly attributed to shared 

geochemical distribution [38]. Although this study was not designed to evaluate the 

influence of local mineralogy on urinary metal epidemiology, we feel it necessary to 

mention that geochemical distributions likely represent a major determinant of biometal 

concentrations. Supporting this claim is a comparison of previously reported urinary 

metal concentrations in baseline populations and those reported from our southwest 

Missouri cohort which demonstrates that while many essential metals obtained primarily 

from dietary exposure were in good agreement [39, 40], trace and toxic metals like 

cadmium varied considerably [29]. Differences arising from unique local geochemistry 

will additionally be influenced by environmental regulations. For example, the similar 

urinary lead values reported in our study population compared with other reported 

industrialized country populations likely reflects lead removal from drinking water. 

Further investigations into local geochemical distributions and metallomic correlations 

will be needed to qualify these considerations. Finally some correlations, such as those 

between copper, zinc, and nickel, may additionally reflect dietary supplement use and 

other dietary fortifications. Hence, characterization of the exposure routes to urinary 

metals of interest is critical to advancing urinary metal molecular pathological 

epidemiology.  

Finally, the correlations between urinary metals and clinicopathological factors 

provided new insights into disease mechanisms and clinical applicability of urinary 

metals in breast cancer patients. Notably, both copper and lead correlated weakly with 
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cancer progression and peaked in high-grade IDC patients. This observation suggests 

copper and lead may have applicability in the detection of early stage breast cancer, an 

observation that merits further investigation. The ability to detect early stage breast 

cancer is especially critical given the potential to reduce tumor upstaging and improve 

patient mortality. Finally, several metals and particularly lead were shown to have 

potential use in prognostics. Because prognostic capability was not directly quantified, 

future studies should aim to quantitatively assess urinary metals for their ability to predict 

breast cancer outcome. Such a finding would render urinary metals a valuable 

supplementary technique for current immunohistochemical techniques. 

 

5. Conclusions 

In conclusion, this proof-of-concept study introduces urinary metallomics as a 

noninvasive platform for biomarker discovery and clinical translational research. This 

work provides new insights into the epidemiology of urinary metals in suspected breast 

cancer cases. Specifically, this work highlights the potential of urinary copper and lead as 

noninvasive diagnostic breast cancer biomarkers in addition to an array of urinary metals 

with prognostic capabilities. Future studies should aim to improve understanding of the 

relationship between urinary metals and source exposure, to measure the prognostic 

capability of individual metals in prospective clinical studies, and to evaluate copper and 

lead applicability to early stage breast cancer detection. 
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SECTION 

2. CONCLUSIONS 

SP-ICP-MS shows great potential to become a high throughput nanometrology 

technique. It was successfully applied to characterize TiO2 NPs in sunscreens and to 

study the interactions between ENPs and various plants in the presented study. The 

biotransformation of CeO2 NPs into soluble Ce was discovered by SP-ICP-MS, which is 

a critical finding in the field of studying the interactions between ENPs and plants. Its 

superior sensitivity (particle concentration wise) makes it a perfect technique to 

characterize samples with low particle concentrations, especially useful for 

environmental and biological samples. Also due to its super sensitivity, large dilution 

factors can be applied to the samples and subsequently significantly decreases the matrix 

effect during analysis. In SP-ICP-MS analysis, the data processing was a significant part 

of the whole analysis and also was a time-consuming process. The high throughput 

analysis is made possible by the commercialization of dedicated software for SP-ICP-MS 

(e.g. PerkinElmer Syngistix Nano Application module). 

However, some disadvantages also come along with SP-ICP-MS. SP-ICP-MS 

only detects one isotope in a single particle rather than the whole chemical analysis of the 

particles. For example, it detects Ti and then converts Ti to TiO2 by assuming that 

particle is TiO2 particle. Owing to the complexity of environmental and biological 

samples, this disadvantage significantly limits its applications in various ways. As 

mentioned in the introduction of this dissertation, multi-element/isotope capability is 

urgently needed to push current application boundaries of SP-ICP-MS further. Despite 
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the powerful capability of SP-ICP-MS, another caveat is there is no single technique can 

fully characterize ENPs including SP-ICP-MS. Complementary technique and 

instrumentation is always necessary and beneficial. 
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