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Abstract

Alzheimer’s disease (AD) is a brain disorder named after the German psychiatrist Alois Alzheimer,

who first described the disease in 1906[1, 2]. AD is a form of dementia, characterized by impare-

ment of memory and other intellectual abilities, caused by the loss of neurons and synapses (the

structures that permit comunication between neurons) in certain regions of the brain[3]. Although

the mechanism by which neurons are affected is not yet well understood, research points to a small

protein, the β-amyloid peptide (Aβ), as the first suspect[4, 5, 6, 3, 7]. Aβ chains are present in

the brains of healthy individuals, but in AD patients, they associate and form clumps that deposit

outside neurons, and are believed to trigger the disease[6].

In this dissertation, I use computational methods to study the behavior of the structures formed by

Aβ chains, when they associates with each other, and how these structures grow. The goal of this

work is to use computational methods to complement experimental results by filling the gaps about

structural and association mechanism that cannot be accessed by experiments.

In chapter 1, I will guide the reader through several concepts needed to understand this work. In

section 1.1, I will describe what proteins are. In section 1.2, I will outline the protein folding problem,

a broad problem that encompasses the one that I treat in this dissertation. Section 1.3, includes

a summary of the computational and experimental methods applied today to study the folding of

proteins, and the motivation for choosing the method used in this work.

Chapter 2 describes the equations and the software that I developed to study protein association in

general, and Aβ in particular and the tests that I carried out to assure that the method was capable

of treating systems formed by several protein chains.

In chapter 3, I will describe the state of the research on AD, and the role and mechanism of Aβ in the

disease. The Aβ-AD connection is a complex problem, and I have chosen to study one aspect of this

problem, namely the stability and growth of Aβ fibrils (structures formed by Aβ, which are described

in section 3.4). Also in chapter 3, I will explain the motivation for choosing this particular aspect of

the problem. I will also describe the methods used in my study and the results obtained. In section

3.7, I will elaborate on the implications of the results and on how they complement experiments.
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Chapter 1
Introduction

1.1 Proteins
1.1.1 Amino Acids

Proteins are crucial to virtually all biological processes; they transport molecules, catalyze chemical

reactions, form structures for cellular organization, transmit information between cells and compart-

ments, control gene expression, and provide immune functions in complex organisms. Proteins are

formed by amino acids arranged in long chains, often referred to as polypeptide chains. There are 20

different amino acids that can be combined to form proteins. Each protein in a living organism has

its unique sequence of amino acids, with the template for the the sequence encoded in the organism’s

DNA.

All amino acids have the general structure shown in Figure 1.1. They differ only in the composition

of the side chain (denoted by the letter R in Figure 1.1). The side chain determines the amino acid’s

specific physical properties, such as size, flexibility, charge, polarity, etc.

The amino acids in a protein chain are linked by peptide bonds (a strong chemical bond) formed

between the carboxyl carbon of one amino acid and the amino nitrogen of the second amino acid

(see Figure 1.2). Because these peptide bonds have a partial double bond character, rotation around

this bond is restricted. Thus, the peptide unit is planar, and rotation is restricted to the bonds

involving the α carbons. The end of the chain with the free amino nitrogen is called the N-terminus,

while the end with the free carboxyl carbon is called the C-terminus, and the amino acid sequence

is numbered starting from the N-terminus.

Depending on the polarity of the side chain, amino acids are classified into polar or non polar.

While polar amino acids will tend to interact with a polar environment (such as water), nonpolar

amino acids will rather interact with each other or with a nonpolar environment (such as the lipid

bilayer of a cell). This property plays a major role in determining the arrangement that a protein

chain adopts.
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FIGURE 1.1. The general structure of an amino acid.

1.1.2 Protein Structure: The α-Helix and the β-Sheet

In order to perform its biological function, a protein must adopt a specific shape. Different proteins

(i.e., different sequences of amino acids) adopt different structures, giving rise to a great diversity

of tools, each with a specific task. The shape into which a protein must fold is known as its native

conformation. The native conformation of a protein is that with the lowest free energy. i.e., that

conformation which minimizes the free energy of the protein chain and its environment.

Although combinations of the 20 amino acids allow for a great diversity of conformations, these

structures are mainly composed of two motifs: the α-helix and the β-sheet. In an α-helix [see Figure

1.3 (A)], as the name suggests, the amino acids are arranged forming a right-handed helix with 3.6

residues (amino acids in a peptide chain) per turn, giving a pitch (distance between consecutive turns

along the axis of the helix) of 5.4 Å. In a β-sheet [see Figure 1.3 (B)], regions of the protein (strands)

align adjacent to each other in parallel or anti-parallel orientation. Both these structures are mainly

stabilized by hydrogen bonds. A hydrogen bond is formed when a pair of electronegative atoms,

such as oxygen and nitrogen, share a hydrogen between them. In the α-helix, the hydrogen bonds

are formed between the N-H group of one turn and the C=O group of the neighboring turn [see

Figure 1.3 (A)], and in the β-sheet, they are formed between these same atoms but from consecutive

strands, as shown in Figure 1.3 (B).
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FIGURE 1.2. Proteins are chains of amino acids joined together by peptide bonds. When a peptide bond
is formed a molecule of water is released.
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FIGURE 1.3. Secondary structure of proteins. (A) Representation of an α-helix. The side chains are rep-
resented by green spheres and denoted by the letter R. The hydrogen bonds between backbone atoms are
represented by dotted lines. (B) Representation of parallel and antiparallel β-sheets. The hydrogen bonds
between the backbone atoms in the different strands are represented by dotted lines. The side chains have
been omitted.

Four structural levels are used to characterize the structure of proteins:

• Primary structure refers to the amino acid sequence of the chain.

• Secondary structure refers to the sub-structures, α-helix and β-sheets, in the peptide chain.

To describe the secondary structure of a protein, one should know whether the chain adopts

the α-helix or β-sheet conformation, or a combination of both.

• Tertiary structure is the three-dimensional structure of a single protein chain; the spatial

arrangement of the secondary structure elements. To describe the tertiary structure of a pro-

tein, one should know the relative orientation and positions of the α-helices or β-sheets in the

protein.

• Quaternary structure is the highest level used to describe protein structures, and it is used

to describe molecules composed of several protein chains. Many proteins exist in multimeric

form, meaning that two or more chains bind to each other to form a molecule complex. Each

chain in the complex is referred to as a monomer, and the complex as a multimer or an oligomer.

To describe the quaternary structure of a protein, one should know the relative arrangement

of the monomers conforming the complex.

4



FIGURE 1.4. The three-dimensional structure of human hemoglobin (PDB ID: 1GZX). The α and β
subunits are colored in red and blue, respectively. The small, green colored, molecules are the iron-containing
heme groups.

Many multimeric proteins are formed by identical subunits, these proteins are called homod-

imers (two subunits), homotrimers (three subunits), and so forth, depending on the number

of subunits. The subunits can also be different, in which case the multimers are referred to as

hetero-dimers, hetero-trimers, etc. The most typical example of a an oligomer is hemoglobin,

the oxygen carrying protein of the blood (see Figure 1.4). Hemoglobin is hetero-tetramer

formed by two α and two β subunits (both with α-helical structures) arranged with the struc-

ture shown in Figure 1.4.

1.1.3 Misfolding and Disease

Although the amino acid sequence and the protein environment dictate the biologically active confor-

mation of a protein, it is possible that a protein would adopt the wrong conformation. The cell has a

quality control mechanisms that ensure that misfolded proteins are eliminated. However, this mecha-

nism is not always effective enough, and in recent years, it has been discovered that many diseases are
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caused by the aggregation of misfolded proteins. Examples of such diseased are Alzheimer’s disease

(AD), Parkinson’s disease (PD), type II diabetes, and spongiform encephalopathies. Understanding

the mechanism that leads a protein towards its misfolded conformation is crucial to the design of

therapeutic agents for these diseases. Protein misfolding is therefore an active area of research in

the protein field.

1.2 The Protein Folding Problem

More than 40 years ago, Cyrus Levinthal[8] posed a paradox that challenges us to understand more

deeply the physical processes involved in protein folding. Levinthal suggested that a protein cannot

fold by exhaustively searching through all possible conformations, but instead it must have a more

efficient way to find its native conformation. To illustrate the paradox, let us assume that a single

amino acid, through varied positioning of its backbone atoms and side-chain atoms, can adopt

five distinct but stable conformations. If we consider a moderately sized protein of 100 amino acid

residues, this yields 5100 ≃ 1070 conformations of the chain. If a newly synthesized protein were

to spend 10−15 seconds in each conformation, fully searching all the possible conformations for the

correct, native one would take 1055 seconds, many orders of magnitude longer than the age of the

universe. Yet, actual proteins fold in the millisecond to second range.

Levinthal’s paradox lead to the view that each protein fold following a specific pathway. Although

the modern view is that proteins choose among many competing pathways, it is clear that protein

folding is guided by the physical forces between the different atoms in the protein and between

these atoms and those in the environment. Understanding the physical principles dictating protein

folding and predicting the folding pathway of proteins is an intensive area of research that has been

approached by computational and experimental methods.

1.3 Methods Used to Study Native Structures and

Folding of Proteins
1.3.1 Experimental Methods

The two main methods utilized to determine the structure of proteins with atomic resolution are X-

ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. In X-ray crystallography,

a protein crystal is grown, and the interference pattern produced as X-rays pass through the crystal

lattice is used to determine the arrangement of atoms within the lattice. In NMR spectroscopy, a

6



magnetic field is applied to the sample. The magnetic field causes the degenerate state of proton’s

spins to split. The degree of this splitting depends on the electronic environment of the proton-

containing atoms, and can be used to identify atoms in the protein. Further, two-dimensional NMR

reveals coupling between protons that are linked by a small number of covalent bonds or are separated

by small spatial distances. The coupling patterns thus supply a set of distance constraints on the

positions of atoms in the protein. Using models for the protein, structures can be determined to

satisfy the constraints.

The two most important techniques used to study the protein folding process have been fluores-

cence spectroscopy and circular dichroism (CD). Fluorescence spectroscopy is used when any of the

fluorescent amino acids tryptophan or tyrosine are present in the protein. The technique consist in

exciting the electrons in the sample by a beam of light. The emission spectra of the fluorophore (in

this case the fluorescent amino acid) is very sensitive to the local environment, hence, the spectra

can be used to determine the conformational state of the protein. CD spectroscopy makes use of

a property of chiral molecules known as optical activity. When left and right circularly polarized

light travels through a chiral molecule, each one experiences a different refractive index. As a con-

sequence, the direction of the polarization plane is changed. The two main motifs in the secondary

structure of proteins, the α-helix and the β-sheet, are chiral, and each structure produces a different

CD spectrum. CD spectroscopy is often used to monitor the formation of secondary structure as a

function of time.

1.3.2 Computational Methods

Predicting the native structure of a protein remains one the most difficult problems in contemporary

computational biology. The two main approaches to the problem have been comparative and ab initio

modeling. Comparative modeling refers to techniques such as homology modeling[9] or threading[10],

which use information from databases, of previously solved structures, to predict the native structure

of another protein. In the Ab initio approach, the three-dimensional structure of the protein is

determined based on physical principles. A Hamiltonian for the protein system is proposed, and

different computational techniques are used to find the global free energy minimum of the system.

An even more challenging problem is the prediction of the folding pathway of a protein. The

main technique used to study the folding process of a protein is molecular dynamics (MD). MD
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algorithms calculate the time evolution of the system by numerical integration of the equations of

motion. When MD is applied, the ab initio approach has the advantage that it provides a physical

Hamiltonian from which the equations of motion can be derived. By carrying out MD simulations,

thermodynamic and kinetic information about the different stages of the folding process as well

as the final structure are obtained. To accomplish such predictions, it is necessary to simulate the

folding process in real time, starting from a statistical coil (unfolded) conformation, until the native

structure is reached. For such a simulation to be accurate, the energy function of the system should

ideally include the interactions between all the atoms in the protein and the solvent[11]. Models with

such resolution are called all-atom models, and when they include the atoms in the solvent, they

are referred to as explicit-solvent all-atom models. Although these models can give very detailed

information of the system, with today’s computational power, explicit-solvent all-atom molecular

dynamics (MD) algorithms can simulate only events that range up to nanoseconds for typical proteins

or microseconds for very small ones[11, 12, 13]. These time scales are at least 1 order of magnitude

smaller than the folding times of proteins. To overcome this problem, all-atom simulations either

implement alternative sampling methods, such as umbrella sampling[14], or simulate the unfolding

process and some aspects of its refolding[11, 12].

Initially, simulations primarily treated single-chain proteins, but with the increase in computational

power, studies of oligomeric proteins have also been possible [15, 16, 17, 18, 19, 20]. In general,

simulations of oligomers either study the stability of a specific structure[16, 20] or the kinetics of

folding and/or assembly[15, 17, 18, 19] of the subunits. Stability studies are usually carried out by

all-atom MD[16, 17, 20], but this technique is computationally too expensive to study the kinetics of

the folding process. To reduce the computational cost, the main approach has made use of minimal

models; a minimal model is one for which each amino acid is represented by a few interaction sites,

reducing the dimensionality of the problem. Although the information that they can provide is not as

detailed as that obtained by all-atom models, they can achieve longer simulation times. Some minimal

models have further reduced the computational cost by using a Gō-type potential[17, 18, 19], which

creates a funnel-like landscape biased towards the native structure, thereby speeding up the folding

process. Although Gō-type potentials can fold proteins in very short time, the energy landscape has

been oversimplified by the biased introduce, and therefore, the information that they provide is not

8



physical. It has also been possible to study the kinetics of oligomeric proteins without including any

structural knowledge of the particular protein of interest. For example, Vieth et al.[15] used a lattice

model with a statistical potential (i.e., biased towards structures in a library, but not towards the

particular structure being studied) and Monte Carlo (MC) dynamics to study the folding pathway

of the GCN4 leucine zipper from randomly generated initial structures.

In recent years, a molecular dynamics algorithm has been developed[21, 22, 23, 24] for the physics-

based united-residue (UNRES) force field[25, 26, 27, 28, 29, 30]. I will refer to this implementation

of UNRES as UNRES/MD. UNRES was originally designed and parameterized to locate native-like

structures of proteins, but with the implementation of UNRES/MD it can also be used to predict

the folding pathway of proteins. The latest version of UNRES force field, referred to as 4P[30], was

optimized on four training proteins: 1GAB (all-α), 1E0L (all-β), 1E0G (α+β) and 1IGD (α+β). It

performed well in the CASP6 exercise[31]; the largest molecule that was folded with this force field

contained 225 amino acid residues.

Since the degrees of freedom corresponding to the fastest motions are averaged out in UNRES[26],

UNRES/MD was able to simulate events that fall into the microsecond time scale[23]. After the suc-

cess of UNRES/MD with single-chain proteins, it seemed an excellent choice to study the association

of multiple-chain proteins.
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Chapter 2
Implementing MD in UNRES to Treat
Multichain Proteins∗

2.1 Summary

This chapter describes the implementation of MD with the united-residue (UNRES) force field for

multichain proteins. In section 2.2, I describe the UNRES force field, its extension to multichain

proteins, and the implementation of MD. I describe with great detail the equations of motion and

the algorithms used for the MD simulations. Therefore, section 2.2 might be useful to anyone trying

to reproduce the work. Once MD was implemented, the software was tested on multimeric proteins

with relatively simple architectures. Section 2.3 elaborates on the selection of the appropriate system

for testing the implementation. The test simulations were carried out at constant temperature by

means of Berendsen or Langevin thermostats. With both thermostats the method was capable of

finding the conformations corresponding to UNRES global minimum of energy. Section 2.4, describes

the simulations carried out to test the implementation and the results obtained. This chapter ends

with section 2.5, which is a short summary of the results.

2.2 The United Residues Force Field (UNRES)

UNRES (see Fig 2.1) is a coarse-grained model[25, 26, 27, 28, 29, 30, 31, 32] in which the backbone

is represented as a sequence of α-carbon (Cα) atoms linked by virtual bonds designated as dC, with

united peptide groups (p’s) in their centers. United side chains (SC) are connected by virtual bonds

designated as dX to the backbone at the Cα positions with the center of mass of the side chain at

the end of dX. The geometry of the protein is then fully described by the virtual bond vectors dC’s

and dX’s. Since the forces in UNRES are exerted on the peptide groups and side chains, hereafter

I will use the term interacting sites to refer to both united peptide groups and side chains. The

complete UNRES potential energy function for a single chain is given by equation 2.1

Reproduced in part with permission from the Journal of Chemical Physics B, Copyright c©2007 American Chemical Society.
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FIGURE 2.1. UNRES representation of a polypeptide chain. Filled circles represent the united peptide
groups (p’s), and open circles represent the Cα atoms, which serve as geometric points. Ellipsoids with
their centers of mass at dX positions represent UNRES side chains (SC’s). The p’s are located halfway
between two consecutive Cα atoms, at positions (1/2)dC. The conformation of the polypeptide chain can
be described fully by either the coordinates of all the dC and dX vectors or by the virtual bond angles θ,
the virtual bond dihedral angles γ, and the angles α and β defining the orientation of the side chain with
respect to the backbone.
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Usingle chain =
∑

j

∑

i<j

USCiSCj
+

∑

ss

UCysissCysjss
+ wSCp

∑

j

∑

i6=j

USCipj

+ wVDW
pp

∑

j

∑

i<j−1

UVDW
pipj

+ wel
pp

∑

j

∑

i<j−1

U el
pipj

+ wtor

∑

i

Utor(γi)

+ wtord

∑

i

Utor(γi, γi+1) + wb

∑

i

Ub(θi) + wrot

∑

i

Urot(αSCi
, βSCi

)

+
6

∑

m=2

w(m)
corrU

(m)
corr + wvib

∑

i

Uvib(di) (2.1)

where the indices i and j run over the residues. The terms USCiSCj
(derived and parametrized in ref

[25]) correspond to the mean free energy of hydrophobic (hydrophilic) interactions between the side

chains. These terms implicitly contain the contributions from the interactions of the side chain with

the solvent. The terms UCysissCysjss
(derived and parametrized in ref [33]) account for the energy of

disulfide bonds, with ss running through all those pairs of half-cysteines that are known a priori to

form disulfide bonds[33]. UVDW
pipj

and U el
pipj

correspond to Lennard-Jones and electrostatic interaction

energies between peptide groups, respectively[27]; The terms USCipj
correspond to the excluded vol-

ume potential of the side chain-peptide group interactions. The terms Utor and Utord (derived and

parametrized in ref [29]) are the torsional and the double-torsional potentials, respectively, for the

rotation about a given virtual bond or two consecutive virtual bonds. The terms Ub and Urot (de-

rived and parametrized in ref [26]) are the virtual-angle bending and side-chain-rotamer potentials,

respectively. The terms U
(m)
corr (m) (derived in ref [27] and parametrized in ref [30]) correspond to the

correlations (of order m) between peptide group electrostatic and backbone-local interactions. The

terms Uvib(di) (derived and parametrized in ref [21]), di being the length of the ith virtual bond,

are simple harmonic potentials defined by eq 2.2

Uvib(di) =
1

2
k(di − d◦

i )2 (2.2)

where k is a force constant, currently set at 500 kcal/(mol Å2) and d◦
i is the average length (corre-

sponding to that used in the fixed-bond UNRES) of the ith virtual bond. The w’s in eq 2.1 are the

weights of the respective terms.
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The UNRES force field has also been extended to multiplechain proteins[34]. In the present work,

the interchain interaction energies (and their form, parameters, and weights) were taken to be the

same as those of the intrachain terms in the treatment of single chains. However, since the interacting

sites between chains are not backbone-connected, not all the terms present in eq 2.1 contribute to

the interchain energy. The interaction energy between two different chains (identified by superscripts

k and l, respectively) can be expressed by

Uk,l
inerchain =

∑

i

∑

j

USCk
i SCl

j
+

∑

ssk,l

UCysk
issCysl

jss
+ wSCp

∑

i

∑

j

USCk
i pl

j

+ wSCp

∑

i

∑

j

Upk
i SCl

j
+ wVDW

pp

∑

i

∑

j

UVDW
pk

i pl
j

+ wel
pp

∑

i

∑

j

U el
pk

i pl
j

+
6

∑

m=2

w
(m)
corr,nonadjU

(m)
corr,nonadj (2.3)

where U
(m)
corr,nonadj represents the correlation terms, or order m, corresponding to interactions between

nonadjacent residues. The different terms in eq 2.3 have the same form, and the weights have the

same values, as those in eq 2.1. Detailed descriptions of each of the terms in eqs 2.1 and 2.3 can be

found in refs [25, 26, 27, 29, 30], and [33].

It should be noted that eq 2.3 accounts only for the interaction between two chains in the system.

Hence, eq 2.3 is only part of the contribution to the complete multiple-chain potential energy. It

should also be mentioned here that, for the force field used in this work (4P force field[32]), the

weights of the fifth- and sixth-order correlation terms, w
(5)
corr and w

(6)
corr in eq 2.1 and w

(5)
corr,nonadj

and w
(6)
corr,nonadj in eq 2.3, are zero[32], but these terms have been included in the equations for

completeness.

To mimic peptide concentrations, the system was confined within a soft sphere. This was done by

adding another term, Uconf, to the potential energy, causing each interacting site (either a peptide

group or a side chain) to feel an attractive force toward the center of the sphere whenever it is

outside the boundary of the sphere. This potential, which is added to eqs 2.1 and 2.3, is defined by

eq 2.4
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Uconf =
∑

k

∑

i

uconfki
(2.4)

where uconfki
, the confining potential acting on interacting site i in chain k, is given by

uconfki
=











0 if rk
i ≤ R0

kc(r
k
i − R0)

4 if rk
i > R0

(2.5)

where kc is a force constant with unit value (kc = 1 kcal/(mol Å4)), rk
i is the distance from interacting

site i to the center of the sphere (placed at the center of mass of the initial conformation), and R0

is the radius of the sphere. The radius of the sphere determines the volume of the system (volume

= 4π(R0)
3/3). Therefore, the value of R0 and the number of peptide chains in the solution determine

the peptide concentration of the simulated solution (see section 2.4 for details of the concentrations

used in the simulations); in all simulations, the number of chains was taken as the number of chains

in the multichain complex.

Combining eqs 2.1, 2.3, and 2.4, we obtain the multiple-chain UNRES potential energy (eq 2.6)

U =
∑

k

Uk
single chain +

∑

k

∑

l>k

Uk,l
inerchain + Uconf (2.6)

where the indices k and l run through the different chains.

2.2.1 Equations of Motion

To find the time evolution of a system, it is necessary to solve the equations of motion of the system.

In general, for a system with generalized coordinates q1, q2, ..., qn and generalized momenta q̇1, ...,

q̇n, this is equivalent to solving the set of Lagrange’s equations

d

dt

[

∇q̇i
L(q1, q2, . . . , q̇1, q̇2, . . . )

]

−∇qi
L(q1, q2, . . . , q̇1, q̇2, . . . ) = Qi (2.7)
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where i = 1, ..., n, L is the Lagrangian of the system, and the Qi’s are the generalized dissipative

(Rayleigh) forces acting on the system.

The Qi’s are nonconservative forces and, therefore, cannot be derived from the potential energy of

the system. For our system, these nonconservative forces are the friction and stochastic forces; they

represent collisions with the solvent molecules due to a net motion of the system and random impact

of the fluctuating solvent molecules on the solute molecules, respectively, as well as the net effect

of averaging out the internal secondary degrees of freedom of the protein molecule. Each Cartesian

component of each generalized force will have the form

Qi = −γivi(t) + f rand
i (2.8)

with γi and vi(t) being the friction coefficient and velocity related to the ith coordinate and f rand
i

being a stochastic force with zero mean and intensity given by[35] eq 2.9

< f rand
i (t)f rand

j (t + τ) >= 2γiRT0δ(τ)δij (2.9)

where R is the universal gas constant, T0 is the temperature of the bath, δ(τ) is the Dirac delta

function (evaluated at an arbitrary time interval τ), and δij is the Kronecker delta function. When the

Qi’s are identified with the sum of the stochastic and friction forces, they account for the coupling

of the protein chain(s) under study to the solvent, which in turn acts as a thermostat, thereby

maintaining an average constant temperature of the system.

Following previous work[21], I chose to describe each chain by a set of virtual bond vectors dCk
i

and dXk
i , with dCk

i being the vector pointing from Cα
ik

to Cα
i+1k (Figure 2.1), except for dCk

0 which

points from the origin to the first Cα in the chain, and dXk
i being the vector pointing from Cα

ik
to

SCi (Figure 2.1). The superscript k indicates the chain to which reference is being made. The entries

corresponding to glycine residues are omitted from the list of dX’s since they have zero length. A

dummy Cα atom is introduced at the beginning (end) of the chain if the first (last) residue is not

glycine and if the chain is unblocked[36].
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To simplify the notation, the dCk
i and dXk

i vectors will be grouped in a single vector qk =

(dCk
0,dCk

s ,dCk
e , . . . ,dXk

1,dXk
2, . . . ,dXk

m)T. The indices s and e correspond to the first and last

real residue, i.e., s = 1 if the first residue is Gly and s = 2 otherwise. Likewise, if the last residue

is a dummy one, then the index e = n − 1, with n being the number of residues in the chain, and

e = n otherwise. The index m is the number of non-glycine residues in the chain. It should be noted

that, although I have omitted the superscripts, the values of s, e, n, and m might in principle be

different for different chains within the complex.

The coordinates xpik and xSCik
of the united peptide groups and side chains can be reconstructed

from the dCk
i and dXk

i vectors through eqs 2.10 and 2.11

xpk
i

= dCk
0 +

j=i−1
∑

j=s

dCk
j +

1

2
dCk

i (2.10)

xk
SCi

= dCk
0 +

j=i−1
∑

j=s

dCk
j + dXk

i (2.11)

Defining vectors xk = (xk
ps, . . . ,x

k
pe,x

k
SC1, . . . ,x

k
SCm)T, eqs 2.10 and 2.11 can be expressed in matrix

form, obtaining a single equation for each chain

xk = Akqk (2.12)

where Ak is the matrix that transforms from the generalized coordinates qk of the kth chain to the

Cartesian coordinates of the interacting sites, xk, of the same chain. The same relation holds for the

velocities vk = (vk
ps, ...,v

k
pe,v

k
SC1, ...,v

k
SCm)T

vk = Akq̇k (2.13)

Then, when writing Lagrange’s equations, we obtain a relation, for each chain, of the form

d

dt

[

∇q̇kKk(qk, q̇k)

]

+ ∇qkU(q1,q2, . . . ,qN) = f frick + f randk (2.14)
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where k indicates the chain in question, Kk is its kinetic energy, f frick and f randk are the friction

and random forces acting on that chain, and N is the total number of chains in the protein.

The different chains are coupled only through the UNRES potential energy U , which also includes

the free energy of the solvent implicitly in the USCiSCj
terms. The kinetic energy of a specific chain

does not contain any dependence on the coordinates from a different chain. This enabled us to easily

generalize the single-chain equations derived in refs [21] and [22] to the multichain problem.

Since both peptide groups and side chains are rigid bodies, their kinetic energies have translational

and rotational contributions. The kinetic energies of a peptide group and a side chain, Kpik and

KSCik , are given by equations 2.15 and 2.16, respectively.

Kpik =
1

2
mp‖vpik‖

2 +
1

2

Ipik

‖dck
i ‖

4
(dck

i × vpik)2 (2.15)

KSCik =
1

2
mSCi‖vSCik‖

2 +
1

2

ISCik

‖dXk
i ‖

4
(dXk

i × vSCik)2 (2.16)

where Ipik is the moment of inertia of the ith peptide group and ISCik is the moment of inertia of

the ith side chain, in chain k. In eqs 2.15 and 2.16, the first term corresponds to the translational

kinetic energy, while the second term corresponds to the internal, rotational, kinetic energy.

The moment of inertia of a peptide group is Ipik = (1/12)mp(‖dck
i ‖)2, and that of a side chain is

ISCik = (1/12)mSCik(2‖dXik‖)2 = (1/3)mSCik(|dXk
i ‖)2 (since the length of a side chain is twice its

virtual-bond length).

We now define a diagonal matrix Hk, which contains the moments of inertia of petide groups and

side chains divided by their bond lenght
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Hk =









































1
12

mp 0 · · · 0 0 · · · 0

0 1
12

mp · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · 1
3
mk

SC1 0 · · · 0

0 0 · · · 0 1
3
mk

SC2 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · 0 m · · · 1
3
mk

SCm









































(2.17)

and the diagonal matrix Mk, containing the masses of the interacting sites

Mk =









































mp 0 · · · 0 0 · · · 0

0 mp · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · mk
SC1 0 · · · 0

0 0 · · · 0 mk
SC2 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · 0 m · · · mk
SCm









































(2.18)

Then, using the definitions from equations 2.12, 2.13, 2.17 and 2.18, the kinetic energy of chain k

can be expressed as follows

Kk =
1

2
(Aq̇k)TMk(Aq̇k) +

1

2
(q̇k)TH(q̇k) (2.19)

From equation 2.19, it follows that Lagrange’s equations (equation 2.14) can be expressed by equa-

tion 2.20

Gkq̈k = −∇qkU(q1, . . . ,qN) − (Ak)TΓΓΓkAkq̇k + (Ak)T f randk (2.20)

where Gk is the inertia matrix, defined by eq 2.21
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Gk = (Ak)T (Mk)(Ak) + Hk; (2.21)

Γk is a diagonal matrix containing the friction coefficients of the interacting sites (peptide groups

and side chains), and the components of the vector f randk of random forces are calculated from a

normal distribution according to [37, 38, 39]

(f randk)i =

√

2γiRT

δt
N(0, 1) (2.22)

where (f randk)i is the random force acting on the ith interacting site from chain k, γi is the friction

coefficient associated with that site, R is the universal gas constant, T is the temperature of the

bath, δt is the integration time step, and N(0, 1) is a tridimensional normal distribution with zero

mean and unit variance.

2.2.2 Integrating the Equations of Motion

The time evolution of the system is obtained by numerical integration of the equations of motion

(equation 2.14). This is done using the velocity Verlet algorithm[40]. The algorithm[40] consist of

two steps:

• step 1. Compute the coordinates at time t + δt (where δt is the time step)

q(t + δt) = q(t) + q̇(t)δt +
1

2
q̈(t)(δt)2 (2.23)

• step 2. Compute the momenta at time t + δt

q̇(t + δt) = q̇(t) +
1

2
[q̈(t) + q̈(t + δt)](δ t)2 (2.24)

• go back to step 1.
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2.2.3 Simulations in the Microcanonical Ensemble

Following the procedure for single chain proteins[21], I first carried out MD calculations in the

microcanonical ensemble. In this case, the stochastic and the friction forces are set to zero; therefore,

the total energy of the system should be conserved. To check that the total energy condition was

satisfied, I carried out simulations on two chains of an unblocked Ala10 polypeptide with the variable

time step as described in section 3 of ref [21]. The simulations showed that the fluctuations in the

total energy are negligible when compared with those in the kinetic and potential energies. The total

energy is conserved, although only to the extent that it is conserved in ref [21]. The results of the

microcanonical simulations are not shown here since that is an issue that has already been addressed

in ref [21].

2.2.4 Berendsen Dynamics (BD)

There are several methods that can be used to carry out constant temperature simulations. These

methods can be classified in two large groups: extended Lagrangian methods[41, 42] and rescaling of

velocities[35, 43]. The method that I chose for the MD simulations belongs to the second category

and is known as the Berendsen thermostat[35]. The idea behind this method is that the system is

forced to have the same kinetic energy as if it were subject to the forces in eq 2.8. To accomplish

this, the velocities are rescaled by a factor

λ =

[

1 +
δt

τT

(

T0

T (t)
− 1

)]

(2.25)

at every simulation step, where δt is the time step, T0 is the reference temperature, τT is an adjustable

parameter (known as the time constant of the thermostat), and T (t), the instantaneous temperature

of the system at time t, is given by equation 2.26

T (t) =
2K(t)

RD
(2.26)

where K(t) is the kinetic energy of the system, R is the universal gas constant, and D is the number

of degrees of freedom of the system. As a result, the system is globally coupled to a heat bath at

temperature T0. The integration algorithm can be summarized as follows:

• step 1. Compute the accelerations at time t according to equation 2.27
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q̈k(t) = −[Gk]−1∇qk(t)U(q1(t), . . . ,qN(t)) (2.27)

were the supraindices k indicate the chain number.

• step 2. Compute the coordinates at time t + δt

qk(t + δt) = qk(t) + q̇k(t)δt +
1

2
q̈k(t)[δt]2 (2.28)

• step 3. Compute the accelerations at time t + δt

q̈k(t + δt) = −[Gk]−1∇qk(t+δt)U(q1(t + δt), . . . ,qN(t + δt)) (2.29)

• step 4. Compute the momenta at time t + δt

q̇k(t + δt) = q̇k(t) +
1

2
[q̈k(t) + q̈k(t + δt)(δt)2+ (2.30)

• step 5. Rescale the momenta

q̇k(t + δt) → λq̇k(t + δt) (2.31)

• go back to step 1.

Although this method has not been proven to generate a true canonical ensemble, it has the advan-

tage that the coupling can be made as weak as desired by manipulating the constant τT . It has been

shown[35] that small values of τT (strong coupling) reduce the fluctuations in the kinetic energy K

at the expense of increasing fluctuations in the total energy E. On the basis of earlier work[21], I set

τT = 48.9fs = 1mtu (mtu = molecular time unit) and δt = 0.05mtu. These values were tested by

carrying out MD simulations with Berendsen dynamics on a system composed of two chains of an

unblocked Ala10 polypeptide at a concentration of 1 mM. During the simulations, the fluctuations

in the total (E), kinetic (K), and potential (U) energy were monitored. The simulations showed

that the parameters used for the single chain were appropriate for the multichain complex as well.
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2.2.5 Langevin Dynamics (LD)

As pointed out in section 2.2.1, the system can be kept at a constant temperature by inserting

stochastic and friction terms in the equations of motion, yielding a Langevin equation, namely,

eqs 2.8 and 2.9. The trajectory of the system is obtained by numerical integration of eq 2.20. The

integration algorithm can be summarized as follows[22]:

• step 1. Compute the accelerations at time t according to equation 2.32

q̈k(t) = −[Gk]−1∇qk(t)U(q1(t), . . . ,qN(t))

− [Gk]−1(Ak)TΓΓΓkAkq̇k(t)

+ [Gk]−1(Ak)T f randk(t) (2.32)

were the supraindices k indicate the chain number.

• step 2. Compute the coordinates at time t + δt

qk(t + δt) = qk(t) + q̇k(t)δt +
1

2
q̈k(t)[δt]2 (2.33)

• step 3. Compute the accelerations at time t + δt according to equation 2.34

q̈k(t + δt) = −[Gk]−1∇qk(t+δt)U(q1(t + δt), . . . ,qN(t + δt))

− [Gk]−1(Ak)TΓΓΓkAkq̇k(t)

+ [Gk]−1(Ak)T f randk(t) (2.34)

• step 4. Compute the momenta at time t + δt

q̇k(t + δt) = q̇k(t) +
1

2
[q̈k(t) + q̈k(t + δt)(δt)2+ (2.35)

• go back to step 1.
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2.2.6 Optimal Temperature for MD Simulations

The parameters and weights in UNRES have been determined by a hierarchical optimization method[28,

30, 31, 44]. The idea behind this method is to reproduce a funnel-like energy landscape with energy

decreasing as the number of nativelike elements in a structure increases[28, 44]. Because the 4P force

field was designed to find nativelike structures as global minima in the potential energy surface, the

free-energy gaps between the nativelike structures and the lowest-energy non-native structure of the

training protein were overemphasized in the optimization process[32]. Consequently, the optimal

folding temperature for the MD simulations with the UNRES 4P force field turned out to be 800

K[23]. This value gave the best compromise between folding time and stability of the nativelike

structures for several benchmark proteins[23]. This high temperature was not a problem while car-

rying out single-chain simulations because the internal forces acting on a polypeptide chain were

tuned to this high temperature. However, in multichain simulations, the chains move with respect

to each other, and the external motions are too strong to allow association. Therefore, I rescaled all

energy term weights by a factor of 3/8 to reduce the folding temperature to 300 K. This operation

changes only the energy scale but not the structure of the energy landscape.

2.3 Choosing the Appropriate System to Test

UNRES/MD Multichain

Because the goal was to test the multichain MD implementation, and not the force field, I chose

systems that the 4P force field could treat. For this porpuse, I carried out simulations on the

following three α-helical proteins of known native structure: 1G6U (two chains, 48 residues each),

2ZTA (two chains, 33 residues each), and 1C94 (four chains, 38 residues each). The complexity

and size of these proteins is similar to that of the α-helical proteins tested with the single-chain

UNRES/MD[23], and the size of the smallest of them (2ZTA) is within the average size of structural

segments of α-helical proteins that can be predicted successfully with the 4P force field[32]. These

systems are, therefore, appropriate to test the UNRES/MD approach for multichain proteins, given

the limitations of the present force field. I did not use β or α + β proteins because earlier work[23]

showed that UNRES/MD generally produces non-native α-helical structures for such proteins, even

though the native structures are global energy minima in the UNRES energy surface; this happens
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because the conformational entropy was neglected in the parametrization of the 4P force-field. This

issue has been addressed in newer versions of the UNRES force filed[45].

2.4 Testing UNRES/MD Multichain

To study different aspects of the UNRES/MD multiple-chain implementation, I carried out a number

of tests. I compared Langevin (LD) and Berendsen dynamics (BD) by carrying out multiple-chain

simulations with the same initial conditions with each method. To test whether the presence of other

chains was a necessary condition to fold the monomers, I also carried out single-chain simulations

with BD and LD and compared the structures obtained with those of the monomers in the crystal

structures of the oligomers. Finally, since the method failed to predict the native structure of 1C94,

additional simulations starting from the PDB structure were carried out for this protein. This was

done to check whether the native structure was not found because of insufficient simulation time

or because the force field was not good enough to properly represent the energy landscape of this

protein.

All the runs (both single-chain and multichain), except those starting from the PDB structure,

were started with the chains in an extended conformation. In all simulations, the initial velocities

of the peptide groups and side chains were randomly generated. In the multichain runs, the chains

were placed parallel to each other, separated by a distance large enough (20 Å for GCN4- p1 and

1C94 and 40 Å for 1G6U) to allow them to rearrange independently. Since the chains rapidly

adjust to an equilibrium ensemble, after starting from extended conformations, the simulations

are practically independent of the starting condition. The initial velocities were selected from a

Gaussian distribution corresponding to the average kinetic energy at the simulation temperature,

and the temperature was held constant at 300 K during all of the simulations.

In the multichain runs, for those starting from the extended conformation, the radius of the confining

sphere was initially set large enough to fit the extended chains. After the first 24 ps of simulation, the

radius of the sphere was decreased slowly until the desired concentration (1 mM for the dimers and

10 mM for the tetramer) was reached. This concentration, although higher than those concentrations

used in the experiments[46, 47, 48] was chosen because it resulted in a volume large enough to fit
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FIGURE 2.2. (A)Experimental structure of 1G6U. (B) The most nativelike structure (Cα RMSD = 1.79 Å)
obtained with BD UNRES/MD . (C) An example of a misfolded structure. The C-terminus of each chain
is marked.

the chains without altering their structures and small enough for the monomers to find each other

and interact in a short period of time.

To classify the runs into success and failure, we monitored the Cα root-mean square devation

(RMSD) between the computed structures and the crystal structure. If this value, hereafter referred

to as ρ, fell below a cutoff value, ρcut, then the protein was considered to have folded. The folding

time τf , defined as the time at which ρ fell below the cutoff ρcut for the first time, and the residence

time τres, defined as the fraction of the total time that ρ was below ρcut, were also computed. For

1G6U, ρcut was 5 Å for the monomers and 7 Å for the dimers, for GCN4, ρcut was 3.4 Å for the

monomers and 4.8 Å for the dimers, and for 1C94, ρcut was 4 Å for the monomers, 5.6 Å for the

dimers, and 8 Å for the tetramers. If the monomers were folded by this criterion and were stable,

and the arrangement of the chains was stable but not native, then the overall structure was classified

as misfolded. If this criterion was not met, then the structure was classified as nonfolding.

2.4.1 Domain Swapped Dimer (PDB Code 1G6U)

1G6U is a synthetic α-helical homodimer with 48 residues per chain[48]. Each monomer consists of

two α-helix segments, with the shortest (14 residues) helix packed against the longest (28 residues)

helix. The monomers assemble forming a three-α-helix bundle with the long helices in the antiparallel

position (Figure 2.2A). I will refer to the shortest helix as H1 and the longest helix as H2 (Figure

2.3). To provide a better description of the folding trajectories, I monitored the RMSD (Table 2.1)

with respect to the native structure for the entire protein, for each of the monomers, and for each
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FIGURE 2.3. Superposition of one of the monomers in the 1G6U experimental dimer structure (black) on
the most nativelike structure (gray) (Cα RMSD = 1.22 Å) obtained with the UNRES/MD simulations of
the monomer using BD. The N-terminal helix H1 and the C-terminal helix H2 are indicated as well as the
C-terminus.

of the helices (H1 and H2). To determine the folding times of H1 and H2, I set their cutoff RMSD’s

at 1.5 and 4 Å respectively.

2.4.1.1 Monomers

As can be seen in Table 2.1, all of the simulations of the monomers converged to nativelike structures,

showing that dimerization is not necessary for the folding and stabilization of the individual chains.

The most nativelike structure, 1.22 Å from native, was produced by BD. A superposition of this

structure and the native structure is shown in Figure 2.3.

Figure 2.4 shows potential energy and ρ values for an LD trajectory (panels A and B, respectively)

and a BD trajectory (panels C and D, respectively) for an isolated monomer of 1G6U. As can be

seen from Figure 2.4, the native basin was very stable, and with both methods, once the peptide

adopted nativelike structures, the fluctuations in the potential energy and ρ became smaller, and

the peptide remained in the native basin.
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TABLE 2.1. Summary of Trajectories for 1G6U

〈τf〉
b 〈τf (H1)〉c 〈τf (H2)〉d ρe

min 〈E〉gf 〈E〉imf CPUj

Na
f (ns) (ns) (ns) (Å) 〈τres〉

f (kcal/mol) Nh
mf (kcal/mol) (h)

Dimer
Berendsen 9(20) 4.8(0.30) 0.14 0.16 1.79 49% -402 1 -401 2.9
Langevin 2(19) 14.9(4.0) 0.35 0.20 2.38 36% -403 2 -398 3.9

Monomer
Berendsen 10 0.92 0.18 0.21 1.22 86% -186
Langevin 10 2.6 0.25 0.24 1.28 69% -188

aNumber of trajectories (out of 10) that folded to nativelike structures. In the dimer simulations, the number of monomers (out of 20, since
there were 2 monomers on each of the 10 dimer simulations) that folded to a nativelike structure is indicated between parentheses;
bAverage folding time. The folding time was defined as the time at which the RMSD with respect to the crystal structure fell below the
cutoff value (7 Å for the dimers and 5 Å for the monomers). In those runs for which the RMSD never went below the cutoff, the folding time
was considered to be the simulation time (12 ns for Berendsen and 16 ns for Langevin). In the dimer simulations, the average folding time
of the monomers is indicated between parentheses;
cAverage folding time for the N-terminal helix, H1. The folding time was defined as the time at which the RMSD with respect to the crystal
structure fell below 1.5 Å;
dAverage folding time for the C-terminal helix, H2. The folding time was defined as the time at which the RMSD with respect to the crystal
structure fell below 4 Å;
eThe lowest RMSD in all of the fluctuating trajectories;
fFraction of the time that the peptide spent in the native basin averaged over all of the folding trajectories;
gAverage potential energy over all structures in the native f basin;
h Number of trajectories (out of 10) that yielded misfolded structures;
iAverage potential energy over all structures in the misfolded mf basin;
j Average CPU time (in hours) per 1 ns of simulation on a single 3.06 GHz Intel Pentium IV Xeon processor.
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2.4.1.2 Dimers

In the simulation of dimers, the initial separation distance between chains was 40 Å, the initial

arrangement was parallel, and the simulation time was approximately 12 ns for BD and 16 ns

for LD. The final concentration of 1 mM was achieved within the first nanosecond. The results

are summarized in Table 2.1. Both algorithms, BD and LD, folded the protein. In general the

folding times with BD were shorter than those with LD, as observed in earlier work on single-chain

proteins[22]. BD also produced the most nativelike structure, which is shown in Figure 2.2B. From

the simulations, it became evident that the energy landscape generated by the 4P UNRES force

field has two basins with low free energy. One of these basins corresponds to the native structure,

and the other one to a structure that differs from the native in that the long helices are parallel to

each other instead of antiparallel (Figure 2.2C). I will refer to the latter structure as a misfolded

one. Both structures were very stable, and once the protein fell into one of these basins, it would

not escape within the simulation time (12 ns for BD and 16 ns for LD). The difference in average

potential energy between the native and the misfolded basin is very small (Table 2.1). Thus, it is

natural to expect that, for some trajectories, the forces will drive the system to the native basin

and, for some others, to the misfolded basin. Indeed, this is what was observed in these simulations.

Presumably, improvement of the 4P UNRES force field will stabilize the native basin to a greater

extent compared to the non-native basin.

Snapshots of a successful trajectory obtained with LD are shown in Figure 2.5. For the same

trajectory, the values of ρ and the potential energy as a function of time are shown in Figure 2.6.

The snapshots show that helix formation takes less than 1 ns, and for this particular example, the

packing of the helices on both monomers takes about 3 ns. Also for this example, the monomers fold

independently, but they are close enough so that, after the subunits have folded, they can overcome

the friction forces to turn around (since the initial orientation of the helices is parallel, but in the

native structure the orientation is antiparallel) and assemble in less than 2 ns. The folding of the

dimer is completed in a total time of 5 ns. The two LD trajectories that converged to the native

basin (Table 2.1) showed the folding mechanism illustrated in Figure 2.5.
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FIGURE 2.4. (A) Variation of the potential energy and (B) the Cα RMSD from the native structure of
the monomer in the dimer during the folding of an isolated monomer of 1G6U obtained with Langevin
dynamics. The solid horizontal line at -187.1 kcal/mol in panel A is the mean value of the energy after the
monomer has reached the native basin. In panel B, the dashed horizontal line at 5 Å corresponds to the
cutoff RMSD above which the monomer structure is considered to have left the native basin, and the solid
horizontal line at 2.7 Å indicates the mean Cα RMSD of the monomer inside the native basin. Panels C and
D contain the same information as panels A and B, respectively, for a trajectory obtained with Berendsen
dynamics. The solid horizontal line at -187.1 kcal/mol in panel C is the mean value of the energy after the
monomer has reached the native basin, and the solid horizontal line at 2.7 Å in panel D is the mean Cα

RMSD inside the native basin of the monomer from the monomer in the native structure of the dimer.
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FIGURE 2.5. Example of a successful trajectory of 1G6U obtained with Langevin dynamics. The C-terminus of each chain is marked.
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FIGURE 2.6. (A) Variation of the potential energy and (B) the Cα RMSD from the native structure for
the dimer in a successful trajectory of 1G6U obtained with Langevin dynamics. For the same trajectory,
panels C and D show the variation of the Cα RMSD from the native for each of the monomers. The solid
horizontal line at -403 kcal/mol in panel A is the mean value of the energy after the dimer has reached the
native basin, and the solid line at 4.8 Å in panel B is the mean Cα RMSD inside the native basin of the
dimer. The dashed horizontal line in panels B, C, and D corresponds to the cutoff RMSD (7 Å for the dimer
and 5 Å for the monomers) above which a structure is considered to have left the native basin. The solid
horizontal line at 3.3 Å in panels C and D is the mean Cα RMSD inside the native basin of the monomer.
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Figure 2.7 shows snapshots of an LD trajectory leading to a misfolded structure. The values of ρ

and the potential energy for this trajectory are shown in Figure 2.8. For this particular trajectory,

chain A folds first (cf. panels C and D), and chain B folds while it binds to form the dimer (cf. panels

B and C). The formation of the dimer in Figure 2.7 corresponds to the stabilization of ρ around 15.6

Å in panel B of Figure 2.8. For the other LD trajectory that converged to the misfolded basin, the

assembly mechanism was similar to that described in Figure 2.5, in the sense that the monomers

folded completely before they assembled. Thus, folding of the monomers followed by their assembly

does not always lead to the native basin.

Those LD trajectories that did not converge to the native or misfolded basin reached a state (called

nonfolded) in which either one or both monomers were folded, but they had not yet assembled

within the 16 ns simulation time. Their structures were similar to either the 3- or the 4-ns snapshot

in Figure 2.5. With BD, all of the simulations converged to either the native or the misfolded basin

(Table 2.1).

Among those runs that converged to the native basin, two different pathways were observed, one

on which the subunits fold before their assembly (lock-and-key mechanism) and another one on

which the subunits fold simultaneously with their assembly (induced-fit mechanism). Although only

a few runs followed the latter assembly mechanism (3 out of 9 folding trajectories), this pathway

seems to be 2.5 times faster on average than the assembly of already folded subunits, which is not

surprising since, after the monomers are folded, they might collide several times until they find the

right orientation, which will in general slow down the process. Figures 2.9 and 2.10 illustrate these

two folding pathways. For the trajectory shown in Figure 2.9 (fast folding pathway), folding and

association of the chains occurs simultaneously, with the dimer folding in less than 0.4 ns, while

for the trajectory shown in Figure 2.10 (slow folding pathway), although the chains collide several

times (snapshots at 0.23, 0.33, 5.83, and 6.44 ns), only the last collision results in the formation

of the dimer. There is a long period between the snapshots at 0.56 and 5.83 ns (this period is not

shown in the snapshots) during which the chains remain folded but they do not collide at all. Figure

2.11 contains the values of ρ and the potential energy as a function of time, corresponding to the

trajectory shown in the snapshots in Figure 2.11. In Figure 2.11, two pronounced drops in energy

can be seen (panel A). The first one corresponds to the folding of the monomers (ρ below 5 Å in
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FIGURE 2.7. Example of a trajectory of 1G6U, obtained with Langevin dynamics, leading to the misfolded structure. The C-terminus of each chain
is marked.
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FIGURE 2.8. (A) Variation of the potential energy and (B) the Cα RMSD from the native structure for
the dimer for a misfolding trajectory of 1G6U obtained with Langevin dynamics. The misfolded structure
differs from the native in that the long helices are parallel to each other instead of antiparallel. For the same
trajectory, panels C and D show the variation of the Cα RMSD from the native for each of the monomers.
In panels A and B, the solid horizontal line (at -401 kcal/mol in panel A and 15.7 Å in panel B) is the
mean value of the energy and the Cα RMSD from the native, respectively, after the protein has fallen into
the misfolded basin. The dashed horizontal line in panels C and D corresponds to the 5 Å cutoff RMSD,
above which the monomers are considered to have left the native basin; i.e., the monomers folded but the
overall structure was misfolded. The solid horizontal line in panels C and D (at 5.9 Å in panel C and 3.1 Å
in panel D) is the mean Cα RMSD inside the native basin of the monomer.
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panels C and D), and the second one corresponds to the assembly of the dimer (ρ below 7 Å in panel

B).

The folding mechanism of the only BD trajectory that converged to the misfolded basin was similar

to the one described in Figure 2.9 (fast folding pathway), except that the orientation of the chains

was parallel instead of antiparallel as in the native structure.

When comparing the folding of the isolated monomers of 1G6U in the single- and multichain

simulations, I found that, with LD, the average folding time of the monomers in the single-chain

simulations was shorter than that in the multichain simulations (Table 2.1), which suggests that

the interactions between chains might slow down the folding of the individual chains. To further

elucidate whether this delay occurs in the formation of helices H1 and H2 or in their packing, I

compare the folding times of H1 and H2 in the single-chain simulations with their folding times in

the multichain simulations. I found almost no difference in the average folding time of H2, and in

the case of H1, the formation of the helix seems to be slightly faster for the single-chain simulations

(Table 2.1). This suggests that, for 1G6U with LD, the interactions between the chains can hinder

the packing of helices H1 and H2 and can also slow down the formation of the shortest helix (H1).

With BD, on average, the monomers folded 3 times faster in the multichain simulations than

in the single-chain simulations (0.30 ns compared to 0.92 ns) (Table 2.1). Further analysis of the

folding times of helices H1 and H2 showed that H1 and H2 fold at approximately the same rate for

single-chain and multichain simulations (Table 2.1). This indicates that interactions between chains

enhance the packing of H1 and H2 but have no substantial effect on the formation of the helical

structures.

The fact that the packing of H1 and H2 is favored by multichain interactions with BD and hindered

with LD might be explained as follows: With BD, in which the friction forces are absent, the chains

can move very fast, and if a collision that does not favor the packing of H1 and H2 has taken place,

then the chains can quickly rearrange to find a better orientation while, with LD, the reorientation of

the chains is much slower due to the friction forces from the solvent. With both methods, collisions

will sometimes favor the packing of H1 and H2 and other times hamper it, the only difference is that,

with BD, the chains can collide more frequently, and overall (when averaged over several trajectories)

the presence of another chain will favor single-chain folding.
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FIGURE 2.9. Example of a fast folding trajectory of 1G6U obtained with Berendsen dynamics. The C-terminus of each chain is marked.
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FIGURE 2.10. Example of a slow folding trajectory of 1G6U obtained with Berendsen dynamics. T he C-terminus of each chain is marked.
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FIGURE 2.11. (A) Variation of the potential energy and (B) the Cα RMSD from the native structure for
the dimer in a successful trajectory of 1G6U obtained with Berendsen dynamics. For the same trajectory,
panels C and D show the variation of the Cα RMSD from the native structure for each of the monomers.
The solid horizontal line at -401 kcal/mol in panel A is the mean value of the energy after the protein has
reached the native basin. The dashed horizontal line in panels B, C, and D corresponds to the cutoff RMSD
(7 Å for the dimer and 5 Å for the monomers) above which a structure is considered to have left the native
basin. The solid horizontal line at 4.5 Å in panel B is the mean Cα RMSD inside the native basin of the
dimer. The solid horizontal line in panels C (2.8 Å) and D (3.1 Å) is the mean Cα RMSD inside the native
basin of the monomer.
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FIGURE 2.12. (A) Experimental structure of GCN4-p1. (B) The most nativelike structure (Cα RMSD =
1.19 Å) obtained with LD UNRES/MD. (C) An example of a misfolded structure. The N-terminus of each
chain is indicated.

2.4.2 GNC4 Leucine Zipper (PDB Code 2ZTA)

The GCN4 leucine zipper (GCN4-p1), derived from the yeast transcriptional activator GCN4, is an

α-helical homodimer consisting of two parallel chains with 33 residues per chain[46] (Figure 2.12A).

Since the helices in GCN4-p1 wrap around each other, its motif is known as a coiled coil. The coiled

coil motif is found in many proteins, and for this reason, GCN4-p1 and its mutants have been the

subject of numerous studies[46, 49, 15]. In particular, simulations of the folding pathway of GCN4-p1

have been carried out by Vieth et al.[15], as mentioned in section 1.3.2.

2.4.2.1 Monomers

With both BD and LD methods, 9 out of 10 monomer trajectories converged to nativelike structures,

as can be seen from Table 2.2. Moreover, these nativelike structures were quite stable, indicating

that dimerization is not necessary for the folding and stabilization of the individual chains. A su-

perposition of the most nativelike structure, obtained with BD, and the experimental structure is

shown in Figure 2.13A. Those BD and LD trajectories that did not find the native basin by the end

of the simulation showed structures with ρ values around 11 Å in which the helix was bent, packing

against itself, as shown in Figure 2.13B.

The structure shown in Figure 2.13B was also found along the pathway of some of the trajectories

that converged to nativelike structures. Potential energy and ρ values as a function of time, for

an LD trajectory showing such a behavior, are shown in Figure 2.14 (potential energy in panel A

and ρ values in panel B). During the first 3 ns of simulation of this trajectory, the peptide adopts

structures similar to those shown in Figure 2.13B, which corresponds to the plateau in ρ values
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TABLE 2.2. Summary of Trajectories for GCN4-p1

dimer monomer

〈τf〉
b ρc

min 〈E〉ef 〈E〉gmf CPUh 〈τf〉
b ρc

min 〈E〉ef
Na

f (ns) (Å) 〈τres〉
d (kcal/mol) Nf

mf (kcal/mol) (h) Na
f (ns) (Å) 〈τres〉

d (kcal/mol)

Berendsen 4(17) 6.6(3.2) 1.22 29% -214 6 -217 1.5 9 1.5 0.59 69% -104
Langevin 3(16) 9.1(3.4) 1.19 81% -218 1 -225 1.9 9 2.7 0.70 74% -97

aNumber of trajectories (out of 10) that folded to nativelike structures. In the dimer simulations, the number of monomers (out of 20, since
there were 2 monomers on each of the 10 dimer simulations) that folded to a nativelike structure is indicated between parentheses;
bAverage folding time. The folding time was defined as the time at which the RMSD with respect to the crystal structure fell below the cutoff
value (4.8 Å for the dimers and 3.4 Å for the monomers). In those runs for which the RMSD never went below the cutoff, the folding time
was considered to be the simulation time (12 ns). For both BD and LD, in the dimer simulations, the average folding time of the monomers
is indicated between parentheses;
cThe lowest RMSD in all of the fluctuating trajectories;
dFraction of the time that the peptide spent in the native basin averaged over all of the folding trajectories;
eAverage potential energy over all structures in the native f basin;
f Number of trajectories (out of 10) that yielded misfolded structures;
gAverage potential energy over all structures in the misfolded mf basin;
h Average CPU time (in hours) per 1 ns of simulation on a single 3.06 GHz Intel Pentium IV Xeon processor.
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FIGURE 2.13. (A) Superposition of one of the monomers from the experimental structure of GCN4-p1
(black) on the most nativelike structure (gray) (Cα RMSD = 0.59 Å) obtained with BD UNRES/MD. (B)
A structure that was often found during the folding pathway of GCN4-p1 (with both BD and LD) and was
the final structure of those trajectories that did not f ind the native basin. The N-terminus is indicated.

around 11 Å in panel B. At the third nanosecond of simulation, the monomer finds the native basin

(ρ falls below the 3.4 Å cutoff in panel B), and the energy drops considerably (panel A), showing

that the structure in Figure 2.13B is only a local minimum and does not compete with the native

structure.

Not all the trajectories that converged to the native basin exhibited the folding pathway described

in the previous paragraph. In other simulations, a fast folding pathway was observed, with the

monomer rapidly finding the native basin without spending time in any intermediate structure. An

example of such behavior can be seen in the BD trajectory shown in panels C and D of Figure

2.14 (potential energy in panel C and ρ values in panel D). This behavior was the most commonly

observed among all the runs (both BD and LD).

In general, with either BD or LD, the native basin was very stable, which can be inferred from the

behavior of ρ in panels B and D of Figure 2.14; once ρ crossed the 3.4 Å RMSD cutoff (equivalent

to finding the native basin), it remained within this cutoff most of the time.
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FIGURE 2.14. (A) Variation of the potential energy and (B) the Cα RMSD from the native structure of
the monomer in the dimer during the folding of an isolated monomer of GCN4-p1 obtained with Langevin
dynamics. The solid horizontal line at -98 kcal/mol in panel A is the mean value of the energy after the
monomer has reached the native basin. In panel B, the dashed horizontal line at 3.4 Å corresponds to the
cutoff RMSD above which the monomer structure is considered to have left the native basin, and the solid
horizontal line at 1.9 Å is the mean Cα RMSD of the monomer inside the native basin. Panels C and D
contain the same information as panels A and B, respectively, for a trajectory obtained with Berendsen
dynamics. The solid horizontal line at -105 kcal/mol in panel C is the mean value of the energy after the
monomer has reached the native basin, and the solid horizontal line at 1.8 Å in panel D is the mean Cα

RMSD inside the native basin of the monomer from the monomer in the native structure of the dimer.
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2.4.2.2 Dimers

The initial separation distance between chains was 26 Å, and the initial arrangement was parallel.

Both methods, BD and LD, generated trajectories leading to nativelike structures within 12 ns of

simulation. The results are summarized in Table 2.2. The equilibrium concentration of 1 mM was

reached during the first 24 ps of simulation. Again, as for 1G6U, two families of stable structures

(corresponding to basins with low free energy) were found; one of them was nativelike, and the

other one differed from the native structure in that the orientation of the helices was antiparallel

instead of parallel. The most nativelike structure generated by UNRES/MD as well as an example

of a misfolded structure are shown in Figures 2.12B and 2.12C, respectively.

When running in the LD mode, two different pathways were observed, one on which folding and

assembly of subunits were coupled, induced-fit mechanism, and another one in which the subunits

folded before they assemble, lock-and-key mechanism. Of the three LD trajectories that converged

to the native basin, two of them folded by the induced fit mechanism and the remaining one by the

lock-and-key mechanism. Snapshots from one of the runs that folded by the induced fit mechanism

are shown in Figure 2.15, and the potential energy and ρ values for the same trajectory are shown

in Figure 2.16. In Figure 2.15, dimerization starts with the association of the small helical segments

at the N-termini and propagates toward the C-termini simultaneously with formation of the helices.

The two trajectories folding by this mechanism folded in less than 0.3 ns, which was 10 times faster

than the trajectory folding by the lock-and-key mechanism.

Snapshots from the trajectory folding by the lock-and-key mechanism are shown in Figure 2.17,

and the corresponding potential energy and ρ values as a function of time are shown in Figure 2.18.

In Figure 2.17, the folding of the helices is almost completed at the 0.20 ns snapshot, but the chains

fail to bind and move apart. It takes almost 5 ns more for the chains to find the right orientation

and form the dimer. This folding mechanism will in general lead to a larger folding time since, once

the individual chains adopt their native structure, moving through the solvent to find the proper

packing is difficult, while if the subunits are already attached (in the right place) the rate of folding

is limited only by the folding of the individual chains.
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FIGURE 2.15. Example of a fast folding trajectory of GCN4-p1 obtained with Langevin dynamics. The N-terminus of each chain is marked.
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FIGURE 2.16. (A) Variation of the potential energy and (B) the Cα RMSD from the native structure for the
dimer in a fast folding trajectory of GCN4-p1 obtained with Langevin dynamics. For the same trajectory,
panels C and D show the variation of the Cα RMSD from the native structure for each of the monomers.
In panel A, the solid horizontal line at -220 kcal/mol is the mean value of the energy after the dimer has
reached the native basin. The dashed horizontal line in panels B, C, and D corresponds to the cutoff RMSD
(4.8 Å for the dimer and 3.4 Å for the monomers) above which a structure is considered to have left the
native basin. The solid horizontal line at 3.1 Å in panel B is the mean Cα RMSD inside the native basin
of the dimer. The solid horizontal line in panels C and D (at 2.1 Å in panel C and 2.2 Å in panel D) is the
mean Cα RMSD inside the native basin of the monomer.

45



FIGURE 2.17. Example of a slow folding trajectory of GCN4-p1 obtained with Langevin dynamics. The N-terminus of each chain is marked.
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FIGURE 2.18. (A) Variation of the potential energy and (B) the Cα RMSD from the native structure
for the dimer in the slow folding trajectory of GCN4-p1 obtained with Langevin dynamics. For the same
trajectory, panels C and D show the variation of the Cα RMSD from the native structure for each of the
monomers. In panel A, the solid horizontal line at -219 kcal/mol is the mean value of the energy after the
dimer has reached the native basin. The dashed horizontal line in panels B, C, and D corresponds to the
cutoff RMSD (4.8 Å for the dimer and 3.4 Å for the monomers) above which a structure is considered to
have left the native basin. The solid horizontal line at 3.0 Å in panel B is the mean Cα RMSD inside the
native basin of the dimer. The solid horizontal line in panels C and D (at 2.0 Å in panel C and 2.1 Å in
panel D) is the mean Cα RMSD inside the native basin of the monomer.
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FIGURE 2.19. (A) Variation of the potential energy and (B) the Cα RMSD from the native structure for
the dimer in a folding trajectory of GCN4-p1 obtained with Berendsen dynamics. For the same trajectory,
panels C and D show the variation of the Cα RMSD from the native structure for each of the monomers.
The dimer remains in the native basin for almost 5 ns after which it jumps to the misfolded basin. The solid
horizontal lines at -214 and -218 kcal/mol in panel A correspond to the mean values of the potential energy
inside the native basin and the misfolded basin, respectively. The solid horizontal lines at 3.7 and 16.3 Å in
panel B correspond to the mean Cα RMSD inside the native basin and the misfolded basin, respectively.
The dashed horizontal line in panels B, C, and D corresponds to the cutoff rmsd (4.8 Å for the dimer and
3.4 Å for the monomers) above which a structure is considered to have left the native basin. The solid
horizontal line in panels C (at 2.3 Å) and D (at 2.6 Å) corresponds to the mean Cα RMSD inside the native
basin of the monomer.

When running in the BD mode, for some of the trajectories, the protein jumped from one basin

to the other one. The potential energy and ρ values for a representative trajectory presenting this

behavior are shown in Figure 2.19. It can be seen that the dimer (panel B) folds and misfolds without

affecting the structure of the monomers (panels C and D), which is consistent with the results from

single-chain simulations indicating that the monomers are stable by themselves.

As observed for 1G6U, the average potential energies of the native and misfolded basins were very

similar (Table 2.2), the slightly lower values for the misfolded structures being within the expected

error in the potential function.
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When comparing the folding times for the monomers in the multichain simulations with those in

the single-chain simulations, I notice that, with both BD and LD, the isolated monomers fold, on

average, slightly faster. A closer look at those monomers that, in multichain simulations, have the

largest folding times, or did not fold at all, shows that the folding was delayed because the monomers

are trapped in structures similar to that shown in Figure 2.13B. In all simulations, the dimers were

formed, but one or both chains have this bent structure. As already mentioned, this structure was

also found along the pathway of some of the trajectories in the simulations of isolated monomers,

but the fact that the isolated monomers were able to find the native structure faster indicates that

multichain interactions might stabilize the structure shown in Figure 2.13B.

Those trajectories that did not converge to the native or misfolded basin reached a state (called

nonfolded) in which a dimer was formed, but one or both chains had the non-nativelike structure

shown in Figure 2.13B.

It should be emphasized that UNRES/MD reflects the energy landscape produced by the UNRES

4P force field. The presence of non-native stable structures is a feature of the force field, not the

method. Improvement of the 4P UNRES force field is expected to stabilize the native over the

non-native basin to a greater extent.

2.4.3 Retro-GNC4 Leucine Zipper (PDB Code 1C94)

1C94 is a synthetic α-helical homotetramer of 38 residues per chain. The sequence of 1C94 cor-

responds to the reversed sequence of the leucine zipper portion of GCN4, viz., GCN4-p1 (section

2.4.2). Thus, 1C94 is referred to as the retro-GNC4 leucine zipper. GCN4-p1 consists of 33 residues,

and 1C94 consists of the same 33 residues but in reversed order from N- to C-terminus; in addition

1C94 is extended at the N-terminus with the tripeptide sequence Cys-Gly-Gly and at the C-terminus

with Gln-Leu[47]. The crystal structure, consisting of four α-helices oriented parallel to each other

(Figure 2.20A), was modeled[47] as a dimer of dimers since mass spectroscopic analysis indicated

that the chains were covalently linked in pairs by disulfide bonds[47].

2.4.3.1 Monomers

As can be seen from Table 2.3, 9 out of 10 monomer Langevin trajectories and all 10 Berendsen

trajectories converged to nativelike structures. The remaining trajectory that did not find the native
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FIGURE 2.20. (A) Experimental structure of 1C94 and (B and C) examples of misfolded structures obtained
with LD and BD UNRES/MD. The N-terminus of each chain is indicated.

basin by the end of the simulation showed structures with ρ values around 13 Å where the helix is

broken, packing against itself. An example of such a structure is shown in Figure 2.21B. With an

older version of the UNRES force field (α0 force field[50]), Saunders and Scheraga[34] identified a

structure of the type shown in Figure 2.21B as the lowest UNRES energy structure. With the force

field used in this work (4P force field),23 however, these types of structures have a higher energy

than the nativelike structures, as can be seen by comparing the two Langevin trajectories shown

in Figure 2.22. Panels A and B show the energy and ρ values, respectively, for the LD trajectory

with final structures similar to that shown in Figure 2.21B, and panels C and D show the same

information for the LD trajectory converging to the native basin. The mean value of the potential

energy in the native basin is indicated with the solid line at -152 kcal/mol in panel C, which is 12

kcal/mol lower than the same quantity in panel A, showing that the UNRES 4P potential energy is

lower in the native basin.

Figure 2.23 shows potential energy (panel A) and ρ values (panel B) for a sample trajectory obtained

with BD. As can be seen in this example, all Berendsen trajectories showed higher energy values

(panel A) and higher fluctuations in the ρ values (panel B) compared to LD runs (panels C and

D in Figure 2.22). This could be explained by the fact that, for BD, the absence of friction forces

allows for larger conformational changes. No simulations were carried out for 1C94 dimer
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TABLE 2.3. Summary of Trajectories for 1C94

tetramer

from extended conformation from crystal structure monomer

〈τf〉
b 〈E〉dmf 〈E〉fn CPU timeg 〈τf〉

b ρh
min 〈E〉jf

Na
f (ns) Nc

mf (kcal/mol) Ne
n (kcal/mol) (h) Na

f (ns) (Å) 〈τres〉
i (kcal/mol)

Berendsen 0(18) 2.2 4 -504 6.9 10 1.4 1.36 81% -107
Langevin 0(18) 2.6 3 -508 3 -510 8.1 9 2.0 1.28 83% -152

aNumber of trajectories (out of 10) that folded to nativelike structures, starting from the extended conformation. In the multichain simulations,
the number of monomers (out of 40, since there were 4 monomers on each of the 10 simulations of tetramers) that folded to a nativelike
structure is indicated between parentheses;
bAverage folding time of the monomers. The folding time was defined as the time at which the RMSD with respect to the crystal structure
fell below 4 Å. In those runs for which the rmsd never went below the cutoff, the folding time was considered to be the simulation time (12
ns for the isolated monomer simulations, 35 ns for the tetramers simulations with LD, and 26 ns for the tetramer simulations with BD). The
average folding times for the multichain complex are not calculated since none of the simulations led to nativelike tetramers;
cNumber of trajectories (out of 10) that yielded misfolded structures;
dAverage potential energy over all the structures in the misfolded basin;
eNumber of trajectories, out of 10 simulations started with the crystal structure as the initial conformation that, after 8 ns of simulation,
still had nativelike structures (RMSD with respect to crystal structure below 8 Å);
fAverage potential energy over all those trajectories that, starting with the crystal structure, remained in the native basin after 8 ns of
simulation;
gAverage CPU time (in hours) per 1 ns of simulation on a single 3.06 GHz Intel Pentium IV Xeon processor;
hThe lowest rmsd in all of the fluctuating trajectories;
iFraction of the time that the peptide spent in the native basin averaged over all of the folding trajectories;
jAverage potential energy over all structures in the native f basin.
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FIGURE 2.21. (A) Superposition of one of the monomers in the experimental structure of 1C94 (green)
on the most nativelike structure (red) (Cα RMSD = 1.28 Å) obtained with the BD UNRES/MD. (B) A
structure that was often found during the folding pathway of 1C94 (either with BD or LD) and was the final
structure of the monomer LD trajectory that did not find the native basin. The N-terminus is indicated.

2.4.3.2 Tetramers

Berendsen and Langevin simulations were carried out starting with the four chains in the extended

conformation, with each pair of chains cross-linked by disulfide bonds. The chains were in the same

plane, parallel to each other and with a 20 Å distance between consecutive chains. On the basis

of the experimental data[47], the Cys residue at the first N-terminal position was assumed to form

a disulfide bond with the corresponding Cys residue in another chain; however, this residue was

never included in the RMSD calculations since it is not resolved in the experimental structure. The

simulation time was 35 ns for LD runs and 28 ns for BD runs. The equilibrium concentration of 10

mM was reached during the first 50 ps of simulation.

None of the trajectories obtained with UNRES/MD yielded nativelike structures. On the other

hand, both methods found stable structures consisting of two parallel dimers bound together in

an antiparallel orientation (instead of parallel as in the native structure), examples of which are

shown in Figures 2.20B and 2.20C. In the structure shown in Figure 2.20B, the dimers have native-

like structures, but the area of contact between the dimers is very small. However, the structure

shown in Figure 2.20C has better packing, but the dimers have non-native-like structures, and the

disulfide-linked monomers are not parallel to each other but slightly twisted to align in an antipar-
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FIGURE 2.22. (A) Variation of the potential energy and (B) the Cα RMSD from the native structure of
the monomer in the tetramer as a function of time for an LD trajectory of an isolated monomer of 1C94
converging to a non-native-like structure (which is shown in Figure 2.21B). In panel A, the solid horizontal
line at -140 kcal/mol is the mean value of the energy after the monomer has adopted the non-native stable
structure. In panel B, the solid horizontal line at 12.8 Å is the mean Cα RMSD after the peptide has adopted
the non-native structure. Panels C and D contain the same information as panels A and B, respectively,
for an LD trajectory converging to the native basin. The solid horizontal line at -152 kcal/mol in panel
C is the mean value of the energy after the peptide has reached the native basin. In panel D, the dashed
horizontal line at 4 Å corresponds to the cutoff RMSD above which the structure is considered to have
left the native basin, and the solid horizontal line at 3.1 Å is the mean Cα RMSD inside the native basin.
The solid horizontal line at -152 kcal/mol in panel C is the mean value of the energy after the peptide has
reached the native basin.
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FIGURE 2.23. (A) Variation of the potential energy and (B) the Cα rmsd from the native structure during
the folding of an isolated monomer of 1C94 obtained with Berendsen dynamics. In panel A, the solid
horizontal line at -105 kcal/mol is the mean value of the energy after the protein has reached the native
basin. The dashed horizontal line, at 4 Å, in panel B corresponds to the cutoff rmsd above which the
structure is considered to have left the native basin, and the solid horizontal line at 3.3 Å in the same panel
is the mean Cα rmsd inside the native basin.

allel orientation with the monomers from the other dimer. These two structures have approximately

the same potential energy (approximately -507 kcal/mol); I will refer to either of them as misfolded

structures. Figure 2.24 shows the potential energy (panel A) and ρ values for the tetramer (panel B)

and for the dimers (panels C and D) as a function of time for the trajectory leading to the structure

in Figure 2.20B. It can be seen that, by the end of the simulation, the ρ values for the tetramer

stabilize around 22 Å (indicated by a solid line in panel B) while, for the dimers, it remains below

or close to the 5.6 Å cutoff (indicated by the dashed lines in panels C and D). The potential energy

also stabilizes by the end of the simulation, with values around -510 kcal/ mol (indicated by a solid

line in panel A).

To determine whether the native structure of the tetramer could not be found because of imperfec-

tions in the UNRES 4P force field or simply because the simulation times were too short, I carried

out a set of 8 ns simulations with the crystal structure as the initial conformation using Langevin

dynamics. As can be seen in Table 2.3, 3 out of 10 simulations remained in the native basin. Potential

energy and ρ values corresponding to one of the trajectories that did not remain in the native basin

are shown in Figure 2.25. It is important to notice that although the tetramer leaves the native

basin (ρ values crossing the dashed line at the 8 Å cutoff in panel B) there is no substantial change
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FIGURE 2.24. (A) Variation of the potential energy and (B) the Cα RMSD from the native structure
for a misfolding trajectory of 1C94, starting with extended chains, obtained with Langevin dynamics. For
the same trajectory, panels C and D show the variation of the Cα RMSD from the native for each of the
dimers. In panels A and B, the solid horizontal line is the mean value of the energy (at -510 kcal/mol) and
Cα RMSD from the native structure (at 22.4 Å), respectively, after the tetramer has found the misfolded
basin. The dashed horizontal line in panels C and D corresponds to the 5.6 Å cutoff RMSD, above which
the dimers are considered to have left the native basin; i.e., the dimers folded but the overall structure was
misfolded.
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in the potential energy (panel A). I calculated the average potential energy among those structures

that remained in the native basin and compared it with the average energy among the misfolded

structures. The values obtained were almost equal (Table 2.3), indicating that the protein might

choose either conformation with the same probability. However, when starting from the extended

conformation, none of the simulations led to nativelike structures. Therefore, the energy landscape

generated by the UNRES 4P potential makes the antiparallel conformation more easily accessible

than the parallel (native) conformation; i.e., the free energy of the misfolded basin has a lower value

compared to that of the native basin.

When comparing the folding times of the monomers in the single- and multichain simulations

(Table 2.3), I did not find any appreciable difference, indicating that, for this protein, multichain

interactions do not play an important role in the folding of the monomers.

It can be concluded that the failure to fold the protein to the native tetramer with the UNRES

4P force field should be attributed to the imperfections in the potential rather than to insufficient

simulation time because, first, for the two preceding proteins (1G6U and GCN4-p1), I observed the

formation of both the native and the non-native dimers and, second, in a previous implementation

of UNRES to search for the native structures of multichain proteins with CSA[34, 51] the native

structure of retro-GNC4 could be predicted by global optimization only when native symmetry

constraints were imposed. Improvement of the 4P UNRES force field is expected to stabilize the

native basin to a greater extent compared to the non-native basin.

2.5 Conclusions

The UNRES/MD implementation described in ref [23] was extended to treat multichain proteins.

The method was tested on three α-helical proteins, two dimers and one tetramer.

To simulate a constant temperature bath, two alternative methods were implemented, the Berendsen

thermostat (BD) and a method based on the Langevin equation (LD). The latter method includes

friction and stochastic forces explicitly as opposed to the former for which these forces are included

implicitly. When comparing the time required for each method to find the global minimum of the en-

ergy, BD proved to be much faster than LD, as observed in earlier studies on singlechain proteins[22].

However, it should be noted that, despite its predicting efficiency, BD might not reproduce the true
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FIGURE 2.25. (A) Variation of the potential energy and (B) the Cα RMSD from the native structure
for a trajectory of 1C94 that did not remain in the native basin, obtained with Langevin dynamics, with
the crystal structure as the initial conformation. The solid horizontal line at -510 kcal/mol in panel A is
the mean value of the energy during the simulation. The dashed horizontal line in panel B corresponds to
the 8 Å cutoff RMSD, above which the tetramer is considered to have left the native basin. For the same
trajectory, panels C and D show the variation of the Cα RMSD from the native for each of the dimers. The
dashed horizontal line in panels C and D corresponds to the 5.6 Å cutoff RMSD, above which the dimers
are considered to have left the native basin.
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folding pathway. LD, which reproduces a true canonical ensemble, should be used instead when

studying the kinetics of the folding process, as in ref [24].

Simulations of single chains and multichain complexes were carried out with BD and LD. Single-

chain simulations indicate that, for each of the three α-helical proteins tested in this work, the

structure adopted by the monomer in the multichain complex is also the lowest UNRES 4P energy

structure of the isolated monomer. In general, the folding times of the monomers in the single-chain

simulations were shorter than those in the multichain simulations, which indicates that, with the

UNRES 4P force field, the short-range interactions, responsible for the folding of the single-chain

α-helices, are impaired by the interactions between different chains. However, the folding of 1G6U

with BD (section 2.4.1) was the exception. In these simulations, the monomers folded faster when

they were allowed to interact with another monomer; i.e., the correct packing of the two helices on

each monomer is favored by the interactions with another monomer. Although the wrong orientation

of the monomers with respect to each other can sometimes hinder the packing of the helices, with

BD, in which the friction forces are absent, the chains can rearrange quickly to find a more favorable

orientation that will aid the packing of each monomer. This behavior is probably an artifact of BD

and might not represent the folding mechanism of 1G6U.

It is important to note that, although some of the trajectories led to non-native-like structures,

these structures were indeed free-energy minima within the context of UNRES 4P. In the case of

the two dimers, the non-native structure was competing with the native one. This competition was

reflected in the simulations, especially in the case of GCN4-p1 for which the dimer switched from

one structure to the other. In the case of 1C94, the results were poor since none of the trajectories

yielded the native structure. The reason for this failure might be found in the defects of the UNRES

parameters. Improvement of these parameters is ongoing research in the UNRES developing team.

It must be emphasized that the goal of this work was to test the implementation of UNRES/MD

on multichain proteins and not to improve the 4P force field, and therefore, I chose relatively simple

systems which the force field could treat to test the approach, as pointed out in the Introduction.

The UNRES 4P force field was trained using four proteins with different topologies and tested on

66 proteins with chain lengths from 28 to 144 amino acid residues. The average size of correctly

predicted segments of α-helical proteins was approximately 67 residues[32]. The parametrization
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procedure and the limitations of the UNRES 4P force field are described extensively in ref [32].

The reason for such limitations must be found in the old parametrization procedure[28, 30, 31, 32],

which neglected conformational entropy, an issue that has been addressed, and preliminary results

are reported in [45].

Finally, in contrast to earlier calculations of multichain complexes[34, 51] with CSA[52, 53] as a

global optimization algorithm, in which symmetry constraints had to be imposed to simulate the

experimental structure, no such constraints were imposed here. Apparently, in the time scale achieved

in MD with UNRES, the search of the conformational space of a dimer is more efficient than that

with CSA.
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Chapter 3
Mechanism of Fiber Assembly of the Aβ-Peptide

3.1 Summary

In this chapter, I describe my studies of the mechanism of growth of fibrils of the β-amyloid peptide

(Aβ). In section 3.2, I describe the role of Aβ in Alzheimer’s disease (AD), summarize some of the

most recent discoveries in the field, and introduce the motivation for studying Aβ association. To

study different aspect of Aβ fibrils, I carried out different types of simulations. In section 3.3, I study

the ensemble of conformations explored by the isolated monomer of Aβ1−40. In section 3.4, I analyze

the stability of small oligomers of Aβ1−40 with the structure that is characteristic of Aβ1−40 fibrils,

and determine how their stability is related to the size of the oligomers. In section 3.5, I study the

presence of cooperativity in the hydrogen-bond interactions in Aβ1−40 fibril templates. In section

3.6, I describe the simulations of the elongation process of Aβ1−40 fibrils. Finally, in section 3.7, I

summarize all the simulations that I carried out on Aβ1−40, the results I obtained, and elaborate on

the implication of these results.

3.2 Amyloids, Aβ and Alzheimer’s Disease

Many diseases have been associated with deposits of amyloid plaques, including Alzheimer’s disease

(AD), Parkinson’s disease (PD), type II diabetes, and spongiform encephalopathies. In the partic-

ular case of (AD), these plaques contain filamentous forms of a protein known as the β-amyloid

peptide (Aβ)[4, 5]. Oligomeric forms of this protein, both fibrilar[6] as well as soluble nonfibrilar Aβ

aggregates[7], have been identified as the cause of AD. However, the mechanism(s) by which they

may initiate the disease is still unclear[54].

Great progress has been achieved in elucidating the 3D structure of amyloid fibrils[55, 56, 57,

58, 59, 60, 61], and we now know that amyloid fibrils from different species share a characteristic

motif, the cross-β structure, in which the polypeptide chains form extended β strands that align

perpendicular to the axis of the fibril. Fibrils formed by the Alzheimer’s Aβ1−40 peptide have been

studied extensively by Deco and co-workers[58, 59, 61]. Based on constraints from solid state NMR,

structural models of Aβ1−40 fibrils have been proposed[59, 61].
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Despite progress in understanding the fibrilar state of Aβ, the mechanism by which small oligomers

evolve into their fibrilar form is not yet well understood. In recent years, the role of the fibrils

in the disease has been questioned. Instead, it has been proposed that smaller soluble oligomers

are sufficient to trigger the disease[7], making it urgent to understand these smaller structures and

the assembly mechanism of amyloid fibrils. However, the short life-time and noncrystallinity of

these intermediate structures have hindered a description of their molecular structure as well as the

process by which they might evolve into fibrils or how these fibrils grow[62, 63]. Computer simulations

consistent with the available experimental data could provide some insight into the understanding

of amyloid formation and growth.

In the laboratory, Aβ1−40 fibril formation takes as long as days[64, 65]. Once the fibrils are formed,

the growth proceeds by incorporating new monomers at a constant rate of approximately 0.3µm/minute

(with a few milli-seconds per monomer incorporated)[64]. These time scales make simulations of fib-

ril formation, or elongation, extremely challenging. To overcome the time limitation, most all-atom

studies have focused on small fragments of Aβ[63, 66]. Although these studies[63, 66] have con-

tributed greatly to our understanding of the transition that an unstructured monomer undergoes

upon binding to a fibril, they might not reflect the full complexity of the complete Aβ1−40 system.

Implicit-solvent all-atom simulations of elongation of Aβ1−40 have been carried out[67] but, due to

their high computational cost, these simulations could not describe the assembly of a completely

unstructured and unbound monomer into a fibril template. Another approach has been the use

of coarse-grained models, biased towards the desired conformation[68, 69] or simplified models in

which the polypeptide chain is represented by a tube, and the interactions between amino acids are

derived from geometry and symmetry considerations[70]. These models have the disadvantage that

they might not reproduce the complexity of the true energy landscape.

In this work, we have adopted a coarse-grained united-residues (UNRES) model[27, 71] to partially

surmount the time-scale problem. The advantage of UNRES over other coarse-grained force fields is

that UNRES has been derived on the basis of physical principles. The energy terms are the result

of averaging the less important degrees of freedom of the all-atom free energy of a protein and the

solvent[27]. The force field ultimately has been parametrized to reproduce the free energy landscape

of a small training protein, completely different from Aβ[45]. Therefore, the force field is not biased
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towards the Aβ fibril conformation. Moreover, UNRES has been shown to be able to carry out MD

simulations of the folding of multichain systems within reasonable time, starting from completely

unstructured conformations, and without using any information from the native structure of these

systems[71]. Therefore, UNRES has been adopted to simulate the assembly of a free monomer onto

a fibril template without imposing any type of restraint on the monomer.

With the UNRES model, we carried out canonical molecular dynamics (MD) and replica exchange

MD (REMD) simulations to: a) describe the ensemble of conformations explored by the isolated

monomer of Aβ1−40; b) analyze the stability of small oligomers of Aβ1−40 with the structure that

is characteristic of Aβ1−40 fibrils, and determine how their stability is related to the size of the

oligomers; and c) study the elongation process of Aβ1−40 fibrils.

3.3 Studying the Conformations Adopted by Isolated

Monomers of Aβ40

It is extremely difficult to carry out experimental studies of monomeric Aβ because the peptide has

a high tendency to aggregate and eventually precipitate. For this reason, it has not yet been possible

to study the full-length peptide in water solution. Experiments on fragments of Aβ in water have

been possible, and they show that the fragments have little regular structure[72, 73]. To prevent

aggregation, many experiments are carried out in a mixture of water and organic solvents, such

as trifluoroethanol (TFE) [74, 75, 76, 77] or micellar solutions[78, 79]. Under these conditions, the

monomeric Aβ peptide shows substantial helical structure.

All-atom computer simulations of the full-length Aβ40 and Aβ42 in implicit water indicate that both

peptides exist predominantly in two types of conformations, each one possessing significant amounts

of either α or β-structure[80]. All-atom simulations of Aβ39 showed that the peptide has limited

helicity and no β structure as a monomer[81], implying that the β rich structures characteristic of

the fibrilar and intermediate conformations might be stabilized upon oligomerization[81].

Although the 3D structure of the full length Aβ in the absence of organic solvent is still not

known, the conformational changes accompanying fibril formation have been studied by circular

dichroism (CD) spectroscopy[82, 83]. These experiments show that a helical intermediate precedes

fibril assembly. Furthermore, Fezoui and Teplow[83] studied Aβ fibril assembly in the presence and

absence of TFE, a solvent known to stabilize α helical conformations. Since the peptide adopts a
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β structure in the fibril, one might expect that, by stabilizing helical structures, fibril formation

would be prevented. However, the study[83] showed that TFE, at low concentrations, while still

promoting α-helical conformations, accelerates rather than inhibits amyloid fibril formation. These

experiments[82, 83] support the hypothesis that a partially folded intermediate with a certain α-

helical content is present during Aβ fibril formation. Moreover, the presence of this intermediate

might facilitate the process[82, 83].

The foregoing results indicate that a model suitable for the study of Aβ amyloids should be able to

capture an α-helical propensity at the monomer level as well as to form oligomeric structures with

high β content. To test whether UNRES could capture the ability of monomers to adopt α-helical

and β-sheet conformations, we carried out a set of 40 ns independent canonical MD simulations of an

isolated monomer of Aβ1−40, with the temperature of the system held constant at 300 K by means

of the Berendsen thermostat[35] (section 2.2.4). The simulations were started with the monomer in

the extended conformation. The system was allowed to equilibrate for 20 ns, and the conformations

visited during the remaining 20 ns were clustered based on their structures.

Conformations were stored every 150,000 steps and clustered into families by means of the minimal-

tree algorithm[84, 85] based on the Cα root-mean-square deviation (RMSD) distances between con-

formations. Three large clusters were identified, accounting for 69% of the conformations. These

clusters also corresponded to the lowest energy values calculated with the UNRES force field. The

largest cluster, containing 56.5% of the conformations, corresponds to structures with high α-helical

content (see Figure 3.1). The second and third largest clusters, accounting for 7.5% and 4.7% of the

conformations, have β structures. Figure 3.1 shows the probability of occurrence of conformations

populating the three largest clusters as a function of the UNRES potential energy, as well as the

representative conformation of each cluster (defined as the one with the lowest average RMSD from

all other members of the cluster). The UNRES energy of each cluster is computed as the energy of

the representative trajectory of the cluster.

These results indicate that, at the monomer level, UNRES can reproduce the ability of Aβ1−40

to adopt helical and β-strand conformations. Furthermore, the UNRES force field, being a coarse-

grained one, can facilitate a study of the behavior of large oligomers, a task that is still challenging

with an all-atom force field, making UNRES a very good choice to study Aβ amyloids.
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FIGURE 3.1. Probability of occurrence of conformations populating the three largest clusters as a function of the UNRES potential energy of the
representative conformation. The representative conformation of a cluster is defined as that with the lowest RMSD from all other members of the
cluster. The representative conformation for each cluster is shown, and the correspondence is indicated by arrows.

64



3.4 Studies of the Stability of Aβ1−40 Fibrillar

Conformation
3.4.1 Motivation for Studying the Stability of Aβ1−40 Fibrillar

Conformation

Fibrils formed by Aβ1−40 have been studied extensively by solid state NMR[58, 59, 61]. These studies

have shown that, in the fibrilar conformation, the peptide adopts the cross-β structure. i.e., it forms

β strands that lie in a plane perpendicular to the axis of the fibril (see Figure 3.2), with the β-strands

stabilized by hydrophobic interactions in each plane (within hairpins and between hairpins, Figure

3.2 c), but lacking the hydrogen bonds of conventional anti-parallel β-sheets. These double-hairpin

structures of Figure 3.2 c form interplane parallel β-sheet-like hydrogen bonds with a similar pair

of hairpins in a consecutive layer; the specific type of interactions are described bellow.

Two types of Aβ1−40 fibrils have been identified, depending on the growing conditions[58]. Fibrils

grown in a quiescent solution exhibit a periodic twist, while fibrils formed in a solution that is

gently agitated do not present any resolvable twist, have a smaller diameter, and tend to associate

laterally with other fibrils forming flat bundles[58]. These two fibril types have been named twisted

pair and striated ribbon[61], respectively. Although both fibril types present the cross-β structure at

the molecular level, twisted pair fibrils consist of stacks of trimers while striated ribbon fibrils are

stacks of dimers, as shown in Figure 3.2. Given the simpler architecture of the layers in the striated

ribbon fibrils, we selected these as a model for computer simulations. Hereafter, when we refer to

Aβ1−40 fibrils, we will be referring to the striated ribbon morphology.

NMR data indicated that residues 1-8 were conformationally disordered, and were omitted in the

structural model[59]. Therefore, in our simulations we used the Aβ9−40 segment, for which the

coordinates are available. Regarding the terminology to describe the fibrilar structures, we use the

term layer to refer to the unit containing the dimer (Figure 3.2 c), perpendicular to the fibril axis.

The term semi-filament is used to refer to a stack of hydrogen-bonded monomers, parallel to the fibril

axis. According to this terminology, a fibril can be seen as formed by two parallel semi-filaments, or

by a stack of parallel layers.

The structures of smaller soluble oligomers, intermediate to fibrils, have been more elusive. Inci-

dentally, these intermediates have been identified as the most toxic species in AD[7]. In recent years,
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FIGURE 3.2. Structural model for an Aβ1−40 fibril with the striated ribbon morphology. The Figure was produced with MolMol [86], based on the
coordinates provided by Robert Tycko for the structural model of Petkova et al.[59]. Residues 1-8 are omitted from the diagram because they were
conformationally disordered in the NMR model[59]. (a) Axial view and (b) side view of the fibril. The fibril axis is indicated by a dark yellow arrow.
N-terminal β strands are colored in blue, while C-terminal β strands are colored in red. The fibril is formed by layers of dimers, lying perpendicular to
the fibril axis. (c) An all-atom representation of a dimer from a fibril layer. Hydrophobic, polar, negatively charged and positively charged side chains
are colored in green, purple, red, and blue, respectively. (d) The sequence of Aβ1−40. Only residues 9-40 were used in the simulations of oligomers.
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great effort has been directed towards the characterization of these intermediates[62, 87] and their

mechanism for toxicity. However, a detail characterization of their 3D structure has not yet been

possible.

Regarding the role of small oligomers in AD, in recent work Ono et al.[87] showed that neurotoxicity

increases considerably with the structural order of the oligomeric intermediates. A question that

arises is whether small oligomers could adopt the conformation characteristic of large fibrils, and

what would be the size of the smaller oligomer capable of retaining the fibrilar structure.

If small oligomers with the molecular structure of fibrils do exist, the internal forces holding the

structure together might be the same as in the fibrils. NMR data have provided valuable insight into

the interactions stabilizing Aβ1−40 fibrils [58, 59]. It is now known that residues L17, F19, A21, A30,

I32, L34, and V36 create a hydrophobic cluster between the β-strands in each monomer (Figure

3.2 c) and between the β-strands of one monomer and those of a monomer in a consecutive layer

within each semi-filament. The structure is further stabilized by salt bridges between oppositely

charged residues D23 and K28, within the same or consecutive layers. At the interface between the

two monomer in a given plane (Figure 3.2 c), the structure is stabilized by hydrophobic interactions

involving residues I31, M35, and V39. In-registry intermolecular hydrogen bonds comprising residues

10-22 and 30-40 are formed between consecutive layers[58, 59].

3.4.2 Studying the Structural Stability of Aβ9−40 Oligomers with
Different Numbers of Chains

Computer simulations have been very valuable to help gain an understanding of the structural

stability of Aβ fibrils. Buchete et al.[88] used molecular dynamics (MD) and all-atom force fields

to study the behavior of a four-layer Aβ9−40 oligomer (i. e., an eight-chain oligomer) with the

striated ribbon morphology. This study showed that a system of that size was stable during a 10

ns simulation. On the other hand, with a coarse-grained model, Fawzi et al.[69] found that Aβ1−40

oligomers were stable only for systems with 8 layers (16 chains) or more.

Regarding the stability of Aβ9−40 oligomers, we wanted to answer two questions. First, will the

native structure of the Aβ9−40 oligomers be stable with the UNRES force field? And second, how

will the stability of the oligomers change when their size is changed? To answer these two ques-

tions, we carried out canonical MD simulations with the UNRES force field, starting with native
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conformation[59], and allowing it to fluctuate freely We studied systems with different numbers of

layers, ranging from 2 to 8 (i. e., 4 to 16 chains). For each system, 8 independent canonical MD

trajectories (with the Berendsen thermostat), at 300 K, were simulated, and each simulation was 5

ns long.

To assess the extent of the structural changes during the simulations, we measured the Cα root-

mean-square deviation (RMSD) with respect to the initial conformation. The average RMSD (taken

over all the trajectories with the same size) as a function of time for different sizes is shown in

Figure 3.3. The 4-chain systems are the least stable; the RMSD grows very quickly and, within the

first nanosecond of simulation, these systems find a more stable non-native conformation, where the

RMSD stabilizes at about 17 Å. For systems between 6 and 12 chains, although the RMSD grows

at a slower rate, the initial conformation is not stable and, by the end of the simulation, the RMSD

reaches values around 25 Å for systems between 6 and 10 chains and 15 Å for the 12-chain systems.

Only the largest systems, with 14 and 16 chains, retain most of the fibrilar structure during the

length of the simulation, with the 16-chain systems being the most stable.

To illustrate the behavior of the different oligomers that do not retain their fibrilar structure,

snapshots along the pathway of representative trajectories are shown in Figure 3.4 for a 2-layer

(4-chains), a 3-layer (6-chains) and a 6-layer (12-chains) system. All the systems shown lose their

structural stability during the simulation. The 2-layer system [Figure 3.4, panel (a)] is the most

unstable, and at 0.4 ns it has already lost its structure. The semi-filaments quickly rearrange and

assemble one on top of the other in opposite orientation, forming a tube shaped structure with most

of the hydrophobic residues buried inside the core. In the 3-layer system [Figure 3.4, panel (b)],

the structure of each semi-filament is already lost at 2.5 ns. The β strands on each semi-filament

(colored in blue and red) have opened up, and the two semi-filaments have started to separate. At

5 ns the semi-filaments have completely changed their orientation. The 6-layer system [Figure 3.4,

panel (c)] retains the structure of the contact area between the semi-filaments during the length of

the simulation, but the β strands on each semi-filament have started to go apart at 2.5 ns, and they

have completely opened up at 5 ns.
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FIGURE 3.3. Average variation of the Cα RMSD with respect to the initial structure during constant temperature canonical MD simulations of Aβ9−40

oligomers with different numbers of chains per oligomer.
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FIGURE 3.4. Representative trajectories from the 2-layer (a), 3-layer (b), and 6-layer (c), systems to show
the conformational changes of the different systems with time. The conformations at 0, 2.5 and 5 ns for the
selected trajectories are shown. An additional snapshot at t=0.4 ns is shown for the 2-layer system because
the conformational changes in this system occur faster. The N- and C-terminals are colored in blue and
red, respectively.
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To find the reasons for the instability of the different oligomers we analyzed the energetics of the

system. In sections 3.4.2.1 to 3.4.2.3 we examine the three main interactions stabilizing Aβ fibrils,

hydrophobic interactions, hydrogen bonds and salt bridges.

3.4.2.1 Hydrophobic Interactions

The explanation for the instability of the smaller oligomers of Aβ9−40 with the UNRES force field can

be found in the competition between hydrophobic interactions and local electrostatic interactions

[U
(3)
corr (see section 2.2)]. In UNRES, the U

(3)
corr energy term corresponds to the coupling between

the dipole moments of two interacting peptide groups and the geometry of the backbone around

them[27]. While hydrophobic interactions will help to stabilize this structure, U
(3)
corr interactions might

not.

To investigate this, we examined the influence of both U
(3)
corr and the term that represents the

hydrophobic/hydrophilic interactions in UNRES, the side chain-side chain energies USCiSCj[27].

Figure 3.5 shows the behavior of USCiSCj and U
(3)
corr, and the RMSD with respect to the initial

structure for the trajectories shown in Figure 3.4. The 2-layer system [Figure 3.5, panels (a) to (c)]

has a different dynamics than the larger systems. For this system, there is almost no cost, in terms of

USCiSCj, when the semi-filaments separate at 0.4 ns [coincident with the sharp peak in the RMSD at

the beginning of the simulation in Figure 3.5 (c)], which indicates that the nonpolar side chains are

poorly buried in the initial conformations of the 2-layer system. After the semi-filaments rearrange,

the system manages to find a more favorable conformation in which the nonpolar side chains are

better buried, and, thus, both USCiSCj and U
(3)
corr decrease.

For the largest systems, 3- and 6-layers [Figure 3.5, panels (d) to (i)], the values of USCiSCj rise

together with the RMSD. This happens because the changes in RMSD are accompanied by the

separation of the β strands of each single hairpin, due to weakening hydrophobic interactions in

the monomers, exposing the nonpolar residues. On the other hand, U
(3)
corr is lowered by this confor-

mational change because the U
(3)
corr term corresponds to the coupling between the dipole moments

of two interacting backbone peptide groups and the geometry of the backbone around them[27].

This term stabilizes long extended chains and, since there are no hydrogen bonds between chains

of a monomeric hairpin, it tends to favor the opening of the hairpin to try to favor an extended
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structure. Therefore, U
(3)
corr will favor the separation of the β strands and overcome the effect of the

hydrophobic interactions.

It is possible that the weight (w
(3)
corr) of U

(3)
corr has been overestimated during the optimization of the

force field[44, 31, 32, 45]. The optimization method[45] was designed to reproduce the sequence of

folding events of a training protein. The training protein for this version of the force field is a 28-

residue fragment from 1E0L whose native structure is a three-stranded β-sheet. After optimization

with this fragment, w
(3)
corr increased with respect to the weight (wSCSC) of USCiSCj, which indicates

that the force field might favor β-sheets by overemphasizing the role of U
(3)
corr[45].

The explanation for the increase in stability for the larger oligomers can be found in the hydrophobic

interactions. As the number of layers in the oligomer increases, the size of the hydrophobic core

increases as well, and the nonpolar residues, especially in the center of the structure, are better

buried. This becomes evident in Figure 3.6 (a), which shows the average side chain-side chain energy

per chain (〈USCiSCj〉), for the different oligomers. As the size of the oligomer increases, the average

contribution per chain to USCiSCj becomes larger. This result is in agreement with that obtained

by Fawzi et al.[69]. In that work, the authors analyzed the average hydrophobic residue density

(〈HpRD〉), defined as the number of nonpolar residues per unit volume, averaged over all chains

(see section 3.8.3). They observed that 〈HpRD〉 increased with the oligomer size, until it reached a

plateau around 16 chains[69]. Based on these results, they concluded that this was the minimum size

for an oligomer to be stable. After equilibration, the values of 〈HpRD〉 for our initial structures, are

shown in Figure 3.6 (b). We obtained the same behavior because our starting conformations were

the same as those used by Fawziet al.[69]. 〈HpRD〉 grows with the number of chains, and it levels

off at ≈16 chains, consistent with the behavior of 〈USCiSCj〉 [see Figure 3.6 (a) and (b)].

It should be noted that the behaviors of 〈USCiSCj〉 and 〈HpRD〉 do not reflect a cooperative effect.

As can be seen in Figure 3.6 (c) and (d), both USCiSCj energy and the total HpRD change linearly

with the number of layers, which shows that adding a layer to a template always contributes with

approximately the same interactions, independent of the size of the systems. For example, when

calculating the total HpRD of an n-layer system, all the chains contribute with approximately

the same value ∆HpRD, except for those in the first layer that contributes with a smaller value,

HpRD1. Then the total HpRD in the n-layer (or 2n-chain) system will be given by the expression
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HpRDn = 2HpRD1 + 2(n − 1)∆HpRD. It follows that the average HpRD (total HpRD divided by

the number of chains) is given by 〈HpRD〉 = HpRDn/(2n) = (HpRD1 − ∆HpRD)/n + ∆HpRD. As

the size n increases, this number approaches ∆HpRD asymptotically. The first term in this equation

represents an edge effect, caused by the first layer not being able to hide the nonpolar residues from

the solvent. As the size n increases, the relative size of the edge effect term approaches zero, and

the second term, the hydrophobic core, dominates.

3.4.2.2 Hydrogen Bonds

Even when the secondary structure of the monomers is lost, the hydrogen bonds between consecu-

tive layers remain intact. This is expected since the stability of these hydrogen bonds is enhanced

by the cooperative nature of the hydrogen bonds along each β-sheet[89], and UNRES is capable of

capturing this effect[27]. We conclude that the hydrogen bonds play an important role in stabilizing

the structure of the larger Aβ oligomers, although not in the same way as the hydrophobic interac-

tions. The fact that they make the stacking highly stable limits the conformational space available

to the peptides in the stack. Being so stable, the hydrogen bonds act as restraints that, by restrict-

ing the conformational space of the hydrogen-bonded chains, reduce the conformational entropy of

the unfolded state with respect to the folded state. The larger the system, the more limited the

conformational space of its unfolded state and therefore, the more stable the system will be.

3.4.2.3 D23-K28 Salt Bridge

Finally, we examined the interactions between the oppositely charged residues D23 and K28, which

are buried in the interior of the hydrophobic core in the NMR model, forming a salt bridge that

contributes to stabilize the structure. However, the version of UNRES implemented in this study

does not favor conformations with residues D and K in close interaction. The interactions between

D23 and K28 are slightly repulsive in UNRES, helping to separate the N- and C-terminal strands

of the monomers. Although D23-K28 repulsive interactions are not strong enough to destabilize the

structure, the absence of an attractive force between them, an interaction that is important in the

formation and stability of real Aβ1−40 fibrils[65, 88, 59], hampers the stability of the oligomers.
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3.4.2.4 Summary of the Analysis of the Stability of Aβ Fibrillar Conformation

To summarize sections 3.4.2.1 to 3.4.2.3, our data confirm that hydrophobic interactions are very

important in stabilizing the structure of the Aβ9−40 oligomers. Furthermore, as the size of the

oligomer increases, the average contribution per chain of the hydrophobic interactions also increases

until it reaches a plateau around 16 chains. Therefore we conclude that the stability of the fibrils is

maximized for oligomers of that size. However, that does not mean that smaller oligomers could not

be stable as well. Although oligomers with only 16 chains retain their structure with the UNRES

force field, we know that the force field was not able to reproduce the salt bridges between residues

D23 and K28 that are believed to contribute to the stability of Aβ1−40 oligomers[88, 59]. Moreover,

as mentioned in section 3.4.2.1, it is possible that the method utilized to obtain the relative weight of

the different energy terms in the UNRES force field[44, 32, 31], could have slightly overestimated the

weight of the destabilizing U
(3)
corr term with respect to the stabilizing USCiSCj term, which contains

the hydrophobic interactions. As a consequence of this imbalance, a larger oligomer with a stronger

hydrophobic core, will be required to compensate for the the U
(3)
corr interactions. Finally, the stability

of larger oligomers is also enhanced by a network of interlayer hydrogen bonds that, by conserving

the stacking of the chains on each semi-filament, restrain the conformational space of the unfolded

state, thereby stabilizing the folded state.

3.5 Cooperativity of Hydrogen Bonding in Aβ1−40 Fibrillar

Conformation

Amyloid fibril formation is known to follow a nucleation dependent mechanism[90, 91, 92]. It has

been suggested that cooperativity in the hydrogen bond interactions, along the direction of the fib-

rils, might contribute to this mechanism[93]. Recently, the crystal structures of several fragments

from fibril-forming proteins, also known to form amyloid fibrils, have been resolved[55, 60]. Two

independent studies have used quantum mechanical calculations to explore the presence of coop-

erativity in the hydrogen-bonding interactions for two of these fragments. Tsemekhman et al.[93]

studied a seven-residue fragment (sequence GNNQQNY) from the yeast prion, Sup35. Their results

indicated that hydrogen-bonding interactions are cooperative for the addition of one to three layers,

becoming constant for later additions. Plumley and Dannenberg[94] studied the hydrogen-bonding
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interactions in the crystals formed by a six-residue fragment (sequence VQIVYK) from the tau pro-

tein. That study[94] also showed cooperativity in the hydrogen-bonding interactions. Furthermore,

by comparing with hydrogen bonds in β-sheets formed by glutamine (Q) residues, the authors con-

cluded that the formation of hydrogen bonds between the amides in the side chains of the Q residues

adds extra strength to the stacking and might explain the observed cooperativity.

A quantum mechanical study of the hydrogen-bonding network of oligomers of the full length Aβ1−40

is computationally too expensive to attempt at present. Although the results mentioned above for

smaller (six to seven residues) peptides suggest that hydrogen bond cooperativity might also be

present in Aβ1−40 oligomers, it is not clear whether a much larger peptide, with a more complicated

structure and only one glutamine residue involved in the hydrogen-bonding network, will show the

same behavior, and if a coarse-grained model will able to reflect it.

We approached the problem with the UNRES force field. To test whether the force field would reflect

cooperativity in Aβ9−40 oligomers, we calculated the changes in UNRES hydrogen-bonding energy

when adding a layer to a preexisting oligomer of n layers. This energy is obtained by computing the

difference, ∆EHb(n), between the hydrogen-bonding energy of an oligomer with n and n + 1 layers,

∆EHb(n) = EHb(n + 1)−EHb(n). The values of ∆EHb(n) (Figure 3.7) become increasingly negative

with the addition of the first three layers, and remain almost constant for subsequent additions,

indicating that there is cooperativity between the interlayer hydrogen bonds up to about three

layers. Our result shows good agreement with the quantum mechanical calculations by Tsemekhman

et al.[93] for the seven-residue peptide.

3.6 Studying the Mechanism of Monomer Addition in

Aβ1−40 Fibrils

The polymerization process of Aβ fibril formation[90, 91, 92] can be described as a nucleation-

dependent polymerization process[90, 91, 92]. The process can be divided into three stages, an

initial slow lag phase, during which a critical nucleus (seed) is formed, followed by a faster growth

phase, during which free monomers are incorporated to the seed, and a last phase in which the fibrils

reach an equilibrium size, and no additional fibrilar growth occurs[91]. In vitro experiments have

estimated that amyloid fibril formation takes days[65], making computer simulations of the assembly

of monomers into fibrils prohibited, even with a coarse-grained approach. However, the lag phase
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can be bypassed if a preformed seed is introduced[91, 65]. There is evidence suggesting that fibrils

grow by the addition of one monomer at a time[95], and that the monomers adopt the conformation

of the seed, propagating its structure[96]. Based on this information, we focused our studies on the

process of addition of one monomer at a time onto a fibril.

It has been proposed that the addition of monomers into Aβ1−40 fibrils follows a two-state, “dock-

lock” mechanism[97, 98]. In the initial stage, the monomer is docked onto the fibrils, but it can easily

dissociate; in the second stage, the monomer is locked into the fibril, i.e., it will rarely dissociate.

Studies of deposition of Aβ1−40 monomers onto AD brain tissue and synthetic amyloid fibrils[97]

identified the transition between docked and locked states as the rate-limiting step. Results from a

more recent experiment[98] further revealed a more complex mechanism with two different locked

states, the latest having an even slower dissociation rate. i.e., both locked states are very stable, but

the final state has the highest stability. Although a mechanism has been proposed, it has not yet

been possible to obtain a detailed description of the conformations populating the assembly states.

Computer simulations could aid to fill the gaps and provide a more detailed understanding of the

process of Aβ1−40 elongation.

We studied fibril elongation with the UNRES force field, using the structural model of Petkova et

al.[59] as a fibril template. Since simulating fibrils of real size would be extremely costly, even with

a coarse-grained model, we used templates of 4, 6 and 7 chains (i.e. 2, 3 and 3 + 1
2

layers). From our

studies of the stability of oligomers (section 3.4.2), we knew that template structures of these sizes

were not stable with UNRES. Larger templates (16 chains or more) were stable, but it would have

been computationally too expensive to use such systems for the simulation of monomer addition.

This problem was surmounted by adding a term to the potential energy that stabilized the fibrilar

conformation (see section 3.8.1 for details about this energy term), making the smaller templates

stable as well. This energy term was applied to the chains of the fibril template, but not to the

free monomer. Figure 3.8 shows the initial conformation used in the simulations. The monomer is

positioned in the extended conformation at a 20 Å distance from the surface of the fibril template.

Preliminary simulations (data not shown) had shown that the monomer can easily become trapped

in conformations with a number of energetically favorable contacts, that, although not as stable as

the fibrilar conformation (referred to as native here), take a long time to dissociate. To help overcome
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these situations, with minimum intrusion, we used replica exchange molecular dynamics (REMD)

with a short range of temperatures, between 280 and 320 K (see section 3.8.2 for details about the

implementation).

3.6.1 Four-Chain Fibril: Potential of Mean Force (PMF) of Fibril
Elongation

The data obtained with the smallest system (4-chain template) were used to calculate the PMF

corresponding to monomer addition. For this system, we also carried out additional simulations

with the monomer placed in two different initial conformations (one on each end of the template).

In this section, we describe the PMF obtained, and in section 3.6.2 we compare these results with

the conformations from representative trajectories.

Since each β strand does not lie exactly in a plane in the fibril conformation (see Figure 3.8), the

N-terminal strands are more exposed at one of the ends of the fibril (the bottom end in Figure 3.8)

relative to the other. Because of this asymmetry, it has been suggested that Aβ fibrils might grow

in a unidirectional fashion[69, 67]. We follow the terminology adopted by Takeda and Klimov[67]

and refer to the exposed N-terminus as the concave (CV) end, and to the exposed C-terminus as

the convex (CX) end. To test whether UNRES would reflect a preferred direction of growth, we

carried out two sets of REMD simulations differing only in the initial position of the monomer, i.e.,

facing either the CV or CX end of the fibril. For each set, we simulated 120, 20 ns long, REMD

trajectories. Since we expect that, in solution, the monomer will be free to interact with both fibril

ends, we combined the snapshots from the two types of simulations to calculate the PMF at 300 K.

Although the free monomer is more likely to bind to the initially closest fibril end, it is actually free

to interact with any of the chains in the template. In fact, for some of the trajectories, the monomer

circumvents the template and finally binds on the opposite end. Therefore, there were four possible

conformations that the monomer could adopt to propagate the fibril successfully (since there are two

exposed chains on each end of the fibril). We needed a reaction coordinate that will not discriminate

between these four conformations. Since we observed from the simulations that addition of the

monomers is accompanied by formation of hydrogen bonds between the monomer and the fibril, we

chose to analyze the data in terms of the number of hydrogen bonds. For each conformation, we

computed the number of native and nonnative hydrogen bonds between the monomer and any of the
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FIGURE 3.8. Representation of the structure of an Aβ1−40 fibril. A magenta arrow indicates the direction of the fibril axis. Only three planes along the
axis are shown. Due to the asymmetry of the structure on the convex (CX) end, the C-terminal strands (red) are more exposed than the N-terminal
strands (blue). The two different initial positions (at the CV and CX ends) of the free monomer (dark green) are shown. In both initial conformations,
the monomer is extended, and it is positioned at 20 Å from the closest fibril end.
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chains on the fibril. A hydrogen bond between peptide groups with indices i and j was considered

native if |i − j| ≤ 3.

A two-dimensional PMF was constructed as a function of the number of native (NHB) and nonnative

(nNHB) hydrogen bonds (Figure 3.9). Several basins can be identified. A small basin at NHB =

nNHB = 0, contains those conformations in which the monomer has not docked onto the fibril

(snapshot A). The basin at NHB ≤ 2, and 5 < nNHB ≤ 16, corresponds to conformations for

which the monomer has bound as an antiparallel β-sheet (snapshots B, C and D). Two more basins

can be seen at NHB = 11, and nNHB = 2 (snapshot F) and nNHB = 7 (snapshots G and H),

populated by conformations in which the monomer has formed native hydrogen bonds along either

the N- or C- terminal strand, but still the other end of the peptide has made few nonnative hydrogen

bonds. Finally, a smaller basin can be seen in Figure 3.9 at 25 ≤ NHB ≤ 27, and nNHB = 0. This

latest basin corresponds to native like conformations (snapshot E). Another important remark is

the presence of a scarcely populated region at 20 ≤ NHB ≤ 25 separating the native basin from the

rest of the regions, indicating a free-energy barrier.

3.6.2 Four-Chain Fibril: Description of Pathways

To understand the mechanism of monomer addition better, we visually examined the folding path-

ways of the simulated trajectories. We notice the same pattern in the binding mechanism at both the

CV and CX ends of the template. Snapshots from two trajectories leading to successful monomer

addition, are shown in Figures 3.10 (starting at the CV end) and 3.11 (starting at the CX end). In

Figure 3.10, the first snapshot (t = 0.76 ns) shows the monomer before docking onto the template.

As expected from our simulations of Aβ monomers, at this point the monomer adopts conformations

with significant α-helical content. At t = 2.62 ns, the monomer has bound to the template with the

wrong (antiparallel) orientation. At t = 4.77 ns, the monomer is free again. At t = 6.89 ns, it at-

tempts to bind again in a nonnative conformation. Further reorientation leads to the conformation

shown at t = 13.01 ns, with several native hydrogen bonds along the C-terminal strand. Finally,

the N-terminal strand follows and also makes native hydrogen bonds, locking the monomer in the

fibrilar conformation (t = 20 ns snapshot). The trajectory in Figure 3.11 shows a similar mecha-

nism. Initially the monomer attempts to form nonnative conformations (t = 0.27 ns and t = 1.45
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FIGURE 3.9. A two-dimensional PMF as a function of the number of native and nonnative hydrogen bonds (NHB and nNHB), obtained from REMD
simulations of a free monomer interacting with a 4-chain fibril template. Snapshots of representative conformations in each basin are shown. The chains
in the template are colored in light blue, while the free monomer is colored in orange to red. The small basin at NHB = nNHB = 0 corresponds to
unbound conformations (snapshot A). A long basin at NHB ≤ 2, and 5 < nNHB ≤ 16, corresponds to conformations with nonnative (antiparallel or
off-registry for more than 3 amino acids) binding (snapshots B, C and D). Two basins at NHB = 11, correspond to conformations with one strand
locked in the fibrilar conformation (snapshots F, G and H). The small basin at 25 ≤ NHB ≤ 27, and nNHB = 0 is the native basin (snapshot E).

.
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ns) that are later disrupted (t = 3.76 ns). Native binding starts with the assembly of its N-terminus

(t = 16.75 ns) and later propagates towards its C-terminus (t = 20 ns).

We now look closely at the hydrogen bonds formed between the monomer and the template, along

the folding trajectories shown in Figures 3.10 and 3.11. Figures 3.12 (a) and 3.12 (b) show the number

of native (NHB) and nonnative (nNHB) hydrogen bonds as a function of time for the trajectories

shown in Figures 3.10 and 3.11, respectively. For both trajectories, we can distinguish the three stages

in the dock-lock mechanism. During the first (docking) stage, very few native hydrogen bonds are

formed. The conformations adopted during this first stage are not very stable and, the monomer

binds and unbinds several times (reflected in NHB and nNHB rising and going back to zero several

times). In the second stage [starting at ≈ 10 ns in Figure 3.12 (a) and ≈ 6.5 ns in Figure 3.12

(b)], which corresponds to the first locking state, the monomer makes several native hydrogen bonds

(NHB ≈ 10), locking only one of the strands, while the other strand is still free to move. The last

stage corresponds to the second locking state [starting at ≈ 18 ns in Figure 3.12 (a) and ≈ 19 ns

in Figure 3.12 (b)]. During this stage, the free strand makes the remaining native hydrogen bonds,

and the monomer is fully locked in the fibrilar conformation. Once the monomer is locked into this

conformation, it can itself serve as a template for subsequent monomer additions.

This assembly mechanism is consistent with the results obtained from experiments of Aβ monomer

deposition[97, 98]. We have identified a docking stage, and more remarkably, the two different locking

stages. From our simulations, it becomes evident that the first locking stage is a necessary step that,

by locking one of the strands, limits the conformational space available to the free strand and

facilitates the assembly of the rest of the peptide. We also noticed that, once the still-free strand

makes one or two native hydrogen bonds, these bonds quickly propagate along the rest of the

strand. This is shown in Figures 3.12 (a) and 3.12 (b) as the abrupt rise in NHB by the end of the

simulation. It is also seen in Figure 3.9 as a scarcely-populated region between the native basin (at

≈ 26 NHB) and at the region below 20 NHB. This indicates a cooperative binding, in contrast to

the non-cooperative effect of hydrophobic interactions in stacking layers on each other, discussed

in section 3.4.2.1. This cooperative binding that we observe between the first and second stages of

locking (Figures 3.12, 3.10 and 3.11) has also been observed in simulations of the assembly of Aβ

fragments[63].
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FIGURE 3.10. Selected snapshots along a representative trajectory of a monomer binding to a 4-chain fibril are shown. The monomer is initially placed
in the extended conformation, at 20 Å from the CV end of the template. The snapshot at t = 0.76 ns shows the monomer before docking onto the fibril
in a conformation with significant α-helical content. At t = 2.62, the monomer binds forming an antiparallel β-strand along the C-terminus, while the
N-teminus forms an α-helix. At t = 4.77 ns, the monomer is free from the template again. At t = 6.89 ns, the monomers attempts to bind again, but
the conformation is still nonnative. The monomer rearranges its position, and at t = 13.01 ns, its C-terminus has bound with the native conformation,
with the α-helix along the N-terminus still being present. The α-helix unfolds and the N-terminus also binds with the native conformation, locking the
monomer into the fibrilar conformation, as shown in the t = 20 ns snapshot.
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FIGURE 3.11. Same as Figure 3.10, except that the monomer is initially placed in the extended conformation, at a 20 Å from the CX end of the
fibril. The snapshot at t = 0.05 ns shows the monomer before docking onto the fibril in a conformation with a certain α-helical content. The monomer
makes several attempts to bind (t = 0.27 ns, t = 1.45 ns, and t = 3.76 ns), but none of these conformations are native, and the binding is disrupted.
Native binding starts with the assembly of the N-terminal strand (t = 16.75 ns). The C-terminal strand follows, locking the monomer into the fibrilar
conformation as shown in the t = 20 ns snapshot.
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FIGURE 3.12. The number of native and nonnative hydrogen bonds (NHB and nNHB) between monomer and template during a trajectory leading
to a full addition starting from the CV end (a) and CX end (b).
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In order to describe the ensemble of conformations at the end of our REMD simulations, we adopted

the following criteria. If, at the end of the simulation, the monomer has no hydrogen bonds with

any of the chains in the template, it is considered undocked. If it has formed less than 10 native

hydrogen bonds, it is considered a nonnative addition. If it has formed more than 10, but less than

20 native hydrogen bonds, we consider it a half addition. Finally, if it has formed at least 20 native

hydrogen bonds with any of the chains on the fibril, we consider it a full addition. It should be noted

that a half addition corresponds to a monomer in the first locking stage, and a full addition to a

monomer in the second locking stage. The number of undocked, nonnative, half and full additions

are listed in Table 3.1. The data show that the binding can occur at both ends of the fibril (CV or

CX). For this system, all the monomers were hydrogen bonded by the end of the simulation, i.e.,

none was undocked. Of 120 trajectories, we obtained 2 full additions and 14 half additions from the

CV end, and 1 full addition and 12 half additions from the CX end. We also noticed that, on several

occasions, binding occurred at the opposite end of the fibril, i.e., a monomer, initially facing the CV

end, could bind to the CX end, and vice versa. The number of full and half additions and nonnative

binding on the opposite end are indicated between parentheses. Although our data show a slightly

larger number of half and full additions to the CV end than to the CX end, the numbers are too

small to arrive at any conclusions about preferences at the ends. It is, however, important to note

that monomers can bind to both ends of the fibril.

3.6.3 Six-Chain and Seven-Chain Fibrils: Description of Pathways

For templates consisting of 6 and 7 chains, 120 REMD simulations, 20 ns long, were carried out.

For both systems, the monomer was initially placed at the CX end of the fibril in the extended

conformation and 20 Å apart from the end of the fibril. The number of undocked, nonnative, half

and full addition are listed in Table 3.1, with the number of full and half additions and nonnative

binding on the opposite (CV) end indicated between parentheses.

The mechanism of assembly resembles that observed for the 4-chain templates. For both the 6- and

7-chain templates, only one trajectory led to a full addition. Snapshots from these trajectories are

shown in Figures 3.13 (6-chain template) and 3.14 (7-chain template).

In the 6-chain template (Figure 3.13), binding occurs on the opposite end, the CV end. The mech-

anism of binding is the same as other systems that we have described. Figure 3.13 shows snapshots
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TABLE 3.1. Summary of final conformations obtained from 120 REMD simulations

4-mer+1 6-mer+1 7-mer+1
From CV enda From CX endb From CX endc From CX endd

full additionse 2 (0) 1 (0) 1 (1) 1 (0)
half additionsf 14 (1) 12 (4) 6 (0) 2 (1)
nonnativeg 104(13) 107(29) 106(24) 91(11)
undockedh 0 0 7 26

Number of trajectories that resulted in full additions, half additions, nonnative binding or undocked monomer for the following systems, a a

4-chain template with the monomer initially positioned facing the CV end, b a 4-chain template with the monomer initially positioned facing

the CX end, c as in b, but for a 6-chain template, and d as in b, but for a 7-chain template. Trajectories were classified as e full additions

if, by the end of the simulation, the monomer has formed at least 20 native hydrogen bonds with any of the chains on the template, f half
additions if monomer has formed more than 10 but less than 20 native hydrogen bonds, g nonnative if monomer has formed less that 10

native hydrogen bonds, and h undocked if monomer has no hydrogen bonds with any of the chains in the template. The number of full and
half additions and nonnative binding on the opposite end are indicated between parentheses
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FIGURE 3.13. Selected snapshots along a representative trajectory of a monomer binding to a 6-chain fibril. The template is shown from its CX end.
The monomer is initially positioned on the CV end of the fibril. At t = 0.53 ns, the monomer still moves free from the template, and it can be seen
behind the template, still facing the the CV end. Snapshots at t = 4.90 ns and t = 6.12 ns show the monomer traveling around the template towards
the CX end. At t = 6.73 ns, the monomer has bound to the CX end, but in a nonnative conformation. At t = 7.35 ns the monomer has locked its
N-terminal strand into the fibrilar conformation. At t = 9.81 ns, both N- and C-terminal strands are locked into the fibrilar conformation.
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FIGURE 3.14. Selected snapshots along a representative trajectory of a monomer binding to a 7-chain fibril. At t = 0.26 ns, the monomer docks with
native orientation. At t = 1.8 ns, the N-terminal strand is locked into the template. Meanwhile, the C-terminus, which is still free to move, bends and
makes a β strand with itself. This conformation is very stable but, at t = 14.5 ns, the β strand is finally disrupted. Shortly after that, at t = 14.7 ns,
the monomer binds with the native conformation.
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facing the CV end of the template. The free monomer initially faces the CX end, therefore, in the

first snapshot (t = 0.53 ns), it is positioned behind the template. The monomer finds its way around

the template, and at t = 6.73 ns, it binds at the CV end of the template. At t = 7.35 ns, the N-

terminal strand is locked into the fibrilar conformation and, at t = 9.81 ns, the C-terminus follows,

and the peptide is fully locked.

For the 7-chain template (Figure 3.14), it can be seen that fibril elongation starts from the native

binding of the N-terminal strand, which happens early during the simulation (at t = 1.8 ns). In this

particular case, native binding of the free strand takes a longer time, and the peptide does not find

the native conformation until the 14.7 ns of simulation.

To summarize, the larger systems with 6- and 7-chain templates showed the same dock-lock mech-

anism as the 4-chain templates. Here too, the two locking states can be distinguished, the first one

corresponding to the native binding of one of the strands, and the final locking state corresponding

to the native binding of the second strand.

3.7 Conclusions

A coarse-grained model UNRES has been used to study the stability of Aβ9−40 oligomers and

the process of fibril growth. Using this approach, we succesfully simulated the assembly of free

monomers into fibril templates, providing insight into the conformational changes leading to Aβ

fibril propagation.

Regarding the stability of oligomers, we found that hydrophobic interactions play an important

role in stabilizing their structures, and that these interactions become more important as the size

of the oligomer increases, approaching their maximum values at around 16 chains. However, taking

into account certain limitations of the force field, we conclude that oligomers smaller than 16 chains

might also be stable in the fibrilar conformation.

Our results also showed that the hydrogen bonds, formed between chains in consecutive layers,

are extremely stable. These hydrogen bonds act as restraints that, by limiting the conformations

that the hydrogen bonded chains can adopt, reduce the conformational entropy of the unfolded

state, thereby increasing the stability of the folded state. For larger systems, this effect also becomes
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more important because more hydrogen bonded layers will have less energetically favorable states

available.

Regarding the hydrogen bonds between consecutive layers, we also studied the increase in their

stability when adding a new layer to a preformed oligomer. This was done by computing the dif-

ferences in the hydrogen-bonding energy between oligomers of different sizes. The results indicate

the presence of cooperativity in the interlayer hydrogen bonds when adding one to three layers. For

further additions, the energy change becomes constant. The result is in agreement with classical and

quantum mechanical calculations with a 7-amino-acid fragment of a fibril-forming peptide from the

yeast prion, Sup35[93].

Fibril elongation was studied by allowing a free monomer to interact with a fibril template. The

simulations produced trajectories leading to nonnative and native binding (native meaning that the

monomer binds, adopting the same conformation as the other chains in the template). By studying

those conformations that led to native binding, we observed that they followed a common dock-lock

mechanism, and that this mechanism was compatible with that inferred from experiments[97, 98].

During the docking stage, the monomer interacts with the template, often making nonnative hydro-

gen bonds that later break. The second stage, locking, can be further divided into two consecutive

steps. First, the monomer makes native hydrogen bonds along one of the β-strands in the template,

and at this point half of the peptide is bound to the template, while the other end can move freely.

The final locking step is the native binding of the free end. This final step was highly cooperative,

as indicated by the fact that, once one or two native hydrogen bonds are formed between the free

end and the template, these hydrogen bonds quickly propagate along the rest of the peptide. This

final step locks the monomer into the fibril template. Experiments on monomer deposition[98] have

shown the presence of two locking states; however these experiments could not describe the confor-

mations populating these two states. Based on our simulations, we have proposed a description of

this mechanism at the molecular level.

3.8 Supplementary Material
3.8.1 Restraining Potential

Fibril elongation was examined by simulating the interaction between a monomer and a fibril tem-

plate. The fibril template was composed of 4, 6 or 7 chains, and was restrained to the structural
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model of Petkova et al.[59]. Since systems of such sizes (4 to 7 chains) are not stable with the version

of the UNRES force field used here, an additional term, URestr., was added to the UNRES energy

function to restrain the template to the fibrilar conformation. The energy is given by equation 3.1

URestr = wRestr

∑

l

[Q(l) − 1]2 (3.1)

where the index l runs over all the segments being restrained, wRestr is the weight of the term, set

at 5 × 104Kcal/mol, and Q(l) is given by equation 3.2

Q(l) =
1

Ndistl

[

∑

i,j

exp

[

−
1

2

(

di,j − dnat
i,j

)2
]

]

(3.2)

where di,j and dnat
i,j are the current and native distances between the Cα atoms from amino acid i and

j, and Ndistl is the total number of distances in segment l. Two types of segments were considered,

intrachain and interchain segments. For intrachain segments, the indices i and j run over all the

amino acids in the chain, with i < j. Interchain segments were considered between adjacent chains

(i.e., between chain n and, chain n + 1 or chain n + 2). For interchains segments, the indices i and

j run over all the amino acids in the corresponding chains.

3.8.2 REMD Simulations

For the simulations of fibril elongation, we used replica exchange molecular dynamics (REMD)[99,

100]. The implementation is described as follows:

• 120 independent canonical MD simulations were started from the same initial conformation

but at different temperatures ranging between 280 and 320 K, with intervals of 10 K. Each

simulation was run for 20 ns.

• For each trajectory, an exchange of conformations between groups with consecutive tempera-

tures was attempted every 20,000 steps.

• An exchange between conformations Xi and Xj is accepted or rejected with a probability ∆

given by equation 3.3

∆ = (βj − βi)[U(Xj) − U(Xi)] (3.3)
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where βi = 1/RTi, with R the gas constant and Ti the absolute temperature of the i-th trajectory, and

U(Xi) its UNRES energy. The constant temperature baths were maintained by using the Berendsen

thermostat (section 2.2.4).

3.8.3 Hydrophobic Residue Density

The average hydrophobic residue density (〈HpRD〉), defined as the number of hydrophobic residues

per unit volume, averaged over all chains, was calculated according to equation 3.4

〈HpRD〉 =
1

Nchains

∑

chains

1

NHpSC

∑

i

NHpResi
(3.4)

where Nchains is the number of chains in the system, NHpSC is the number of hydrophobic side chains

on each peptide chain, NHpResi
is the number of hydrophobic residues within a sphere of radius 7.6

Å around side chain i, and the sum is evaluated over all hydrophobic side chains in all chains.

3.8.4 Potential of Mean Forces (PMF)

A two-dimensional PMF was calculated from the 300 K snapshots from the simulations of fibril

elongation with four-chain templates. The coordinates were the number of native and nonnative

hydrogen bonds (NHB and nNHB). The PMF, w(NHB, nNHB), was computed from equation 3.5

w(NHB, nNHB) = −kBT ln(〈ρ(NHB, nNHB)〉) (3.5)

where kB is the Boltzmann constant, T is the temperature (300 K), and 〈ρ(NHB, nNHB)〉 is the

average distribution function calculated as the number of snapshots containing NHB and nNHB

divided by the total number of snapshots.
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Chapter 4
Conclusions

The main goal of this thesis was to study the folding process of protein systems composed of multiple

chains. The first part of the thesis (Chapter 2) focused on building and testing the tools needed to

study the folding of multichain proteins from a computational approach. The second part of the

thesis (Chapter 3 is the application of these tools to study the Alzheimers Amyloid β (Aβ) fibrils.

Aβ fibrils have been identified as the cause of Alzheimers disease. Understanding the mechanism

through which the free harmless monomers assemble to grow the toxic Aβ fibrils can greatly con-

tribute to design drugs that can prevent this process. Experiments have been able to describe some

aspect of this transformation[97, 98], but none of these experiments could provide a detailed descrip-

tion of the conformational changes that the monomer undergoes during the process. The simulations

presented in chapter 3 describe at the molecular level the process by which free Aβ monomers are

incorporated into Aβ fibrils. The simulations show that monomer addition is a two step process.

In the first step, half of the monomer binds mimicking the fibrilar structure, while the other half

remains free to adopt any conformation. Only after the second half of the fibril also binds with the

fibrilar conformation, can fibril propagation continue. This suggests that a peptide that has enough

similarity with Aβ to bind to a fibril, but that will not undergo the second conformational change,

will be able to stop the elongation process. This result can potentially help to target a peptide that

might prevent fibril elongation.

4.1 Further Research

As in any scientific work, the information obtained in this work brings new questions and suggests

alternatives to answer those that could not be addressed before. For example, when I first started

to study Aβ fibrils, I tried to describe the free energy profile of the monomer while binding onto a

fibril, but finding the appropriate parameter to describe the process and a reasonable pathway was

not trivial. The results from this thesis not only describe the pathway that the monomer naturally

chooses, but also suggest that the hydrogen bonds between the monomer and the fibril will be the

most appropriate coordinate to describe the binding. I could now use this information to obtain the
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free energy profile of the binding process, and by doing so I can also obtain the free energy barrier

between the first and second locking state, which has important implications because the transition

between these two states is necessary for fibril propagation to continue.

Another interesting question is the role of the salt bridge between the charged residues on each

side of the hairpin structure in the fibrilar conformation (see Figure 3.2 d). It has been shown that

linking these two residues speeds up the formation of Aβ fibrils[88, 59], which suggests that this

interaction might help the monomer to adopt the fibrilar conformation, but to what extend is a

still unanswered question. By carrying out simulations changing the strength of the attraction force

between these two residues, one could assess the importance of this salt bridge.

Finally, another question that could be addressed is whether binding is more likely to occur on one

of the ends of the fibril (see Figure 3.8). This question could be answered by carrying out restrained

simulations that would force the monomer to bind on the CV or the CX end and compute the

free energy barrier of binding. The free monomer simulations (Section 3.6) did not produce enough

trajectories for which the monomers propagated the fibril, and there were not enough data to address

this question. By forcing the monomer to adopt the conformations along the natural pathway (the

pathway obtained from the free monomer simulations), I can make sure that enough conformations

are sampled and a smooth free energy profile can be obtained for binding on either end.

97



Bibliography

[1] A. Alzheimer, RA Stelzmann, HN Schnitzlein, and FR Murtagh. An English translation of
Alzheimer’s 1907 paper, ”Uber eine eigenartige Erkankung der Hirnrinde”. Clinical anatomy
(New York, NY), 8:429–431, 1995.

[2] NC Berchtold and CW Cotman. Evolution in the conceptualization of dementia and
Alzheimer’s disease: Greco-Roman period to the 1960s. Neurobiol. Aging, 19:173–189, 1998.

[3] D.J. Selkoe. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev., 81:741–766,
2001.

[4] Colin L. Masters, Gail Simms, Nicola A. Weinman, Gerd Multhaup, Brian L. McDonald, and
Konrad Beyreuther. Amyloid plaque core protein in alzheimer disease and down syndrome.
Proc. Natl. Acad. Sci. USA, 82:4245–4249, 1985.

[5] D.J. Selkoe. The molecular pathology of alzheimers-disease. Neuron, 6:487–498, 1991.

[6] A. Lorenzo, M. Yuan, Z. Zhang, P.A. Paganetti, C. Sturchler-Pierrat, M. Staufenbiel,
J. Mautino, F.S. Vigo, B. Sommer, and B.A. Yankner. Amyloid β interacts with the amy-
loid precursor protein: a potential toxic mechanism in Alzheimer’s disease. Nat. Neurosci.,
3:460–464, 2000.

[7] D.M. Walsh, I. Klyubin, J.V. Fadeeva, W.K Cullen, R. Anwyl, M.S. Wolfe, M.J. Rowan,
and D.J. Selkoe DJ. Naturally secreted oligomers of amyloid beta protein potently inhibit
hippocampal long-term potentiation in vivo. Nature, 416:535–539, 2002.

[8] C. Levinthal. ARE THERE PATHWAYS FOR PROTEIN FOLDING ? J. Chim. Phys.,
65:44, 1968.

[9] Y. Zhang and J. Skolnick. The protein structure prediction problem could be solved using the
current PDB library. Proc. Natl. Acad. Sci. USA, 102:1029–1034, 2005.

[10] J.U. Bowie, R. Luethy, and D. Eisenberg. A method to identify protein sequences that fold
into a known three-dimensional structure. Science, 253:164–170, 1991.

[11] R. Day and V. Daggett. All-atom simulations of protein folding and unfolding. Adv. Protein
Chem., 66:373–403, 2003.

[12] A. R. Fersht and V. Daggett. Protein folding and unfolding at atomic resolution. Cell,
108:573–582, 2002.

[13] J. Kubelka, J. Hofrichter, and W. A. Eaton. The protein folding ’speed limit’. Curr. Opinion
Struct. Biol., 14:76–88, 2004.

[14] J.-E. Shea and C. L. Brooks III. From folding theories to folding proteins: a review and
assessment of simulation studies of protein folding and unfolding. Annu. Rev. Phys. Chem.,
52:499–535, 2001.

[15] M. Vieth, A. Kolinski, C. L. Brooks, and J. Skolnick. Prediction of the folding pathways and
structure of the gcn4 leucine zipper. J. Mol. Biol., 237:361–367, 1994.

98



[16] B. Ma and R. Nussinov. Stabilities and conformations of Alzheimer’s-amyloid peptide
oligomers (Aβ 16 22, Aβ 16–35, and Aβ 10 35): Sequence effects. PNAS, 99:14126–14131,
2002.

[17] Y. Levy, A. Caflisch, J.N. Onuchic, and P.G. Wolynes. The folding and dimerization of HIV-1
protease: evidence for a stable monomer from simu lations. J. Mol. Biol., 340(1):67–79, 2004.

[18] S. Yang, S.S. Cho, Y. Levy, M.S. Cheung, H. Levine, P.G. Wolynes, and J.N. Onuchic.
Domain swapping is a consequence of minimal frustration. Proc. Natl. Acad. Sci. U.S.A.,
101(38):13786–13791, 2004.

[19] Y. Levy, G.A. Papoian, J.N. Onuchic, and P.G. Wolynes. Energy landscape analysis of protein
dimers. Isr. J. Chem., 44(1-3):281–297, 2004.

[20] S. Yang, H. Levine, J.N. Onuchic, and D.L. Cox. Structure of infectious prions: stabilization
by domain swapping. FASEB J., 19(13):1778–1782, 2005.

[21] M. Khalili, A. Liwo, F. Rakowski, P. Grochowski, and H. A. Scheraga. Molecular dynamics
with the united-residue (UNRES) model of polypeptide chains. I. Lagrange equations of motion
and tests of numerical stability in the microcanonical mode. J. Phys. Chem. B, 109:13785–
13797, 2005.

[22] M. Khalili, A. Liwo, A. Jagielska, and H. A. Scheraga. Molecular dynamics with the united-
residue (UNRES) model of polypeptide chains. II. Langevin and Berendsen-bath dynamics
and tests on model α-helical systems. J. Phys. Chem. B, 109:13798–13810, 2005.

[23] A. Liwo, M. Khalili, and H. A. Scheraga. Molecular dynamics with the united-residue (UN-
RES) model of polypeptide chains; test of the approach on model proteins. Proc. Natl. Acad.
Sci. U.S.A., 102:2362–2367, 2005.

[24] M. Khalili, A. Liwo, and H. A. Scheraga. Kinetic studies of folding of the B-domain of
staphylococcal protein A with molecular dynamics and a united-residue (UNRES) model of
polypeptide chains. J. Mol. Biol., 355:536–547, 2006.

[25] A. Liwo, S. O ldziej, M. R. Pincus, R. J. Wawak, S. Rackovsky, and H. A. Scheraga. A united-
residue force field for off-lattice protein-structure simulations. I. Functional forms and param-
eters of long-range side-chain interaction potentials from protein crystal data. J. Comput.
Chem., 18:849–873, 1997.

[26] A. Liwo, M. R. Pincus, R. J. Wawak, S. Rackovsky, S. O ldziej, and H. A. Scheraga. A united-
residue force field for off-lattice protein-structure simulations. ii: Parameterization of local
interactions and determination of the weights of energy terms by z-score optimization. J.
Comput. Chem., 18:874–887, 1997.

[27] A. Liwo, C. Czaplewski, J. Pillardy, and H. A. Scheraga. Cumulant-based expressions for
the multibody terms for the correlation between local and electrostatic interactions in the
united-residue force field. J. Chem. Phys., 115:2323–2347, 2001.

[28] A. Liwo, P. Ar lukowicz, C. Czaplewski, S. O ldziej, J. Pillardy, and H.A. Scheraga. A method
for optimizing potential-energy functions by a hierarchical design of the potential-energy land-
scape: Application to the UNRES force field. Proc. Natl. Acad. Sci. U.S.A., 99:1937–1942,
2002.

99



[29] S. O ldziej, U. Koz lowska, A. Liwo, and H. A. Scheraga. Determination of the potentials of
mean force for rotation about cα · · · cα virtual bonds in polypeptides from the ab initio energy
surfaces of terminally-blocked glycine, alanine, and proline. J. Phys. Chem. A, 107:8035–8046,
2003.

[30] A. Liwo, S. O ldziej, C. Czaplewski, U. Koz lowska, and H. A. Scheraga. Parameterization
of backbone-electrostatic and multibody contributions to the UNRES force field for protein-
structure prediction from ab initio energy surfaces of model systems. J. Phys. Chem. B,
108:9421–9438, 2004.

[31] S. O ldziej, A. Liwo, C. Czaplewski, J. Pillardy, and H. A. Scheraga. Optimization of the
UNRES force field by hierarchical design of the potential-energy landscape: II. Off-lattice
tests of the method with single proteins. J. Phys. Chem. B, 108:16934–16949, 2004.

[32] S. O ldziej, J.  La̧giewka, A. Liwo, C. Czaplewski, M. Chinchio, M. Nanias, and H. A. Scheraga.
Optimization of the UNRES force field by hierarchical design of the potential-energy landscape:
III. Use of many proteins in optimization. J. Phys. Chem. B, 108:16950–16959, 2004.

[33] C. Czaplewski, S. O ldziej, A. Liwo, and H. A. Scheraga. Prediction of the structures of
proteins with the UNRES force field, including dynamic formation and breaking of disulfide
bonds. Protein Eng. Des. Sel., 17:29–36, 2004.

[34] J. A. Saunders and H. A. Scheraga. Ab initio structure prediction of two α-helical oligomers
with a multiple-chain united-residue force field and global search. Biopolymers, 68:300–317,
2003.

[35] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak.
Molecular dynamics with coupling to an external bath. J. Chem. Phys., 81:3684–3690, 1984.

[36] A. Liwo, M. R. Pincus, R. J. Wawak, S. Rackovsky, and H. A. Scheraga. Prediction of pro-
tein conformation on the basis of a search for compact structures; test on avian pancreatic
polypeptide. Protein Sci., 2:1715–1731, 1993.

[37] T. Veitshans, D. Klimov, and D. Thirumalai. Protein kinetics: timescales, pathways, and
energy landscapes in terms of sequence-dependent properties. Fold. Des., 2:1–22, 1996.

[38] M. Cieplak, T. X. Hoang, and M. O. Robbins. Thermal folding and mechanical unfolding
pathways of protein secondary structures. Proteins: Struct., Funct., Genet., 49:104–113, 2002.

[39] P.-G. de Gennes. Scaling concepts in polymer physics. Cornell University Press, Ithaca, 1979.
Chapter VI.

[40] L. Verlet. Computer simulations of classical fluids. i. thermodynamical properties of lennard-
jones molecules. Phys. Rev., 159:98–103, 1967.
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